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Einleitung

ABSscHNITT |

Vorwort

Dieses Buch enthilt die wesentlichen Inhalte der Vorlesung iiber Experimentelle Physik 3 (Re-
lativitdt und Quantenphysik) fiir das Lehramt Physik, wie sie an der Universitit Greifswald
stattfindet. Es soll als semesterbegleitende Erginzung zur Vorlesung fiir alle Studierenden des
Lehramts Physik dienen. An den meisten Universititen besuchen die angehenden Physikleh-
rerInnen (leider) die gleichen Vorlesungen wie die Fachphysiker. Weil das Zeitpensum der
Studienginge sich jedoch deutlich unterscheidet, ist die Fachliteratur der Fachphysik oft zu
sehr auf bereits verfiigbares mathematisches Wissen und Koénnen gegriindet. Die Literatur die
die selben Physikthemen fiir Nebenfichler behandelt bietet widerum nicht genug fachliche
Tiefe fiir GymnasiallehrerInnen. Deswegen sehe ich dieses Buch als Chance, fiir angehende
LehrerInnen auch die fortgeschrittenen Themen der Physik nachvollziehbar priasentieren zu
konnen.

Mir ist bewusst, dass Lehramtsstudierenden weniger Ubungszeit als Studierenden der
Fachphysik zur Verfiigung steht. Deswegen hoffe ich, dass zumindest das Lesen der Re-
chenwege eine gewisse Gewthnung an die mathematische Formulierung hervorruft. Ich gebe
mir Miihe, die Rechenwege so ausfiihrlich wie moglich darzustellen. Die Rechnungen soll-
ten also fiir alle mit grundlegendem Mathematikwissen aus den Einfiihrungsveranstaltungen
nachvollziehbar sein, obwohl der Detailgrad der Herleitungen an sich nicht verringert wurde.

In diesem Buch werden folgende grafische und stilistische Mittel genutzt:

Wichtiger Inhalt So markierte Textbereiche enthalten zentrale Aussagen, die unbedingt
bekannt sein sollen.

Kommentare, die den Lesefluss! zu sehr beeintrichtigen wiirden, sind an den Rand
gestellt.

Der Teil zur Relativitétstheorie ist etwas ausfiihrlicher als wohl in vielen Vorlesungsreihen
zur Thematik iiblich. Dies wurde bewusst so umgesetzt, um vornehmlich auf Interessen der
SchiilerInnen eingehen zu konnen. Es zeigt sich, dass die SuS ein gro3es Interesse an Begriffen
wie Raumkriimmung, Schwarzen Lochern, oder gar Phdnomenen wie Wurmlochern und
Zeitreisen haben. Die zukiinftigen LehrerInnen sollen wenigstens grundlegend in die Lage
versetzt werden, zu solchen Thematiken fundierte Aussagen zu treffen.

Dieses Buch wird voraussichtlich noch erweitert und ergénzt werden. Ich freue mich sehr
iiber Meldungen von Rechen- oder Rechtschreibfehlern an mich!

ABSCHNITT 2

Mathematische Grundlagen

Es zeigt sich immer wieder, dass oft die fehlenden mathematischen Kenntnisse ein deutli-
ches Hindernis darstellen, um die physikalischen Inhalte tatsdchlich zu verstehen. Wéhrend
des Studiums sollte man bei jeder Rechnung, die man nicht nachvollziehen kann, sofort das
entsprechende Thema nacharbeiten um nicht wichtige “Aha”-Effekte zu verpassen. Um dieses
Nacharbeiten, was natiirlich sehr zeitintensiv ist, so weit wie moglich zu reduzieren, habe ich
eine Sammlung von Rechnungen zusammengestellt, die hoffentlich die mathematischen Vor-
kenntnisse abdecken — eine Art Selbsttest. Kursteilnehmer, die bei diesen Aufgaben Probleme

! Hier ein Beispiel.




MATHEMATISCHE GRUNDLAGEN

haben, miissen so schnell wie moglich diese Wissensliicken schlieBen! Dazu gehort nicht nur
das Lesen der Beispiele in diesem Text, sondern unbedingt auch das eigenstindige Losen ent-
sprechender Aufgaben. Es gibt also zu jedem Problem eine Aufgabe mit vollstindiger Losung
und Losungsweg und noch einige Ubungsaufgaben ohne Losungsweg.

ABscHNITT 2.1

Trigonometrische Funktionen

Sie sollten den Umgang mit trigonometrischen Funktionen bereits in der Schulmathematik
gelernt haben. Die folgenden Fragen sollten Sie direkt beantworten konnen oder ggf. das
Wissen wieder schnell auffrischen kdnnen.

Grundlagen:
* Bestimmen Sie den Wert von sin(m/4)
* Bestimmen Sie den Wert von sin(m/2)
* Bestimmen Sie den Wert von cos(7/4)
* Bestimmen Sie den Wert von cos(7/2)

* Was ergeben die Ableitungen 5—ax sin(x), % cos(x)?

« gelidufige Umformungen: sin’(x) =?, cos?(x) =2, tan2(x) =?, sin(x) - cos(x) =?

ABSCHNITT 2.2

Komplexe Zahlen

Wir bendtigen komplexe Zahlen in diesem Semester zur Darstellung von Wellenfunktionen
in der Quantenphysik. Zentraler Punkt, um mit den komplexen Zahlen arbeiten zu kdnnen ist
das Verstindnis der eulerschen Formel:

e = cos(x) +isin(x)

Diese kann man nutzen, um die Darstellung komplexer Zahlen zu transformieren (a +ib in
A -¢'? und umgekehrt). Dabei ist der Betrag A gegeben durch A = |a +ib| = Va? + b2 und der
Phasenwinkel ¢ kann durch tan(y) = % bestimmt werden. Fiir die Phasenwinkel sollte man
immer das Bogenmalf} nutzen.

Komplexe Zahlen:

« Bestimmen Sie die Exponentialform von ¢ = 12+iV2.
2
A=v\1224V2" = V146
V2
-1
=t — 1 =0.1173
@ =tan ( D

Damit gilt: ¢ = 12+1V2 = V146-¢"0-1173

e Bestimmen Sie den Realteil von y = 10- e 37,

* Bestimmen Sie den Radialteil/Betrag von ¥ = 32 cos (%”) +10i-sin (37)



* Bestimmen Sie die komplex-konjugierte Zahl C} zu: C; =3 —i- V2.

* Bestimmen Sie die komplex-konjugierte Zahl C; zu: C; = 3e=iV2,

ABSCHNITT 2.3

Differentialrechnung

Das Ableiten von Funktionen ist in der Physiklehre der Universitit allgegenwértig. Die Pro-
duktregel, Kettenregel und partielles Ableiten sollten geiibt werden bis es leicht anwendbare
Formalismen sind. Hier ein paar Ubungen komplexerer Beispiele um wieder alles aufzufri-
schen:

Differenzieren:

« Bestimmen Sie 3 von g(x) = e In(x?).
Das Vorgehen ist immer das gleiche: Man analysiert zuerst die “4ufleren” Strukturen
und geht Schritt fiir Schritt weiter in die “inneren” Strukturen. Als duBerste Struktur
siecht man hier ein Produkt zweier Funktionen die von der gesuchten Variable x
abhingen. Also muss man zuerst die Produktregel anwenden:

d(In(x?))

d_g B d(e3x—3) |
T odx dx

S n(xz) + (7.

Jede der Funktionen, die nun abgeleitet werden miissen, sind selbst wieder “irgend-
welche” Funktionen von x. Also muss man mit der Kettenregel weiter zur Variable
vordringen. Die Ableitung von e* ist e*, die Ableitung des Logarithmus In(x) ist 1 /x.

dg _ 33 d(3x-3) 2 -3y 1 d 5
L . /ARt

Diese Schritte fiihren wir jetzt aus und sehen, dass danach keine Verkettungen mehr
tibrig sind. Das Ergebnis lautet dann nach Kiirzen und Ausklammern:

d 1 2
L o333 ~ln(x2) +(e¥73). S 2 =¥ 31n(x2) +—
dx x2 X
(]_e3x73)

3\/§-e)‘2 ’
¢ Bestimmen Sie ‘é—‘,‘: von w(k) =cos (kx — ) - y/sin (kx — ¢).

. .
¢ Bestimmen Sie % von £ (x) =

ABscHNITT 2.4

Integralrechnung

Die Integralrechnung ist prinzipiell schwieriger als die rein formale Differentiation. Man ist
zum Teil nicht in der Lage, analytische Losungen fiir Integrale zu finden und muss numerische
Methoden anwenden. In dieser Vorlesung sind aber nur grundlegende Integrale notig um den
Themen zu folgen. Oft haben wir es mit kugelsymmetrischen Problemen zu tun (wie schon
in der Vorlesung zur Mechanik oder Elektrodynamik). Deswegen fiihren die Aussagen oft zu
Integralen der Form fr :oro f(r)dr. Es sollten die Methoden der Substitution und der partiellen
Integration bekannt sein.

| Integrieren:

DIFFERENTIALRECHNUNG
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(o)
* Bestimmen Sie [ e™¥*2dr.
r=r
Hier konnen wir Siie Substitution anwenden. Ziel ist es dabei, die “komplizierte”
Funktion in eine bekannte Form (e*) zu bringen. Es bietet sich also die Substitution
x =—3r+2 an. Man muss aber neben dem Exponenten auch das Differential dr mit
der neuen Variable x beschreiben. Dafiir erhdlt man einen Ausdruck durch Ableiten
und Umstellen:

dx 1
_— = = :——dx
i 3—>dr 3

Nun kann man alles Einsetzen:

—00

1

—3r+2 X

dr = _—

/ © ' / © ( 3)

r=ro xo=(-3ro+2)
Bl el
3 —3r0+2 3
— l —3rp+2
3

00

* Bestimmen Sie f r-e~2"dr durch partielle Integration.
r=ro

T
* Bestimmen Sie [ cos?(r-7)dr.

r=0

ABSCHNITT 2.5

Differentialgleichungen

Wir werden in diesem Buch oft mit Differentialgleichungen arbeiten. Das kreative Losen kom-
plizierter Gleichungen geht jedoch iiber den Rahmen der Vorlesung fiir Lehramtsstudierende
hinaus. Dennoch ist es notig, einfache Differentialgleichungen durch Einsetzen von gegebenen
Losungen oder Ansitzen (Hei3er Tipp: e-Funktion!) zu analysieren:

Was lernen wir iiber die Funktion w(k) wenn man in die Schwingungsdifferentialgleichung
‘ZT)Z‘ + %x = 0 einen harmonischen Losungsansatz x = xgsin(wt —¢g) einsetzt? Zunéchst

bilden wir die geforderte Ableitung der linken Seite der DGL:

0x
— = xpcos(wt —¢p) - w

ot
8%x . 2
yroi xow - (=1) - sin(wt — ¢q) - w = —xow~ sin(wt — )
Nun kann man x und % in die DGL einsetzen:

. k .
—xow? sin(wt — ¢g) + — - xo sin(wt — @)
m

Jetzt kann man durch Kiirzen und Umstellen die gesuchte Beziehung zwischen w und k



finden:

. ko
—ygw’si P0)+ — - ysinwr—5) = 0

1 0?

%QT'FE‘P(X) =0

Gegeben ist die Differentialgleichung

Zeigen Sie, dass die Funktion ¥ (r) = e#(E1=PX) diese DGL 1st. Was ergibt sich fiir eine
Bedingung an E?

Diese Aufgaben sollten theoretisch, mit Ausnahme der komplexen Zahlen, mit dem
Leistungskurswissen zu Losen sein. Falls sich gezeigt hat, dass dieses Wissen nicht abrufbar
ist muss es mit hoher Prioritidt nachgeholt werden. Alle hier abgefragten mathematischen
Themengebiete werden in diesem Buch verwendet und sind fiir das Verstindnis des Stoffes
unabdingbar.

DIFFERENTIALGLEICHUNGEN
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Relativitidt

Meine Herren! Die Anschauungen iiber Raum und Zeit, die ich Thnen entwickeln
mochte, sind auf experimentell-physikalischem Boden erwachsen. Darin liegt
ihre Stdrke. Ihre Tendenz ist eine radikale. Von Stund an sollen Raum fiir sich
und Zeit fiir sich vollig zu Schatten herabsinken und nur noch eine Art Union der
beiden soll Selbstindigkeit bewahren. (Hermann Minkowski, 1908)

Dem Begriff der modernen Physik werden auch die Themenbereiche Quantenphysik/-
Quantenmechanik und Relativitétstheorie zugeordnet. Zunéchst soll hier die spezielle Relati-
vititstheorie (kurz: SRT) und danach die allgemeine Relativititstheorie (kurz: ART) betrachtet
werden. Ebenso wie in der Quantenphysik haben wir es hier mit einem mathematisch sehr
anspruchsvollen Gebiet der Physik zu tun — die Sprache der Relativititstheorie ist die Differen-
tialgeometrie, Tensoralgebra und komplizierte Systeme aus partiellen Differentialgleichungen.
Es ist wohl klar, dass wir ein solches Themenfeld niemals vollumfénglich bearbeiten kdnnen.
Mein Ziel bei der Ausarbeitung dieser Thematik ist es, den Teilnehmern die wichtigsten Werk-
zeuge in die Hand zu geben um die relativistischen Effekte nachvollziehen zu konnen. Anders
als in vielen Einfiihrungsveranstaltungen werde ich aber die Rechnungen stets kompatibel zur
allgemeinen Relativititstheorie halten. Damit das nicht zu schwer wird, werden gezielt einige
Beweise und Techniken ausgelassen die nicht unbedingt nétig sind fiir die hier betrachteten
Effekte. Wir bekommen es also nur mit Tensoren zu tun, die wie Vektoren oder Matrizen aus-
sehen. Fiir die Anwendungen der speziellen Relativitétstheorie in der Schule geniigen dann
einfache und handliche Gleichungen ? — fiir deren Herleitung und ein tieferes Verstindnis der
Ursachen miissen wir aber dann doch die Mathematik etwas weiter ausfiihren.

Fiir die folgenden Kapitel im Themenbereich Relativitéit habe ich oft auf das Standardwerk
zur Einfilhrung in die Relativititstheorie von Torsten FlieBbach [1] zuriickgegriffen. Die
konkreten Beispiele stammen dann oft aus dem Buch von Alexandra Stillert [2]. Einige Teile
des Vorlesungsskriptes von Thomas Filk [3] habe ich fiir die Aufarbeitung der mathematischen
Grundlagen verwendet.

ABSCHNITT 2.6

Atherhypothese

Im 19. und im friihen 20. Jahrhundert war die Atherhypothese vorherrschende Erklirung
fiir die Fortbewegung elektromagnetischer Wellen. Man kann sich diesen Ather als Pendant
zur Schallausbreitung vorstellen, die auf ein Medium zur Fortbewegung angewiesen ist, weil
nur so die Riickstellkrifte des Mediums die Druckwellen iibertragen kénnen. Der Ather soll
demnach das Medium sein, in dem sich Fluktuationen des elektrischen und magnetischen
Feldes ausbreiten. Die giingige Vorstellung also war, dass es einen ruhenden Ather als Me-
dium allgegenwirtig gibt, und sich elektromagnetische Wellen relativ zu diesem Ather mit
der Lichtgeschwindigkeit ¢ ~ 3 - 108 m/s ausbreiten. Die Erde bewegt sich dabei auf ihrer
Bahn durch diesen Ather. Es miisste also eine relative Geschwindigkeit der Erde zum Ather
geben — den sogenannten Atherwind. Um die Geschwindigkeit des Atherwindes zu bestim-
men, unternahmen Michelson und Morley 1887 ihr beriihmtes Experiment [4]: Sie haben die
Geschwindigkeit der Lichtausbreitung mit einem Interferometer einmal parallel zur Erdbe-
wegung und einmal senkrecht dazu gemessen. Das Experiment wurde oft und unter vielen
Bedingungen wiederholt. Das Ergebnis aber war stets: Die Lichtgeschwindigkeit war immer
gleich. Die Erde scheint sich nicht relativ zum Ather zu bewegen. Weil es damals keinen Zwei-
fel an der Existenz eines Athers gab, wurden zwei Konzepte entwickelt um dessen Existenz
gewissermafen zu retten:

2 Vektorrechnung wird erst in der
Sekundarstufe 2 behandelt.

17




3 Im selben Jahr hatte er iibrigens
auch die Quantenhypothese zum
Photoeftekt veroffentlicht. Das Jahr
1905 wird auch als Einsteins “Wun-
derjahr” bezeichnet.

4 .. .sie sollen also bei Lorentz-

Transformation ihre Giiltigkeit be-
wahren

18

* Die Erde fiihrt den Ather vollstindig mit sich. Dies wiirde aber nur durch Reibung
funktionieren, der Ather an sich muss aber aus anderen Griinden nahezu vollstindig
reibungsfrei fiir Materie sein. Hierin haben viele Physiker einen Widerspruch gesehen.

* Hendrik Antoon Lorentz schlug vor, dass sich Abstinde relativ zum Ather um den
Faktor /1 —v2/c? verkiirzen kénnten — die sogenannte Lorentz-Kontraktion.

Gerade das zweite Konzept konnte die Atherhypothese retten. Es gab aber Probleme mit der
Ursache und Interpretation dieses Ansatzes.

Im Zuge dieser Diskussionen veroffentlichte Albert Einstein im Jahr 1905 im Alter von
26 Jahren den Artikel “Uber die Elektrodynamik bewegter Kérper” [5]. Dieser Artikel enthilt
bereits alle Aussagen der speziellen Relativititstheorie! 3 Die zentralen Postulate waren

Einstein’sche Postulate
* Absolute, gleichféormige Bewegung kann man nicht messen.

 Die Lichtgeschwindigkeit ¢ ist unabhiingig vom Bewegungszustand der Lichtquelle.

Die erste Aussage beinhaltet im Wesentlichen die Erweiterung der Newton’schen Re-
lativitdt auf alle Phdnomene, nicht nur die mechanischen. Demnach sollen nun auch die
Maxwell-Gleichungen in allen Inertialsystemen gelten. *

Die zweite Aussage ist eine iibliche Eigenschaft fiir Wellen: Die Schallwellen, die von
einer Krankenwagensirene ausgehen, breiten sich relativ zur Luft immer mit der gleichen
Geschwindigkeit aus, egal ob sich der Krankenwagen relativ zur Luft bewegt oder nicht. Die
Geschwindigkeit der Schallwellen héngt einzig und allein von den Eigenschaften der Luft ab.

ABSCHNITT 2.7

Lorentz-Transformation

Der Weg zu den Erkenntnissen der Relativititstheorie fiihrt nun iiber das Verstindnis von
Bezugssystemen. Man kann die Einstein’schen Postulate verwenden, um eine Transformati-
onsbeziehung zwischen einem unbewegten und einem gleichformig bewegten Bezugssystem
(Inertialsystem) herzuleiten. Dafiir legen wir nun zunichst die mathematischen Grundlagen,
die zwar zunichst iibertrieben scheinen, aber dafiir spéter nahtlos in der allgemeinen Rela-
tivitdtstheorie ankniipfen. Wir beschreiben im Folgenden die sogenannte Raumzeit als 4er

Vektoren der Form
ct

X1

0
1
)= 2.1
3

=1
1]

X2
X3

Das 0-te Element dieses Vektors ist also die Strecke s = ¢ - ¢ die ein Lichtstrahl in der Zeit
t zuriicklegt. Diese Koordinate ist also Ausdruck fiir die Zeit, aber in den Einheiten eines
Weges. Die anderen Komponenten sind dann in einem kartesischen Koordinatensystem die x,
y und z-Koordinaten. In Abb. 1 ist ein beispielhaftes Minkowski-Diagramm mit der Zeitachse
und einer Raumkomponente x gezeigt. In der Relativititstheorie schreibt man diese Art von
Vektoren statt als Vektor X giinstigerweise nur als Komponenten x#. Dabei ist x der Name
des Vektors und y ist eine hochgestellte griechische Zahlvariable (manchmal also auch v oder
a,f3,...),die von 0...3 lduft. Hinweis: Man muss stets aufpassen und deutlich kennzeichnen,
wenn ein solcher Komponentenvektor potenziert wird, beispielsweise durch Klammersetzung:
(x*)%. Wir werden auch tiefgestellten Komponenten begegnen (x,). Man nennt diese Grofen
ko- und kontravariante Tensoren bzw. Vektoren. Im Rahmen dieses Lehrbuches sind die
Details hierzu nicht unbedingt notwendig und es wird nicht niher darauf eingegangen.



Es werden im Laufe der Rechnungen sehr hdufig Summen der Komponenteneintrige von
Vektoren zustandekommen. Es ist daher zweckmifig eine Konvention einzufiihren um sich
das stindige Benutzen des Summenzeichens zu ersparen:

Einstein’sche Summenkonvention
Uber doppelt auftretende Indizes auf einer Seite einer Gleichung wird summiert, wenn ein
Index oben und der andere unten steht.

xpxt = Zxﬂx” = xox’ +x1x" +x0%% +x3%3

u

Wir nutzen diese Summenkonvention nun testweise, um die Wegelemente fiir bekann-
te Koordinatensysteme darzustellen. Im zweidimensionalen kartesischen Koordinatensystem
(x,y) berechnet man das Wegelement ds bekanntlich durch

ds? =dx? +dy? = 1- (dx")?+1- (dx?)? (2.2)

In der Formulierung mit der Summenkonvention geht es uns um den Vektor x mit den
Komponenten x* = (x!,x?) = (x, y). Die Differentiale lauten dann also dx* = (dx',dx?). Wie
kann man diese Summe aus zwei Summanden nun durch die Summenkonvention beschreiben?
Bei unserem erwiinschten Ausdruck stehen beide Indizes oben. Der erste offensichtliche
Versuch dx,dx* ergibt leider dx;dx! + dxydx2, dass ist nicht genau das was wir wollen, da
es hier jetzt auch untere Indizes gibt. Man kann durch einen kleinen Umweg> mit einer
Hilfsfunktion g, arbeiten. Mit der Summenkonvention berechnet man damit ds? durch

ds? = g, dxtdx”

Dies sieht erstmal sehr ungewohnt aus. Es stellt sich hier jetzt die Frage, welche Werte der
&uv-Term haben muss, damit auch das erwiinschte Wegelement herauskommt. Auf der rechten
Seite der Gleichung stehen die Indizes ¢ und v jeweils einmal unten und oben, hier haben wir
es also mit einer Summe gemil} Konvention zu tun und 16sen diese nun auf:

ds? = Z(Zgyvdx”dxv) =Z(gﬂ0dx“dx0+gy1dx”dxl)
\4

T T
= goodx®dx’ + go;dx%dx! + g odx'dx + g1 dx'dx!
= goo(dx®)? +gordx’dx" + godx'dx’ + g11 (dx")?

