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TEIL

IEinleitung
Abschnitt 1

Vorwort

Dieses Buch enthält die wesentlichen Inhalte der Vorlesung über Experimentelle Physik 3 (Re-
lativität und Quantenphysik) für das Lehramt Physik, wie sie an der Universität Greifswald
stattfindet. Es soll als semesterbegleitende Ergänzung zur Vorlesung für alle Studierenden des
Lehramts Physik dienen. An den meisten Universitäten besuchen die angehenden Physikleh-
rerInnen (leider) die gleichen Vorlesungen wie die Fachphysiker. Weil das Zeitpensum der
Studiengänge sich jedoch deutlich unterscheidet, ist die Fachliteratur der Fachphysik oft zu
sehr auf bereits verfügbares mathematisches Wissen und Können gegründet. Die Literatur die
die selben Physikthemen für Nebenfächler behandelt bietet widerum nicht genug fachliche
Tiefe für GymnasiallehrerInnen. Deswegen sehe ich dieses Buch als Chance, für angehende
LehrerInnen auch die fortgeschrittenen Themen der Physik nachvollziehbar präsentieren zu
können.

Mir ist bewusst, dass Lehramtsstudierenden weniger Übungszeit als Studierenden der
Fachphysik zur Verfügung steht. Deswegen hoffe ich, dass zumindest das Lesen der Re-
chenwege eine gewisse Gewöhnung an die mathematische Formulierung hervorruft. Ich gebe
mir Mühe, die Rechenwege so ausführlich wie möglich darzustellen. Die Rechnungen soll-
ten also für alle mit grundlegendem Mathematikwissen aus den Einführungsveranstaltungen
nachvollziehbar sein, obwohl der Detailgrad der Herleitungen an sich nicht verringert wurde.

In diesem Buch werden folgende grafische und stilistische Mittel genutzt:

Wichtiger Inhalt So markierte Textbereiche enthalten zentrale Aussagen, die unbedingt
bekannt sein sollen.

Kommentare, die den Lesefluss 1 zu sehr beeinträchtigen würden, sind an den Rand 1 Hier ein Beispiel.
gestellt.

Der Teil zur Relativitätstheorie ist etwas ausführlicher als wohl in vielen Vorlesungsreihen
zur Thematik üblich. Dies wurde bewusst so umgesetzt, um vornehmlich auf Interessen der
SchülerInnen eingehen zu können. Es zeigt sich, dass die SuS ein großes Interesse an Begriffen
wie Raumkrümmung, Schwarzen Löchern, oder gar Phänomenen wie Wurmlöchern und
Zeitreisen haben. Die zukünftigen LehrerInnen sollen wenigstens grundlegend in die Lage
versetzt werden, zu solchen Thematiken fundierte Aussagen zu treffen.

Dieses Buch wird voraussichtlich noch erweitert und ergänzt werden. Ich freue mich sehr
über Meldungen von Rechen- oder Rechtschreibfehlern an mich!

Abschnitt 2

Mathematische Grundlagen

Es zeigt sich immer wieder, dass oft die fehlenden mathematischen Kenntnisse ein deutli-
ches Hindernis darstellen, um die physikalischen Inhalte tatsächlich zu verstehen. Während
des Studiums sollte man bei jeder Rechnung, die man nicht nachvollziehen kann, sofort das
entsprechende Thema nacharbeiten um nicht wichtige “Aha”-Effekte zu verpassen. Um dieses
Nacharbeiten, was natürlich sehr zeitintensiv ist, so weit wie möglich zu reduzieren, habe ich
eine Sammlung von Rechnungen zusammengestellt, die hoffentlich die mathematischen Vor-
kenntnisse abdecken – eine Art Selbsttest. Kursteilnehmer, die bei diesen Aufgaben Probleme
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Mathematische Grundlagen

haben, müssen so schnell wie möglich diese Wissenslücken schließen! Dazu gehört nicht nur
das Lesen der Beispiele in diesem Text, sondern unbedingt auch das eigenständige Lösen ent-
sprechender Aufgaben. Es gibt also zu jedem Problem eine Aufgabe mit vollständiger Lösung
und Lösungsweg und noch einige Übungsaufgaben ohne Lösungsweg.

Abschnitt 2.1

Trigonometrische Funktionen

Sie sollten den Umgang mit trigonometrischen Funktionen bereits in der Schulmathematik
gelernt haben. Die folgenden Fragen sollten Sie direkt beantworten können oder ggf. das
Wissen wieder schnell auffrischen können.

Grundlagen:

• Bestimmen Sie den Wert von sin(𝜋/4)

• Bestimmen Sie den Wert von sin(𝜋/2)

• Bestimmen Sie den Wert von cos(𝜋/4)

• Bestimmen Sie den Wert von cos(𝜋/2)

• Was ergeben die Ableitungen 𝜕
𝜕𝑥

sin(𝑥), 𝜕
𝜕𝑥

cos(𝑥)?

• geläufige Umformungen: sin2 (𝑥) =?, cos2 (𝑥) =?, tan2 (𝑥) =?, sin(𝑥) · cos(𝑥) =?

Abschnitt 2.2

Komplexe Zahlen

Wir benötigen komplexe Zahlen in diesem Semester zur Darstellung von Wellenfunktionen
in der Quantenphysik. Zentraler Punkt, um mit den komplexen Zahlen arbeiten zu können ist
das Verständnis der eulerschen Formel:

ei𝑥 = cos(𝑥) + i sin(𝑥)

Diese kann man nutzen, um die Darstellung komplexer Zahlen zu transformieren (𝑎 + i𝑏 in
𝐴 · ei𝜑 und umgekehrt). Dabei ist der Betrag 𝐴 gegeben durch 𝐴 = |𝑎 + i𝑏 | =

√
𝑎2 + 𝑏2 und der

Phasenwinkel 𝜑 kann durch tan(𝜑) = 𝑏
𝑎

bestimmt werden. Für die Phasenwinkel sollte man
immer das Bogenmaß nutzen.

Komplexe Zahlen:

• Bestimmen Sie die Exponentialform von 𝑐 = 12+ i
√

2.

𝐴 =

√︃
122 +

√
2

2
=
√

146

𝜑 = tan−1

(√
2

12

)
≈ 0.1173

Damit gilt: 𝑐 = 12+ i
√

2 =
√

146 · ei·0.1173

• Bestimmen Sie den Realteil von 𝑦 = 10 · e− i
2 𝜋 .

• Bestimmen Sie den Radialteil/Betrag von Ψ = 32cos
(

3𝜋
4

)
+10i · sin

(
3𝜋
4

)
.
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Differentialrechnung

• Bestimmen Sie die komplex-konjugierte Zahl 𝐶∗
1 zu: 𝐶1 = 3− i ·

√
2.

• Bestimmen Sie die komplex-konjugierte Zahl 𝐶∗
2 zu: 𝐶2 = 3e−i·

√
2.

Abschnitt 2.3

Differentialrechnung

Das Ableiten von Funktionen ist in der Physiklehre der Universität allgegenwärtig. Die Pro-
duktregel, Kettenregel und partielles Ableiten sollten geübt werden bis es leicht anwendbare
Formalismen sind. Hier ein paar Übungen komplexerer Beispiele um wieder alles aufzufri-
schen:

Differenzieren:

• Bestimmen Sie d𝑔
d𝑥 von 𝑔(𝑥) = e3𝑥−3 · ln

(
𝑥2) .

Das Vorgehen ist immer das gleiche: Man analysiert zuerst die “äußeren” Strukturen
und geht Schritt für Schritt weiter in die “inneren” Strukturen. Als äußerste Struktur
sieht man hier ein Produkt zweier Funktionen die von der gesuchten Variable 𝑥
abhängen. Also muss man zuerst die Produktregel anwenden:

d𝑔
d𝑥

=
d(e3𝑥−3)

d𝑥
· ln

(
𝑥2

)
+ (e3𝑥−3) ·

d(ln
(
𝑥2))

d𝑥

Jede der Funktionen, die nun abgeleitet werden müssen, sind selbst wieder “irgend-
welche” Funktionen von 𝑥. Also muss man mit der Kettenregel weiter zur Variable
vordringen. Die Ableitung von e𝑥 ist e𝑥 , die Ableitung des Logarithmus ln(𝑥) ist 1/𝑥.

d𝑔
d𝑥

= e3𝑥−3 · d(3𝑥−3)
d𝑥

· ln
(
𝑥2

)
+ (e3𝑥−3) · 1

𝑥2 · d
d𝑥
𝑥2

Diese Schritte führen wir jetzt aus und sehen, dass danach keine Verkettungen mehr
übrig sind. Das Ergebnis lautet dann nach Kürzen und Ausklammern:

d𝑔
d𝑥

= e3𝑥−3 ·3 · ln
(
𝑥2

)
+ (e3𝑥−3) · 1

𝑥2 ·2𝑥 = e3𝑥−3 ·
(
3ln

(
𝑥2

)
+ 2
𝑥

)
• Bestimmen Sie 𝜕𝜁

𝜕𝑥
von 𝜁 (𝑥) = (1−e3𝑥−3)

3√𝑦 ·e𝑥2 .

• Bestimmen Sie d𝜔
d𝑘 von 𝜔(𝑘) = cos (𝑘𝑥−𝜑) ·

√︁
sin (𝑘𝑥−𝜑).

Abschnitt 2.4

Integralrechnung

Die Integralrechnung ist prinzipiell schwieriger als die rein formale Differentiation. Man ist
zum Teil nicht in der Lage, analytische Lösungen für Integrale zu finden und muss numerische
Methoden anwenden. In dieser Vorlesung sind aber nur grundlegende Integrale nötig um den
Themen zu folgen. Oft haben wir es mit kugelsymmetrischen Problemen zu tun (wie schon
in der Vorlesung zur Mechanik oder Elektrodynamik). Deswegen führen die Aussagen oft zu
Integralen der Form

∫ ∞
𝑟=𝑟0

𝑓 (𝑟)d𝑟 . Es sollten die Methoden der Substitution und der partiellen
Integration bekannt sein.

Integrieren:
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Mathematische Grundlagen

• Bestimmen Sie
∞∫

𝑟=𝑟0

e−3𝑟+2d𝑟 .

Hier können wir die Substitution anwenden. Ziel ist es dabei, die “komplizierte”
Funktion in eine bekannte Form (e𝑥) zu bringen. Es bietet sich also die Substitution
𝑥 = −3𝑟 +2 an. Man muss aber neben dem Exponenten auch das Differential d𝑟 mit
der neuen Variable 𝑥 beschreiben. Dafür erhält man einen Ausdruck durch Ableiten
und Umstellen:

d𝑥
d𝑟

= −3 → 𝑑𝑟 = −1
3

d𝑥

Nun kann man alles Einsetzen:
∞∫

𝑟=𝑟0

e−3𝑟+2d𝑟 =

−∞∫
𝑥0=(−3𝑟0+2)

e𝑥
(
−1

3

)
=

[
−1

3
e𝑥

]−∞
−3𝑟0+2

d𝑥 =
[
(e−∞) −

(
−1

3
e−3𝑟0+2

)]
=

1
3

e−3𝑟0+2

• Bestimmen Sie
∞∫

𝑟=𝑟0

𝑟 · e−2𝑟d𝑟 durch partielle Integration.

• Bestimmen Sie
𝜋∫

𝑟=0
cos2 (𝑟 · 𝑡)d𝑟 .

Abschnitt 2.5

Differentialgleichungen

Wir werden in diesem Buch oft mit Differentialgleichungen arbeiten. Das kreative Lösen kom-
plizierter Gleichungen geht jedoch über den Rahmen der Vorlesung für Lehramtsstudierende
hinaus. Dennoch ist es nötig, einfache Differentialgleichungen durch Einsetzen von gegebenen
Lösungen oder Ansätzen (Heißer Tipp: 𝑒-Funktion!) zu analysieren:

Was lernen wir über die Funktion 𝜔(𝑘) wenn man in die Schwingungsdifferentialgleichung
𝜕2𝑥
𝜕𝑡2 + 𝑘

𝑚
𝑥 = 0 einen harmonischen Lösungsansatz 𝑥 = 𝑥0 sin(𝜔𝑡 −𝜑0) einsetzt? Zunächst

bilden wir die geforderte Ableitung der linken Seite der DGL:

𝜕𝑥

𝜕𝑡
= 𝑥0 cos(𝜔𝑡 −𝜑0) ·𝜔

𝜕2𝑥

𝜕𝑡2
= 𝑥0𝜔 · (−1) · sin(𝜔𝑡 −𝜑0) ·𝜔 = −𝑥0𝜔

2 sin(𝜔𝑡 −𝜑0)

Nun kann man 𝑥 und 𝜕2𝑥
𝜕𝑡2 in die DGL einsetzen:

−𝑥0𝜔
2 sin(𝜔𝑡 −𝜑0) +

𝑘

𝑚
· 𝑥0 sin(𝜔𝑡 −𝜑0)

Jetzt kann man durch Kürzen und Umstellen die gesuchte Beziehung zwischen 𝜔 und 𝑘

12



Differentialgleichungen

finden:

−��𝑥0𝜔
2
((((((sin(𝜔𝑡 −𝜑0) +

𝑘

𝑚
·��𝑥0((((((sin(𝜔𝑡 −𝜑0) = 0

𝜔(𝑘) =

√︂
𝑘

𝑚

Gegeben ist die Differentialgleichung

ℏ2

2𝑚
𝜕2

𝜕𝑥2 Ψ+𝐸 ·Ψ(𝑥) = 0

Zeigen Sie, dass die Funktion Ψ(𝑟) = e i
ℏ
(𝐸𝑡−𝑝𝑥 ) diese DGL löst. Was ergibt sich für eine

Bedingung an 𝐸?

Diese Aufgaben sollten theoretisch, mit Ausnahme der komplexen Zahlen, mit dem
Leistungskurswissen zu Lösen sein. Falls sich gezeigt hat, dass dieses Wissen nicht abrufbar
ist muss es mit hoher Priorität nachgeholt werden. Alle hier abgefragten mathematischen
Themengebiete werden in diesem Buch verwendet und sind für das Verständnis des Stoffes
unabdingbar.
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TEIL

IIRelativität
Meine Herren! Die Anschauungen über Raum und Zeit, die ich Ihnen entwickeln
möchte, sind auf experimentell-physikalischem Boden erwachsen. Darin liegt
ihre Stärke. Ihre Tendenz ist eine radikale. Von Stund an sollen Raum für sich
und Zeit für sich völlig zu Schatten herabsinken und nur noch eine Art Union der
beiden soll Selbständigkeit bewahren. (Hermann Minkowski, 1908)

Dem Begriff der modernen Physik werden auch die Themenbereiche Quantenphysik/-
Quantenmechanik und Relativitätstheorie zugeordnet. Zunächst soll hier die spezielle Relati-
vitätstheorie (kurz: SRT) und danach die allgemeine Relativitätstheorie (kurz: ART) betrachtet
werden. Ebenso wie in der Quantenphysik haben wir es hier mit einem mathematisch sehr
anspruchsvollen Gebiet der Physik zu tun – die Sprache der Relativitätstheorie ist die Differen-
tialgeometrie, Tensoralgebra und komplizierte Systeme aus partiellen Differentialgleichungen.
Es ist wohl klar, dass wir ein solches Themenfeld niemals vollumfänglich bearbeiten können.
Mein Ziel bei der Ausarbeitung dieser Thematik ist es, den Teilnehmern die wichtigsten Werk-
zeuge in die Hand zu geben um die relativistischen Effekte nachvollziehen zu können. Anders
als in vielen Einführungsveranstaltungen werde ich aber die Rechnungen stets kompatibel zur
allgemeinen Relativitätstheorie halten. Damit das nicht zu schwer wird, werden gezielt einige
Beweise und Techniken ausgelassen die nicht unbedingt nötig sind für die hier betrachteten
Effekte. Wir bekommen es also nur mit Tensoren zu tun, die wie Vektoren oder Matrizen aus-
sehen. Für die Anwendungen der speziellen Relativitätstheorie in der Schule genügen dann
einfache und handliche Gleichungen 2 – für deren Herleitung und ein tieferes Verständnis der 2 Vektorrechnung wird erst in der

Sekundarstufe 2 behandelt.Ursachen müssen wir aber dann doch die Mathematik etwas weiter ausführen.
Für die folgenden Kapitel im Themenbereich Relativität habe ich oft auf das Standardwerk

zur Einführung in die Relativitätstheorie von Torsten Fließbach [1] zurückgegriffen. Die
konkreten Beispiele stammen dann oft aus dem Buch von Alexandra Stillert [2]. Einige Teile
des Vorlesungsskriptes von Thomas Filk [3] habe ich für die Aufarbeitung der mathematischen
Grundlagen verwendet.

Abschnitt 2.6

Ätherhypothese

Im 19. und im frühen 20. Jahrhundert war die Ätherhypothese vorherrschende Erklärung
für die Fortbewegung elektromagnetischer Wellen. Man kann sich diesen Äther als Pendant
zur Schallausbreitung vorstellen, die auf ein Medium zur Fortbewegung angewiesen ist, weil
nur so die Rückstellkräfte des Mediums die Druckwellen übertragen können. Der Äther soll
demnach das Medium sein, in dem sich Fluktuationen des elektrischen und magnetischen
Feldes ausbreiten. Die gängige Vorstellung also war, dass es einen ruhenden Äther als Me-
dium allgegenwärtig gibt, und sich elektromagnetische Wellen relativ zu diesem Äther mit
der Lichtgeschwindigkeit 𝑐 ≈ 3 · 108 m/s ausbreiten. Die Erde bewegt sich dabei auf ihrer
Bahn durch diesen Äther. Es müsste also eine relative Geschwindigkeit der Erde zum Äther
geben – den sogenannten Ätherwind. Um die Geschwindigkeit des Ätherwindes zu bestim-
men, unternahmen Michelson und Morley 1887 ihr berühmtes Experiment [4]: Sie haben die
Geschwindigkeit der Lichtausbreitung mit einem Interferometer einmal parallel zur Erdbe-
wegung und einmal senkrecht dazu gemessen. Das Experiment wurde oft und unter vielen
Bedingungen wiederholt. Das Ergebnis aber war stets: Die Lichtgeschwindigkeit war immer
gleich. Die Erde scheint sich nicht relativ zum Äther zu bewegen. Weil es damals keinen Zwei-
fel an der Existenz eines Äthers gab, wurden zwei Konzepte entwickelt um dessen Existenz
gewissermaßen zu retten:
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• Die Erde führt den Äther vollständig mit sich. Dies würde aber nur durch Reibung
funktionieren, der Äther an sich muss aber aus anderen Gründen nahezu vollständig
reibungsfrei für Materie sein. Hierin haben viele Physiker einen Widerspruch gesehen.

• Hendrik Antoon Lorentz schlug vor, dass sich Abstände relativ zum Äther um den
Faktor

√︁
1− 𝑣2/𝑐2 verkürzen könnten – die sogenannte Lorentz-Kontraktion.

Gerade das zweite Konzept könnte die Ätherhypothese retten. Es gab aber Probleme mit der
Ursache und Interpretation dieses Ansatzes.

Im Zuge dieser Diskussionen veröffentlichte Albert Einstein im Jahr 1905 im Alter von
26 Jahren den Artikel “Über die Elektrodynamik bewegter Körper” [5]. Dieser Artikel enthält
bereits alle Aussagen der speziellen Relativitätstheorie! 3 Die zentralen Postulate waren3 Im selben Jahr hatte er übrigens

auch die Quantenhypothese zum
Photoeffekt veröffentlicht. Das Jahr
1905 wird auch als Einsteins “Wun-
derjahr” bezeichnet.

Einstein’sche Postulate

• Absolute, gleichförmige Bewegung kann man nicht messen.

• Die Lichtgeschwindigkeit 𝑐 ist unabhängig vom Bewegungszustand der Lichtquelle.

Die erste Aussage beinhaltet im Wesentlichen die Erweiterung der Newton’schen Re-
lativität auf alle Phänomene, nicht nur die mechanischen. Demnach sollen nun auch die
Maxwell-Gleichungen in allen Inertialsystemen gelten. 44 . . . sie sollen also bei Lorentz-

Transformation ihre Gültigkeit be-
wahren

Die zweite Aussage ist eine übliche Eigenschaft für Wellen: Die Schallwellen, die von
einer Krankenwagensirene ausgehen, breiten sich relativ zur Luft immer mit der gleichen
Geschwindigkeit aus, egal ob sich der Krankenwagen relativ zur Luft bewegt oder nicht. Die
Geschwindigkeit der Schallwellen hängt einzig und allein von den Eigenschaften der Luft ab.

Abschnitt 2.7

Lorentz-Transformation

Der Weg zu den Erkenntnissen der Relativitätstheorie führt nun über das Verständnis von
Bezugssystemen. Man kann die Einstein’schen Postulate verwenden, um eine Transformati-
onsbeziehung zwischen einem unbewegten und einem gleichförmig bewegten Bezugssystem
(Inertialsystem) herzuleiten. Dafür legen wir nun zunächst die mathematischen Grundlagen,
die zwar zunächst übertrieben scheinen, aber dafür später nahtlos in der allgemeinen Rela-
tivitätstheorie anknüpfen. Wir beschreiben im Folgenden die sogenannte Raumzeit als 4er
Vektoren der Form

®𝑥 =
©­­­«
𝑥0

𝑥1

𝑥2

𝑥3

ª®®®¬ =
©­­­«
𝑐𝑡

𝑥1
𝑥2
𝑥3

ª®®®¬ (2.1)

Das 0-te Element dieses Vektors ist also die Strecke 𝑠 = 𝑐 · 𝑡 die ein Lichtstrahl in der Zeit
𝑡 zurücklegt. Diese Koordinate ist also Ausdruck für die Zeit, aber in den Einheiten eines
Weges. Die anderen Komponenten sind dann in einem kartesischen Koordinatensystem die 𝑥,
𝑦 und 𝑧-Koordinaten. In Abb. 1 ist ein beispielhaftes Minkowski-Diagramm mit der Zeitachse
und einer Raumkomponente 𝑥 gezeigt. In der Relativitätstheorie schreibt man diese Art von
Vektoren statt als Vektor ®𝑥 günstigerweise nur als Komponenten 𝑥𝜇. Dabei ist 𝑥 der Name
des Vektors und 𝜇 ist eine hochgestellte griechische Zählvariable (manchmal also auch 𝜈 oder
𝛼, 𝛽, . . . ), die von 0 . . .3 läuft. Hinweis: Man muss stets aufpassen und deutlich kennzeichnen,
wenn ein solcher Komponentenvektor potenziert wird, beispielsweise durch Klammersetzung:
(𝑥𝜇)2. Wir werden auch tiefgestellten Komponenten begegnen (𝑥𝜇). Man nennt diese Größen
ko- und kontravariante Tensoren bzw. Vektoren. Im Rahmen dieses Lehrbuches sind die
Details hierzu nicht unbedingt notwendig und es wird nicht näher darauf eingegangen.
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Lorentz-Transformation

Es werden im Laufe der Rechnungen sehr häufig Summen der Komponenteneinträge von
Vektoren zustandekommen. Es ist daher zweckmäßig eine Konvention einzuführen um sich
das ständige Benutzen des Summenzeichens zu ersparen:

Einstein’sche Summenkonvention
Über doppelt auftretende Indizes auf einer Seite einer Gleichung wird summiert, wenn ein
Index oben und der andere unten steht.

𝑥𝜇𝑥
𝜇 =

∑︁
𝜇

𝑥𝜇𝑥
𝜇 = 𝑥0𝑥

0 + 𝑥1𝑥
1 + 𝑥2𝑥

2 + 𝑥3𝑥
3

Wir nutzen diese Summenkonvention nun testweise, um die Wegelemente für bekann-
te Koordinatensysteme darzustellen. Im zweidimensionalen kartesischen Koordinatensystem
(𝑥, 𝑦) berechnet man das Wegelement d𝑠 bekanntlich durch

d𝑠2 = d𝑥2 +d𝑦2 = 1 · (d𝑥1)2 +1 · (d𝑥2)2 (2.2)

In der Formulierung mit der Summenkonvention geht es uns um den Vektor 𝑥 mit den
Komponenten 𝑥𝜇 = (𝑥1, 𝑥2) = (𝑥, 𝑦). Die Differentiale lauten dann also d𝑥𝜇 = (d𝑥1,d𝑥2). Wie
kann man diese Summe aus zwei Summanden nun durch die Summenkonvention beschreiben?
Bei unserem erwünschten Ausdruck stehen beide Indizes oben. Der erste offensichtliche
Versuch d𝑥𝜇d𝑥𝜇 ergibt leider d𝑥1d𝑥1 + d𝑥2d𝑥2, dass ist nicht genau das was wir wollen, da
es hier jetzt auch untere Indizes gibt. Man kann durch einen kleinen Umweg5 mit einer 5 . . . der sich später noch als Abkür-

zung herausstellen wird. . .Hilfsfunktion 𝑔𝜇𝜈 arbeiten. Mit der Summenkonvention berechnet man damit d𝑠2 durch

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈

Dies sieht erstmal sehr ungewohnt aus. Es stellt sich hier jetzt die Frage, welche Werte der
𝑔𝜇𝜈-Term haben muss, damit auch das erwünschte Wegelement herauskommt. Auf der rechten
Seite der Gleichung stehen die Indizes 𝜇 und 𝜈 jeweils einmal unten und oben, hier haben wir
es also mit einer Summe gemäß Konvention zu tun und lösen diese nun auf:

d𝑠2 =
∑︁
𝜇

(∑︁
𝜈

𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈
)
=

∑︁
𝜇

(
𝑔𝜇0d𝑥𝜇d𝑥0 +𝑔𝜇1d𝑥𝜇d𝑥1

)
= 𝑔00d𝑥0d𝑥0 +𝑔01d𝑥0d𝑥1 +𝑔10d𝑥1d𝑥0 +𝑔11d𝑥1d𝑥1

= 𝑔00 (d𝑥0)2 +𝑔01d𝑥0d𝑥1 +𝑔10d𝑥1d𝑥0 +𝑔11 (d𝑥1)2

Übrigens ist das Ergebnis identisch, wenn man zunächst über 𝜇 und dann über 𝜈 summiert.
Durch Vergleich mit Gl. 2.2 können wir nun die entsprechenden Elemente für 𝑔𝜇𝜈 ermitteln:

𝑔00 = 1 𝑔01 = 0 𝑔10 = 0 𝑔11 = 1 (2.3)

Mit diesen Werten erhalten wir also für 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 nach dem Berechnen der Summe d𝑠2 =
d𝑥2 + d𝑦2. Die Größe 𝑔 bestimmt also, was wir als Wegelement für unsere Koordinaten
erhalten. Man nennt 𝑔𝜇𝜈 dementsprechend den “metrischen Tensor” oder auch “die Metrik”.
Für dreidimensionale kartesische Koordinaten 𝑥𝜇 = (𝑥1, 𝑥2, 𝑥3) kann man sich nun leicht
denken, dass die Metrik dann lauten muss:

𝑔11 = 𝑔22 = 𝑔33 = 1 ; sonstige 𝑔𝜇𝜈 = 0

Die Einträge der Metrik kann man auch in Matrix-Form darstellen, falls dies der Übersicht-
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lichkeit hilft. Dann sehen die beiden Beispiele also wie folgt aus:

𝑔2D-kart
𝜇𝜈 =

(
1 0
0 1

)
𝑔3D-kart
𝜇𝜈 =

©­«
1 0 0
0 1 0
0 0 1

ª®¬
Es fällt auf, dass die Metrik stets nur konstante Werte, 0 oder 1, enthält und nicht von den
Koordinaten selbst abhängt. Eine solche Metrik nennt man “flach”. Es sind aber, ohne das
wohl näher darauf eingegangen wurde, auch schon nicht-flache (also gekrümmte) Metriken
bekannt. Aus der Mechanik-Vorlesung sollten noch die Polarkoordinaten und die Sphärischen
Koordinaten bekannt sein. Für diese gelten die Wegelemente

(d𝑠2)polar = d𝑟2 + 𝑟2d𝜑2

(d𝑠2)kugel = d𝑟2 + 𝑟2d𝜃2 + 𝑟2 (sin𝜃)2d𝜑2

und deshalb lauten diesmal die Einträge für die Metrik

𝑔
polar
𝜇𝜈 =

(
1 0
0 𝑟2

)
𝑔

kugel
𝜇𝜈 =

©­«
1 0 0
0 𝑟2 0
0 0 𝑟2 (sin𝜃)2

ª®¬
, wie man direkt durch Vergleich der Koeffizienten vor den (d𝑥𝜇)2-Einträgen ablesen kann.
In der speziellen Relativitätstheorie betrachten wir eine flache Geometrie wie in den Fäl-
len der kartesischen Koordinaten. Als wichtige Änderung wird nun aber die Zeit als 0-te
Komponente hinzugefügt. Durch die Einführung der Zeit gibt es aber eine Besonderheit für
die Berechnung des Wegelementes zu beachten. Der Abstand zwischen zwei Ereignissen, 6

x

ct

Δs

x
2

x
1

t
2

t
1

Abbildung 1. Ein Minkowski-
Diagramm für 2 Ereignisse und der
raumzeitliche Abstand zwischen ihnen.
6 Man spricht von Punkten in der
Raumzeit allgemein als “Ereignis”.

𝑥
𝜇

1 = (𝑐𝑡1, 𝑥1
1, 𝑥

2
1, 𝑥

3
1) und 𝑥𝜇2 (𝑐𝑡2, 𝑥

1
2, 𝑥

2
2, 𝑥

3
2) ist etwas anderes als allein der räumliche Abstand

zweier Vektoren. Im sogenannten Minkowski-Diagramm in Abb. 1 ist der Abstand zweier
Ereignisse eingezeichnet. Dabei ist die Betrachtung zur besseren Übersichtlichkeit auf eine
Raumdimension 𝑥 beschränkt. Wir definieren den Abstand (und damit auch zwangsweise das
Wegelement) als

Δ𝑠2 = 𝑐2 (𝑡2 − 𝑡1)2︸       ︷︷       ︸
zeitl. Abstand

−(𝑥1
2 − 𝑥

1
1)

2 − (𝑥2
2 − 𝑥

2
1)

2 − (𝑥3
2 − 𝑥

3
1)

2︸                                         ︷︷                                         ︸
minus räuml. Abstand

Die wesentliche Neuerung hierbei ist das Minuszeichen vor den Raumkomponenten. Wir wer-
den sehen, dass diese ungewohnte Definition des Abstandes die Formulierung der speziellen
Relativitätstheorie sehr angenehm macht. Mit der Summenkonvention und einer Metrik lautet
dieser Abstand

Wegelement in Minkowski-Raumzeit

(d𝑠)2 = 𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 = (𝑐 ·d𝑡)2 − (d𝑥1)2 − (d𝑥2)2 − (d𝑥3)2 (2.4)

Hierbei wird 𝜂𝜇𝜈 als Minkowski-Metrik bezeichnet und wegen der Wichtigkeit in der spe-
ziellen Relativitätstheorie mit einem eigenen Formelzeichen 𝜂 statt 𝑔 bedacht. Die Elemente
der Metrik lauten nun 77 Die Minkowski-Metrik kann auch

mit umgekehrten Vorzeichen defi-
niert werden. Dies ist Konventi-
on und muss bedacht werden wenn
man sich verschiedener Literatur-
vorlagen bedient!

Minkowski Metrik

𝜂𝜇𝜈 = diag(1,−1,−1,−1) =
©­­­«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

ª®®®¬ (2.5)
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Lorentz-Transformation

Um etwas Übung im Umgang mit dieser Summenkonvention zu bekommen, nutzen wir
nun die Minkowski Metrik, um das Wegelement (wie in Gl. 2.4) in der 4-dimensionalen
Raumzeit für die Koordinaten 𝑥𝜇 = (𝑐𝑡, 𝑥1, 𝑥2, 𝑥3) zu bestimmen. Zur Erinnerung: Im drei-
dimensionalen kartesischen System würde man das Wegelement berechnen gemäß (d𝑠)2 =

(d𝑥)2 + (d𝑦)2 + (d𝑧)2. Dies entspricht dem Satz des Pythagoras in einem kartesischen Koordi-
natensystem. In der Minkowski-Raumzeit erhält man das Wegelement durch Aufsummieren
von 𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 . Hier soll zur Übung ganz ausführlich vorgegangen werden:

(d𝑠)2 = 𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 =
∑︁
𝜇

∑︁
𝜈

𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈

=
∑︁
𝜇

(
𝜂𝜇0d𝑥𝜇d𝑥0 +𝜂𝜇1d𝑥𝜇d𝑥1 +𝜂𝜇2d𝑥𝜇d𝑥2 +𝜂𝜇3d𝑥𝜇d𝑥3

)
=

∑︁
𝜇

(
𝜂𝜇0d𝑥𝜇d𝑥0

)
+
∑︁
𝜇

(
𝜂𝜇1d𝑥𝜇d𝑥1

)
+
∑︁
𝜇

(
𝜂𝜇2d𝑥𝜇d𝑥2

)
+
∑︁
𝜇

(
𝜂𝜇3d𝑥𝜇d𝑥3

)
Bevor die zweite Summe über 𝜇 berechnet wird, schauen wir uns 𝜂𝜇𝜈 genauer an. Es gibt nur
Elemente in der Hauptdiagonalen – alle anderen Elemente mit 𝜇 ≠ 𝜈 werden zu Null. Bei den
4 Summen über 𝜇 = 0 . . .3 werden nun alle Elemente mit 𝜇 ≠ 𝜈 direkt weggelassen und es
bleibt nur:

(d𝑠)2 = 𝜂00︸︷︷︸
=1

d𝑥0d𝑥0 + 𝜂11︸︷︷︸
=−1

d𝑥1d𝑥1 + 𝜂22︸︷︷︸
=−1

d𝑥2d𝑥2 + 𝜂33︸︷︷︸
=−1

d𝑥3d𝑥3

Dies entspricht dem vorher in Gl. 2.4 definierten Wegelement für die Minkowski-Raumzeit.
Wir haben jetzt alle Mittel zur Verfügung um die Lorentz-Transformation, das zentrale

Element der speziellen Relativitätstheorie, herzuleiten. Die Einstein’schen Postulate besa-
gen, dass die Lichtgeschwindigkeit in allen Inertialsystemen gleich sein soll. Das heißt die
Lichtgeschwindigkeit ist einerseits Δ ®𝑥

Δ𝑡
= 𝑐, und muss andererseits auch in einem anderen

Inertialsystem (mit ’ gekennzeichnet) Δ ®𝑥′
Δ𝑡 ′ = 𝑐 sein. Das führt uns wegen (𝑐Δ𝑡)2 = (Δ®𝑥)2 zu

(𝑐Δ𝑡)2 − (Δ®𝑥)2︸            ︷︷            ︸
(d𝑠)2

= 0 = (𝑐Δ𝑡′)2 − (Δ®𝑥′)2︸              ︷︷              ︸
(d𝑠′ )2

Wir können also das Relativitätsprinzip und die Konstanz der Lichtgeschwindigkeit mitein-
ander in der Aussage kombinieren, dass

• Das Wegelement (d𝑠)2 konstant ist

• Eine Transformation in ein anderes Inertialsystem das Wegelement (d𝑠)2 nicht ändern
darf ((d𝑠)2 = (d𝑠′)2).

Wir suchen also genau diese Transformationen, die das Wegelement nicht verändern wenn
man sich gedanklich in ein anderes Inertialsystem begibt. Wir erinnern uns: Ein Inertialsystem
darf sich nur durch eine konstante Geschwindigkeit im Vergleich zum Ursprungssystem
unterscheiden. Daher suchen wir eine Transformation Λ(®𝑣) der Form

©­­­«
𝑐𝑡′

𝑥′1
𝑥′2
𝑥′3

ª®®®¬ = Λ(®𝑣)
©­­­«
𝑐𝑡

𝑥1
𝑥2
𝑥3

ª®®®¬
Die einzelnen Koordinaten transformieren sich dann gemäß

(𝑥𝜇)′ = Λ
𝜇
𝜈𝑥

𝜈 = Λ
𝜇

0 𝑥
0 +Λ𝜇

1 𝑥
1 +Λ𝜇

2 𝑥
2 +Λ𝜇

3 𝑥
3
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oder ausgeschrieben für den allgemeinsten Fall:

(𝑥0)′ = Λ0
𝜈𝑥

𝜈 = Λ0
0𝑥

0 +Λ0
1𝑥

1 +Λ0
2𝑥

2 +Λ0
3𝑥

3

(𝑥1)′ = Λ1
𝜈𝑥

𝜈 = Λ1
0𝑥

0 +Λ1
1𝑥

1 +Λ1
2𝑥

2 +Λ1
3𝑥

3

(𝑥2)′ = Λ2
𝜈𝑥

𝜈 = Λ2
0𝑥

0 +Λ2
1𝑥

1 +Λ2
2𝑥

2 +Λ2
3𝑥

3

(𝑥3)′ = Λ3
𝜈𝑥

𝜈 = Λ3
0𝑥

0 +Λ3
1𝑥

1 +Λ3
2𝑥

2 +Λ3
3𝑥

3

Jetzt geht es daran, die einzelnen Einträge dieser Matrix Λ, die von ®𝑣 abhängen darf, zu
bestimmen. Der Einfachheit halber gehen wir von einer Bewegung nur in 𝑥-Richtung aus. Die
Komponenten 𝑥2 = (𝑥2)′ und 𝑥3 = (𝑥3)′ bleiben also von der Transformation unangetastet und
die Geschwindigkeit 𝑣 hat nur eine Komponente 𝑣𝑥 in 𝑥-Richtung. Durch die Annahme, dass
𝑥2 = (𝑥2)′ und 𝑥3 = (𝑥3)′ gilt, lassen sich bereits viele Einträge bestimmen. Damit die beiden
letzten Gleichungen diese Forderung erfüllen, muss gelten:

Λ2
0 = Λ2

1 = Λ2
3 = Λ3

0 = Λ3
1 = Λ3

2 = 0 Λ2
2 = Λ3

3 = 1

Außerdem dürfen dann die Komponenten 𝑥2 und 𝑥3 auch für die Transformation von 𝑥0 und
𝑥1 keinen Einfluss haben, weil sie ja auch auch beliebig 𝑥2 = 𝑥3 = 0 gesetzt werden können.
Also entfallen vier weitere Elemente von Λ:

Λ0
2 = Λ0

3 = Λ1
2 = Λ1

3 = 0

Nach der Elimination von vielen Einträgen bleiben nur vier gesuchte Elemente von Λ übrig
die nicht 0 oder 1 sind:

(𝑥0)′ = Λ0
𝜈𝑥

𝜈 = Λ0
0𝑥

0 +Λ0
1𝑥

1

(𝑥1)′ = Λ1
𝜈𝑥

𝜈 = Λ1
0𝑥

0 +Λ1
1𝑥

1

(𝑥2)′ = Λ2
𝜈𝑥

𝜈 = 𝑥2

(𝑥3)′ = Λ3
𝜈𝑥

𝜈 = 𝑥3

Das transformierte Wegelement wird in Komponentenschreibweise wie folgt geschrieben:

(d𝑠′)2 = 𝜂𝜇𝜈 (d𝑥𝜇)′ (d𝑥𝜈)′

Jedes Differential (d𝑥𝜇)′ wird nun durch die transformierte Koordinate (d𝑥𝜇)′ = Λ
𝜇
𝜈d𝑥𝜈

ersetzt. Bei dieser Ersetzung von Termen muss man allerdings vorsichtig sein. Wir müssen hier
explizit die Reihenfolge der Summation vorgeben: Es muss zuerst die Koordinate transformiert
werden (

∑
Λ

𝜇
𝜈d𝑥𝜈) und dann soll über die Metrik summiert werden. Damit diese Summe also

auch das bedeutet, was wir beabsichtigen, nutzen wir neue Zählindices 𝛼 und 𝛽. Das ergibt

𝜂𝜇𝜈 (d𝑥𝜇)′ (d𝑥𝜈)′ = 𝜂𝜇𝜈 ·Λ𝜇
𝛼d𝑥𝛼 ·Λ𝜈

𝛽d𝑥𝛽 = 𝜂𝜇𝜈 ·Λ𝜇
𝛼Λ

𝜈
𝛽d𝑥𝛼d𝑥𝛽 ,

was gemäß (d𝑠′)2 = (d𝑠)2 zu

𝜂𝜇𝜈Λ
𝜇
𝛼Λ

𝜈
𝛽d𝑥𝛼d𝑥𝛽 = 𝜂𝛼𝛽d𝑥𝛼d𝑥𝛽

führt. Aus dieser Gleichung kann man direkt ablesen, dass

𝜂𝜇𝜈Λ
𝜇
𝛼Λ

𝜈
𝛽 = 𝜂𝛼𝛽 (2.6)

gelten muss. Dies ergibt einige Gleichungen zur Bestimmung der Einträge vonΛ. Weil wir uns
hier auf die 𝑥-Richtung beschränkt haben (𝑦 und 𝑧-Richtung werden also nicht transformiert),
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Lorentz-Transformation

kann man sich wie oben gezeigt auf wenige Komponenten von Λ beschränken:

Λ =

(
Λ𝛼

𝛽

)
=

©­­­«
Λ0

0 Λ0
1 0 0

Λ1
0 Λ1

1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ .
Hierfür wurde der obere Index von Λ als Zeilenindex einer Matrix, der untere Index als
Spaltenindex geschrieben. Um weniger schreiben zu müssen, beschränken wir uns auf den
relevanten Teil dieser Matrix – also die obere linke Ecke. Die Bestimmung der einzelnen
Einträge dieser Komponenten ist nun eng an die Vorgehensweise in [6] angelegt. Wir haben
es also für die Gleichung 2.6 zu tun mit den Tensoren

Λ𝛼
𝛽 =

(
Λ0

0 Λ0
1

Λ1
0 Λ1

1

)
und 𝜂𝛼𝛽 =

(
1 0
0 −1

)
. (2.7)

Damit kann man nun aus 𝜂𝜇𝜈Λ𝜇
𝛼Λ

𝜈
𝛽
= 𝜂𝛼𝛽 für die möglichen Kombinationen von 𝛼 und 𝛽

Gleichungen für die jeweiligen Komponenten aufstellen. Als Beispiel soll das nun für die erste
Kombination 𝛼 = 0 und 𝛽 = 0 gezeigt werden:

𝜂00 = Λ
𝜇

0 Λ
𝜈
0𝜂𝜇𝜈 =

∑︁
𝜇

Λ
𝜇

0

(∑︁
𝜈

Λ𝜈
0𝜂𝜇𝜈

)
(2.8)

=
∑︁
𝜇

Λ
𝜇

0

(
Λ0

0𝜂𝜇0 +Λ1
0𝜂𝜇1

)
(2.9)

= Λ0
0

©­­­«Λ
0
0 𝜂00︸︷︷︸

=1

+Λ1
0 𝜂01︸︷︷︸

=0

ª®®®¬+Λ
1
0

©­­­«Λ
0
0 𝜂10︸︷︷︸

=0

+Λ1
0 𝜂11︸︷︷︸

=−1

ª®®®¬ (2.10)

1 =

(
Λ0

0

)2
−

(
Λ1

0

)2
(2.11)

Für die anderen 3 Kombinationen von 𝛼 und 𝛽 ergeben sich ganz ähnliche Gleichungen.
Davon sind zwei identisch – es bleiben also insgesamt 3 nutzbare Gleichungen übrig:(

Λ0
0

)2
−

(
Λ1

0

)2
= 1 −

(
Λ1

1

)2
+

(
Λ0

1

)2
= −1

Λ0
0Λ

0
1 −Λ1

0Λ
1
1 = 0

Diese Gleichungen (klarer Hinweis für die Kenner durch die 𝑎2 − 𝑏2 = 1-Form) lassen sich
durch hyperbolische Funktionen lösen. Es folgt daher für die Lorentz-Transformation(

Λ0
0 Λ0

1
Λ1

0 Λ1
1

)
=

(
cosh𝜓 −sinh𝜓
−sinh𝜓 cosh𝜓

)
.

Wie transformiert sich jetzt also konkret die 𝑥-Koordinate für ein mit Geschwindigkeit 𝑣
x

y

x‘

y‘

v

v t·

IS‘

IS

Abbildung 2. Ein Inertialsystem IS’ be-
wegt sich relativ zum System IS mit ei-
ner konstanten Geschwindigkeit 𝑣.

bewegtes Bezugssystem (siehe auch Abb. 2)? In dem ruhenden System gilt wie üblich 𝑥1 = 𝑣 · 𝑡.
Für die (𝑥1)′-Komponente ergibt sich

(𝑥1)′ = 0 = Λ1
0𝑐𝑡 +Λ

1
1𝑥

1 = Λ1
0𝑐𝑡 +Λ

1
1𝑣𝑡 .

Wir wollen hier den Koordinatenursprung (deswegen (𝑥1)′ = 0) betrachten. Aus dieser Glei-
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chung ergibt sich durch Umstellen

−
Λ1

0

Λ1
1
=
𝑣

𝑐
= −−sinh𝜓

cosh𝜓
= tanh𝜓 . (2.12)

Daraus kann man nun einen Ausdruck für 𝜓 = arctanh( 𝑣
𝑐
) erhalten und durch Nutzung der

Definitionen der Hyperbolischen Funktionen die folgenden Ausdrücke finden:

−sinh
(
arctanh

( 𝑣
𝑐

))
= −

( 𝑣
𝑐
)√︃

1− ( 𝑣
𝑐
)2

(2.13)

cosh
(
arctanh

( 𝑣
𝑐

))
=

1√︃
1− ( 𝑣

𝑐
)2
. (2.14)

Damit können wir nun endlich die Komponenten der Lorentz-Transformation konkret angeben.
Zur Vereinfachung wird nun der Term 𝛾 statt 1√︃

1− 𝑣2
𝑐2

verwendet:88 Mit dieser Abkürzung muss man
vorsichtig sein. In verschiedenen
Lehrbüchern wird 𝛾 unterschied-
lich genutzt. Manchmal gilt auch
𝛾 =

√︃
1− ( 𝑣

𝑐
)2 oder 𝛾 = ( 𝑣

𝑐
)2

Lorentz-Transformation

(𝑥𝜇)′ = Λ
𝜇
𝜈𝑥

𝜈 mit Λ
𝜇
𝜈 =

©­­­­­­«

1√
1−( 𝑣

𝑐
)2

− ( 𝑣
𝑐
)√

1−( 𝑣
𝑐
)2

0 0

− ( 𝑣
𝑐
)√

1−( 𝑣
𝑐
)2

1√
1−( 𝑣

𝑐
)2

0 0

0 0 1 0
0 0 0 1

ª®®®®®®¬
=

©­­­«
𝛾 −𝛾 · 𝑣

𝑐
0 0

−𝛾 · 𝑣
𝑐

𝛾 0 0
0 0 1 0
0 0 0 1

ª®®®¬ (2.15)

Abschnitt 3

Spezielle Relativitätstheorie

Die spezielle Relativitätstheorie folgt nun ausschließlich aus den bereits gefundenen Zu-
sammenhängen. Wir werden also für die folgenden Effekte nur die gefundene Lorentz-
Transformation auf verschiedenen Wegen anwenden. Zur Einführung wollen wir versuchen,
zwei Geschwindigkeiten im Rahmen der speziellen Relativitätstheorie zu addieren.

Abschnitt 3.1

Addition von Geschwindigkeiten

In der klassischen Mechanik wird oft die Vorstellung eines fahrenden Zuges verwendet um
Bezugssysteme zu illustrieren. Wenn man von einem fahrenden Zug (𝑣Zug) aus eine Pistolen-
kugel abfeuert (𝑣Projektil) wird die Geschwindigkeit für den ruhenden Beobachter mit 𝑣 = 0
selbstverständlich 𝑣Zug + 𝑣Projektil sein. So einfach ist es nun in der Relativitätstheorie nicht
mehr, den sonst könnte man ja leicht auf Geschwindigkeiten größer als 𝑐 addieren.

Für die korrekte relativistische Addition zweier Geschwindigkeiten muss man zweimal
hintereinander eine Lorentz-Transformation durchführen. Die Transformationsmatrizen Λ

multiplizieren sich dann also zu

Λ

����
𝑣1+𝑣2

= Λ

����
𝑣1

·Λ
����
𝑣2

=

(
cosh𝜓1 −sinh𝜓1
−sinh𝜓1 cosh𝜓1

)
·
(

cosh𝜓2 −sinh𝜓2
−sinh𝜓2 cosh𝜓2

)
.
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Zeitdilatation

Wenn man diese Matrixmultiplikation ausführt, kann man noch Additionstheoreme für die
hyperbolischen Funktionen anwenden und erhält

Λ

����
𝑣1+𝑣2

=

(
cosh(𝜓1 +𝜓2) −sinh(𝜓1 +𝜓2)
−sinh(𝜓1 +𝜓2) cosh(𝜓1 +𝜓2)

)
.

