Greifswald MR-ToF mass spectrometer
Implemented in 2016, the Greifswald MR-ToF setup is based on a multi-reflection time-of-flight (MR-ToF) mass spectrometer, an ion-storage device which is also referred to as an electrostatic ion beam trap (EIBT). Two opposing electrostatic mirrors are utilized to reflect trapped ions back and forth and thus utilize a drift tube hundreds to thousands of times. At identical total energies, ions with different mass-to-charge ratios will exhibit different revolution periods und thus different overall flight times for a fixed number of laps. The device’s precision and mass resolving power can thus be increased by elongating the flight path of investigated ions.
A high-vacuum laser-ablation source is used to produce cluster ions (amalgamations of a certain number of same- or different-species atoms) by irradiation of target plates with a pulsed laser. Measurements of production, fragmentation, or electron-detachment rates of atomic clusters with different sizes yield information about their structure and, thus, the evolution of their properties between atomic and bulk behavior. Modern cluster physics reaches for more and more complex molecules and their fine-tuned application as biomedical markers or reaction catalysts.
At the Greifswald setup, a second laser is set up to excite stored ions and thus investigate cluster photodissociation and photodetachment. Measurement techniques focusing on ion separation and the parallel handling of large mass ranges are developed to tackle the unique challenges of large clusters. Simultaneously, techniques for MR-ToF precision mass spectrometry as used in, e.g., nuclear physics are adjusted and advanced.
Experimental setup
Potential configuration

Time-of-flight spectra


Publications
2024
- A multi-reflection time-of-flight setup for the study of atomic clusters produced by magnetron sputtering
P. F. Giesel, P. Fischer, L. Schweikhard
Rev. Sci. Instrum. 95, 023201 (2024)
2023
- Photodissociation of small group-14 atomic clusters in a multi-reflection time-of-flight mass spectrometer
P. Fischer, P. F. Giesel, L. Schweikhard
Eur. Phys. J. D 77, 27 (2023)
2022
- Disentangling polycationic fullerenes produced from glassy carbon with multireflection time-of-flight mass spectrometry
P. Fischer, L. Schweikhard
Phys. Rev. Research 4, 043187 (2022)
2021
Multiple active voltage stabilizations for multi-reflection time-of-flight mass spectrometry
P. Fischer, L. Schweikhard
Rev. Sci. Instrum. 92, 063203 (2021)Concatenated multi-reflection time-of-flight spectra for wide-band mass spectrometry
P. Fischer, S. König, L. Schweikhard
Int. J. Mass Spectrom. 463, 116546 (2021)
2020
Decay-rate power-law exponent as a link between dissociation energy and temperature
P. Fischer, L. Schweikhard
Phys. Rev. Research 2, 043177 (2020)Multiple-ion-ejection multi-reflection time-of-flight mass spectrometry for single-reference mass measurements with lapping ion species
P. Fischer, L. Schweikhard
Rev. Sci. Instrum. 91, 023201 (2020)
2019
- Isotope-resolved photodissociation pathways of lead-doped bismuth clusters from tandem multi-reflection time-of-flight mass spectrometry
P. Fischer, L. Schweikhard
Phys. Rev. Research 1, 033050 (2019) - A multi-reflection time-of-flight setup for the improvement and development of new methods and the study of atomic clusters
S. Knauer, P. Fischer, G. Marx, M. Müller, M. Rosenbusch, B. Schabinger, L. Schweikhard, R.N. Wolf
Int. J. Mass Spectrom. 446, 116189 (2019) - Photofragmentation of Bin+/- clusters (n = 2−19) in an electrostatic ion beam trap
P. Fischer, L. Schweikhard
Eur. Phys. J. D 73, 105 (2019) - Multiple ion capture and separation in an electrostatic storage device
P. Fischer, G. Marx, L. Schweikhard
Int. J. Mass Spectrom. 435, 305-314 (2019)
2018
- Non-isobaric time-of-flight correction for isobar resolving in MR-ToF mass spectrometry
P. Fischer, S. Knauer, G. Marx, L. Schweikhard
Int. J. Mass Spectrom. 432, 44-51 (2018) - In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device
P. Fischer, S. Knauer, G. Marx, L. Schweikhard
Rev. Sci. Instrum. 89, 015114 (2018)
2017
- Multi-reflection time-of-flight mass spectrometry with combined in-trap lift capture and mirror-switch ejection
S. Knauer, P. Fischer, G. Marx, B. Schabinger, L. Schweikhard, R.N. Wolf
Int. J. Mass Spectrom. 423, 46-53 (2017)
Theses
2022
- Investigations of a combination of magnetron ion source, quadrupole mass filter, linear Paul trap, and multi-reflection time-of-flight mass spectrometer
Paul Florian Giesel, Master Thesis
2021
- Das Auflösungsvermögen eines Flugzeitmassenspektrometers als Funktion des Anregungszeitpunktes bei der Photofragmentation von Bismutclustern
Lukas Roscher, Bachelor Thesis - Zeitabhängigkeiten bei der Produktion von Metallclustern durch Laserablation
Lukas Richter, Bachelor Thesis
2020
- Aufnahme und Analyse von Laserablations-Flugzeit-Massenspektren von Kupfer-, Silber- und Goldproben
Paul Florian Giesel, Bachelor Thesis - Further developments of multi-reflection time-of-flight mass spectrometry and first application for cluster research
Paul Fischer, Dissertation
2019
- A multi-reflection time-of-flight mass spectrometer for cluster research and methodological developments with clusters
Stefan Knauer, Dissertation
2017
- Weiterentwicklung eines Multireflexionsmassenspektrometers für Clusteruntersuchungen
Florian Simke, Master Thesis
2016
- Erzeugung und Untersuchung von Clusterionen
Paul Fischer, Master Thesis