Ubrigens ist das Ergebnis identisch, wenn man zunichst iiber 4 und dann iiber v summiert.
Durch Vergleich mit Gl. 2.2 kénnen wir nun die entsprechenden Elemente fiir g,,,, ermitteln:

goo=1 go1=0 g10=0 gn=1 (2.3)

Mit diesen Werten erhalten wir also fiir g,,,,dx*dx” nach dem Berechnen der Summe ds? =
dx? +dy?. Die GroBe g bestimmt also, was wir als Wegelement fiir unsere Koordinaten
erhalten. Man nennt g,,,, dementsprechend den “metrischen Tensor” oder auch “die Metrik”.
Fiir dreidimensionale kartesische Koordinaten x* = (x',x? x?) kann man sich nun leicht
denken, dass die Metrik dann lauten muss:

g1 =8n=g33=1 ; sonstige g,, =0

Die Eintridge der Metrik kann man auch in Matrix-Form darstellen, falls dies der Ubersicht-

LORENTZ-TRANSFORMATION

> ... der sich spiter noch als Abkiir-
zung herausstellen wird. . .
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ct

L

X, X, X
Abbildung 1. FEin Minkowski-

Diagramm fiir 2 Ereignisse und der
raumzeitliche Abstand zwischen ihnen.
6 Man spricht von Punkten in der
Raumzeit allgemein als “Ereignis”.

7 Die Minkowski-Metrik kann auch
mit umgekehrten Vorzeichen defi-
niert werden. Dies ist Konventi-
on und muss bedacht werden wenn
man sich verschiedener Literatur-
vorlagen bedient!
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lichkeit hilft. Dann sehen die beiden Beispiele also wie folgt aus:

10 100
2D-kart _ 3D-kart _
gﬂv art _ (O l) gﬂv art _ (0) (1) ?

Es fillt auf, dass die Metrik stets nur konstante Werte, O oder 1, enthalt und nicht von den
Koordinaten selbst abhingt. Eine solche Metrik nennt man “flach”. Es sind aber, ohne das
wohl néher darauf eingegangen wurde, auch schon nicht-flache (also gekriimmte) Metriken
bekannt. Aus der Mechanik-Vorlesung sollten noch die Polarkoordinaten und die Sphirischen
Koordinaten bekannt sein. Fiir diese gelten die Wegelemente

(ds?)Plr = dr? 4 r2dg?
(dsH)*veel = 472 +72d6% + 1% (sin 9)2d<,02

und deshalb lauten diesmal die Eintrége fiir die Metrik

10 10 0
1 kugel
gl]?;(i,ar = (0 }"2) gﬂl:,ge =10 1’2 0
0 0 r%(sinf)?

, wie man direkt durch Vergleich der Koeffizienten vor den (dx*)2-Eintriigen ablesen kann.
In der speziellen Relativititstheorie betrachten wir eine flache Geometrie wie in den Fil-
len der kartesischen Koordinaten. Als wichtige Anderung wird nun aber die Zeit als 0-te
Komponente hinzugefiigt. Durch die Einfiihrung der Zeit gibt es aber eine Besonderheit fiir
die Berechnung des Wegelementes zu beachten. Der Abstand zwischen zwei Ereignissen, ©
x’ll = (cty ,xi,x%,x?) und x’; (ctz,xé,xg,xg) ist etwas anderes als allein der raumliche Abstand
zweier Vektoren. Im sogenannten Minkowski-Diagramm in Abb. | ist der Abstand zweier
Ereignisse eingezeichnet. Dabei ist die Betrachtung zur besseren Ubersichtlichkeit auf eine
Raumdimension x beschridnkt. Wir definieren den Abstand (und damit auch zwangsweise das
Wegelement) als

2_ 2 2 112 222 3..3\2
As“=c(ta—11)"—(xy —x)) = (x5 —x7)" = (3 — x7)
[ —

zeitl. Abstand

minus rauml. Abstand

Die wesentliche Neuerung hierbei ist das Minuszeichen vor den Raumkomponenten. Wir wer-
den sehen, dass diese ungewohnte Definition des Abstandes die Formulierung der speziellen
Relativitdtstheorie sehr angenehm macht. Mit der Summenkonvention und einer Metrik lautet
dieser Abstand

Wegelement in Minkowski-Raumzeit

(ds)? =y dat'dy” = (¢ dr)? = (dx')? = (dx?)? = (dx*)? (2.4)

Hierbei wird 17,,,, als Minkowski-Metrik bezeichnet und wegen der Wichtigkeit in der spe-
ziellen Relativititstheorie mit einem eigenen Formelzeichen 7 statt g bedacht. Die Elemente
der Metrik lauten nun ’

Minkowski Metrik
10 0 O
. 0-10 O
Nuy =diag(1,-1,-1,-1) = 00 -1 0 2.5)
00 0 -1



Um etwas Ubung im Umgang mit dieser Summenkonvention zu bekommen, nutzen wir
nun die Minkowski Metrik, um das Wegelement (wie in Gl.2.4) in der 4-dimensionalen
Raumzeit fiir die Koordinaten x* = (ct,xl,xz,xS) zu bestimmen. Zur Erinnerung: Im drei-
dimensionalen kartesischen System wiirde man das Wegelement berechnen gemiB (ds)? =
(dx)2 + (dy)? + (dz)?. Dies entspricht dem Satz des Pythagoras in einem kartesischen Koordi-
natensystem. In der Minkowski-Raumzeit erhilt man das Wegelement durch Aufsummieren
von 77, dx#dx". Hier soll zur Ubung ganz ausfiihrlich vorgegangen werden:

(ds)? = puyddx” = 37 7, dutdx”

u v

=y (n,,odx#dxo 71 dxt x4 oded + nﬂgdx"dx3)

_ ;(nyodxﬂdxo)JrZ”:(nuldxudxl)JrZ(nﬂzdxﬂdx2)+zﬂl(nﬂ3dxﬂdx3)

u

Bevor die zweite Summe iiber u berechnet wird, schauen wir uns 1, genauer an. Es gibt nur
Elemente in der Hauptdiagonalen — alle anderen Elemente mit u # v werden zu Null. Bei den
4 Summen iiber ¢ = 0...3 werden nun alle Elemente mit u # v direkt weggelassen und es
bleibt nur:

(ds)? = oo dx’dx®+ py; de'dx'+ py dX?dx?+ g3z dxldx®
—— —— ——— ——
=1 =—1 =1 =-1

Dies entspricht dem vorher in Gl. 2.4 definierten Wegelement fiir die Minkowski-Raumzeit.
Wir haben jetzt alle Mittel zur Verfiigung um die Lorentz-Transformation, das zentrale
Element der speziellen Relativitétstheorie, herzuleiten. Die Einstein’schen Postulate besa-
gen, dass die Lichtgeschwindigkeit in allen Inertialsystemen gleich sein soll. Das heif3t die
Ax

Lichtgeschwindigkeit ist einerseits &= und muss andererseits auch in einem anderen

Inertialsystem (mit * gekennzeichnet) ﬁ—f; = ¢ sein. Das fiihrt uns wegen (cAt)? = (AX)? zu

(cAD)? — (AX)? =0 = (cAr')? = (AT)?

(ds)? (ds)?

Wir kdnnen also das Relativititsprinzip und die Konstanz der Lichtgeschwindigkeit mitein-
ander in der Aussage kombinieren, dass

+ Das Wegelement (ds)? konstant ist

* Eine Transformation in ein anderes Inertialsystem das Wegelement (ds)? nicht dndern
darf ((ds)? = (ds”)?).

Wir suchen also genau diese Transformationen, die das Wegelement nicht verdndern wenn
man sich gedanklich in ein anderes Inertialsystem begibt. Wir erinnern uns: Ein Inertialsystem
darf sich nur durch eine konstante Geschwindigkeit im Vergleich zum Ursprungssystem
unterscheiden. Daher suchen wir eine Transformation A(7) der Form

’

ct ct
’

X > | X
V=A0)|)
)C2 X2
x3 X3

Die einzelnen Koordinaten transformieren sich dann gemif

UV ABLY _ ABLO AR AR 2 Al 3
(M) = Ayx” = Agx" + ATx" + A x"+ Ajx

21
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oder ausgeschrieben fiir den allgemeinsten Fall:

(X9 = A% = AQx"+ A"+ ASx? + AQx?

(N = AL = A+ Axt + AL+ ALY

(x?) =A2x" = A%xo + A+ AS A%x3

(3 =A3x" = Agxo +A?x1 +A%x2 +A§x3
Jetzt geht es daran, die einzelnen Eintrige dieser Matrix A, die von v abhingen darf, zu
bestimmen. Der Einfachheit halber gehen wir von einer Bewegung nur in x-Richtung aus. Die
Komponenten x? = (x?)’ und x> = (x*)’ bleiben also von der Transformation unangetastet und

p &

die Geschwindigkeit v hat nur eine Komponente v, in x-Richtung. Durch die Annahme, dass

x% = (x?)" und x3 = (x®)’ gilt, lassen sich bereits viele Eintriige bestimmen. Damit die beiden
letzten Gleichungen diese Forderung erfiillen, muss gelten:

AG=AT=A=A=A=A=0 Aj=A}=1

AuBerdem diirfen dann die Komponenten x* und x* auch fiir die Transformation von x° und
x! keinen Einfluss haben, weil sie ja auch auch beliebig x> = x> = 0 gesetzt werden konnen.
Also entfallen vier weitere Elemente von A:

0 0 1 1
A)=A)=Al=A}=0

Nach der Elimination von vielen Eintrigen bleiben nur vier gesuchte Elemente von A iibrig
die nicht 0 oder 1 sind:

(%) = A%x” = AJx"+Alx!
(Y =Alx = A(l)xo+/\ix1
2y, _ A2.v 2
(x7) =A5x" =x
(Y =Ad =27
Das transformierte Wegelement wird in Komponentenschreibweise wie folgt geschrieben:
(ds")? = 1y ()’ (dx™)

Jedes Differential (dx*)’ wird nun durch die transformierte Koordinate (dx*)’ = ALdx”
ersetzt. Bei dieser Ersetzung von Termen muss man allerdings vorsichtig sein. Wir miissen hier
explizit die Reihenfolge der Summation vorgeben: Es muss zuerst die Koordinate transformiert
werden (3, A% dx”) und dann soll iiber die Metrik summiert werden. Damit diese Summe also
auch das bedeutet, was wir beabsichtigen, nutzen wir neue Zihlindices @ und S. Das ergibt

M (d6#) (Ax¥) = 1y - Alpdx® - AfdeP = 17, - Ay A% di?
was gemih (ds’)? = (ds)? zu
My No A dx® A = 17pdx® d”
fiihrt. Aus dieser Gleichung kann man direkt ablesen, dass
Ny NaNj = Nap (2.6)

gelten muss. Dies ergibt einige Gleichungen zur Bestimmung der Eintréige von A. Weil wir uns
hier auf die x-Richtung beschrinkt haben (y und z-Richtung werden also nicht transformiert),
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kann man sich wie oben gezeigt auf wenige Komponenten von A beschrinken:

A‘?)A?OO
e\ | A AT OO
A‘(Aﬁ)‘ 0010
0001

Hierfiir wurde der obere Index von A als Zeilenindex einer Matrix, der untere Index als
Spaltenindex geschrieben. Um weniger schreiben zu miissen, beschrinken wir uns auf den
relevanten Teil dieser Matrix — also die obere linke Ecke. Die Bestimmung der einzelnen
Eintridge dieser Komponenten ist nun eng an die Vorgehensweise in [6] angelegt. Wir haben
es also fiir die Gleichung 2.6 zu tun mit den Tensoren

A0 A9 10
a _ —
AB = (Az Ai) und Nag = (0 e 2.7
Damit kann man nun aus 77,,,,/\’(‘,/\2 =1qp fiir die moglichen Kombinationen von « und g
Gleichungen fiir die jeweiligen Komponenten aufstellen. Als Beispiel soll das nun fiir die erste
Kombination @ = 0 und 8 = 0 gezeigt werden:

M0 = NG A = DA | D A (2.8)
M v
= > (Agn,,o +A5nﬂ1) (2.9)
)%

=A| AY Al AL AY Al 2.10
=Ag| Ay Moo +Ag mo1 [+Ag| Ay Mo +Ay mn (2.10)

—— —— —— ——

=1 =0 =0 =-1

0 2 1 2

1=(AO) —(AO) @2.11)

Fiir die anderen 3 Kombinationen von @ und S ergeben sich ganz dhnliche Gleichungen.
Davon sind zwei identisch — es bleiben also insgesamt 3 nutzbare Gleichungen iibrig:

(5 ~(n3) - (M) () -
AJNY = AJA] =0

Diese Gleichungen (klarer Hinweis fiir die Kenner durch die a*> — %> = 1-Form) lassen sich

durch hyperbolische Funktionen 16sen. Es folgt daher fiir die Lorentz-Transformation A y
(A(?) A(%)) _ ( coshyr —sinhtﬁ) Y
Ay A —sinhy coshy y
. o . : o N IS" —> X
Wie transformiert sich jetzt also konkret die x-Koordinate fiir ein mit Geschwindigkeit v IS ' >
bewegtes Bezugssystem (siehe auch Abb. 2)? In dem ruhenden System gilt wie iiblich x! = v-7. vt X >

Fiir die (x!)’-Komponente ergibt sich

Abbildung 2. Ein Inertialsystem IS’ be-
wegt sich relativ zum System IS mit ei-
ner konstanten Geschwindigkeit v.

(x'=0= A(lJct+A}x1 = A(l]cl+Aivt .

Wir wollen hier den Koordinatenursprung (deswegen (x!)’ = 0) betrachten. Aus dieser Glei-
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8 Mit dieser Abkiirzung muss man
vorsichtig sein. In verschiedenen
Lehrbiichern wird 7y unterschied-
lich genutzt. Manchmal gilt auch

y=4/1-(2)?* odery = (2)?

24

chung ergibt sich durch Umstellen

Ay _ v —sinhy

_A_} ¢ coshy

=tanhy . (2.12)

Daraus kann man nun einen Ausdruck fiir ¢ = arctanh(¢) erhalten und durch Nutzung der
Definitionen der Hyperbolischen Funktionen die folgenden Ausdriicke finden:

—sinh(arctanh (S)) = —i (2.13)
JI-(2)?
cosh(arctanh (%)) = ; (2.14)

Damit konnen wir nun endlich die Komponenten der Lorentz-Transformation konkret angeben.
Zur Vereinfachung wird nun der Term y statt —— verwendet:®

-
1= —22
Lorentz-Transformation

1 ()
Vi-(2)2 VI-(2)? 00
1

ols

c

(") =ADx” mit AL = V(D2 Vir 00f=
0 0

(2.15)

|
coI

ol
co=w ™
)
—oc oo

0 0 01

ABSCHNITT 3

Spezielle Relativitatstheorie

Die spezielle Relativititstheorie folgt nun ausschlieSlich aus den bereits gefundenen Zu-
sammenhédngen. Wir werden also fiir die folgenden Effekte nur die gefundene Lorentz-
Transformation auf verschiedenen Wegen anwenden. Zur Einfiihrung wollen wir versuchen,
zwei Geschwindigkeiten im Rahmen der speziellen Relativititstheorie zu addieren.

ABscHNITT 3.1

Addition von Geschwindigkeiten

In der klassischen Mechanik wird oft die Vorstellung eines fahrenden Zuges verwendet um
Bezugssysteme zu illustrieren. Wenn man von einem fahrenden Zug (vzyg) aus eine Pistolen-
kugel abfeuert (vprojeksil) Wird die Geschwindigkeit fiir den ruhenden Beobachter mit v = 0
selbstverstindlich vzyg + Uprojekdit S€in. So einfach ist es nun in der Relativititstheorie nicht
mehr, den sonst kdnnte man ja leicht auf Geschwindigkeiten grofer als ¢ addieren.

Fiir die korrekte relativistische Addition zweier Geschwindigkeiten muss man zweimal
hintereinander eine Lorentz-Transformation durchfiihren. Die Transformationsmatrizen A
multiplizieren sich dann also zu

Al = coshyy —sinhy)| [ coshyr —sinhyr
~ |\=sinhyy coshy —sinhy, coshyn |-



Wenn man diese Matrixmultiplikation ausfiihrt, kann man noch Additionstheoreme fiir die
hyperbolischen Funktionen anwenden und erhalt

A

_ [ cosh(y+y2) —sinh(y+y2)
“ \=sinh(y1 +¥2) cosh(y;+y2) | -

v1+02

Wenn man das | und ¢, wieder mit Gl. 2.12 durch die entsprechenden Ausdriicke mit v; und
v, ersetzt, erhalt man

relativistische Addition von Geschwindigkeiten

U1+
V42 = T o0,

1+ y

In Abb. 3 ist das Verhalten der Geschwindigkeitsaddition gezeigt. Wir gehen dabei von
einer Geschwindigkeit v, aus, zu der im Bereich von vy = 0 bis v = ¢ jeweils eine zweite
Geschwindigkeit v; = 0.9 ¢ addiert wird. Selbst bei hohen Geschwindigkeiten von v, =0.5c in
der Mitte der Kurve, fiihrt die Addition mit 0.9 ¢ “nur” zu einer resultierenden Geschwindigkeit
von etwa v, +0.9¢ =~ 0.96¢.

ABscHNITT 3.2

Zeitdilatation

Den Effekt, der Zeitdilatation genannt wird, kann man durch die Bedingung der Invarianz
des Wegelementes herleiten. Es geht dabei um die Entwicklung der Zeitkoordinate in einem
mit konstanter Geschwindigkeit bewegten Bezugssystem. Die Zeitkoordinate T im bewegten
System IS’ ist die Zeit, die eine dort ruhende Uhr anzeigen wiirde. Wir selbst schauen nun
ruhend im System IS dieser bewegten Uhr zu und wollen unsere Zeitkoordinaten cds mit
der bewegten Uhr cdr vergleichen. Das Inertialsystem IS’ bewege sich beispielsweise mit
der konstanten Geschwindigkeit v von uns weg. Wir betrachten nun, wie in den beiden
Inertialsystemen die Wegelemente beschrieben werden.

Hierfiir versetzen wir uns zunéchst in den Standpunkt des sich bewegenden Bezugssys-
tems IS’, wo alle Koordinaten zur Kenntlichkeit mit einem Strich versehen sind. Wir definieren
unsere Ortskoordinaten der Einfachheit halber als Nullpunkt (x” = y" =z’ = 0). Wir selbst ru-
hen in unserem Bezugssystem (also zum Beispiel im Raumschiff). Unserere Geschwindigkeit
in unserem Bezugssystem ist also O und es gilt

dx/
—=0->dx"=0.
dr
Wir setzen deshalb auch die Differentiale der Ortskoordinaten dx’ = dy” = dz” = 0 auf Null -
unser Ort in IS’ dndert sich ja nicht. Es folgt daher fiir unser Wegelement

ds'=c¢-dr-0-0-0=c-dr (3.1

Dieses Wegelement muss, entsprechend der speziellen Relativititstheorie, nun fiir alle In-
ertialsysteme die gleiche Grofle haben. Im anderen Inertialsystem sieht es so aus, als wenn
sich das Raumschiff/Inertialsystem IS’ mit Geschwindigkeit v von uns wegbewegt. Deswegen
beschreiben wir den Weg des Raumschiffes in IS als ruhende Beobachter durch

ds = 0, dekdx” = Ve2di? —dx? —dy3 —dz3 .

ZEITDILATATION

Abbildung 3. Addition von Geschwin-
digkeiten vy + vy fiir das Beispiel v; =
0.9¢c.
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= Myon

ca. 20km

Erdoberflache

Abbildung 4. Beobachtung der Zeit-
dilatation. Das Myon hat wegen der
groflen Geschwindigkeit aus Sicht der
Erde deutlich mehr Zeit fiir die Reise-
strecke.
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Jetzt wird df ausgeklammert um die dx,dy,dz durch die Geschwindigkeit v zu ersetzen:

&2 dy?  do 2
ds =dr cz———i—d—;zdt\/cz—vzzc'dt l—U—2
c

Wenn wir nun dieses Wegelement mit dem aus GI. 3.1 gleichsetzen ist es nun moglich die
beiden Zeitkoordinaten miteinander zu vergleichen. Die hieraus resultierende “Streckung der
Zeit”

ds’ =ds
Raumschiff Erde

/ v2
ﬁ{'deﬂ('dt 1—?

des bewegten Bezugssystems IS’ wird Zeitdilatation genannt.

Eigenzeit im bewegten Inertialsystem, Zeitdilatation

2 2 2
dr=diy/1-= T=/dt 1= (3.2)
C C
4]

Was fiir Schlussfolgerungen kann man hieraus nun ziehen? Aus dem trivialen Fall v =0
folgt, dass die Zeitspanne im System IS’ (mit v = 0 bewegt) dann Ar = At betrigt. Die Uhren
gehen also synchron.

Falls aber eine Geschwindigkeit v > 0 in GI. 3.2 eingeht, wird der Wurzelterm kleiner
als 1 und es folgt damit At < Az. Bewegte Uhren gehen also langsamer als ruhende Uhren!
Trotzdem geht aber natiirlich jede Uhr in seinem Inertialsystem “richtig”. Der Lauf der Uhr
kann ja schlieBlich nicht vom zustand des Inertialsystems wissen und davon abhéngen. Nur
im wechselseitigen Vergleich von relativ zueinander bewegten Uhren wird dieser Unterschied
offenbar.

Einen experimentellen Nachweis kann man durch die Hohenstrahlung anschaulich darstel-
len (siehe Abb. 4). In der Atmosphire entstehen durch energiereiche Strahlung Myonen, die nur
eine sehr kurze Lebenszeit von durchschnittlich 77/, = 2.2 pus haben. Diese Lebenszeit wurde
in einem “ruhenden” Labor fiir ein ruhendes Myon gemessen. Die Myonen in der Atmosphére
haben bei ihrer Entstehung jedoch eine Geschwindigkeit von etwa v, = 0.9994 c. Dennoch
reicht diese groBe Geschwindigkeit eigentlich nicht, damit nach der Strecke s ~ 20km viele
Myonen die Erdoberfliche erreichen. Es wire klassisch nur mit der Strecke s = v, - 772 % 660m
zu rechnen. Im Widerspruch hierzu kann man viele der entstehenden Myonen an der Erdober-
flache nachweisen — dies ist nur mit den Effekten der speziellen Relativitétstheorie zu erklédren:
Im bewegten Bezugssystem IS’ des Myons gehen die Uhren einfach etwas langsamer und das
Myon schafft es also aus unserer Sicht mehr Weg zuriickzulegen bevor dessen Zerfallszeit
abgelaufen ist. Wir schitzen also ab:

0.9994¢

2
Atgrge = |1 - ( ) . Alu ~ 0.0346 - Al“ .

Fiir uns ruhende Beobachter hat das Myon offenbar Az, = 0.03467"-2.2 us = 64 ps Zeit bevor
es zerfillt. Damit wire die zuriickgelegte Strecke grof3 genug, um eine Myon-Detektion auf
der Erdoberfliche zu erkldren. Die Zeitdilatation ist keine theoretische Spielerei — man
kann sie tatsdchlich messen, indem zwei zunéchst synchrone Uhren in unterschiedlichen
Bezugssystemen unterwegs sind. Es gab dazu 1971 ein Experiment mit zwei Atomuhren, in
dem eine der Uhren in einem Flugzeug unterwegs war wihrend die andere Uhr unbewegt am



Boden blieb [7]. Nach der Landung waren die Uhren nicht mehr synchron. Die Zeitdifferenz
im Nanosekundenbereich entsprach genau den Vorhersagen der Relativititstheorie.