Wenn man das 𝜓1 und 𝜓2 wieder mit Gl. 2.12 durch die entsprechenden Ausdrücke mit 𝑣1 und
𝑣2 ersetzt, erhält man

relativistische Addition von Geschwindigkeiten

𝑣1+2 =
𝑣1 + 𝑣2

1+ 𝑣1 ·𝑣2
𝑐2

Abbildung 3. Addition von Geschwin-
digkeiten 𝑣2 + 𝑣1 für das Beispiel 𝑣1 =

0.9𝑐.

In Abb. 3 ist das Verhalten der Geschwindigkeitsaddition gezeigt. Wir gehen dabei von
einer Geschwindigkeit 𝑣2 aus, zu der im Bereich von 𝑣2 = 0 bis 𝑣2 = 𝑐 jeweils eine zweite
Geschwindigkeit 𝑣1 = 0.9𝑐 addiert wird. Selbst bei hohen Geschwindigkeiten von 𝑣2 = 0.5𝑐 in
der Mitte der Kurve, führt die Addition mit 0.9𝑐 “nur” zu einer resultierenden Geschwindigkeit
von etwa 𝑣2 +0.9𝑐 ≈ 0.96𝑐.

Abschnitt 3.2

Zeitdilatation

Den Effekt, der Zeitdilatation genannt wird, kann man durch die Bedingung der Invarianz
des Wegelementes herleiten. Es geht dabei um die Entwicklung der Zeitkoordinate in einem
mit konstanter Geschwindigkeit bewegten Bezugssystem. Die Zeitkoordinate 𝜏 im bewegten
System IS’ ist die Zeit, die eine dort ruhende Uhr anzeigen würde. Wir selbst schauen nun
ruhend im System IS dieser bewegten Uhr zu und wollen unsere Zeitkoordinaten 𝑐d𝑡 mit
der bewegten Uhr 𝑐d𝜏 vergleichen. Das Inertialsystem IS’ bewege sich beispielsweise mit
der konstanten Geschwindigkeit 𝑣 von uns weg. Wir betrachten nun, wie in den beiden
Inertialsystemen die Wegelemente beschrieben werden.

Hierfür versetzen wir uns zunächst in den Standpunkt des sich bewegenden Bezugssys-
tems IS’, wo alle Koordinaten zur Kenntlichkeit mit einem Strich versehen sind. Wir definieren
unsere Ortskoordinaten der Einfachheit halber als Nullpunkt (𝑥′ = 𝑦′ = 𝑧′ = 0). Wir selbst ru-
hen in unserem Bezugssystem (also zum Beispiel im Raumschiff). Unserere Geschwindigkeit
in unserem Bezugssystem ist also 0 und es gilt

d𝑥′

d𝜏
= 0 → d𝑥′ = 0 .

Wir setzen deshalb auch die Differentiale der Ortskoordinaten d𝑥′ = d𝑦′ = d𝑧′ = 0 auf Null –
unser Ort in IS’ ändert sich ja nicht. Es folgt daher für unser Wegelement

d𝑠′ = 𝑐 ·d𝜏−0−0−0 = 𝑐 ·d𝜏 (3.1)

Dieses Wegelement muss, entsprechend der speziellen Relativitätstheorie, nun für alle In-
ertialsysteme die gleiche Größe haben. Im anderen Inertialsystem sieht es so aus, als wenn
sich das Raumschiff/Inertialsystem IS’ mit Geschwindigkeit 𝑣 von uns wegbewegt. Deswegen
beschreiben wir den Weg des Raumschiffes in IS als ruhende Beobachter durch

d𝑠 =
√︁
𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 =

√︁
𝑐2d𝑡2 −d𝑥2 −d𝑦3 −d𝑧3 .
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Jetzt wird d𝑡 ausgeklammert um die d𝑥,d𝑦,d𝑧 durch die Geschwindigkeit 𝑣 zu ersetzen:

d𝑠 = d𝑡
√︂
𝑐2 − d𝑥2

d𝑡2
− d𝑦3

d𝑡2
− d𝑧3

d𝑡2
= d𝑡

√︁
𝑐2 − 𝑣2 = 𝑐 ·d𝑡

√︂
1− 𝑣

2

𝑐2

Wenn wir nun dieses Wegelement mit dem aus Gl. 3.1 gleichsetzen ist es nun möglich die
beiden Zeitkoordinaten miteinander zu vergleichen. Die hieraus resultierende “Streckung der
Zeit”

d𝑠′
����
Raumschiff

= d𝑠
����
Erde

�𝑐 ·d𝜏 = �𝑐 ·d𝑡
√︂

1− 𝑣
2

𝑐2

des bewegten Bezugssystems IS’ wird Zeitdilatation genannt.

Eigenzeit im bewegten Inertialsystem, Zeitdilatation

d𝜏 = d𝑡
√︂

1− 𝑣
2

𝑐2 𝜏 =

𝑡2∫
𝑡1

d𝑡
√︂

1− 𝑣
2

𝑐2 (3.2)

Was für Schlussfolgerungen kann man hieraus nun ziehen? Aus dem trivialen Fall 𝑣 = 0
folgt, dass die Zeitspanne im System IS’ (mit 𝑣 = 0 bewegt) dann Δ𝑡 = Δ𝜏 beträgt. Die Uhren
gehen also synchron.

Falls aber eine Geschwindigkeit 𝑣 > 0 in Gl. 3.2 eingeht, wird der Wurzelterm kleiner
als 1 und es folgt damit Δ𝜏 < Δ𝑡. Bewegte Uhren gehen also langsamer als ruhende Uhren!
Trotzdem geht aber natürlich jede Uhr in seinem Inertialsystem “richtig”. Der Lauf der Uhr
kann ja schließlich nicht vom zustand des Inertialsystems wissen und davon abhängen. Nur
im wechselseitigen Vergleich von relativ zueinander bewegten Uhren wird dieser Unterschied
offenbar.

Einen experimentellen Nachweis kann man durch die Höhenstrahlung anschaulich darstel-
len (siehe Abb. 4). In der Atmosphäre entstehen durch energiereiche Strahlung Myonen, die nur
eine sehr kurze Lebenszeit von durchschnittlich 𝑇1/2 = 2.2μs haben. Diese Lebenszeit wurde
in einem “ruhenden” Labor für ein ruhendes Myon gemessen. Die Myonen in der Atmosphäre
haben bei ihrer Entstehung jedoch eine Geschwindigkeit von etwa 𝑣μ = 0.9994𝑐. Dennoch
reicht diese große Geschwindigkeit eigentlich nicht, damit nach der Strecke 𝑠 ≈ 20km viele
Myonen die Erdoberfläche erreichen. Es wäre klassisch nur mit der Strecke 𝑠 = 𝑣μ ·𝑇1/2 ≈ 660m
zu rechnen. Im Widerspruch hierzu kann man viele der entstehenden Myonen an der Erdober-
fläche nachweisen – dies ist nur mit den Effekten der speziellen Relativitätstheorie zu erklären:
Im bewegten Bezugssystem IS’ des Myons gehen die Uhren einfach etwas langsamer und das
Myon schafft es also aus unserer Sicht mehr Weg zurückzulegen bevor dessen Zerfallszeit
abgelaufen ist. Wir schätzen also ab:

Δ𝑡Erde =

√︄
1−

(
0.9994𝑐

𝑐

)2
·Δ𝑡μ ≈ 0.0346 ·Δ𝑡μ .

Für uns ruhende Beobachter hat das Myon offenbar Δ𝑡μ = 0.0346−1 ·2.2μs = 64μs Zeit bevor
es zerfällt. Damit wäre die zurückgelegte Strecke groß genug, um eine Myon-Detektion auf
der Erdoberfläche zu erklären. Die Zeitdilatation ist keine theoretische Spielerei – man

Myon

c
a
. 
2
0
k
m vµ

Erdoberfläche

Abbildung 4. Beobachtung der Zeit-
dilatation. Das Myon hat wegen der
großen Geschwindigkeit aus Sicht der
Erde deutlich mehr Zeit für die Reise-
strecke.

kann sie tatsächlich messen, indem zwei zunächst synchrone Uhren in unterschiedlichen
Bezugssystemen unterwegs sind. Es gab dazu 1971 ein Experiment mit zwei Atomuhren, in
dem eine der Uhren in einem Flugzeug unterwegs war während die andere Uhr unbewegt am
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Boden blieb [7]. Nach der Landung waren die Uhren nicht mehr synchron. Die Zeitdifferenz
im Nanosekundenbereich entsprach genau den Vorhersagen der Relativitätstheorie.

Abschnitt 3.3

Längenkontraktion
IS‘

x ' = const.
1

IS

v

x
2

x
1

x '= const.
2

Abbildung 5. Die Länge eines Stabes,
der im System IS’ ruht, wird gemes-
sen. Einmal relativ zum Inertialsystem
IS und einmal im bewegten System IS’.

Der Effekt der Längenkontraktion ist eng verwandt mit der Zeitdilatation. Man kann ihn direkt
auf eine Längenmessung mit Stoppuhren (inklusive Zeitdilatation) zurückführen. In Abb. 5
sind die entsprechenden Bedingungen für die Längenmessung gezeigt. Das ruhende System
wird IS genannt, das bewegte System in dem der Stab ruht, wird IS’ genannt. Im System
IS’ des Stabes, beträgt seine Ausdehnung 𝑥′2 − 𝑥

′
1 = 𝑙eigen. Wir wollen jetzt untersuchen, wie

die Länge des Stabes von IS aus gesehen gemessen wird. In der Abbildung sieht man, dass
die gesuchte Länge 𝑙 = 𝑥2 − 𝑥1 ist. Die Transformationen der Ortskoordinaten von 𝑥1,2 in 𝑥′1,2
lauten nun nach Gl. 2.15

𝑥′2 =
1√︃

1− 𝑣2

𝑐2

(𝑥2 − 𝑣𝑡2)

𝑥′1 =
1√︃

1− 𝑣2

𝑐2

(𝑥1 − 𝑣𝑡1) .

Um die Länge des Stabes im Vorbeiflug zu messen, müssen die beiden Punkte 𝑥′1 und 𝑥′2
gleichzeitig erfasst werden, also soll 𝑡2 = 𝑡1 = 𝑡∗ sein. Damit kann man die Differenz der
beiden Ortskoordinaten in IS und IS’ nun bestimmen und erhält:

𝑥′2 − 𝑥
′
1 =

1√︃
1− 𝑣2

𝑐2

(
𝑥2 −��𝑣𝑡∗− 𝑥1 +��𝑣𝑡∗

)
𝑥′2 − 𝑥

′
1 =

1√︃
1− 𝑣2

𝑐2

(𝑥2 − 𝑥1)

𝑥2 − 𝑥1 =

√︂
1− 𝑣

2

𝑐2
(
𝑥′2 − 𝑥

′
1
)
.

Damit haben wir einen Ausdruck für die Längenkontraktion gefunden:

Längenkontraktion

𝑙 =

√︂
1− 𝑣

2

𝑐2 · 𝑙eigen (3.3)

Für eine Geschwindigkeit 𝑣 > 0 heißt das also, dass die Länge eines bewegten Gegenstan-
des für einen ruhenden Beobachter verkürzt scheint. Wenn ein Raumschiff mit relativistischer
Geschwindigkeit an uns vorbeifliegt, erscheint es also kürzer als wenn es unbewegt auf der
Erde stehen würde. Andererseits heißt das auch, dass man in einem Raumschiff mit relativisti-
scher Geschwindigkeit einen kürzeren Weg zum Ziel zurücklegen muss. Diese Interpretation
der Längenkontraktion ist analog zur Zeitdilatation möglich um unser Beispiel des Myons zu
erklären. Daran soll nun das synonyme Betrachten von Zeitdilatation und Längenkontraktion
als Ausprägung der Lorentz-Transformation gezeigt werden. Dessen kurze Lebenszeit aus
Sicht des Erdbeobachters muss man im Myonensystem mithilfe der Längenkontraktion erklä-
ren: Das Myon selbst ruht in seinem Bezugssystem - daher läuft die eigene Uhr “normal” und
nach etwa 2.2μs zerfällt es. Wie schafft es das Myon trotzdem auf die Erdoberfläche? Aus
dessen Sicht ist die Strecke Atmosphäre-Oberfläche durch die Längenkontraktion deutlich
kürzer. Die Strecke 𝑙IS,Erde ≈ 20km bis zur Erdoberfläche reduziert sich für das schnelle Myon
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auf

𝑙μ =

√︄
1−

(
0.9994𝑐

𝑐

)2
· 𝑙IS,Erde ≈ 660m .

Diese kürzere Entfernung kann das Myon im Rahmen der Halbwertszeit von 𝑇1/2 = 2.2μs
zurücklegen und die gemessenen Myonen-Raten können bestätigt werden.

Abschnitt 3.4

Zeitdilatation vs. Längenkontraktion

Es ist oft für die Studierenden nicht ganz eindeutig, wann man Zeitdilatation oder Längen-
kontraktion als Effekt erwartet oder ob sogar beides kombiniert wird. Damit dies eindeutig
wird, soll nun das Beispiel des Myons in der Atmosphäre erneut betrachtet werden. Die
Zahlenbeispiele sind uns bereits bekannt – wir wollen diese Zahlen nun lediglich nochmal
im Kontext betrachten. Dafür gehen wir zunächst einen Schritt zurück und betrachten das
Wegelement d𝑠 in der Minkowski-Raumzeit nochmal mit der Lorentz-Transformation. Wir
betrachten 2 Ereignisse in der Raumzeit: Die Entstehung des Myons in der Atmosphäre und
das Zusammentreffen des Myons mit der Erdoberfläche. Die Differenz dieser Ereignisse sei
Δ𝑠. Die SRT sagt nun, dass dieses Wegelement den gleichen Wert besitzt, egal von welchem
Inertialsystem aus man diese Differenz misst. Uns naheliegend ist die Perspektive mit der
Erde als Ruhesystem. In diesem System bestimmen wir (mit unserer ruhenden Uhr) die Zeit-
differenz von Δ𝑡Erde ≈ 64μs und die räumliche Differenz von Δ𝑥Erde ≈ 19km. Die Entfernung
der beiden Raumzeit-Ereignisse beträgt also für uns

(Δ𝑠𝐸)2 = (𝑐2 ·Δ𝑡E)2 − (Δ𝑥E)2

Dieses Wegelement wollen wir nun von einem anderen Koordinatensystem aus betrachten.
In der speziellen Relativitätstheorie muss man für den Wechsel von Bezugssystemen die
Lorentz-Transformation benutzen. Mit den Transformationsregeln aus Gl. 2.15 folgt:

(Δ𝑠𝐸)2 = 𝛾2 (𝑐Δ𝑡E −
𝑣

𝑐
Δ𝑥E)2 −𝛾2 (𝑥− 𝑣Δ𝑡E)2

=

[
𝑐2𝛾2Δ𝑡2E +

𝑣2

𝑐2 𝛾
2Δ𝑥2

E −2𝑐Δ𝑡E
𝑣

𝑐
Δ𝑥E𝛾

2
]
−

[
𝛾2Δ𝑥2

E +𝛾
2𝑣2Δ𝑡2E −2𝑥𝑣Δ𝑡E

]
= 𝛾2

(
𝑐2Δ𝑡2E +

𝑣2

𝑐2Δ𝑥
2
E −Δ𝑥2

E − 𝑣
2Δ𝑡2E

)
= 𝛾2

(
𝑐2Δ𝑡2E

(
1− 𝑣

2

𝑐2

)
−Δ𝑥2

E

(
1− 𝑣

2

𝑐2

))
.

Dies ist nun eine Möglichkeit, auf ein neues Bezugssystem zu wechseln. Außerdem erkennen
wir hier direkt die Terme der Zeitdilatation und Längenkontraktion wieder. Wir wählen für
unser Beispiel die Geschwindigkeit des Myons 𝑣 = 0.9994𝑐 und erhalten

(Δ𝑠𝐸)2 = 𝛾2
(
𝑐2Δ𝑡2μ −Δ𝑥2

μ

)
(3.4)

𝑐2 · (64μs)2 − (19188m)2 = 𝛾2
(
𝑐2 (2.2μs)2 − (660m)2

)
(3.5)

An den Zahlen erkennen wir auch hier die Manifestationen der Längenkontraktion und Zeit-
dilatation wieder. Durch diesen etwas länglichen Transformationsprozess haben wir aber nun
eine sehr schöne Interpretationsmöglichkeit geschaffen. Wenn wir uns in die Lage des Erdbe-
obachters versetzen, beschreiben wir die Zeit- und Ortsdifferenzen mit den Werten der linken
Seite von Gl. 3.5. Wenn wir uns in das Bezugssystem geben wollen, müssen wir Gl. 3.5 durch
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𝛾 teilen und erhalten die gleichwertige Beschreibung

𝑐2 (2.2μs)2 − (660m)2 =
1
𝛾2

(
𝑐2 · (64μs)2 − (19188m)2

)
aus Sicht des Myons. In dessen Bezugssystem haben die Ereignisse einen zeitlichen Abstand
von 2.2μs und es wird eine Entfernung von 660m zurückgelegt.

Abschnitt 3.5

Energie-Impuls-Beziehung

Die Herleitung der Energie-Impuls-Beziehung ist ohne die hier verwendete Schreibweise der
allgemeinen Relativitätstheorie nur schwer oder unvollständig möglich9. Wir werden hier also 9 Ich meine hier die Notation mit

4-er Vektoren und Summenkonven-
tion.

ein Paradebeispiel für die Anwendung der Mathematik in der Physik sehen – und werden
schließlich mit einer der fundamentalsten und folgenreichsten Gleichungen in der Geschichte
der Physik belohnt.

Die Herleitung beginnt mit der Newton’schen Bewegungsgleichung, die auf die 4-er-
Vektoren erweitert wird. Dafür definieren wir die 4-er Geschwindigkeit 𝑢𝛼 durch

𝑢𝛼 =
d𝑥𝛼

d𝜏
.

Diese Geschwindigkeit10 kann man wie auch die Ortskoordinaten in ein anderes Inertialsystem 10 Wir wollen ab jetzt die übliche
3-er Geschwindigkeit 𝑣 nennen und
die 4-er Geschwindigkeit wird mit 𝑢
bezeichnet.

durch eine Lorentz-Transformation überführen:

𝑢′𝛼 = Λ𝛼
𝛽 𝑢

𝛽 .

Wir wünschen uns also jetzt die Möglichkeit, statt der bekannten Newtongleichung 𝑚 d®𝑣
d𝑡 =

®𝐹N
eine relativistische Variante aufzustellen. Diese soll dann auch für große Geschwindigkeiten
gültig sein und muss den Einstein’schen Postulaten genügen. Sie müsste dann also angelehnt
an das “Original” etwa

𝑚
d𝑢𝛼

d𝜏
= 𝐹𝛼 (3.6)

lauten. Hier ist 𝐹𝛼 noch nicht wirklich festgelegt, weil die Zeitkomponente im Vektor, also 𝐹0,
etwas ungewöhnlich ist. Unser Plan wird nun sein, durch Formulierung von Forderungen an
Gl. 3.6 etwas über diese Komponente herauszufinden. Eine Forderung lautet: Die Gleichung
muss, wenn wir sie in der Relativitätstheorie nutzen wollen, bei einer Lorentztransformation
seine Form behalten11. Man nennt diese Eigenschaft auch: Lorentz-Invarianz. Es muss im 11 Die Gleichung soll also in den

neuen Koordinaten die gleiche Form
haben

Inertialsystem IS’ dann auch gelten

𝑚
d𝑢′𝛼

d𝜏
= 𝐹′𝛼

Außerdem muss Sie für eine Relativbewegung von 𝑣 = 0 der Bezugssysteme in die üblichen
Newtongleichungen übergehen. Um die Einträge von 𝐹𝛼 zu identifizieren, wenden wir die
Lorentz-Transformation nun an und untersuchen die Resultate. Für eine Relativbewegung mit
𝑣𝑥 in 𝑥-Richtung12 ergibt sich: 12 In den anderen Raumrichtungen

soll es keine Änderung geben. (𝑣𝑦 =
𝑣𝑧 = 0)

𝐹𝛼 = Λ𝛼
𝛽 𝐹

′𝛽 .

Nach ausmultiplizieren der rechten Seite erhält man folgende transformierte Komponenten
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für 𝐹𝛼:

𝐹0 = 𝛾
𝑣𝑥𝐹

1
N

𝑐

𝐹1 = 𝛾𝐹1
N

𝐹2 = 𝐹2
N

𝐹3 = 𝐹3
N ,

wobei 𝐹N jeweils die bekannten Kraftkomponenten aus der nichtrelativistischen Newton’schen
Bewegungsgleichung 𝑚 d𝑣𝜇

d𝑡 = 𝐹N sind. Man erkennt, dass offenbar die letzten drei Kompo-
nenten mit der Newton-Kraft übereinstimmen – zusätzlich mit einer Lorentz-Transformation
durch den Faktor 𝛾 für die 𝑥-Komponente bei 𝐹1. Der Ausdruck 𝐹0 ist aber komplizierter.
Wir erinnern uns jedoch glücklicherweise an die Energiedefinition aus der Mechanik: Dort
war 𝐸 =

∫
(𝑣 ·𝐹)d𝑡. Man kann also durch Vergleich von 𝐹0 und d𝐸/d𝑡 = 𝑣 ·𝐹 erkennen, dass

𝐹0 = 𝛾
𝑣𝑥𝐹

1
𝑁

𝑐
=
𝛾

𝑐

d𝐸
d𝑡

(3.7)

gilt. Als letzten Schritt vor dem Ziel wird nun die relativistische Kraft durch den relativistischen
Impuls ersetzt13. Dieser Impuls lautet mit der Eigenzeit 𝜏 einfach 𝑝𝛼 = 𝑚 · d𝑥𝛼

d𝜏 wie in der13 Das Ziel heißt ja schließ-
lich Energie-Impuls-Satz und nicht
Energie-Kraft-Satz. . .

üblichen Mechanik auch. Für einen Beobachter mit Zeitkoordinaten 𝑡 statt 𝜏 muss man
für jede 𝑥-Komponente eine Lorentz-Transformation durchführen. Die Rechnung ergibt das
wenig überraschende Ergebnis 𝑝𝛼 = 𝛾 ·𝑚 d𝑥𝛼

d𝑡 . Nun kann man die einzelnen Komponenten für
d𝑥𝛼/d𝑡 = 𝑣𝛼 angeben als

𝑝𝛼 =

(
𝛾𝑚

𝑐 ·��d𝑡
��d𝑡

, 𝛾𝑚𝑣1,𝑚𝑣2,𝑚𝑣3
)
.

Für die räumlichen Komponenten (𝑝1, 𝑝2, 𝑝3) = ®𝑝 kann man nun direkt den relativistischen
Impuls ablesen14. Er errechnet sich durch Multiplikation mit dem Lorentz-Faktor:14 Diese Definition ist oft für Schul-

aufgaben ausreichend, weil man es
dort nicht mit der 4-er Notation zu
tun hat.

relativistischer Impuls

®𝑝 = 𝛾 ·𝑚®𝑣 = 𝑚®𝑣√︃
1− 𝑣2

𝑐2

(3.8)

Jetzt sieht es so aus, als wenn wir die Frage “Was bedeutet 𝐹0” gegen ein “Was bedeutet
𝑝0” getauscht haben. Die nullte Komponente 𝑝0 = 𝛾𝑚𝑐 ist ebenfalls nicht wirklich sinnvoll.
Man kann aber durch Verwendung von Gl. 3.7 eine erstaunliche Aussage ableiten. So ist der
Impuls 𝑝0 definitionsgemäß durch Integration über die Eigenzeit aus der Kraftkomponente
𝐹0 zu erhalten gemäß1515 Es wurde d𝜏 = 1

𝛾
d𝑡 genutzt.

𝑝0 =

∫
𝐹0d𝜏 =

𝛾

𝑐

∫
d𝐸
d𝑡

d𝜏 = �𝛾

𝑐

∫
d𝐸
��d𝑡

��d𝑡

�𝛾
=
𝐸

𝑐
.

Man kann also den Ausdruck 𝑝0 = 𝛾𝑚𝑐 im Viererimpuls mit 𝐸/𝑐 ersetzen. Der relativistische
4-er Impuls lautet dann also

𝑝 =

(
𝐸

𝑐
, 𝑝1, 𝑝2, 𝑝3

)
.

Aus der Gleichheit von 𝛾𝑚𝑐 und 𝐸/𝑐 folgt dann auch ein Ausdruck für diese nun relativistische
Energie genannte Energieform:
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relativistische Energie

𝐸 = 𝛾 ·𝑚𝑐2 =
𝑚𝑐2√︃
1− 𝑣2

𝑐2

(3.9)

Um den berühmten Energie-Impuls-Satz herzuleiten ist es nun kein weiter Weg mehr.
Wir werden wieder das Wegelement d𝑠2 mit der Minkowski-Metrik formulieren. Diesmal
wollen wir aber die Impulse statt die Ortskoordinaten nutzen. Die kann man erreichen, indem
an geeigneter Stelle zweimal durch das (Eigen-)Zeitdifferential d𝜏 dividiert wird:

𝑐2d𝜏2 = 𝜂𝛼𝛽d𝑥𝛼d𝑥𝛽

𝑚2𝑐2d𝜏2 = 𝜂𝛼𝛽 ·𝑚 ·d𝑥𝛼 ·𝑚 ·d𝑥𝛽

𝑚2𝑐2 = 𝜂𝛼𝛽

(
𝑚

d𝑥𝛼

d𝜏

) (
𝑚

d𝑥𝛽

d𝜏

)
𝑚2𝑐2 = 𝜂𝛼𝛽 𝑝

𝛼𝑝𝛽

= (𝑝0)2 − (𝑝1)2 − (𝑝2)2 − (𝑝3)2

Aus der vorher gefundenen Impuls-Formulierung über die Energie folgt nun

𝑚2𝑐2 = (𝑝0)2 − (𝑝1)2 − (𝑝2)2 − (𝑝3)2 =
𝐸2

𝑐2 − ®𝑝2

Nach Umstellen dieser Gleichung haben wir nun den Energie-Impuls-Satz der Relativitäts-
theorie hergeleitet:

relativistischer Energie-Impuls-Satz

𝐸2 = 𝑚2𝑐4 + 𝑐2 ( ®𝑝)2 (3.10)

Um zu verstehen, was für bedeutende Aussagen hier gemacht werden, schauen wir uns
die Grenzfälle an. Wir nehmen dafür einen “sehr kleinen” oder einen “sehr großen” Impuls
an, so dass also jeweils einer der beiden Terme von Gleichung 3.10 dominant wird. Man nutzt
korrekterweise eine Taylorentwicklung für diese Näherung. Dazu stellen wir den Energie-
Impuls-Satz etwas um16 zu 16 Die Taylor-Entwicklung kann nur

für kleine Variablenwerte genutzt
werden. Für Aussagen zu großen
Werten kann man jedoch zu Brü-
chen umformen, die dann ihrerseits
im Grenzfall klein werden.

𝐸 =
√︁
𝑚2𝑐4 + 𝑐2𝑝2 = 𝑐𝑝

√︄
(𝑚𝑐)2

𝑝2 +1 .

Für den Fall 𝑝≫ 𝑚𝑐 erkennt man nun sofort, dass daraus 𝐸 = 𝑐 · 𝑝 folgt. Für den Fall 𝑝≪ 𝑚𝑐

nutzt man die Taylorentwicklung der umgestellten Form von Gl. 3.10√︁
𝑚2𝑐4 + 𝑝2𝑐2 = 𝑚𝑐2

√︂
1+ 𝑝2

𝑚2𝑐2 .

Dann wird der letzte Term in der Wurzel (“sehr klein”) genähert bis zum linearen Glied. Es

gilt dann
√

1+ 𝑥 ≈ 1+ 1
2𝑥 und damit𝑚𝑐2

√︃
1+ 𝑝2

𝑚2𝑐2 ≈𝑚𝑐2
(
1+ 𝑝2

2𝑚2𝑐2

)
=𝑚𝑐2+ 𝑝2

2𝑚 . Zusammen-

31



Spezielle Relativitätstheorie

fassend ergeben sich also die Einzelfälle

𝐸 =
√︁
𝑚2𝑐4 + 𝑐2𝑝2


𝑝 ≪ 𝑚𝑐 → 𝐸 = 𝑚𝑐2 + 𝑝2

2𝑚
𝑝 ≫ 𝑚𝑐 → 𝐸 = 𝑐 · 𝑝 = 𝑚𝑐2︸︷︷︸

𝛾=1

(3.11)

Der Fall mit sehr großem Impuls gilt also etwa für ein Photon, dass sich mit Lichtgeschwindig-
keit fortbewegt. Obwohl das Photon an sich masselos ist, kann man ihm über diese Beziehung
ein “Masseäquivalent” zuordnen. Für den ersten Fall der kleinen Geschwindigkeiten folgt
andererseits

𝐸 =
𝑝2

2𝑚
+𝑚𝑐2 = 𝐸kin +𝐸0

Als Ruheenergie 𝐸0 wird die Energie ohne Bewegungsanteil bezeichnet:

Ruheenergie, Energie-Masse-Äquivalenz

𝐸0 = 𝑚𝑐
2 Δ𝐸 = Δ𝑚𝑐2 (3.12)

Es hat sich hier gezeigt, dass selbst ein ruhendes Objekt ohne Impuls trotzdem einer
enormen Menge Energie gemäß 1kg · 𝑐2 = 9 · 1016 J entspricht. Die Masse wird im Rahmen
der ART als Ursache des Gravitationsfeldes gesehen. Es gibt aber auch andere Fälle, in denen
diese Energie sichtbar wird:

• Bindungsenergien in Atomkernen entspricht immer auch einer Masse. Die Summe der
Massen der Kernbestandteile ist nicht gleich der Kernmasse! Die Bindungsenergie “hat
also ein Gewicht”.

• Bei der Spaltung schwerer Kerne wird Bindungsenergie frei. Die Spaltprodukte zusam-
men sind leichter als der Ursprungskern.

• Ein Stern wird durch starke Gravitationskräfte zusammengehalten. Dies reduziert seine
Masse im Vergleich zu 𝑚 = 𝜌 ·𝑉 deutlich.

An dieser Stelle möchte ich einen wichtigen Hinweis geben. Der relativistische 3-er Impuls
ist als Größe gemäß ®𝑝 = 𝛾𝑚®𝑣 definiert. Es ist nun aus mathematischer Sicht auch möglich
den relativistischen Impuls anzusehen als ein Produkt aus relativistischer Masse 𝛾𝑚 und
der nichtrelativistischen Geschwindigkeit ®𝑣. Dies wurde früher oft sowohl in Lehrbüchern als
auch in der Schule so gehandhabt. Die Ergebnisse von Rechnungen usw. werden dadurch nicht
falsch. Die Interpretation an sich ist jedoch sehr zweifelhaft. Die Masse wird normalerweise
als eine Teilcheneigenschaft angesehen. Die Summe der Teilchen in einem Festkörper ergibt
schließlich dessen Masse. Nach dieser Definition darf die Masse sich natürlich nicht durch den
Bewegungszustand ändern! Ein schnelles Raumschiff besteht trotzdem noch aus 𝑁 Protonen
und Neutronen – die Masse muss konstant bleiben.

Wenn man allerdings die Masse streng als träge Masse definiert, hat die Sichtweise einer
relativistischen Masse zumindest eine schwache Berechtigung. Es wird demnach zunehmend
schwerer, ein schnelles Objekt immer weiter zu Beschleunigen. Dies ist durch den relativisti-
schen Impuls in 𝐹 = d𝑝/d𝑡 auch so zu erwarten wegen des enthaltenen 𝛾-Terms. Die Trägheit
nimmt also zu. Es steht einem nun frei, diesen Effekt als Auswirkung des 𝛾 ·𝑚-Verhaltens
zu interpretieren, statt von einem relativistischen Impuls zu sprechen. Bitte seien Sie sich
dieser Feinheiten stets bewusst bzw. informieren sie sich weitergehend bevor Sie im Unter-
richt von einer “relativistischen Masse” sprechen. In einigen Abituraufgaben und z.B. im
Bayrischen Rahmenplan kommt die relativistische Masse als physikalische Größe vor. In den
meisten Universitäts-Lehrbüchern zur Physik taucht dieser Begriff nicht (mehr) auf [8, 9, 10].
17 Ich möchte schlussendlich davon abraten, in Übungsaufgaben oder Klausuraufgaben eine17 Ausnahme ist z.B. [11]
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Minkowski-Diagram

relativistische Masse in Kilogramm berechnen zu lassen. Die Dynamik der relativistischen
Mechanik lässt sich am eindeutigsten mit Impulsen formulieren.

Abschnitt 3.6

Minkowski-Diagram

Die vollständige mathematische Beschreibung der Relativitätstheorie ist in der Schule nicht
möglich. Deswegen ist es zweckmäßig auf grafische Beschreibungsmöglichkeiten auszuwei-
chen. Eine solche Möglichkeit ist das sogenannte Minkowski-Diagramm. Dies ist ein Koordi-
natensystem zur Darstellung des Minkowski-Raumes für eine Orts- und eine Zeitkoordinate.
Auf dieses Konzept soll nun anhand von einigen Beispielen eingegangen werden.

x

ct

IS (ruhend)

t = const

Abbildung 6. Zeitentwicklung (vertika-
le Linien) für feste Ortskoordinaten und
Ereignisse an verschiedenen Orten zu
gleichen Zeitpunkten (horizontale Lini-
en) für einen ruhenden Beobachter.

x

ct

v
=

c

IS (ruhend)

v
=

0.
87

c

v > c

Abbildung 7. Minkowski-Diagramm
mit den Koordinatensystemen für einen
relativ bewegten Beobachter mit einer
Geschwindigkeit 𝑣 < 𝑐 in die positive 𝑥-
Richtung (blaue Linie) und für ein Teil-
chen mit 𝑣 = 𝑐 (rote Linie).

In einem Minkowski-Diagram wird auf der Ordinate die Zeitkoordinate 𝑥0 = 𝑐𝑡 abge-
bildet und auf der Abzisse eine Ortskoordinate, wie in Abb. 6 gezeigt. Da wir sowieso zur
Vereinfachung stets nur die Bewegung in einer Raumrichtung betrachten ist diese Redukti-
on auf die 𝑥-Koordinate kein großes Problem. Einen in diesem System ruhenden Beobachter
(𝑥 = 𝑐𝑜𝑛𝑠𝑡,∀𝑡) würde man in diesem Diagramm durch eine vertikale Linie (blau in Abb. 6) dar-
stellen. Eine horizontale Linie (𝑡 = 𝑐𝑜𝑛𝑠𝑡,∀𝑥), wie die rote Gerade in Abb. 6, markiert dagegen
einen festen Zeitpunkt für alle Orte. Während Punkte im Minkowski Raum Ereignisse genannt
werden, nennt man Kurven oder Geraden auch Weltlinien. Man kann im Minkowski-Diagram
auch Bewegungen darstellen. Ein Objekt, dass sich mit 𝑣 = 𝑐 relativ zum Inertialsystem IS
(die Koordinatenachsen) fortbewegt, legt mit jedem Fortschritt Δ𝑥 auf der 𝑥-Achse auch den
Schritt 𝑐 ·Δ𝑡 auf der 𝑦-Achse zurück. Damit folgt für ein Objekt mit Lichtgeschwindigkeit
𝑣 = 𝑐 eine Weltlinie mit Steigung tan𝛼 = 𝑐Δ𝑡

Δ𝑥
= 𝑐

𝑣
= 1 (rote Linie in Abb. 7). Wenn die Ge-

schwindigkeit 𝑣 < 𝑐 beträgt, folgt eine Weltlinie mit tan𝛼 = 𝑐
𝑣
> 1 und damit 𝛼 > 45◦ (siehe

blaue Linie in Abb. 7).
Wir wollen nun zur Übung das berühmte Zwillingsparadoxon in diesem Diagramm

darstellen. Das Zwillingsparadoxon ist ein Gedankenexperiment von Albert Einstein und
gestaltet sich mit Beispielwerten wie folgt: Zwei Zwillinge befinden sich in gleichem Alter auf
der Erde (𝑥 = 0). Ein Zwilling A bewegt sich in einem Raumschiff mit hoher Geschwindigkeit
𝑣 = 0.9𝑐 von der Erde weg, kehrt nach der Flugzeit 𝑡1 am Punkt 𝑥1 (1LJ vom Startpunkt
entfernt) um und fliegt mit gleicher Geschwindigkeit wieder zurück. Die Weltlinien von A
und B sind in Abb. 8 in einem Minkowski-Diagramm dargestellt. B ruht dauerhaft in seinem
Inertialsystem und wird daher durch eine vertikale rote Linie bei 𝑥 = 0 repräsentiert. A fliegt
mit einem Raumschiff zunächst von der Erde weg und kehrt später wieder um – dies wird
durch die blaue Linie dargestellt. Wir wollen nun untersuchen, wieviel Zeit für die beiden

x

ct

B (bei =0)x

A (mit =0.9c)v

x =1LJ1

c·t1

cT

Abbildung 8. Minkowski-Diagram-
Darstellung des Zwillingsparadoxons.
Die Zeit läuft für den ruhenden Beob-
achter A anders ab, als für den Reisen-
den B.

Zwillinge zwischen Abreise und Ankunft vergangen ist. Die Zeit für den ruhenden Beobachter
B entspricht genau der Länge seiner Weltlinie (es wird ja keine Strecke 𝑥 zurückgelegt: d𝑥 = 0):

Δ𝑠𝐵 =

𝑐𝑇∫
0

d𝑠 =
𝑐𝑇∫

0

d𝑥0 =

𝑇∫
0

𝑐 ·d𝑡 = 𝑐𝑇

Jetzt wollen wir die Länge der Weltlinie von B beschreiben (von A bzw. IS aus gemessen!).
Dafür betrachten wir zuerst den Weg bis zum Umkehrpunkt. Dafür gilt:

Δ𝑠A,hin =

(𝑐𝑇/2,𝑥𝑈 )∫
(0,0)

d𝑠 =
(𝑐𝑇/2,𝑥𝑈 )∫
(0,0)

√︃
𝜂𝛼𝛽d𝑥𝛼d𝑥𝛽

=

(𝑐𝑇/2,𝑥𝑈 )∫
(0,0)

√︁
(𝑐 ·d𝑡)2 − (d𝑥)2 .
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Dieser Ausdruck ist nun sehr ungewöhnlich. Die Integranden stehen unter einer Wurzel und es
ist erstmal nicht klar wie dieses Integral ausgeführt wird. Wir können es aber durch Umstellen
und die Substitution 𝑣 = d𝑥/d𝑡 in ein einfaches Integral überführen bzw. parametrisieren:

Δ𝑠A,hin =

(𝑐𝑇/2,𝑥𝑈 )∫
(0,0)

d𝑡
√︂
(𝑐)2 − d𝑥2

d𝑡2

=
√︁
𝑐2 − 𝑣2

𝑇/2∫
0

d𝑡 = 𝑐 ·
√︂

1− 𝑣
2

𝑐2

𝑇/2∫
0

d𝑡 =
𝑐𝑇

2𝛾
=
𝑐𝑇 ′

2
.

Hierbei nennen wir die abgelaufene Zeit im bewegten Bezugssystem 𝑇 ′. Für den Rückweg
gilt im Prinzip das gleiche:

Δ𝑠A,rück =

(𝑐𝑇,0,0,0)∫
(𝑐𝑇/2,𝑥𝑈 ,0,0)

d𝑠 = 𝑐 ·
√︂

1− 𝑣
2

𝑐2

𝑇∫
𝑇/2

d𝑡 =
𝑐𝑇

2𝛾
=
𝑐𝑇 ′

2
.

Insgesamt läuft also für den Reisenden A die Zeit 𝑇 ′/2 +𝑇 ′/2 = 𝑇 ′ = 𝑇/𝛾 ab. Es ist also
weniger Zeit als im Vergleich zum ruhenden Beobachter vergangen. Für unser Zahlenbeispiel
bedeutet dies

𝑇 ′ =

√︂
1− (0.9𝑐)2

𝑐2 ·𝑇 = 0.43𝑇 .

Es ergibt sich also für die gemessenen Zeiträume von A und B:

𝐵 : 𝑇 =
2LJ

0.9 · 𝑐 =
2 ·9.46 ·1015 m

0.9 · 𝑐 = 2.25Jahre (3.13)

𝐴 : 𝑇 ′ = 0.43 · 2LJ
0.9 · 𝑐 = 0.97Jahre (3.14)

Der Altersunterschied ist also beträchtlich. Außerdem sei darauf hingewiesen, dass der Rei-
sende für die Reisestrecke von 2 Lichtjahren nur etwas weniger als ein Jahr gebraucht hat.
Es ist also nicht so, dass man für die 4.3Lichtjare nach Alpha-Centauri selbst mit fast-
Lichtgeschwindigkeit 4 Jahre bräuchte. Für eine bequeme Reisezeit18 von einer Woche muss18 Die Reisezeit ist hier die vergan-

gene Eigenzeit an Bord des Raum-
schiffes.

man aber erstmal in neue Technik investieren: Man müsste mit 𝑣 = 0.999979𝑐 unterwegs
sein. . .

Warum aber wird dieses hier betrachtete Phänomen als “Paradoxon” bezeichnet? Dies
ergibt sich aus einer alternativen Betrachtungsweise. Wir haben bereits erfahren, dass bewegte
Uhren langsamer gehen – wer jedoch legt fest ob sich A oder B hier bewegt. Völlig berechtigt
könnte auch A (Raumschiff) argumentieren, dass er sich in Ruhe befindet und B (Erde) sich
mit Geschwindigkeit 𝑣 entfernt. Dann müsste nach dem Zusammentreffen der Beiden im
Gegensatz zum obigen Ergebnis B langsamer gealtert sein. Dieses Paradoxon ist aber bei
genauerem Hinsehen keines bzw. lässt es sich auflösen: Der hier ruhende Beobachter befindet
sich die ganze Zeit im gleichen Inertialsystem. Ein Inertialsystem ist bekanntermaßen ein
Bezugssystem mit konstanter Geschwindigkeit. Der reisende Zwilling jedoch wechselt mitten
im Flug sein Inertialsystem (aus 𝑣 wird −𝑣)19. Deshalb sind die beiden Ansichten von A und19 Wenn man beschleunigt, ver-

lässt/wechselt man das Inertialsys-
tem.

B nicht gleichberechtigt und die Situation ist, so wie berechnet, mit dem weniger gealterten
Zwilling A eindeutig entschieden. Man kann sich auch in einem Minkowski-Diagram die
ungleichen Zeitabläufe und deren Berechtigung sichtbar machen. Dazu ist in Abb. 9 dargestellt,
wie jeweils der eine Zwilling dem anderen in regelmäßigen Abständen (0.25Jahre) seine Zeit
übermittelt. Die Übermittlung soll mit einem Signal der Geschwindigkeit 𝑣 = 𝑐 geschehen - die
Weltlinien des Signals haben daher eine Neigung von genau 45◦ im Diagramm. Wie man direkt
sieht, ist bei der Skaleneinteilung auf den beiden Weltlinien die Zeitdilatation berücksichtigt
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worden. Das heißt, die Skalenteilung der blauen Linie ist deutlich verlängert im Vergleich zur
roten Zeitskala20. Im linken Teil des Bildes wird von der Erde in Intervallen von 0.25Jahren 20 Darauf wird im nächsten

Abschnitt über Abstände im
Minkowski-Diagram genauer
eingegangen.

ein Signal mit Lichtgeschwindigkeit zum Raumschiff gesendet. Wie man sieht, erhält das
Raumschiff während der ersten Phase der Reise die Nachricht noch nicht, später dafür in sehr
kurzen zeitlichen Abständen. Nach dem Umkehrpunkt auf der Bahn wird also gewissermaßen
die verpasste Übertragungszeit wieder aufgeholt. Im rechten Teil der Abbildung sieht man wie
der Reisende ebenfalls alle 0.25Jahre ein Signal mit Lichtgeschwindigkeit sendet. Das erste
Signal wird auf der Erde nach ca. einem Jahr empfangen21. Kurz vor dem Ende der Rückreise 21 Die Abbildung ist nicht maßstabs-

getreu.werden dann in schneller Folge auf der Erde die Funksignale empfangen. Am Ende gibt es

x

ct ct

0.25a0.25a

Abbildung 9. Zeitübermittlung beim
Zwillingsparadoxon. Jeder Zwilling
übermittelt mit Lichtgeschwindigkeit
dem jeweils anderen alle 0.25Jahre sei-
ne Uhrzeit.

also für beide Teilnehmer des Versuches eine nicht-paradoxe Gewissheit: Für den Reisenden
ist etwa ein Jahr während der Reise vergangen und auf der Erde sind währenddessen ca.
2.25Jahre vergangen.

Abschnitt 3.7

Abstände im Minkowski-Diagramm

Wir haben in Abb. 7 bereits gesehen, wie man in einem Minkowski-Diagram eine Weltlinie für
einen mit 𝑣 < 𝑐 bewegtes Bezugssystem einzeichnet. Diese Weltlinie entspricht dabei einem
alternativen Bezugssystem, in dem der bewegte Beobachter wiederum ruht. Das Verharren an
einem Ort wird in “nicht-bewegten” Koordinaten (𝑐𝑡, 𝑥) als vertikale Linie – also parallel zur
𝑐𝑡-Achse – dargestellt. Wenn wir nun die Weltlinie eines alternativen, bewegten Bezugssys-
tems einzeichnen, so stellt dies also die 𝑐𝑡′-Achse dieses Bezugssystems dar, wie in Abb. 10
durch die rote Linie gezeigt. Wenn man nun im Diagramm den Abstand zweier Ereignisse

x

ct
ct‘

x‘
cT cT‘

(ct) -x =c T
2 2 2 2

Abbildung 10. Minkowski-Diagramm
mit bewegtem Bezugssystem (𝑐𝑡′, 𝑥′).
Die veränderten Skalenlängen kann man
durch Hyperbelfunktionen (blaue Lini-
en) anschaulich machen.

bestimmen möchte, so ist es wichtig von welchem Bezugssystem man ausgeht. Wir haben
bereits die Effekte der Zeitdilatation und der Längenkontraktion kennengelernt und wisser
daher, dass etwa die Uhren im bewegten System 𝑐𝑇 ′ langsamer gehen. Um diesen Effekt im
Diagramm zu veranschaulichen bemühen wir erneut die Tatsache, dass die Wegelemente in
beiden Bezugssystemen – unabhängig von ihrem Bewegungszustand – konstant sein müssen.
Wir vernachlässigen wieder die 𝑦− und 𝑧-Koordinaten und lassen nur eine Bewegung in
𝑥−Richtung zu. Wir schauen uns nun an, wie die Wegstrecke von den Punkten (𝑐𝑡′ = 0, 𝑥′ = 0)
nach (𝑐𝑇 ′, 𝑥′ = 0) auf der 𝑐𝑡′-Achse von einem ruhenden Bezugssystem aus aussieht22. Im

22 Auf die Konstruktion der Achsen
𝑐𝑡′ und 𝑥′ gehe ich nicht näher ein,
weil es im folgenden nicht benötigt
wird.

ruhenden Bezugssystem sehen wir die Ausbreitung mit der Geschwindigkeit Δ𝑥/Δ𝑡 = 𝑣 und
messen die Zeit in der Skala 𝑐𝑡. Im bewegten Bezugssystem wird die Zeit 𝑐𝑡′ gemessen und
es gibt keine räumliche Bewegung (Δ𝑥′ = 0):

Δ𝑠2 = Δ𝑠′2

𝑐2Δ𝑡2 −Δ𝑥2 = 𝑐2Δ𝑇 ′2 (3.15)

𝑐2Δ𝑡2
(
1− Δ𝑥2

𝑐2Δ𝑡2

)
= 𝑐2Δ𝑇 ′2

𝑐2Δ𝑡2
(
1− 𝑣

2

𝑐2

)
= 𝑐2Δ𝑇 ′2 . (3.16)

Wir sehen mit Gl. 3.16, dass die bereits bekannte Zeitdilatation folgt. Allerdings sehen wir
mit Gl. 3.15 auch, dass der Zusammenhang zwischen 𝑇 ′ und 𝑡 in unserem Koordinatensystem
(𝑐𝑡, 𝑥) durch eine Hyperbel beschrieben wird. In Abb. 10 ist eine solche Hyperbel für verschie-
dene 𝑐𝑡 und 𝑥-Werte als blaue Linie eingezeichnet. Dort wo die blaue Linie eine Weltlinie
mit 𝑣 < 𝑐 schneidet, kann man gewissermaßen die Streckung deren Zeitskala ablesen. Die
Zeitspanne 𝑐𝑇 ist auf der roten Weltlinie etwas gestreckt und es dauert 𝑇 ′ > 𝑇 bis im ruhenden
System die Zeit 𝑇 verstrichen ist.
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Abschnitt 3.8

Relativistischer Dopplereffekt

Das Minkowski-Diagramm soll nun noch genutzt werden, um den relativistischen Doppler-
effekt (oder auch relativistische Rotverschiebung) zu illustrieren. Dafür betrachten wir die

x

ct

v
=

c

IS (ruhend)

cT

2cT

P(x , ct )0 0

Abbildung 11. Ruhendes IS erzeugt ein
Signal und sendet dieses an einen be-
wegten Beobachter.