ABSCHNITT 3.3

Lingenkontraktion

Der Effekt der Langenkontraktion ist eng verwandt mit der Zeitdilatation. Man kann ihn direkt
auf eine Lingenmessung mit Stoppuhren (inklusive Zeitdilatation) zuriickfiihren. In Abb. 5
sind die entsprechenden Bedingungen fiir die Langenmessung gezeigt. Das ruhende System
wird IS genannt, das bewegte System in dem der Stab ruht, wird IS’ genannt. Im System
IS’ des Stabes, betrigt seine Ausdehnung xé —xg = lejgen. Wir wollen jetzt untersuchen, wie
die Linge des Stabes von IS aus gesehen gemessen wird. In der Abbildung sieht man, dass
die gesuchte Linge [ = x, —x; ist. Die Transformationen der Ortskoordinaten von xj > in xi,z
lauten nun nach GI1.2.15

Xy = ———(x2—0vr)

, 1
x| = —==x1-uy) .

2
Ji-g

Um die Linge des Stabes im Vorbeiflug zu messen, miissen die beiden Punkte xi und xé
gleichzeitig erfasst werden, also soll ¢, = #; = ¢* sein. Damit kann man die Differenz der
beiden Ortskoordinaten in IS und IS’ nun bestimmen und erhalt:

1
xXy—xj = —z(xz—f—x] +u1”)

I-a
’ ;7 _ 1
Xy —x = —2(X2—X1)

-5
_ 1 v? ’ ’

X)—X| = —g(xz—xl) )

Damit haben wir einen Ausdruck fiir die Langenkontraktion gefunden:

Léngenkontraktion

[=4/1- ) “leigen (3.3)

Fiir eine Geschwindigkeit v > 0 heil3t das also, dass die Linge eines bewegten Gegenstan-
des fiir einen ruhenden Beobachter verkiirzt scheint. Wenn ein Raumschiff mit relativistischer
Geschwindigkeit an uns vorbeifliegt, erscheint es also kiirzer als wenn es unbewegt auf der
Erde stehen wiirde. Andererseits heif3t das auch, dass man in einem Raumschiff mit relativisti-
scher Geschwindigkeit einen kiirzeren Weg zum Ziel zuriicklegen muss. Diese Interpretation
der Liangenkontraktion ist analog zur Zeitdilatation moglich um unser Beispiel des Myons zu
erkldren. Daran soll nun das synonyme Betrachten von Zeitdilatation und Lingenkontraktion
als Ausprigung der Lorentz-Transformation gezeigt werden. Dessen kurze Lebenszeit aus
Sicht des Erdbeobachters muss man im Myonensystem mithilfe der Langenkontraktion erkla-
ren: Das Myon selbst ruht in seinem Bezugssystem - daher lduft die eigene Uhr “normal” und
nach etwa 2.2 ps zerfillt es. Wie schafft es das Myon trotzdem auf die Erdoberfliche? Aus
dessen Sicht ist die Strecke Atmosphire-Oberfliche durch die Lingenkontraktion deutlich
kiirzer. Die Strecke /1s grde ~ 20km bis zur Erdoberfldche reduziert sich fiir das schnelle Myon

LANGENKONTRAKTION

X,'= const. x,'= const.
— >

st 5>

»
>

IS X, X,

Abbildung 5. Die Linge eines Stabes,
der im System IS’ ruht, wird gemes-
sen. Einmal relativ zum Inertialsystem
IS und einmal im bewegten System IS’.
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auf

c

2
0.9994
I, = 1—( c) - I1S Erde ~ 660 .

Diese kiirzere Entfernung kann das Myon im Rahmen der Halbwertszeit von 71/, = 2.2 ps

zuriicklegen und die gemessenen Myonen-Raten kdnnen bestitigt werden.

ABSCHNITT 3.4

Zeitdilatation vs. Langenkontraktion

Es ist oft fiir die Studierenden nicht ganz eindeutig, wann man Zeitdilatation oder Langen-
kontraktion als Effekt erwartet oder ob sogar beides kombiniert wird. Damit dies eindeutig
wird, soll nun das Beispiel des Myons in der Atmosphire erneut betrachtet werden. Die
Zahlenbeispiele sind uns bereits bekannt — wir wollen diese Zahlen nun lediglich nochmal
im Kontext betrachten. Dafiir gehen wir zunichst einen Schritt zuriick und betrachten das
Wegelement ds in der Minkowski-Raumzeit nochmal mit der Lorentz-Transformation. Wir
betrachten 2 Ereignisse in der Raumzeit: Die Entstehung des Myons in der Atmosphire und
das Zusammentreffen des Myons mit der Erdoberfliache. Die Differenz dieser Ereignisse sei
As. Die SRT sagt nun, dass dieses Wegelement den gleichen Wert besitzt, egal von welchem
Inertialsystem aus man diese Differenz misst. Uns naheliegend ist die Perspektive mit der
Erde als Ruhesystem. In diesem System bestimmen wir (mit unserer ruhenden Uhr) die Zeit-
differenz von Afg;ge = 64 ps und die riumliche Differenz von Axgge # 19km. Die Entfernung
der beiden Raumzeit-Ereignisse betrigt also fiir uns

(Asg)? = (- Atp)* - (Axg)?

Dieses Wegelement wollen wir nun von einem anderen Koordinatensystem aus betrachten.
In der speziellen Relativititstheorie muss man fiir den Wechsel von Bezugssystemen die
Lorentz-Transformation benutzen. Mit den Transformationsregeln aus Gl. 2.15 folgt:

v
(ASE)2 = 72(cAtE - EA)CE)Z - yz (x— vAtE)2

2
[62’}/2At]%: + v—zyzAx]z5 - ZCAtEEAxEy2] - [yzAx]%: + yzvaté - 2vatE]
c c

2
v
y? (C2Até + C—ZAxg ~Axi - vaté)

= v2|2Ar3 1—£ —AxZ 1—f
=7 E 2 E 2]

Dies ist nun eine Moglichkeit, auf ein neues Bezugssystem zu wechseln. Aulerdem erkennen
wir hier direkt die Terme der Zeitdilatation und Lingenkontraktion wieder. Wir wihlen fiir
unser Beispiel die Geschwindigkeit des Myons v = 0.9994 ¢ und erhalten

(Asg)? =7 (czAtﬁ—Axﬁ) (3.4)
2. (64ps)% = (19188m)2 = 2 (&(2.2 us)? — (660m)2) (3.5)

An den Zahlen erkennen wir auch hier die Manifestationen der Langenkontraktion und Zeit-
dilatation wieder. Durch diesen etwas linglichen Transformationsprozess haben wir aber nun
eine sehr schone Interpretationsmoglichkeit geschaffen. Wenn wir uns in die Lage des Erdbe-
obachters versetzen, beschreiben wir die Zeit- und Ortsdifferenzen mit den Werten der linken
Seite von Gl. 3.5. Wenn wir uns in das Bezugssystem geben wollen, miissen wir GI. 3.5 durch



v teilen und erhalten die gleichwertige Beschreibung
1
2(2.2ps)? - (660m)* = — (c2 (64 ps)® — (19188 m)z)
Y

aus Sicht des Myons. In dessen Bezugssystem haben die Ereignisse einen zeitlichen Abstand
von 2.2 ps und es wird eine Entfernung von 660 m zuriickgelegt.

ABSCHNITT 3.5

Energie-Impuls-Beziehung

Die Herleitung der Energie-Impuls-Beziehung ist ohne die hier verwendete Schreibweise der
allgemeinen Relativititstheorie nur schwer oder unvollstindig moglich”. Wir werden hier also
ein Paradebeispiel fiir die Anwendung der Mathematik in der Physik sehen — und werden
schlieBlich mit einer der fundamentalsten und folgenreichsten Gleichungen in der Geschichte
der Physik belohnt.

Die Herleitung beginnt mit der Newton’schen Bewegungsgleichung, die auf die 4-er-
Vektoren erweitert wird. Dafiir definieren wir die 4-er Geschwindigkeit u® durch

ua

dx(l
T dr

Diese Geschwindigkeit'® kann man wie auch die Ortskoordinaten in ein anderes Inertialsystem
durch eine Lorentz-Transformation iiberfiihren:

u'® = /\gu’8 .

Wir wiinschen uns also jetzt die Mdglichkeit, statt der bekannten Newtongleichung m g—f =Fx
eine relativistische Variante aufzustellen. Diese soll dann auch fiir grole Geschwindigkeiten
giiltig sein und muss den Einstein’schen Postulaten geniigen. Sie miisste dann also angelehnt

an das “Original” etwa
du a

" ar
lauten. Hier ist F noch nicht wirklich festgelegt, weil die Zeitkomponente im Vektor, also F' 0
etwas ungewdhnlich ist. Unser Plan wird nun sein, durch Formulierung von Forderungen an
Gl. 3.6 etwas iiber diese Komponente herauszufinden. Eine Forderung lautet: Die Gleichung
muss, wenn wir sie in der Relativititstheorie nutzen wollen, bei einer Lorentztransformation
seine Form behalten!!. Man nennt diese Eigenschaft auch: Lorentz-Invarianz. Es muss im
Inertialsystem IS’ dann auch gelten

=F“ (3.6)

dula

:F/FI
m dr

AuBerdem muss Sie fiir eine Relativbewegung von v = 0 der Bezugssysteme in die iiblichen
Newtongleichungen iibergehen. Um die Eintrdge von F'¢ zu identifizieren, wenden wir die
Lorentz-Transformation nun an und untersuchen die Resultate. Fiir eine Relativbewegung mit
vy in x-Richtung!? ergibt sich:

FO=AgF"”.

Nach ausmultiplizieren der rechten Seite erhélt man folgende transformierte Komponenten

ENERGIE-IMPULS-BEZIEHUNG

9 Ich meine hier die Notation mit
4-er Vektoren und Summenkonven-
tion.

10 Wir wollen ab jetzt die iibliche
3-er Geschwindigkeit v nennen und
die 4-er Geschwindigkeit wird mit u
bezeichnet.

1 Die Gleichung soll also in den
neuen Koordinaten die gleiche Form
haben

12 In den anderen Raumrichtungen
soll es keine Anderung geben. (vy =
v =0)

29




SPEZIELLE RELATIVITATSTHEORIE

3 Das Ziel heit ja schlieB-
lich Energie-Impuls-Satz und nicht
Energie-Kraft-Satz. . .

14 Diese Definition ist oft fiir Schul-
aufgaben ausreichend, weil man es
dort nicht mit der 4-er Notation zu
tun hat.

15 Es wurde dr = %dt genutzt.
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fiir F¢:

U,CFIEI
FO =

7 Cc
F' = yF}
2 2
F? = F}
3 _ 3
F=F},

wobei Fy jeweils die bekannten Kraftkomponenten aus der nichtrelativistischen Newton’schen
Bewegungsgleichung m% = Fy sind. Man erkennt, dass offenbar die letzten drei Kompo-
nenten mit der Newton-Kraft {ibereinstimmen — zusétzlich mit einer Lorentz-Transformation
durch den Faktor 7 fiir die x-Komponente bei F!. Der Ausdruck F© ist aber komplizierter.
Wir erinnern uns jedoch gliicklicherweise an die Energiedefinition aus der Mechanik: Dort
war E = / (v- F)dt. Man kann also durch Vergleich von F* und dE /df = v- F erkennen, dass

UxFI{] _’)’dE

FO= =
c c dr

3.7

gilt. Alsletzten Schritt vor dem Ziel wird nun die relativistische Kraft durch den relativistischen
Impuls ersetzt!3. Dieser Impuls lautet mit der Eigenzeit 7 einfach p® = m - ddL: wie in der
iiblichen Mechanik auch. Fiir einen Beobachter mit Zeitkoordinaten ¢ statt T muss man
fiir jede x-Komponente eine Lorentz Transformation durchfiihren. Die Rechnung ergibt das
wenig iiberraschende Ergebnis p* =y -m T Nun kann man die einzelnen Komponenten fiir

dx?/dt = v” angeben als

@ _ c-df 12 3
p = 7m?,ymv , v, mv

Fiir die raumlichen Komponenten (p!, p%, p*) = p kann man nun direkt den relativistischen
Impuls ablesen'*. Er errechnet sich durch Multiplikation mit dem Lorentz-Faktor:

relativistischer Impuls

(3.8)

Jetzt sieht es so aus, als wenn wir die Frage “Was bedeutet F*” gegen ein “Was bedeutet
p?” getauscht haben. Die nullte Komponente p® = ymc ist ebenfalls nicht wirklich sinnvoll.
Man kann aber durch Verwendung von Gl. 3.7 eine erstaunliche Aussage ableiten. So ist der
Impuls p° definitionsgemB durch Integration iiber die Eigenzeit aus der Kraftkomponente
FO zu erhalten gemiB!>

p0=/F0dT:% Z/dEﬂ/ £

Man kann also den Ausdruck p° = ymc im Viererimpuls mit E /c ersetzen. Der relativistische
4-er Impuls lautet dann also

E
p=(;,p1,p2,p3) :

Aus der Gleichheit von ymc und E /¢ folgt dann auch ein Ausdruck fiir diese nun relativistische
Energie genannte Energieform:



relativistische Energie

(3.9)

Um den beriihmten Energie-Impuls-Satz herzuleiten ist es nun kein weiter Weg mehr.
Wir werden wieder das Wegelement ds®> mit der Minkowski-Metrik formulieren. Diesmal
wollen wir aber die Impulse statt die Ortskoordinaten nutzen. Die kann man erreichen, indem
an geeigneter Stelle zweimal durch das (Eigen-)Zeitdifferential dr dividiert wird:

c2dr? = naﬁdx"dx'g
m?c?de? = nap-m-dx® -m-diP
m*c* = nagp (mdxa) (mdx—ﬁ)
dr dr
m*c? = napp”p?
=P ===’

Aus der vorher gefundenen Impuls-Formulierung iiber die Energie folgt nun

2
n = (0 = (0 = (PP = () = -

Nach Umstellen dieser Gleichung haben wir nun den Energie-Impuls-Satz der Relativitits-
theorie hergeleitet:

relativistischer Energie-Impuls-Satz
E?=m*c*+2(p)? (3.10)

Um zu verstehen, was fiir bedeutende Aussagen hier gemacht werden, schauen wir uns
die Grenzfille an. Wir nehmen dafiir einen “sehr kleinen” oder einen “sehr groflen” Impuls
an, so dass also jeweils einer der beiden Terme von Gleichung 3.10 dominant wird. Man nutzt
korrekterweise eine Taylorentwicklung fiir diese Naherung. Dazu stellen wir den Energie-
Impuls-Satz etwas um'® zu

Fiir den Fall p > mc erkennt man nun sofort, dass daraus E = c - p folgt. Fiir den Fall p < mc
nutzt man die Taylorentwicklung der umgestellten Form von GI. 3.10

2 p?
Vm2ct+pier =me |1+ —— .
m2c

Dann wird der letzte Term in der Wurzel (“sehr klein) genédhert bis zum linearen Glied. Es
. . 2 2 2
giltdann V1 +x ~ 1+ }x und damit mc?/1+ el mc? (1 + 2n[1)202) =mc?+£-. Zusammen-

ENERGIE-IMPULS-BEZIEHUNG

16 Die Taylor-Entwicklung kann nur
fiir kleine Variablenwerte genutzt
werden. Fiir Aussagen zu groflen
Werten kann man jedoch zu Brii-
chen umformen, die dann ihrerseits
im Grenzfall klein werden.
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17 Ausnahme ist z.B. [11]
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fassend ergeben sich also die Einzelfille

2
p<mc —E=mc*+4i-
E=\m2c*+c2p2{p>mc —E=c-p= mc? (3.11)
——

r=1

Der Fall mit sehr groem Impuls gilt also etwa fiir ein Photon, dass sich mit Lichtgeschwindig-
keit fortbewegt. Obwohl das Photon an sich masselos ist, kann man ihm iiber diese Beziehung
ein “Massedquivalent” zuordnen. Fiir den ersten Fall der kleinen Geschwindigkeiten folgt

andererseits 5

E = p—+mC2 :Ekin+E0
2m

Als Ruheenergie E( wird die Energie ohne Bewegungsanteil bezeichnet:

Ruheenergie, Energie-Masse-Aquivalenz

Eo = mc? AE = Amc? (3.12)

Es hat sich hier gezeigt, dass selbst ein ruhendes Objekt ohne Impuls trotzdem einer
enormen Menge Energie gemiB 1kg-c? =9-10'°J entspricht. Die Masse wird im Rahmen
der ART als Ursache des Gravitationsfeldes gesehen. Es gibt aber auch andere Fille, in denen
diese Energie sichtbar wird:

* Bindungsenergien in Atomkernen entspricht immer auch einer Masse. Die Summe der
Massen der Kernbestandteile ist nicht gleich der Kernmasse! Die Bindungsenergie “hat
also ein Gewicht”.

* Bei der Spaltung schwerer Kerne wird Bindungsenergie frei. Die Spaltprodukte zusam-
men sind leichter als der Ursprungskern.

* Ein Stern wird durch starke Gravitationskrifte zusammengehalten. Dies reduziert seine
Masse im Vergleich zu m = p -V deutlich.

An dieser Stelle mochte ich einen wichtigen Hinweis geben. Der relativistische 3-er Impuls
ist als GroBe gemiB p = ymu definiert. Es ist nun aus mathematischer Sicht auch moglich
den relativistischen Impuls anzusehen als ein Produkt aus relativistischer Masse ym und
der nichtrelativistischen Geschwindigkeit v. Dies wurde friiher oft sowohl in Lehrbiichern als
auch in der Schule so gehandhabt. Die Ergebnisse von Rechnungen usw. werden dadurch nicht
falsch. Die Interpretation an sich ist jedoch sehr zweifelhaft. Die Masse wird normalerweise
als eine Teilcheneigenschaft angesehen. Die Summe der Teilchen in einem Festkorper ergibt
schlieBlich dessen Masse. Nach dieser Definition darf die Masse sich natiirlich nicht durch den
Bewegungszustand dndern! Ein schnelles Raumschiff besteht trotzdem noch aus N Protonen
und Neutronen — die Masse muss konstant bleiben.

Wenn man allerdings die Masse streng als trige Masse definiert, hat die Sichtweise einer
relativistischen Masse zumindest eine schwache Berechtigung. Es wird demnach zunehmend
schwerer, ein schnelles Objekt immer weiter zu Beschleunigen. Dies ist durch den relativisti-
schen Impuls in F = dp/dt auch so zu erwarten wegen des enthaltenen y-Terms. Die Tragheit
nimmt also zu. Es steht einem nun frei, diesen Effekt als Auswirkung des vy - m-Verhaltens
Zu interpretieren, statt von einem relativistischen Impuls zu sprechen. Bitte seien Sie sich
dieser Feinheiten stets bewusst bzw. informieren sie sich weitergehend bevor Sie im Unter-
richt von einer “relativistischen Masse” sprechen. In einigen Abituraufgaben und z.B. im
Bayrischen Rahmenplan kommt die relativistische Masse als physikalische Gro3e vor. In den
meisten Universitits-Lehrbiichern zur Physik taucht dieser Begriff nicht (mehr) auf 8, 9, 10].
17 Ich mochte schlussendlich davon abraten, in Ubungsaufgaben oder Klausuraufgaben eine



relativistische Masse in Kilogramm berechnen zu lassen. Die Dynamik der relativistischen
Mechanik ldsst sich am eindeutigsten mit Impulsen formulieren.

ABSCHNITT 3.6

Minkowski-Diagram

Die vollstdndige mathematische Beschreibung der Relativititstheorie ist in der Schule nicht
moglich. Deswegen ist es zweckméilig auf grafische Beschreibungsmoglichkeiten auszuwei-
chen. Eine solche Moglichkeit ist das sogenannte Minkowski-Diagramm. Dies ist ein Koordi-
natensystem zur Darstellung des Minkowski-Raumes fiir eine Orts- und eine Zeitkoordinate.
Auf dieses Konzept soll nun anhand von einigen Beispielen eingegangen werden.

In einem Minkowski-Diagram wird auf der Ordinate die Zeitkoordinate x° = ct abge-
bildet und auf der Abzisse eine Ortskoordinate, wie in Abb. 6 gezeigt. Da wir sowieso zur
Vereinfachung stets nur die Bewegung in einer Raumrichtung betrachten ist diese Redukti-
on auf die x-Koordinate kein grofles Problem. Einen in diesem System ruhenden Beobachter
(x = const,Vt) wiirde man in diesem Diagramm durch eine vertikale Linie (blau in Abb. 6) dar-
stellen. Eine horizontale Linie (t = const, Vx), wie die rote Gerade in Abb. 6, markiert dagegen
einen festen Zeitpunkt fiir alle Orte. Wihrend Punkte im Minkowski Raum Ereignisse genannt
werden, nennt man Kurven oder Geraden auch Weltlinien. Man kann im Minkowski-Diagram
auch Bewegungen darstellen. Ein Objekt, dass sich mit v = ¢ relativ zum Inertialsystem IS
(die Koordinatenachsen) fortbewegt, legt mit jedem Fortschritt Ax auf der x-Achse auch den
Schritt ¢ - At auf der y-Achse zuriick. Damit folgt fiir ein Objekt mit Lichtgeschwindigkeit
v = ¢ eine Weltlinie mit Steigung tana = CA—AX’ = ¢ =1 (rote Linie in Abb.7). Wenn die Ge-
schwindigkeit v < ¢ betrigt, folgt eine Weltlinie mit tana = ¢ > 1 und damit & > 45° (siche
blaue Linie in Abb. 7).

Wir wollen nun zur Ubung das beriihmte Zwillingsparadoxon in diesem Diagramm
darstellen. Das Zwillingsparadoxon ist ein Gedankenexperiment von Albert Einstein und
gestaltet sich mit Beispielwerten wie folgt: Zwei Zwillinge befinden sich in gleichem Alter auf
der Erde (x = 0). Ein Zwilling A bewegt sich in einem Raumschiff mit hoher Geschwindigkeit
v =0.9c von der Erde weg, kehrt nach der Flugzeit r; am Punkt x; (ILJ vom Startpunkt
entfernt) um und fliegt mit gleicher Geschwindigkeit wieder zuriick. Die Weltlinien von A
und B sind in Abb. 8 in einem Minkowski-Diagramm dargestellt. B ruht dauerhaft in seinem
Inertialsystem und wird daher durch eine vertikale rote Linie bei x = O représentiert. A fliegt
mit einem Raumschiff zunichst von der Erde weg und kehrt spiter wieder um — dies wird
durch die blaue Linie dargestellt. Wir wollen nun untersuchen, wieviel Zeit fiir die beiden
Zwillinge zwischen Abreise und Ankunft vergangen ist. Die Zeit fiir den ruhenden Beobachter
B entspricht genau der Liange seiner Weltlinie (es wird ja keine Strecke x zuriickgelegt: dx = 0):

T

cT cT
AsBz/dszfdx()zfc-dtch
0 0

0

Jetzt wollen wir die Linge der Weltlinie von B beschreiben (von A bzw. IS aus gemessen!).
Dafiir betrachten wir zuerst den Weg bis zum Umkehrpunkt. Dafiir gilt:

(cT/2,xu) (cT/2,xu)
ASA,hin = ds = ﬂnaﬁdx“dxﬁ
(0,0) (0,0)
(cT/2,xu)

Vic-dn? = (dv)? .

(0,0)

MiINKOWSKI-DIAGRAM

ct

t=const

=X

1SU0D

-
>

IS (ruhend) X

Abbildung 6. Zeitentwicklung (vertika-
le Linien) fiir feste Ortskoordinaten und
Ereignisse an verschiedenen Orten zu
gleichen Zeitpunkten (horizontale Lini-
en) fiir einen ruhenden Beobachter.

“ct :
A
ko)
N
N
A
478
IS (ruhend) )

Abbildung 7. Minkowski-Diagramm
mit den Koordinatensystemen fiir einen
relativ bewegten Beobachter mit einer
Geschwindigkeit v < ¢ in die positive x-
Richtung (blaue Linie) und fiir ein Teil-
chen mit v = ¢ (rote Linie).

ct
cT
B (bei x=0)
A (mit v=0.9¢)
/
c-t1_ ...........................
x,=1LJ X

Abbildung 8. Minkowski-Diagram-
Darstellung des Zwillingsparadoxons.
Die Zeit lauft fiir den ruhenden Beob-
achter A anders ab, als fiir den Reisen-
den B.
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18 Die Reisezeit ist hier die vergan-
gene Figenzeit an Bord des Raum-

schiffes.

19 Wenn man beschleunigt, ver-
lasst/wechselt man das Inertialsys-

tem.
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Dieser Ausdruck ist nun sehr ungew6hnlich. Die Integranden stehen unter einer Wurzel und es
ist erstmal nicht klar wie dieses Integral ausgefiihrt wird. Wir konnen es aber durch Umstellen
und die Substitution v = dx/dt in ein einfaches Integral iiberfithren bzw. parametrisieren:

(CT/Z,xu)

a2
ASAhin = / dry| (c)?- el
(0,0)

T/2 = T)2
T T
m‘/dtzc-wll—v—/dtzc—zc :
c? 2y 2
0 0

Hierbei nennen wir die abgelaufene Zeit im bewegten Bezugssystem 7. Fiir den Riickweg
gilt im Prinzip das gleiche:

(¢T,0,0,0) -7
[ v cT T’
ASA riick = / ds=c- 1_c_2‘/dt:5: >
(cT/2,xy,0,0) T/2

Insgesamt lduft also fiir den Reisenden A die Zeit 7°/2+T'/2 =T’ =T/y ab. Es ist also
weniger Zeit als im Vergleich zum ruhenden Beobachter vergangen. Fiir unser Zahlenbeispiel
bedeutet dies

(0.9¢)2

c?

T =4/1 -T=043T .

Es ergibt sich also fiir die gemessenen Zeitraume von A und B:

p_ 213 _2:946-10°m
S 09-¢c 09-c

2LJ
A: T'=0.43- —— =0.97 Jahre (3.14)
09-c

B:

=2.25Jahre (3.13)

Der Altersunterschied ist also betrdchtlich. Aulerdem sei darauf hingewiesen, dass der Rei-
sende fiir die Reisestrecke von 2 Lichtjahren nur etwas weniger als ein Jahr gebraucht hat.
Es ist also nicht so, dass man fiir die 4.3Lichtjare nach Alpha-Centauri selbst mit fast-
Lichtgeschwindigkeit 4 Jahre briuchte. Fiir eine bequeme Reisezeit'® von einer Woche muss
man aber erstmal in neue Technik investieren: Man miisste mit v = 0.999979¢ unterwegs
sein. . .

Warum aber wird dieses hier betrachtete Phinomen als “Paradoxon” bezeichnet? Dies
ergibt sich aus einer alternativen Betrachtungsweise. Wir haben bereits erfahren, dass bewegte
Uhren langsamer gehen — wer jedoch legt fest ob sich A oder B hier bewegt. Vollig berechtigt
konnte auch A (Raumschiff) argumentieren, dass er sich in Ruhe befindet und B (Erde) sich
mit Geschwindigkeit v entfernt. Dann miisste nach dem Zusammentreffen der Beiden im
Gegensatz zum obigen Ergebnis B langsamer gealtert sein. Dieses Paradoxon ist aber bei
genauerem Hinsehen keines bzw. lédsst es sich auflosen: Der hier ruhende Beobachter befindet
sich die ganze Zeit im gleichen Inertialsystem. Ein Inertialsystem ist bekanntermaflen ein
Bezugssystem mit konstanter Geschwindigkeit. Der reisende Zwilling jedoch wechselt mitten
im Flug sein Inertialsystem (aus v wird —v)!°. Deshalb sind die beiden Ansichten von A und
B nicht gleichberechtigt und die Situation ist, so wie berechnet, mit dem weniger gealterten
Zwilling A eindeutig entschieden. Man kann sich auch in einem Minkowski-Diagram die
ungleichen Zeitabldufe und deren Berechtigung sichtbar machen. Dazu istin Abb. 9 dargestellt,
wie jeweils der eine Zwilling dem anderen in regelméBigen Abstidnden (0.25 Jahre) seine Zeit
tibermittelt. Die Ubermittlung soll mit einem Signal der Geschwindigkeit v = ¢ geschehen - die
Weltlinien des Signals haben daher eine Neigung von genau 45° im Diagramm. Wie man direkt
sieht, ist bei der Skaleneinteilung auf den beiden Weltlinien die Zeitdilatation beriicksichtigt



worden. Das heif3t, die Skalenteilung der blauen Linie ist deutlich verldngert im Vergleich zur
roten Zeitskala?®. Im linken Teil des Bildes wird von der Erde in Intervallen von 0.25 Jahren
ein Signal mit Lichtgeschwindigkeit zum Raumschiff gesendet. Wie man sieht, erhilt das
Raumschiff wihrend der ersten Phase der Reise die Nachricht noch nicht, spiter dafiir in sehr
kurzen zeitlichen Abstéinden. Nach dem Umkehrpunkt auf der Bahn wird also gewissermalien
die verpasste Ubertragungszeit wieder aufgeholt. Im rechten Teil der Abbildung sieht man wie
der Reisende ebenfalls alle 0.25 Jahre ein Signal mit Lichtgeschwindigkeit sendet. Das erste
Signal wird auf der Erde nach ca. einem Jahr empfangen®'. Kurz vor dem Ende der Riickreise
werden dann in schneller Folge auf der Erde die Funksignale empfangen. Am Ende gibt es
also fiir beide Teilnehmer des Versuches eine nicht-paradoxe Gewissheit: Fiir den Reisenden
ist etwa ein Jahr wihrend der Reise vergangen und auf der Erde sind wihrenddessen ca.
2.25Jahre vergangen.

ABscHNITT 3.7

Abstinde im Minkowski-Diagramm

Wir haben in Abb. 7 bereits gesehen, wie man in einem Minkowski-Diagram eine Weltlinie fiir
einen mit v < ¢ bewegtes Bezugssystem einzeichnet. Diese Weltlinie entspricht dabei einem
alternativen Bezugssystem, in dem der bewegte Beobachter wiederum ruht. Das Verharren an
einem Ort wird in “nicht-bewegten” Koordinaten (ct,x) als vertikale Linie — also parallel zur
ct-Achse — dargestellt. Wenn wir nun die Weltlinie eines alternativen, bewegten Bezugssys-
tems einzeichnen, so stellt dies also die c#’-Achse dieses Bezugssystems dar, wie in Abb. 10
durch die rote Linie gezeigt. Wenn man nun im Diagramm den Abstand zweier Ereignisse
bestimmen mochte, so ist es wichtig von welchem Bezugssystem man ausgeht. Wir haben
bereits die Effekte der Zeitdilatation und der Langenkontraktion kennengelernt und wisser
daher, dass etwa die Uhren im bewegten System c¢7” langsamer gehen. Um diesen Effekt im
Diagramm zu veranschaulichen bemiihen wir erneut die Tatsache, dass die Wegelemente in
beiden Bezugssystemen — unabhingig von ihrem Bewegungszustand — konstant sein miissen.
Wir vernachlédssigen wieder die y— und z-Koordinaten und lassen nur eine Bewegung in
x—Richtung zu. Wir schauen uns nun an, wie die Wegstrecke von den Punkten (ct’ =0,x’ =0)
nach (¢T’,x” = 0) auf der ct’-Achse von einem ruhenden Bezugssystem aus aussieht>?. Im
ruhenden Bezugssystem sehen wir die Ausbreitung mit der Geschwindigkeit Ax/At = v und
messen die Zeit in der Skala cz. Im bewegten Bezugssystem wird die Zeit ct’ gemessen und
es gibt keine rdumliche Bewegung (Ax’ = 0):

As? = As’?
AP — A = AT (3.15)
A)CZ
AP 1- = AT
c2Ar?
02
AP (1——2) = AT . (3.16)
C

Wir sehen mit GI. 3.16, dass die bereits bekannte Zeitdilatation folgt. Allerdings sehen wir
mit GI. 3.15 auch, dass der Zusammenhang zwischen 7’ und ¢ in unserem Koordinatensystem
(ct,x) durch eine Hyperbel beschrieben wird. In Abb. 10 ist eine solche Hyperbel fiir verschie-
dene ct und x-Werte als blaue Linie eingezeichnet. Dort wo die blaue Linie eine Weltlinie
mit v < ¢ schneidet, kann man gewissermaflen die Streckung deren Zeitskala ablesen. Die
Zeitspanne cT ist auf der roten Weltlinie etwas gestreckt und es dauert 7’ > T bis im ruhenden
System die Zeit T verstrichen ist.

ABSTANDE IM MINKOWSKI-DIAGRAMM

20 Darauf wird im nichsten
Abschnitt  iiber Abstinde im
Minkowski-Diagram genauer
eingegangen.

21 Die Abbildung ist nicht maBstabs-
getreu.

»
>

X

Abbildung 9. Zeitiibermittlung beim
Zwillingsparadoxon. Jeder Zwilling
ibermittelt mit Lichtgeschwindigkeit
dem jeweils anderen alle 0.25 Jahre sei-
ne Uhrzeit.

\ 4

X

Abbildung 10. Minkowski-Diagramm
mit bewegtem Bezugssystem (ct’,x”).
Die verdnderten Skalenlidngen kann man
durch Hyperbelfunktionen (blaue Lini-
en) anschaulich machen.

22 Auf die Konstruktion der Achsen
ct’ und x” gehe ich nicht niher ein,
weil es im folgenden nicht benétigt
wird.
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Abbildung 11. Ruhendes IS erzeugt ein
Signal und sendet dieses an einen be-
wegten Beobachter.
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Abbildung 12. Ausschnitt zur Berech-
nung von 7”.
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ABSCHNITT 3.8

Relativistischer Dopplereffekt

Das Minkowski-Diagramm soll nun noch genutzt werden, um den relativistischen Doppler-
effekt (oder auch relativistische Rotverschiebung) zu illustrieren. Dafiir betrachten wir die
Situation aus Abb. 11. Unser unbewegtes Inertialsystem befinde sich im Ursprung und bewege
sich nicht. Die Weltlinie ist also als vertikale Linie (im Bild blau) darzustellen. Ein relativ dazu
bewegtes System soll sich mit der Geschwindigkeit v entlang der x-Achse von uns entfernen.
Dies wird im Bild durch die rote Gerade dargestellt. Alle folgenden Betrachtungen nehmen wir
nun zunédchst im ruhenden Inertialsystem vor, es wird also alles durch die Koordinaten x und
t ausgedriickt. Um die Geradengleichung der Weltlinie des bewegten Systems zu ermitteln,
nutzen wir die bekannte Geschwindigkeit v durch x = v - ¢. Dies wird nun umgeformt, um es
in die korrekte Koordinatenachsen-Bezeichnung (¢t = f(x)) zu bringen und spéter zu nutzen:

x=v-t—>cx=v-ct—>ct=%-x (3.17)
Um den relativistischen Dopplereffekt nun zu beschreiben, erzeugen wir in unserem ruhenden
System ein periodisches Signal mit der Frequenz f und der Periodendauer 7', wie in Abb. 11
an der ct-Achse angedeutet. Dieses Signal propagiert nun durch die Raumzeit (mit v = ¢!)
und wird vom sich entfernenden Beobachter aufgefangen. Die Signalpropagation muss im
Diagramm durch die Gerade ct = x dargestellt werden, dies ist durch die rote gestrichelte Linie
illustriert. Wihrend wir im ruhenden System die Periodendauer T fiir das Signal feststellen,
so wird der bewegte Beobachter stattdessen die Periodendauer 7’ ermitteln. Um 7’ zu
bestimmen, bendtigen wir zunichst die Zeit #y. Diese konnen wir aus dem Schnittpunkt der
beiden Geraden, wie in Abb. 12 skizziert, ermitteln. Die Geradengleichung fiir das propagierte
Signal entspricht einer nach oben verschobenen Gerade mit Anstieg 1, also ¢t =x+cT. Die
Gleichung fiir die Weltlinie des bewegten Bezugssystems lautet gemiB Gl.3.17 ¢t = & - x. Wir
stellen nun beide Gleichungen nach x um und setzen sie gleich. Damit folgt

cT
th=——
c—v

fiir die Zeitdauer #o im Ruhesystem. Um herauszufinden welcher Zeitspanne dies im bewegten
System entspricht, benodtigen wir die Zeitdilatation. Dies fiihrt dann zu

1o v?
— =4ll=-—= -t
y Va2
/1 2 T
2 c—v
_ -2 T (c—v)-(c+v)-T
(c—v)? (c—v)?
, [c+v
T = |—-T
c—v

Dies ist nun die Verschiebung der Periodendauern — zweckmaifiger ist es eine Verschiebung
der Frequenzen anzugeben. Wegen f = 1/T ergibt sich dann die Frequenzverschiebung fiir
schnell bewegte Beobachter

TI




RELATIVISTISCHER DOPPLEREFFEKT

relativistischer Dopplereffekt / Rotverschiebung

ey (3.18)

c+v
Dies bedeutet eine Verringerung der Frequenz bzw. eine Erhohung der Wellenldnge

(Rotverschiebung) wenn sich die Signalursache schnell vom Beobachter wegbewegt. Der
Effekt tritt natiirlich auch auf, wenn sich der Beobachter von der Lichtquelle entfernt.
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Abbildung 13. Zur Aquivalenz von
Gravitation und Trigheit. Links wirkt
ein Gravitationsfeld, rechts wirkt ein¢
Beschleunigung durch einen Antrieb.
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ABSCHNITT 4

Allgemeine Relativititstheorie

Was weif3 ein Fisch von dem Wasser, in dem er sein ganzes Leben lang schwimmt?
(Albert Einstein)

In der allgemeinen Relativititstheorie wird nun durch die Einstein’schen Feldgleichungen
eine Verbindung von Gravitation und Raum geschaffen. Wir werden also den “flachen” Min-
kowskiraum verlassen. Gliicklicherweise ist keine neue mathematische Beschreibung nétig,
da wir bis hier schon alles notwendige eingefiihrt haben.

ABSCHNITT 4.1

Das Aquivalenzprinzip

Das sogenannte Aquivalenzprinzip nach Einstein lautet: Trigheit und schwere Masse sind
wesensgleich. Hierbei ist als Trigheit (oder trige Masse) die Eigenschaft eines Korpers zu
bezeichnen, sich gegen eine Beschleunigung zu wehren gemifl dem Zweiten Newton’schen
Axiom:

Fi

my = —.

X

Die schwere Masse ist eine Proportionalititskonstante im Gravitationspotential gemif

Mg N2

Fo =G

,
Fiir den freien Fall nahe der Erdoberfliche wird die Gravitationskraft niherungsweise durch
eine Taylorentwicklung zu

Fg~mg-g

Wenn keine anderen Krifte wirken als die Gravitation, so bewirkt diese gemidll Newton eine
Beschleunigung der Form

mX=mgg —X=—g

Die Gravitationskonstante G ist so gewihlt, dass der Zahlenwert und die Einheit von m, und
my identisch ist. Dies ist allerdings “nur” empirisch begriindet durch die Erfahrung, dass das
Verhiltnis von triager und schwerer Masse fiir alle Korper gleich ist. Es gibt Experimente, die
mit enormer Genauigkeit diese Annahme untersuchen. Bisher ist die Gleichheit von triger
und schwerer Masse mit einer Genauigkeit von 10713 bestitigt [12].

Eine alternative Formulierung des Aquivalenzprinzips ist die folgende:

Aquivalenzprinzip In einem lokalen Bezugssystem lisst sich der Einfluss der Gravitations-
kraft nicht von der Wirkung einer Beschleunigung unterscheiden.

Wir sprechen also hier, im Gegensatz zur speziellen Relativititstheorie von Beschleu-
nigungen. Es soll noch einmal verdeutlicht werden, dass beschleunigte Bewegungen nicht
im Rahmen der speziellen Relativititstheorie behandelt werden konnen, denn beschleunigte
Bezugssysteme sind keine Inertialsysteme. Dieses Aquivalenzprinzip besagt also, dass man
nicht feststellen kann, ob man sich in einem Gravitationsfeld befindet oder beschleunigt wird.
In Abb. 13 ist dies durch zwei Situationen gezeigt: Die rote Masse befindet sich in einem Gra-
vitationsfeld, das eine Kraft in Richtung des Gravitationszentrums ausiibt. Die blaue Masse
wird durch einen Raketenantrieb beschleunigt mit der Kraft F; entsprechend seiner trigen
Masse. Das Aquivalenzprinzip besagt nun, dass es keine Messung geben kann, mit der man
die Fille unterscheiden konnte.



Aus dem Aquivalenzprinzip kann man die sogenannten Einstein’schen Feldgleichungen
ableiten. Das wiirde allerdings den Rahmen dieses Buches sprengen, weshalb hierauf verzich-
tet wird. Wir bedienen uns lediglich einiger Schlussfolgerungen aus der Differentialgeometrie,
um die geeigneten Bezeichnungen fiir die ART zu finden. Statt einer Bahnkurve spricht man
nun von Geoditen in der Raumzeit. Geodidten sind ganz urspriinglich etwa Léangen- oder
Breitengrade auf der Erdoberfliche. Man stelle sich vor, dass man zwei zuféllige Ort auf der
Erdoberflache wihlt und einfach geradeaus geht. Die Bahn um die Erdkugel beschreibt dann
eine Geodite — also eine Kurve die der Erdkriimmung folgt. Da wir Menschen im Vergleich
zur Erdkriimmung klein sind, wiirde uns das allein nicht ermoglichen die Erdkriimmung
festzustellen. Jetzt werden wir aber folgendes Experiment anstellen konnen: Zwei Menschen
starten an zwei Punkten in derselben Richtung. Auf einer flachen Erde wiirden Sie sich fiir alle
Ewigkeit auf parallelen Strecken fortbewegen und sich niemals begegnen. Wenn die Erdober-
flache aber gekriimmt ist, werden sich diese parallelen Linien schneiden wie dies in Abb. 14
illustriert ist. Auerdem gilt auf einer gekriimmten Oberfldache nicht der Innenwinkelsatz — das
Dreieck in Abb. 14 hat beispielsweise eine Innenwinkelsumme von 270°. Genau wie bei der
noch ziemlich anschaulichen gekriimmten Fldche verhélt es sich mit der vierdimensionalen
Raumzeit. Einstein hat 1916 vorhergesagt, dass durch die Kriimmung der Raumzeit in Gegen-
wart der Sonnenmasse das Licht dahinterliegender Sterne abgelenkt werden miisste [13]. Die
Sonnenfinsternis von 1919 bot eine Gelegenheit um diese Uberpriifung der Relativititstheorie
durchzufiihren und bestitigte die Vorhersagen [14]. Bei den Messungen wurde iibrigens auch
untersucht, ob das Licht ganz regulér durch die Newton’sche Gravitation der Sonne vom Kurs
abgelenkt wurde. Die gefundene Ablenkung des Lichts nahe der vom Mond verdunkelten Son-
ne war aber zu groB fiir diesen Effekt und stattdessen in Ubereinstimmung mit der Vorhersage
durch die Relativitétstheorie von Einstein.

Hinweis: Zur Veranschaulichung/Demonstration der Raumkriimmung werden auf Seite 115
sogenannte Sektorenmodelle vorgestellt. Sie ermoglichen das spielerische Erleben von
Kriimmungseffekten.

Es ist also offenbar tatsdchlich der Fall, dass die Raumzeit durch Gravitationsfelder
gekriimmt wird. Wie durch Anwesenheit von Materie oder Energie der Raum gekriimmt wird,
beschreiben die Einstein’schen Feldgleichungen:

Einstein’sche Feldgleichungen

1 8nG
R,uv_ EgpvR"'Agpv = . Tpv
——— ——e
Raumkriimmung Energie-Impuls-Tensor

wobei A die kosmologische Konstante ist ,g die Metrik, R der sogenannte Ricci-Tensor
und T der Energie-Impuls Tensor. Es hat sich gezeigt, dass “sinnvolle” Losungen dieser
Feldgleichung mit und auch ohne kosmologische Konstante mdglich sind. Die Konstante hat
grofen Einfluss auf kosmologische Losungen — sie beschreibt die Expansion des Univer-
sums. Einstein hatte deren Einfiihrung als “grofite Eselei seines Lebens” zunichst bereut.
Heutzutage sind die kosmologischen Modelle jedoch auf diese Konstante angewiesen, da
man gegenwirtig von einem expandierenden Universum ausgeht. Die Konstante A dréngt
also gewissermaflen das Universum auseinander und entspricht daher einer Energiedichte des
Vakuums. Man kann diesen Effekt direkt mit den Vakuumfeldenergien der Quantenmechanik
vergleichen — und auch direkt mit der Quantenmechanik berechnen. Die Quantenmechanik
wiirde mit Vakuumfluktuationen als Ursache fiir eine Expansion eine kosmologische Kon-
stante von Agy = 107°m~2 vorhersagen. Die ART ermittelt jedoch durch experimentelle
Messungen einen Wert von Aagr ~ 107°2m~2. Diese Diskrepanz ist bisher ungeklirt und
wird als Aquivalent zur Ultraviolettkatastrophe (“Vakuumkatastrophe) gesehen. Die Dis-
krepanz von Agar/Aart ~ 1022 wird oft als die schlechteste theoretische Vorhersage einer

Das AQUIVALENZPRINZIP

Abbildung 14. Auf einer gekriimmten
Oberflache schneiden sich Linien die
parallel am Aquator starten.
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Konstanten in der Geschichte bezeichnet.