Situation aus Abb. 11. Unser unbewegtes Inertialsystem befinde sich im Ursprung und bewege
sich nicht. Die Weltlinie ist also als vertikale Linie (im Bild blau) darzustellen. Ein relativ dazu
bewegtes System soll sich mit der Geschwindigkeit 𝑣 entlang der 𝑥-Achse von uns entfernen.
Dies wird im Bild durch die rote Gerade dargestellt. Alle folgenden Betrachtungen nehmen wir
nun zunächst im ruhenden Inertialsystem vor, es wird also alles durch die Koordinaten 𝑥 und
𝑡 ausgedrückt. Um die Geradengleichung der Weltlinie des bewegten Systems zu ermitteln,
nutzen wir die bekannte Geschwindigkeit 𝑣 durch 𝑥 = 𝑣 · 𝑡. Dies wird nun umgeformt, um es
in die korrekte Koordinatenachsen-Bezeichnung (𝑐𝑡 = 𝑓 (𝑥)) zu bringen und später zu nutzen:

𝑥 = 𝑣 · 𝑡→ 𝑐𝑥 = 𝑣 · 𝑐𝑡→ 𝑐𝑡 =
𝑐

𝑣
· 𝑥 (3.17)

Um den relativistischen Dopplereffekt nun zu beschreiben, erzeugen wir in unserem ruhenden
System ein periodisches Signal mit der Frequenz 𝑓 und der Periodendauer 𝑇 , wie in Abb. 11
an der 𝑐𝑡-Achse angedeutet. Dieses Signal propagiert nun durch die Raumzeit (mit 𝑣 = 𝑐!)
und wird vom sich entfernenden Beobachter aufgefangen. Die Signalpropagation muss im
Diagramm durch die Gerade 𝑐𝑡 = 𝑥 dargestellt werden, dies ist durch die rote gestrichelte Linie
illustriert. Während wir im ruhenden System die Periodendauer 𝑇 für das Signal feststellen,
so wird der bewegte Beobachter stattdessen die Periodendauer 𝑇 ′ ermitteln. Um 𝑇 ′ zu
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ct

IS (ruhend)

cT

ct0

ct‘
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Abbildung 12. Ausschnitt zur Berech-
nung von 𝑇 ′.

bestimmen, benötigen wir zunächst die Zeit 𝑡0. Diese können wir aus dem Schnittpunkt der
beiden Geraden, wie in Abb. 12 skizziert, ermitteln. Die Geradengleichung für das propagierte
Signal entspricht einer nach oben verschobenen Gerade mit Anstieg 1, also 𝑐𝑡 = 𝑥 + 𝑐𝑇 . Die
Gleichung für die Weltlinie des bewegten Bezugssystems lautet gemäß Gl. 3.17 𝑐𝑡 = 𝑐

𝑣
·𝑥. Wir

stellen nun beide Gleichungen nach 𝑥 um und setzen sie gleich. Damit folgt

𝑡0 =
𝑐𝑇

𝑐− 𝑣

für die Zeitdauer 𝑡0 im Ruhesystem. Um herauszufinden welcher Zeitspanne dies im bewegten
System entspricht, benötigen wir die Zeitdilatation. Dies führt dann zu

𝑇 ′ =
𝑡0
𝛾
=

√︂
1− 𝑣

2

𝑐2 · 𝑡0

=

√︂
1− 𝑣

2

𝑐2 · 𝑐𝑇
𝑐− 𝑣

=

√︄
𝑐2 − 𝑣2

(𝑐− 𝑣)2 ·𝑇 =

√︄
(𝑐− 𝑣) · (𝑐+ 𝑣)

(𝑐− 𝑣)2 ·𝑇

𝑇 ′ =

√︂
𝑐+ 𝑣
𝑐− 𝑣 ·𝑇

Dies ist nun die Verschiebung der Periodendauern – zweckmäßiger ist es eine Verschiebung
der Frequenzen anzugeben. Wegen 𝑓 = 1/𝑇 ergibt sich dann die Frequenzverschiebung für
schnell bewegte Beobachter
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relativistischer Dopplereffekt / Rotverschiebung

𝑓 ′ =

√︂
𝑐− 𝑣
𝑐+ 𝑣 · 𝑓 (3.18)

Dies bedeutet eine Verringerung der Frequenz bzw. eine Erhöhung der Wellenlänge
(Rotverschiebung) wenn sich die Signalursache schnell vom Beobachter wegbewegt. Der
Effekt tritt natürlich auch auf, wenn sich der Beobachter von der Lichtquelle entfernt.
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Abschnitt 4

Allgemeine Relativitätstheorie

Was weiß ein Fisch von dem Wasser, in dem er sein ganzes Leben lang schwimmt?
(Albert Einstein)

In der allgemeinen Relativitätstheorie wird nun durch die Einstein’schen Feldgleichungen
eine Verbindung von Gravitation und Raum geschaffen. Wir werden also den “flachen” Min-
kowskiraum verlassen. Glücklicherweise ist keine neue mathematische Beschreibung nötig,
da wir bis hier schon alles notwendige eingeführt haben.

Abschnitt 4.1

Das Äquivalenzprinzip

Das sogenannte Äquivalenzprinzip nach Einstein lautet: Trägheit und schwere Masse sind
wesensgleich. Hierbei ist als Trägheit (oder träge Masse) die Eigenschaft eines Körpers zu
bezeichnen, sich gegen eine Beschleunigung zu wehren gemäß dem Zweiten Newton’schen
Axiom:

𝑚𝑡 =
𝐹𝑡

¥𝑥 .

Die schwere Masse ist eine Proportionalitätskonstante im Gravitationspotential gemäß

𝐹𝐺 = 𝐺
𝑚𝑠1𝑚𝑠2

𝑟2

Für den freien Fall nahe der Erdoberfläche wird die Gravitationskraft näherungsweise durch
eine Taylorentwicklung zu

𝐹𝐺 ≈ 𝑚𝑠 · 𝑔

Wenn keine anderen Kräfte wirken als die Gravitation, so bewirkt diese gemäß Newton eine
Beschleunigung der Form

𝑚𝑡 ¥𝑥 = 𝑚𝑠𝑔 → ¥𝑥 = 𝑚𝑠

𝑚𝑡

𝑔

Die Gravitationskonstante 𝐺 ist so gewählt, dass der Zahlenwert und die Einheit von 𝑚𝑡 und
𝑚𝑠 identisch ist. Dies ist allerdings “nur” empirisch begründet durch die Erfahrung, dass das
Verhältnis von träger und schwerer Masse für alle Körper gleich ist. Es gibt Experimente, die
mit enormer Genauigkeit diese Annahme untersuchen. Bisher ist die Gleichheit von träger
und schwerer Masse mit einer Genauigkeit von 10−13 bestätigt [12].

Eine alternative Formulierung des Äquivalenzprinzips ist die folgende:

Äquivalenzprinzip In einem lokalen Bezugssystem lässt sich der Einfluss der Gravitations-
kraft nicht von der Wirkung einer Beschleunigung unterscheiden.

Wir sprechen also hier, im Gegensatz zur speziellen Relativitätstheorie von Beschleu-
nigungen. Es soll noch einmal verdeutlicht werden, dass beschleunigte Bewegungen nicht
im Rahmen der speziellen Relativitätstheorie behandelt werden können, denn beschleunigte
Bezugssysteme sind keine Inertialsysteme. Dieses Äquivalenzprinzip besagt also, dass man
nicht feststellen kann, ob man sich in einem Gravitationsfeld befindet oder beschleunigt wird.
In Abb. 13 ist dies durch zwei Situationen gezeigt: Die rote Masse befindet sich in einem Gra-
vitationsfeld, das eine Kraft in Richtung des Gravitationszentrums ausübt. Die blaue Masse
wird durch einen Raketenantrieb beschleunigt mit der Kraft 𝐹𝑡 entsprechend seiner trägen
Masse. Das Äquivalenzprinzip besagt nun, dass es keine Messung geben kann, mit der man
die Fälle unterscheiden könnte.

F
G

F
t

Abbildung 13. Zur Äquivalenz von
Gravitation und Trägheit. Links wirkt
ein Gravitationsfeld, rechts wirkt eine
Beschleunigung durch einen Antrieb.
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Aus dem Äquivalenzprinzip kann man die sogenannten Einstein’schen Feldgleichungen
ableiten. Das würde allerdings den Rahmen dieses Buches sprengen, weshalb hierauf verzich-
tet wird. Wir bedienen uns lediglich einiger Schlussfolgerungen aus der Differentialgeometrie,
um die geeigneten Bezeichnungen für die ART zu finden. Statt einer Bahnkurve spricht man
nun von Geodäten in der Raumzeit. Geodäten sind ganz ursprünglich etwa Längen- oder
Breitengrade auf der Erdoberfläche. Man stelle sich vor, dass man zwei zufällige Ort auf der
Erdoberfläche wählt und einfach geradeaus geht. Die Bahn um die Erdkugel beschreibt dann
eine Geodäte – also eine Kurve die der Erdkrümmung folgt. Da wir Menschen im Vergleich
zur Erdkrümmung klein sind, würde uns das allein nicht ermöglichen die Erdkrümmung
festzustellen. Jetzt werden wir aber folgendes Experiment anstellen können: Zwei Menschen
starten an zwei Punkten in derselben Richtung. Auf einer flachen Erde würden Sie sich für alle
Ewigkeit auf parallelen Strecken fortbewegen und sich niemals begegnen. Wenn die Erdober-
fläche aber gekrümmt ist, werden sich diese parallelen Linien schneiden wie dies in Abb. 14
illustriert ist. Außerdem gilt auf einer gekrümmten Oberfläche nicht der Innenwinkelsatz – das
Dreieck in Abb. 14 hat beispielsweise eine Innenwinkelsumme von 270◦. Genau wie bei der

Abbildung 14. Auf einer gekrümmten
Oberfläche schneiden sich Linien die
parallel am Äquator starten.

noch ziemlich anschaulichen gekrümmten Fläche verhält es sich mit der vierdimensionalen
Raumzeit. Einstein hat 1916 vorhergesagt, dass durch die Krümmung der Raumzeit in Gegen-
wart der Sonnenmasse das Licht dahinterliegender Sterne abgelenkt werden müsste [13]. Die
Sonnenfinsternis von 1919 bot eine Gelegenheit um diese Überprüfung der Relativitätstheorie
durchzuführen und bestätigte die Vorhersagen [14]. Bei den Messungen wurde übrigens auch
untersucht, ob das Licht ganz regulär durch die Newton’sche Gravitation der Sonne vom Kurs
abgelenkt wurde. Die gefundene Ablenkung des Lichts nahe der vom Mond verdunkelten Son-
ne war aber zu groß für diesen Effekt und stattdessen in Übereinstimmung mit der Vorhersage
durch die Relativitätstheorie von Einstein.

Hinweis: Zur Veranschaulichung/Demonstration der Raumkrümmung werden auf Seite 115
sogenannte Sektorenmodelle vorgestellt. Sie ermöglichen das spielerische Erleben von
Krümmungseffekten.

Es ist also offenbar tatsächlich der Fall, dass die Raumzeit durch Gravitationsfelder
gekrümmt wird. Wie durch Anwesenheit von Materie oder Energie der Raum gekrümmt wird,
beschreiben die Einstein’schen Feldgleichungen:

Einstein’sche Feldgleichungen

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅︸           ︷︷           ︸

Raumkrümmung

+Λ𝑔𝜇𝜈 =
8𝜋𝐺
𝑐4 𝑇𝜇𝜈︸    ︷︷    ︸

Energie-Impuls-Tensor

wobei Λ die kosmologische Konstante ist ,𝑔 die Metrik, 𝑅 der sogenannte Ricci-Tensor
und 𝑇 der Energie-Impuls Tensor. Es hat sich gezeigt, dass “sinnvolle” Lösungen dieser
Feldgleichung mit und auch ohne kosmologische Konstante möglich sind. Die Konstante hat
großen Einfluss auf kosmologische Lösungen – sie beschreibt die Expansion des Univer-
sums. Einstein hatte deren Einführung als “größte Eselei seines Lebens” zunächst bereut.
Heutzutage sind die kosmologischen Modelle jedoch auf diese Konstante angewiesen, da
man gegenwärtig von einem expandierenden Universum ausgeht. Die Konstante Λ drängt
also gewissermaßen das Universum auseinander und entspricht daher einer Energiedichte des
Vakuums. Man kann diesen Effekt direkt mit den Vakuumfeldenergien der Quantenmechanik
vergleichen – und auch direkt mit der Quantenmechanik berechnen. Die Quantenmechanik
würde mit Vakuumfluktuationen als Ursache für eine Expansion eine kosmologische Kon-
stante von Λ𝑄𝑀 ≈ 1070 m−2 vorhersagen. Die ART ermittelt jedoch durch experimentelle
Messungen einen Wert von Λ𝐴𝑅𝑇 ≈ 10−52 m−2. Diese Diskrepanz ist bisher ungeklärt und
wird als Äquivalent zur Ultraviolettkatastrophe (“Vakuumkatastrophe”) gesehen. Die Dis-
krepanz von Λ𝑄𝑀/Λ𝐴𝑅𝑇 ≈ 10122 wird oft als die schlechteste theoretische Vorhersage einer
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Konstanten in der Geschichte bezeichnet.

Abschnitt 4.2

Bewegungsgleichung/Geodätengleichung

Wir wollen hier kurz zeigen, was man tun kann um die Geodäten für eine gegebene Raum-
krümmung, gegeben in Form einer Metrik 𝑔𝜇𝜈 zu berechnen. Eine Geodäte ist immer die
kürzeste Verbindung zwischen zwei Punkten. Im euklidischen Raum ist dies eine Gerade.
Auf einer Kugeloberfläche werden die entsprechenden Kurven Geodäten oder Großkreise
genannt. 23 In einer gekrümmten Raumzeit werden wir es also im Allgemeinen mit Kurven zu23 Flugzeuge fliegen auf ihrer Bahn

ebenfalls keine geraden Strecken,
sondern die kürzeste Verbindung:
eine Geodäte.

tun haben, die zwei Punkte durch eine kürzeste Strecke verbinden. Die Bewegungsgleichung
für solche gekrümmten Räume lautet

Bewegungsgleichung für gekrümmte Räume

𝑑2𝑥𝛼

𝑑𝜏2 = Γ𝛼
𝜇𝜈

d𝑥𝜇

𝑑𝜏

d𝑥𝜈

𝑑𝜏
(4.1)

Wenn man die Differentiale 𝑑/d𝜏 durch 𝑑/d𝑠 ersetzt, nennt man dies die Geodätenglei-
chung. Die Christoffelsymbole Γ berechnet man gemäß

Γ
𝛽
𝜇𝜈 =

𝑔𝛽𝛼

2

(
𝜕𝑔𝛼𝜇

𝜕𝑥𝜈
+ 𝜕𝑔𝛼𝜈
𝜕𝑥𝜇

−
𝜕𝑔𝜇𝜈

𝜕𝑥𝛼

)
aus der Metrik. Hinweise: Man kann die Indizes der Metrik senken/heben durch 𝑔𝜇𝜈 =

1
𝑔𝜇𝜈

. Außerdem sind die partiellen Ableitungen der Koordinaten untereinander gleich 0 (z.B.
𝜕𝑥0/𝜕𝑥1 = 0).

Die Berechnung einer Bahnkurve in gekrümmten Räumen ist also um einiges schwieriger
als man es aus der flachen Geometrie gewohnt ist. Die Berechnung der optimalen Flugbahn
eines Flugzeuges (die Erdoberfläche ist ja auch gekrümmt) ist etwa eine wichtige Anwendung
der Geodätengleichung.

Abschnitt 4.3

Materiefreie Feldgleichungen

Die Einstein’schen Feldgleichungen werden wir nur in stark vereinfachter Form untersuchen.
Wir nehmen dafür eine homogene Masseverteilung als Ursache für die Raumkrümmung
an (also etwa ein Stern o.ä.). Der Radius dieser Masseverteilung solle 𝑟0 betragen. Die
Feldgleichungen für die Lösungen außerhalb (ohne Materie, deswegen wird dort 𝑇𝜇𝜈 = 0) von
𝑟0 lauten dann nur noch

Materiefreie Feldgleichungen
𝑅𝜇𝜈 = 0 (4.2)

wobei der Ricci-Tensor R nur noch diagonale Einträge hat die ungleich 0 sind. Die
Elemente des Ricci-Tensors werden aus den Christoffel-Symbolen Γ

𝛽
𝜇𝜈 und damit aus der

Metrik 𝑔𝜇𝜈 festgelegt. Für ganz Neugierige gibt es hier die Berechnungsvorschrift:

𝑅𝜇𝜈 =
𝜕Γ

𝜌
𝜇𝜌

𝜕𝑥𝜈
−
𝜕Γ

𝜌
𝜇𝜈

𝜕𝑥𝜌
+Γ𝜎

𝜇𝜌Γ
𝜌
𝜎𝜈 −Γ𝜎

𝜇𝜈Γ
𝜌
𝜎𝜌
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Abschnitt 4.4

Schwarzschild-Metrik

Die Gleichung 4.2 hängt von der Metrik 𝑔𝜇𝜈 ab. Wenn man eine Metrik findet, bei der alle
Elemente des Ricci-Tensors zu Null werden, ist der materiefreie Raum um eine Massenver-
teilung im Einklang mit der ART beschrieben. Was aber genau ist denn nun eine Metrik?
Wir sind bereits in der SRT der Metrik für die euklidische (flache) Raumzeit begegnet, 𝜂𝜇𝜈 .
Diese wurde genutzt um das Wegelement d𝑠 bzw. (d𝑠)2 zu bestimmen nach d𝑠2 = 𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 .
Genau auf die gleiche Weise kann man auch die Metrik einer gekrümmten Raumzeit nutzen,
um ein Wegelement in diesem gekrümmten Raum zu berechnen:

Wegelement in gekrümmter Raumzeit

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 (4.3)

Diese Metrik 𝑔𝜇𝜈 definiert also, wie genau dieser gekrümmte Raum aussieht. Die eigent-
liche materiefreie Feldgleichung 4.2 hängt über die Christoffelsymbole ja auch eigentlich nur
von 𝑔𝜇𝜈 und dessen Ableitungen ab. Die Ableitung einer Lösung der komplizierten Differen-
tialgleichungen, die in Gleichung 4.2 impliziert sind, ist recht umständlich. Wir gehen hier
darum einen anderen Weg und nehmen eine bereits gefundene Lösung als gegeben an. Dass
diese Lösung tatsächlich die materiefreien Feldgleichungen erfüllt, bleibt der Übungsveran-
staltung überlassen. Eine Metrik, die die materiefreie Feldgleichung erfüllt, hat die Form

Schwarzschild Metrik

𝑔𝜇𝜈 =

©­­­­«
(
1− 𝑟𝑆

𝑟

)
0 0 0

0 − 1
(1− 𝑟𝑆

𝑟 )
0 0

0 0 −𝑟2 0
0 0 0 −𝑟2 sin2 𝜃

ª®®®®¬
(4.4)

und wurde 1915 von Karl Schwarzschild als erste exakte Lösung der Einstein’schen
Feldgleichungen gefunden [15]. Wegen der Kugelsymmetrie der Masseverteilung werden hier
Kugelkoordinaten 𝑥𝜇 = (𝑐𝑡, 𝑟, 𝜃, 𝜑) verwendet. Wir können uns jetzt leicht das Wegelement
dieser Schwarzschildmetrik berechnen:

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 =
(
1− 𝑟𝑆

𝑟

)
𝑐2d𝑡2 − d𝑟2(

1− 𝑟𝑆
𝑟

) − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃𝑑𝜑2

Dieses Wegelement ist im Vergleich zur Minkowski-Metrik deutlich facettenreicher. Wir
erkennen zunächst ein Problem, dass allerdings aus der Wahl der Koordinaten folgt. Das We-
gelement wird singulär, wenn 𝑟 → 0 strebt. Außerdem sehen wir an der zweiten Koordinate
das gleiche singuläre Verhalten für 𝑟 = 𝑟𝑆 . Hinweis: Diese Singularität ist durch Wahl einer
anderen Metrik zu vermeiden, es ist also eher ein Artefakt ohne strenge physikalische Not-
wendigkeit. Wichtiger ist aber noch folgender Effekt: Wenn die Radialkoordinate 𝑟 den Wert
𝑟𝑆 unterschreitet, ändern sich die Vorzeichen im Wegelement der ersten beiden Koordinaten.
Diese Situation kann man (sehr mit Vorsicht zu behandeln!) notdürftig interpretieren als: Zeit
und Raum tauschen die Rollen. Man nennt die Größe 𝑟𝑆 auch Ereignishorizont oder Schwarz-
schildradius. Wo genau liegt dieser Ereignishorizont für eine gegebene Masse? Man kann
dafür einen Vergleich der Newton-Gravitation und der relativistischen Gravitation anstellen.
Dafür muss man zunächst die Bewegungsgleichung der ART (siehe 4.1) für schwache Felder
nähern. Aus diesen Näherungen bekommt man eine Bedingung, die gelten muss, wenn in
schwachen Gravitationsfeldern die Netwon’sche Mechanik gültig sein soll. Damit das der Fall
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Gravitations-

Zentrum
A B

Abbildung 16. Die Veränderung der Eigenzeit in der Nähe eines Gravitationsfeldes beeinflusst auch die
Wellenlänge von Licht. Hat das Licht das Gravitationspotential verlassen, scheint das Licht eine größere
Wellenlänge zu haben.

ist, muss

𝑔00 =

(
1− 2𝐺𝑀

𝑟𝑐2

)
sein. In diesen Ausdruck ist das Newtonsche Gravitationspotential mit der Gravitationskon-
stanten 𝐺 einer Masse 𝑀 eingegangen. Durch Vergleich mit dem 𝑔𝜇𝜈-Element der Schwarz-
schild Metrik kann man nun leicht einen Ausdruck für 𝑟𝑆 erkennen:

𝑔00 =

(
1− 2𝐺𝑀

𝑟𝑐2

)
=

(
1− 𝑟𝑆

𝑟

)
→ 𝑟𝑆 =

2𝐺𝑀
𝑐2

Man nennt diese so gefundene Konstante 𝑟𝑆 auch Schwarzschildradius. Für die Sonne beträgt
der Schwarzschildradius demnach

𝑟𝑆,𝑆𝑜𝑛𝑛𝑒 =
2𝐺𝑀Sonne

𝑐2 ≈ 3km

wobei der tatsächliche Radius der Sonne 𝑟Sonne = 7 · 105 km beträgt. Die Abweichung des
Sonnenradius vom Schwarzschildradius um 6 Größenordnungen zeigt also, dass die Abwei-
chungen von der Minkowski-Metrik in unserem Sonnensystem sehr klein sind. Trotzdem sind
die Effekte teilweise wichtig. Die Periheldrehung des Merkur etwa kann nur mit einer Raum-
krümmung erklärt werden. Wenn ein Stern eine solche Dichte aufweist, dass seine Ausmaße
den Radius 𝑟𝑆 unterschreitet, nennt man ihn ein Schwarzes Loch. Wie kann man sich so ein
schwarzes Loch vorstellen? Wir unterteilen es hierfür wie in Abb. 15 in drei Bereiche: Im

r
b

r
S

I

II

III

Abbildung 15. Dieses schwarze Loch
besitzt eine Masseverteilung bis 𝑟𝑏 . Der
Ereignishorizont liege bei 𝑟𝑆 .

ersten Bereich I ist die Masse des Sterns kugelsymmetrisch in einem Gebiet mit Radius 𝑟𝑏 ver-
teilt. Innerhalb dieses Gebietes kann man mit der Schwarzschildmetrik keine Aussagen treffen,
da hier die materiefreien Feldgleichungen nicht gelten. Im folgenden Bereich II zwischen der
Massenansammlung und dem Ereignishorizont beobachten wir den bereits angesprochenen
Vorzeichenwechsel im Wegelement d𝑠. Was beim Eintritt in den Ereignishorizont passiert
wird später noch genauer untersucht. Außerdem ist wohl bekannt, dass kein Licht und damit
auch keine Information den Ereignishorizont wegen der starken Gravitation wieder verlassen
kann – deswegen spricht man auch von einem “schwarzen Loch”, obwohl es eigentlich eine
extrem dichte Massenansammlung ist. Warum das der Fall ist, hängt mit der sogenannten
gravitativen Rotverschiebung zusammen.

Abschnitt 4.5

Gravitative Rotverschiebung

Um den Effekt der gravitativen Rotverschiebung zu untersuchen, machen wir uns zunächst
das Problem bewusst. Wir wollen wissen, welchen Einfluss ein Photon durch die Anwesenheit
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eines Gravitationsfeldes spürt. Das Photon besitzt als grundlegende Eigenschaft eine Verknüp-
fung mit der Zeit – in Form einer Frequenz bzw. Wellenlänge. Wir wollen also zunächst unter-
suchen, was mit einer Uhr in Anwesenheit eines Gravitationspotentials geschieht. Wir nehmen
an, unsere Uhr befinde sich im Koordinatenursprung (𝑥1 = 𝑥2 = 𝑥3 = d𝑥1 = d𝑥2 = d𝑥3 = 0).
Dann ist das Wegelement d𝑠 = 𝑐d𝜏 und die “gravitative Zeitdilatation” beträgt

d𝜏 =
d𝑠Uhr
𝑐

=
1
𝑐

√
𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 =

√
𝑔00d𝑡 (4.5)

Wir untersuchen jetzt folgenden Sachverhalt: Es werden zwei Photonen vom Ort A in Richtung
Ort B gesendet (siehe Abb. 16). Die Zeit im System des Photons sei 𝜏, die Zeit im System des
Beobachters sei 𝑡. Direkt angewendet ergibt sich für die differentiellen Zeitintervalle am Ort
A bzw. Ort B nun nach Gl. 4.5

d𝜏𝐴 =
√︁
𝑔00 (𝑟𝐴)d𝑡𝐴 d𝜏𝐵 =

√︁
𝑔00 (𝑟𝐵)d𝑡𝐵 (4.6)

Die sehr kurzen Zeitintervalle d𝜏 können wir z.B. als eine Schwingungsperiode der Lichtwelle
annehmen. Damit können wir die Frequenzen 𝜈𝐴 und 𝜈𝐵 gemäß 𝜈 = 1/𝑡 ausdrücken als
d𝜏𝐴 = 1

𝜈𝐴
bzw. d𝜏𝐵 = 1

𝜈𝐵
. Das Gravitationsfeld soll sich zeitlich nicht ändern. Dass heißt, dass

die Reisezeiten für das erste Signal und für das zweite Signal für den Beobachter gleich lang
sein müssen. Daraus folgt d𝑡𝐴 = d𝑡𝐵. Wir können nun durch Division die Gleichungen 4.6
verbinden:

𝜈𝐴

𝜈𝐵
=

√︄
𝑔00 (𝑟𝐵)
𝑔00 (𝑟𝐴)

Damit haben wir einen Ausdruck erhalten, mit dem man die Änderung der Frequenz einer
Lichtwelle bestimmen kann, wenn Sie Gravitationspotentiale durchläuft. In der Praxis wird
auch oft der Rotverschiebungsparameter 𝑧 = 𝜈𝐴

𝜈𝐵
− 1 =

√︃
𝑔00 (𝑟𝐵 )
𝑔00 (𝑟𝐴) − 1 bzw. die relative Rotver-

schiebung Δ𝜈
𝜈
=

𝜈𝐵−𝜈𝐴
𝜈𝐵

verwendet. Man kann also bei bekannten Prozessen (Lichterzeugung in
Sternen) ausgesendete Spektren untersuchen und bei einer entsprechenden Rotverschiebung
auf die Gravitationsfeldstärke am Entstehungsort schließen.

Wir wollen nun noch zwei Grenzfälle untersuchen: Ein sehr kleines und ein sehr starkes
Gravitationspotential. Im Fall der Erdanziehung können wir im Rahmen der ART von einem
sehr schwachen Gravitationspotential sprechen. Wie schon gezeigt, kann man für diesen Fall
den entsprechenden Eintrag des metrischen Tensors durch die Newton-Gravitation annähern.
Dann wird 𝑔00 (𝑟) ≈

(
1− 2𝐺𝑀

𝑟𝑐2

)
. Für die Umgebung um die Erdoberfläche ergibt sich mit

dieser Näherung

𝑧 =
𝜈𝐴

𝜈𝐵
−1 =

√√√1− 2𝐺𝑀

ℎ𝐵𝑐
2

1− 2𝐺𝑀

ℎ𝐴𝑐
2

−1 ≈ 𝑔(ℎ𝐵 − ℎ𝐴)
𝑐2 =

𝑔ℎ

𝑐2

Die Potentialdifferenz der Newtongravitation wurde linearisiert24 und beträgt dannΦ𝐵−Φ𝐴 =
24 Wie üblich durch Entwicklung in
eine Taylor-Reihe.𝑔(ℎ𝐵 − ℎ𝐴). Die relative Rotverschiebung beträgt dann

Δ𝜈

𝜈
= −𝑔ℎ

𝑐2

Etwas besser für die Anwendung in der Schule geeignet ist vielleicht die Herleitung
durch Nutzung des Energie-Impuls-Satzes. Hierfür betrachtet man die Energiebilanz der
beiden Photonen mit Gesamtenergie 𝐸𝐴 = 2𝜋ℏ𝜈𝐴 und 𝐸𝐵 = 2𝜋ℏ𝜈𝐵. Das Photon A befinde
sich nun noch zusätzlich im Gravitationspotential. Im schwachen Erdgravitationsfeld wird das
Potential linearisiert. Es ergibt sich also

2𝜋ℏ𝜈𝐴 = 𝑚𝑐2 +𝑚𝑔ℎ 2𝜋ℏ𝜈𝐵 = 𝑚𝑐2
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Die relative Rotverschiebung beträgt demnach

𝜈𝐵 − 𝜈𝐴
𝜈𝐵

=
2𝜋ℏ
2𝜋ℏ

· 𝑚𝑐
2 − (𝑚𝑐2 +𝑚𝑔ℎ)

𝑚𝑐2

= −𝑔ℎ
𝑐2

Man kann diesen Effekt der gravitativen Rotverschiebung im Erdfeld sogar messen[16]. Beim
Mößbauereffekt gibt es eine sehr scharfe Linienemission von Photonen. Wenn Quelle und
Empfänger durch einen Höhenunterschied von ℎ = 22m getrennt sind, ändert sich die Frequenz
der emittierten Photonen um das Verhältnis

Δ𝜈

𝜈
= −𝑔ℎ

𝑐2 = −2.46 ·10−15 .

Diese Frequenzverschiebung kann man entsprechend den Berechnungen durch Messungen
tatsächlich nachweisen.

Was passiert nun aber bei einem sehr starken Gravitationsfeld? Speziell wollen wir hier
den Ereignishorizont eines schwarzen Loches als Ausgangsort für eine Photonen-Emission
untersuchen. Dann wird die Rotverschiebung durch

𝜈𝐴

𝜈𝐵
=

√︄
𝑔00 (𝑟𝐵)
𝑔00 (𝑟𝐴)

=

√︄
1− 𝑟𝑆

𝑟0

1− 𝑟𝑆
𝑟

beschrieben. Wenn nun der Ausgangsort der Photonenemission immer näher an den Ereig-
nishorizont rückt, wird die Rotverschiebung

𝜈𝐴

𝜈𝐵
=

√︂
1− 𝑟𝑆

𝑟0
· lim
𝑟→𝑟𝑆

1√︃
1− 𝑟𝑆

𝑟

=∞

unendlich stark. Die Verschiebung der Wellenlänge ins Unendliche ist gleichbedeutend mit un-
endlich geringer Frequenz/Energie und damit also Nichtexistenz. Man kann also kein Photon
außerhalb des schwarzen Loches Beobachten, dass am Ereignishorizont seinen Ausgangs-
punkt nahm. Es ist also nicht möglich, dass ein Photon oder irgendein anderes Teilchen25 den25 Gemäß der Quantentheorie sind

alle Teilchen auch Wellen mit be-
stimmten Wellenlängen.

Ereignishorizont eines schwarzen Loches verlässt.

Abschnitt 4.6

Fall in ein schwarzes Lochr
S

r = R

r

r = r‘

Abbildung 17. Fall eines Astronauten
in ein schwarzes Loch.

Wir wollen nun an einem Beispiel die relativistische Bewegungsgleichung benutzen. Was liegt
näher, als zu untersuchen wie ein Astronaut in ein schwarzes Loch fällt [2]. Der Sachverhalt ist
in Abb. 17 dargestellt. Die Reise des Astronauten beginnt bei 𝑟 = 𝑅 ohne Anfangsgeschwin-
digkeit ( d𝑟

d𝑡 =
d𝑟
d𝜏 = 0). Die Masse des schwarzen Loches ist auf einem Punkt konzentriert, also

ist hier 𝑟𝑏 = 0. Die Bewegungsgleichung lautete

𝑑2𝑥𝛼

𝑑𝜏2 = Γ𝛼
𝜇𝜈

d𝑥𝜇

𝑑𝜏

d𝑥𝜈

𝑑𝜏
(4.7)

mit den Christoffelsymbolen

Γ
𝛽
𝜇𝜈 =

𝑔𝛽𝛼

2

(
𝜕𝑔𝛼𝜇

𝜕𝑥𝜈
+ 𝜕𝑔𝛼𝜈
𝜕𝑥𝜇

−
𝜕𝑔𝜇𝜈

𝜕𝑥𝛼

)
(4.8)
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. Da wir nun die Schwarzschildmetrik nutzen, kann 𝑔𝜇𝜈 eingesetzt werden und alle Ablei-
tungen können ausgeführt werden. An diesem Beispiel sollen nun auch die entsprechenden
Christoffelsymbole für die Bewegungsgleichung berechnet werden. Wir ignorieren die Koor-
dinaten 𝜗 und 𝜑 und arbeiten lediglich mit 𝑥0 = 𝑐 · 𝑡 und 𝑥1 = 𝑟. Die Bewegungsgleichung für
die 𝑥0-Komponente, also 𝛼 = 0 in Gl. 4.7, lautet nun:

𝑐2d𝑡2

d𝜏2 = Γ0
𝜇𝜈

d𝑥𝜇

𝑑𝜏

d𝑥𝜈

𝑑𝜏

= Γ0
𝜇0

d𝑥𝜇

𝑑𝜏

d𝑥0

𝑑𝜏
+Γ0

𝜇1
d𝑥𝜇

𝑑𝜏

d𝑥1

𝑑𝜏

= Γ0
00

d𝑥0

𝑑𝜏

d𝑥0

𝑑𝜏
+Γ0

01
d𝑥0

𝑑𝜏

d𝑥1

𝑑𝜏
+Γ0

10
d𝑥1

𝑑𝜏

d𝑥0

𝑑𝜏
+Γ0

11
d𝑥1

𝑑𝜏

d𝑥1

𝑑𝜏
.

Nun benötigen wir noch die Christoffelsymbole Γ0
00,Γ

0
01,Γ

0
10 und Γ0

11. Für nur zwei Koordi-
naten 𝑥0 und 𝑥1 wird Gl. 4.8 zu

Γ0
𝜇𝜈 =

𝑔0𝛼

2

(
𝜕𝑔𝛼𝜇

𝜕𝑥𝜈
+ 𝜕𝑔𝛼𝜈
𝜕𝑥𝜇

−
𝜕𝑔𝜇𝜈

𝜕𝑥𝛼

)
=
𝑔00

2

(
𝜕𝑔0𝜇

𝜕𝑥𝜈
+ 𝜕𝑔0𝜈
𝜕𝑥𝜇

−
𝜕𝑔𝜇𝜈

𝜕𝑥0

)
+0 ,

weil 𝑔01 = 0 ist. Die Einträge für 𝑔𝜇𝜈 sind nur ungleich 0 für die Fälle 𝑔00 und 𝑔11. Die
Christoffelsymbole werden nun berechnet durch:

Γ0
00 =

𝑔00

2

(
𝜕𝑔00

𝜕𝑥0 + 𝜕𝑔00

𝜕𝑥0 − 𝜕𝑔00

𝜕𝑥0

)
=
𝑔00

2
· 𝜕𝑔00

𝜕𝑥0 = (. . . ) · 𝜕𝑟
𝜕𝑡

= 0

Γ0
10 =

𝑔00

2

(
�
��

𝜕𝑔01

𝜕𝑥0 + 𝜕𝑔00

𝜕𝑥1 −
�
��

𝜕𝑔10

𝜕𝑥0

)
=
𝑔00

2
· 𝜕𝑔00

𝜕𝑥1

Γ0
01 =

𝑔00

2

(
𝜕𝑔00

𝜕𝑥1 +
�
��

𝜕𝑔01

𝜕𝑥0 −
�
��

𝜕𝑔01

𝜕𝑥0

)
=
𝑔00

2
· 𝜕𝑔00

𝜕𝑥1

Γ0
11 =

𝑔11

2

(
�
��

𝜕𝑔01

𝜕𝑥1 +
�
��

𝜕𝑔01

𝜕𝑥1 − 𝜕𝑔11

𝜕𝑥0

)
= −𝑔

11

2
· 𝜕𝑔11

𝜕𝑥0 = (. . . ) · 𝜕𝑟
𝜕𝑡

= 0

Da 𝑔𝜇𝜈 nur von 𝑟 abhängt, werden für Γ0
00 und Γ0

11 die letzten Terme zu partiellen Ableitungen
der Form 𝜕𝑟/𝜕𝑡 = 0 führen. Aus der Schwarzschildmetrik 𝑔𝜇𝜈 aus Gl. 4.4 ergibt sich 𝑔00 =
(1− 𝑟𝑆/𝑟). Ohne Beweis26 ist außerdem 𝑔00 = 1/𝑔00. Damit lassen sich die verbleibenden 26 Das würde weitere Erläuterungen

zu ko- und kontravarianten Tenso-
ren auf den Plan rufen. Dies möch-
te ich in diesem Lehrbuch gern ver-
meiden. . .

beiden Christoffelsymbole bestimmen:

Γ0
01 = Γ0

10 =
1

2
(
1− 𝑟𝑆

𝑟

) · 𝜕 (
1− 𝑟𝑆

𝑟

)
𝜕𝑟

=
1

2
(
1− 𝑟𝑆

𝑟

) · 𝑟𝑆
𝑟2 =

𝑟𝑆

2𝑟 (𝑟 − 𝑟𝑆)

Nun können wir diese in die Bewegungsgleichung der Zeit-Komponente 𝑥0 einsetzen und
erhalten

𝑐2d𝑡2

d𝜏2 = − 2𝑟𝑆
2𝑟 (𝑟 − 𝑟𝑆)

d𝑥0

d𝜏
d𝑥1

d𝜏
= − 𝑟𝑆

𝑟 (𝑟 − 𝑟𝑆)
𝑐d𝑡
d𝜏

d𝑟
d𝜏

Zusammen mit dem Wegelement für den Pfad des Astronauten auf geradem Weg (𝜗 und 𝜑
werden also weggelassen)

𝑐2d𝜏2 = d𝑠2 =
(
1− 𝑟𝑆

𝑟

)
𝑐2d𝑡2 − d𝑟2(

1− 𝑟𝑆
𝑟

)
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Exotisches zur Relativität

weißes Loch

schwarzes Loch

Abbildung 18. Einstein-Rosen-Brücke als Verbindung eines schwarzen und weißen Loches. In kurzer
Zeit könnten große Distanzen zurückgelegt werden.

haben wir einen Satz aus zwei Differentialgleichungen. Diese beiden Gleichungen lassen sich
analytisch lösen. Die Lösung wird hier ohne Rechnung angegeben und lautet

e−
𝑐·Δ𝑡
𝑟𝑆 =

𝑟 ′ − 𝑟𝑆
𝑟 − 𝑟𝑆

Wenn sich der Astronaut dem Ereignishorizont nähert, wird der Ausdruck auf der rechten
Seite gegen 0 gehen. Daher muss auch die linke Seite der Gleichung gegen 0 gehen, was
für Δ𝑡 →∞ erfüllt ist. Für den ruhenden Beobachter dauert es also unendlich lange, bis der
Astronaut den Ereignishorizont erreicht.

Wie läuft das ganze aber für den Astronauten ab? Dafür muss man nun die Rechnung mit
der Eigenzeit d𝜏 des Astronauten durchführen. Es ergibt sich, dass die Zeit für den Fall ins
schwarze Loch in diesen Eigenzeitkoordinaten endlich ist! Die gesamte Fallzeit von 𝑟 = 𝑅 bis
zur Singularität (𝑟 = 0) beträgt

Δ𝜏 =
𝜋

2𝑐

(
𝑅3

𝑟𝑆

) 1
2

Der Astronaut nimmt den Moment nicht wahr, an dem er den Ereignishorizont passiert. Es ist
also theoretisch möglich, den Ereignishorizont eines schwarzen Loches zu passieren.

Abschnitt 5

Exotisches zur Relativität

In diesem Kapitel stelle ich kurz und ohne fachliche Tiefe Themen vor, die aus Wünschen von
Studierenden ausgewählt wurden. Es sind hauptsächlich Effekte oder Vorstellungen, wie Sie
in Medien oder aus Science-Fiction Filmen bekannt sind. Gerade wegen dieser Bekanntheit
sind es aber auch gute Anknüpfungspunkte zwischen SchülerInnen und LehrerInnen, um
interessante Gespräche über Physik zu führen.

Abschnitt 5.1

Einstein-Rosen-Brücke

Eine spannende Vorhersage der ART ist die Möglichkeit der Existenz von Wurmlöchern. In
der Literatur oder in Filmen wird darauf häufig eingegangen. Was aber hat es damit auf sich?
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Grundlegend beruhen Wurmlöcher auf der Existenz eines sogenannten “weißen Loches”. Die
Feldgleichungen erlauben prinzipiell Zeitumkehr – damit wäre ein solches weißes Loch das
zeitumgekehrte Pendant zum schwarzen Loch. Es würde pausenlos Energie und Materie ab-
strahlen, und das in extremen Mengen. Ein solches Objekt wäre extrem hell und würde am
Nachthimmel alle anderen Galaxien deutlich überstrahlen. Die Existenz eines weißen Loches
ist also physikalisch höchst unplausibel, da man es schon längst hätte beobachten müssen.
Ignorieren wir diese Tatsache, kommt hinzu dass ein solches weißes Loch aus Gründen der
Energieerhaltung nicht isoliert existieren kann. Aber: Es ist im Rahmen der ART möglich
ein Objekt zu modellieren, dass eine Verbindung aus schwarzem Loch und weißem Loch
darstellt wie in Abb. 18 gezeigt. Die Energieerhaltung wäre erfüllt und es wäre wie in der
Science-Fiction möglich damit verschiedene Raumpunkte großer Entfernung miteinander zu
verbinden. Diese Lösung der Feldgleichungen wurde 1935 von Einstein und Nathan Ro-
sen vorgestellt, weswegen auch üblicherweise von einer Einstein-Rosen-Brücke gesprochen
wird [17]. Neben dem bereits angesprochenen Problem mit den nicht beobachteten weißen Lö-
chern, gibt es aber noch weitere Stolpersteine beim Benutzen des Wurmloches: Diese Lösung
der Feldgleichungen ist selbst bei kleinsten Störungen instabil. Selbst der Eintritt eines Raum-
schiffes in das schwarze Loch würde die Verbindung destabilisieren und schließlich trennen.
Dann würde man sich wiederfinden mit der Singularität hinter sich und dem Ereignishorizont
vor sich – keine guten Raumfahrtbedingungen.

Als abschließende Bemerkung dazu aber noch gute Neuigkeiten: Es gibt auch neue
theoretische Modelle von Wurmlöchern, die eine Passage ermöglichen könnten [18, 19].

Abschnitt 5.2

Warp-Antrieb

Einstein-Rosen-Brücken sind also wahrscheinlich nicht geeignet, um interstellare Raumfahrt
zu realisieren. Dann bleibt als nächste Option der sogenannte Warp-Antrieb aus dem Star-Trek
Franchise. Und entgegen den üblichen Einschätzungen werden wir sehen, dass wir uns hier
schon eher mit einer “umsetzbaren” Idee beschäftigen.

Abbildung 19. Alcubierre-Drive: Der
Raum vor dem Raumschiff wird kontra-
hiert, hinter dem Raumschiff expandiert
– hier durch die Höhenlagen der darge-
stellen Funktion illustriert. [20].

Das Ziel eines Warp-Antriebes ist kein geringeres, als die Fortbewegung mit Überlicht-
geschwindigkeit. In Anlehnung an die Ideen von Star Trek gibt es echte Entwürfe, wie man
solche Antriebe zumindest theoretisch realisieren kann. Realisieren heißt hier, man gibt eine
gewisse Metrik vor, die die gewünschten Eigenschaften beinhalten würde. Wie man solch
eine Raumkrümmung dann erzeugt kann natürlich noch nicht betrachtet werden. Einer der
Umsetzungen eines Warp-Antriebes ist das Modell des “Alcubierre-drive” [21]. Nötig ist es
bei diesem Ansatz, ein Feld negativer Energie zu erzeugen. Spekulationen zufolge könnte ja
vielleicht die dunkle Materie hierzu einen Beitrag leisten. Dann könnte man den Raum vor
dem Raumschiff zusammenziehen und hinter dem Schiff wieder ausdehnen. Insgesamt wäre
die Raumkrümmung in einiger Entfernung also wieder ausgeglichen und es gibt nur einen
lokalen Einfluss in der Umgebung des Raumschiffes wie man in Abbildung 19 erkennt. Die
Folge einer solchen vom Raumschiff erzeugten Raumkrümmung wäre, dass das Schiff sich mit
𝑣 < 𝑐 bzw. gar nicht fortbewegt, sich das Ziel aber trotzdem relativ mit 𝑣 > 𝑐 nähert. Außerdem
wäre ein immens wichtiger Aspekt, dass durch die langsame Geschwindigkeit innerhalb der
verformten Raumzeit keine Zeitdilatation berücksichtigt werden muss. Es ist also möglich
ein entferntes Ziel in kurzer Zeit zu erreichen, ohne dass in der Heimat Millionen von Jahren
vergangen sind. Die Metrik des Alcubierre-Drives soll diese Form annehmen:

d𝑠2 =
(
𝑣𝑠 (𝑡)2 𝑓 (𝑟𝑠 (𝑡))2 −1

)
d𝑡2 −2𝑣𝑠 (𝑡)𝑟𝑠 (𝑡)d𝑥d𝑡 +d𝑥2 +d𝑦2 +d𝑧2

mit 𝑟𝑠 , 𝑓 und 𝑣𝑠 als komplizierte Funktionen der Koordinaten. Die Notwendigkeit von exoti-
scher Materie/Energie würde einem Energiebedarf in Größenordnungen von Planeten, Sternen
oder gar Galaxien entsprechen. Das macht diesen Entwurf zunächst, vorsichtig gesagt, un-
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praktisch.
Zum Glück gibt es aktuelle Veröffentlichungen die belegen, dass man auch mit positiver

Energie ein solches Warp-Feld erzeugen kann [22]. Der Energiebedarf ist aber leider auch
hier unvorstellbar hoch.