ABSCHNITT 4.2

Bewegungsgleichung/Geodiatengleichung

Wir wollen hier kurz zeigen, was man tun kann um die Geodéten fiir eine gegebene Raum-
kriimmung, gegeben in Form einer Metrik g, zu berechnen. Eine Geodite ist immer die
kiirzeste Verbindung zwischen zwei Punkten. Im euklidischen Raum ist dies eine Gerade.
Auf einer Kugeloberflache werden die entsprechenden Kurven Geoditen oder GroBkreise
23 Flugzeuge fliegen auf ihrer Bahn  genannt. >3 In einer gekriimmten Raumzeit werden wir es also im Allgemeinen mit Kurven zu
ebenfalls keine geraden Strecken, tun haben, die zwei Punkte durch eine kiirzeste Strecke verbinden. Die Bewegungsgleichung
sondern die kiirzeste Verbindung: fiir solche gekriimmten Ridume lautet
eine Geodiite.
Bewegungsgleichung fiir gekriimmte Raume

d*x“ dx# dx”
£ e X (4.1)
dr? Wdr dr

Wenn man die Differentiale d/dr durch d/ds ersetzt, nennt man dies die Geoditenglei-
chung. Die Christoffelsymbole I" berechnet man gemif

B _gﬁ_a agw#+58av 08y

oo gxy T gxH dx@

aus der Metrik. Hinweise: Man kann die Indizes der Metrik senken/heben durch g#” =
ﬁ. AuBerdem sind die partiellen Ableitungen der Koordinaten untereinander gleich O (z.B.
0x%/ax" = 0).

Die Berechnung einer Bahnkurve in gekriimmten Raumen ist also um einiges schwieriger
als man es aus der flachen Geometrie gewohnt ist. Die Berechnung der optimalen Flugbahn
eines Flugzeuges (die Erdoberfliche ist ja auch gekriimmt) ist etwa eine wichtige Anwendung
der Geodidtengleichung.

ABSCHNITT 4.3

Materiefreie Feldgleichungen

Die Einstein’schen Feldgleichungen werden wir nur in stark vereinfachter Form untersuchen.
Wir nehmen dafiir eine homogene Masseverteilung als Ursache fiir die Raumkriimmung
an (also etwa ein Stern o.d.). Der Radius dieser Masseverteilung solle ro betragen. Die
Feldgleichungen fiir die Losungen auBerhalb (ohne Materie, deswegen wird dort 7, = 0) von
ro lauten dann nur noch

Materiefreie Feldgleichungen
R,y =0 (4.2)

wobei der Ricci-Tensor R nur noch diagonale Eintriage hat die ungleich O sind. Die
Elemente des Ricci-Tensors werden aus den Christoffel-Symbolen Fﬁ,, und damit aus der
Metrik g,,, festgelegt. Fiir ganz Neugierige gibt es hier die Berechnungsvorschrift:

0 £
ANy, aTh,

Y gy OxP

o P o TP
+I I, -TT0,
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ABSCHNITT 4.4

Schwarzschild-Metrik

Die Gleichung 4.2 hiangt von der Metrik g#” ab. Wenn man eine Metrik findet, bei der alle
Elemente des Ricci-Tensors zu Null werden, ist der materiefreie Raum um eine Massenver-
teilung im Einklang mit der ART beschrieben. Was aber genau ist denn nun eine Metrik?
Wir sind bereits in der SRT der Metrik fiir die euklidische (flache) Raumzeit begegnet, 1,5, .
Diese wurde genutzt um das Wegelement ds bzw. (ds)? zu bestimmen nach ds” =5 uydxHdx”.
Genau auf die gleiche Weise kann man auch die Metrik einer gekriimmten Raumzeit nutzen,
um ein Wegelement in diesem gekriimmten Raum zu berechnen:

Wegelement in gekriimmter Raumzeit
ds® = guvdxHdx” 4.3)

Diese Metrik g,,, definiert also, wie genau dieser gekriimmte Raum aussieht. Die eigent-
liche materiefreie Feldgleichung 4.2 hiingt iiber die Christoffelsymbole ja auch eigentlich nur
von g,,, und dessen Ableitungen ab. Die Ableitung einer Losung der komplizierten Differen-
tialgleichungen, die in Gleichung 4.2 impliziert sind, ist recht umstindlich. Wir gehen hier
darum einen anderen Weg und nehmen eine bereits gefundene Losung als gegeben an. Dass
diese Losung tatsichlich die materiefreien Feldgleichungen erfiillt, bleibt der Ubungsveran-
staltung iiberlassen. Eine Metrik, die die materiefreie Feldgleichung erfiillt, hat die Form

Schwarzschild Metrik

(1-=) 0 0 0
——mx 0 0

0 (- (4.4)
S I S P R '
0 0 0 —rZsin’6

und wurde 1915 von Karl Schwarzschild als erste exakte Losung der Einstein’schen
Feldgleichungen gefunden [15]. Wegen der Kugelsymmetrie der Masseverteilung werden hier
Kugelkoordinaten x* = (ct,r,0,¢) verwendet. Wir kdnnen uns jetzt leicht das Wegelement
dieser Schwarzschildmetrik berechnen:

2
ds® = guvdxHdx = (1 - r—S) cde - Lr —r2do* - r¥sin® 0dp®
r (1-3)
Dieses Wegelement ist im Vergleich zur Minkowski-Metrik deutlich facettenreicher. Wir
erkennen zunichst ein Problem, dass allerdings aus der Wahl der Koordinaten folgt. Das We-
gelement wird singulér, wenn r — 0 strebt. Aulerdem sehen wir an der zweiten Koordinate
das gleiche singuldre Verhalten fiir r = rg. Hinweis: Diese Singularitét ist durch Wahl einer
anderen Metrik zu vermeiden, es ist also eher ein Artefakt ohne strenge physikalische Not-
wendigkeit. Wichtiger ist aber noch folgender Effekt: Wenn die Radialkoordinate » den Wert
rs unterschreitet, dndern sich die Vorzeichen im Wegelement der ersten beiden Koordinaten.
Diese Situation kann man (sehr mit Vorsicht zu behandeln!) notdiirftig interpretieren als: Zeit
und Raum tauschen die Rollen. Man nennt die GroBe rg auch Ereignishorizont oder Schwarz-
schildradius. Wo genau liegt dieser Ereignishorizont fiir eine gegebene Masse? Man kann
dafiir einen Vergleich der Newton-Gravitation und der relativistischen Gravitation anstellen.
Dafiir muss man zunéchst die Bewegungsgleichung der ART (siehe 4.1) fiir schwache Felder
nihern. Aus diesen Nidherungen bekommt man eine Bedingung, die gelten muss, wenn in
schwachen Gravitationsfeldern die Netwon’sche Mechanik giiltig sein soll. Damit das der Fall
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Abbildung 15. Dieses schwarze Loch
besitzt eine Masseverteilung bis r;,. Der
Ereignishorizont liege bei rg.
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Gravitations-

v

[}
Zentrum B

Abbildung 16. Die Verinderung der Eigenzeit in der Nihe eines Gravitationsfeldes beeinflusst auch die
Wellenldnge von Licht. Hat das Licht das Gravitationspotential verlassen, scheint das Licht eine groere
Wellenldnge zu haben.

ist, muss

VC2

2GM
800 = (1 - )

sein. In diesen Ausdruck ist das Newtonsche Gravitationspotential mit der Gravitationskon-
stanten G einer Masse M eingegangen. Durch Vergleich mit dem g, -Element der Schwarz-
schild Metrik kann man nun leicht einen Ausdruck fiir rg erkennen:

r c?

o, 2GM\ (s _2GM
goo=|1- 2 —(1 ) - rs =

Man nennt diese so gefundene Konstante rg auch Schwarzschildradius. Fiir die Sonne betrigt
der Schwarzschildradius demnach
2GZWSonne

r'S,Sonne = T ~3km

wobei der tatsidchliche Radius der Sonne rsopne = 7 - 10°km betrdgt. Die Abweichung des
Sonnenradius vom Schwarzschildradius um 6 Groenordnungen zeigt also, dass die Abwei-
chungen von der Minkowski-Metrik in unserem Sonnensystem sehr klein sind. Trotzdem sind
die Effekte teilweise wichtig. Die Periheldrehung des Merkur etwa kann nur mit einer Raum-
kriimmung erkldrt werden. Wenn ein Stern eine solche Dichte aufweist, dass seine Ausmalfle
den Radius rg unterschreitet, nennt man ihn ein Schwarzes Loch. Wie kann man sich so ein
schwarzes Loch vorstellen? Wir unterteilen es hierfiir wie in Abb. 15 in drei Bereiche: Im
ersten Bereich I ist die Masse des Sterns kugelsymmetrisch in einem Gebiet mit Radius r, ver-
teilt. Innerhalb dieses Gebietes kann man mit der Schwarzschildmetrik keine Aussagen treffen,
da hier die materiefreien Feldgleichungen nicht gelten. Im folgenden Bereich II zwischen der
Massenansammlung und dem Ereignishorizont beobachten wir den bereits angesprochenen
Vorzeichenwechsel im Wegelement ds. Was beim Eintritt in den Ereignishorizont passiert
wird spéter noch genauer untersucht. AuBlerdem ist wohl bekannt, dass kein Licht und damit
auch keine Information den Ereignishorizont wegen der starken Gravitation wieder verlassen
kann — deswegen spricht man auch von einem “schwarzen Loch”, obwohl es eigentlich eine
extrem dichte Massenansammlung ist. Warum das der Fall ist, hingt mit der sogenannten
gravitativen Rotverschiebung zusammen.

ABscHNITT 4.5

Gravitative Rotverschiebung

Um den Effekt der gravitativen Rotverschiebung zu untersuchen, machen wir uns zunichst
das Problem bewusst. Wir wollen wissen, welchen Einfluss ein Photon durch die Anwesenheit



eines Gravitationsfeldes spiirt. Das Photon besitzt als grundlegende Eigenschaft eine Verkniip-
fung mit der Zeit — in Form einer Frequenz bzw. Wellenlidnge. Wir wollen also zunéchst unter-
suchen, was mit einer Uhr in Anwesenheit eines Gravitationspotentials geschieht. Wir nehmen
an, unsere Uhr befinde sich im Koordinatenursprung (x! = x? = x> = dx! = dx? = dx® = 0).
Dann ist das Wegelement ds = cdt und die “gravitative Zeitdilatation” betrigt

_ dsunr

1
dr T = E VEuvdxrdxy = VgOOdt 4.5)
Wir untersuchen jetzt folgenden Sachverhalt: Es werden zwei Photonen vom Ort A in Richtung
Ort B gesendet (siehe Abb. 16). Die Zeit im System des Photons sei 7, die Zeit im System des
Beobachters sei ¢. Direkt angewendet ergibt sich fiir die differentiellen Zeitintervalle am Ort
A bzw. Ort B nun nach Gl1.4.5

drg =+/goo(ra)dea drg = +goo(rp)dip

Die sehr kurzen Zeitintervalle dr konnen wir z.B. als eine Schwingungsperiode der Lichtwelle
annehmen. Damit konnen wir die Frequenzen v4 und vp gemidB v = 1/t ausdriicken als
dry = i bzw. drp = i Das Gravitationsfeld soll sich zeitlich nicht dndern. Dass heif3t, dass
die Reisezeiten fiir das erste Signal und fiir das zweite Signal fiir den Beobachter gleich lang
sein miissen. Daraus folgt df4 = dfg. Wir konnen nun durch Division die Gleichungen 4.6

verbinden:
YA _ 800 (rB)
VB goo(ra)

Damit haben wir einen Ausdruck erhalten, mit dem man die Anderung der Frequenz einer
Lichtwelle bestimmen kann, wenn Sie Gravitationspotentiale durchlduft. In der Praxis wird

auch oft der Rotverschiebungsparameter z = :—1’; —1=4f % — 1 bzw. die relative Rotver-

schiebung A—V" = % verwendet. Man kann also bei bekannten Prozessen (Lichterzeugung in

Sternen) ausgesendete Spektren untersuchen und bei einer entsprechenden Rotverschiebung
auf die Gravitationsfeldstdarke am Entstehungsort schlieen.

(4.6)

Wir wollen nun noch zwei Grenzfille untersuchen: Ein sehr kleines und ein sehr starkes
Gravitationspotential. Im Fall der Erdanziehung kénnen wir im Rahmen der ART von einem
sehr schwachen Gravitationspotential sprechen. Wie schon gezeigt, kann man fiir diesen Fall
den entsprechenden Eintrag des metrischen Tensors durch die Newton-Gravitation annihern.

GM
2

Dann wird goo(r) = (1 - zrc ) Fiir die Umgebung um die Erdoberfliche ergibt sich mit

dieser Naherung

2GM
YAy | Tt glhs—ha) _gh
SRR O Te VA 2 =2

h A 62
Die Potentialdifferenz der Newtongravitation wurde linearisiert>*

g(hp —hy). Die relative Rotverschiebung betrigt dann

und betrigt dann @ — P4 =

Etwas besser fiir die Anwendung in der Schule geeignet ist vielleicht die Herleitung
durch Nutzung des Energie-Impuls-Satzes. Hierfiir betrachtet man die Energiebilanz der
beiden Photonen mit Gesamtenergie E 4 = 2nfivy und Ep = 2nfivg. Das Photon A befinde
sich nun noch zusitzlich im Gravitationspotential. Im schwachen Erdgravitationsfeld wird das
Potential linearisiert. Es ergibt sich also

2nhva = me? +mgh 2nhvg = me?

GRAVITATIVE ROTVERSCHIEBUNG

24 Wie iiblich durch Entwicklung in
eine Taylor-Reihe.
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2 GemiB der Quantentheorie sind
alle Teilchen auch Wellen mit be-
stimmten Wellenldngen.
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Abbildung 17. Fall eines Astronauten
in ein schwarzes Loch.
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Die relative Rotverschiebung betrigt demnach

vg—va 2nh . mc* — (mc* +mgh)

VB 27h mc?
gh
2

Man kann diesen Effekt der gravitativen Rotverschiebung im Erdfeld sogar messen[16]. Beim
MoBbauereffekt gibt es eine sehr scharfe Linienemission von Photonen. Wenn Quelle und
Empfinger durch einen Hohenunterschied von i =22 m getrennt sind, dndert sich die Frequenz
der emittierten Photonen um das Verhiltnis

Av  gh

- =-246-107".
v c
Diese Frequenzverschiebung kann man entsprechend den Berechnungen durch Messungen
tatsdchlich nachweisen.
Was passiert nun aber bei einem sehr starken Gravitationsfeld? Speziell wollen wir hier
den Ereignishorizont eines schwarzen Loches als Ausgangsort fiir eine Photonen-Emission
untersuchen. Dann wird die Rotverschiebung durch

_
va _ [8oo(rB) _ |17 0
ve  \ 8oo(ra) -=

beschrieben. Wenn nun der Ausgangsort der Photonenemission immer néher an den Ereig-
nishorizont riickt, wird die Rotverschiebung

VA rs . 1
—=,/1-—"-lim
VB ro r—rs 1=1s

unendlich stark. Die Verschiebung der Wellenlidnge ins Unendliche ist gleichbedeutend mit un-
endlich geringer Frequenz/Energie und damit also Nichtexistenz. Man kann also kein Photon
auflerhalb des schwarzen Loches Beobachten, dass am Ereignishorizont seinen Ausgangs-
punkt nahm. Es ist also nicht moglich, dass ein Photon oder irgendein anderes Teilchen®® den
Ereignishorizont eines schwarzen Loches verlasst.

ABSCHNITT 4.6

Fall in ein schwarzes Loch

Wir wollen nun an einem Beispiel die relativistische Bewegungsgleichung benutzen. Was liegt
niher, als zu untersuchen wie ein Astronaut in ein schwarzes Loch fallt [2]. Der Sachverhalt ist
in Abb. 17 dargestellt. Die Reise des Astronauten beginnt bei » = R ohne Anfangsgeschwin-
digkeit (‘;—; = g—; =0). Die Masse des schwarzen Loches ist auf einem Punkt konzentriert, also

ist hier r;, = 0. Die Bewegungsgleichung lautete
d*x® _, dxHdxY
— = —_—— 4.7
dr? W dr dr @D

mit den Christoffelsymbolen

p 80" (080u 8oy I8uv (4.8)
B L gxy o OxM Ox@ ’




. Da wir nun die Schwarzschildmetrik nutzen, kann g, eingesetzt werden und alle Ablei-
tungen konnen ausgefiihrt werden. An diesem Beispiel sollen nun auch die entsprechenden
Christoffelsymbole fiir die Bewegungsgleichung berechnet werden. Wir ignorieren die Koor-
dinaten ¢ und ¢ und arbeiten lediglich mit x° = ¢ -# und x! = r. Die Bewegungsgleichung fiir
die xO-Komponente, also @ =01in Gl. 4.7, lautet nun:
cXdrr o dxMdx”
dr2 M dr dr
o dxt dx® N o dxt dx!
M qr dr "1 dr dr
de()de de()dx] delde dilg]
gz dr T 0 ar ar T 10ar ar lldT dr’

Nun benétigen wir noch die Christoffelsymbole F(())o’ Fgl, F?o und F . Fiir nur zwei Koordi-
naten x° und x! wird G1.4.8 zu

+0,

o - ﬁ aga/l + 08av _ 68/41/ _ ﬁ 680/1 + 0gov _ 83#1/
2 \ ox”  OxH  Ox«@ 2 \dxv  Oxt  oxY

weil go1 =0 ist. Die Eintréige fiir g,, sind nur ungleich 0 fiir die Fille goo und g1;. Die
Christoffelsymbole werden nun berechnet durch:

o - g% (9800  dgoo  dgoo zﬁ.agooz( ).
007 2 {ax0  9x0  9x0 20 ax0 T
N g;/ 5800 dgi6\ _ 8™ dsm
10 2 x0 ﬁxo 2 Ox!
o g” agoo+3g)2( g\ _ 8% dsm
o1 2 \ax! ax0 @x0 2 Oxl
o - 811 J/ dgpf dgn)_ 8" dgn =( ).Q:()
1 /5x1 0x0 2 ax0 VT or

Da g, nur von r abhéngt, werden fiir r(())o und F?l die letzten Terme zu partiellen Ableitungen
der Form 0r/0t = 0 fiihren. Aus der Schwarzschildmetrik g,,, aus Gl. 4.4 ergibt sich gop =
(1 =rg/r). Ohne Beweis?® ist auBerdem g% = 1/ggo. Damit lassen sich die verbleibenden
beiden Christoffelsymbole bestimmen:

0 0 1 a(l_rTS) 1 rs rs
Lo =Ti= s = 7S\ 2 2 (r—ra)
2(1-%) ar 2(1-%=) 2 2r(r-rs)

r

Nun konnen wir diese in die Bewegungsgleichung der Zeit-Komponente x° einsetzen und

erhalten
c2ds? 3 2rg  dx0dx! B rs  cdt dr

dr2 ~ 2r(r—rs) dr dt  r(r—rg) dr dr
Zusammen mit dem Wegelement fiir den Pfad des Astronauten auf geradem Weg (¢ und ¢
werden also weggelassen)

272 22 (1. 1S\ 2.2 dr?
codr —dS—(l r)cdt (1_%5)

FALL IN EIN SCHWARZES LocH

26 Das wiirde weitere Erlduterungen
zu ko- und kontravarianten Tenso-
ren auf den Plan rufen. Dies moch-
te ich in diesem Lehrbuch gern ver-
meiden. . .
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Abbildung 18. Einstein-Rosen-Briicke als Verbindung eines schwarzen und weien Loches. In kurzer
Zeit konnten groBe Distanzen zurlickgelegt werden.

haben wir einen Satz aus zwei Differentialgleichungen. Diese beiden Gleichungen lassen sich
analytisch 16sen. Die Losung wird hier ohne Rechnung angegeben und lautet

_car Pl —rg
e s =

r—rgs

Wenn sich der Astronaut dem Ereignishorizont néhert, wird der Ausdruck auf der rechten
Seite gegen 0 gehen. Daher muss auch die linke Seite der Gleichung gegen 0 gehen, was
fiir At — oo erfiillt ist. Fiir den ruhenden Beobachter dauert es also unendlich lange, bis der
Astronaut den Ereignishorizont erreicht.

Wie lduft das ganze aber fiir den Astronauten ab? Dafiir muss man nun die Rechnung mit
der Eigenzeit dr des Astronauten durchfiihren. Es ergibt sich, dass die Zeit fiir den Fall ins
schwarze Loch in diesen Eigenzeitkoordinaten endlich ist! Die gesamte Fallzeit von r = R bis
zur Singularitit (r = 0) betragt

3\
At = il (R—)

2c \rg

Der Astronaut nimmt den Moment nicht wahr, an dem er den Ereignishorizont passiert. Es ist
also theoretisch moglich, den Ereignishorizont eines schwarzen Loches zu passieren.

ABSCHNITT 5

Exotisches zur Relativitat

In diesem Kapitel stelle ich kurz und ohne fachliche Tiefe Themen vor, die aus Wiinschen von
Studierenden ausgewéhlt wurden. Es sind hauptsichlich Effekte oder Vorstellungen, wie Sie
in Medien oder aus Science-Fiction Filmen bekannt sind. Gerade wegen dieser Bekanntheit
sind es aber auch gute Ankniipfungspunkte zwischen SchiilerInnen und LehrerInnen, um
interessante Gespriche liber Physik zu fiihren.

ABSCHNITT 5.1

Einstein-Rosen-Briicke

Eine spannende Vorhersage der ART ist die Moglichkeit der Existenz von Wurmlochern. In
der Literatur oder in Filmen wird darauf haufig eingegangen. Was aber hat es damit auf sich?



Grundlegend beruhen Wurmlocher auf der Existenz eines sogenannten “weiflen Loches”. Die
Feldgleichungen erlauben prinzipiell Zeitumkehr — damit wére ein solches weiles Loch das
zeitumgekehrte Pendant zum schwarzen Loch. Es wiirde pausenlos Energie und Materie ab-
strahlen, und das in extremen Mengen. Ein solches Objekt wire extrem hell und wiirde am
Nachthimmel alle anderen Galaxien deutlich iiberstrahlen. Die Existenz eines weiflen Loches
ist also physikalisch hochst unplausibel, da man es schon ldngst hitte beobachten miissen.
Ignorieren wir diese Tatsache, kommt hinzu dass ein solches weifles Loch aus Griinden der
Energieerhaltung nicht isoliert existieren kann. Aber: Es ist im Rahmen der ART mdoglich
ein Objekt zu modellieren, dass eine Verbindung aus schwarzem Loch und weiem Loch
darstellt wie in Abb. 18 gezeigt. Die Energieerhaltung wire erfiillt und es wére wie in der
Science-Fiction moglich damit verschiedene Raumpunkte grofer Entfernung miteinander zu
verbinden. Diese Losung der Feldgleichungen wurde 1935 von Einstein und Nathan Ro-
sen vorgestellt, weswegen auch iiblicherweise von einer Einstein-Rosen-Briicke gesprochen
wird [17]. Neben dem bereits angesprochenen Problem mit den nicht beobachteten weillen Lo-
chern, gibt es aber noch weitere Stolpersteine beim Benutzen des Wurmloches: Diese Losung
der Feldgleichungen ist selbst bei kleinsten Stdrungen instabil. Selbst der Eintritt eines Raum-
schiffes in das schwarze Loch wiirde die Verbindung destabilisieren und schlieBlich trennen.
Dann wiirde man sich wiederfinden mit der Singularitét hinter sich und dem Ereignishorizont
vor sich — keine guten Raumfahrtbedingungen.

Als abschliefende Bemerkung dazu aber noch gute Neuigkeiten: Es gibt auch neue
theoretische Modelle von Wurmlochern, die eine Passage ermoglichen konnten [18, 19].

ABSCHNITT 5.2

Warp-Antrieb

Einstein-Rosen-Briicken sind also wahrscheinlich nicht geeignet, um interstellare Raumfahrt
zu realisieren. Dann bleibt als néchste Option der sogenannte Warp-Antrieb aus dem Star-Trek
Franchise. Und entgegen den iiblichen Einschétzungen werden wir sehen, dass wir uns hier
schon eher mit einer “umsetzbaren” Idee beschéftigen.

Das Ziel eines Warp-Antriebes ist kein geringeres, als die Fortbewegung mit Uberlicht-
geschwindigkeit. In Anlehnung an die Ideen von Star Trek gibt es echte Entwiirfe, wie man
solche Antriebe zumindest theoretisch realisieren kann. Realisieren heif$t hier, man gibt eine
gewisse Metrik vor, die die gewlinschten Eigenschaften beinhalten wiirde. Wie man solch
eine Raumkriimmung dann erzeugt kann natiirlich noch nicht betrachtet werden. Einer der
Umsetzungen eines Warp-Antriebes ist das Modell des “Alcubierre-drive” [21]. Notig ist es
bei diesem Ansatz, ein Feld negativer Energie zu erzeugen. Spekulationen zufolge konnte ja
vielleicht die dunkle Materie hierzu einen Beitrag leisten. Dann konnte man den Raum vor
dem Raumschiff zusammenziehen und hinter dem Schiff wieder ausdehnen. Insgesamt wire
die Raumkriimmung in einiger Entfernung also wieder ausgeglichen und es gibt nur einen
lokalen Einfluss in der Umgebung des Raumschiffes wie man in Abbildung 19 erkennt. Die
Folge einer solchen vom Raumschiff erzeugten Raumkriimmung wire, dass das Schiff sich mit
v < ¢ bzw. gar nicht fortbewegt, sich das Ziel aber trotzdem relativ mit v > ¢ néhert. AuSerdem
wire ein immens wichtiger Aspekt, dass durch die langsame Geschwindigkeit innerhalb der
verformten Raumzeit keine Zeitdilatation beriicksichtigt werden muss. Es ist also moglich
ein entferntes Ziel in kurzer Zeit zu erreichen, ohne dass in der Heimat Millionen von Jahren
vergangen sind. Die Metrik des Alcubierre-Drives soll diese Form annehmen:

ds? = (vs(t)z Flre(0)? = 1) A% = 204 (1) rs (£)dxds +dx? +dy? +dz2
mit rg, f und vy als komplizierte Funktionen der Koordinaten. Die Notwendigkeit von exoti-

scher Materie/Energie wiirde einem Energiebedarf in Groenordnungen von Planeten, Sternen
oder gar Galaxien entsprechen. Das macht diesen Entwurf zunichst, vorsichtig gesagt, un-

‘WARP-ANTRIEB

Y

Abbildung 19. Alcubierre-Drive: Der
Raum vor dem Raumschiff wird kontra-
hiert, hinter dem Raumschiff expandiert
— hier durch die Hohenlagen der darge-
stellen Funktion illustriert. [20].

47




EXOTISCHES ZUR RELATIVITAT

48

praktisch.

Zum Gliick gibt es aktuelle Veroffentlichungen die belegen, dass man auch mit positiver
Energie ein solches Warp-Feld erzeugen kann [22]. Der Energiebedarf ist aber leider auch
hier unvorstellbar hoch.

ABscHNITT 5.3

Zeitreisen

Zeitreisen sind ein weiteres populédres Element, das eng mit der Relativitétstheorie verkniipft
ist. Weil auch dieses Thema in den Medien sehr prisent ist, soll hier ein grober Uberblick
iiber gingige (wissenschaftlich fundierte) Theorien zu Zeitreisen gegeben werden.

5.3.1 Zeitreisen in die Vergangenheit

Zeitreisen in die Vergangenheit sind (leider) physikalisch duferst unplausibel. Man denke nur
an das GrofBvaterparadoxon: Man wiirde in die eigene Vergangenheit reisen und konnte dort
seinen Grofvater toten. Das wiirde aber die eigene Existenz verhindern und damit zu einem
Paradoxon fiihren. In der ART wurden Zeitreisen aber natiirlich auf ihre Machbarkeit hin
untersucht. So fand Kurt Godel 1949 eine entsprechende Moglichkeit [23]. Als Losung fiir die
Feldgleichungen beschrieb er sogenannte closed timelike curves (CTC). Diese Pfade durch
die Raumzeit ermoglichen es, wieder zur eigenen Vergangenheit zu reisen. Das praktische
Problem an diesen Losungen ist aber eben, dass sie geschlossen sind. Wenn jemand in die
Vergangenheit reist und dort etwas tut, so hat er es “immer schon getan”. Man kann also die
Zukunft mit der Reise in die Vergangenheit nicht beeinflussen sondern bedingt die bereits
feststehende Zukunft damit. Auf philosophischer Ebene wird in diesem Zusammenhang auch
oft vom problematischen freien Willen gesprochen.

Wenn man ohne die ART arbeitet und sich ausschlieBlich in einer quantenphysikalischen
Welt befinde, wiren allerdings Reisen in die Vergangenheit ohne Paradoxa moglich. Moglich
machen dies dann die Wahrscheinlichkeitsinterpretation oder die Many-World-Interpretation.

Die gute Nachricht fiir angehende Zeitreisende ist aber, dass nur die Einflussnahme auf
die Vergangenheit das Problem darstellt. Konnte man in die Vergangenheit reisen ohne jede
Einflussnahme (z.B. nur eine Bildiibertragung aus der Vergangenheit), so wire dies mit der
Theorie vereinbar.

Eine weitere hypothetische Moglichkeit, in die Vergangenheit zu reisen wire unser bereits
bekannter Warp-Antrieb als Moglichkeit einer Fortbewegung mit v > ¢. Durch die Zeitdilata-
tion mit v > ¢ wird die Eigenzeit dann negativ ablaufen.

5.3.2 Zeitreisen in die Zukunft

Zeitreisen in die Zukunft sind dagegen allgegenwirtig. Wir alle reisen pausenlos in die Zu-
kunft. Jedoch mit einer uns vorgegebenen Gechwindigkeit die wir nicht beeinflussen konnen.
Es stellt sich also eher die Frage, wie wir schneller als iiblich in die Zukunft reisen konnen.
Dies kann man direkt durch Anwendung der Gesetze aus der SRT und ART tun. Man strafft
den Zeitablauf (verkiirzt also die Eigenzeit) durch

* hohe Geschwindigkeiten: Wenn man sich mit einer relativistischen Geschwindigkeit
bewegt, wird die Eigenzeit entsprechend der Zeitdilatation verkiirzt. Wenn man eine
Rundreise mit groBBer Geschwindigkeit unternimmt, kommt man deutlich spéter wieder
auf die Erde als dies dem eigenen Zeitrahmen entspricht.

» groBe Gravitationspotentiale: In Anwesenheit groer Massen verkiirzt sich ebenfalls
die Eigenzeit. Wenn man also fiir einige Zeit ¢ ein schwarzes Loch umkreist und dann
zuriickkehrt, ist fiir den Beobachter die Zeit r, > ¢ vergangen.



DUNKLE MATERIE UND DUNKLE ENERGIE

[ quadratisches Abstandsgesetz
1 modifiziertes Abstandsgesetz

Abbildung 21. Mogliche Szenarien: (links) Ein Halo aus dunkler Materie umgibt jede Galaxie und
bewirkt so besonders in den dufleren Bereichen eine verdnderte Rotationsgeschwindigkeit. (rechts)
Gemif} der MOND-Theorie wirkt die Gravitation im Inneren von Galaxien (blau) proportional zu rLZ’
in den dufleren Gebieten (rot) dagegen eher linear.

ABSCHNITT 5.4

Dunkle Materie und dunkle Energie

5.4.1 Dunkle Materie

Am Anfang der 1970er Jahre wurde von Vera Rubin die Rotationsgeschwindigkeit von Sternen
in entfernten Galaxien untersucht [24]. Dazu verwendete man die relativistische Rotverschie-
bung als MaB fiir die Geschwindigkeit in verschiedenen Bereichen der betreffenden Galaxie.
Durch Rechnungen kann man durch die vorhandene sichtbare Materieverteilung (im Wesent-
lichen Sterne, die Licht/Strahlung emittieren) diese Rotationsgeschwindigkeit durch die ART
sehr gut rekonstruieren. Eventuell vorhandene Planeten spielen bei der Masse keine Rolle,
denn die Masse eines Sternensystems ist etwa gleich der Masse des zentralen Sterns?’. Die Ro-
tation miisste nach der Masseverteilung in der ART der blauen Linie in Abb. 20 entsprechen.
Die tatsdchlichen Messungen durch die Rotverschiebung zeigten aber dagegen bei groflen
Abstinden vom Zentrum eine eher konstante Rotationsgeschwindigkeit. Die einzig mogliche
Erklidrung dafiir ist, dass die angenommene Masse und Massenverteilung falsch war. Wenn
man in den Rechnungen eine fiktive Masseverteilung hinzufiigt (Abb. 2 11links) 14sst sich das
Messergebnis in Ubereinstimmung mit der Theorie bringen. Der Haken an der Sache ist,
dass diese hinzugefiigte Masse (dunkle Materie) dann etwa einen Grofiteil der Gesamtmasse
ausmachen miisste. Das heif3t, nur etwa 5-10% der Materie einer Galaxie sind sichtbar und
bestehen aus uns bekannter Materie.

Was soll nun aber diese dunkle Materie sein? Zunéchst einmal wird unter diesem Be-
griff alles zusammengefasst, dass nicht intensiv genug Strahlung aussendet, um von uns
wahrgenommen zu werden. Dies beinhaltet also auch ausgebrannte Sonnen oder zu schwach
leuchtendes interstellares Gas. Aber selbst optimistische Schitzungen zu diesem Beitrag er-
kldren bei Weitem nicht diese grofe Menge an notiger dunkler Materie. Weitere Kandidaten
fiir die nicht-sichtbare Masse sind Neutrinos. Diese sind zwar so gut wie masselos, dafiir gibt
es Sie aber in unvorstellbar grofler Zahl. Neue Messungen geben Abschitzungen fiir Menge
und Masse — die ebenfalls nicht als Erkldrung fiir die dunkle Materie ausreicht.

Es muss also noch bisher unbekannte Teilchenarten geben, die vermutlich nur durch Gra-
vitation, aber nicht durch andere Krifte wechselwirken. Das Universum besteht also demnach
zum Grofteil aus Materie/Energie, die wir weder beobachten konnen, noch im Labor erzeugen
konnten. Es gibt theoretische Modelle, wie man Teilchen mit den geforderten Eigenschaften
beschreiben kann. Eine hypothetische Teilchenfamilie sind die sogenannten WIMPS (Weakly

27 Unsere Sonne besitzt etwa 99.8%
der Masse unseres Sonnensystems.

A Experiment

V,

rot

\/

Abstand vom Zentrum

Abbildung 20. Rotationsgeschwindig-
keiten entferneter Galaxien.
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Interacting Massive Particles). Diese sehr schweren Teilchen wiirden nur gravitativ und iiber
die Kernkrifte wechselwirken, aber nicht mit Licht oder anderer elektromagnetischer Strah-
lung. So wie “Neutrinos mit dem Gewicht eines Goldatoms” konnten diese WIMPs durch
extrem seltene Reaktionen mit Atomkernen auf der Erde detektiert werden. Bisher wurde ein
solches Ereignis noch nicht bestitigt, aber die experimentellen Untersuchungen dauern an und
werden stindig verfeinert.

Ein anderer hypothetischer Kandidat ist das Axion[25]. Diese Teilchen wiren — im
Gegensatz zu den WIMPS — viel leichter als Elektronen. Auch hier gilt aber, dass es bislang
keinen erfolgreichen experimentellen Hinweis gibt.

Es gibe auch die Moglichkeit einer noch bisher unbeobachteten Neutrinoart, den soge-
nannten sterilen Neutrinos [26, 27]. Diese Neutrinos sind relativ schwer und wére immerhin
indirekt iiber eine Wechselwirkung mit anderen Neutrinos nachweisbar.

Es gibt auch Forschung zu einer Moglichkeit, die Dunkle Materie als Erkldrung iliber-
fliissig zu machen. Dafiir schligt man Anderungen an der bestehenden Gravitationstheorie
vor [28]. Demnach wire moglich, dass die GesetzméaBigkeiten und auch etwa die Gravita-
tionskonstante nicht iiberall im Universum identisch sind. Mit einer Ortsabhéngigkeit des
Newton’schen Abstandsgesetzes konnte man die Beobachtungen auch ohne die Dunkle Mate-
rie erkldren. Man spricht dann von der MOND-Theorie (Modifizierte Newton’sche Dynamik).
Das quadratische Abfallen der Gravitationskraft miisste dann in den duf3eren Bereichen einer
Galaxy eher zu einer linearen iibergehen um die beobachteten Rotationsgeschwindigkeiten zu
bestitigen (Abb. 21rechts). Allerdings gibt es bisher keine akzeptierte Begriindung fiir eine
solche nicht-universelle Gravitationstheorie. Der Ansatz hierzu ist bereits recht alt und wurde
zwischenzeitlich bereits verworfen. Neue Messungen aber legen tatséchlich eine “Universelle
GesetzmiBigkeit”, wie sie die MOND-Theorie liefert, nahe [29]. Ein ziemlich revolutionérer
(und umstrittener) Ansatz verkniipft Effekte der Quantenphysik mit der Relativititstheorie
und wiirde damit wohl zu einer Herleitung des MOND-Ansatzes fiihren [30]. Demnach be-
steht das Universum aus miteinander verschriankten Qubits, deren Verschrinkung durch die
Anwesenheit von Materie gestort wird. Der Drang, dieser Stérung entgegenzuwirken wird
dann als Gravitation manifestiert. Die Verschrankung selbst ist ein nicht-lokaler Effekt ohne
Reichweitenbeschrinkung. Da mit zunehmendem verdringtem Volumen durch Materie in
einer Galaxie die zuriickdringende Energie stark wéchst, wiirde sich wohl tatsédchlich genau
der benoétigte Effekt aus der MOND-Theorie ergeben.

Es bleibt zu sagen, dass das Forschungsfeld der Dunklen Materie noch viele interessante
Entdeckungen zu bieten hat.

5.4.2 Dunkle Energie

Die dunkle Energie wird als hypothetische Energieform herangezogen, um die beobachtete Ex-
pansion des Universums zu erklidren. Die Raumsonde Wilkinson Microwave Anisotropy Probe
(WMAP) hatte durch Messungen der kosmischen Mikrowellenstrahlung die Dunkle Energie
erstmals kartografiert [31]. Die dunkle Energie miisste demnach sowohl die sichtbare als auch
die dunkle Materie vom Energiegehalt her deutlich iibersteigen. Etwa 70% der Gesamtenergie
des Universums wiirde demnach auf diese Energieform entfallen. Die dunkle Energie miisste
homogen iiber das gesamte Universum verteilt sein und einen gewissen “Druck” ausiiben der
dann zur Expansion fiihrt. Wissenschaftler favorisieren momentan die Idee, dass diese Dunkle
Energie mehr oder weniger mit der Vakuumenergie der Quantenfeldtheorie identisch ist.
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Der Weg zur Quantenphysik

It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you. (Ernest Rutherford)

Wir werden nun nach der Relativititstheorie als zweites zentrales Thema des Buches
die Quantenphysik kennenlernen. Um einen iibergeordneten Blick auf die Ergebnisse und
Aussagen zu erhalten, ist es notwendig auch die historische Entwicklung der unterschiedlichen
Modelle zu kennen. Manchmal ist es etwa sehr hilfreich, wenn man zur Vermittlung der
Quantenphysik in der Schule die modernen Konzepte noch nicht betrachtet und stattdessen
mit semi-klassischen Konzepten arbeitet. So werden wir das Photon als eine Art Licht-Teilchen
kennenlernen, welches sehr hilfreich ist um viele Phdnomene zu verstehen und anschauliche
Aussagen zu titigen. In der modernen Quantenmechanik hat das Photon in dieser Form
keinen Platz mehr und wird “nur noch” im Rahmen der Quantenfeldtheorie eingeordnet.
Im Folgenden wird zunichst auf die historischen Modelle eingegangen und dann mit der
Schrédingergleichung und deren Anwendung die Grundlage fiir die moderne Quantenphysik
gelegt.

ABSCHNITT 6

Historische Atommodelle

Erste Hinweise auf Gedanken zur Atomvorstellung finden sich in Griechenland bei den Ge-
lehrten Leukipp (440 v.Chr.) und Demokrit (460-370 v.Chr.). Sie lehrten bereits, dass alle
Materie aus “unsichtbar kleinen”, raumfiillenden, unteilbaren Partikeln bestehen. AuBerhalb
dieser Atome (von atouol = unteilbar) solle nur leerer Raum existieren. Die charakteris-
tischen Eigenschaften von Materie sollen demnach durch die verschiedenen Anordnungen
gleicher oder ungleicher Atome realisiert werden. Diese Anschauung ist schon bemerkens-
wert nah an modernen Vorstellungen iiber den Materieaufbau. Zum ersten mal werden hier
die Eigenschaften eines makroskopischen Korpers durch die Anordnung seiner Bestandteile
bestimmt.

Platon (427-347 v.Chr.) beschreibt Atome als mathematische Raumformen wie Tetraeder,
Oktaeder, Ikosaeder oder Wiirfel.

Aristoteles (384-322 v.Chr.) lehnte hingegen den Atomismus ab. Die Vorstellung eines
leeren Raumes zwischen den Atomen widersprach seinem philosophisch geprigten Weltbild.

Erst bei Epikur (341-271 v.Chr.) wurde die Vorstellung Demokrits wiederbelebt. Zu-
satzlich wurde nun den Atomen eine Masse/Schwere zugeschrieben. Wihrend der gesell-
schaftlichen Vorherrschaft der christlichen Kirche in Europa gerieten alle diese Modelle in
Vergessenheit, da sie dem Schopfungsgedanken widersprachen. Erst im 17.Jhd. bekamen mit
der Entwicklung der Chemie die Thesen wieder Beachtung. Erst ab dem 19.Jhd. gab es mit
der “gaskinetischen Theorie”! von Claudius, Maxwell und Boltzmann (siehe Experimentelle
Physik 1 - Wirme) wieder substantielle Fortschritte bei der Beschreibung der elementaren
Materiebausteine.

In den folgenden Abschnitten sollen die bedeutendsten Atomvorstellungen der Moderne,
zusammen mit den wichtigsten Erkenntnissen daraus, kurz vorgestellt werden.

"Hierbei geht es etwa um die Modellvorstellung von Luft als Ansammlung eigenstindiger Atome/Molekiile. Der
kinetische Temperaturbegrift wird definiert, Formulierung der Maxwell-Boltzmann-Veteilung usw.
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Abbildung 22. Homogen verteilte po-
sitive Hintergrundladung und einzelne
negative Ladungen im Atom gemif} Ro-
sinenkuchenmodell.

28 Die positive Ladung ist also der
“Teig” im Rosinenkuchen.
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ABSCHNITT 6.1

Dalton’sches Atommodell

John Dalton (1766-1844) erkannte durch seine Experimente und Analysen, dass das Masse-
verhiltnis bei Stoffverbindungen immer konstant und eindeutig ist. So bestehen zum Beispiel
100g H,O aus den Anteilen 11.1 g H, und 88.9 g O,. Das Massenverhiltnis betrigt also immer
1:8. Zentrale Aussage seiner Veroffentlichung dazu im Jahr 1808 lautet: Das Wesen chemi-
scher Umwandlung besteht in der Vereinigung oder Trennung von Atomen [32]. AuBerdem
stellte er die folgenden Postulate auf:

Dalton’sches Atommodell
¢ Alle elementaren Stoffe bestehen aus kleinsten Teilchen, die man chemisch nicht
weiter zerlegen kann.

* Alle Atome desselben Elementes sind in Qualitit, Grole und Masse gleich. Sie
unterscheiden sich aber in diesen Eigenschaften von den Atomen anderer Elemente.

* Wenn chemische Elemente eine Verbindung eingehen, so vereinigen sich immer Ato-
me der beteiligten Elemente, die zueinander in einem ganzzahligen Mengenverhéltnis
stehen.

In dieser (veralteten) Sichtweise kann man also das Masseverhiltnis von Wasser (2 H +
1 O) auch darstellen als

m(2H) 2 1111
m(0) 16 8 889
N——

Gewichte in Einheiten von mpg

Zur Information: Aus heutiger Sicht wiirde man dieses Massenverhiltnis etwas anders betrach-
ten. Die Masseneinheit ist heutzutage nicht mehr auf das Wasserstoffatom bezogen, sondern
auf das 12-C Isotop des Kohlenstoffatoms:

Atomare Masseneinheit

_ 1 12 _ -27
IAME_ﬁm( c)_1.6605 102 kg

Die Hintergriinde hierzu werden im Rahmen der Kernphysik behandelt.