Abschnitt 5.3

Zeitreisen

Zeitreisen sind ein weiteres populäres Element, das eng mit der Relativitätstheorie verknüpft
ist. Weil auch dieses Thema in den Medien sehr präsent ist, soll hier ein grober Überblick
über gängige (wissenschaftlich fundierte) Theorien zu Zeitreisen gegeben werden.

5.3.1 Zeitreisen in die Vergangenheit

Zeitreisen in die Vergangenheit sind (leider) physikalisch äußerst unplausibel. Man denke nur
an das Großvaterparadoxon: Man würde in die eigene Vergangenheit reisen und könnte dort
seinen Großvater töten. Das würde aber die eigene Existenz verhindern und damit zu einem
Paradoxon führen. In der ART wurden Zeitreisen aber natürlich auf ihre Machbarkeit hin
untersucht. So fand Kurt Gödel 1949 eine entsprechende Möglichkeit [23]. Als Lösung für die
Feldgleichungen beschrieb er sogenannte closed timelike curves (CTC). Diese Pfade durch
die Raumzeit ermöglichen es, wieder zur eigenen Vergangenheit zu reisen. Das praktische
Problem an diesen Lösungen ist aber eben, dass sie geschlossen sind. Wenn jemand in die
Vergangenheit reist und dort etwas tut, so hat er es “immer schon getan”. Man kann also die
Zukunft mit der Reise in die Vergangenheit nicht beeinflussen sondern bedingt die bereits
feststehende Zukunft damit. Auf philosophischer Ebene wird in diesem Zusammenhang auch
oft vom problematischen freien Willen gesprochen.

Wenn man ohne die ART arbeitet und sich ausschließlich in einer quantenphysikalischen
Welt befände, wären allerdings Reisen in die Vergangenheit ohne Paradoxa möglich. Möglich
machen dies dann die Wahrscheinlichkeitsinterpretation oder die Many-World-Interpretation.

Die gute Nachricht für angehende Zeitreisende ist aber, dass nur die Einflussnahme auf
die Vergangenheit das Problem darstellt. Könnte man in die Vergangenheit reisen ohne jede
Einflussnahme (z.B. nur eine Bildübertragung aus der Vergangenheit), so wäre dies mit der
Theorie vereinbar.

Eine weitere hypothetische Möglichkeit, in die Vergangenheit zu reisen wäre unser bereits
bekannter Warp-Antrieb als Möglichkeit einer Fortbewegung mit 𝑣 > 𝑐. Durch die Zeitdilata-
tion mit 𝑣 > 𝑐 wird die Eigenzeit dann negativ ablaufen.

5.3.2 Zeitreisen in die Zukunft

Zeitreisen in die Zukunft sind dagegen allgegenwärtig. Wir alle reisen pausenlos in die Zu-
kunft. Jedoch mit einer uns vorgegebenen Gechwindigkeit die wir nicht beeinflussen können.
Es stellt sich also eher die Frage, wie wir schneller als üblich in die Zukunft reisen können.
Dies kann man direkt durch Anwendung der Gesetze aus der SRT und ART tun. Man strafft
den Zeitablauf (verkürzt also die Eigenzeit) durch

• hohe Geschwindigkeiten: Wenn man sich mit einer relativistischen Geschwindigkeit
bewegt, wird die Eigenzeit entsprechend der Zeitdilatation verkürzt. Wenn man eine
Rundreise mit großer Geschwindigkeit unternimmt, kommt man deutlich später wieder
auf die Erde als dies dem eigenen Zeitrahmen entspricht.

• große Gravitationspotentiale: In Anwesenheit großer Massen verkürzt sich ebenfalls
die Eigenzeit. Wenn man also für einige Zeit 𝑡 ein schwarzes Loch umkreist und dann
zurückkehrt, ist für den Beobachter die Zeit 𝑡2 > 𝑡 vergangen.
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Dunkle Materie und dunkle Energie

quadratisches Abstandsgesetz
modifiziertes Abstandsgesetz

Abbildung 21. Mögliche Szenarien: (links) Ein Halo aus dunkler Materie umgibt jede Galaxie und
bewirkt so besonders in den äußeren Bereichen eine veränderte Rotationsgeschwindigkeit. (rechts)
Gemäß der MOND-Theorie wirkt die Gravitation im Inneren von Galaxien (blau) proportional zu 1

𝑟2 ,
in den äußeren Gebieten (rot) dagegen eher linear.

Abschnitt 5.4

Dunkle Materie und dunkle Energie

5.4.1 Dunkle Materie
Am Anfang der 1970er Jahre wurde von Vera Rubin die Rotationsgeschwindigkeit von Sternen
in entfernten Galaxien untersucht [24]. Dazu verwendete man die relativistische Rotverschie-
bung als Maß für die Geschwindigkeit in verschiedenen Bereichen der betreffenden Galaxie.
Durch Rechnungen kann man durch die vorhandene sichtbare Materieverteilung (im Wesent-
lichen Sterne, die Licht/Strahlung emittieren) diese Rotationsgeschwindigkeit durch die ART
sehr gut rekonstruieren. Eventuell vorhandene Planeten spielen bei der Masse keine Rolle,
denn die Masse eines Sternensystems ist etwa gleich der Masse des zentralen Sterns27. Die Ro- 27 Unsere Sonne besitzt etwa 99.8%

der Masse unseres Sonnensystems.tation müsste nach der Masseverteilung in der ART der blauen Linie in Abb. 20 entsprechen.
Die tatsächlichen Messungen durch die Rotverschiebung zeigten aber dagegen bei großen
Abständen vom Zentrum eine eher konstante Rotationsgeschwindigkeit. Die einzig mögliche
Erklärung dafür ist, dass die angenommene Masse und Massenverteilung falsch war. Wenn
man in den Rechnungen eine fiktive Masseverteilung hinzufügt (Abb. 21links) lässt sich das
Messergebnis in Übereinstimmung mit der Theorie bringen. Der Haken an der Sache ist,
dass diese hinzugefügte Masse (dunkle Materie) dann etwa einen Großteil der Gesamtmasse
ausmachen müsste. Das heißt, nur etwa 5-10% der Materie einer Galaxie sind sichtbar und
bestehen aus uns bekannter Materie.

Abstand vom Zentrum

v
rot

Theorie

Experiment

Abbildung 20. Rotationsgeschwindig-
keiten entferneter Galaxien.

Was soll nun aber diese dunkle Materie sein? Zunächst einmal wird unter diesem Be-
griff alles zusammengefasst, dass nicht intensiv genug Strahlung aussendet, um von uns
wahrgenommen zu werden. Dies beinhaltet also auch ausgebrannte Sonnen oder zu schwach
leuchtendes interstellares Gas. Aber selbst optimistische Schätzungen zu diesem Beitrag er-
klären bei Weitem nicht diese große Menge an nötiger dunkler Materie. Weitere Kandidaten
für die nicht-sichtbare Masse sind Neutrinos. Diese sind zwar so gut wie masselos, dafür gibt
es Sie aber in unvorstellbar großer Zahl. Neue Messungen geben Abschätzungen für Menge
und Masse – die ebenfalls nicht als Erklärung für die dunkle Materie ausreicht.

Es muss also noch bisher unbekannte Teilchenarten geben, die vermutlich nur durch Gra-
vitation, aber nicht durch andere Kräfte wechselwirken. Das Universum besteht also demnach
zum Großteil aus Materie/Energie, die wir weder beobachten können, noch im Labor erzeugen
konnten. Es gibt theoretische Modelle, wie man Teilchen mit den geforderten Eigenschaften
beschreiben kann. Eine hypothetische Teilchenfamilie sind die sogenannten WIMPS (Weakly
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Interacting Massive Particles). Diese sehr schweren Teilchen würden nur gravitativ und über
die Kernkräfte wechselwirken, aber nicht mit Licht oder anderer elektromagnetischer Strah-
lung. So wie “Neutrinos mit dem Gewicht eines Goldatoms” könnten diese WIMPs durch
extrem seltene Reaktionen mit Atomkernen auf der Erde detektiert werden. Bisher wurde ein
solches Ereignis noch nicht bestätigt, aber die experimentellen Untersuchungen dauern an und
werden ständig verfeinert.

Ein anderer hypothetischer Kandidat ist das Axion [25]. Diese Teilchen wären – im
Gegensatz zu den WIMPS – viel leichter als Elektronen. Auch hier gilt aber, dass es bislang
keinen erfolgreichen experimentellen Hinweis gibt.

Es gäbe auch die Möglichkeit einer noch bisher unbeobachteten Neutrinoart, den soge-
nannten sterilen Neutrinos [26, 27]. Diese Neutrinos sind relativ schwer und wäre immerhin
indirekt über eine Wechselwirkung mit anderen Neutrinos nachweisbar.

Es gibt auch Forschung zu einer Möglichkeit, die Dunkle Materie als Erklärung über-
flüssig zu machen. Dafür schlägt man Änderungen an der bestehenden Gravitationstheorie
vor [28]. Demnach wäre möglich, dass die Gesetzmäßigkeiten und auch etwa die Gravita-
tionskonstante nicht überall im Universum identisch sind. Mit einer Ortsabhängigkeit des
Newton’schen Abstandsgesetzes könnte man die Beobachtungen auch ohne die Dunkle Mate-
rie erklären. Man spricht dann von der MOND-Theorie (Modifizierte Newton’sche Dynamik).
Das quadratische Abfallen der Gravitationskraft müsste dann in den äußeren Bereichen einer
Galaxy eher zu einer linearen übergehen um die beobachteten Rotationsgeschwindigkeiten zu
bestätigen (Abb. 21rechts). Allerdings gibt es bisher keine akzeptierte Begründung für eine
solche nicht-universelle Gravitationstheorie. Der Ansatz hierzu ist bereits recht alt und wurde
zwischenzeitlich bereits verworfen. Neue Messungen aber legen tatsächlich eine “Universelle
Gesetzmäßigkeit”, wie sie die MOND-Theorie liefert, nahe [29]. Ein ziemlich revolutionärer
(und umstrittener) Ansatz verknüpft Effekte der Quantenphysik mit der Relativitätstheorie
und würde damit wohl zu einer Herleitung des MOND-Ansatzes führen [30]. Demnach be-
steht das Universum aus miteinander verschränkten Qubits, deren Verschränkung durch die
Anwesenheit von Materie gestört wird. Der Drang, dieser Störung entgegenzuwirken wird
dann als Gravitation manifestiert. Die Verschränkung selbst ist ein nicht-lokaler Effekt ohne
Reichweitenbeschränkung. Da mit zunehmendem verdrängtem Volumen durch Materie in
einer Galaxie die zurückdrängende Energie stark wächst, würde sich wohl tatsächlich genau
der benötigte Effekt aus der MOND-Theorie ergeben.

Es bleibt zu sagen, dass das Forschungsfeld der Dunklen Materie noch viele interessante
Entdeckungen zu bieten hat.

5.4.2 Dunkle Energie
Die dunkle Energie wird als hypothetische Energieform herangezogen, um die beobachtete Ex-
pansion des Universums zu erklären. Die Raumsonde Wilkinson Microwave Anisotropy Probe
(WMAP) hatte durch Messungen der kosmischen Mikrowellenstrahlung die Dunkle Energie
erstmals kartografiert [31]. Die dunkle Energie müsste demnach sowohl die sichtbare als auch
die dunkle Materie vom Energiegehalt her deutlich übersteigen. Etwa 70% der Gesamtenergie
des Universums würde demnach auf diese Energieform entfallen. Die dunkle Energie müsste
homogen über das gesamte Universum verteilt sein und einen gewissen “Druck” ausüben der
dann zur Expansion führt. Wissenschaftler favorisieren momentan die Idee, dass diese Dunkle
Energie mehr oder weniger mit der Vakuumenergie der Quantenfeldtheorie identisch ist.
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TEIL

IIIDer Weg zur Quantenphysik
It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you. (Ernest Rutherford)

Wir werden nun nach der Relativitätstheorie als zweites zentrales Thema des Buches
die Quantenphysik kennenlernen. Um einen übergeordneten Blick auf die Ergebnisse und
Aussagen zu erhalten, ist es notwendig auch die historische Entwicklung der unterschiedlichen
Modelle zu kennen. Manchmal ist es etwa sehr hilfreich, wenn man zur Vermittlung der
Quantenphysik in der Schule die modernen Konzepte noch nicht betrachtet und stattdessen
mit semi-klassischen Konzepten arbeitet. So werden wir das Photon als eine Art Licht-Teilchen
kennenlernen, welches sehr hilfreich ist um viele Phänomene zu verstehen und anschauliche
Aussagen zu tätigen. In der modernen Quantenmechanik hat das Photon in dieser Form
keinen Platz mehr und wird “nur noch” im Rahmen der Quantenfeldtheorie eingeordnet.
Im Folgenden wird zunächst auf die historischen Modelle eingegangen und dann mit der
Schrödingergleichung und deren Anwendung die Grundlage für die moderne Quantenphysik
gelegt.

Abschnitt 6

Historische Atommodelle

Erste Hinweise auf Gedanken zur Atomvorstellung finden sich in Griechenland bei den Ge-
lehrten Leukipp (440 v.Chr.) und Demokrit (460-370 v.Chr.). Sie lehrten bereits, dass alle
Materie aus “unsichtbar kleinen”, raumfüllenden, unteilbaren Partikeln bestehen. Außerhalb
dieser Atome (von 𝛼𝜏o𝜇o𝜁 = unteilbar) solle nur leerer Raum existieren. Die charakteris-
tischen Eigenschaften von Materie sollen demnach durch die verschiedenen Anordnungen
gleicher oder ungleicher Atome realisiert werden. Diese Anschauung ist schon bemerkens-
wert nah an modernen Vorstellungen über den Materieaufbau. Zum ersten mal werden hier
die Eigenschaften eines makroskopischen Körpers durch die Anordnung seiner Bestandteile
bestimmt.

Platon (427-347 v.Chr.) beschreibt Atome als mathematische Raumformen wie Tetraeder,
Oktaeder, Ikosaeder oder Würfel.

Aristoteles (384-322 v.Chr.) lehnte hingegen den Atomismus ab. Die Vorstellung eines
leeren Raumes zwischen den Atomen widersprach seinem philosophisch geprägten Weltbild.

Erst bei Epikur (341-271 v.Chr.) wurde die Vorstellung Demokrits wiederbelebt. Zu-
sätzlich wurde nun den Atomen eine Masse/Schwere zugeschrieben. Während der gesell-
schaftlichen Vorherrschaft der christlichen Kirche in Europa gerieten alle diese Modelle in
Vergessenheit, da sie dem Schöpfungsgedanken widersprachen. Erst im 17. Jhd. bekamen mit
der Entwicklung der Chemie die Thesen wieder Beachtung. Erst ab dem 19. Jhd. gab es mit
der “gaskinetischen Theorie”1 von Claudius, Maxwell und Boltzmann (siehe Experimentelle
Physik 1 - Wärme) wieder substantielle Fortschritte bei der Beschreibung der elementaren
Materiebausteine.

In den folgenden Abschnitten sollen die bedeutendsten Atomvorstellungen der Moderne,
zusammen mit den wichtigsten Erkenntnissen daraus, kurz vorgestellt werden.

1Hierbei geht es etwa um die Modellvorstellung von Luft als Ansammlung eigenständiger Atome/Moleküle. Der
kinetische Temperaturbegriff wird definiert, Formulierung der Maxwell-Boltzmann-Veteilung usw.
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Abschnitt 6.1

Dalton’sches Atommodell

John Dalton (1766-1844) erkannte durch seine Experimente und Analysen, dass das Masse-
verhältnis bei Stoffverbindungen immer konstant und eindeutig ist. So bestehen zum Beispiel
100g H2O aus den Anteilen 11.1g H2 und 88.9g O2. Das Massenverhältnis beträgt also immer
1:8. Zentrale Aussage seiner Veröffentlichung dazu im Jahr 1808 lautet: Das Wesen chemi-
scher Umwandlung besteht in der Vereinigung oder Trennung von Atomen [32]. Außerdem
stellte er die folgenden Postulate auf:

Dalton’sches Atommodell
• Alle elementaren Stoffe bestehen aus kleinsten Teilchen, die man chemisch nicht

weiter zerlegen kann.

• Alle Atome desselben Elementes sind in Qualität, Größe und Masse gleich. Sie
unterscheiden sich aber in diesen Eigenschaften von den Atomen anderer Elemente.

• Wenn chemische Elemente eine Verbindung eingehen, so vereinigen sich immer Ato-
me der beteiligten Elemente, die zueinander in einem ganzzahligen Mengenverhältnis
stehen.

In dieser (veralteten) Sichtweise kann man also das Masseverhältnis von Wasser (2 H +
1 O) auch darstellen als

𝑚(2H)
𝑚(O) =

2
16︸︷︷︸

Gewichte in Einheiten von 𝑚𝐻

=
1
8
=

11.1
88.9

Zur Information: Aus heutiger Sicht würde man dieses Massenverhältnis etwas anders betrach-
ten. Die Masseneinheit ist heutzutage nicht mehr auf das Wasserstoffatom bezogen, sondern
auf das 12-C Isotop des Kohlenstoffatoms:

Atomare Masseneinheit

1AME =
1

12
𝑚

(
12C

)
= 1.6605 ·10−27 kg

Die Hintergründe hierzu werden im Rahmen der Kernphysik behandelt.

Abschnitt 6.2

Thomson’sches Atommodell
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Abbildung 22. Homogen verteilte po-
sitive Hintergrundladung und einzelne
negative Ladungen im Atom gemäß Ro-
sinenkuchenmodell.

Im Jahr 1897 führten Emil Wiechert und Joseph John Thomson unabhängig voneinander
Untersuchungen an Kathodenstrahlröhren durch. Wiechert fand heraus, dass die Kathoden-
strahlung aus negativ geladenen Teilchen besteht. Thomson bestimmte andererseits die Masse
dieser Teilchen und fand dabei heraus, dass es sich unabhängig vom Kathodenmaterial immer
um die selbe Teilchenart handelt. Thomson entickelte aus dieser Erkenntnis die Idee, dass
neutrale Atome stets aus einer ganzzahligen Menge 𝑍 Elektronen mit Ladung −𝑍 · 𝑒 und
insgesamt 𝑍 · 𝑒 positiver Ladung bestehen. Es lag nun nahe, die positive Ladung gleichmäßig
über das Atomvolumen zu verteilen wie es in Abb. 22 skizziert ist. Wegen dieser homogenen
Verteilung und eingebetteten Elektronen wird das Modell auch “Rosinenkuchen” genannt 28.

28 Die positive Ladung ist also der
“Teig” im Rosinenkuchen.

Die Ladungsträgerdichte 𝜌𝑝 für die positive Hintergrundladung beträgt demnach für ein
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Abbildung 23. Die 𝛼-Teilchen durchdringen zwar die Goldfolie, ändern aber ihre Ausbreitungsrichtung.
Die Verteilung der Richtungsänderungen kann man durch den Detektorschirm untersuchen.

kugelförmiges Atomvolumen

𝜌𝑝 =
𝑍𝑒

𝑉Atom
=

𝑍𝑒

4
3𝜋𝑟

3
Atom

. (6.1)

Um ein Gefühl für die Größenordnung dieser Ladungsdichte zu bekommen, setzen wir test-
weise die Zahlenwerte für die einfachsten Atome Wasserstoff und Helium ein. Die Gleichung
6.1 liefert dann für Wasserstoff

𝜌p,H =
1𝑒

4
3𝜋(5.3 ·10−11 m)3

≈ 2 ·1011 C
m3

und für Helium
𝜌p,He =

2𝑒
4
3𝜋(14 ·10−11 m)3

≈ 1 ·1010 C
m3 .

Diese Dichten der positiven Ladungsträger (heute wissen wir, dass es sich um Protonen
handelt) erscheint zunächst riesig – Es wird sich aber in den folgenden Rutherford’schen
Streuexperimenten zeigen, dass die Dichten sogar deutlich zu klein sind um bestimmte Beob-
achtungen zu erklären.

Abschnitt 6.3

Rutherford’sches Atommodell

Ernest Rutherford experimentierte zum Ende des 19. Jahrhunderts mit 𝛼-Teilchen, die auf
eine dünne Goldfolie (Dicke ca. 10μm) treffen. Die 𝛼-Teilchen, zweifach positiv geladene
Teilchen 29, konnte man damals aus einer Probe des Elements Radon gewinnen, dass durch 29 Heute weiß man, dass es sich um

Heliumkerne handelt.atomare Zerfallsprozesse selbstständig diese Teilchen ausstößt. Durchgeführt wurden die
dazugehörigen Experimente, skizziert in Abb. 23, durch Rutherfords Mitarbeiter Geiger und
Marsden. Das berühmte Rutherford’sche Streuexperiment läuft dabei wie folgt ab: Die Radon-
Probe emittiert ständig die gewünschten 𝛼-Teilchen. Mithilfe einer Blende geht man sicher,
dass die Teilchen nur einen kleinen Bereich auf der Goldfolie treffen. Beim Durchgang der
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geladenen Teilchen durch die Folie beobachtet man nun teils sehr starke Ablenkung der 𝛼-
Teilchen - fast bis hin zur Reflexion. Falls die Ladungen in den Goldatomen gleichmäßig verteilt
wären, wie es das Rosinenkuchenmodell von Thomson suggeriert, dürften solch drastische
Ablenkungen nicht möglich sein. Über diese Ergebnisse sagte Rutherford selbst: [33]:

It was quite the most incredible event that has ever happened to me in my life.
It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you.

Interessant und lehrreich ist es nun zunächst die “falsche” Erwartung des Versuchsausgan-
ges durch Auswertung des Rosinenkuchenmodells zu beschreiben. Wir haben es hier nämlich
mit einem sehr bekannten Problem aus der Statistik zu tun – dem Random Walk. Die Goldfolie
ist zwar nur einige Mikrometer dünn, aber dennoch befinden sich hier etwa 5 ·104 Goldatome
im Weg des Alphateilchens. Es ist also nach dem Rosinenkuchenmodell zu erwarten, dass das
𝛼-Teilchen auf dem Weg durch die Goldfolie sehr viele Stöße hintereinander mit jeweils einer
kleinen zufälligen Richtungsänderung erfährt 30. Vereinfacht stellen wir uns gemäß Abb. 24a30 Es ist hierbei nur die Coulomb-

Abstoßung des𝛼-Teilchens relevant.
Die negativen Elektronen in den
Goldatomen sind zu leicht um we-
sentlich zum Stoßprozess beizutra-
gen.

vor, dass der Teilchenstrahl in 𝑥-Richtung auf die Hindernisse trifft. Die Frage ist nun, wie
groß der Versatz in 𝑦-Richtung nach einer bestimmten Anzahl an Wechselwirkungen ist. Der
Versatz soll dabei Δ𝑦 heißen. Die Mathematik liefert uns die Wahrscheinlichkeitsverteilung
für diesen abschließenden Versatz 𝑦 nach dem kompletten Durchgang durch die Goldfolie in
Form der Verteilungsfunktion

𝑃(𝑦) = 𝑐𝑜𝑛𝑠𝑡 · e−
𝑦2

𝑚·Δ𝑦2 .

Hierbei ist 𝑚 die Anzahl der Stöße. Im Experiment ist nun die beobachtete Größe der Streu-
winkel und nicht der Versatz. Unter der Annahme eines Random-Walk würde sich für die
erwarteten Streuwinkel 𝑁 (𝜗) ebenfalls eine Normalverteilung der Form

𝑁 (𝜗) = 𝑐1e−𝑐2𝜗
2

ergeben. Die Form dieser Verteilungsfunktion ist in Abb. 24b dargestellt. Für Zahlenwerte der
Konstanten 𝑐1 bzw. 𝑐2, die zum Rutherford-Versuch passen, erhält man eine Halbwertsbreite
von nur etwa 1.8◦ für die Ablenkung der Alphateilchen. Da dieser Winkel sehr klein ist 31, ist31 . . . und die Normalverteilung ex-

ponentiell zu den Seiten abfällt. . . also nach dem Rosinenkuchenmodell nahezu keine Ablenkung der Alphateilchen zu erwarten
– fast alle sollten die Goldfolie auf ziemlich gerader Linie durchdringen.

Streuwinkel θ

Goldatome

α

a)

b) Häufigkeit
( )N θ

Streuwinkel θm•Δy

1/e

Abbildung 24. (a) 𝛼-Teilchen durch-
dringen die Goldfolie in einzenlen
Schritten, analog zum Random-Walk.
(b) Verteilungsfunktion eines Random-
Walk Vorganges.

Die tatsächlich beobachtete Verteilung der Teilchen auf dem Detektorschirm ist deutlich
breiter als dass man es durch einen Random-Walk in Verbindung mit dem Rosinenkuchen-
modell erklären könnte. Daher muss nun an dieser Stelle das Modell an die Beobachtung
angepasst werden, so wie es immer in der Physik passiert wenn neue Experimente im Wider-
spruch zu den aktuellen Modellen stehen. Die Anpassungen werden nun zum Rutherforsche
Atommodell führen, dass schon sehr nah an der modernen Atomvorstellung liegt. Dieses
Modell gründet auf den folgenden Annahmen:

Rutherford’sches Atommodell

• Die positiven Ladungen des Atoms sind in einem sehr kleinen Volumen im Kern
komprimiert.

• Dieser Atomkern vereinigt nahezu die gesamte Masse des Atoms (abzüglich der
leichten Elektronen).

Wenn man die Schlussfolgerungen des Rutherford’schen Atommodells berücksichtigt,
dann muss man nun die Streuprozesse auf andere Weise berechnen. Die Elektronen spielen
durch ihre geringe Masse für die Streuung keine wesentliche Rolle. Das Problem kann also
auf einen elektrostatischen Prozess zwischen fast punktförmigem Alphateilchen (He2+) und
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fast punktförmigen positiv geladenem Atomkern reduziert werden. Auf die Herleitung der
Streuwinkel wird hier zwar verzichtet, kann aber etwa bei [34] nachvollzogen werden. Als
Ergebnis erhält man eine Abhängigkeit der Teilchenzahl 𝑁 vom Streuwinkel 𝜃 in der Form

Rutherford’sche Streuformel
𝑁 (𝜃) = 𝑐𝑜𝑛𝑠𝑡. 1

sin4 (
𝜃
2
)

Diese Streuformel deckt sich sehr gut mit den Messergebnissen, wie man in Abb. 25
erkennen kann. Auch die beobachteten großen Streuwinkel von über 120◦ sind nun erklärbar.
Diese großen Streuwinkel, die fast einer Reflexion entsprechen, kann man sich so erklären:
Das Alphateilchen trifft in einigen Fällen (fast) frontal auf einen Atomkern. Da der Atomkern
im Falle von Gold deutlich massereicher als das Alphateilchen ist, findet gemäß Impuls-
und Energieerhaltung die starke Richtungsänderung statt. Übrigens sind die abstoßenden
Coulombkräfte so groß, dass es bei der Wechselwirkung durch elektrostatische Kräfte bleibt -
es findet also keine “Berührung” von Alphateilchen und Atomkern statt, obwohl man dennoch
ganz allgemein von einem Stoßprozess spricht.
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Rutherford
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Abbildung 25. Winkelverteilung beim
Rutherford’schen Streuversuch. Die tat-
sächlichen Messwerte mit großen Ab-
lenkwinkeln passen nicht zum Rosinen-
kuchenmodell, sehr wohl aber zum Ru-
therford’schen Atommodell.

Abschnitt 7

Widersprüche der klassischen Physik

Um die Jahrhundertwende gibt es mehr und mehr experimentelle Befunde, die nicht mehr mit
den gültigen Modellen der Physik zu erklären sind. Einige dieser Effekte oder Beobachtungen
sind etwa die “Ultraviolett-Katastrophe”, der Photoelektrische Effekt, der Compton-Effekt,
das Vorhandensein stabiler Atome und der Franck-Hertz-Versuch. Diese und weitere Beob-
achtungen machen nun nach und nach grundlegende Änderungen der Physik nötig. Die Physik
etwa bis zu diesem Punkt wird auch als klassische Physik bezeichnet – als Abgrenzung zur
Quantenphysik und zur relativistischen Physik.

Abschnitt 7.1

Wellenbeschreibung des Lichtes als EM-Welle

Im Rahmen der klassischen Physik gibt es um das Jahr 1900 zwei mögliche Wege, die Licht-
ausbreitung zu beschreiben: Die Teilchen- und die Wellenhypothese. Die Teilchenhypothese
(Korpuskulartheorie) geht auf Isaac Newton im 18. Jhd. zurück. Mit ihr lassen sich die gerad-
linige Ausbreitung im Rahmen der geometrischen Optik und auch Brechungsphänomene gut
erklären.

Die Wellenhypothese setzt sich dann aber bis zum 20. Jhd. durch. Nach der Formulie-
rung von Huygens Wellentheorie gab es viele Beobachtungen, die die Wellennatur von Licht
bestätigte. Interferenz und Beugung etwa sind typische Wellenphänomene und können auch
bei Licht beobachtet werden. Nach der Vorhersage der Elektromagnetischen (EM) Wellen
durch Maxwell und deren Nachweis durch Heinrich Hertz gab es weiteren Vorschub für die
Wellentheorie. Später wurde sogar das Licht als Spezialfall der Elektromagnetischen Wellen
mit 𝜆 = 400nm bis 700nm identifiziert und das Wellenmodell wurde umfassend akzeptiert.
Wir fassen hier noch einmal zusammen, wie Licht als EM-Welle mathematisch beschrieben
werden kann. Die Welle besteht, wie der Name schon sagt, aus einem elektrischen ( ®𝐸) und
einem magnetischem ( ®𝐵) Feld. Beide Feldstärkevektoren stehen bei einer ungestörten Welle
senkrecht aufeinander und senkrecht zur Ausbreitungsrichtung. Damit ist Licht eine Trans-
versalwelle. In reeler Darstellung wird die elektrische Feldstärke sich zeitlich und räumlich
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gemäß
®𝐸 (®𝑟, 𝑡) = ®𝐴 · cos

(
𝜔𝑡 − ®𝑘®𝑟

)
ausbreiten. Die zeitliche Änderung findet mit der Kreisfrequenz 𝜔 = 2𝜋 𝑓 statt. Der Wel-
lenzahlvektor ®𝑘 beschreibt die Wellenlänge und Richtung der räumlichen Ausbreitung. Bei
elektromagnetischen Wellen sind ®𝑘 und 𝜔 über die Dispersionsrelation 𝜔(𝑘) = ®𝑐 · ®𝑘 bzw.
𝜔 = 2𝜋𝑐

𝜆
miteinander verbunden. Hier haben wir also schon 𝑐 als Ausbreitungsgeschwindig-

keit/Lichtgeschwindigkeit festgelegt.
Die Intensität einer solchen Welle ergibt sich dann zu

𝐼 = 𝑐 · 𝜖0𝐸
2 .

Die Intensität entspricht einer bestimmten Leistung pro bestrahlter Flächeneinheit. Der Ener-
gietransport durch eine Elektromagnetische Welle wird durch den Poynting-Vektor

®𝑆 = 𝑐2𝜖0

(
®𝐸 × ®𝐵

)
beschrieben. An diesem Kreuzprodukt erkennt man erneut, dass die Energie in transversaler
Richtung senkrecht zum elektrischen und magnetischen Feld transportiert wird. Die transpor-
tierte Energie hat eine Dichte von

𝜔em = 𝜖0𝐸
2 =

1
2
𝜖0

(
𝐸2 + 𝑐2𝐵2

)
.

Hinweis: Der Begriff “Dichte” wird in diesem Semester noch verschieden gebraucht werden.
Er bezieht sich manchmal auf eine Volumen (wie etwa die Massendichte 𝜌 =𝑚/𝑉), manchmal
auf eine Fläche oder auch auf Frequenzbereiche. Eine kurze Einheitenrechnung zeigt, auf
welche Größe sich der Begriff Dichte hier bezieht:

[𝜔em] =
As
Vm

· V2

m2 =
VAs
m3 =

J
m3

Es handelt sich also um eine Energie pro Raumvolumen.

Abschnitt 7.2

Hohlraumstrahlung

Wandfläche F

ΔF

Abbildung 26. Modell des Hohlraumes.
Die Strahlung tritt durch eine kleine Öff-
nung ein, und gibt durch viele Refle-
xionen/Absorbtionen die Energie nahe-
zu vollständig ab bevor die Austrittsöff-
nung erreicht wird.

Als erstes Beispiel, bei dem die Wellenbeschreibung nicht zu den durchgeführten Messungen
passt, wird hier die Beschreibung der Hohlraumstrahlung gezeigt. Das gedankliche Modell
des “Hohlraum” ist zweckmäßig um einen idealen Strahlungsabsorber zu beschreiben. Wie
in Abb. 26 gezeigt, muss die Fläche Δ𝐹 der Eintrittsöffnung sehr klein im Vergleich zur
Wandfläche 𝐹 sein, damit die einfallende Strahlung absorbiert wird. Das Modell dieses idealen
Absorbers wird gewählt, weil ein Objekt mit idealer Absorption auch ein idealer Emitter von
Strahlung ist. Nach [35] kann man zeigen, dass die Zahl 𝑛(𝜈) der in einem Volumen möglichen
Moden der Frequenz 𝜈 begrenzt ist. Sie beträgt im Frequenzbereich d𝜈 und pro 𝑚3 demnach

𝑛(𝜈)d𝜈 = 8𝜋𝜈2

𝑐3 d𝜈

Die Anzahl der Moden ist nun aber eine sehr abstrakte und schwer zu messende Größe. Es
wäre wünschenswert, stattdessen die Energiedichte bestimmen zu können. In der klassischen
Physik wählt man nun für jede dieser möglichen Moden die mittlere Energie von 𝑘B ·𝑇 .
Dabei ist 𝑇 die Temperatur des Hohlraums. Der Modenbereich d𝜈 hat dann eine räumliche
Energiedichte von
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Rayleigh-Jeans Gesetz

𝜔𝜈 (𝜈)d𝜈 = 𝑛(𝜈)𝑘B𝑇d𝜈 =
8𝜋𝜈2

𝑐3 𝑘B𝑇d𝜈. (7.1)

Man spricht hier oft auch von einer spektralen Energiedichte 32. Man erkennt leicht, dass die 32 Also die Energiedichte von Strah-
lung im Frequenzbereich von 𝜈 bis
𝜈 +d𝜈.

abgestrahlte Energie des Hohlraums also quadratisch mit der abgestrahlten Frequenz zunimmt.
Wenn man jetzt herausfinden möchte, wie viel Energie denn ein Körper insgesamt über den
gesamten Frequenzbereich abstrahlt, muss man also über 𝜈 integrieren.

𝜔𝜈 (𝜈) =
∫ ∞

0
𝜔𝜈 (𝜈)d𝜈 =

8𝜋
𝑐3 𝑘B𝑇

∫ ∞

0
𝜈2d𝜈

Das Integral über 𝜈2 nimmt aber offenbar unendlich große Werte an. Dieses Verhalten, dass
fälschlicherweise unendlich große Strahlungsenergien bei hohen Frequenzen vorhersagt, nennt
man auch Ultraviolett-Katastrophe. Eine Katastrophe bedeutet hier die Tatsache, dass bei
immer größere Frequenzen jenseits des sichtbaren Spektrums eine enorme Energie abgestrahlt
werden würde 33. Für niedrige Frequenzbereiche allerdings stimmt das Reyleigh-Jeans Gesetz 33 Bei 𝜈 =∞wird also demnach vom

Hohlraum mit Raumtemperatur un-
endlich viel Energie abgegeben. Das
ist offenbar nicht möglich.

aus Gl. 7.1 sehr gut mit den Messungen überein. Das Rätsel um die Ultraviolett-Katastrophe
wurde erst durch die Quantenhypothese von Max Planck aufgelöst.

Hinweis: Zum Modell des schwarzen Körpers werden auf Seite 117 Demonstrationsversu-
che vorgestellt.

Abschnitt 7.3

Planck’sche Strahlungsformel

Um eine neue Formulierung der Strahlung eines idealen Hohlraumes (oder auch schwarzen
Körpers) zu formulieren, nutzte Max Planck einen unkonventionellen Ansatz. Auch er be-
trachtete die Moden in einem Hohlraum. Doch statt jeder diesen Moden die kontinuierliche
Energie 𝑘B𝑇 zuzuordnen, postulierte er diskrete Energien (“Energiequanten”) die von der
jeweiligen Frequenz abhängen sollten. Die Energie einer solchen Mode mit 𝑛 “Photonen”
wäre dann

𝑊𝜈 = 𝑛 · ℎ · 𝜈,

mit dem Planck’schen Wirkungsquantum ℎ = 6.626 ·10−34 Js. Das Photon wird also hier erst-
mals eingeführt als Schwingungszustand in einem idealen Hohlraum. Die Wahrscheinlichkeit,
dass eine Mode die Energie𝑊 hat, wird durch den Boltzmann-Faktor bestimmt:

𝑝(𝑊) = 𝑐𝑜𝑛𝑠𝑡. · e
−𝑊
𝑘B𝑇

Um die mittlere Energie pro Mode zu bestimmen, berechnet man nun das erste Moment2 der
Wahrscheinlichkeitsverteilung

𝑊𝜈 =

∞∑︁
𝑛=0

𝑊𝜈 · 𝑝(𝑊𝜈) =
∑
𝑛ℎ𝜈 · e

−𝑛ℎ𝜈
𝑘B𝑇∑

e
−𝑛ℎ𝜈
𝑘B𝑇

, (7.2)

welches durch Methoden aus der Analyse von Folgen und Reihen noch weiter vereinfacht
werden kann. Schließlich kann man durch Vereinfachung des Terms 7.2 zeigen, dass die

2In der Statistik nutzt man sogenannte “Momente” um Eigenschaften von Verteilungen zu berechnen. Das erste
Moment entspricht dabei in etwa dem aus der Schule bekannten Mittelwert. Das erste Moment einer Verteilung
berechnet man durch 𝑚1 =

∫
𝑥 · 𝑝 (𝑥 )d𝑥 bzw. 𝑚1 =

∑
𝑥 · 𝑝 (𝑥 ) = 𝑥̄.
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Abbildung 27. (blaue Linien) Planck-Verteilung für verschiedene Temperaturen. (rote Linie) Das Wien-
sche Verschiebungsgesetz gibt die Positionen der Maxima der Planck-Verteilungen an.

mittlere Modenenergie

𝑊𝜈 =
ℎ · 𝜈

e
ℎ𝜈
𝑘B𝑇 −1

(7.3)

beträgt. Wenn wir jetzt in Gleichung 7.1 statt der mittleren Energie 𝑘B𝑇 pro Mode den
Ausdruck 7.3 einsetzen, erhalten wir die Planksche Strahlungsformel

Planck’sche Strahlungsformel

𝜔𝜈 (𝜈)d𝜈 =
8𝜋ℎ𝜈3

𝑐3
d𝜈

e
ℎ𝜈
𝑘B𝑇 −1

(7.4)

Durch die Exponentialfunktion im Nenner wird die Energiedichte bzw. das Integral über die
Energiedichte nun für große Frequenzen endlich, wodurch die Ultraviolett-Katastrophe nicht
mehr auftritt. Die Energiedichteverteilung in Abb. 27 wird durch die blauen Linien dargestellt.
Es zeigt sich offenbar, dass das Maximum der Strahlungsdichte von der Temperatur abhängt.
Diese Verteilung ermöglicht nun weitere Analysen. Wir werden die Maxima der jeweiligen
Funktionen sowie den gesamten Energieinhalt der Verteilungen im Folgenden noch genauer
untersuchen.

Abschnitt 7.4

Rayleigh-Jeans-Gesetz als Grenzfall

Wenn man bestehende physikalische Gesetze erweitert um neue Phänomene mit einzubezie-
hen, ist es sehr elegant wenn man die bis dato gültigen Gesetze als Grenzfälle herleiten kann.
So ist es hier beispielsweise auch möglich, das schon bekannte Reyleigh-Jeans Gesetz als
Grenzfall für kleine Frequenzen aus der Planckverteilung herzuleiten. Für den Frequenzbe-
reich, in dem der Grenzfall gültig sein soll, gilt ℎ𝜈 ≪ 𝑘B𝑇 . Den Faktor exp(ℎ𝜈/𝑘B𝑇) kann
man in diesem Fall (der Exponent wird durch ℎ𝜈 ≪ 𝑘B𝑇 sehr klein) in eine Taylor-Reihe
entwicklen:

e
ℎ𝜈
𝑘B𝑇 ≈ 1+ ℎ𝜈

𝑘B𝑇

60



Wien’sches Verschiebungsgesetz

Damit wird dann aus der Planckverteilung durch Einsetzen der Näherung

𝜔𝜈 (𝜈) =
8𝜋ℎ𝜈3

𝑐3
1

e
ℎ𝜈
𝑘B𝑇 −1

≈ 8𝜋�ℎ𝜈 �32

𝑐3
1

��1+ �ℎ�𝜈
𝑘B𝑇

��−1
=

8𝜋𝜈2

𝑐3 𝑘B𝑇

direkt wieder das Rayleigh-Jeans Gesetz hergeleitet. Es bildet also den Grenzfall der Planck-
Verteilung für kleine Frequenzen bzw. große Wellenlängen.

Abschnitt 7.5

Wien’sches Verschiebungsgesetz

Die Planck-Verteilungen in Abb. 27 haben ihre Maxima bei verschiedenen Wellenlängen,
abhängig von der gegebenen Temperatur 𝑇 des Hohlraums. Im Umkehrschluss wäre es al-
so möglich, aus der Kenntnis dieses Maximums die Temperatur des strahlenden Objektes
zu bestimmen. Das Maximum der Verteilung findet man wie üblich durch Nullsetzen der
Ableitung,

d
d𝜈
𝜔𝜈 (𝜈) =

d
d𝜈

8𝜋ℎ𝜈3

𝑐3
1

e
ℎ𝜈
𝑘B𝑇 −1

= 0.

Das Ableiten ergibt:

0 =
24𝜋ℎ𝜈2

𝑐3
1

e
ℎ𝜈
𝑘B𝑇 −1

− 8𝜋ℎ𝜈3

𝑐3

e
ℎ𝜈
𝑘B𝑇 · ℎ

𝑘B𝑇(
e

ℎ𝜈
𝑘B𝑇 −1

)2

Durch Kürzen

0 =
3����24𝜋ℎ𝜈2

��𝑐3

1
����e

ℎ𝜈
𝑘B𝑇 −1

−
���8𝜋ℎ𝜈3

��𝑐3

e
ℎ𝜈
𝑘B𝑇 · ℎ

𝑘B𝑇(
e

ℎ𝜈
𝑘B𝑇 −1

) �21

und Ersetzen von ℎ𝜈/𝑘B𝑇 = 𝑥 folgt schließlich

𝑥 = 3−3e−𝑥

Diese Gleichung kann man nun numerisch lösen und erhält als Lösung 𝑥 = 2.8214. Die
dazugehörige Frequenz 𝜈 erhält man nun durch das Rückersetzen von ℎ𝜈/𝑘B𝑇 = 𝑥. Damit
liegt dann die Frequenz 𝜈max bzw. die Wellenlänge 𝜆max, bei der die maximale Energiedichte
eines schwarzen Körpers abgestrahlt wird bei

Wien’sches Verschiebungsgesetz

𝜈max =
2.8214 𝑘B

ℎ
·𝑇 = 5.873 ·1010 1

Ks
·𝑇 (7.5)

𝜆max =
2.897 ·10−3 mK

𝑇
(7.6)

Bitte beachten: Die Temperatur 𝑇 muss natürlich in Kelvin (statt Celsius) in die Gleichun-
gen 7.5 und 7.6 eingesetzt werden, wie man auch leicht durch Kontrolle der Einheiten erkennt:

1
Ks

·K = s bzw.
mK
K

= m.

Das Wien’sche Verschiebungsgesetz lässt es zu, durch Analyse des Spektrums eines strah-
lenden Körpers dessen Temperatur zu bestimmen.
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Die Sonne strahlt bei der Wellenlänge von 𝜆max = 480nm die meiste Energie ab. Ge-
mäß Gleichung 7.6 kann man also auf eine Oberflächentemperatur der Sonne von 𝑇 =

2.897 ·10−3 mK/480nm ≈ 6000K schließen. Es gibt für Versuche an der Schule vielfältige
Möglichkeiten, das Sonnenspektrum (bzw. dann dessen Maximum) zu erfassen.

Außer der konkreten Berechnungsvorschrift sei noch erwähnt, dass das Wien’sche Gesetz
ganz grundlegend – ohne direkt auf die Zahlenwerte einzugehen – einen linearen Zusammen-
hang zwischen Temperatur des Körpers und spektralem Maximum 𝜈max bzw. 𝜆max angibt.
Man kann diesen Zusammenhang dann also auch für bekannte Verhältnisse von Temperatur
und spektralem Maximum gemäß

𝜈max (𝑇1)
𝑇1

= const. =
𝜈max (𝑇2)
𝑇2

𝜆max (𝑇1) ·𝑇1 = const. = 𝜆max (𝑇2) ·𝑇2

nutzen.

Abschnitt 7.6

Stefan-Boltzmann’sches Strahlungsgesetz

Wir haben bereits die Lage des Maximums der spektralen Energiedichte 𝜔𝜈 untersucht. Nun
wollen wir noch Erkenntnisse aus der insgesamt abgestrahlten Energie eines Körpers erhalten.
Dazu müssen wir also über alle Frequenzen 𝜈 in 𝜔𝜈 integrieren. Das Integral

𝜔(𝑇) =
∞∫

𝜈=0

𝜔𝜈 (𝜈,𝑇)d𝜈 =
8𝜋ℎ
𝑐3

∞∫
𝜈=0

𝜈3d𝜈
eℎ𝜈/𝑘B𝑇 −1

kann man durch Substitution von 𝑥 = ℎ𝜈/𝑘B𝑇 vereinfachen. Das Differential d𝜈 muss dabei
ebenfalls substituiert werden gemäß d𝑥/d𝜈 = ℎ/(𝑘B𝑇). Dann nimmt das Integral die Form

𝜔(𝑇) = 8𝜋ℎ
𝑐3

∞∫
𝑥=0

=𝜈3︷       ︸︸       ︷
𝑥3

(
𝑘B𝑇

ℎ

)3

=d𝜈︷    ︸︸    ︷
d𝑥 · 𝑘B𝑇

ℎ

e𝑥 −1

an. Die konstanten Faktoren kann man vor das Integral ziehen

𝜔(𝑇) = 8𝜋ℎ
𝑐3

(
𝑘B𝑇

ℎ

)4 ∞∫
𝑥=0

𝑥3d𝑥
e𝑥 −1

und das übrige bestimmte Integral kann man durch Nachlesen in einem Tabellenwerk (z.B. [36])
oder mit Online-Tools ermitteln. Dieses ergibt 𝜋4/15. Schließlich ist unser Ergebnis

𝜔(𝑇) =
8𝜋5𝑘4

B
15ℎ3𝑐3 ·𝑇4.

Statt der Energiedichte wollen wir nun die insgesamt abgegebene Strahlungsleistung betrach-
ten. Diese ist definiert als

d𝑊
d𝑡

= 𝜔(𝑇) · 𝑐
4
.

Damit finden wir nun letztendlich den gesuchten Ausdruck für die pro Zeiteinheit abgegebene
Strahlungsenergie eines schwarzen Körpers:3434 Stefan und Boltzmann haben

diesen Zusammenhang schon vor
Entwicklung der Quantenmechanik
entdeckt. Dann konnte aber die Kon-
stante 𝜎SB nur empirisch beschrie-
ben werden.
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Exkurs: Spektrum von Leuchtmitteln

schwarzer Körper bei 5900K

typisches Spektrum einer
weißen LED
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Abbildung 28. Die blaue Linie entspricht dem Spektrum der Sonnenstrahlung bei 5900K. Die rote
Linie entspricht dem typischen Spektrum einer weißen LED.

Stefan-Boltzmann’sches Strahlungsgesetz

𝑃 =
d𝑊
d𝑡

=
2𝜋5𝑘4

B
15ℎ3𝑐2 ·𝑇4 = 𝜎SB ·𝑇4

mit der Stefan-Boltzmann-Konstante 𝜎SB = 5.67 · 10−8 W
m2K4 . Hierbei handelt es sich um die

gesamte Strahlungsleistung, die ein idealer Strahler in den Raum abstrahlt, also für den vollen
Raumwinkel Ω = 4𝜋.