ABSCHNITT 6.2

Thomson’sches Atommodell

Im Jahr 1897 fiihrten Emil Wiechert und Joseph John Thomson unabhingig voneinander
Untersuchungen an Kathodenstrahlrohren durch. Wiechert fand heraus, dass die Kathoden-
strahlung aus negativ geladenen Teilchen besteht. Thomson bestimmte andererseits die Masse
dieser Teilchen und fand dabei heraus, dass es sich unabhédngig vom Kathodenmaterial immer
um die selbe Teilchenart handelt. Thomson entickelte aus dieser Erkenntnis die Idee, dass
neutrale Atome stets aus einer ganzzahligen Menge Z Elektronen mit Ladung —Z - e und
insgesamt Z - e positiver Ladung bestehen. Es lag nun nahe, die positive Ladung gleichmifig
iiber das Atomvolumen zu verteilen wie es in Abb. 22 skizziert ist. Wegen dieser homogenen
Verteilung und eingebetteten Elektronen wird das Modell auch “Rosinenkuchen” genannt 28
Die Ladungstrigerdichte p,, fiir die positive Hintergrundladung betrigt demnach fiir ein
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Abbildung 23. Die a-Teilchen durchdringen zwar die Goldfolie, &ndern aber ihre Ausbreitungsrichtung.
Die Verteilung der Richtungsénderungen kann man durch den Detektorschirm untersuchen.
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Um ein Gefiihl fiir die Groenordnung dieser Ladungsdichte zu bekommen, setzen wir test-
weise die Zahlenwerte fiir die einfachsten Atome Wasserstoff und Helium ein. Die Gleichung
6.1 liefert dann fiir Wasserstoff

le C
= ~2-101" =
PP (5310 T m) m?
und fiir Helium 5 c
4
== @ ~1-1010=
PR (141071 T m)> m’

Diese Dichten der positiven Ladungstriger (heute wissen wir, dass es sich um Protonen
handelt) erscheint zunichst riesig — Es wird sich aber in den folgenden Rutherford’schen
Streuexperimenten zeigen, dass die Dichten sogar deutlich zu klein sind um bestimmte Beob-
achtungen zu erkldren.

ABSCHNITT 6.3

Rutherford’sches Atommodell

Ernest Rutherford experimentierte zum Ende des 19. Jahrhunderts mit a-Teilchen, die auf
eine diinne Goldfolie (Dicke ca. 10 pm) treffen. Die a-Teilchen, zweifach positiv geladene
Teilchen 2°, konnte man damals aus einer Probe des Elements Radon gewinnen, dass durch
atomare Zerfallsprozesse selbststindig diese Teilchen ausstofit. Durchgefiihrt wurden die
dazugehorigen Experimente, skizziert in Abb. 23, durch Rutherfords Mitarbeiter Geiger und
Marsden. Das beriihmte Rutherford’sche Streuexperiment 1duft dabei wie folgt ab: Die Radon-
Probe emittiert stindig die gewiinschten a-Teilchen. Mithilfe einer Blende geht man sicher,
dass die Teilchen nur einen kleinen Bereich auf der Goldfolie treffen. Beim Durchgang der

RUTHERFORD’SCHES ATOMMODELL

29 Heute weiB man, dass es sich um
Heliumkerne handelt.
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30 Es ist hierbei nur die Coulomb-
AbstoBung des a-Teilchens relevant.
Die negativen Elektronen in den
Goldatomen sind zu leicht um we-
sentlich zum StoBprozess beizutra-
gen.

31 .. und die Normalverteilung ex-

ponentiell zu den Seiten abfillt. . .

a) Streuwinkel 6

Goldatome

Haufigkeit
N(®©)

b)

meAy Streuwinkel 8

Abbildung 24. (a) a-Teilchen durch-
dringen die Goldfolie in einzenlen
Schritten, analog zum Random-Walk.
(b) Verteilungsfunktion eines Random-
Walk Vorganges.
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geladenen Teilchen durch die Folie beobachtet man nun teils sehr starke Ablenkung der a-
Teilchen - fast bis hin zur Reflexion. Falls die Ladungen in den Goldatomen gleichmifig verteilt
wiren, wie es das Rosinenkuchenmodell von Thomson suggeriert, diirften solch drastische
Ablenkungen nicht méglich sein. Uber diese Ergebnisse sagte Rutherford selbst: [33]:

It was quite the most incredible event that has ever happened to me in my life.
It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you.

Interessant und lehrreich ist es nun zunichst die “falsche” Erwartung des Versuchsausgan-
ges durch Auswertung des Rosinenkuchenmodells zu beschreiben. Wir haben es hier ndmlich
mit einem sehr bekannten Problem aus der Statistik zu tun — dem Random Walk. Die Goldfolie
ist zwar nur einige Mikrometer diinn, aber dennoch befinden sich hier etwa 5 - 10* Goldatome
im Weg des Alphateilchens. Es ist also nach dem Rosinenkuchenmodell zu erwarten, dass das
a-Teilchen auf dem Weg durch die Goldfolie sehr viele Stofe hintereinander mit jeweils einer
kleinen zufilligen Richtungsinderung erfihrt 3°. Vereinfacht stellen wir uns gemiB Abb. 24a
vor, dass der Teilchenstrahl in x-Richtung auf die Hindernisse trifft. Die Frage ist nun, wie
grof} der Versatz in y-Richtung nach einer bestimmten Anzahl an Wechselwirkungen ist. Der
Versatz soll dabei Ay heiflen. Die Mathematik liefert uns die Wahrscheinlichkeitsverteilung
fiir diesen abschlieBenden Versatz y nach dem kompletten Durchgang durch die Goldfolie in
Form der Verteilungsfunktion

2
Yy
P(y) =const-e m&?* |

Hierbei ist m die Anzahl der StoBe. Im Experiment ist nun die beobachtete Grofle der Streu-
winkel und nicht der Versatz. Unter der Annahme eines Random-Walk wiirde sich fiir die
erwarteten Streuwinkel N (1) ebenfalls eine Normalverteilung der Form

N@) = cre=2?

ergeben. Die Form dieser Verteilungsfunktion ist in Abb. 24b dargestellt. Fiir Zahlenwerte der
Konstanten ¢ bzw. ¢, die zum Rutherford-Versuch passen, erhilt man eine Halbwertsbreite
von nur etwa 1.8° fiir die Ablenkung der Alphateilchen. Da dieser Winkel sehr klein ist 3!, ist
also nach dem Rosinenkuchenmodell nahezu keine Ablenkung der Alphateilchen zu erwarten
— fast alle sollten die Goldfolie auf ziemlich gerader Linie durchdringen.

Die tatséchlich beobachtete Verteilung der Teilchen auf dem Detektorschirm ist deutlich
breiter als dass man es durch einen Random-Walk in Verbindung mit dem Rosinenkuchen-
modell erkldren konnte. Daher muss nun an dieser Stelle das Modell an die Beobachtung
angepasst werden, so wie es immer in der Physik passiert wenn neue Experimente im Wider-
spruch zu den aktuellen Modellen stehen. Die Anpassungen werden nun zum Rutherforsche
Atommodell fiihren, dass schon sehr nah an der modernen Atomvorstellung liegt. Dieses
Modell griindet auf den folgenden Annahmen:

Rutherford’sches Atommodell

* Die positiven Ladungen des Atoms sind in einem sehr kleinen Volumen im Kern
komprimiert.

* Dieser Atomkern vereinigt nahezu die gesamte Masse des Atoms (abziiglich der
leichten Elektronen).

Wenn man die Schlussfolgerungen des Rutherford’schen Atommodells beriicksichtigt,
dann muss man nun die Streuprozesse auf andere Weise berechnen. Die Elektronen spielen
durch ihre geringe Masse fiir die Streuung keine wesentliche Rolle. Das Problem kann also
auf einen elektrostatischen Prozess zwischen fast punktférmigem Alphateilchen (He?*) und



fast punktformigen positiv geladenem Atomkern reduziert werden. Auf die Herleitung der
Streuwinkel wird hier zwar verzichtet, kann aber etwa bei [34] nachvollzogen werden. Als
Ergebnis erhilt man eine Abhingigkeit der Teilchenzahl N vom Streuwinkel 6 in der Form

Rutherford’sche Streuformel
N(0) = const.

sin* (g)

Diese Streuformel deckt sich sehr gut mit den Messergebnissen, wie man in Abb. 25
erkennen kann. Auch die beobachteten groen Streuwinkel von iiber 120° sind nun erklérbar.
Diese groBen Streuwinkel, die fast einer Reflexion entsprechen, kann man sich so erkliren:
Das Alphateilchen trifft in einigen Fillen (fast) frontal auf einen Atomkern. Da der Atomkern
im Falle von Gold deutlich massereicher als das Alphateilchen ist, findet geméf Impuls-
und Energieerhaltung die starke Richtungsinderung statt. Ubrigens sind die abstoBenden
Coulombkrifte so groB3, dass es bei der Wechselwirkung durch elektrostatische Kréfte bleibt -
es findet also keine “Beriihrung” von Alphateilchen und Atomkern statt, obwohl man dennoch
ganz allgemein von einem StoBprozess spricht.

ABSCHNITT 7

Widerspriiche der klassischen Physik

Um die Jahrhundertwende gibt es mehr und mehr experimentelle Befunde, die nicht mehr mit
den giiltigen Modellen der Physik zu erklédren sind. Einige dieser Effekte oder Beobachtungen
sind etwa die “Ultraviolett-Katastrophe”, der Photoelektrische Effekt, der Compton-Effekt,
das Vorhandensein stabiler Atome und der Franck-Hertz-Versuch. Diese und weitere Beob-
achtungen machen nun nach und nach grundlegende Anderungen der Physik nétig. Die Physik
etwa bis zu diesem Punkt wird auch als klassische Physik bezeichnet — als Abgrenzung zur
Quantenphysik und zur relativistischen Physik.

ABscaNITT 7.1

Wellenbeschreibung des Lichtes als EM-Welle

Im Rahmen der klassischen Physik gibt es um das Jahr 1900 zwei mogliche Wege, die Licht-
ausbreitung zu beschreiben: Die Teilchen- und die Wellenhypothese. Die Teilchenhypothese
(Korpuskulartheorie) geht auf Isaac Newton im 18. Jhd. zuriick. Mit ihr lassen sich die gerad-
linige Ausbreitung im Rahmen der geometrischen Optik und auch Brechungsphédnomene gut
erkléren.

Die Wellenhypothese setzt sich dann aber bis zum 20. Jhd. durch. Nach der Formulie-
rung von Huygens Wellentheorie gab es viele Beobachtungen, die die Wellennatur von Licht
bestitigte. Interferenz und Beugung etwa sind typische Wellenphdnomene und konnen auch
bei Licht beobachtet werden. Nach der Vorhersage der Elektromagnetischen (EM) Wellen
durch Maxwell und deren Nachweis durch Heinrich Hertz gab es weiteren Vorschub fiir die
Wellentheorie. Spater wurde sogar das Licht als Spezialfall der Elektromagnetischen Wellen
mit A = 400nm bis 700nm identifiziert und das Wellenmodell wurde umfassend akzeptiert.
Wir fassen hier noch einmal zusammen, wie Licht als EM-Welle mathematisch beschrieben
werden kann. Die Welle besteht, wie der Name schon sagt, aus einem elektrischen (1:: ) und
einem magnetischem (E) Feld. Beide Feldstirkevektoren stehen bei einer ungestorten Welle
senkrecht aufeinander und senkrecht zur Ausbreitungsrichtung. Damit ist Licht eine Trans-
versalwelle. In reeler Darstellung wird die elektrische Feldstérke sich zeitlich und rdaumlich
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Abbildung 25. Winkelverteilung beim
Rutherford’schen Streuversuch. Die tat-
sdchlichen Messwerte mit grolen Ab-
lenkwinkeln passen nicht zum Rosinen-
kuchenmodell, sehr wohl aber zum Ru-
therford’schen Atommodell.
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Wandfldche F

Abbildung 26. Modell des Hohlraumes.
Die Strahlung tritt durch eine kleine Off-
nung ein, und gibt durch viele Refle-
xionen/Absorbtionen die Energie nahe-
zu vollstdndig ab bevor die Austrittsoff-

nung erreicht wird.

AF
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gemif
E(7,1)=A-cos (a)t - l})?)

ausbreiten. Die zeitliche Anderung findet mit der Kreisfrequenz w = 27 f statt. Der Wel-
lenzahlvektor k beschreibt die Wellenldnge und Richtung der rdumlichen Ausbreitung. Bei
elektromagnetischen Wellen sind k und w iiber die Dispersionsrelation w(k) = ¢ -k bzw.
w= 2% miteinander verbunden. Hier haben wir also schon ¢ als Ausbreitungsgeschwindig-
keit/Lichtgeschwindigkeit festgelegt.

Die Intensitit einer solchen Welle ergibt sich dann zu
I=c-¢FE .

Die Intensitit entspricht einer bestimmten Leistung pro bestrahlter Fldcheneinheit. Der Ener-
gietransport durch eine Elektromagnetische Welle wird durch den Poynting-Vektor

§= 026() (EXE)

beschrieben. An diesem Kreuzprodukt erkennt man erneut, dass die Energie in transversaler
Richtung senkrecht zum elektrischen und magnetischen Feld transportiert wird. Die transpor-
tierte Energie hat eine Dichte von

1
Wem = €0E2 = 56() (E2 +c2B2) .

Hinweis: Der Begriff “Dichte” wird in diesem Semester noch verschieden gebraucht werden.
Er bezieht sich manchmal auf eine Volumen (wie etwa die Massendichte p = m/V)), manchmal
auf eine Fldche oder auch auf Frequenzbereiche. Eine kurze Einheitenrechnung zeigt, auf
welche GroBe sich der Begriff Dichte hier bezieht:

As V2 VAs ]

w = — — = —
[wem] Vm m? m3 md

Es handelt sich also um eine Energie pro Raumvolumen.

ABSCHNITT 7.2

Hohlraumstrahlung

Als erstes Beispiel, bei dem die Wellenbeschreibung nicht zu den durchgefiihrten Messungen
passt, wird hier die Beschreibung der Hohlraumstrahlung gezeigt. Das gedankliche Modell
des “Hohlraum” ist zweckmifig um einen idealen Strahlungsabsorber zu beschreiben. Wie
in Abb.26 gezeigt, muss die Fliche AF der Eintrittsoffnung sehr klein im Vergleich zur
Wandfldche F sein, damit die einfallende Strahlung absorbiert wird. Das Modell dieses idealen
Absorbers wird gewihlt, weil ein Objekt mit idealer Absorption auch ein idealer Emitter von
Strahlung ist. Nach [35] kann man zeigen, dass die Zahl n(v) der in einem Volumen moglichen
Moden der Frequenz v begrenzt ist. Sie betriigt im Frequenzbereich dv und pro m> demnach

8rv?

dv
3

n(v)dv =

Die Anzahl der Moden ist nun aber eine sehr abstrakte und schwer zu messende Grofe. Es
wire wiinschenswert, stattdessen die Energiedichte bestimmen zu konnen. In der klassischen
Physik wihlt man nun fiir jede dieser moglichen Moden die mittlere Energie von kg - T.
Dabei ist T die Temperatur des Hohlraums. Der Modenbereich dv hat dann eine rdumliche
Energiedichte von



Rayleigh-Jeans Gesetz

8 2
AV e Tdy, (7.1)

wy(v)dv =n(v)kgTdy = 3
c

Man spricht hier oft auch von einer spektralen Energiedichte 32. Man erkennt leicht, dass die
abgestrahlte Energie des Hohlraums also quadratisch mit der abgestrahlten Frequenz zunimmt.
Wenn man jetzt herausfinden mochte, wie viel Energie denn ein Korper insgesamt iiber den
gesamten Frequenzbereich abstrahlt, muss man also iiber v integrieren.

(e8] 8 (e8]
wy (V) =/ wy(v)dy = —grkBT/ vidy
0 c 0

Das Integral iiber v> nimmt aber offenbar unendlich groBe Werte an. Dieses Verhalten, dass
filschlicherweise unendlich grofie Strahlungsenergien bei hohen Frequenzen vorhersagt, nennt
man auch Ultraviolett-Katastrophe. Eine Katastrophe bedeutet hier die Tatsache, dass bei
immer groere Frequenzen jenseits des sichtbaren Spektrums eine enorme Energie abgestrahlt
werden wiirde 3. Fiir niedrige Frequenzbereiche allerdings stimmt das Reyleigh-Jeans Gesetz
aus GL. 7.1 sehr gut mit den Messungen iiberein. Das Ritsel um die Ultraviolett-Katastrophe
wurde erst durch die Quantenhypothese von Max Planck aufgelost.

Hinweis: Zum Modell des schwarzen Korpers werden auf Seite 117 Demonstrationsversu-
che vorgestellt.

ABscHNITT 7.3

Planck’sche Strahlungsformel

Um eine neue Formulierung der Strahlung eines idealen Hohlraumes (oder auch schwarzen
Korpers) zu formulieren, nutzte Max Planck einen unkonventionellen Ansatz. Auch er be-
trachtete die Moden in einem Hohlraum. Doch statt jeder diesen Moden die kontinuierliche
Energie kg7 zuzuordnen, postulierte er diskrete Energien (“Energiequanten”) die von der
jeweiligen Frequenz abhingen sollten. Die Energie einer solchen Mode mit n ‘“Photonen”
wire dann

W,=n-h-v,

mit dem Planck’schen Wirkungsquantum h = 6.626 - 1073* Js. Das Photon wird also hier erst-
mals eingefiihrt als Schwingungszustand in einem idealen Hohlraum. Die Wahrscheinlichkeit,
dass eine Mode die Energie W hat, wird durch den Boltzmann-Faktor bestimmt:

W
p(W) =const.-e*sT

Um die mittlere Energie pro Mode zu bestimmen, berechnet man nun das erste Moment” der
Wahrscheinlichkeitsverteilung

—nhy

_ C > nhy-e*T
Wy= > Wy p(Wy) = 2——, (7.2)
n=0 >eksT

welches durch Methoden aus der Analyse von Folgen und Reihen noch weiter vereinfacht
werden kann. Schlieflich kann man durch Vereinfachung des Terms 7.2 zeigen, dass die

2In der Statistik nutzt man sogenannte “Momente” um Eigenschaften von Verteilungen zu berechnen. Das erste
Moment entspricht dabei in etwa dem aus der Schule bekannten Mittelwert. Das erste Moment einer Verteilung
berechnet man durch m; = fx -p(x)dx bzw.m; =Y x-p(x)=Xx.

PLANCK’SCHE STRAHLUNGSFORMEL

32 Also die Energiedichte von Strah-
lung im Frequenzbereich von v bis
v+dv.

33 Bei v = co wird also demnach vom
Hohlraum mit Raumtemperatur un-
endlich viel Energie abgegeben. Das
ist offenbar nicht moglich.
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Abbildung 27. (blaue Linien) Planck-Verteilung fiir verschiedene Temperaturen. (rote Linie) Das Wien-
sche Verschiebungsgesetz gibt die Positionen der Maxima der Planck-Verteilungen an.

mittlere Modenenergie
_ h-v
W, =

o (7.3)
eksT — 1

betrigt. Wenn wir jetzt in Gleichung 7.1 statt der mittleren Energie kg7 pro Mode den

Ausdruck 7.3 einsetzen, erhalten wir die Planksche Strahlungsformel

Planck’sche Strahlungsformel

8rhv:  dv

hy

efsT — |

wy(v)dy = (7.4)

Durch die Exponentialfunktion im Nenner wird die Energiedichte bzw. das Integral iiber die
Energiedichte nun fiir groe Frequenzen endlich, wodurch die Ultraviolett-Katastrophe nicht
mehr auftritt. Die Energiedichteverteilung in Abb. 27 wird durch die blauen Linien dargestellt.
Es zeigt sich offenbar, dass das Maximum der Strahlungsdichte von der Temperatur abhingt.
Diese Verteilung ermdglicht nun weitere Analysen. Wir werden die Maxima der jeweiligen
Funktionen sowie den gesamten Energieinhalt der Verteilungen im Folgenden noch genauer
untersuchen.

ABscHNITT 7.4

Rayleigh-Jeans-Gesetz als Grenzfall

Wenn man bestehende physikalische Gesetze erweitert um neue Phinomene mit einzubezie-
hen, ist es sehr elegant wenn man die bis dato giiltigen Gesetze als Grenzfille herleiten kann.
So ist es hier beispielsweise auch mdglich, das schon bekannte Reyleigh-Jeans Gesetz als
Grenzfall fiir kleine Frequenzen aus der Planckverteilung herzuleiten. Fiir den Frequenzbe-
reich, in dem der Grenzfall giiltig sein soll, gilt 4v < kgT. Den Faktor exp(hv/kpT) kann
man in diesem Fall (der Exponent wird durch Av <« kT sehr klein) in eine Taylor-Reihe

entwicklen:
_hv_ hy
e x| +——
kgT



Damit wird dann aus der Planckverteilung durch Einsetzen der Ndherung

8rhv? 1 N 877}'{1/#2 1 _ 872
hy ~ 3 - C3
,1/-(7(%/1’

C 3 e*T — ] C
direkt wieder das Rayleigh-Jeans Gesetz hergeleitet. Es bildet also den Grenzfall der Planck-
Verteilung fiir kleine Frequenzen bzw. grofle Wellenldngen.

wy(v) = kgT

ABSCHNITT 7.5

Wien’sches Verschiebungsgesetz

Die Planck-Verteilungen in Abb.27 haben ihre Maxima bei verschiedenen Wellenlingen,
abhingig von der gegebenen Temperatur 7 des Hohlraums. Im Umkehrschluss wire es al-
so moglich, aus der Kenntnis dieses Maximums die Temperatur des strahlenden Objektes
zu bestimmen. Das Maximum der Verteilung findet man wie iiblich durch Nullsetzen der
Ableitung,

d d 8xhv® 1
d_wv(v) = IV . =0.
v vV ¢ ekBiT -1
Das Ableiten ergibt:
w2 h
0 8 1 8xhy? e -g7
T3 2 3 v 2
eksT — 1] (e kT — 1)
Durch Kiirzen ]
o R 1 swhvT e gr

kT —

/ZZ/ ‘e»‘!zil;—_/l [3/ (e hy 1)¢1
und Ersetzen von hv/kgT = x folgt schlieBlich
x=3-3e""

Diese Gleichung kann man nun numerisch 16sen und erhilt als Losung x = 2.8214. Die
dazugehorige Frequenz v erhélt man nun durch das Riickersetzen von hv/kgT = x. Damit
liegt dann die Frequenz vp,x bzw. die Wellenlénge Anax, bei der die maximale Energiedichte
eines schwarzen Korpers abgestrahlt wird bei

Wien’sches Verschiebungsgesetz
2.8214k 1
Vmax = ———B . T=5873-10" —.T (1.5)
h Ks
2.897-1073mK
= —T (7.6)

Bitte beachten: Die Temperatur 7 muss natiirlich in Kelvin (statt Celsius) in die Gleichun-
gen 7.5 und 7.6 eingesetzt werden, wie man auch leicht durch Kontrolle der Einheiten erkennt:

1 K=sb mK
— -K=sbzw. — =m.
Ks K
Das Wien’sche Verschiebungsgesetz lasst es zu, durch Analyse des Spektrums eines strah-

lenden Korpers dessen Temperatur zu bestimmen.