Abschnitt 7.7

Exkurs: Spektrum von Leuchtmitteln

Das Spektrum einer Strahlungsquelle ist auch im Alltag von enormer Bedeutung. Vor der
Nutzung von Energiesparlampen oder LED-Leuchten wurden im Wesentlichen Glühlam-
pen/Halogenlampen verwendet. Letztere haben ein Strahlungsspektrum, das dem eines schwar-
zen Körpers sehr ähnlich ist und gut das natürliche Sonnenlicht, ebenfalls in guter Näherung
ein schwarzer Körper, ersetzt. Durch die Prozesse bei der Lichterzeugung von LEDs bzw.
Gasentladungslampen (Energiesparlampen) wird jedoch kein kontinuierliches Schwarzkör-
perspektrum erzeugt wie man in Abb. 28 durch die rote Kurve erkennt. Dies führt zu einem
unnatürlich wirkendem Licht, das sogar Einfluss auf Schlafverhalten und Konzentrations-
fähigkeit haben kann – besonders bei zu hohem Blauanteil im Spektrum. Höherwertige
LED-Lichtquellen können aber bereits ein recht gutes Spektrum wiedergeben, so dass dieses
Licht vom Menschen als “natürlich” wahrgenommen wird. Das Spektrum von Leuchtmitteln
macht sich immer dann bemerkbar, wenn man bei künstlichem Licht fotografiert. Oft sind
dann die Bilder/Videos mit einem deutlichen Farbstich versehen. Dieses Problem wird mit
dem sogenannten Weißabgleich behandelt. Man muss die Sensorpixel auf dem Kamerachip
also erst für die korrekten Intensitäten im Rot-Grün-Blau-Bereich kalibrieren. Man geht dabei
davon aus, dass eine weiße Fläche stets das Umgebungslicht vollständig reflektiert. Wenn
nun das Bild wie bei natürlichem Licht entstanden aussehen soll, so muss man etwa meist
die Empfindlichkeit der Blau-Sensoren verringern und die der Rot-Sensoren erhöhen um die
Sonne als Lichtquelle zu simulieren.
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Photoelektrischer Effekt

Abschnitt 8

Photoelektrischer Effekt

Die Strahlungsphänomene waren nach Entdeckung der Planck-Verteilung der Schwarzkörper-
strahlung weitgehend verstanden und erklärbar. Dann aber mehrten sich Experimente, die auf
einen Teilchencharakter von Licht hindeuteten. Eines der prominentesten Beispiele ist ein Ex-
periment von Lennard, dass im Jahr 1902 durchgeführt wurde. Dabei wurde eine Metallplatte
dem Licht einer bekannten Wellenlänge ausgesetzt. In Abb. 29a ist die Versuchsanordnung
skizziert. Die beiden Elektroden sind mit einer variablen Spannungsdifferenz verbunden und
befinden sich im Vakuum damit die Elektronen nicht durch Luft behindert werden. Je nach
Frequenz und Intensität des einfallenden Lichtes und angelegter Spannung kann man nun
einen Photostrom 𝐼𝑃ℎ messen. Der Verlauf des Photostromes in Abhängigkeit der Beschleu-
nigungsspannung𝑈 ist in Abb. 29b gezeigt. Man erkennt folgende wichtige Tatsachen: Bereits
bei negativer Vorspannung −𝑈0 beginnt ein Photostrom zu fließen. Die Elektronen werden
durch diese negative Spannung eigentlich “abgestoßen”, treffen aber offenbar trotzdem auf
die Elektrode. Außerdem geht der Photostrom bei einer bestimmten Spannung in einen Sätti-
gungsbereich über.

-

-

h·ν

IPh

U

0-U0

IPh

U

b)

a)

Abbildung 29. (a) Schematische Ver-
suchsanordung zur Messung des Pho-
toeffektes. Bei Überschreiten einer be-
stimmten Lichtwellenlänge kann man
einen Photostrom 𝐼𝑃ℎ messen. (b) Ver-
lauf des Photostroms abhängig von der
Spannungsdifferenz aus a).

Die Schlussfolgerungen von Lennard lauten gemäß diesen und weiteren Beobachtungen
wie folgt:

• Die kinetische Energie 𝑚𝑒

2 𝑣
2
𝑒, mit der die Elektronen die Elektrode verlassen, ist nur

von der Frequenz 𝜈 des einfallenden Lichtes abhängig und nicht von dessen Intensität.

• Die Zahl der Photoelektronen ist proportional zur Intensität des Lichtes.

• Es gibt keine (messbare) Verzögerung zwischen Lichteinfall und Elektronenaustritt.

Coulomb-
Abstoßung

drehbar

-

-

h·ν

h·ν

Abbildung 30. Das Elektrometer beruht
auf dem Prinzip der sich abstoßenden
Ladungen. Wenn Platte und Zeiger elek-
trische Ladung tragen, ergibt sich ein
Zeigerausschlag.

Ähnliche Beobachtungen wurden auch von Hallwachs mithilfe eines Elektrometers gemacht.
Dies ist ein einfach aufgebautes Gerät gemäß Abb. 30, das Ladungen anzeigen kann. Durch
Bestrahlung der Platte mit Licht wurde diese offenbar (durch einen Zeigerausschlag angezeigt)
aufgeladen. Einzig mögliche Schlussfolgerung war dann, dass Elektronen die Platte verlassen
haben müssen.

Zum Photoeffekt wird auf Seite 120 ein Demonstrationsversuch vorgestellt.

Diese Beobachtungen konnten mit den damaligen Modellen nicht erklärt werden. Im
Wellenmodell des Lichts sollte eine hohe Intensität auch mehr Energie an die Elektronen
übertragen. Außerdem würde sich die Energie des Lichtes auf alle bestrahlten Elektronen
verteilen, was zu deutlich seltenerer Elektronenemission führen müsste. Dies ist aber offenbar
nicht der Fall. Die Erklärung dieser Phänomene wurde in einer Veröffentlichung von Albert
Einstein im Jahr 1905 durch die “Lichtquantenhypothese” geliefert [37]. Für diese erhielt er
im Jahr 1921 den Nobelpreis. Das Modell besagt, dass Licht sich wie ein Teilchen (Photon)
verhält und dass jedes Photon mit der Energie 𝐸 = ℎ ·𝜈 diese vollständig an genau ein Elektron
abgibt. Die Energiebilanz der Photonenenergie 𝐸Ph zusammen mit der kinetischen Energie
der Elektronen 𝐸kin,e und der spezifischen Austrittsarbeit𝑊A

35 ergibt dann

35 𝑊A ist diejenige Arbeit, die auf-
gewendet werden muss um ein Elek-
tron aus dem Material herauszulö-
sen.

Photoelektrischer Effekt

𝐸kin,e = −𝑒 ·𝑈0 = 𝐸Ph −𝑊𝐴 = ℎ · 𝜈−𝑊A (8.1)

In Abb. 31 ist dieser Zusammenhang gezeigt. Der lineare Zusammenhang der Messwerte
𝐸kin = 𝑚 · 𝜈−𝑊A ist gut zu erkennen. Auch lässt sich durch Analyse der Messwerte nun die
Austrittsarbeit der Elektronen bestimmen – dies entspricht genau dem Abschnitt der 𝑦-Achse
unterhalb des Nulldurchgangs wie in Abb. 31 gezeigt. Die Steigung𝑚 =Δ𝑦/Δ𝑥 ist dann gemäß
Gl. 8.1 identisch mit (𝑒 ·𝑈)/(ℎ ·𝜈). Der Photoeffekt ist als Demonstrationsversuch an Schulen

h·ν

E =-e·Ukin

WA

m=eU/(h )ν

Abbildung 31. Die Grafik zeigt bei-
spielhafte Messwerte wie Sie mit einer
Photozelle aufgenommen werden kön-
nen. Die blaue Linie zeigt den Zusam-
menhang von Gl. 8.1. Aus der Steigung
𝑚 der Kurve lässt sich beispielswei-
se das Planck’sche Wirkungsquantum ℎ

bestimmen.
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Abbildung 32. Röntgenröhre zur Erzeugung von Röntgenstrahlung.

fest etabliert um die Übertragung von Energiequanten zu zeigen und dafür auch gut geeignet.
Es muss aber darauf hingewiesen werden, dass die damalige Erklärung des Versuches nach der
Entwicklung der Quantenmechanik als Feldtheorie nicht mehr zeitgemäß ist. Beispielsweise
kann man auch die Zustände in der Metallplatte quantisieren und erklärt damit für eine
klassische Lichtwelle, ganz ohne Photonenmodell, die experimentellen Ergebnisse – sogar
inklusive des korrekten Streuwinkels der Elektronen. Die Erklärung des Photoeffektes mit
einem Photon als Lichtteilchen muss also immer im historischen Kontext betrachtet und
vermittelt werden.

Abschnitt 9

Röntgenstrahlung

Den soeben vorgestellten Effekt gibt es im Prinzip auch in umgekehrter Richtung. Die grund-
legenden Ursachen sind zwar verschieden, aber grob betrachtet ist es auch möglich durch
Beschuss einer Probe mit Elektronen die entsprechenden Lichtquanten zu erzeugen. Wir wer-
den aber sehen, dass die Prozesse anderer Natur sind und eben nicht nur die Photonen mit
Energie 𝐸𝑝ℎ = ℎ𝜈 = 𝐸kin +𝑊𝐴 erzeugen. Schon 1895 wurde dieser Effekt von Wilhelm Con-
rad Röntgen (1845-1923) entdeckt. Als er eine Gasentladungsröhre mit hohen Spannungen
(schnellen Elektronen) betrieb, wies er eine bisher unbekannte Art von Strahlung nach die
von der Anode ausging. Diese unbekannte Strahlung konnte Gewebe und Holz durchdrin-
gen. Er nannte diese Strahlung X-Strahlen (X-Rays) . Ihm zu Ehren wird die Strahlung im
deutschsprachigen Raum heutzutage Röntgenstrahlung genannt.

Röntgenstrahlung wird üblicherweise mit einer Röntgenröhre erzeugt, wie sie in Abb. 32
skizziert ist. Es handelt sich dabei um ein evakuiertes Glasgefäß mit einer Kathode und
Anode. Die Kathode sendet durch Glühemission Elektronen aus wenn sie von einem Strom
durchflossen wird. Die Elektronen schweben zunächst in einer Art “Wolke” im Raum nahe
der Kathode. Wird nun zwischen Kathode und Anode eine hohe Spannung (im kV Bereich!)
angelegt, werden die Elektronen stark zur Anode hin beschleunigt. Sie nehmen bei Durchlau-
fen der Potentialdifferenz die kinetische Energie 𝐸kin = 𝑒 ·𝑈 auf. Durch die hohe Spannung
können dies Energien im keV-Bereich sein. 3 Wenn die Elektronen mit hoher Energie auf die

3Die Einheit eV wird in der Vorlesung das Joule als Maß für die Energie mehr und mehr verdrängen. Die
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Röntgenstrahlung

Anode treffen, werden auf zwei unterschiedliche Arten Röntgenstrahlung erzeugt. Wir werden
diese beiden Strahlungstypen als Bremsstrahlung und als charakteristische Röntgenstrahlung
bezeichnen. In welchem Bereich die Stralungsenergien liegen ist außerdem namensgebend für
die Strahlung: Strahlung mit einer Energie < 100keV wird weiche Röntgenstrahlung genannt,
bei einer Energie > 100keV spricht man von harter Röntgenstrahlung.

Abschnitt 9.1

Bremsstrahlung

Die (Röntgen-)Bremsstrahlung entsteht durch die Abbremsung der Elektronen im Anoden-
material. Wie beim Rutherford’schen Streuversuch handelt es sich um eine Wechselwirkung
durch Coulomb-Kräfte statt durch Stöße fester Körper. Die negativ geladenen Elektronen
dringen also mit 𝐸kin,1 in den Atomverbund des Anodenmaterials ein und werden durch die
elektrischen Felder in der Nähe von als fest angenommenen (weil im Kristallgitter verankert
und sehr schwer) Atomkernen umgelenkt. Bei diesen Richtungsänderungen strahlt das Elek-
tron jeweils gemäß den Maxwellgleichungen Energie ab und hat nach dem Stoß nur noch die
Energie 𝐸kin,2. Es verliert also bei jedem Stoß die Energie

Δ𝐸kin = 𝐸kin,1 −𝐸kin,2 = ℎ · 𝜈 ,

die dann in Form eines Photons mit der Energie 𝐸Ph = ℎ · 𝜈 abgestrahlt wird. In welchem
Abstand das Elektron am Atomkern vorbeifliegt, beeinflusst die Stärke der Wechselwirkung
und damit auch den Energieverlust durch den Stoß: Wenn das Elektron den Atomkern in
großem Abstand passiert, ist der Energieverlust minimal. Wenn das Elektron frontal auf den
Kern zufliegt, wird es viel Energie verlieren. Dies führt insgesamt zu einem kontinuierliches
Spektrum. In Abb. 33 wäre das also z.B. die blaue Kurve ohne die deutlich herausragenden
Spitzen. Die größtmögliche Frequenz bzw. Energie ist dabei durch die Beschleunigungsspan-
nung gegeben. In diesem Fall würde dann also ein Elektron mit der Energie 𝐸kin = 𝑒 ·𝑈
seine gesamte Energie bei einem einzigen Stoß verlieren und abstrahlen. Das führt wegen
𝐸Brems,max = 𝑒 ·𝑈 = ℎ · 𝜈Brems,max zu einer maximal möglichen Frequenz von 𝜈Brems,max =

𝑒·𝑈
ℎ

.

Abschnitt 9.2

Charakteristische Röntgenstrahlung

Es gibt noch eine zweite Möglichkeit, wie die schnellen Elektronen ihre Energie an die
Anodenatome abgeben können – dafür müssen wir allerdings etwas im Stoff vorgreifen. Die
Elektronen der Hülle der Anodenatome befinden sich demnach auf diskreten Energieniveaus
𝐸𝑛, deren Lage für die Atomart spezifisch ist. Es ist nun möglich, dass das anfliegende
Elektron seine Energie dazu nutzt, um eines der Hüllenelektronen eines Anodenatoms auf
ein höheres Energieniveau anzuheben. Das Atom befindet sich dann insgesamt in einem
angeregten Zustand (𝐴→ 𝐴∗). Diesen Anregungsprozess kann man schreiben als

e− (𝐸kin,1) + 𝐴→ 𝐴∗ + e− (𝐸kin,2).

Dieser Zustand ist aber nicht stabil, sondern nach einer kurzen Zeit wird sich wieder der
energetisch günstigste Zustand (“Grundzustand”) herstellen 36. Diese “Abregung” läuft nach36 Höhere Energien: Der Prozess

kann auch ablaufen, in dem ein Hül-
lenelektron aus dem Elektron ge-
schlagen wird. Die Lücke wird dann
durch ein weiter außen liegendes
Elektron aufgefüllt.

Umrechnung zwischen eV und J ist mit dieser Merkregel einfach: Man kann sich das e aus der Einheit eV direkt
als eine Multiplikationsanweisung mit der Elektronenladung 𝑒 vorstellen. Möchte man aus eV die SI-Einheit Joule
erhalten, muss man also mit 𝑒 multiplizieren:

1eV = 1𝑒 · 1V = 1.6 · 10−19 AsV = 1.6 · 10−19 J

66



Charakteristische Röntgenstrahlung

Abbildung 33. Röntgenspektren verschiedener Anoden (Molybdän, Eisen und Kupfer). Die markierten
Peaks zeigen die 𝐾𝛼 (2) und 𝐾𝛽 (1)-Linien. [38]

dem Schema
𝐴∗ (𝐸𝑖) → 𝐴(𝐸𝑘) + ℎ𝜈i𝑘

ab. Dabei ist die Energiebilanz mit der des anregenden Elektrons verbunden über

𝐸𝑖 −𝐸𝑘 = 𝐸kin,1 −𝐸kin,2.

Es können also nur Photonen durch diesen Prozess emittiert werden, deren Energie genau
zu einer möglichen Differenz von Energieniveaus in der Atomhülle der Anodenatome passt.
Daher besteht das charakteristische Röntgenspektrum auch aus diskreten Peaks anstelle einer
kontinuierlichen Verteilung, wie in Abb. 33 gut zu sehen ist. Da die Energiedifferenzen 𝐸𝑖 −
𝐸𝑘 für jede Atomart spezifisch sind, kann man also durch Kenntnis der Peakpositionen im
Röntgenspektrum das Anodenmaterial bestimmen.

Die Untersuchung eines Materials durch Analyse der charakteristischen Röntgenstrahlung
wird auch Röntgenemissionsspektroskopie (XES) genannt. Man damit beispielsweise Unrein-
heiten in Materialien detektieren. In Abb. 33 kann man gut erkennen, dass unterschiedliche
Materialien wie Eisen, Kupfer oder Molybdän auch sehr unterschiedliche charakteristische
Strahlungspeaks aufweisen. Anhand der Bremsstrahlung kann man die Materialien dagegen
nicht unterscheiden.

Auf Seite 125 wird die Röntgenröhre als Demonstrationsversuch vorgestellt.
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Röntgenstrahlung
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Δ ϑs = 2d sin

ϑ

Abbildung 34. Zur Röntgenbeugung an einem Kristallgitter. (links) Die einfallende Strahlung wird
an den Kristallebenen reflektiert und tritt gemäß Reflektionsgesetz unter gleichem Winkel wieder aus.
(rechts) Nach der Reflektion gibt es konstruktive und destruktive Überlagerung der Strahlung, je nach
Gangunterschied beim Winkel 𝜗. (Abbildung nach [8]).

Abschnitt 9.3

Beugung von Röntgenstrahlen

Nachdem die Beschaffenheit der Röntgenstrahlung beschrieben wurde, muss nun noch darauf
eingegangen werden wie man die Untersuchungen experimentell überhaupt realisieren kann.
Im Bereich der Optik kann man für die Bestimmung der Wellenlänge von sichtbarem Licht
dessen Beugung an einem optischen Gitter verwenden. Wäre dies nicht auch eine Option für
die Untersuchung von Röntgenstrahlung? Wir testen dies an einem Beispiel. In Abb. 33 lesen
wir ab, dass wir es mit Strahlung der Wellenlänge von etwa 𝜆 ≈ 100pm zu tun haben. Wir
verwenden nun ein eher feines Beugungsgitter mit Gitterkonstante 𝑏 = 1/1000mm. Damit
wäre das Maximum erster Ordnung (𝑚 = 1) bei

𝜗1 = arcsin
(
𝑚 ·𝜆
𝑏

)
= arcsin

(
1 ·100pm
1 ·106 pm

)
≈ 0.006 ◦

unmöglich zu erkennen. Es wäre sinnvoller wenn man, wie bei der Analyse von sichtbarem
Licht, ein Beugungsgitter mit Gitterabständen in der Größenordnung der Wellenlänge nutzen
kann. Die Herstellung eines solchen Beugungsgitters ist aber technisch nicht umsetzbar, da die
Wellenlänge 𝜆 ≈ 100pm im Bereich von Gitterabständen in Festkörpern liegt. Max von Laue
nutzte daher im Jahr 1912 einen kristallinen Festkörper als dreidimensionales Beugungsgit-
ter [39]. Wie aber kommt es bei der Wechselwirkung von Röntgenstrahlung und Festkörper
zur Beugung? Die einfallende Strahlung wechselwirkt mit jedem der Atome im Kristallgitter.
Man kann, wie in Abb. 34 auf der linken Seite gezeigt, das auch als eine Reflektion an der
Gitterebene auffassen. Diese Gitterebenen sollen nun den Abstand 𝑑 voneinander haben. Dann
wird nach einer Vielzahl von Reflektionen an verschiedenen Ebenen der direkt reflektierte
Strahl mit den austretenden Strahlen aus anderen Ebenen miteinander interferieren. Der Gang-
unterschied Δ𝑠 der Strahlen kann leicht geometrisch hergeleitet werden und beträgt gemäß der
rechten Skizze in Abb. 34 Δ𝑠 = 2𝑑 · sin(𝜗). Wenn dieser Gangunterschied ein ganzzahliges
Vielfaches der Wellenlänge ist, so wird konstruktive Interferenz stattfinden. Dies drückt sich
aus im sogenannten Bragg’schen Gesetz, benannt nach William Bragg:

Bragg’sches Gesetz
2𝑑 · sin(𝜗) = 𝑚 ·𝜆 ;𝑚 = 1,2,3, . . . (9.1)

Unter diesem betrachteten Winkel 𝜗 werden alle anderen Phasenbeziehungen der Welle mit
Wellenlänge 𝜆 zur gegenseitigen Auslöschung führen. Es gibt für eine bestimmte Wellenlän-
ge 𝜆 also immer genau einen Reflektionswinkel 𝜗 zur Kristalloberfläche, auch Glanzwinkel
genannt, unter dem die Welle reflektiert wird. Dies eröffnet nun den Weg zur sogenannten
Drehkristallmethode nach Bragg. Dabei wird der Kristall drehbar gelagert und bei verschie-
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Compton-Effekt

denen Drehwinkeln wird die Strahlungsintensität gemessen. Der Drehwinkel lässt dabei mit
Gl. 9.1 direkten Rückschluss auf die betrachtete Wellenlänge zu. Somit kann man die Intensität
der Röntgenstrahlung nun wellenlängenaufgelöst bestimmen.

Abschnitt 9.4

Compton-Effekt

Die Entdeckung der Röntgenstrahlung und die Möglichkeit deren Wellenlänge zu bestimmen
führte nun zu neuen experimentellen Möglichkeiten. Arthur Holly Compton (1892-1962)
untersuchte die Wechselwirkung harter Röntgenstrahlung mit einem Festkörper. Im Wellen-
modell des Lichtes würde man erwarten, dass die einfallende Lichtwelle die Elektronen des
Targetmaterials in Schwingung versetzt und dann wieder (abgeschwächt) mit gleicher Fre-
quenz das Target verlässt. Beobachtet wurde aber auch eine Verringerung der Frequenz beim
ausgetretenen Licht. Für das Experiment und dessen Erklärung wurde Compton 1927 der
Nobelpreis verliehen. Für die Erklärung muss man annehmen, dass sich das Licht als Teilchen
verhält. Um die üblichen Rechnungen der Kinematik für Stöße zu benutzen, benötigt man
die Angabe eines Impulses für die Photonen. Der bekannte Impuls 𝑝 = 𝑚 · 𝑣 ergibt hierbei
keinen Sinn, da die Ruhemasse des Photons 𝑚𝑝ℎ = 0 ist. Man kann aber über die Energie eine
Impulsbeschreibung herleiten, allerdings muss man hierfür die relativistische Beschreibung
verwenden. Die relativistische Energie berechnet sich durch den Energie-Impuls-Satz nach

𝐸2 = 𝑝2𝑐2 +𝑚2
0𝑐

4.

Da das Photon keine Ruhemasse𝑚0 hat, folgt daraus 𝐸 = 𝑝 ·𝑐. Mit der bereits vom Photoeffekt
bekannten Gleichung 𝐸 = ℎ𝜈 kann man also den Impuls eines Photons bestimmen durch

Impuls des Photons

𝐸 = 𝑝 · 𝑐 = ℎ𝜈 → 𝑝 =
ℎ𝜈

𝑐
=

2𝜋
2𝜋

ℎ

𝜆︸︷︷︸
𝜆=𝑐/𝜈

=
ℎ

2𝜋
· 2𝜋
𝜆

= ℏ𝑘.

Die Konstante ℏ (gesprochen “h quer”) wird noch oft verwendet werden und bestimmt sich
durch ℏ = ℎ/(2𝜋) 37. Wenn man dem Photon nun also diesen Impuls zuordnet, kann man das 37 Durch die Verwendung von ℏ er-

spart man sich sehr oft das schreiben
des Faktors 2𝜋 in vielen Gleichun-
gen.

Experiment von Compton als Stoß (direkt und elastisch!) eines Photons mit Impuls 𝑝Ph = ℏ𝑘

und einem ruhenden Elektron mit schwacher Atombindung (𝐸𝐵 ≪ ℎ𝜈𝑃ℎ) beschreiben wie es
in Abb. 35 skizziert ist. Der Stoßprozess ist dann

ℎ · 𝜈0

����
𝑣𝑜𝑟

+ e−
����
𝐸kin≈0

→ ℎ · 𝜈𝑠
����
𝑛𝑎𝑐ℎ

+ e−
����
𝐸kin

Nachdem man diesen Stoßprozess durch relativistische Energie- und Impulserhaltung be-

λ
0

λ
S

φ

E
kin

Abbildung 35. Energie- und Impulsbi-
lanz bei der Compton-Streuung. Die Be-
obachtung lässt sich nur erklären, wenn
dem Photon Teilcheneigenschaften zu-
geordnet werden.

trachtet hat, findet man die Relation

Compton-Effekt
Δ𝜆 = 𝜆𝑠 −𝜆0 = 2𝜆C sin2

(𝜑
2

)
= 𝜆C (1− cos𝜑)

mit der Compton-Wellenlänge 𝜆C des Elektrons

𝜆C =
ℎ

𝑚𝑒𝑐

Die Messergebnisse beim Compton-Versuch zeigen genau das hier beschriebene Verhalten:
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Wellenbeschreibung von Teilchen

Man findet unter dem Streuwinkel 𝜑 die um Δ𝜆 vergrößerte Wellenlänge des gestreuten
Lichtes. Hier führt also die Betrachtung des Lichts als Teilchen mit der Fähigkeit zu einem
Stoßprozess zur korrekten Beschreibung der Versuchsergebnisse.

Abschnitt 10

Wellenbeschreibung von Teilchen

Nachdem es sich für Licht als sinnvoll erwiesen hat, einem vermeintlichen Wellenobjekt
Teilcheneigenschaften zuzuschreiben, wurde auch der umgekehrte Weg beschritten. 1924
schlug Louis de Broglie (1892-1987) vor, die Impulsbeschreibung von Licht 𝑝 = ℏ𝑘 auch
auf Teilchen wie Elektronen, Atome und Neutronen anzuwenden [40]. Für die Herleitung der
Debroglie-Wellenlänge unterscheiden wir zunächst 2 Fälle: Teilchen ohne Ruhemasse und
Teilchen mit Ruhemasse [41].

Teilchen ohne Ruhemasse Als ein Teilchen ohne Ruhemasse haben wir das Photon aus der
Erklärung des Photoelektrischen Effektes kennengelernt. Für dieses Teilchen mit 𝑚0 = 0 wird
der Energie-Impuls-Satz zu 𝐸 = 𝑝 · 𝑐. Dies kombinieren wir nun mit dem Energiequant des
Photons 𝐸 = ℎ · 𝜈 zu

𝑝 · 𝑐 = ℎ · 𝜈→ 𝑝 = ℎ · 𝜈
𝑐
=
ℎ

𝜆
= ℏ · 𝑘

Wir können also einem Photon einen Impuls zuordnen, wie man dies bei einem klassischen
Teilchen gewohnt ist.

Teilchen mit Ruhemasse Für diesen Fall eines Teilchens mit Ruhemasse𝑚0 ≠ 0 und Impuls
𝑝 = 𝑚 · 𝑣, z.B. ein Elektron, können wir nicht einfach 𝑝 = ℎ/𝜆 nutzen und dem Teilchen so
eine Wellenlänge zuordnen – für die Herleitung war im Eneregie-Impuls-Satz explizit 𝑚0 = 0
gefordert 38. Die Idee von de Broglie war es, eine ähnliche Beziehung auch für typische38 Zum Glück dürfen wir das letzte-

nendes doch. Teilchen zu finden. Hierfür nahm er an, dass diese sich auch durch eine Welle beschreiben
lassen könnten. Die Teilchengeschwindigkeit 𝑣 wäre dann, wie später im Kapitel gezeigt, mit
der Gruppengeschwindigkeit 𝑣g eines Wellenpaketes 𝑣T = 𝑣g =

d𝜔
d𝑘 assoziiert. Außerdem gilt

natürlich auch hier der Energie-Impuls-Satz. Wenn wir also nach einer Beziehung 𝑝 = 𝑝(𝜆) =
𝑝(𝑘) für diesen Fall suchen, dann nutzen wir wieder die Äquivalenz der Energien wie im
oberen Ansatz:

ℎ · 𝜈 = ℏ𝜔 =

√√√
𝑝2𝑐2 + 𝑚2

0︸︷︷︸
≠0

𝑐4

Nun leiten wir beide Seiten der Gleichung nach 𝑘 ab, um die Teilchengeschwindigkeit 𝑣T in
die Gleichung zu integrieren:

ℏ
d𝜔
d𝑘

=
1
2

(
𝑝2𝑐2 +𝑚2

0𝑐
4
)

︸            ︷︷            ︸
=𝐸2

− 1
2
(
2𝑝𝑐2 d𝑝

d𝑘

)

=
𝑝𝑐2

𝐸

d𝑝
d𝑘

=
��𝛾𝑚0𝑣T��𝑐

2

���𝛾𝑚0𝑐
2

d𝑝
d𝑘

ℏ��𝑣T = ��𝑣T
d𝑝
d𝑘
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Materiewellen und Wellenfunktionen

Nun können wir durch Integration den Zusammenhang

𝑝 = 𝑝(𝑘) =
∫

ℏd𝑘 = ℏ𝑘 + 𝑐

erhalten. Aus Symmetriegründen ((−𝑝) = ℏ(−𝑘) + 𝑐) muss die Integrationskonstante 𝑐 = 0
sein. Wir erhalten also den gleichen Zusammenhang 𝑝 = ℏ𝑘 = ℎ/𝜆 wie für das Photon – nur
gibt es diesmal ebenfalls den kinematischen Impuls 𝑝 = 𝑚 · 𝑣. Die Wellenlänge, die diesem
Impuls entspricht, wird de Broglie-Wellenlänge genannt.

de Broglie-Wellenlänge

𝜆dB =
ℎ

𝑚 · 𝑣 =
ℎ

√
2𝑚 ·𝐸kin

Durch den sehr kleinen Zahlenwert von ℎ erkennt man leicht, dass es sich dabei um sehr kleine
Wellenlängen bzw. sehr große Frequenzen handelt. Das macht es experimentell schwierig,
solche Wellenphänomene zu beobachten 39. Für diese neuartige Idee erhielt de Broglie 1929 39 Um ein Interferenzmuster eines

Elektronenstrahles (𝑚𝑒) durch einen
Einzelspaltversuch zu beobachten,
dürfte der Spalt nur einige Nanome-
ter (oder weniger) breit sein!

den Nobelpreis. Erst 1929 wurde eine erfolgreiche experimentelle Bestätigung durch Davisson
und Germer möglich. Dabei wurde die Elektronenbeugung an einem MgO-Kristall nachge-
wiesen. Dabei stellt also ein Elektronenstrahl die einfallende Welle dar und der MgO-Kristall
wirkt als Beugungsgitter. Später konnten auch Beugungseffekte neutraler Atome nachge-
wiesen werden. Abschließend kann man also bestätigen: Auch “typische Teilchen” haben
Welleneigenschaften.

Abschnitt 10.1

Materiewellen und Wellenfunktionen

Louis de Broglie hat vorhergesagt, dass man Teilchen immer auch Welleneigenschaften zu-
ordnen kann. Als konsequente Weiterentwicklung muss man sich nun auch fragen, ob diese
Teilchen nicht auch durch eine Wellenfunktion beschrieben werden können statt durch ei-
ne Massepunkt-Bewegung. Ein direkter Ansatz wäre es, statt der üblichen harmonischen
Wellenfunktion

𝜓(𝑥, 𝑡) = 𝐶 · ei(𝜔𝑡−𝑘𝑥 )

die Kreisfrequenz 𝜔 und die Wellenzahl 𝑘 durch 𝐸 = ℎ𝜈 = ℏ𝜔 und 𝑝 = ℏ𝑘 zu ersetzen. Dies
führt zur Wellenfunktion

𝜓(𝑥, 𝑡) = 𝐶 · ei( 𝐸
ℏ
𝑡− 𝑝

ℏ
𝑥 ) = 𝐶 · e i

ℏ
(𝐸𝑡−𝑝𝑥 ) (10.1)

die nun durch Parameter festgelegt ist, die auch Teilcheneigenschaften sind wie die Energie
und der Impuls. Es gibt aber ein grundlegendes Problem mit dieser einfachen Formulierung:
Die Wellenfunktion 10.1 ist nicht lokalisiert, wie man es von einem Teilchen erwarten kann.
Diese Welle breitet sich im ganzen Raum aus, was der kinetischen Beschreibung einer Teil-
chenbahn widerspricht. Im folgenden Abschnitt betrachten wir aber eine Möglichkeit, 𝜓 so
zu modifizieren, dass der Teilchencharakter besser berücksichtigt wird.

Abschnitt 10.2

Wellenpakete

Statt von einer ebenen Welle ausgehend die Wellenfunktion für ein Teilchen zu formulieren,
soll nun das Modell der Wellenpakete besprochen werden. Grundlage dafür ist die Überla-
gerung von mehreren harmonischen Wellen mit jeweils verschiedenen Frequenzen und/oder
Amplituden. Einfaches Beispiel hierfür ist die sogenannte “Schwebung” aus Abb. 36. Dabei
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Wellenbeschreibung von Teilchen

werden zwei Wellen gleicher Amplitude, aber leicht unterschiedlicher Frequenz miteinander
addiert. Die entstehende Welle besitzt eine Hüllkurve, in der das Signal dann mit der Frequenz
𝑓Res =

𝜔2+𝜔1
2 oszilliert. Die Hüllkurve selbst hat die Frequenz 𝑓Hüll =

𝜔2−𝜔1
2 . Diese überlager-

Abbildung 36. Überlagerung zweier
Wellenfunktionen resultiert in einer
Schwebung.

te Welle ist aber noch immer unendlich im Raum ausgedehnt. Das heißt, für alle Werte von 𝑥
finden sich für alle Zeiten die “normalen” Amplituden. Schöner wäre es, wenn die Amplituden
nur bei bestimmten (𝑥, 𝑡)-Kombinationen relevant wären. Man kann die Wellenfunktion aber
tatsächlich auf einen bestimmten Raumbereich begrenzen, indem man auf geschickte Art und
Weise unendlich viele Funktionen verschiedener Frequenzen überlagert.40 Hierfür schreiben

40 Dies tut man auch in der Elektro-
technik, wo man etwa durch Über-
lagerung von verschiedenen Sinus-
Schwingungen ein Rechtecksignal
oder eine Sägezahnspannung er-
zeugt.

wir zunächst die Wellenfunktion mit einer Amplitude𝐶 (𝑘), die nun die Stärke der aufgepräg-
ten Wellenfunktionen repräsentieren soll. Ohne Begründung oder Herleitung wählen wir hier
die folgende Zusammenstellung: Es sollen zur ursprünglichen Wellenfunktion mit Frequenz
𝜔0 und Wellenzahl 𝑘0 noch weitere Wellen addiert werden, die

• eine Gauss-verteilte Amplitude 𝐶 (𝑘) haben

• Wellenzahlen im Bereich von −∞ bis +∞ aufweisen.

Daraus ergibt sich das Integral

𝜓(𝑥, 𝑡) = 𝐶0 ·
𝑘0+𝑘1∫

𝑘0−𝑘1

e−( 𝑎
2 )2 (𝑘−𝑘0 )2

e−i(𝜔0𝑡−𝑘0𝑥 )d𝑘 (10.2)

mit der Amplitudenfunktion
𝐶 (𝑘) = 𝐶0 · e−(

𝑎
2 )2 (𝑘−𝑘0 )2

(10.3)

Das Integral ist für 𝑘1 → ∞ 41 analytisch lösbar und ergibt für den Zeitpunkt 𝑡 = 0 die41 Es gehen also Funktionen AL-
LER Frequenzen in unsere Summe
ein.

Wellenfunktion

𝜓(𝑥,0) =
(

2
𝜋𝑎2

)1/4
· e−𝑥2/𝑎2

ei𝑘0𝑥 (10.4)

Diese Wellenfunktion ist in Abb. 37b dargestellt. Abbildung 37a soll veranschaulichen, wie der
Weg zu einer lokalisierten Welle erfolgt. Mit zunehmender Breite des Integrationsbereiches 4242 Also noch kein unendlicher Wert

für 𝑘1. aus Gl. 10.2 werden die größeren Amplituden auf einen immer engeren Raumbereich konzen-
triert. So sieht man also bei stetiger Zunahme von 𝑘1 über 𝑘2 > 𝑘1 zu 𝑘3 > 𝑘2, wie die Ausläufer
in den Randbereichen sich außerdem mehr und mehr abflachen. Für einen unendlichen Inte-
grationsbereich zeigt sich dann das Wellenpaket in Abb. 37b. Zu einem gegebenen Zeitpunkt 𝑡
ist demnach die Amplitude der Wellenfunktion auf einen bestimmten Ort beschränkt und wir
haben somit die gesuchte Lokalisierung des Teilchens erreicht. Das Maximum (𝜕𝜓/𝜕𝑥 = 0)
dieser Funktion befindet sich übrigens immer bei 𝑥(𝑡) = d𝜔

d𝑘 · 𝑡. Dies ist genau die Definition
der Gruppengeschwindigkeit einer Welle. Diese Gruppengeschwindigkeit ist unter Nutzung
von

𝜔 = 𝐸/ℏ = 𝑝2/(2𝑚ℏ) = (ℏ𝑘2)/(2𝑚)

über
𝑣𝑔 =

d𝜔
d𝑘

=
ℏ𝑘

𝑚
=
𝑝

𝑚
= 𝑣𝑇

als Teilchengeschwindigkeit 𝑣𝑇 identifizierbar. Damit bewegt sich also das Maximum der
Wellenfunktion mit der Geschwindigkeit 𝑣𝑇 · 𝑡 im Raum fort. Ein solches Wellenpaket kann
also sowohl für Welleneigenschaften (es ist ja schließlich eine Wellenfunktion mit Frequenz
und Wellenlänge) als auch für die Beschreibung der Teilcheneigenschaften (Ort, Impuls,
Geschwindigkeit) genutzt werden.

Wir haben damit zwar das Problem der Lokalisierung der Wellenfunktion gelöst, aber es
bleiben noch immer Unstimmigkeiten bei der Interpretation der Wellenfunktion als Teilchen-
beschreibung:
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Statistische Deutung der Wellenfunktion

a) b)

k1
k2 k3

Abbildung 37. a) Der Verlauf der Summation mit zunehmendem Bereich für 𝑘 . Der Summationsbereich
nimmt von 𝑘1 bis 𝑘3 zu und offenbar schränkt sich der Raumbereich der Welle dadurch immer mehr
ein. b) Für unendliche Summation folgt schließlich das gesuchte Wellenpaket.

• 𝜓 kann komplexe Werte annehmen. Dafür ist keine physikalisch sinnvolle Interpretation
möglich.

• Die Wellenfunktion läuft mit der Zeit auseinander, ein echtes Teilchen aber behält
natürlich seine Lokalisation bei.43 43 Dies zeigen wir später mit

der Heisenberg’schen Unbestimmt-
heitsrelation in Abschnitt 11.Eine Möglichkeit, die Wellenfunktion eines Teilchens physikalisch sinnvoll zu interpretieren

ist die folgende, gemeinhin auch als “Bornsche Wahrscheinlichkeitsinterpretation” bezeich-
nete Variante.

Abschnitt 10.3

Statistische Deutung der Wellenfunktion

Um 1926 wurde von Max Born vorgeschlagen, die Wellenfunktion 𝜓 als eine Wahrschein-
lichkeitsdichte zu interpretieren. Dabei solle das Quadrat der Wellenfunktion |𝜓(𝑥, 𝑡) |2 die
Wahrscheinlichkeit𝑊 (𝑥, 𝑡) dafür darstellen, dass sich ein Teilchen zur Zeit 𝑡 in einem Ortsin-
tervall 𝑥 bis 𝑥 +d𝑥 aufhält:

Born’sche Wahrscheinlichkeitsinterpretation

𝑊 (𝑥, 𝑡)d𝑥 = |𝜓(𝑥, 𝑡) |2d𝑥

Damit diese Interpretation von |𝜓(𝑥, 𝑡) |2 als Wahrscheinlichkeit sinnvoll ist, muss man dafür
sorgen, dass für die Wahrscheinlichkeiten 𝑊 auch das Intervall 0 . . .1 abgedeckt wird. Man
könnte auch sagen, das Teilchen “muss sich irgendwo befinden”. Dieses Verhalten kann man
mit der sogenannten Normierung

Normierung der Wellenfunktion

𝑥=∞∫
𝑥=−∞

|𝜓(𝑥, 𝑡) |2d𝑥 = 1 (10.5)

sicherstellen. Mit dieser Interpretation ergibt sich dann, dass die Wahrscheinlichkeit, dass Teil-
chen im Zentrum des Wellenpaketes zu finden, am größten ist. Jedoch ist auch in einer kleinen
Umgebung darum die Wahrscheinlichkeit nicht verschwindend klein - der Aufenthaltsort des
Teilchens ist also in gewisser Weise “unscharf”.
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Heisenberg’sche Unbestimmtheitsrelation

Abschnitt 11

Heisenberg’sche Unbestimmtheitsrelation

Um die Unschärfe des Ortes in der Wellenfunktion näher zu untersuchen, betrachten wir nun
die Wellenpakete mit den Gauss-Verteilten Amplituden gemäß Gleichung 10.3. Es ergibt sich
also mit etwas Umstellen der Gleichung für das gesuchte Wellenpaket das Integral nach 10.2

𝜓(𝑥, 𝑡) = 𝐶0

∞∫
−∞

e−( 𝑎
2 )2 (𝑘−𝑘0 )2

ei(𝑘𝑥−𝜔𝑡 )d𝑘 ,

welches analytisch gelöst werden kann. Um die Normierung gleich vorwegzunehmen, setzt
man nun 𝐶0 =

√
𝑎

(2𝜋 )3/4 und erhält die Funktion bzw. die Wahrscheinlichkeitsdichte für das
Wellenpaket zum Zeitpunkt 𝑡 = 0:

𝜓(𝑥, 𝑡) =
(

2
𝜋𝑎2

) 1
4

· e−
𝑥2
𝑎2 · ei𝑘0𝑥

Die Wahrscheinlichkeitsdichte für diese komplexe Wellenfunktion 44 beträgt nun44 Das Sternchen steht für die
komplex-konjugierte Wellenfunkti-
on. Der Imaginärteil hat darin das
entgegengesetzte Vorzeichen.

|𝜓(𝑥, 𝑡) |2 = 𝜓(𝑥, 𝑡) ·𝜓(𝑥, 𝑡)∗

=

(
2
𝜋𝑎2

) 1
4

· e−
𝑥2
𝑎2 · ei𝑘0𝑥 ·

(
2
𝜋𝑎2

) 1
4

· e−
𝑥2
𝑎2 · e−i𝑘0𝑥

=

(
2
𝜋𝑎2

) 1
2

· e−
𝑥2
𝑎2 −

𝑥2
𝑎2 ·����

ei𝑘0𝑥−i𝑘0𝑥

=

(
2
𝜋𝑎2

) 1
2

· e−
2𝑥2
𝑎2

Diese Wahrscheinlichkeitsdichte wollen wir nun eingehender untersuchen. Für den ge-
wählten Zeitpunkt 𝑡 = 0 ist die Amplitude offenbar bei 𝑥 = 0 maximal, weil dort die 𝑒-Funktion
ihren größten Wert annimmt. Dies ist also der wahrscheinlichste Aufenthaltsort. An den Punk-
ten 𝑥1,2 = ± 𝑎

2 ist |𝜓 |2 wegen(
2
𝜋𝑎2

) 1
2

· e−
2𝑎2
4𝑎2 =

(
2
𝜋𝑎2

) 1
2

· e− 1
2 = |𝜓(0,0) |2 · 1

√
𝑒

auf 1/
√
𝑒 abgesunken. Die “volle Breite” der Wellenfunktion wird nun üblicherweise genau

mit diesen Werten 𝑥1 − 𝑥2 = 𝑎 = Δ𝑥 definiert (siehe Abb. 38 oben). Diese Differenz wird auch
als Ortsunschärfe bezeichnet.

Wie sich die Verteilung der Wellenzahlen verhält, kann man durch ähnliche Überlegungen
an der Amplitudenfunktion 10.3 untersuchen. Hier sinkt der Funktionswert von |𝐶 (𝑘) |2 bei den
Grenzen 𝑘1,2 = ± 1

2𝑎 auf den 1/
√
𝑒-Teil ab. Die Breite der Verteilung ist dann Δ𝑘 = 𝑘1 − 𝑘2 =

1
𝑎
(siehe Abb. 38 unten). Über den Parameter 𝑎 kann man nun die Ortsunschärfe und die

Unschärfe der Wellenzahlen verbinden und erhält Δ𝑥 ·Δ𝑘 = 1. Durch die Impulsbeschreibung
von de Broglie (𝑝 = ℏ𝑘) kann man nun den Wellenzahlintervall Δ𝑘 durch die Impulsunschärfe
Δ𝑝 = ℏ · Δ𝑘 ersetzen und erhält so Δ𝑥 · Δ𝑝 = ℏ. Man kann mathematisch beweisen, dass
die hier gewählte Gauss-Verteilung für die Wellenzahlamplituden zum geringst-möglichen
Produkt aus Δ𝑥 und Δ𝑝 führt. Somit folgt die Heisenberg’sche Unbestimmtheitsrelation:
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Casimir-Effekt

Heisenberg’sche Unbestimmtheitsrelation

Δ𝑥 ·Δ𝑝 ≥ ℏ (11.1)

Analog, wenn man ein Zeitintervall statt ein Ortsintervall betrachtet, folgt daraus die
Unschärferelation für Energie und Zeit

Δ𝐸 ·Δ𝑡 ≥ ℏ (11.2)

Diese Ergebnisse stehen im starken Gegensatz zur klassischen deterministischen Physik.
Die Relation 11.1 besagt, dass es nicht möglich ist den Impuls und den Ort eines Teilchens
gleichzeitig exakt zu kennen. Durch das Produkt muss eine hohe Präzision des einen Wertes
durch eine geringere Präzision des anderen Wertes erkauft werden. Wenn man nun auch noch
die zeitliche Entwicklung der Bewegung betrachtet, verstärken sich die Auswirkungen noch:
Ein unscharfer Impuls zur Zeit 𝑡0 führt zu einer späteren Zeit 𝑡1 zu einem großen Toleranzbe-
reich in dem ein Teilchen anzutreffen ist. Die Energie-Zeit-Relation bedeutet außerdem, dass
bei sehr kleinen Zeitintervallen die Energie eines Elementarteilchens in bestimmten Bereichen
schwankt. Wir sehen hier auf einfache Weise die Auswirkungen der Quantenelektrodynamik
(QED), die auch Energieschwankungen im Vakuum (auf kleinsten Zeitskalen) beschreibt –
manchmal wird dieses Phänomen populär auch als Quantenschaum bezeichnet.

Welche Konstante genau auf der rechten Seite der Ungleichung 11.1 steht, hängt von der
Definition der Breite der Verteilungen ab. Wenn die Funktionen auf den 1

𝑒
-ten Teil abfallen

sollen, folgt Δ𝑥 · Δ𝑝 ≥ 4ℏ. Wenn man die Breite bis zur ersten Nullstelle definiert, folgt
Δ𝑥 ·Δ𝑝 ≥ ℎ.

Δx

| (t)|Ψ
2

C(k) Δp

Abbildung 38. (oben) Ortsunschärfe
der Wellenfunktion eines Teilchens.
(unten) Unschärfe der Wellenzahl bzw.
des Impulses.

Abschnitt 11.1

Casimir-Effekt

Wir haben soeben gelernt, dass auf sehr kurzen ZeitskalenΔ𝑡 <Δ𝐸/ℏ auch im Vakuum Energie
erzeugt und wieder vernichtet werden kann. Darauf beruht der sogenannte Casimir-Effekt, der
eine nicht-intuitive Kraft zwischen zwei dicht angenäherten Objekten vorhersagt.

Man nimmt dafür an, dass aus den Vakuumfluktuationen für kurze Zeiten sogenannte
virtuelle Teilchen geschaffen werden. Um die Gesetze der Energieerhaltung nicht zu verletzen,
müssen diese Teilchen auch stets wieder vernichtet werden. Ein möglicher Prozess ist etwa
die Entstehung von Teilchen- Antiteilchenpaaren für Δ𝑡 ≈ Δ𝐸

ℏ
, die sich nach Entstehung

durch Annihilation wieder vernichten. Meist werden bei diesem Prozess Photonen erzeugt,
aber auch andere Teilchenarten sind möglich. Dieser Prozess ist nicht spekulativ, sondern
kann direkt messtechnisch bestätigt werden. So springen etwa angeregte Atome wegen der
Vakuumfluktuationen auf den Grundzustand. Schwieriger zu messen ist der nun vorgestellte
Casimir-Effekt: Eine Skizze zum Effekt ist in Abb. 39 zu sehen. Die Platten mit der Fläche

Efree

(alle )λ
E0

(nur n =2 )λ L

L
Fläche A

Efree

(alle )λ

Abbildung 39. Durch Vakuumfluktua-
tion werden beim Casimir-Effekt nahe
Platten zusammengedrückt.

𝐴 seien hier sehr dicht beieinander positioniert. Der Casimir-Effekt beruht nun darauf, dass
der Strahlungsdruck im Außenbereich der Platten größer ist als dazwischen und es so eine
effektive Kraftwirkung zum Zentrum gibt. Die Vakuumenergie, die aus allen Energiequanten
besteht kann man als

𝐸0 =
∑︁
𝑘

ℏ ·𝜔𝑘

ausdrücken. Wir betrachten nun alles zunächst als eindimensionales Problem. Zwischen den
Platten mit sehr geringem Abstand, können nur Photonen mit Wellenlängen existieren, deren
Wellenlängen auch “exakt” zwischen die Platten mit Abstand 𝐿 passen. Das ergibt eine
Einschränkung für die Photonen-Wellenzahl. Wir gehen von Wellenfunktionen aus. Damit
die Randbedingungen zu den Platten passen, muss etwa eine Sinus-Funktion sin(𝑘 · 𝑥) dort
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Heisenberg’sche Unbestimmtheitsrelation

immer Null sein, dass führt zu 𝑘 · 𝑥 = 𝜋,2𝜋, . . .

𝐿 · 𝑘 = 𝑛𝜋 → 𝑘 =
𝑛𝜋

𝐿
;𝑛 = 1,2,3, . . .

mit 𝑛 als Zählvariable für die möglichen Vielfachen der Wellenlänge. Innerhalb der Platten
beträgt dann die Vakuumsenergie:

𝐸0 =
∑︁
𝑘

ℏ ·𝜔𝑘 =
∑︁
𝑘

ℏ · 𝑐 · 𝑘 = 𝜋ℏ𝑐
𝐿

∞∑︁
𝑛=1

𝑛

. Für den Bereich außerhalb der Platten gilt die Einschränkung für die Wellenzahlen nicht.
Damit wird die Energie im Außenbereich zu

𝐸aussen =
𝜋ℏ𝑐

𝐿

∞∫
𝑛=0

𝑛 · 𝑑𝑛

Die Energiedifferenz zwischen diesen beiden Termen beträgt dann

Δ𝐸 = 𝐸0 −𝐸aussen =
𝜋ℏ𝑐

𝐿

©­«
∞∑︁
𝑛=1

𝑛−
∞∫

𝑛=0

𝑛 · 𝑑𝑛ª®¬
Diesen Ausdruck kann man mit einer Summenformel analytisch auswerten und kommt zum
Ergebnis

Δ𝐸 = − 𝜋ℏ𝑐
12𝐿

→ 𝐹 = −𝜕Δ𝐸
𝜕𝐿

= − 𝜋ℏ𝑐

12𝐿2 .

Wenn man nun die Betrachtungen im dreidimensionalen Raum macht, ändern sich nur die
Vorfaktoren. Bezogen auf eine Fläche der Platten 𝐴 erhält man also die tatsächlichen Aussagen
für den 3D-Fall:

Casimir-Effekt

𝐸Cas =
𝜋2ℏ𝑐

720𝐿3 · 𝐴 (11.3)

𝐹Cas = − 𝜋2ℏ𝑐

240𝐿4 · 𝐴 (11.4)

Dies ist eine anziehende Kraft, die bewirkt dass die beiden Platten näher zusammenge-
drückt werden.

Zwei Metallplatten der Fläche 𝐴 = 1cm2 befinden sich in einem Abstand von 𝐿 = 1μm. Die
wirkende Casimir-Kraft ist dann 𝐹Cas ≈ 1.3 ·10−7 N.

Diese vorhergesagte Kraft wurde experimentell mit hoher Genauigkeit bestätigt. Meist
wird die Kraft zwischen einer Kugel und einer Planfläche gemessen. Die Casimir-Kraft hat
starke Auswirkungen auf Technik im Nanometer-Maßstab. So bewirkt sie etwa das kleine
Nanomechaniken “zusammenkleben”. Durch diesen Effekt wird also sozusagen eine proble-
matische Grenze für die Miniaturisierung von Technik geschaffen.
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Auseinanderlaufen des Wellenpaketes

v·t
1

v·t
2

v·t
3

Δx
1

Δx
2

Δx
3

x

Abbildung 40. Die Breite eines Wellenpaketes vergößert sich bei fortschreitender Zeit. Die Fläche der
Wellenfunktion bleibt erhalten.

Abschnitt 11.2

Auseinanderlaufen des Wellenpaketes

Wie wir gesehen haben, nimmt die Unsicherheit über die Position und den Impuls eines
Teilchens mit der Zeit zu. Wie kann man dieses Phänomen quantitativ erfassen? Die Aus-
breitungsgeschwindigkeit eines Teilchens kann man, wie bereits gezeigt, über die Gruppen-
geschwindigkeit der Wellenfunktion 𝑣𝑇 = 𝑣𝑔 =

𝑝

𝑚
beschreiben. Durch die Unschärferelation

kennen wir nun aber lediglich den Impuls mit einer gewissen Toleranz, nämlich 𝑝±Δ𝑝. Die
Unschärfe der Geschwindigkeit folgt dann durch Einsetzen:

Δ𝑣𝑔 =
1
𝑚
Δ𝑝 =

1
𝑚

ℏ

Δ𝑥0

Hierbei ist Δ𝑥0 die ursprüngliche Breite des Wellenpaketes. Der Weg-Zeit-Zusammenhang
wird dann

Δ𝑥(𝑡) = Δ𝑥0 +Δ𝑣𝑔 · 𝑡 = Δ𝑥0 +
ℏ

𝑚 ·Δ𝑥0
· 𝑡

Wie in Abb. 40 gezeigt, nimmt die Breite des Wellenpaketes also mit der Zeit zu. Inter-
essanterweise wird dieses Auseinanderlaufen des Wellenpaketes besonders stark, wenn die
ursprüngliche Breite gering war. Es hängt nämlich Δ𝑣𝑔 =

ℏ
𝑚·Δ𝑥0

indirekt proportional von Δ𝑥0
ab. Obwohl die Breite des Wellenpaketes mit der Zeit zunimmt, ändert sich die gesamte Fläche
jedoch nicht. Dies wird durch die Normierung (die auch die Zeitkoordinate mit einschließt)
durch Gl. 10.5 sichergestellt.

Abschnitt 12

Zusammenfassung: Welle-Teilchen Dualismus

Wir haben in den letzten Kapiteln das Licht sowohl als Teilchen- als auch als Welle ken-
nengelernt. Besonders im Teilgebiet der Optik ist die Wellenbeschreibung des Lichtes sehr
erfolgreich. Für die Erklärung einiger Beobachtungen (Photoeffekt, Compton-Effekt) war es
jedoch nötig, dem Licht Teilcheneigenschaften zuzuordnen um die Experimente erklären zu
können. Diese Teilcheneigenschaften wiederum hängen von typischen Welleneigenschaften
wie Frequenz oder Wellenlänge ab. Dieser sogenannte Welle-Teilchen-Dualismus ist ein üb-
liches Narrativ, wenn man in der Schule die Natur des Lichts untersucht. Licht ist demnach
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Zusammenfassung: Welle-Teilchen Dualismus

also nicht Welle oder Teilchen, sondern sowohl Welle als auch Teilchen. Auch begründet
durch die Unbestimmtheitsrelation kann man nie “alles” über ein Teilchen wissen, sondern
beobachtet immer nur die Manifestation einer bestimmten Eigenschaft. Es sollte aber bei
der Nutzung dieses Konzeptes nicht die Vorstellung übertragen werden, das man sich hier
in einem undefinierbaren Gebiet bewegt und es hier eine Unvollständigkeit gibt. Vielmehr
ist diese Kontroverse seit mehreren Jahrzehnten – seit Entdeckung der Quantenfeldtheorie –
ausgeräumt. Demnach ist das Photon ein Austauschteilchen der elektromagnetischen Wechsel-
wirkung und genau wie das Elektron ein Quantenobjekt – man kommt also ganz ohne Begriffe
wie Welle oder Teilchen aus. Die Quantenelektrodynamik selbst ist eine Feldtheorie jenseits
der Möglichkeiten der Schulmathematik und oft auch des Universitätsstudiums. Um sich der
Quantenphysik aber dennoch zu nähern, bietet es sich an, im Rahmen des Physikunterrichtes
und auch an der Universität auf dieses Konzept des Dualismus zurückzugreifen.
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Zusammenfassung: Welle-Teilchen Dualismus

80



TEIL

IVQuantenphysik
Wenn dich die Quantenmechanik nicht grundsätzlich geschockt hat, hast du sie
noch nicht richtig verstanden. (Niels Bohr)

Im vorherigen Kapitel wurden die Grundlagen für die moderne Beschreibung der Atome
gelegt. Es fanden sich experimentelle Ergebnisse, die Teilchen einen Wellencharakter zuord-
nen. Ebenso zeigte sich, dass elektromagnetische Wellen auch Teilcheneigenschaften besitzen.
Aus den gesammelten Erkenntnissen werden wir nun ein quantenphysikalisches Atommodell
entwickeln. Dies erweitert die aktuell in der Gesellschaft allgemein verbreitete Vorstellung,
die noch dem Rutherfordschen Atommodell entspringt: Ein Elektron (Teilchen!) kreist dabei
um einen kleinen aber massereichen Atomkern (auch ein Teilchen!). Das modernere Modell
wird auf Wellenfunktionen für die Elektronen und deren Aufenthaltswahrscheinlichkeiten
gegründet.

Abschnitt 13

Bohrsches Atommodell

Abbildung 41. zum Bohrschen Atom-
modell: Der Bahnumfang muss das
Vielfache der de-Broglie-Wellenlänge
des Elektrons sein.

Im Jahr 1913 veröffentlichte Nils Bohr sein “Planetenmodell des Atoms”, für das er 1922 den
Nobelpreis erhielt. Das Modell war das Ergebnis seiner Bemühungen, die Energieniveaus der
Elektronen zu verstehen. Dabei war der Ausgangspunkt das Modell von Rutherford. Wenn ein
Elektron als Teilchen um den Atomkern kreist, muss sich die Zentrifugalkraft gerade mit der
Coulomb-Anziehung ausgleichen und es muss gelten

𝐹𝑍 = 𝐹𝐶 (13.1)

−𝑚𝑒𝑣
2

𝑟
= − 1

4𝜋𝜖0

𝑍 · 𝑒2

𝑟2 (13.2)

𝑟 =
𝑍 · 𝑒2

4𝜋𝜖0𝑚𝑒𝑣
2 (13.3)

Problematisch beim Ausdruck für den Radius ist nun, dass dieser gemäß Wahl von 𝑣 beliebige
kontinuierliche Werte annehmen könnte. Die Beobachtungen der Atomspektren zeigten aber,
dass Elektronen immer nur diskrete Energien zu haben scheinen. Die neue Idee von Bohr war
es nun, das Elektron durch eine Materiewelle mit der de Broglie-Wellenlänge zu beschreiben.
Diese soll dann eine stehende Welle sein, deren vielfache Wellenlänge 𝑛 · 𝜆𝐷 genau dem
Bahnumfang 2𝜋𝑟 entsprechen muss, wie dies in Abb. 41 skizziert ist. Diese Annahmen

𝜆𝐷 =
ℎ

𝑚 · 𝑣
→ 𝑣 =

ℎ

𝑚 ·𝜆𝐷
2𝜋𝑟 = 𝑛 ·𝜆𝐷 ;𝑛 = 1,2,3, . . .

kann man nun in Gleichung 13.3 einsetzen und erhält
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Bohrsches Atommodell

Bohrscher Radius

𝑟𝑛 =
𝑛2ℎ2𝜖0

𝜋𝑚𝑒 · 𝑍𝑒2 =
𝑛2

𝑍
𝑎0 (13.4)

𝑎0 =
ℎ2𝜖0

𝜋𝑚𝑒 · 𝑒2 = 5.2917 ·10−11 m (13.5)

wobei 𝑎0 als erster Bohrscher Radius bezeichnet wird. Die möglichen Radien der Um-
laufbahn sind nun nach Gl. 13.4 nicht mehr kontinuierlich, sondern können abhängig von
der Wahl für 𝑛 nur noch diskrete Werte annehmen. Das Wasserstoffatom besteht aus einem
Elektron sowie einer positiven Kernladung (𝑍 = 1). Für den niedrigsten energetischen Zustand
(𝑛 = 1) folgt also, dass der Bahnradius des Elektrons

𝑟1 =
𝑛2

𝑍
𝑎0 =

1
1
𝑎0 = 𝑎0

genau dem Bohrschen Radius entspricht. Mit der nun eingeführten Quantelung des Bahnradi-
us bzw. der Bahngeschwindigkeit, folgt direkt auch die Quantelung der Energie des Elektrons.
Diese setzt sich zusammen aus der kinetischen und der potentiellen Energie 𝐸pot im Cou-
lombfeld des Kerns. Die potentielle Energie 𝐸pot entspricht der bekannten Energie für ein
Punktladungsfeld

𝐸pot = − 𝑍𝑒2

4𝜋𝜖0𝑟

und die kinetische Energie lässt sich aus Gleichung 13.2 herleiten:

−𝑚𝑒𝑣
2

𝑟
= − 1

4𝜋𝜖0

𝑍 · 𝑒2

𝑟2 | · 𝑟 · 1
2

�−
𝑚𝑒𝑣

2

2
=�−

1
2

1
4𝜋𝜖0

𝑍 · 𝑒2

𝑟

𝐸kin =
1
2
��𝐸pot

��
Die Gesamtenergie 𝐸 des Elektrons beträgt dann also

Energie im Bohrschen Atommodell

𝐸𝑛 = 𝐸kin +𝐸pot =
1
2

𝑍𝑒2

4𝜋𝜖0𝑟𝑛
− 𝑍𝑒2

4𝜋𝜖0𝑟𝑛
= −𝑚𝑒𝑒

2 · 𝑍2

8𝜖2
0ℎ

2𝑛2
= −𝑅𝑦∗ · 𝑍

2

𝑛2 (13.6)

mit der Rydberg-Konstanten 𝑅𝑦∗ ≈ 13.6eV. Diese Energie entspricht gerade der Energie,
die nötig ist um das Elektron (im Grundzustand) vom Atomkern des Wasserstoffes vollständig
zu lösen. Weil dabei ein Ion entsteht, nennt man diesen Vorgang auch Ionisierung bzw. 𝐸𝑛

auch die Ionisierungsenergie.
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Quantisierung des Drehimpulses

Abschnitt 13.1

Quantisierung des Drehimpulses

Dadurch, dass die Bahnradien durch die diskreten erlaubten Wellenlängen eingeschränkt
wurden, sind auch nicht mehr alle Drehimpulse für das Elektron auf seiner Bahn erlaubt. Aus
der Geschwindigkeit 𝑣𝑛

𝑣𝑛 = 𝑛 ·
ℎ

2𝜋𝑚𝑒𝑟𝑛

kann man durch Umstellen und Erweitern

Quantisierter Bahndrehimpuls

𝑚𝑒 · 𝑟 · 𝑣𝑛 = |𝑙 | = 𝑛 ·ℏ (13.7)

auch einen Ausdruck für den Drehimpuls herleiten. Diese Formulierung der Quantisie-
rung ist equivalent zu der Aussage 2𝜋𝑟 = 𝑛 ·𝜆𝐷 aus dem vorigen Abschnitt. Wenn später noch
auf Mehrelektronensysteme eingegangen wird, dann bekommt der Bahndrehimpuls noch ei-
ne wichtige Bedeutung. Weil der Drehimpuls genau wie in der klassischen Kinematik eine
Erhaltungsgröße ist, lassen sich viele Problemstellungen angenehmer mit dem Drehimpuls
beschreiben als etwa mit der Bahngeschwindigkeit oder dem Bahnradius.

Abschnitt 13.2

Atomspektren

Die mit dem Bohr’schen Atommodell hergeleiteten diskreten Energien der gebundenen Elek-
tronen kann man direkt mit Experimenten beobachten. Schon 1859 entdeckten Kirchhoff und
Bunsen, dass Atome/Gase nur Licht mit bestimmen Wellenlängen absorbieren oder emit-
tieren können. Ein Versuchsaufbau zur Absorption von Licht ist in Abb. 43 oben gezeigt.
Eine Lichtquelle erzeugt Licht mit einem kontinuierlichen Spektrum. Dieses Licht wird durch
einen Behälter mit atomarem Gas gelenkt. Dort kann dann das Licht möglicherweise mit
den Gasatomen interagieren und ggf. absorbiert werden. Das wieder austretende Licht wird

Abbildung 42. Spektrometer: Man zer-
legt das Licht mit einem Kristall/Prisma
in seine Bestandteile und lenkt das Er-
gebnis auf eine Photoplatte um.

dann von einem Spektrometer oder per Photoplatte wie in Abb. 42 analysiert. Im Spektrum
von Abb. 43 (unten rechts) sieht man, dass offenbar nur bestimmte Wellenlängen von der
Lichtquelle emittiert wurden. Der größte Teil des Spektrums bleibt schwarz. Ein solches
Linienspektrum ist charakteristisch für Atome die als Gas bzw. in verdampfter Form vorlie-
gen. Das ist eine direkte Folge der diskreten, manchmal aber vielfältigen, Energiezustände
in der Atomhülle. Die Eigenschaften von Atomspektren lassen sich in vereinfachter Form
zusammenfassen als:

Eigenschaften von Atomspektren

• Absorbierte Wellenlängen können auch als Emission auftreten.

• Die Emissions-/Absorptionsspektren sind für jedes Atom charakteristisch und ein-
deutig.

• Spektrallinien sind nicht beliebig scharf, sondern haben eine “natürliche Linienbrei-
te”.

Für die Linien in Atomspektren sind nicht nur die Energien 𝐸𝑛 nach Gl. 13.6 zuständig,
sondern auch die möglichen Niveausprünge von 𝐸𝑘 zu 𝐸𝑖 . Die Energielücke

Δ𝐸 = 𝐸𝑘 −𝐸𝑖 = ℎ · 𝜈
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Bohrsches Atommodell

kont.
Spektrum

Absorption best.
Wellenlängen

Spektralzerlegung
Photoplatte/

Schirm

Gasfüllung

a)

b)

Absorption best.
Wellenlängen

Ionisiertes Gas,
He/Ne-Dampflampe,...

Spektralzerlegung
Photoplatte oder

Schirm

Abbildung 43. (a) schematischer Versuchsaufbau für ein Absorptionsspektrum. (b) schematischer
Aufbau für Emission eines Linienspektrums. Rechts ist das Emissionsspektrum einer Quecksilber-
Dampflampe gezeigt.

entspricht dann genau der möglichen Absorptions-/Emissionslinie des Atoms. Die Differenz
wird nun in Form eines Photons freigesetzt. Mit Gleichung 13.6 wird diese Differenz zu

Übergänge in der Elektronenhülle (Wasserstoff)

𝜈 =
𝑅𝑦∗

ℎ
· 𝑍2

(
1
𝑛2
𝑖

− 1
𝑛2
𝑘

)
Man bezeichnet nun die Energiedifferenzen mit festen Ausgangsniveaus 𝑘 als eine “Serie”.

Am einfachsten zu beobachten sind hier die sogenannte Lyman-Serie für 𝑘 = 1 ((𝐸1 − 𝐸𝑖))
und die Balmer-Serie für 𝑘 = 2 (𝐸2 −𝐸𝑖), die beispielhaft in Abb. 44 gezeigt sind.

E=-13.6eV

E=0eV

n=1

n=2

n=3

Lymann
E =Ek 1

Balmer
E =Ek 2

Abbildung 44. Verschiedene mögliche
Übergänge in den Zuständen des Was-
sertstoffatoms.

Auf Seite 123 wird ein Demonstrationsversuch zur Beobachtung eines Linienspektrums
beschrieben.

Damit ergibt sich nun insgesamt schon ein befriedigendes Gebäude von Modellen und
Experimenten. Das Atomspektrum von Wasserstoff ist zunächst hinreichend gut verstanden
und kann auch berechnet werden. Es gibt aber noch ein bisher ignoriertes Problem beim
Bohrschen Atommodell: Wie wir bereits bei der Röntgenstrahlung anerkannt haben, senden
beschleunigte Ladungen elektromagnetische Wellen aus. Ein Elektron, dass sich also auf
einer Bahn um den Atomkern befindet (sog. semi-Klassisches Modell), müsste ständig Ener-
gie verlieren und schließlich in den Kern stürzen. Dennoch ist das Bohrsche Modell, dass
dieses Problem schlicht ignoriert, sehr erfolgreich in der Beschreibung der Experimente. Es
bleibt also die Frage: Warum gibt es überhaupt stabile Atome und warum ist das Bohrsche
Atommodell so erfolgreich?
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Stabilität der Atome

Abschnitt 13.3

Stabilität der Atome

Wir können die Frage nach stabilen Atomen durch Beschreibung des Elektrons mit der
Wellenfunktion beantworten. Wir nehmen zunächst an, dass der mittlere Radius des Wasser-
stoffatoms, inklusive Elektronenhülle, 𝑟 sei. Dann muss also die Ortsunsicherheit Δ𝑟 ≤ 𝑎 sein,
denn irgendwo im Bereich der Hülle muss sich das Elektron schließlich aufhalten. Nach der
Unbestimmtheitsrelation folgt daraus die Unschärfe des Impulses mit Δ𝑝𝑟 ≥ ℏ

𝑎
. Nun können

wir noch folgendes annehmen: Der Impuls 𝑝𝑟 selbst muss also ebenfalls größer als 𝑝𝑟 ≥ ℏ
𝑎

sein, denn sonst würde der Impuls ja genauer bekannt sein als seine Unsicherheit es erlaubt.
Für die kinetische Energie folgt dann

𝐸kin =
𝑝2

2𝑚𝑒

≥ (Δ𝑝)2

2𝑚𝑒

≥ ℏ2

2𝑚𝑒𝑎
2 .

Die Gesamtenergie ist dann

𝐸 = 𝐸kin +𝐸pot ≥
ℏ2

2𝑚𝑒𝑎
2 − 𝑒2

4𝜋𝜖0𝑎
.

Diese Funktion 𝐸 (𝑎) nimmt für einen bestimmten Wert einen minimalen Wert an. Dieses
Extremwertproblem kann man durch

d𝐸
d𝑎

=
−�2ℏ2

�2𝑚𝑒𝑎 �3
+ 𝑒2

4𝜋𝜖0��𝑎
2
= 0

beschreiben. Diese Gleichung wird für den minimalen Atomradius

𝑎min =
4𝜋𝜖0

𝑒2 · ℏ
2

𝑚𝑒

=
𝜖0ℎ

2

𝜋𝑚𝑒𝑒
2 = 𝑎0

erfüllt. Dabei ist 𝑎min = 𝑎0 genau der Bohrsche Radius. Dort befindet sich das Elektron also
in einem Energieminimum. Wenn es weiter Energie verlieren würde, würde die Bilanz der
Unbestimmheitsrelation zu einer ungünstigeren Energie führen.

Abschnitt 13.4

Franck-Hertz-Versuch

Der Franck-Hertz Versuch von 1914 ist nun auch der experimentelle Beweis, dass die Quan-
telung der Elektronenenergie bei Stoßprozessen eine enorme Bedeutung hat. Das Experiment
kann man aus heutiger Sicht als Bestätigung des Bohrschen Atommodells auffassen. Ur-
sprüngliche Idee des Experimentes war es, die Ionisationsenergie der Quecksilberatome zu
bestimmen. Dementsprechend wurden die Versuchsergebnisse von Franck und Hertz auch
zunächst falsch interpretiert, weil ihnen das Bohrsche Atommodell zu der Zeit nicht bekannt
war.

Der Versuch wurde von James Franck und Gustav Hertz durchgeführt und 1925 wurde
ihnen dafür der Nobelpreis verliehen. Der Versuchsaufbau, im Original mit Quecksilberdampf,
ist in Abb. 45a skizziert. Es handelt sich um eine Elektronenröhre, die bei geringem Druck von
𝑝 ≈ 1Pa mit Quecksilberdampf gefüllt ist. Die Glühkathode erzeugt bei angelegter Spannung
eine Elektronenwolke im näheren Raumbereich. Zwischen der Kathode und einem Gitter kann
man eine variable Spannung𝑈e anlegen und so die Elektronen in Richtung des Gitters bis auf
die Energie 𝑒 ·𝑈 beschleunigen 45. Außerdem liegt noch eine zweite Spannung 𝑈B zwischen 45 Das ist ganz ähnlich wie bei

der Röntgenröhre, die Beschleu-
nigungsspannung ist aber deutlich
kleiner.

der dem Gitter einer letzten Elektrode an. Diese Spannung wird gewissermaßen als Filter
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Abbildung 45. a) Schematischer Aufbau des Franck-Hertz-Versuches. Elektronen werden in einer Röh-
re mit Hg oder Ne-Dampf beschleunigt. Wenn die Elektronen die Anode erreichen, wird ein Strom
gemessen. b) Gemessener Anodenstrom abhängig von der Beschleunigungsspannung im PHYWE-
Demonstrationsversuch mit Neon. [42].

benutzt und stößt Elektronen durch eine Gegenspannung mit einer Energie 𝐸kin < 𝑒 ·Δ𝑈wieder
zurück. Das Experiment läuft nun ab, indem die Spannung langsam kontinuierlich erhöht
wird und man ständig den Anodenstrom misst. Daraus ergeben sich dann die Messpunkte,
die in Abb. 45b gezeigt sind. Man sieht, dass der Anodenstrom in regelmäßigen Abständen
zusammenbricht. Bei einem Versuch mit Quecksilber ist das jeweils alle 4.9V der Fall, beim
Demonstrationsversuch mit Neon sinkt der Strom etwa alle 19V ab. Die Erklärung werden wir
nun im Folgenden beschreiben. Die inelastischen Stöße der Elektronen mit den Hg-Atomen
kann man in der Form

𝑒− +Hg → Hg∗ (𝐸𝑎) + 𝑒− −Δ𝐸kin︸︷︷︸
≈𝐸𝑎

darstellen. Es treten natürlich auch elastische Stöße auf. Der Einfluss auf 𝐸kin ist aber durch
den großen Massenunterschied der Stoßpartner zu vernachlässigen. Klassisch müsste man
erwarten, dass beliebige Energieportionen 𝐸𝑎 bei den Stößen aufgenommen werden - bis
hin zur Ionisationsgrenze. Die Messung zeigt aber, dass offenbar immer schon weit vor
der Ionisationsenergie von Quecksilber (𝐸∗

Hg = 11.4eV) die Elektronen bei dem Erreichen
von 4,9eV ihre Energie abgeben. Wenn die Beschleunigungsspannung die Elektronen nur
auf < 4,9eV beschleunigt, finden keine inelastischen Stöße statt. Wenn die Elektronen bei
höheren Spannungen die Möglichkeit haben, nach einem Stoß (mit Verlust von 𝐸𝑎 = 4.9eV)
erneut die nötige Energie für einen weiteren Stoß aufzunehmen, dann sinkt der Anodenstrom
erneut usw. Dieses Experiment zeigt also:

Franck-Hertz Versuch Atome können ihre Energie nur in bestimmten diskreten Energie-
quanten aufnehmen.

Nach dem in der Röhre die Hg-Atome angeregt wurden, wird durch die folgenden Abre-
gungsprozesse wieder ein Photon emittiert gemäß

Hg∗ → Hg+ ℎ · 𝜈

Wenn man den Versuch mit Quecksilberdampf, wie im Original, durchführt, entsteht bei den
Stößen ein Photon mit der Energie 4,9eV und der Wellenlänge 𝜆 = 253nm. Diese liegt leider
im unsichtbaren UV-Bereich . Für Schulen gibt es aber auch Demonstrationsexperimente die
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mit Neon als Füllgas arbeiten. Dabei findet (über Umwege) auch ein Abregungsprozess statt,
der Photonen mit 𝜆 = 500nm erzeugt. Dies ist dann als ein leuchtender Bereich in der Röhre
sichtbar. Beim Erhöhen den Beschleunigungsspannung kann man dann auch einen zweiten
und dritten Stoßbereich an der Leuchterscheinung erkennen. Leider passen in dieser Variante
die Wellenlängen der Emission nicht zum Spannungsabfall bei Δ𝑈 ≈ 19V, da die Emission
über Umwege erfolgt.

Auf Seite 124 wird der Franck-Hertz-Versuch als Demonstrationsexperiment beschrieben.

Abschnitt 14

Schrödingergleichung

Die Indizien und Beweise für die Quantennatur der Materie und des Lichtes sind mittlerweile
unwiderlegbar. Nur fehlt bis dato noch ein Mittel, um mit den als Wellenfunktion beschrie-
benen Teilchen auch tatsächlich Prozesse (Bewegung, Beugung, usw.) zu beschreiben. Für
die klassische Physik mit Massepunkten und starren Körpern findet man diese Beschreibung
durch die Newtonsche Bewegungsgleichung

∑
𝐹 =

d𝑝
d𝑡 . Das Äquivalent in der Quantenphysik

wird Schrödingergleichung (kurz: SGL) genannt. Diese 1926 von Erwin Schrödinger postu-
lierte Gleichung beschreibt statt einer Bahnkurve ®𝑟 (𝑡) die zeitliche und räumliche Entwicklung
einer Wellenfunktion 𝜓(𝑥, 𝑦, 𝑧, 𝑡). Wir erinnern uns, dass diese Wellenfunktion die allgemeine
Form

𝜓(𝑥, 𝑡) = 𝐴 · ei(𝑘𝑥−𝜔𝑡 ) = 𝐴 · e i
ℏ
(𝑝𝑥−𝐸kin𝑡 )

haben kann. (Zur Vereinfachung der Rechnung lassen wir hier die Formulierung als Wel-
lenpaket kurz beiseite.) Zunächst wollen wir die Annahme treffen, dass die Wellenfunktion
“stationär” ist. Das bedeutet, die Wellenfunktion 𝜓 besteht aus einem ortsabhängigen und
einem zeitabhängigem Teil, die beide voneinander trennbar sind. Wir nehmen also damit an,
dass man im eindimensionalen Fall 𝜓(𝑥, 𝑡) auch als 𝜓1 (𝑥) ·𝜓2 (𝑡) schreiben kann. Die ebene
Welle

𝜓(𝑥, 𝑡) = ei(𝑘𝑥−𝜔𝑡 )

kann man auch in diesem Sinne zerlegen. Durch Anwendung der Exponentialregeln folgt:

𝜓(𝑥, 𝑡) = ei(𝑘𝑥−𝜔𝑡 ) = ei𝑘𝑥+(−𝑖𝜔𝑡 ) = ei𝑘𝑥 · e−i𝜔𝑡 = 𝜓(𝑥) · e−i𝜔𝑡

Wenn man das in die allgemeine Wellengleichung mit der Ausbreitungsgeschwindigkeit 𝑢

𝜕2𝜓

𝜕𝑥2 =
1
𝑢2
𝜕2𝜓

𝜕𝑡2

einsetzt, folgt

𝜕2 (𝜓(𝑥) ·𝜓(𝑡))
𝜕𝑥2 = −𝑘2𝜓(𝑥) ·𝜓(𝑡) = − 𝑝

2

ℏ2 𝜓(𝑥) ·𝜓(𝑡) = −2𝑚
ℏ2 𝐸kin𝜓(𝑥) ·𝜓(𝑡) (14.1)

für die 2-fache partielle Ableitung nach 𝑥. Der Impuls wurde hier durch die Kombination von
𝐸kin =

𝑝2

2𝑚 und 𝑝 = ℏ𝑘 ersetzt. Der Zeitanteil ist wegen der geforderten partiellen Ableitung
als konstant zu behandeln und bleibt unverändert. Analog folgt für die 2-fache partielle
Zeitableitung

𝜕2 (𝜓(𝑥) ·𝜓(𝑡))
𝜕𝑡2

= 𝜓(𝑥) · 𝜕
2 (e−i𝜔𝑡 )
𝜕𝑡2

= −𝜔2𝜓(𝑥) ·𝜓(𝑡).

Die Gesamtenergie des Teilchens setzt sich zusammen aus der potentiellen Energie 𝐸pot und
der kinetischen Energie aus Gleichung 14.1. Damit wird Gleichung 14.1 nach Einsetzen von
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Schrödingergleichung

𝐸kin = 𝐸 −𝐸pot zu

���𝜓(𝑡) · 𝜕
2𝜓(𝑥)
𝜕𝑥2 = −2𝑚

ℏ2 (𝐸 −𝐸pot)𝜓(𝑥) ·���𝜓(𝑡)

und damit zur stationären Schrödingergleichung:

Stationäre Schrödingergleichung

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2 +𝐸pot𝜓 = 𝐸𝜓 (14.2)

Anmerkung: Hier wurde stets nur ein eindimensionales Problem der Koordinate 𝑥 behan-
delt. Die Gleichung gilt natürlich auch für eine dreidimensionale Wellenfunktion, wenn
man statt der partiellen Ableitung nach 𝑥 den Differentialoperator ∇ ·∇ = Δ =

(
𝜕
𝜕𝑥
, 𝜕
𝜕𝑦
, 𝜕
𝜕𝑧

)
verwendet.

Etwas komplizierter wird es, wenn wir auch die zeitliche Entwicklung der Wellenfunktion
betrachten wollen. Dazu bilden wir zunächst die erste partielle Zeitableitung der Wellenfunk-
tion:

𝜕𝜓

𝜕𝑡
=
𝜕

𝜕𝑡

(
ei𝑘𝑥 · e−i𝜔𝑡

)
= −i𝜔𝜓 = −i

𝐸

ℏ
𝜓 (14.3)

Mit 𝑖−1 = −𝑖 kann man dies Umstellen, um einen Ausdruck für 𝐸𝜓 zu erhalten:

𝐸𝜓 = iℏ
𝜕𝜓

𝜕𝑡
(14.4)

Ziel ist es nun, diesen zeitabhängigen Ausdruck mit der stationären Schrödingergleichung 14.2
zu verbinden. Wir setzen dafür im potentialfreien Fall (𝐸pot = 0) einfach Gl. 14.4 in Gl. 14.2
ein und erhalten

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2 +0 = 𝐸𝜓 = iℏ
𝜕𝜓

𝜕𝑡
,

was auch zeitabhängige potentialfreie (für ein freies Teilchen) Schrödingergleichung genannt
wird:

Zeitabhängige Schrödingergleichung für 𝐸pot = 0

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2 = iℏ
𝜕𝜓

𝜕𝑡
(14.5)

Was aber ist zu tun, wenn wir eine zeitabhängige Schrödingergleichung mit potentieller
Energie betrachten? Für diesen Fall gibt es tatsächlich keine Herleitung. In Gl. 14.3 haben
wir vorausgesetzt, dass die Energie konstant ist und damit auch 𝜔 konstant ist. Die Ableitung
müsste also unter Einfluss eines Potentials komplizierter werden. Erwin Schrödinger hat
dennoch die Kombination der stationären und der potentialfreien SGL wie folgt postuliert:

Zeitabhängige Schrödingergleichung

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2 +𝐸pot𝜓 = iℏ
𝜕𝜓

𝜕𝑡
(14.6)

Diese Gleichung ist die bis heute experimentell bestätigte Grundgleichung der Quan-
tenmechanik. Obwohl ohne explizite Herleitung, gibt es bisher keinen Anhaltspunkt gegen
dieses Postulat. Sie liefert das Gegenstück der Quantenmechanik zur Newtonschen Bewe-
gungsgleichung in der klassischen Physik. Außerdem kann man die Schrödingergleichung
auch als äquivalent zum klassischen Energiesatz auffassen, indem die einzelnen Teile mit der
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Teilchen im Kastenpotential I

kinetischen bzw. der Gesamtenergie assoziiert werden:

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2︸      ︷︷      ︸
𝐸kin𝜓

+𝐸pot𝜓︸︷︷︸
𝐸pot𝜓

= iℏ
𝜕𝜓

𝜕𝑡︸︷︷︸
𝐸𝜓

Bevor nun verschiedene grundlegende Anwendungen der Schrödingergleichung gezeigt
werden, soll noch einmal zusammengefasst werden, womit man es hier eigentlich zu tun hat.
In der klassischen Physik gilt das Prinzip des Determinismus. Wenn man Impuls und Ort eines
Teilchens sowie die darauf wirkenden Kräfte kennt, kann man für alle Zeiten den Ablauf dessen
Bewegung vorausberechnen – analytisch oder ggf. numerisch mit beliebiger Genauigkeit.
Dieses Prinzip des Determinismus hat nun die Quantenphysik hinter sich gelassen. Die Bahn
®𝑟 (𝑡) kann man nur noch innerhalb der Grenzen der Unschärferelation betrachten. Man kann
nur noch Wahrscheinlichkeiten angeben, bei denen ein Teilchen zu einer Zeit zu finden ist.
Zusätzlich beeinflusst die Kenntnis (also die Messung) des Ortes die Unschärfe selbst. Wir
haben es also tatsächlich mit einer neuen Art von Physik zu tun, die nicht umsonst als
“Quantenphysik” von der “klassischen Physik” abgegrenzt wird.

Abschnitt 14.1

Teilchen im Kastenpotential I

E

x0 a

E =0pot

Epot=∞ Epot=∞

Abbildung 46. Potentialkasten von 𝑥 =
0 bis 𝑥 = 𝑎. Die Wände des Potentialkas-
tens sind “unendlich hoch”.

Als Beispiel für die Einführung in die Verwendung der SGL wird oft das Kastenpotential ver-
wendet. Wir betrachten hierbei eine Wellenfunktion 𝜓(𝑥) ohne Zeitabhängigkeit im Potential
der Form

𝐸pot (𝑥) =

∞, ∀ 𝑥 < 0
0, ∀ 0 < 𝑥 < 𝑎
∞, ∀ 𝑥 > 𝑎

wie es auch in Abb. 46 skizziert ist. Weil die potentielle Energie außerhalb des Potentials
unendlich groß ist, können wir problemlos voraussetzen, dass die Wellenfunktion dort nicht
vorhanden sein darf (𝜓(x < 0 und x > a) = 0). Wir werden nun erstmalig die Schrödingerglei-
chung zur Beschreibung eines Systems verwenden. In diesem Kurs werden wir uns zunächst
auf die stationäre Schrödingergleichung beschränken. Diese wird vornehmlich benutzt wer-
den um zulässige Wellenfunktionen zu finden. Außerdem kann man die Energieniveaus dieser
Wellenfunktionen berechnen. Das wollen wir für dieses Beispiel des Potentialtopfes nun sehr
detailiert tun.

Die stationäre Schrödingergleichung (Gl. 14.2) lautet:

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2 +𝐸pot𝜓 = 𝐸𝜓

Zunächst formen wir die SGL um für den inneren Bereich des Kastens, wo die potentielle
Energie Null ist:

− ℏ2

2𝑚
𝜕2𝜓

𝜕𝑥2 = 𝐸𝜓 | · 2𝑚
ℏ2 (14.7)

−𝜕
2𝜓

𝜕𝑥2 =
2𝑚
ℏ2 𝐸𝜓 | 𝑘2 =

2𝑚𝐸
ℏ2 (14.8)

0 = 𝑘2𝜓 + 𝜕
2𝜓

𝜕𝑥2 (14.9)

Hier sieht man jetzt eine ganz normale Differentialgleichung, wie man sie schon aus der
Mechanik von Schwingungen kennt. Die Lösung sollte einfach durch eine Wellengleichung
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Schrödingergleichung

möglich sein. Wir wählen

𝜓(𝑥) = 𝐴 · sin(𝑘𝑥) +𝐵 · cos(𝑘𝑥)

als Ansatz, womit ganz allgemein alle möglichen Schwingungen eingeschlossen sind. Durch
die Kombination von Sinus und Cosinus kann man über Additionstheoreme auch Phasenver-
schiebungen usw. mit abdecken. Als nächstes muss man den Ansatz noch für das gegebene
Problem “zuschneiden” - also alle Randbedingungen berücksichtigen. Die gesuchte Wellen-
funktion soll außerhalb des Bereiches 0 < 𝑥 < 𝑎 verschwinden. Damit die Wellenfunktion auch
stetig in diese Bereiche übergeht, muss also auch an diesen Punkten selbst die Wellenfunktion
= 0 sein:

𝜓(0) = 0 → 𝜓(0) = 𝐴 · sin(0) +𝐵 · cos(0) = 𝐵 ·1

Dies ist nur zu erfüllen, wenn der Koeffizient 𝐵 = 0 ist. Das heißt, den Kosinus-Term können
wir aus der Lösung schon streichen weil er nicht den Randbedingungen genügen würde.
Außerdem muss gelten:

𝜓(𝑎) = 0 → 𝜓(𝑎) = 𝐴 · sin(𝑘 · 𝑎) = 0

Da der Sinus immer bei ganzzahligen Vielfachen von 𝜋 verschwindet, muss nun also das 𝑘
entsprechend für die Lösung dieser Gleichung sorgen. Das funktioniert nur, wenn 𝑘 · 𝑎 = 𝜋 ·𝑛
ist. Dabei ist 𝑛 eine natürliche Zahl größer oder gleich 1. Das führt zu

𝑘𝑛 =
𝜋

𝑎
· 𝑛 ;𝑛 = 1,2,3, . . . .

Nun fehlt für die Nutzung der Wahrscheinlichkeitsinterpretation noch die Normierung der
Wellenfunktion. Die ergibt sich aus der Forderung

1 =

𝑎∫
0

|𝐴 · sin
( 𝜋
𝑎
· 𝑛𝑥

)
|2𝑑𝑥 = 𝐴2 ·

𝑎∫
0

sin2
( 𝜋
𝑎
· 𝑛𝑥

)
𝑑𝑥

= 𝐴2
[
𝑥

2
− sin(2𝜋𝑛𝑥/𝑎)

4𝜋𝑛/𝑎

]𝑎
0

= 𝐴2
( [
𝑎

2
− sin(2𝜋𝑛𝑎/𝑎)

4𝜋𝑛/𝑎

]
−

[
0− sin(0)

4𝜋𝑛/𝑎

] )
= 𝐴2 𝑎

2

→ 𝐴 =

√︂
2
𝑎
,

für die die passende Stammfunktion zu sin2 (𝐶 · 𝑥) in einem Tabellenwerk nachgeschlagen
werden kann [36]. Nun setzen wir die passende (also den Randbedingungen genügende)
Funktion

𝜓(𝑥) =
√︂

2
𝑎
· sin

( 𝜋
𝑎
· 𝑛𝑥

)
(14.10)

in die Schrödingergleichung 14.7 ein um die korrespondierenden Energien zu finden. Das
führt zu:

− ℏ2

2𝑚

𝜕2
(√︃

2
𝑎
· sin

(
𝜋
𝑎
· 𝑛𝑥

) )
𝜕𝑥2 = 𝐸 ·

√︂
2
𝑎
· sin

( 𝜋
𝑎
· 𝑛𝑥

)
(14.11)

�−
ℏ2

2𝑚�
��(−1) ·��������

√︂
2
𝑎
· sin

( 𝜋
𝑎
· 𝑛𝑥

)
·
( 𝜋
𝑎
· 𝑛

)2
= 𝐸 ·��������

√︂
2
𝑎
· sin

( 𝜋
𝑎
· 𝑛𝑥

)
(14.12)

→ 𝐸 =

( 𝜋
𝑎
· 𝑛

)2
· ℏ

2

2𝑚
= 𝑛2 ℎ2

8𝑚𝑎2 = 𝑛2 ·𝐸∗ (14.13)
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Tunneleffekt

E0

x=0 a x

ψI ψII ψIII

Abbildung 48. Skizze zum Tunneleffekt. Die Eingangsenergie reicht eigentlich nicht aus, um das
Potential zu überwinden. Dennoch gibt es eine Aufenthaltswahrscheinlichkeit auch hinter der Barriere.

Die Energie des Teilchens in diesem unendlich hohen Potentialtopf ist also erneut nicht
kontinuierlich, sondern kann nur in gequantelten Zuständen

Energieniveaus im (unendlich hohen) Potentialtopf

𝐸𝑛 = 𝑛
2 · ℎ2

8𝑚𝑎2 = 𝑛2 ·𝐸∗ ;𝑛 = 1,2,3, . . .

vorkommen. Dies deckt sich mit den Ergebnissen, wie sie beim Bohrschen Atommodell
erhalten worden sind. Die Wellenfunktionen müssen, gemäß den Randbedingungen, also
immer genau zwischen die Barieren passen wie es in Abb. 47 skizziert ist. Mit abnehmender
Wellenlänge erhöht sich dann entsprechend 𝐸 = ℎ · 𝑐/𝜆 die Energie. Der niedrigste Zustand
für 𝑛 = 1 wird als Grundzustand bezeichnet.

E

x0 a

E >00

E1

E2

| |Ψ
2

Abbildung 47. Mögliche Aufenthalts-
wahrscheinlichkeiten im Potentialkas-
ten mit unendlich hohen Wänden.

Abschnitt 14.2

Tunneleffekt

Für das Teilchen im unendlich hohen Potentialtopf haben wir bereits gesehen, wie man die
Schrödingergleichung nutzen kann um Aussagen zu einer Problemstellung zu bekommen.
Jetzt wollen wir einen komplizierteren Fall untersuchen. Die Ausgangssituation ist in Abb. 48
skizziert. Eine Welle (bzw. ein Teilchen) soll mit Wellenlänge𝜆 = 2𝜋

𝑘
auf eine Potentialbarriere

der Breite 𝑎 und Höhe 𝐸0 treffen. Die Potentialbarriere ist diesmal also endlich und man kann
nicht direkt annehmen, dass die Wellenfunktion dort verschwindet. Um den Tunneleffekt nun
genau zu untersuchen und zu beschreiben, müssen wir wieder entsprechende Lösungsansätze
für die Schrödingergleichung machen und die geltenden Randbedingungen anwenden. Wir
suchen die Wellenfunktionen für die drei Bereiche I, II und III aus Abb. 48. Als Ansätze nutzen
wir wieder einfache Wellenfunktionen - mit einer leichten Ergänzung. Um maximal flexibel
in der Lösung zu sein (die Randbedingungen lassen dann später ggf. Terme wegfallen), lassen
wir Lösungen der Form 𝐴 · ei𝑘𝑥 + 𝐵 · e−i𝑘𝑥 zu, was auch reflektierte Wellen erlaubt. Denn:
negative 𝑘-Werte in der Wellenfunktion bedeuten Ausbreitung entgegengesetzt zu 𝑥. Für die
drei Bereiche nutzen wir die Ansätze

𝜓𝐼 = 𝐴 · ei𝑘𝐼 𝑥 +𝐵 · e−i𝑘𝐼 𝑥

𝜓𝐼 𝐼 = 𝐶 · ei𝑘𝐼𝐼 𝑥 +𝐷 · e−i𝑘𝐼𝐼 𝑥

𝜓𝐼 𝐼 𝐼 = 𝐴′ · ei𝑘𝐼𝐼𝐼 𝑥

wobei für den Teil III keine Reflektion mehr möglich ist, weil ja keine weitere Barriere folgt.
Zusätzlich kann man folgende sinnvolle Forderungen stellen, welche die Konstanten dann

91



Schrödingergleichung

festlegen:

• Die Wellenfunktionen 𝜓𝐼 ,𝜓𝐼 𝐼 ,𝜓𝐼 𝐼 𝐼 müssen an den Übergangsstellen 0 und 𝑎 jeweils
den gleichen Wert haben, damit sie nahtlos ineinander übergehen.

→ 𝜓𝐼 (0) = 𝜓𝐼 𝐼 (0) ; 𝜓𝐼 𝐼 (𝑎) = 𝜓𝐼 𝐼 𝐼 (𝑎)

• An den Übergangsstellen 0 und 𝑎 muss der Übergang stetig sein. Das verbietet also
etwa einen “Knick” als mögliche Fortsetzung.

→ 𝜕𝜓𝐼

𝜕𝑥

����
𝑥=0

=
𝜕𝜓𝐼𝐼

𝜕𝑥

����
𝑥=0

; 𝜕𝜓𝐼𝐼

𝜕𝑥

����
𝑥=𝑎

=
𝜕𝜓𝐼𝐼𝐼

𝜕𝑥

����
𝑥=𝑎

Wenn man die Ansätze in die stationäre Schrödingergleichung einsetzt und die Randbedingun-
gen anwendet, erhält man ein System von 4 Gleichungen für die Koeffizienten 𝐴, 𝐵,𝐶,𝐷, 𝐴′.
Um den Tunneleffekt zu beschreiben sind nun nicht alle Lösungen dieser Gleichungen nötig
– es genügt, die Amplituden nach dem Durchgang 𝜓𝐼 𝐼 𝐼 (𝑥 > 𝑎) mit der einlaufenden Welle
𝜓𝐼 (𝑥 < 0) zu vergleichen. Die sogenannte Transmission 𝑇 berechnet sich dann gemäß

Quantenmechanischer Tunneleffekt

𝑇 =
|𝐴′ |2

|𝐴|2
≈ 16𝐸
𝐸2

0
(𝐸0 −𝐸) · e−2𝑎·

√
2𝑚(𝐸0−𝐸)

ℏ .

Diese Transmissionsrate beschreibt die absolute Wahrscheinlichkeit, dass ein Teilchen
mit der Energie 𝐸 hinter der Potentialbarriere mit 𝐸pot = 𝐸0 und Breite 𝑎 anzutreffen ist.
Dieser Wert ist auch größer als 0, obwohl die Potentialbarriere höher als die eigene Energie
ist (𝐸0 − 𝐸) > 0. Dies ist aus klassischer Sicht nicht möglich und ein typischer Effekt der
Quantenphysik. Relevant ist der Tunneleffekt beispielsweise beim Alphazerfall. Dabei verlässt
ein Helium-4-Kern (2 Protonen und 2 Neutronen) ein größeren Atomkern. Der Potentialwall
aus anziehender Kernwechselwirkung und abstoßender Coulomb-Wechselwirkung ist deutlich
höher als die zur Verfügung stehende Energieschwankung im Kern. Wenn es den Tunneleffekt
nicht gäbe, müsste ein Alphazerfall deutlich seltener stattfinden und außerdem hätten die freien
Alphateilchen größere kinetische Energien. Nur mit der Anwendung des Tunneleffektes kann
man die beobachtete Energieverteilung und Zerfallshäufigkeit erklären.

Abschnitt 14.3

Zweidimensionales Kastenpotential

a

b

0 x

y

E =0pot

E =pot ∞

Abbildung 49. Zweidimensionales
Kastenpotential mit unendlich hohen
Potentialbarrieren.

Als eine wichtige Vorstufe zur Beschreibung des Wasserstoffatoms mit der Schrödinger-
gleichung, wollen wir zunächst noch ein zweidimensionales Kastenpotential wie in Abb. 49
untersuchen. Es soll sich analog zum eindimensionalen Fall um ein Potential der Form

𝐸pot (𝑥, 𝑦) =


0, ∀ 0 < 𝑥 < 𝑎
0, ∀ 0 < 𝑦 < 𝑏
∞, sonst

handeln. Nun muss man einen Lösungsansatz für die stationäre Schrödingergleichung finden.
Vereinfacht wird dies durch die Annahme, dass die gesuchte Lösung sich in zwei Faktoren
zerlegen lässt gemäß

𝜓(𝑥, 𝑦) = 𝑓 (𝑥) · 𝑔(𝑦).
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SGL mit kugelsymmetrischem Potential

Die Schrödingergleichung lässt sich dann in zwei voneinander unabhängige Gleichungen, jede
für eine Variable, teilen:

− ℏ2

2𝑚
𝜕2 𝑓 (𝑥)
𝜕𝑥2 +𝐸pot 𝑓 (𝑥) = 𝐸 𝑓 (𝑥) (14.14)

− ℏ2

2𝑚
𝜕2𝑔(𝑦)
𝜕𝑦2 +𝐸pot𝑔(𝑦) = 𝐸𝑔(𝑦) (14.15)

Die Lösung für jede dieser Gleichungen kennen wir bereits aus dem eindimensionalen Fall.
Sie lauten analog zu Gl. 14.10:

𝑓 (𝑥) = 𝐴 · sin
(𝑛𝑥𝜋
𝑎

· 𝑥
)

𝑛𝑥 = 1,2,3, . . . (14.16)

𝑔(𝑦) = 𝐵 · sin
(𝑛𝑦𝜋
𝑏

· 𝑦
)

𝑛𝑦 = 1,2,3, . . . (14.17)

→ 𝜓(𝑥, 𝑦) = 𝐴 · 𝐵 · sin
(𝑛𝑥𝜋
𝑎

· 𝑥
)
· sin

(𝑛𝑦𝜋
𝑏

· 𝑦
)

(14.18)

Diese Wellenfunktion muss noch normiert werden, damit man das Betragsquadrat später
als Aufenthaltswahrscheinlichkeit interpretieren kann. Aus der Normierungsbedingung ergibt
sich dann

𝑎∫
𝑥=0

𝑏∫
𝑦=0

|𝜓(𝑥, 𝑦) |2 𝑑𝑥𝑑𝑦 = 1 =

𝑎∫
𝑥=0

| 𝑓 (𝑥) |2𝑑𝑥
𝑏∫

𝑦=0

|𝑔(𝑦) |2𝑑𝑦 → 𝐴 · 𝐵 =
2

√
𝑎 · 𝑏

Durch Einsetzen der normierten Wellenfunktion in die stationäre SGL kann man nun die
Energieniveaus erhalten. Es ergibt sich

Energieniveaus 2D-Kastenpotential

𝐸 (𝑛𝑥 , 𝑛𝑦) =
ℏ2𝜋2

2𝑚

(
𝑛2
𝑥

𝑎2 +
𝑛2
𝑦

𝑏2

)
= 𝐸∗

𝑥𝑛
2
𝑥 +𝐸∗

𝑦𝑛
2
𝑦

Wir sehen also, dass es nun eine Vielzahl von möglichen Kombinationen für die Energie-
niveaus gibt. Erstmalig zeigt sich hier auch der Fall, dass man durch verschiedene Kombination
der Quantenzahlen 𝑛𝑥 und 𝑛𝑦 zu identischen Energieniveaus kommen kann, falls beispiels-
weise der Potentialkasten quadratisch ist und damit 𝑎 = 𝑏 gilt. Dies ist dann etwa der Fall für
die Kombinationen 𝑛𝑥 = 7, 𝑛𝑦 = 1 und 𝑛𝑥 = 𝑛𝑦 = 5, für die man jeweils 𝑛2

𝑥 +𝑛2
𝑦 = 50 erhält.

Entartete Zustände Energieniveaus, die man durch 𝑚 verschiedene Kombinationen von
Quantenzahlen erreichen kann, nennt man “𝑚-fach entartet”.

Abschnitt 14.4

SGL mit kugelsymmetrischem Potential

y

x

r
θ

φ

z

Abbildung 50. Zur Definition der Ku-
gelkoordinaten 𝑟, 𝜃, 𝜑

Bisher wurde die Schrödingergleichung für kartesische Koordinaten (𝑥, 𝑦, 𝑧) betrachtet. Für
erste Erkenntnisse zu ein- und zweidimensionalen Problemen war das bereits sehr hilfreich.
Ein Coulombpotential 𝐸pot = 1/(4𝜋𝜖0) ·𝑄/𝑟), wie es etwa um den Kern eines Wasserstoffa-
toms besteht, ist aber radialsymmetrisch und kann daher am sinnvollsten mit Kugelkoordinaten
bzw. sphärischen Koordinaten (𝑟, 𝜃, 𝜑) beschrieben werden.
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Schrödingergleichung

Für die Vergesslichen: Die Definition der Kugelkoordinaten kann man sich in Abb. 50 noch-
mals vor Augen führen. Die Umrechnungsvorschriften lassen sich direkt aus der Zeichnung
erahnen, indem man jeweils die Sinus- und Kosinussätze anwendet. Zusammengefasst:

𝑥 = 𝑟 · sin𝜃 cos𝜑 𝑟 =
√︁
𝑥2 + 𝑦2 + 𝑧2

𝑦 = 𝑟 · sin𝜃 sin𝜑 𝜃 = arccos
𝑧

𝑟

𝑧 = 𝑟 · cos𝜃 𝜑 = arctan
𝑦

𝑥

Außerdem ändern sich die Ausdrücke für die Differentiale 𝑑𝑥, 𝑑𝑦, 𝑑𝑧. Was wir benötigen,
ist beispielsweise der Gradient ∇𝑟 bzw. der Laplaceoperator ∇2

𝑟 = Δ in Kugelkoordinaten:

∇𝑟 =

(
𝜕

𝜕𝑟
,
1
𝑟

𝜕

𝜕𝜃
,

1
𝑟 · sin𝜃

𝜕

𝜕𝜑

)
∇2
𝑟 =

1
𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕

𝜕𝑟

)
+ 1
𝑟2 · sin𝜃

𝜕

𝜕𝜃

(
sin𝜃

𝜕

𝜕𝜃

)
+ 1
𝑟2 · sin2 𝜃

𝜕2

𝜕𝜑2

In Kugelkoordinaten lautet die stationäre Schrödingergleichung nun also

1
𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕𝜓

𝜕𝑟

)
+ 1
𝑟2 · sin𝜃

𝜕

𝜕𝜃

(
sin𝜃

𝜕𝜓

𝜕𝜃

)
+ 1
𝑟2 · sin2 𝜃

𝜕2𝜓

𝜕𝜑2 + 2𝑚
ℏ2 (𝐸 −𝐸pot (𝑟))𝜓 = 0

Diese Differentialgleichung sieht nun erstmal recht unangenehm aus. Es ist aber möglich,
ihre Komplexität deutlich zu reduzieren. Wir hoffen auch diesmal wieder, dass eine mögliche
Lösung 𝜓(𝑟, 𝜃, 𝜑) sich in Faktoren zerteilen lässt, von denen jeder über nur eine Koordinaten-
abhängigkeit verfügt:

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟) ·Θ(𝜃) ·Φ(𝜑)

Das Einsetzen dieses Ansatzes führt dazu, dass man die Terme etwas umordnen kann. Unser
Ziel für die Lösung dieser Differentialgleichung nennt sich im Allgemeinen “Trennung der
Variablen”:

sin2 𝜃

𝑅

d
d𝑟

(
𝑟2 d𝑅

d𝑟

)
+ sin𝜃

Θ

d
d𝜃

(
sin𝜃

dΘ
d𝜃

)
+ 2𝑚

ℏ2 (𝐸 −𝐸pot (𝑟))𝑟2 sin2 𝜃 = − 1
Φ

d2Φ

d𝜑2 (14.19)

Man kann hier also die Gleichung in zwei Seiten aufteilen: Auf der linken Seite gibt es nur
Abhängigkeiten von 𝑟 und 𝜃, die rechte Seite hängt nur von 𝜑 ab. Da unsere gesuchte Lösung
𝜓 natürlich für eine beliebige Wahl der Koordinaten die SGL erfüllen soll, kann jede Seite
für sich genommen nur konstant sein. Wir können jetzt also die linke und rechte Seite der
Gleichung getrennt voneinander als konstant betrachten. Zunächst soll auf die rechte Seite
eingegangen werden:

Der konstante Wert beider Seiten der Gleichung soll 𝐶1 genannt werden. Damit ergibt
sich

𝐶1 = − 1
Φ

d2Φ

d𝜑
bzw.

d2Φ

d𝜑
+𝐶1Φ = 0

Die Lösung für diese Gleichung ist offensichtlich eine 𝑒-Funktion der Form

Φ = 𝐴 · e±i
√
𝐶1𝜑 .

Diese komplex-wertige Funktion wiederholt ihren Wert nach einer Phasenverschiebung von
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𝑛 ·2𝜋. Wir fordern, dass sich an der physikalischen Aussage dadurch nichts ändern darf:

Φ(𝜑) = Φ(𝜑+2𝜋 · 𝑛) (14.20)

�����
𝐴 · e±i

√
𝐶1𝜑 =�����

𝐴 · e±i
√
𝐶1𝜑 · e±i

√
𝐶12𝜋 ·𝑛 (14.21)

1 = ·e±i
√
𝐶12𝜋 ·𝑛 (14.22)

Die letzte Gleichung kann nur dauerhaft erfüllt sein, wenn auch
√
𝐶1 immer eine ganze Zahl

𝑚 ∈ Z ist. Die Funktion Φ(𝜑) nimmt also die Form

Φ(𝜑) = 𝐴 · ei𝑚𝜑

an. Durch die Normierungsbedingung
∫ 2𝜋

0 𝑑𝜑 |Φ|2 = 1 kann man den Parameter 𝐴 festlegen
und hat die Funktion

Φ(𝜑) = 1
√

2𝜋
ei𝑚𝜑

gefunden.

Nun wollen wir die linke Seite von Gl. 14.19 betrachten. Es ist auch hier wieder möglich,
die einzelnen Variablen zu separieren. Das ergibt dann die beiden Teile 46 46 Hier wurde 𝐶1 = 𝑚2 = − 1

Φ
d2Φ
d𝜑2

eingesetzt.
1
𝑅

d
d𝑟

(
𝑟2 d𝑅

d𝑟

)
+ 2𝑚

ℏ2 𝑟
2 (𝐸 −𝐸pot) = − 1

Θsin𝜃
d

d𝜃

(
sin𝜃

dΘ
d𝜃

)
+ 𝑚2

sin2 𝜃
= 𝐶2 (14.23)

die wiederum nur von einer Variable abhängen und also konstant 𝐶2 sein müssen, damit die
Lösung universell für alle gewählten Koordinaten gilt. Für die rechte Seite dieser Gleichung
kennt man aus der Mathematik die Lösung unter dem Namen “Legendre-Polynome” 𝑃𝑚

𝑙
.

Daraus kann man die Konstante 𝐶2 = 𝑙 (𝑙 + 1) bestimmen, mit einer ganzen Zahl (später:
Quantenzahl) 𝑙 ∈ N. Außerdem muss −𝑙 ≤ 𝑚 ≤ 𝑙 gelten. Weil wir später noch oft solche
Quantenzahlen betrachten werden, sei hier betont: Es handelt sich um eine mathematische
Notwendigkeit für die Lösung der Differentialgleichung. Es gibt also keine (offensichtliche)
physikalische Notwendigkeit für die Forderungen an 𝑙 und 𝑚.

Die Verbindung der Funktion Φ(𝜑) und 𝑃𝑚
𝑙

nennt man Kugelflächenfunktionen

Kugelflächenfunktionen

𝑌𝑚
𝑙 (𝜃, 𝜑) = Φ(𝜑) ·𝑃𝑚

𝑙 (cos𝜃) − 𝑙 ≤ 𝑚 ≤ 𝑙, 𝑙 ∈ N; 𝑚 ∈ Z

Diese Funktionen kann man für die entsprechenden 𝑙 und 𝑚 Werte mitsamt Normierung
gemäß

𝑌𝑚
𝑙 (𝜃, 𝜑) = 1

√
2𝜋

√︄
2𝑙 +1

2
· (𝑙 −𝑚)!(𝑙 +𝑚)!

(−1)𝑚
𝑙 ·2𝑙!

(1− cos2𝜗)𝑚/2 d𝑙+𝑚 (cos2𝜗−1)𝑙
(𝑑 cos𝜗)𝑙+𝑚

berechnen [36]. Da wir in der Regel nur kleine Zahlenwerte für 𝑙 und 𝑚 betrachten, sind in
Tab. 1 die Kugelflächenfunktionen für 𝑙 ≤ 2 und |𝑚 | ≤ 2 angegeben. Diese Funktionen sind
immer dann die Lösungen für den Winkelanteil der Wellenfunktion Θ(𝜃) ·Φ(𝜑), wenn das
Potential radialsymmetrisch 𝐸pot = 𝐸pot (𝑟) ist. Dies wird auch der Fall sein, wenn wir nun
konkret als radialsymmetrisches Potential das Coulombpotential wählen und die Schrödin-
gergleichung für das Wasserstoffatom lösen.
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𝑙 = 0 𝑙 = 1 𝑙 = 2

𝑚 = −2
√︃

15
32𝜋 sin2𝜗e−2i𝜑

𝑚 = −1
√︃

3
8𝜋 sin𝜗e−i𝜑

√︃
15
8𝜋 sin𝜗 cos𝜗e−i𝜑

𝑚 = 0
√︃

1
4𝜋

√︃
3

4𝜋 cos𝜗
√︃

5
16𝜋

(
3cos2𝜗−1

)
𝑚 = 1 −

√︃
3

8𝜋 sin𝜗ei𝜑 −
√︃

15
8𝜋 sin𝜗 cos𝜗ei𝜑

𝑚 = 2
√︃

15
32𝜋 sin2𝜗e2i𝜑

Tabelle 1. Die Kugelflächenfunktionen 𝑌𝑚
𝑙
(𝜃, 𝜑) für 𝑙 ≤ 2 und |𝑚 | ≤ 𝑙.

Abschnitt 15

Das Wasserstoffatom

Das Wasserstoffatom mit Formelzeichen H besteht aus einem Proton und einem Elektron. Es ist
damit das leichteste und auch unkomplizierteste Atom, welches uns für die Quantenphysik zur
Verfügung steht. Das negativ geladene Elektron befindet sich dabei im Coulomb-Potential des
positiv geladenen Kerns. Wir haben es also erneut mit einem Elektron in einem Potentialtopf
zu tun – nur ist diesmal die Form des Potentials kugelsymmetrisch gemäß𝑉 (𝑟) =−𝑒2/(4𝜋𝜖0𝑟).

Abschnitt 15.1

Schrödingergleichung mit Coulomb-Potential

Für die Wellenfunktion des Wasserstoffatoms nehmen wir zunächst vereinfachend an, dass der
Atomkern ortsfest ist. Für die Wellenfunktion muss dann wieder die Schrödingergleichung

−−ℏ2

2𝑚
Δ𝑟Ψ(𝑟, 𝜃, 𝜑) − 𝑍 · 𝑒2

4𝜋𝜖0𝑟
Ψ(𝑟, 𝜃, 𝜑) = 𝐸Ψ(𝑟, 𝜃, 𝜑)

gelten. Weil es sich um ein radialsymmetrisches Potential handelt, können wir die Kugelflä-
chenfunktionen als Lösung für die Winkelanteile 𝑌𝑚

𝑙
in Ψ(𝑟,𝜗, 𝜑) = 𝑅(𝑟) ·𝑌𝑚

𝑙
(𝜗, 𝜑) direkt

übernehmen. Es bleibt nun noch die Lösung für den Radialteil 𝑅(𝑟) und das Coulomb-Potential
zu finden.

1
𝑅

d
d𝑟

(
𝑟2 d𝑅

d𝑟

)
+ 2𝑚

ℏ2 𝑟
2 (𝐸 −𝐸pot) = 𝐶2 = 𝑙 (𝑙 +1)

Die Lösung dieser sogenannten Laguerre-Differentialgleichung wird hier ausgelassen. Gesagt
sei, dass die gesuchten Funktionen 𝑅(𝑟) die “verallgemeinerten Laguerre-Polynome” 𝑅𝑛,𝑙 (𝑟)
sind, die ebenfalls durch eine Rekursionsformel berechnet werden können [36]. Die Lösung
ist durch eine natürliche Zahl 𝑛 und 𝑙 ≤ 𝑛−1 bestimmt. Einige Funktionen für den Radialteil
sind in Tab. 2 dargestellt. Mit den Laguerre Polynomen ergibt sich durch Einsetzen in die
Schrödingergleichung die Energie

𝐸𝑛 = − 𝑚𝑍2e4

8𝜖2
0ℎ

2𝑛2
= −𝑅𝑦∗ 𝑍

2

𝑛2 𝑙 ≤ 𝑛−1

für die Zustände mit der Hauptquantenzahl 𝑛. Wir werden sehen, dass diese zunächst rein
mathematisch begründete Forderung auch für die Eigenschaften des Wasserstoffatoms wichtig
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Exkurs: Operatoren in der Quantenmechanik

𝑛 𝑙 𝑅𝑛𝑙 (𝑟)

1 0
√︃

4
𝑎3

0
· e−𝑟/𝑎0

2 0
√︃

1
2𝑎3

0
·
(
1− 𝑟

2𝑎0

)
e−𝑟/(2𝑎0 )

2 1
√︃

1
72𝑎3

0
· 𝑟
𝑎0

· e−𝑟/(2𝑎0 )

3 0
√︃

4
(3𝑎0 )3 ·

(
1− 2𝑟

3𝑎0
+ 2𝑟2

27𝑎2
0

)
e−𝑟/(3𝑎0 )

3 1
√︃

32
34𝑎3

0
·
(
𝑟
𝑎0

− 𝑟2

6𝑎0

)
e−𝑟/(3𝑎0 )

3 2
√︃

8
3645(3𝑎0 )3 · 𝑟

2

𝑎2
0
e−𝑟/(3𝑎0 )

Tabelle 2. Die Radialteile 𝑅𝑛𝑙 (𝑟) der Wasserstoff-Wellenfunktion für 𝑛 ≤ 3 und 𝑙 ≤ 𝑛−1.

sein wird. Die gefundenen Energieniveaus stimmen übrigens exakt mit denen aus dem Bohr-
schen Atommodell überein. Außerdem hängt die Energie offenbar nur von der Quantenzahl 𝑛
und nicht von 𝑙 oder𝑚 ab. Hier liegt also wie im Fall des zweidimensionalen Kastenpotentials
eine Entartung vor: Es gibt mehrere Wellenfunktionen für das Elektron (z.B. verschiedene 𝑙)
mit identischer Energie.

Wenn nun die Wellenfunktion für das Elektron des Wasserstoffatoms bekannt ist, kann
man die Aufenthaltsorte des Elektrons untersuchen. Gemäß der Wahrscheinlichkeitsinterpre-
tation suchen wir also eine Darstellung von |Ψ(𝑟,𝜗, 𝜑) |2. Für einige Quantenzahlen sind die
entstehenden Verteilungen, sogenannte Orbitale, in Abb. 51 gezeigt. Es ist jeweils die farb-
codierte Wahrscheinlichkeitsdichte (gelber = wahrscheinlicher) in einem Querschnitt gezeigt.
Wenn man sich die Querschnitte für steigende Hauptquantenzahlen 𝑛 bei 𝑙 = 0 ansieht, erkennt
man den zunehmenden Abstand des Elektrons vom Zentrum an den größer werdenden gelben
Ringen. Dies entspricht der bereits bekannten Zunahme der Bohrschen Radien bei höheren
Hauptquantenzahlen. Die Orbitalformen für 𝑙 ≠ 0 werden zunehmend kompliziert und zeigen
eine deutliche Winkelabhängigkeit durch den Einfluss der Kugelflächenfunktionen 𝑌𝑚

𝑙
(𝜗, 𝜑).

Abschnitt 15.2

Exkurs: Operatoren in der Quantenmechanik

Um in der Quantenmechanik einen Zustand aus einer Wellenfunktion zu bestimmen (also
quasi eine Messung), nutzt man sogenannte Operatoren. Die Wirkung eines Operators auf eine
Wellenfunktion entspricht mathematisch einer Messung. Um die Operatoren einzuführen, ist
es zweckmäßig zunächst die Momente einer Zufallsvariable zu veranschaulichen. Unbewusst
ist das schon für die Schwerpunktberechnung oder sogar für das Bilden eines Mittelwertes
bereits bekannt. Allgemein definiert ist das 𝑘-te Moment einer Verteilung 𝑓 (𝑥) durch

𝑘-tes Moment einer Verteilung 𝑓 (𝑥)

𝑚𝑘 =

∫
𝑥𝑘 𝑓 (𝑥)𝑑𝑥

Um diese Definition etwas zu verinnerlichen, hilft es vielleicht sich die Berechnungsvor-
schrift für den Massenschwerpunkt eines starren Körpers anzuschauen. Man Berechnet den
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Abbildung 51. |Ψ|2 für einige Quantenzahlen 𝑛 und 𝑙. Der Betrag der Wahrscheinlichkeitsdichte ist
farbcodiert entsprechend der Farbleiste rechts. Die Form der Winkelverteilung nennt man Orbital. Für
steigende 𝑛 nimmt der wahrscheinlichste Aufenthaltsradius zu. Mit steigenden 𝑙 wird die allgemeine
Form zunehmend komplex. (berechnet und dargestellt mit MATLAB [43])

Schwerpunkt durch

𝑥𝑆 =

∫
𝑥 · 𝜌(𝑥)𝑑𝑥∫
𝜌(𝑥)𝑑𝑥

Über dem Bruchstrich ist sofort das erste Moment wiederzuerkennen. Unter dem Bruchstrich
ergibt das Integral die Gesamtmasse 47 und ist somit eine Normierung für das erste Mo-47 Hinweis: Die Gesamtmasse ist

das 0-te Moment. ment. Das arithmetische Mittel einer Reihe von 𝑁 Schulnoten 𝑥𝑖 kann man bekanntermaßen
berechnen durch

𝑥 =

∑
𝑖 𝑥𝑖∑
𝑖 1

=
1
𝑁

∑︁
𝑖

𝑥𝑖

Wie passt diese Berechnung mit dem eben vorgestellten ersten Moment zusammen? Die
Verteilung der Noten ist jeweils konstant – keine Note wird bevorzugt vergeben. Damit erhält
jede Schulnote die “Wahrscheinlichkeit” von 𝑓 (𝑥𝑖) = 𝑐𝑜𝑛𝑠𝑡. = 1/6. Das (normierte) erste
Moment dieser Verteilung ist dann∑

𝑖 𝑥𝑖 𝑓 (𝑥𝑖)∑
𝑖 1/6

=

1
6
∑

𝑖 𝑥𝑖
1
6 ·𝑁

=

∑
𝑖 𝑥𝑖

𝑁
= 𝑥

und damit identisch zum weithin bekannten arithmetischen Mittel einer gleichverteilten Reihe
von Zahlen. Auch das zweite Moment ist bereits indirekt bekannt: Für die Gauss-Verteilung
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ist das zweite Moment gleich der Varianz:

∞∫
−∞

𝑥2 · 1
2𝜋𝜎2 e−

𝑥2
2𝜎2 𝑑𝑥 = 𝜎2

Das erste Moment dieser Gaussverteilung wäre beispielsweise 0, was auch deren Mittelwert
entspricht. So wie durch die Anwendung dieser Momente, kann man auch in der Quantenme-
chanik durch gewisse Operator-Funktionen “Messungen” an Wellenfunktionen/Verteilungen
vornehmen. Ganz allgemein soll nun solch ein Operator 𝐹̂ von der Form

⟨𝐹̂⟩ =
∫
𝜓∗𝐹̂𝜓𝑑𝑉

geschrieben werden. Wir erkennen auch hier die Vorschrift zur Berechnung eines Momentes
wieder: Die Verteilungsfunktion 𝑓 (𝑥) ist in diesem Falle die Wahrscheinlichkeitsdichte𝜓∗ ·𝜓 =

|𝜓 |2 und der Operator ist gewissermaßen die Variable, die es zu untersuchen gilt. Das 𝐹
wird Observable genannt, mit den eckigen Klammern drückt man den Erwartungswert aus.
Welche Operatoren sind nun zur Einführung ins Thema geeignet? Zunächst wollen wir den
Ortsoperator 𝑥 einführen. Dieser ist denkbar einfach: Die Variable 𝑥 selbst.

Ortsoperator 𝑥

⟨𝑥⟩ = 𝑥 =
∫
𝜓∗ · 𝑥 ·𝜓𝑑𝑉

Außerdem ist es nützlich, wenn man bei einem quantenmechanischen Teilchen den Impuls
bestimmen kann. Dies geschieht mit dem Impulsoperator 𝑝:

Impulsoperator 𝑝𝑥
⟨𝑝𝑥⟩ = 𝑝𝑥 =

∫
𝜓∗ ·

(
−iℏ

𝜕

𝜕𝑥

)
·𝜓𝑑𝑉

Um sich zu vergewissern, dass der Ortsoperator auch wirklich den Aufenthaltsort eines
Teilchens ermittelt, können wir dies am Beispiel des Elektrons im Potentialtopf testen. Die
Wellenfunktion für einen unendlich hohen Potentialtopf mit Länge 𝐿 lautete

𝜓(𝑥) =
√︂

2
𝐿
· sin

(𝑛𝜋
𝐿

· 𝑥
)

Jetzt können wir mit dem Ortsoperator ermitteln, an welchem Ort das Teilchen bei einer
Messung am wahrscheinlichsten zu finden ist:

⟨𝑥⟩ =
𝐿∫

0

𝜓∗𝑥𝜓𝑑𝑥 =
2
𝐿

𝐿∫
0

𝑥 · sin2
(𝑛𝜋
𝐿

· 𝑥
)
𝑑𝑥

Nun muss die passende Stammfunktion zu 𝑥 · sin2 𝑎𝑥 gefunden werden und die Integrations-
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grenzen werden eingesetzt:

⟨𝑥⟩ =
2
𝐿

−
2𝑛𝜋
𝐿
𝑥 ·

(
sin

(
2𝑛𝜋
𝐿
𝑥

)
− 𝑛𝜋

𝐿
𝑥

)
+ cos

(
2𝑛𝜋
𝐿
𝑥

)
8𝑛2𝜋2/𝐿2


𝐿

0

⟨𝑥⟩ =
2
𝐿

[(
−

2𝑛𝜋
𝐿
𝐿 ·

(
0− 𝑛𝜋

𝐿
𝐿
)
+1

8𝑛2𝜋2/𝐿2

)
−

(
−

0 ·
(
0− 𝑛𝜋

𝐿
0
)
+1

8𝑛2𝜋2/𝐿2

)]
⟨𝑥⟩ =

2
𝐿

[(
−𝐿2−2𝑛2𝜋2 +1

8𝑛2𝜋2

)
+

(
𝐿2

8𝑛2𝜋2

)]
⟨𝑥⟩ =

2
𝐿

[
+𝐿

2𝑛2𝜋2

8𝑛2𝜋2 − 𝐿2

8𝑛2𝜋2 + 𝐿2

8𝑛2𝜋2

]
=
𝐿

2

Es ergibt sich also, dass der Erwartungswert des Ortsoperators immer genau in der Mitte des
Potentialtopfes liegt – unabhängig von der Quantenzahl 𝑛. Wenn man sich die skizzierten Ver-
läufe der Wellenfunktionen (Abb. 47) in Erinnerung ruft, erkennt man außerdem gut dass der
Erwartungswert des Ortsoperators nicht zwingend identisch ist mit der größten Aufenthalts-
wahrscheinlichkeit. Bei 𝑛 = 2 ist der Erwartungswert/Mittelwert des Aufenthaltsortes wieder
in der Mitte bei 𝑥 = 𝐿/2, die Aufenthaltswahrscheinlichkeit ist dort jedoch |𝜓(𝐿/2) |2 = 0.

Allgemein ist der Messprozess in der Quantenphysik über sogenannte Eigenwerte be-
stimmt. Eigenwerte sind die Werte 𝑓𝑛, die durch Anwendung eines Operators 𝐹̂ auf die
Wellenfunktion entstehen gemäß

𝐹̂𝜓𝑛 = 𝑓𝑛𝜓𝑛.

Das heißt, die Anwendung eines Operators auf eine Wellenfunktion erzeugt wieder dieselbe
Wellenfunktion und eine zusätzliche Konstante. Diese Konstante ist der “Messwert”. Das
bekannteste Beispiel hierfür ist der sogenannte Hamilton-Operator, der die Energieniveaus
als Eigenwerte erzeugt:

𝐻̂𝜓𝑛 =

(
𝑝𝑥

2

2𝑚
+𝑉 (𝑥)

)
𝜓𝑛 = 𝐸𝑛𝜓𝑛

Wenn man also eine Wellenfunktion für das Wasserstoffatom mit Quantenzahlen 𝑛 = 1, 𝑙 =
0,𝑚 = 0 aufstellt, so erhält man durch die Anwendung des Hamiltonoperators (darin steckt
auch der Impulsoperator 𝑝𝑥) das entsprechende Energieniveau für 𝑛 = 1 als Eigenwert.

Abschnitt 15.3

Wasserstoffatom im Magnetfeld

Als Vorbereitung für das Verhalten eines Wasserstoff-Atoms im Magnetfeld ist es zweckmäßig,
den Begriff eines magnetischen Momentes zu wiederholen. Wir betrachten dafür nun das
magnetische (Dipol-)Moment ®𝜇. Das magnetische Moment ist eine vektorielle Größe – besitzt
also eine Richtung und einen Betrag. Man muss daher bei der Berechnung von ®𝜇 immer
die Richtung der beteiligten Größen beachten. Wir nehmen nun zunächst an, dass dieses
magnetische Moment durch ein sich im Kreis bewegendes Proton wie in Abb. 52 erzeugt wird.
Dann berechnet sich ®𝜇 nach ®𝜇 = ®𝐴 · 𝐼. Wenn sich nun ein solches magnetisches Moment im
äußeren Magnetfeld befindet, wirkt darauf ein Drehmoment ®𝑀 = ®𝜇× ®𝐵. Dieses Drehmoment
ist so gerichtet, dass es den Dipol in Richtung der Magnetfeldlinien ausrichten möchte. Dies ist
der Fall, da dadurch die potentielle Energie dieser Anordnung minimiert wird. Die potentielle
Energie 𝐸pot beträgt hierbei nämlich

𝐸pot = − ®𝜇 · ®𝐵 = −| ®𝜇 | | ®𝐵| · cos(𝜗)
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und wird minimal bei 𝜗 = 0◦. Man spricht in Bezug auf diese potentielle Energie auch von einer
“Kopplung von ®𝜇 an ®𝐵”. Diese Kopplung von magnetischen Momenten an ein Magnetfeld
werden wir im Verlauf dieses Abschnittes noch öfter beschreiben.

Abbildung 52. Dipolmoment eines
Elektrons auf einer Kreisbahn um die
Fläche 𝐴.

Wir werden nun den Fall untersuchen, dass sich das Wasserstoff-Atom mitsamt seinem
Elektron in einem äußeren Magnetfeld ®𝐵 aufhält. Bisher haben wir gesehen, dass die Ener-
gieniveaus in der Quantenzahl 𝑙 entartet sind. Diese Entartung wird sich in der folgenden Be-
trachtung nun auflösen. Wir betrachten dafür das Elektron in einem semiklassischen Modell:
Es führt eine Kreisbewegung um den Kern aus (klassisch), besitzt aber nur diskrete Energie-
zustände (QM). Damit ist auch der Drehimpuls dieses Elektrons gequantelt. Das magnetische
Moment kann man nun gemäß Abb. 52 durch ®𝜇 = i · 𝐴 beschreiben. Der Strom 𝐼 soll nun durch
ein mit bekannter Frequenz umlaufendes Elektron realisiert werden: 𝐼 = −𝑒 · 𝑓 = −𝑒 · 𝜔

2𝜋 . Für
das magnetische Moment ergibt sich nun also betragsmäßig

| ®𝜇 | = 𝐼 · 𝐴 = −𝑒 · 𝜔
2𝜋

· 𝜋𝑟2 = − 𝑒 · |
®𝑙 |

2𝑚𝑒

(15.1)

mit dem Drehimpuls |®𝑙 | = |®𝑟 ×𝑚𝑒 · ®𝑣 | = 𝑟 ·𝑚𝑒𝜔𝑟 . Damit wollen wir nun den Drehimpuls des
Wasserstoff-Elektrons bestimmen.

Abschnitt 15.4

Quantenmechanischer Drehimpuls

In Abschnitt 15.2 haben wir bereits den Orts- und den Impulsoperator kennengelernt. Um nun
den Drehimpulsoperator zu bestimmen, können wir den Impulsoperator (𝑝 = −𝑖ℏ∇) direkt wie
folgt nutzen:

®𝑙 = ®𝑟 × ®𝑝→ 𝑙 = 𝑟 × 𝑝 = −iℏ(®𝑟 ×∇)

Damit kann man den Operator komponentenweise bestimmen:

𝑙𝑥 = −iℏ
(
𝑦
𝜕

𝜕𝑧
− 𝑧 𝜕

𝜕𝑦

)
𝑙𝑦 = −iℏ

(
𝑧
𝜕

𝜕𝑥
− 𝑥 𝜕

𝜕𝑧

)
𝑙𝑧 = −iℏ

(
𝑥
𝜕

𝜕𝑦
− 𝑦 𝜕

𝜕𝑥

)
(15.2)

Der Drehimpulsoperator wurde hier in kartesischen Koordinaten formuliert. Die Wellenfunk-
tion für das Wasserstoffelektron wurde jedoch in Kugelkoordinaten beschrieben. Um damit
kompatibel zu sein, muss also auch der Gradient ∇ in Kugelkoordinaten formuliert werden,
was leider die Gleichungen für den Drehimpulsoperator sehr kompliziert werden lässt. Als
einzigen Punkt möchte ich hier auf die 𝑧-Komponente hinweisen: In Kugelkoordinaten ergibt
sich für Gl. 15.2 die kompakte Formulierung

𝑙𝑧 = −iℏ
𝜕

𝜕𝜑
.

Wenn wir dies auf die Wasserstoffwellenfunktion 𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟) ·Θ(𝜃) · ei𝑚𝜑 anwenden,
erhalten wir als Eigenwert für die 𝑧-Komponente des Drehimpulses
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QM-Drehimpuls, 𝑧-Komponente

𝑙𝑧𝜓 = −iℏ
𝜕

𝜕𝜑
𝜓 = −iℏ𝑅(𝑟) ·Θ(𝜃) · 𝜕

𝜕𝜑
ei𝑚𝜑 = 𝑚ℏ𝜓

→ 𝑙𝑧 = 𝑚 ·ℏ

2ħ

1ħ

0ħ

-1ħ

-2ħ

Abbildung 53. Zur Herleitung des
Zeemann-Effektes.

Die bisher recht mysteriöse Quantenzahl 𝑚 ist also verantwortlich für die Quantelung
der 𝑧-Komponente des Drehimpulses, wie dies schematisch in Abb. 53 dargestellt ist. Der
Betrag des kompletten Drehimpulses (also die Länge der blauen Vektorpfeile in Abb. 53)
ergibt sich aus 𝑙2 = 𝑙2𝑥 + 𝑙2𝑦 + 𝑙2𝑧 . Die Quantelung der 𝑙𝑧-Komponente schränkt dann wie in
der Abbildung gezeigt die möglichen Orientierungen bzw. Winkel ein. Die Formulierung
für den Drehimpulsbetrag erhält man durch Koeffizientenvergleich von 𝑙2 = 𝑙2𝑥 + 𝑙2𝑦 + 𝑙2𝑧 (in
Kugelkoordinaten) mit der Lösung der Schrödingergleichung in Gl. 14.23. Der konstante
Wert Θ(𝜃) = 𝐶2 = 𝑙 (𝑙 + 1) wird dann mit dem 𝑙2 in Kugelkoordinaten verglichen (bis auf ℏ2

identisch!) und man findet das Ergebnis. Es ergibt sich

QM-Drehimpuls, Betrag

𝑙2𝜓 = 𝑙 (𝑙 +1)ℏ2𝜓 (15.3)
→ |®𝑙 |2 = 𝑙 (𝑙 +1)ℏ2 (15.4)

Wir haben also für das Elektron des Wasserstoffes sowohl den Drehimpulsbetrag als auch
den Wert 𝑙𝑧 der 𝑧-Komponente identifiziert. Die übrigen Komponenten 𝑙𝑥 und 𝑙𝑦 ergeben
Ausdrücke, die Kombinationen der Quantenzahlen 𝑙 und 𝑚 sind. Wir werden sehen, dass es
also am einfachsten ist, alle “Phänomene”, z.B. Magnetfelder, in 𝑧-Richtung zu betrachten.
Dies macht die Gleichungen dann oft sehr viel einfacher zu behandeln.

Hinweis Man darf nicht den Drehimpulsvektor ®𝑙 mit dem Drehimpulsoperator 𝑙 oder der
Drehimpulsquantenzahl 𝑙 verwechseln! Die gleichen Formelzeichen sind etwas irreführend,
entsprechen aber der allgemein gebräuchlichen Form.

Abschnitt 15.5

Kopplung von Bahndrehimpuls und Magnetfeld

Den Betrag des Drehimpulses für das Elektron kennen wir nun und können ihn also entspre-
chend in Gl. 15.1 einsetzen und erhalten:

Bahndrehimpuls des Elektrons

| ®𝜇 | = 𝑒

2𝑚𝑒

√︁
𝑙 (𝑙 +1)ℏ = 𝜇B

√︁
𝑙 (𝑙 +1) (15.5)

mit 𝜇B = 𝑒ℏ
2𝑚𝑒

als sogenanntem Bohrschem Magnetron. Um zu sehen, welche potentielle
Energie in diesem magnetischen Moment in einem äußeren Magnetfeld steckt, untersuchen wir
die “Kopplung” von ®𝜇 an ®𝐵. Die potentielle Energie berechnet sich dann durch 𝐸pot = − ®𝜇 · ®𝐵.
Wenn wir nun einfacherweise das Magnetfeld in 𝑧-Richtung ausrichten, also ®𝐵 = 𝐵𝑧 wählen,
brauchen wir wegen ®𝜇 · ®𝐵 = 𝑙𝑧 · 𝐵𝑧 nur die 𝑧-Komponente des gequantelten Drehimpulses für
die Kopplung zu berücksichtigen. Es ergibt sich also

𝐸pot = − ®𝜇 · ®𝐵 =
𝑒 · 𝑙𝑧
2𝑚𝑒

· 𝐵𝑧 .
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Die 𝑧-Komponente des Bahndrehimpulses ist durch die bereits bekannte Quantenzahl𝑚 durch
𝑙𝑧 =𝑚 ·ℏ beschrieben. Damit kann nun die potentielle Energie der Kopplung von Drehimpuls
und externem magnetischen Feld durch

Zeemann-Effekt
𝐸pot = − ®𝜇 · ®𝐵 =

𝑒 ·𝑚ℏ
2𝑚𝑒

· 𝐵𝑧 = 𝑚𝑙𝜇B · 𝐵𝑧 (15.6)

berechnet werden. Aufgrund der Verwendung in diesem Zusammenhang mit dem Ma-
gnetfeld wird 𝑚𝑙 auch magnetische Quantenzahl genannt. Die Energieniveaus sind bei einem
Magnetfeld 𝐵𝑧 ≠ 0 also in (−𝑚 . . .𝑚) = 2𝑙 + 1-verschiedene Energieniveaus aufgeteilt wie
in Abb. 54 gezeigt ist. Die Abstände zwischen den Niveaus sind also jeweils konstant und
betragen Δ𝐸 = 𝜇B · 𝐵𝑧 . Dieser auch “normale Zeemann-Effekt” genannte Effekt hebt also die
Entartung in 𝑙 auf, sofern ein äußeres Magnetfeld vorhanden ist. Dann spaltet nämlich jedes
Energieniveau 𝐸𝑛 abhängig von der Quantenzahl 𝑙 in 2𝑙 + 1 Niveaus auf. Wir werden spä-
ter noch andere Phänomene kennenlernen, die weitere solcher Energieniveauaufspaltungen
begründen werden.

m=+2

m=+1

m=0

m= 1-

m=-2

B=0 B 0≠

l=2

ΔE=µ BB

Abbildung 54. Energieaufspaltung
durch den einfachen Zeemann-Effekt.

Abschnitt 15.6

Absorption und Emission von Strahlung

Der wesentliche Aspekt bei der Absorption und Emission von Strahlung ist der Drehimpuls
eines Photons. Ohne Herleitung wird der Drehimpuls als

Drehimpuls des Photons
|®𝑙Ph | = ℏ (15.7)

definiert. Für die quantenmechanischen Drehimpulse gilt bei Stößen wie in der Mechanik der
Drehimpulserhaltungssatz

®𝑙Atom,vorher = ®𝑙Atom,nachher + ®𝑙Ph. (15.8)

Da der Drehimpuls des Photons ℏ beträgt, muss sich bei einer Absorption oder Emission der
Drehimpuls des Stoßpartners auch um diesen Betrag ändern. Wir haben es hier allerdings mit
einer Addition von Vektoren zu tun, also gibt es (abhängig von 𝑙) mehrere Möglichkeiten den
Drehimpulserhaltungssatz zu befolgen. Dies ist in Abb. 55 für das Beispiel 𝑙 = 2 gezeigt. Dort
wird der Erhaltungssatz gezeigt für:

• ®𝑙vorher (blauer Pfeil) hat den Betrag
√︁

3(3+1)ℏ und die 𝑧-Komponente 𝑙𝑧 = 3ℏ.

• Dieser Vektor kann auch als die Summe von ®𝑙nachher mit Betrag
√︁

2(2+1)ℏ und 𝑧-
Komponente 𝑙𝑧 = 2ℏ UND dem Photon mit |®𝑙Ph | = 1ℏ dargestellt werden.

Durch Überlegungen zu dieser Art von vektorieller Addition kann man nun die sogenann-
ten Auswahlregeln herleiten. Immer, wenn die Drehimpulshaltung gelten soll und ein Photon
am Stoßprozess beteiligt ist, müssen die folgenden Auswahlregeln gelten:

Auswahlregeln für Emission und Absorbtion eines Photons

Δ𝑙 = ±1 Δ𝑚𝑙 = ±1,0 (15.9)

Demnach muss sich also zwingend die Drehimpulsquantenzahl ändern, bei der magneti-
schen Quantenzahl gibt es dann mehrere Optionen. Welche dieser Optionen von 𝑚𝑙 realisiert
wird, ist mit der Polarisation des Lichtes verknüpft. Dabei gilt entsprechend:
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m=+1

m=+2

m=+3

|l|² = 12ħ
2

l =z 3ħ
m=+1

m=+2

m=+3

|l|² = 6ħ
2

l =2z ħ

l =ph ħ

l=3, m=3l l=2, m=l 2

Δ Δl =-1, m =-1l

Abbildung 55. Möglichkeiten der vektoriellen Addition von Drehimpulsen. Zur Herleitung der Aus-
wahlregeln bei Emission und Absorption von Strahlung.

Δ𝑚𝑙 = +1 → 𝜎+ (rechts-zirkular polarisiert)
Δ𝑚𝑙 = 0 → 𝜋 (linear polarisiert)
Δ𝑚𝑙 = −1 → 𝜎− (links-zirkular polarisiert)

Man kann also durch Analyse der Lichtpolarisation auf die Natur des Übergangs Rückschlüsse
ziehen!

Abschnitt 15.7

Spin des Elektrons

Wir haben im letzten Abschnitt gelernt, dass ein äußeres Magnetfeld Einfluss auf die Be-
wegung des Elektrons um den Atomkern hat. Es gibt neue Wechselwirkungen zwischen
Magnetfeld und Elektrondrehimpuls, die zu neuen Energieniveaus führen. Jetzt werden wir
ein Experiment kennenlernen, dass noch eine weitere – ganz ähnliche – Eigenschaft des Was-
serstoffatoms aufdeckt. Das Experiment von Otto Stern und Walter Gerlach (Stern-Gerlach-
Experiment) wurde 1921 durchgeführt. Dabei wird die Ablenkung von Silberatomen in einem
inhomogenen Magnetfeld untersucht. In Abb. 56 ist der Versuch schematisch gezeigt. Durch
die individuell geformten Magnetpole wird im Strahlenkanal ein inhomogenes Magnetfeld
erzeugt. Die freien Silberatome des Strahls werden zunächst durch Verdampfen in einem ent-
sprechenden Ofen erzeugt und durch eine Blende zu einem Strahl kollimiert. Die Silberatome
sind elektrisch neutral, können also nicht durch die Lorentzkraft oder eine elektrische Feldkraft
abgelenkt werden. Man würde erwarten, dass der Strahl von Silberatomen das inhomogene
Magnetfeld einfach durchfliegt und dabei am Schirmende einen statistisch verbreiterten (die
Fokussierung ist ja nicht perfekt) Bereich mit höchster Intensität in der Mitte zeigt. Was sich
jedoch im Experiment zeigt, ist die in Abb. 56 rechts angedeutete Aufspaltung des Strahls. Es
gibt zwei voneinander getrennte Bereiche in denen die Silberatome auftreffen. Es muss also
irgendeine Wechselwirkung des inhomogenen Magnetfeldes mit einer (noch nicht bekannten)
Eigenschaft des Silberatoms geben. Wie gesagt, das Silberatom ist elektrisch neutral und
der Bahndrehimpuls der Elektronen seiner Hülle ist ®𝑙ges = 0. Es gibt also kein magnetisches
Moment der Elektronen. Es muss noch irgendein (neues) magnetisches Moment geben, dass
mit dem inhomogenen Magnetfeld wechselwirkt.

1925 haben Goudsmit und Uhlenbeck eine Hypothese zur Erklärung des Stern-Gerlach
Versuches formuliert. Demnach solle das Elektron neben seinem Bahndrehimpuls auf dem
semi-klassischen Weg um den Atomkern auch noch einen Eigendrehimpuls besitzen. Klas-
sisch würde das bedeuten, dass das Elektron sich neben seiner Bahnbewegung auch noch
um sich selbst dreht. Dieser Eigendrehimpuls des Elektrons wird Spin ®𝑠 genannt. Nach der
Spinhypothese würde dieser Spin zu einem magnetischen Moment führen und könnte die
Aufspaltung des Silberstrahles erklären.
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Abbildung 56. Schematischer Aufbau des Stern-Gerlach Versuches. (links) Ein Strahl aus neutralen
Silberatomen durchfliegt ein inhomogenes Magnetfeld. (rechts) Die Silberatome werden vom Magnetfeld
nach links und rechts abgelenkt, obwohl sie keinen Bahndrehimpuls haben (𝑙 = 0). Die beobachtete
Verteilung der Silberatome auf dem Schirm 𝑁Ag (𝑥) ist als blaue Kurve skizziert.

Wir wollen diese Hypothese nun weiterverfolgen und versuchen, das Stern-Gerlach Expe-
riment zu erklären. Der postulierte Eigendrehimpuls würde in der SGL zu genau den gleichen
Drehimpulseigenschaften wie der Bahndrehimpuls führen. Ein hypothetischer Spin ®𝑠 hätte
also die Eigenschaften |®𝑠 | =

√︁
𝑠(𝑠+1)ℏ, 𝑠𝑧 = 𝑚𝑠 ·ℏ mit 𝑠 ≤ 𝑚𝑠 ≤ 𝑠 mit der Spinquantenzahl 𝑠

und der magnetischen Spinquantenzahl 𝑚𝑠 . Die Herleitung der potentiellen Energie durch die
Kopplung von Spin und Magnetfeld erfolgt genauso wie für den Zeemann-Effekt. Die poten-
tielle Energie für die Kopplung ist dann 𝐸pot = −𝜇𝑠 · ®𝐵. Die daraus resultierende ablenkende
Kraft 𝐹abl. wäre

𝐹abl. = −∇𝐸pot = 𝜇𝑠
𝜕𝐵𝑧

𝜕𝑧
. (15.10)

Im Experiment mit Silberatomen kann man genau zwei Aufspaltungen beobachten. Es gibt
also offenbar nur zwei verschiedene Zustände für die magnetische Spinquantenzahl 𝑚𝑠 . Aus
𝑠 ≤ 𝑚𝑠 ≤ 𝑠 und Δ𝑚𝑠 = ±1 folgt die einzig mögliche Lösung 𝑠 = 1

2 und𝑚𝑠 = ± 1
2 . Damit können

wir also den Betrag des Elektronenspins konkret benennen:

Elektronenspin

Spinquantenzahl 𝑠 =
1
2

(15.11)

|®𝑠 | =
√

3
2
ℏ (15.12)

𝑠𝑧 = ±1
2
·ℏ (15.13)

𝑠 ≤ 𝑚𝑠 ≤ 𝑠 (15.14)

Aus der Vermessung der Peaks für den Stern-Gerlach-Versuch kann man nach Glei-
chung 15.10 auch auf das magnetische Moment für den Spin schlussfolgern. Während das
magnetische Moment des Bahndrehimpulses durch ®𝜇𝑙 = − 1

ℏ
𝜇B®𝑙 gegeben war, findet man nun

überraschenderweise für den Spin das doppelte Verhältnis von magnetischem Moment und
mechanischem Drehimpuls:

®𝜇𝑠 = −2 · 1
ℏ
𝜇B®𝑠

Dies wird auch als Einstein-de-Haas-Effekt bezeichnet. Der Faktor 2 (genauer: 2.0023) wird
auch als Landé-Faktor 𝑔𝑠 bezeichnet und kann auch theoretisch berechnet werden. Aktuelle
Hochpräzissionsexperimente suchen nach einer Abweichung des errechneten Wertes von
𝑔𝑠 −2, um ggf. die Grenzen der Quantenmechanik auszuloten.

Als letzten Schritt muss nun die bisherige Wellenfunktion des Wasserstoffatoms so ange-
passt werden, dass auch die neue Spinquantenzahl berücksichtigt wird. Es muss also möglich
sein, durch Anwendung eines Spin-Operators 𝑠𝑧 als Eigenwerte die Spinquantenzahl 𝑚𝑠 des
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aktuellen Zustandes zu erhalten. Dies wird realisiert durch das Hinzufügen eines weiteren
Faktors zur Wellenfunktion nach der Form

𝜓𝑛,𝑚,𝑙,𝑠 = 𝑅𝑛,𝑙𝑌
𝑚
𝑙 X𝑠

Die Funktionen X𝑠 für den Modus “Spin = +1/2” und “Spin = −1/2” werden nun durch einen
Vektor dargestellt. Die Spinfunktion nimmt dabei die Werte

X ↑= ℏ

2

(
1
0

)
X ↓= ℏ

2

(
0
1

)
an. Dies sollen nun die Eigenwerte bei Anwendung des Spinoperators 𝑠 sein. Dieses Verhalten
kann man erreichen, wenn der Operator die Form der folgenden Matrizen besitzt:

𝑠𝑥 =
ℏ

2

(
0 1
1 0

)
𝑠𝑦 =

ℏ

2

(
0 −i
i 0

)
𝑠𝑧 =

ℏ

2

(
1 0
0 −1

)
Dies soll nun an einem Beispiel getestet werden. Wir nehmen an, dass die Wellenfunktion mit
“Spin-Up” vorliegt und wenden den Operator an.

𝑠𝑧X ↑= ℏ

2

(
1 0
0 −1

)
·
(
1
0

)
=
ℏ

2

(
1+0
0+0

)
= +ℏ

2

(
1
0

)
Der Operator, der den “Up” bzw. “Down” Status des Spins ermittelt, hat also erfolgreich den
Zustand “Up” ermittelt.

Abschnitt 15.8

Spin-Bahn Kopplung

Bisher haben wir betrachtet, dass sich das Elektron (mit magnetischem Moment) auf einer
Kreisbahn in einem äußeren Magnetfeld befindet. Jetzt versetzen wir uns mal in die Lage des
Elektrons: Es sieht für uns nun so aus, als wenn wir uns in Ruhe befinden und sich das Proton
im Kreis um uns herum bewegt. Dieses Proton auf einer Kreisbahn um uns erzeugt natürlich
ein Magnetfeld gemäß dem Gesetz von Biot-Savart:

®𝐵𝑙 =
𝜇0𝑍𝑒

4𝜋𝑟3 (®𝑣× ®𝑟)

Nachdem nun die Inertialsysteme transformiert und gewisse Kreiselelemente berücksichtig
wurden (Stichwort: Thomas-Präzession) beträgt das so erzeugte Magnetfeld den Wert

®𝐵𝑙 =
𝜇0𝑍𝑒

8𝜋𝑟3𝑚𝑒

®𝑙.

Man spricht nun von Spin-Bahn-Kopplung, wenn das magnetische Moment des Elektronen-
spins ®𝜇𝑠 und das lokale Magnetfeld ®𝐵𝑙 der Proton-Bahnbewegung gekoppelt werden gemäß

Δ𝐸𝑙,𝑠 = − ®𝜇𝑠 · ®𝐵𝑙 = 𝑔𝑠𝜇B
1
ℏ

𝜇0𝑍𝑒
2

8𝜋𝑚2
𝑒𝑟

3
®𝑠 · ®𝑙. (15.15)
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Wie aber soll das Skalarprodukt ®𝑠 · ®𝑙 berechnet werden? Es ist hilfreich, statt dem Produkt
zunächst die Summe der beiden Vektoren zu berechnen. Diese Summe nennt man Gesamtdre-
himpuls ®𝑗 mit allen üblichen Eigenschaften von quantenmechanischen Drehimpulsen. Dabei
gibt es nun also auch eine Gesamtdrehimpulsquantenzahl 𝑗 usw. Durch diesen “Trick” können
wir nun das gesuchte Skalarprodukt über einen Umweg berechnen:

®𝑗 = ®𝑙 + ®𝑠
𝑗2 = 𝑙2 + 𝑠2 +2®𝑙 · ®𝑠

®𝑙 · ®𝑠 =
1
2

(
𝑗2 − 𝑙2 − 𝑠2

)
®𝑙 · ®𝑠 =

ℏ2

2
( 𝑗 ( 𝑗 +1) − 𝑙 (𝑙 +1) − 𝑠(𝑠+1))

Damit wird Gl. 15.15 zu

Δ𝐸𝑙,𝑠 = − ®𝜇𝑠 · ®𝐵𝑙 = 𝑔𝑠𝜇B
1
ℏ

𝜇0𝑍𝑒
2

8𝜋𝑚2
𝑒𝑟

3
ℏ2

2
( 𝑗 ( 𝑗 +1) − 𝑙 (𝑙 +1) − 𝑠(𝑠+1)) .

Der Quantenmechanische Erwartungswert für diese Energie lässt sich berechnen durch

Δ𝐸𝑙,𝑠 = 𝑔𝑠𝜇B
1
ℏ

𝜇0𝑍𝑒
2

8𝜋𝑚2
𝑒

ℏ2

2
( 𝑗 ( 𝑗 +1) − 𝑙 (𝑙 +1) − 𝑠(𝑠+1)) < 1

𝑟3 > (15.16)

Δ𝐸𝑙,𝑠 = −𝐸𝑛

𝑍2𝛼2

2𝑛 · 𝑙 (𝑙 +1) (𝑙 + 1
2 )

( 𝑗 ( 𝑗 +1) − 𝑙 (𝑙 +1) − 𝑠(𝑠+1)) (15.17)

mit der Feinstrukturkonstanten 𝛼 =
𝜇0 ·𝑐·𝑒2

4𝜋ℏ ≈ 1
137 . Welche Energieniveaus sind hier nun mög-

lich? Die Drehimpulsquantenzahl 𝑙 ist für einen bestimmten Zustand gegeben, die Spinquan-
tenzahl beträgt immer 𝑠 = 1/2. Allerdings gibt es nun zwei Möglichkeiten den Gesamtdrehim-
puls aus ®𝑙 und ®𝑠 zu bilden: Der Spin kann positiv oder negativ ausgerichtet sein. Es ergeben
sich die Gesamtdrehimpulsquantenzahlen 𝑗 = 𝑙 + 1/2 und 𝑗 = 𝑙 − 1/2. Die Energieniveaus
𝐸𝑛,𝑙 sind also aufgespalten in die Niveaus 𝐸𝑛,𝑙,𝑠 = 𝐸𝑛,𝑙 ±Δ𝐸𝑙,𝑠 . Diese Aufspaltung, genannt
Feinstruktur, ist nur bei sehr genauen Messungen erkennbar. Nach Einsetzen aller Konstanten
ergibt sich

Feinstrukturaufspaltung

Δ𝐸𝑙,𝑠 ≈ −5.3 ·10−5𝐸𝑛

𝑍2

𝑛 · 𝑙 (𝑙 +1) .

Die Größe dieses Effektes ist also sehr klein im Vergleich zu 𝐸𝑛, außerdem wird der
Effekt mit größeren Quantenzahlen 𝑛 und 𝑙 sogar noch kleiner.

Abschnitt 15.9

Lamb-Shift und Relativistische Korrektur

Es gibt nun noch zwei weitere Korrekturen, die berücksichtigt werden müssen wenn man wirk-
lich alle experimentellen Beobachtungen des Wasserstoffspektrums erklären möchte. Zunächst
soll der sogenannte Lamb-Shift erläutert werden. Diesen kann man erneut im semi-klassischen
Modell beschreiben. Das Elektron bewege sich dabei als Punktteilchen auf einer Kreisbahn
um den Kern. Das Coulomb-Potential habe die Form 𝐸pot ∝ 1

𝑟
. Gemäß der Heisenbergschen

Unschärferelation wird das Elektron auf dieser Bahn kleine Abweichungen seiner Energie Δ𝐸
auf kurzer Zeitskala erfahren. Dies führt also anschaulich zu kurzzeitigen Veränderungen des
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Bahnradius wie in Abb. 57 skizziert. Im zeitlichen Mittel verschwindet diese Zitterbewegung
und es ergibt den Bohrschen Radius. Jedoch verläuft die potentielle Energie nicht linear (son-
dern eben 𝐸pot ∝ 1

𝑟
), was dazu führt, dass die gemittelte potentielle Energie eben nicht gleich

bleibt: 〈
1

𝑟 + 𝛿𝑟

〉
zeitliches Mittel

≠

〈
1
𝑟

〉
zeitliches Mittel

Dieser Beitrag wird also eine (sehr kleine) Verschiebung der Energieniveaus bewirken. Diese
Verschiebung tritt nur für die Bahnen mit 𝑙 = 0 auf und nimmt mit steigendem 𝑛 ab. Die
Verschiebung kann man mit Mitteln der QED berechnen und erhält Werte von Δ𝐸Lamb <
10−6 eV.

r

E

dr

dE

~-r
-1

Abbildung 57. Zur Herleitung des
Lamb-Shift.

Eine weitere Korrektur erhält man bei Berücksichtigung der relativistischen Geschwin-
digkeiten, mit denen sich das semi-klassische Elektron um den Kern bewegt. Dafür nutzen
wir den relativistischen Energie-Impuls-Satz. Dieser lautet

𝐸kin = 𝐸 −𝑚0𝑐
2 =

√︃
𝑝2𝑐2 +𝑚2

0𝑐
4 −𝑚0𝑐

2

Die Näherung für den Fall 𝑝 ≪ 𝑚𝑐 soll nun auch den quadratischen Term berücksichtigen .
Nach Umstellen und Entwicklung in eine Tayler-Reihe folgt

𝐸kin ≈ 𝑚0𝑐
2 + 𝑝2

2𝑚︸       ︷︷       ︸
schonbekannt

−1
8
(𝑝2)2

𝑚3𝑐2︸     ︷︷     ︸
neue Korrektur

+· · · −𝑚0𝑐
2

Um den Energiebeitrag dieses Terms zu berechnen, muss man dessen Erwartungswert quan-
tenmechanisch berechnen. Dies ergibt

Δ𝐸rel =
−1

8𝑚3𝑐2 < 𝑝
4 >

= −1
8

ℏ4

𝑚3𝑐2

∫
𝜓∗
𝑛,𝑙,𝑚∇

4𝜓𝑛,𝑙,𝑚𝑑𝑉

=
1
𝑛
𝐸𝑛𝑍

2𝛼2

(
3

4𝑛
− 1
𝑙 + 1

2

)
. (15.18)

Die relativistische Betrachtung führt also wieder zu einer Aufspaltung, die von 𝑛 und 𝑙 abhängt.
Interessanterweise führt die Addition der Energieaufspaltungen der Feinstruktur (Gl. 15.17)
und der rel. Korrektur (Gl. 15.18) zu einer Korrektur, die NICHT mehr von 𝑙, sondern nur
noch von 𝑗 und 𝑛 abhängt:

Feinstrukturaufspaltung mit rel. Korrektur

𝐸𝑛, 𝑗 = 𝐸𝑛

[
1+ 𝑍

2𝛼2

𝑛

(
1

𝑗 + 1
2 −

3
4𝑛

)]
Ein nochmals kleiner Korrekturterm durch den Spin des Atomkerns , die sogenannte

Hyperfeinstruktur, soll hier nicht betrachtet werden.
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Abbildung 58. Zusammenfassung aller uns nun bekannten Energieniveauaufspaltungen.

Abschnitt 16

Zusammenfassung: Wasserstoff

Wir haben nun viele verschiedene Korrekturen zum anfänglichen Bild des Wasserstoffatoms
kennengelernt. In Abb. 58 sind alle diese Beiträge (nicht skalengetreu) skizziert. Den wich-
tigsten Energiebeitrag liefert die Hauptquantenzahl 𝑛. Das ist hier für die Beispiele 𝑛 = 1 und
𝑛 = 2 gezeigt. Dann kommt die Aufspaltung der Feinstruktur (Spin-Bahn-Kopplung) und die
relativistische Korrektur zu einer Aufspaltung hinzu, die neben 𝑛 noch von 𝑗 abhängt. Für
das untere Niveau bei 𝑛 = 1 ist nur 𝑙 = 0 erlaubt und damit gibt es nur eine Möglichkeit die
Quantenzahl 𝑗 aus 𝑙 + 𝑠 zu ermitteln, nämlich 𝑗 = 0+ 1

2 = 1
2 . Den so ermittelten Zustand des

Wasserstoffatoms beschreibt man gemäß

Nomenklatur Wasserstoff
𝑛2𝑠+1𝑙 𝑗

wobei der Exponent 2𝑠 + 1 auch Multiplizität genannt wird – dies wird uns bei den
Molekülen noch eingehender beschäftigen. Die Drehimpulsquantenzahl 𝑙 wird konventions-
gemäß durch die Buchstaben s(𝑙 = 0), p(𝑙 = 1), d(𝑙 = 2) usw. bezeichnet. Der Zustand mit
𝑛 = 1, 𝑙 = 0, 𝑠 = 1/2 wird also als 1𝑠1/2 bezeichnet. Für das obere Energieniveau gibt es nun
drei Möglichkeiten die erlaubten 𝑙 und 𝑠 zu kombinieren:

l s j Nomenklatur
0 (s) 1/2 1/2 2𝑠1/2
1 (p) 1/2 3/2 2𝑝3/2
1 (p) -1/2 1/2 2𝑝1/2

Wir werden also für 𝑛 = 2 die Zustände 2𝑠1/2,2𝑝1/2 und 2𝑝3/2 erwarten. Da nur die Quan-
tenzahl 𝑛 und 𝑗 für die Verschiebung verantwortlich sind, fallen die Niveaus 2𝑠1/2 und 2𝑝1/2
zusammen. Die Lamb-Verschiebung sorgt nun für ein “leichtes” Anheben der s-Orbitale. Der
Zustand 1𝑠1/2 und 2𝑠1/2 werden also geringfügig angehoben. Als letzte Aufspaltung ist in
Abb. 58 noch die Hyperfeinstruktur eingezeichnet. Diese behandeln wir im Kurs nicht. Sie re-
sultiert aus der Kopplung des Kernspins (analog zum Elektron) und des Gesamtdrehimpulses
des Elektrons. Diese Aufspaltung ist etwa 2000-mal kleiner als die Feinstrukturaufspaltung.
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Abschnitt 17

Exotisches zur Quantenphysik

In diesem Kapitel stelle ich kurz und oft ohne fachliche Tiefe Themen vor, die aus Wünschen
von Studierenden ausgewählt wurden. Es sind hauptsächlich Effekte oder Vorstellungen, wie
Sie in Medien oder Science-Fiction Filmen bekannt sind. Gerade wegen dieser Bekanntheit
sind es aber auch gute Anknüpfungspunkte zwischen SchülerInnen und LehrerInnen, um
interessante Gespräche über Physik zu führen.

Abschnitt 17.1

Hawking-Strahlung

Die sogenannte Hawking-Strahlung ist an die Gegenwart eines schwarzen Loches gebunden.
Die hier gegebene Erklärung ist sehr vereinfacht – um nicht zu sagen: falsch. Trotzdem kann
man sich daran den wesentlichen Kern des Effektes herleiten.

Der Ausgangspunkt dieser sehr vereinfachten Argumentation ist der Prozess der Entste-
hung virtueller Teilchen im Vakuum als Folge der Unbestimmtheitsrelation Δ𝐸 ·Δ𝑡 ≥ ℏ. Diese
Virtuellen Teilchen rekombinieren üblicherweise nach kurzer Zeit wieder und geben so ihre
“geliehene” Energie wieder ab. Wie in Abb. 59 gezeigt, gilt für diese Prozesse also Energieer-
haltung, da 𝐸 = 0. Wenn jetzt aber dieser Prozess genau am Ereignishorizont eines schwarzen
Loches stattfindet, ist es den beiden entstandenen Teilchen nicht mehr möglich miteinander
wechselzuwirken. Damit die Energieerhaltung 𝐸 = 0 für diesen Prozess trotzdem gilt, muss
das eine Teilchen also eine negative Energie besitzen. Hinweis: Dies ist nicht einfach mit
einem 𝐸 < 0 wie etwa in einem gebundenen Zustand im Potential gleichzusetzen. Vielmehr
bedeutet dies auch eine “negative Masse” gemäß 𝐸 =𝑚𝑐2. Diese negative Energie/Masse wird
vom schwarzen Loch absorbiert und trägt somit zum Energieverlust des schwarzen Loches bei.
Wenn genügend negative Energie absorbiert wurde, kann das schwarze Loch “zerstrahlen”.

Entstehung
virtueller Teilchen

E<0

E>0

E=0

E=0

rS

Abbildung 59. Entstehung von
Hawking-Strahlung am Ereignishori-
zont.

Diejenigen virtuellen Teilchen, die aber mit 𝐸 > 0 dem schwarzen Loch entkommen,
sind die hier diskutierte Hawking Strahlung. Die energetische Verteilung dieser Strahlung
entspricht nach Hawking der eines schwarzen Körpers mit einer Temperatur von

𝑇𝐻 =
ℏ𝑐3

8𝜋𝐺𝑀𝑘B
(17.1)

, wobei 𝐺 die Gravitationskonstante und 𝑀 die Masse des schwarzen Loches ist. Das inter-
essante an dieser Temperatur ist die inverse Abhängigkeit von der Masse. Das führt dazu, dass
die abgestrahlte Leistung 𝑃(𝑇) = 𝜎𝑆𝐵 ·𝑇4 für große schwarze Löcher sehr gering ist und für
Messungen auf große Entfernungen also nicht zugängig ist.

Wenn nun aber ein schwarzes Loch eine kleine Masse hat, ist die abgestrahlte Leistung
durchaus wichtig. In der Strahlungsbilanz haben wir dann einen Einstrom von Strahlung
durch die kosmische Hintergrundstrahlung bei 𝑇 = 2.7K und die Abstrahlung der Hawking
Strahlung. Wenn nun also𝑇𝐻 > 2.7K wird, verliert das schwarze Loch kontinuierlich Energie.
Dies ist der Fall für

𝑀 =
ℏ𝑐3

8𝜋𝐺𝑘B ·2.7K
= 5 ·1021 kg

mit einem dazu passenden Schwarzschildradius von 𝑟𝑆 = 7.4μm. Man kann also zumindest
beruhigt sein, dass hypothetische mikroskopische scharze Löcher in Teilchenbeschleunigern
von selbst zerstrahlen.
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Abschnitt 17.2

EPR-Paradoxon

Das EPR-Paradoxon (Einstein-Podolski-Rosen) war ursprünglich darauf angelegt, die Unvoll-
ständigkeit der Quantenmechanik zu belegen. Um es vorweg zu nehmen: Das ist den drei
Herren nicht gelungen. Das Paradoxon kann man am Beispiel eines Systems aus 2 Teilchen
mit Spin veranschaulichen. Diese 2 Teilchen mit Spin up oder down sollen z.B. aus Anni-
hilation entstehen und können so also nur den gemeinsamen Gesamtspin Null haben. Diese
Teilchen sind also bezüglich des Spins verschränkt (Gesamtspin = 0, Einzelspins unbekannt).
Diese zwei Teilchen kann man nun – ohne die Einzelzustände zu bestimmen – an beliebig
entfernte Orte bringen. Würde man von Teilchen 1 oder 2 den Spin messen, bekommt man
zu 50% als Ergebnis jeweils Spin-up oder Spin-down. Diese Spinmessung von Teilchen 1 ist
im Rahmen der Unschärferelation mit der Spinmessung von Teilchen 2 verknüpft - so dass
man nicht beide Eigenschaften dieses Teilchenpaares gleichzeitig genau kennen kann. Das
Paradoxon besteht nun aber darin, dass nach einer Messung von Teilchen 1 (das Ergebnis sei:
Spin-up) genau bekannt ist, dass der Spin von Teilchen 2 Spin-down sein muss. Ohne jede
Unsicherheit. Durch dieses Paradoxon scheint also die Unschärferelation ausgehebelt.

Letztenendes kann man dieses Argument entkräften, da die “Indirekte Schlussfolgerung”
einer Eigenschaft mathematisch nicht mit einer “Quantenmechanischen Messung” gleichzu-
setzen ist. Diesbezüglich ist das Paradoxon also entkräftet. Es gibt aber noch eine weitere
Folgerung dieser Sachlage: Der Spin des Teilchens 2 wird durch die Messung am Teilchen 1
festgelegt – und dies instantan und distanzunabhängig. Diese Verletzung des Lokalitätsprin-
zips48 veranlasste Einstein dazu, von einer spukhaften (im Sinne von “verflixten”) Fernwirkung 48 Jede Ursache kann nur eine Wir-

kung in ihrer unmittelbaren Umge-
bung zeigen.

zu sprechen.
Das Ende dieser Geschichte lautet wie folgt: Alle Experimente und Messungen bestätigen

bisher die Aussagen der Quantenmechanik, auch der Fernwirkung. Die Quantenmechanik ist,
entgegen jedem rationalen Verständnis, eine nicht-lokale Theorie.

Folgt nun aus dieser Verschränkung eine Möglichkeit der überlichtschnellen Kommu-
nikation? Leider nein, denn ohne dass das Ergebnis der Messung 1 auf klassischem Wege
(𝑣 ≈ 𝑐) an den Ort von Teilchen 2 gebracht wurde kann man aus dessen Messung keinen
Informationsgehalt ziehen. Die Geschwindigkeit der Informationsübertragung bleibt auf die
Lichtgeschwindigkeit beschränkt.

Abschnitt 17.3

Ensemble-Interpretation der Quantenmechanik

Üblicherweise, wie auch in diesem Buch, wird die Quantenphysik bzw. genauer die Quan-
tenmechanik mit der Bornschen Wahrscheinlichkeitsinterpretation eingeführt. Dabei wird das
Quadrat der Wellenfunktion als Aufenthaltswahrscheinlichkeit gedeutet. Nun ist es aber so,
dass die formal absolut erfolgreiche Quantenmechanik kein eindeutiges Modell als Wirklich-
keitsbeschreibung bedingt. Allein die Rechnung bzw. die Vorhersage von Messungen sagt
noch nichts über das “Wie” und “Warum” aus. Es gibt verschiedene Möglichkeiten die Rech-
nungen und Ergebnisse jeweils zu deuten. Die Wahrscheinlichkeitsinterpretation ist dabei Teil
der sogenannten Kopenhagener Interpretation, welche historisch bedeutsam und relativ gut
zugänglich ist.

Es gibt allerdings auch eine Vielzahl anderer ebenfalls gültiger Interpretationsansätze die
jeweils auch verschiedene Stärken und Vorteile mit sich bringen können. Hier eine Übersicht
dieser Deutungen vorzustellen, überschreitet jedoch den Rahmen dieses Buches. Als weitere
wichtige und physikalisch konsistente Interpretation soll nur kurz die Ensemble-Interpretation
vorgestellt werden.

Als Ensemble wird hierbei die Summe eine Vielzahl von gleich präparierten Systemen
verstanden. Dies kann man wie in der statistischen Physik verstehen, wonach in einem Viel-
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teilchensystem die Wahrscheinlichkeiten immer nur Aussagen über das Ensemble – nicht
jedoch über einzelne Teilchen zulassen. Demnach kann man nun auch eine Messung an einem
Quantensystem wie folgt deuten: Weil eine große Zahl an Systemen vorliegt, sind auch die
möglichen Zustände (die es zu messen gilt) bereits bei einer Auswahl davon realisiert. Der
Messprozess bringt nun jeweils genau diese Zustände hervor. Es ist hier also kein “Kollaps
der Wellenfunktion” nötig, der die Kopenhagener Interpretation etwas problematisch bei der
Erklärung einer Messung macht. Die Ensemble-Interpretation besagt demnach, dass man den
konkreten vollständigen Zustand eines Objektes nicht kennen kann, sondern nur Aussagen
über ein Ensemble solcher Objekte treffen kann. Damit gehört diese Interpretation zur Klasse
der Verborgene-Variablen-Interpretationen.
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Abbildung 60. Beispiel für das Sektorenmodell. Dargestellt ist der Raum um ein schwarzes Loch. (links)
Die gerade Linie verläuft im “lokal flachen” Raum als Gerade. (rechts) In der gekrümmten Raumzeit
des schwarzen Loches erkennt man diese Gerade nun als Kurve bzw. Geodäte. Bearbeitet nach [46].

TEIL

VDemonstrationsexperimente
Hier wird eine Auswahl an Demonstrationsexperimenten vorgestellt. Die Experimente sind
alle Teil der Vorlesungssammlung an der Universität Greifswald. Es werden bewusst nur Ex-
perimente vorgestellt, die eventuell auch Teil einer Schulsammlung sein können und nicht zu
komplex oder zu kostenintensiv sind. Die Beschreibung beschränkt sich auf das Nötigste um
die Effekte und die vermittelten Erkenntnisse in den Vordergrund zu stellen. Die konkreten
Versuchsbeschreibungen sind ggf. bei den Herstellern selbst zu erfragen. Auch die Sicher-
heitshinweise können sich bei optisch ähnlichen Versuchsmodellen unterscheiden und müssen
stets beachtet werden!

Abschnitt 18

Relativität

Abschnitt 18.1

Raumkrümmung mit Sektormodellen

Die spezielle Relativitätstheorie trifft Aussagen zu großen Geschwindigkeiten, die allgemeine
Relativität zu enormen Entfernungen und Massen. Beides ist für Demonstrationsexperimente
kaum zugänglich. Für das schulische Niveau empfehle ich zumindest die Darstellung der
Raumkrümmung durch sogenannte Sektormodelle [44, 45]. Dabei können die SuS durch
Basteln mit Papier und Schere gewissermaßen selbst erfahren wie ein gekrümmter Raum aus
einer Geraden eine gekrümmte Geodäte werden lässt. In Abb. 60 ist dies veranschaulicht. Die
lokal flachen Sektoren werden an der jeweiligen Kannte aneinandergelegt wie im linken Bild.
Durch diesen “flachen Raum” kann man nun eine Gerade einzeichnen. Wenn der Raum nun
aber gekrümmt ist und damit so angeordnet wird wie im rechten Bild, ergibt sich eine gebogene
Geodäte. Das Beispiel stellt die Äquatorialebene um ein schwarzes Loch mit Schwarzschild-
Metrik dar.
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Abbildung 61. (links) Eisenkugel mit Bohrung bei Zimmertemperatur: Die Bohrung absorbiert das
Licht und erscheint dunkel im Vergleich zur Oberfläche. (rechts) Die Kugel wurde einige Minuten lang
erhitzt bis zur Rotglut. Die Bohrung emittiert nun mehr Licht als die Oberfläche.

Abschnitt 19

Quantenphysik

Abschnitt 19.1

Hohlraum

Man kann mit diesem einfachen Experiment zeigen, dass ein Hohlraum in einem Körper
tatsächlich ein guter Emitter ist. Dafür kann man die Metallkugel aus Abb. 61 zeigen und
darauf hinweisen, dass das Loch in der Kugel stets dunkler erscheint als die übrige Oberfläche
der Kugel. Im zweiten Schritt wird die Metallkugel mit einem Gasbrenner stark erhitzt. Wenn
das Metall beginnt zu glühen, ist es sehr deutlich sichtbar, dass die vormals dunkle Bohrung
nun deutlich heller ist als die umgebende Oberfläche. Es dauert einige Zeit (ca. 15min) bis die
Kugel die nötige Temperatur aufweist. Der Versuch muss also zeitlich entsprechend vorbereitet
werden.
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Abbildung 62. (links) Die Kiste ist mit einem Loch in der Mitte und zwei aufgemalten Kreisen ver-
sehen. Das Loch erscheitn dunkler als die bemalten Flächen. (rechts) Geöffnete Kiste mit beliebigem
Absorbermaterial.

Abschnitt 19.2

Schwarzer Körper

In Abb. 62 ist der Eigenbau zur Demonstration eines schwarzen Körpers zu sehen. Er besteht
aus einem schwarz lackierten Innernraum mit schwarzen absorbierenden Elementen (Stoff,
Pappe usw.). Wenn man den Körper verschlossen hat, blickt man an der Vorderseite auf drei
hervorgehobene schwarze Kreise. Die äußeren Kreise sind schwarz lackierte Applikationen,
der mittlere Kreis ist eine Bohrung in den Innenraum. Wie bei der Modellvorstellung zum
schwarzen Körper sieht man auch hier, dass die einfallende Strahlung in den Körper nahezu
vollständig absorbiert wird - die Bohrung in den Hohlraum ist stets “schwärzer” als die außen
aufgebrachte Farbe.
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Bestimmung des Planck’schen Wirkungsquantums ℎ

U
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LEDVorwiderstand+

-

Abbildung 64. Der Spannungsabfall über einer LED wird gemessen. Die Spannungsquelle wird so
angepasst, dass ein für alle LEDs identischer Stromfluss registriert wird.

Abschnitt 19.3

Bestimmung des Planck’schen Wirkungsquantums ℎ

Das Planck’sche Wirkungsquantum ist eine allgegenwärtige Konstante in der Quantenphysik.
Die Bestimmung mit einer kommerziellen Photozelle aus dem Lehrmittelbedarf ist anschau-
lich aber auch sehr teuer. Ich möchte hier eine preisgünstige alternative Methode durch
Strom- und Spannungsmessungen an verschiedenen LEDs vorstellen. Die Bestimmung des

Abbildung 63. Mit einfachen Mitteln
ist durch bekannte LED-Wellenlängen
die Bestimmung des Wirkungsquan-
tums möglich.

Wirkungsquantums beruht darauf, dass man durch die Funktionsweise einer LED beim je-
weiligen Spannungsabfall 𝑈LED eine Lichtemission der Energie ℎ · 𝜈 erzeugt wird. Es muss
also

𝑒 ·𝑈LED = ℎ · 𝜈 = ℎ · 𝑐
𝜆

gelten. Man sieht hier, dass zwischen der Spannung und dem Term ℎ · 𝑐/(𝜆 · 𝑒) ein linearer
Zusammenhang besteht mit der Proportionalitätskonstante ℎ. Durch grafische Darstellung für
𝑖 verschiedene LEDs von𝑈LED,i und ℎ · 𝑐/(𝜆𝑖 · 𝑒) kann man durch Regression das Wirkungs-
quantum ermitteln.

Versuchsablauf und Beobachtungen

Material: Es sind wie in Abb. 63 gezeigt zwei Multimeter, eine Spannungsquelle, LEDs
verschiedener Wellenlängen und Vorwiderstände im Bereich von ca. 100Ω bis 300Ω
nötig. Die LEDs sollten idealerweise eine vergleichbar große Leuchtstärke besitzen.
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starker Zeigerausschlag
bei Aufladung

Abbildung 65. Durch das Aufbringen negativer Ladungen auf die Metallplatte lädt sich diese auf. Der
Zeiger des Elektrometers zeigt einen starken Ausschlag.

Abschnitt 19.4

Photoeffekt mit dem Elektrometer

Man kann den Photoeffekt qualitativ gut mit einem Elektrometer demonstrieren. Kern des
Versuches ist eine negativ vorgeladene Zinkplatte, die durch Bestrahlung aus einer UV-
Lichtquelle Elektronen abgibt.

Versuchsablauf und Beobachtungen

Zink-Platte: Im Zuge der Vorbereitung muss die Zinkplatte von einer eventuell vorhandenen
Oxidschicht befreit werden. Dazu muss der Zielbereich der Strahlung mit Scheuermittel
o.ä. bis zum Spiegelglanz gereinigt werden.

UV-Lichtquelle: Als UV-Lichtquelle dient eine Quecksilber-Dampflampe. Diese hat in der
Regel eine gewisse Vorwärmzeit und sollte mehrere Minuten vor Versuchsbeginn ein-
geschaltet werden. Für den Photoeffekt bei einer Zinkplatte ist es nötig, dass die UV-
Wellenlänge der Lampe auch aus dem Lampenkörper austreten können. Bitte vor dem
Versuch prüfen, ob diese Wellenlänge eventuell durch ein Filterglas blockiert wird.
Wenn die UV-Strahlung wie gewünscht austritt, muss auf jeden Fall auf entsprechende
Sicherheitsmaßnahmen wie z.B. Schutzbrillen geachtet werden.

Aufladen der Platte: Wie in Abb. 65 gezeigt, kann man mit einem Kunststoffstab, an dem
ein Lederlappen gerieben wurde, einen negativen Ladungsüberschuss auf die Platte
transportieren. Dies wird sofort durch einen Zeigerausschlag des Elektrometers ange-
zeigt.

Ladungsabfluss durch Berührung: Wenn man die Platte wie in Abb. 66 (links) berührt,
fließen die überschüssigen negativen Ladungen durch den Körper ab und der Zeige-
rausschlag geht direkt wieder an den Ursprung zurück.
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Zeigerausschlag
nimmt ab

Abbildung 66. (links) Durch Berührung der negativ aufgeladenen Platte fließen die Ladungen durch
den Körper ab. (rechts) Durch die Strahlung der Quecksilber-Lampe werden die Elektronen durch den
Photoeffekt von der Platte entfernt. In beiden Fällen nimmt der Zeigerausschlag entsprechend ab.

Photoeffekt bei negativ geladener Platte: Wenn die Zinkplatte wie in Abb. 66 (rechts) der
UV-Strahlung ausgesetzt wird, beobachtet man die Verringerung des Zeigerausschla-
ges – und damit auch der Ladungsmenge auf der Zinkplatte. Wenn die UV-Strahlung
blockiert wird, z.B. durch eine Holzplatte, bleibt der Zeigerausschlag und die Ladungs-
menge auf der Zinkplatte konstant.

Kein Photoeffekt bei positiv geladener Platte: Zunächst die Zinkplatte erden um ggf. noch
vorhandene Ladungen abzuleiten. Dann kann man durch Reiben von Zeitungspapier an
einem Glasstab positive Ladungen an die Zinkplatte übertragen. Das Elektrometer wird
dies wieder durch einen Zeigerausschlag anzeigen. Der Photo-Effekt ermöglicht es,
Elektronen aus einem Material herauszulösen sofern die Austrittsarbeit nicht zu groß
ist. Im Falle einer positiv geladenen Zink-Platte gibt es bereits einen Elektronenmangel.
Die Elektronen, die durch die UV-Strahlung entsprechend dem Photoeffekt herausgelöst
werden, haben nicht genug Energie um der elektrostatischen Anziehung der Zink-Platte
zu entkommen. Dies zeigt sich im Experiment: Der Zeigerausschlag am Elektrometer
verändert sich bei UV-Einstrahlung nicht.
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Prisma Linse Blende Halogenlampe

Abbildung 67. Die Strahlung einer Halogenlampe wird durch eine Blende geleitet, durch eine Linse
fokussiert und schließlich durch ein Prisma in seine spektralen Bestandteile zerlegt.

Abschnitt 19.5

Kontinuierliches Spektrum einer Halogenlampe

Halogenlampen erzeugen Licht durch Glühemission. Damit wird quasi Strahlung wie die
eines schwarzen Körpers emittiert. Die spektrale Zerlegung zeigt im sichtbaren Bereich ein
vollständiges Spektrum. In Abb. 67 ist der Aufbau gezeigt und in Abb. 68 sieht man eine
Nahaufnahme des Spektrums.

Versuchsablauf und Beobachtungen

Lichtquelle: Die gewählte Strahlungsquelle muss ein kontinuierliches Spektrum emittieren.

Blende bzw. Fokus: Je nach Lichtquelle ist eine Blende und/oder eine Sammellinse nötig,
um einen möglichst gebündelten und intensiven Strahl auf das Prisma zu lenken.

Prisma: Man kann hierbei auf normale Prismen oder Geradsichtprismen zurückgreifen. Beim
normalen Prisma wie in Abb. 67 wird der in Spektrallinien zerlegte Strahl unter einem
bestimmten Winkel austreten. Beim Geradsichtprisma – im Wesentlichen drei normale
Prismen hintereinander – tritt das Linienspektrum in der gleichen Richtung aus wie
auch der einfallende Strahl.

Spektrum: In einem abgedunkelten Raum kann man nun das Spektrum an einer idealerweise
weißen Fläche abbilden. Wie in der Nahaufnahme in Abb. 68 zu sehen, ist das Spektrum
vollständig und nicht durch dunkle Bereiche unterbrochen. Eventuell bietet sich der
Einsatz einer Dokumentenkamera an um die Linien für alle SuS sichtbar zu machen.

Abbildung 68. Das kontinuierliche
Halogen-Spektrum ist nicht durch
dunkle Bereiche unterbrochen und um-
fasst den gesamten sichtbaren Spektral-
bereich.
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Linienspektrum einer Quecksilberlampe

Prisma Linse Blende
Quecksilber-
Dampflampe

Abbildung 69. Die Strahlung einer Quecksilberdampflampe wird durch eine Blende geleitet, durch eine
Linse fokussiert und schließlich durch ein Prisma in seine spektralen Bestandteile zerlegt.

Abschnitt 19.6

Linienspektrum einer Quecksilberlampe

Quecksilberdampflampen oder auch alle anderen Linienstrahler (Natriumdampflampe, He-
Ne-Laser, usw.) lassen sich mit einem Prisma in die spektralen Bestandteile zerlegen. Bei
unserem Demonstrationsversuch in Abb. 69 arbeiten wir mit einer sogenannten Quecksilber-
Höchstdrucklampe.

Versuchsablauf und Beobachtungen

Linienstrahler: Die gewählte Strahlungsquelle muss ein Linienspektrum emittieren.

Blende bzw. Fokus: Je nach Lichtquelle ist ggf. eine Blende und/oder eine Sammellinse
nötig, um einen möglichst gebündelten und intensiven Strahl auf das Prisma zu lenken.

Prisma: Man kann hierbei auf normale Prismen oder Geradsichtprismen zurückgreifen. Beim
normalen Prisma wird der in Spektrallinien zerlegte Strahl unter einem bestimmten
Winkel austreten. Beim Geradsichtprisma – im Wesentlichen drei normale Prismen
hintereinander – tritt das Linienspektrum in der gleichen Richtung aus wie auch der
einfallende Strahl.

Linienspektrum: In einem abgedunkelten Raum kann man nun die Spektrallinien an einer
idealerweise weißen Fläche abbilden. Es sind wie in der Nahaufnahme in Abb. 70 farbig
leuchtende Linien, unterbrochen von dunklen Bereichen, zu beobachten. Eventuell
bietet sich der Einsatz einer Dokumentenkamera an um die Linien für alle SuS sichtbar
zu machen.

Abbildung 70. Im Hg-Spektrum sind
gut einzelne Spektrallinien zu erkennen,
die durch dunkle Bereiche unterbrochen
werden.
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Abbildung 71. Versuchsaufbau zum Franck-Hertz-Versuch.

Abschnitt 19.7

Franck-Hertz-Versuch

Mit dem Franck-Hertz-Versuch kann man nachweisen, dass Atome Energien nur in bestimmten
Energie-Portionen (Quanten) absorbieren können. Der Aufbau ist sehr komplex und wird daher
mit (kostenintensiven) Sets der üblichen Lehrmittelhersteller realisiert. Es gibt diese Sets auf
Basis einer Quecksilberdamp-Röhre (historisch gesehen authentisch) oder einer Neon-Röhre.

Versuchsablauf und Beobachtungen

Aufbau: Der Versuch (siehe Abb. 71) besteht aus einer regelbaren Spannungsquelle, die
die Beschleunigungsspannung𝑈B bereitstellt. Das Experiment (“Franck-Hertz-Gerät”,
links im Bild) selbst erzeugt, abhängig von der Beschleunigungsspannung, einen Strom-
fluss 𝐼 an der Anode. Der sehr kleine Stromfluss muss durch einen Messverstärker
verstärkt werden und kann dann ausgelesen werden. Es bietet sich an, die Beschleuni-
gungsspannung und den Anodenstrom mit digitaler Messtechnik zu erfassen und direkt
als Funktion 𝐼 (𝑈B) z.B. per Beamer oder Smartboard darzustellen. Die Messwerterfas-
sung und Darstellung wurde hier mit Cassy bzw. CassyLab realisiert.

Messablauf: Die Beschleunigungsspannung kann automatisiert oder manuell erhöht wer-
den, während fortlaufend der Anodenstrom gemessen wird. Ich empfehle das manuelle
Variieren der Spannung, da man den Kurvenverlauf so der eigenen Erklärung zeitlich
anpassen kann.

Beobachtung: Man erkennt sowohl bei der Quecksilber- als auch bei der Neon-Röhre die
typischen regelmäßigen Einbrüche des Anodenstroms. Bei Quecksilber sind die Minima
jeweils ca. 4,9V, bei Neon ca. 19V voneinander entfernt. Diese entsprechen jeweils
den Übergängen vom Grundzustand in den ersten angeregten Zustand der Atome. Bei
Neon ist außerdem in den Bereichen der Absorption ein orangefarbenes Leuchten zu
sehen. Diese Lichtemission erfolgt auf indirektem Wege durch mehrfache Abregungen
bis es eine Lichtemission im sichtbaren Bereich gibt. Hinweis: Die Leuchterscheinung
findet auf kleinem Raum statt und muss mit technischen Mitteln vergrößert werden
(Dokumentenkamera, Makrokamera).
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Röntgenröhre

Abbildung 72. Der Röntgenversuch von PHYWE. Die Versuchsperson trägt zwei Armreife aus Bleidraht
und eine Halskette. Im Röntgenbild sind die Bleiobjekte deutlich zu erkennen und der Kunststoff wird
größtenteils durchdrungen.

Abschnitt 19.8

Röntgenröhre

Röntgenröhren sind leider nicht im Eigenbau herzustellen und man muss daher auf die Lehr-
mittelhersteller zurückgreifen. Die Erweiterungsmöglichkeiten für Zusatzexperimente wie
verschiedene Anodenmaterialien sind, genau wie der Grundversuch, sehr kostenintensiv. Eine
Anschaffung ist meist nur im Rahmen der Erstausstattung möglich. Dennoch ist Röntgenstrah-
lung bei den SuS sehr bekannt und es gibt oft bereits Vorerfahrungen in der medizinischen
Anwendung. Das bekannteste Merkmal ist die Fähigkeit, Material zu durchdringen und damit
innere Strukturen wie Knochen oder Metall im menschlichen Körper sichtbar zu machen.
Auch das kann man mit den Röhren der Lehrmittelhersteller anschaulich vorführen.

Versuchsablauf und Beobachtungen

Anfertigen eines Röntgenbildes: Die Röntgenröhren können mit einem fluoreszierenden
Schirm ausgestattet werden (siehe Abb. 72). Damit wird wie beim medizinischen Rönt-
gen die das Objekt durchdringende Strahlung sichtbar gemacht. Das Bild ist nur in
abgedunkelter Umgebung zu erkennen. Empfehlenswert ist es, vorher eine Kamera für
die Darstellung des Röntgenbildes vorzubereiten.

Variation des Anodenmaterials: Mit austauschbaren Anoden kann man durch Bragg die
Röntgenspektren verschiedener Materialien bestimmen. In Abb. 73 ist die entsprechende
Aufnahme der Spektren gezeigt.

Anfertigen eines Röntgenspektrums: Das Spektrum der Röntgenstrahlung kann man mit-
tels Drehkristallmethode (Bragg-Streuung) bestimmen. Dazu braucht man ein zum Ver-
such passendes Modul wie in Abb. 72. Der Drehwinkel kann meist motorisiert variiert
werden, womit man am Detektor die Intensität der Röntgenstrahlung einer bestimmten
Wellenlänge messen kann. Das Spektrum kann so vollautomatisch aufgezeichnet und
auch direkt dargestellt werden. In Abb. 73 sind die Spektren für Molybdän (blaue Linie),
Eisen (rote Linie) und Kupfer (schwarze Linie) dargestellt. Die kontinuierliche Form
der Bremsstrahlung und die Peaks der charakteristischen Strahlung sind gut erkennbar.
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Abbildung 73. Röntgenspektren für Molybdän (blau), Eisen (rot) und Kupfer (schwarz). Im linken Bild
ist das Spektrum über die Wellenlänge, im rechten Bild über die Energie aufgetragen. Dargestellt in
CASSY Lab 2.
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