WIEN’SCHES VERSCHIEBUNGSGESETZ
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34 Stefan und Boltzmann haben
diesen Zusammenhang schon vor
Entwicklung der Quantenmechanik
entdeckt. Dann konnte aber die Kon-
stante osg nur empirisch beschriet
ben werden.
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Die Sonne strahlt bei der Wellenldnge von Ay = 480nm die meiste Energie ab. Ge-
mifl Gleichung 7.6 kann man also auf eine Oberflachentemperatur der Sonne von 7 =
2.897- 1073 mK/480nm ~ 6000K schlieBen. Es gibt fiir Versuche an der Schule vielfiltige
Moglichkeiten, das Sonnenspektrum (bzw. dann dessen Maximum) zu erfassen.

AuBer der konkreten Berechnungsvorschrift sei noch erwihnt, dass das Wien’sche Gesetz
ganz grundlegend — ohne direkt auf die Zahlenwerte einzugehen — einen linearen Zusammen-
hang zwischen Temperatur des Korpers und spektralem Maximum vy,x bzw. Apax angibt.
Man kann diesen Zusammenhang dann also auch fiir bekannte Verhéltnisse von Temperatur
und spektralem Maximum gemif

Vmax (T1) Vimnax (12)
———— =const. = ————=

T I
Amax(T1) - Ty = const. = Anax (T2) - T>

nutzen.

ABSCHNITT 7.6

Stefan-Boltzmann’sches Strahlungsgesetz

Wir haben bereits die Lage des Maximums der spektralen Energiedichte w, untersucht. Nun
wollen wir noch Erkenntnisse aus der insgesamt abgestrahlten Energie eines Korpers erhalten.
Dazu miissen wir also iiber alle Frequenzen v in w, integrieren. Das Integral

0o

r 8mh vidy
a)(T)Z/wv(V,T)dvz ?/m

v=0 v=0

kann man durch Substitution von x = hv/kgT vereinfachen. Das Differential dv muss dabei
ebenfalls substituiert werden gemiB dx/dv = h/(kgT). Dann nimmt das Integral die Form

:y3

=dv
oo (fBT) gy keT
_ 8mh h h
a)(T)_C—3 e’ —1
x=0

an. Die konstanten Faktoren kann man vor das Integral ziehen

87h (ksT\* [ x3dx
w(T)ch(L)/

h e¥—1
x=0

und das librige bestimmte Integral kann man durch Nachlesen in einem Tabellenwerk (z.B. [36])
oder mit Online-Tools ermitteln. Dieses ergibt 7#/15. SchlieBlich ist unser Ergebnis

8775kg L
15K3¢3 ’

w(T) =

Statt der Energiedichte wollen wir nun die insgesamt abgegebene Strahlungsleistung betrach-
ten. Diese ist definiert als

c

Damit finden wir nun letztendlich den gesuchten Ausdruck fiir die pro Zeiteinheit abgegebene

Strahlungsenergie eines schwarzen Korpers:3*



ExXKURS: SPEKTRUM VON LEUCHTMITTELN
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Abbildung 28. Die blaue Linie entspricht dem Spektrum der Sonnenstrahlung bei 5900K. Die rote
Linie entspricht dem typischen Spektrum einer weilen LED.

Stefan-Boltzmann’sches Strahlungsgesetz

dw 27r5k§ 4 4
b= "z T =0T

mit der Stefan-Boltzmann-Konstante o = 5.67 - 1078 m?{&. Hierbei handelt es sich um die

gesamte Strahlungsleistung, die ein idealer Strahler in den Raum abstrahlt, also fiir den vollen
Raumwinkel Q = 4.

ABscHNITT 7.7

Exkurs: Spektrum von Leuchtmitteln

Das Spektrum einer Strahlungsquelle ist auch im Alltag von enormer Bedeutung. Vor der
Nutzung von Energiesparlampen oder LED-Leuchten wurden im Wesentlichen Gliithlam-
pen/Halogenlampen verwendet. Letztere haben ein Strahlungsspektrum, das dem eines schwar-
zen Korpers sehr dhnlich ist und gut das natiirliche Sonnenlicht, ebenfalls in guter Ndherung
ein schwarzer Korper, ersetzt. Durch die Prozesse bei der Lichterzeugung von LEDs bzw.
Gasentladungslampen (Energiesparlampen) wird jedoch kein kontinuierliches Schwarzkor-
perspektrum erzeugt wie man in Abb. 28 durch die rote Kurve erkennt. Dies fiihrt zu einem
unnatiirlich wirkendem Licht, das sogar Einfluss auf Schlafverhalten und Konzentrations-
fahigkeit haben kann — besonders bei zu hohem Blauanteil im Spektrum. Hoherwertige
LED-Lichtquellen konnen aber bereits ein recht gutes Spektrum wiedergeben, so dass dieses
Licht vom Menschen als “natiirlich” wahrgenommen wird. Das Spektrum von Leuchtmitteln
macht sich immer dann bemerkbar, wenn man bei kiinstlichem Licht fotografiert. Oft sind
dann die Bilder/Videos mit einem deutlichen Farbstich versehen. Dieses Problem wird mit
dem sogenannten Weilabgleich behandelt. Man muss die Sensorpixel auf dem Kamerachip
also erst fiir die korrekten Intensitdten im Rot-Griin-Blau-Bereich kalibrieren. Man geht dabei
davon aus, dass eine weille Fliache stets das Umgebungslicht vollstindig reflektiert. Wenn
nun das Bild wie bei natiirlichem Licht entstanden aussehen soll, so muss man etwa meist
die Empfindlichkeit der Blau-Sensoren verringern und die der Rot-Sensoren erh6hen um die
Sonne als Lichtquelle zu simulieren.
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Abbildung 29. (a) Schematische Ver-
suchsanordung zur Messung des Pho-
toeffektes. Bei Uberschreiten einer be-
stimmten Lichtwellenlinge kann man
einen Photostrom /pj, messen. (b) Ver-
lauf des Photostroms abhingig von der
Spannungsdifterenz aus a).

h-v

h-v @

Coulomb-
Abstoflung

drehbaAr\"

Abbildung 30. Das Elektrometer beruht
auf dem Prinzip der sich abstoflenden
Ladungen. Wenn Platte und Zeiger elek-
trische Ladung tragen, ergibt sich ein
Zeigerausschlag.

35 W, ist diejenige Arbeit, die auf-
gewendet werden muss um ein Elek-
tron aus dem Material herauszul-
sen.

E..=-e'U
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ABSCHNITT 8

Photoelektrischer Effekt

Die Strahlungsphianomene waren nach Entdeckung der Planck-Verteilung der Schwarzkdrper-
strahlung weitgehend verstanden und erklérbar. Dann aber mehrten sich Experimente, die auf
einen Teilchencharakter von Licht hindeuteten. Eines der prominentesten Beispiele ist ein Ex-
periment von Lennard, dass im Jahr 1902 durchgefiihrt wurde. Dabei wurde eine Metallplatte
dem Licht einer bekannten Wellenldnge ausgesetzt. In Abb.29a ist die Versuchsanordnung
skizziert. Die beiden Elektroden sind mit einer variablen Spannungsdifferenz verbunden und
befinden sich im Vakuum damit die Elektronen nicht durch Luft behindert werden. Je nach
Frequenz und Intensitit des einfallenden Lichtes und angelegter Spannung kann man nun
einen Photostrom /pj;, messen. Der Verlauf des Photostromes in Abhéngigkeit der Beschleu-
nigungsspannung U istin Abb. 29b gezeigt. Man erkennt folgende wichtige Tatsachen: Bereits
bei negativer Vorspannung —Uj beginnt ein Photostrom zu flieBen. Die Elektronen werden
durch diese negative Spannung eigentlich “abgestoflen”, treffen aber offenbar trotzdem auf
die Elektrode. Auflerdem geht der Photostrom bei einer bestimmten Spannung in einen Sétti-
gungsbereich {iber.

Die Schlussfolgerungen von Lennard lauten gemif diesen und weiteren Beobachtungen
wie folgt:

* Die kinetische Energie mTUE mit der die Elektronen die Elektrode verlassen, ist nur
von der Frequenz v des einfallenden Lichtes abhingig und nicht von dessen Intensitt.

* Die Zahl der Photoelektronen ist proportional zur Intensitit des Lichtes.
* Es gibt keine (messbare) Verzdgerung zwischen Lichteinfall und Elektronenaustritt.

Ahnliche Beobachtungen wurden auch von Hallwachs mithilfe eines Elektrometers gemacht.
Dies ist ein einfach aufgebautes Gerit geméll Abb. 30, das Ladungen anzeigen kann. Durch
Bestrahlung der Platte mit Licht wurde diese offenbar (durch einen Zeigerausschlag angezeigt)
aufgeladen. Einzig mogliche Schlussfolgerung war dann, dass Elektronen die Platte verlassen
haben miissen.

| Zum Photoeftekt wird auf Seite 120 ein Demonstrationsversuch vorgestellt.

Diese Beobachtungen konnten mit den damaligen Modellen nicht erkldrt werden. Im
Wellenmodell des Lichts sollte eine hohe Intensitit auch mehr Energie an die Elektronen
iibertragen. AuBlerdem wiirde sich die Energie des Lichtes auf alle bestrahlten Elektronen
verteilen, was zu deutlich seltenerer Elektronenemission fiihren miisste. Dies ist aber offenbar
nicht der Fall. Die Erkldrung dieser Phdnomene wurde in einer Veroffentlichung von Albert
Einstein im Jahr 1905 durch die “Lichtquantenhypothese” geliefert [37]. Fiir diese erhielt er
im Jahr 1921 den Nobelpreis. Das Modell besagt, dass Licht sich wie ein Teilchen (Photon)
verhilt und dass jedes Photon mit der Energie E = h - v diese vollstindig an genau ein Elektron
abgibt. Die Energiebilanz der Photonenenergie Ep;, zusammen mit der kinetischen Energie
der Elektronen Eyip und der spezifischen Austrittsarbeit Wa 35 ergibt dann

Photoelektrischer Effekt

Ekin’eZ—e'U():Eph—WA=/’Z‘V—WA (8.1)

In Abb.31 ist dieser Zusammenhang gezeigt. Der lineare Zusammenhang der Messwerte
Exin =m - v — W, ist gut zu erkennen. Auch lésst sich durch Analyse der Messwerte nun die
Austrittsarbeit der Elektronen bestimmen — dies entspricht genau dem Abschnitt der y-Achse
unterhalb des Nulldurchgangs wie in Abb. 31 gezeigt. Die Steigung m = Ay/Ax ist dann geméaB
Gl. 8.1 identisch mit (e-U)/(h-v). Der Photoeffekt ist als Demonstrationsversuch an Schulen
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Abbildung 32. Rontgenrdhre zur Erzeugung von Rontgenstrahlung.

fest etabliert um die Ubertragung von Energiequanten zu zeigen und dafiir auch gut geeignet.
Es muss aber darauf hingewiesen werden, dass die damalige Erklérung des Versuches nach der
Entwicklung der Quantenmechanik als Feldtheorie nicht mehr zeitgemif ist. Beispielsweise
kann man auch die Zustinde in der Metallplatte quantisieren und erkldrt damit fiir eine
klassische Lichtwelle, ganz ohne Photonenmodell, die experimentellen Ergebnisse — sogar
inklusive des korrekten Streuwinkels der Elektronen. Die Erkldrung des Photoeffektes mit
einem Photon als Lichtteilchen muss also immer im historischen Kontext betrachtet und
vermittelt werden.

ABSCHNITT 9

Rontgenstrahlung

Den soeben vorgestellten Effekt gibt es im Prinzip auch in umgekehrter Richtung. Die grund-
legenden Ursachen sind zwar verschieden, aber grob betrachtet ist es auch moglich durch
Beschuss einer Probe mit Elektronen die entsprechenden Lichtquanten zu erzeugen. Wir wer-
den aber sehen, dass die Prozesse anderer Natur sind und eben nicht nur die Photonen mit
Energie Epj, = hv = Exjn + Wy erzeugen. Schon 1895 wurde dieser Effekt von Wilhelm Con-
rad Rontgen (1845-1923) entdeckt. Als er eine Gasentladungsrohre mit hohen Spannungen
(schnellen Elektronen) betrieb, wies er eine bisher unbekannte Art von Strahlung nach die
von der Anode ausging. Diese unbekannte Strahlung konnte Gewebe und Holz durchdrin-
gen. Er nannte diese Strahlung X-Strahlen (X-Rays) . Ihm zu Ehren wird die Strahlung im
deutschsprachigen Raum heutzutage Rontgenstrahlung genannt.

Rontgenstrahlung wird iiblicherweise mit einer Rontgenrohre erzeugt, wie sie in Abb. 32
skizziert ist. Es handelt sich dabei um ein evakuiertes Glasgefdl mit einer Kathode und
Anode. Die Kathode sendet durch Gliithemission Elektronen aus wenn sie von einem Strom
durchflossen wird. Die Elektronen schweben zunéchst in einer Art “Wolke” im Raum nahe
der Kathode. Wird nun zwischen Kathode und Anode eine hohe Spannung (im kV Bereich!)
angelegt, werden die Elektronen stark zur Anode hin beschleunigt. Sie nehmen bei Durchlau-
fen der Potentialdifferenz die kinetische Energie Exin = e - U auf. Durch die hohe Spannung
konnen dies Energien im keV-Bereich sein. * Wenn die Elektronen mit hoher Energie auf die

3Die Einheit eV wird in der Vorlesung das Joule als MaB fiir die Energie mehr und mehr verdringen. Die
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36 Hohere Energien: Der Prozess
kann auch ablaufen, in dem ein Hiil-
lenelektron aus dem Elektron ge-
schlagen wird. Die Liicke wird dann
durch ein weiter auflen liegendes
Elektron aufgefiillt.
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Anode treffen, werden auf zwei unterschiedliche Arten Rontgenstrahlung erzeugt. Wir werden
diese beiden Strahlungstypen als Bremsstrahlung und als charakteristische Rontgenstrahlung
bezeichnen. In welchem Bereich die Stralungsenergien liegen ist auBerdem namensgebend fiir
die Strahlung: Strahlung mit einer Energie < 100keV wird weiche Rontgenstrahlung genannt,
bei einer Energie > 100keV spricht man von harter Rontgenstrahlung.

ABscHNITT 9.1

Bremsstrahlung

Die (Rontgen-)Bremsstrahlung entsteht durch die Abbremsung der Elektronen im Anoden-
material. Wie beim Rutherford’schen Streuversuch handelt es sich um eine Wechselwirkung
durch Coulomb-Krifte statt durch StoBe fester Korper. Die negativ geladenen Elektronen
dringen also mit Ey;, ; in den Atomverbund des Anodenmaterials ein und werden durch die
elektrischen Felder in der Néhe von als fest angenommenen (weil im Kristallgitter verankert
und sehr schwer) Atomkernen umgelenkt. Bei diesen Richtungsénderungen strahlt das Elek-
tron jeweils gemifl den Maxwellgleichungen Energie ab und hat nach dem Stof nur noch die
Energie Exin 2. Es verliert also bei jedem Stof die Energie

AExin = Exin1 — Exin2 = h-v,

die dann in Form eines Photons mit der Energie Epy, = h-v abgestrahlt wird. In welchem
Abstand das Elektron am Atomkern vorbeifliegt, beeinflusst die Stirke der Wechselwirkung
und damit auch den Energieverlust durch den Stof3: Wenn das Elektron den Atomkern in
groBem Abstand passiert, ist der Energieverlust minimal. Wenn das Elektron frontal auf den
Kern zufliegt, wird es viel Energie verlieren. Dies fiihrt insgesamt zu einem kontinuierliches
Spektrum. In Abb. 33 wire das also z.B. die blaue Kurve ohne die deutlich herausragenden
Spitzen. Die grotmogliche Frequenz bzw. Energie ist dabei durch die Beschleunigungsspan-
nung gegeben. In diesem Fall wiirde dann also ein Elektron mit der Energie Eyij, = e U
seine gesamte Energie bei einem einzigen Stof} verlieren und abstrahlen. Das fiihrt wegen

EBrems,max = € - U = - VBrems,max ZU einer maximal moglichen Frequenz von vgrems max = %

ABSCHNITT 9.2

Charakteristische Rontgenstrahlung

Es gibt noch eine zweite Mdoglichkeit, wie die schnellen Elektronen ihre Energie an die
Anodenatome abgeben konnen — dafiir miissen wir allerdings etwas im Stoff vorgreifen. Die
Elektronen der Hiille der Anodenatome befinden sich demnach auf diskreten Energieniveaus
E,, deren Lage fiir die Atomart spezifisch ist. Es ist nun mdglich, dass das anfliegende
Elektron seine Energie dazu nutzt, um eines der Hiillenelektronen eines Anodenatoms auf
ein hoheres Energieniveau anzuheben. Das Atom befindet sich dann insgesamt in einem
angeregten Zustand (A — A*). Diesen Anregungsprozess kann man schreiben als

e (Exin1)+A — A" +e” (Exin2)-

Dieser Zustand ist aber nicht stabil, sondern nach einer kurzen Zeit wird sich wieder der
energetisch giinstigste Zustand (“Grundzustand”) herstellen 3°. Diese “Abregung” liuft nach

Umrechnung zwischen eV und J ist mit dieser Merkregel einfach: Man kann sich das e aus der Einheit eV direkt
als eine Multiplikationsanweisung mit der Elektronenladung e vorstellen. Mochte man aus eV die SI-Einheit Joule
erhalten, muss man also mit e multiplizieren:

leV=1e-1V=1.6-10""Asv=1.6-10"19J
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Abbildung 33. Rontgenspektren verschiedener Anoden (Molybdén, Eisen und Kupfer). Die markierten
Peaks zeigen die Ko (2) und Kg (1)-Linien. [38]

dem Schema
A™(E;) — A(E) +hvii

ab. Dabei ist die Energiebilanz mit der des anregenden Elektrons verbunden iiber
E; — Ex = Exin,1 — Exin,2-

Es konnen also nur Photonen durch diesen Prozess emittiert werden, deren Energie genau
zu einer moglichen Differenz von Energieniveaus in der Atomhiille der Anodenatome passt.
Daher besteht das charakteristische Rontgenspektrum auch aus diskreten Peaks anstelle einer
kontinuierlichen Verteilung, wie in Abb. 33 gut zu sehen ist. Da die Energiedifferenzen E; —
Ey fiir jede Atomart spezifisch sind, kann man also durch Kenntnis der Peakpositionen im
Rontgenspektrum das Anodenmaterial bestimmen.

Die Untersuchung eines Materials durch Analyse der charakteristischen Rontgenstrahlung
wird auch Rontgenemissionsspektroskopie (XES) genannt. Man damit beispielsweise Unrein-
heiten in Materialien detektieren. In Abb. 33 kann man gut erkennen, dass unterschiedliche
Materialien wie Eisen, Kupfer oder Molybdén auch sehr unterschiedliche charakteristische
Strahlungspeaks aufweisen. Anhand der Bremsstrahlung kann man die Materialien dagegen
nicht unterscheiden.

| Auf Seite 125 wird die Rontgenrohre als Demonstrationsversuch vorgestellt.
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’/A; = 2d sind

Abbildung 34. Zur Rontgenbeugung an einem Kristallgitter. (links) Die einfallende Strahlung wird
an den Kristallebenen reflektiert und tritt gemifl Reflektionsgesetz unter gleichem Winkel wieder aus.
(rechts) Nach der Reflektion gibt es konstruktive und destruktive Uberlagerung der Strahlung, je nach
Gangunterschied beim Winkel . (Abbildung nach [8]).

ABSCHNITT 9.3

Beugung von Rontgenstrahlen

Nachdem die Beschaffenheit der Rontgenstrahlung beschrieben wurde, muss nun noch darauf
eingegangen werden wie man die Untersuchungen experimentell {iberhaupt realisieren kann.
Im Bereich der Optik kann man fiir die Bestimmung der Wellenldnge von sichtbarem Licht
dessen Beugung an einem optischen Gitter verwenden. Wire dies nicht auch eine Option fiir
die Untersuchung von Rontgenstrahlung? Wir testen dies an einem Beispiel. In Abb. 33 lesen
wir ab, dass wir es mit Strahlung der Wellenldnge von etwa A = 100pm zu tun haben. Wir
verwenden nun ein eher feines Beugungsgitter mit Gitterkonstante » = 1/1000 mm. Damit
wire das Maximum erster Ordnung (m = 1) bei

1-100pm

. [m-A4 .
¥ = arcsin | —— | = arcsin
( b ) ( 1-10°pm

) ~0.006°

unmoglich zu erkennen. Es wire sinnvoller wenn man, wie bei der Analyse von sichtbarem
Licht, ein Beugungsgitter mit Gitterabstéinden in der Grolenordnung der Wellenldnge nutzen
kann. Die Herstellung eines solchen Beugungsgitters ist aber technisch nicht umsetzbar, da die
Wellenlidnge A ~ 100pm im Bereich von Gitterabstinden in Festkorpern liegt. Max von Laue
nutzte daher im Jahr 1912 einen kristallinen Festkorper als dreidimensionales Beugungsgit-
ter [39]. Wie aber kommt es bei der Wechselwirkung von Rontgenstrahlung und Festkorper
zur Beugung? Die einfallende Strahlung wechselwirkt mit jedem der Atome im Kristallgitter.
Man kann, wie in Abb. 34 auf der linken Seite gezeigt, das auch als eine Reflektion an der
Gitterebene auffassen. Diese Gitterebenen sollen nun den Abstand d voneinander haben. Dann
wird nach einer Vielzahl von Reflektionen an verschiedenen Ebenen der direkt reflektierte
Strahl mit den austretenden Strahlen aus anderen Ebenen miteinander interferieren. Der Gang-
unterschied As der Strahlen kann leicht geometrisch hergeleitet werden und betrigt gemif} der
rechten Skizze in Abb. 34 As = 2d - sin(¢}). Wenn dieser Gangunterschied ein ganzzahliges
Vielfaches der Wellenlédnge ist, so wird konstruktive Interferenz stattfinden. Dies driickt sich
aus im sogenannten Bragg’schen Gesetz, benannt nach William Bragg:

Bragg’sches Gesetz
2d -sin(9) =m - A ym=1,2,3,... (9.1)

Unter diesem betrachteten Winkel ¢ werden alle anderen Phasenbeziehungen der Welle mit
Wellenlidnge A zur gegenseitigen Ausldschung fiihren. Es gibt fiir eine bestimmte Wellenlin-
ge A also immer genau einen Reflektionswinkel ©# zur Kristalloberflache, auch Glanzwinkel
genannt, unter dem die Welle reflektiert wird. Dies erdffnet nun den Weg zur sogenannten
Drehkristallmethode nach Bragg. Dabei wird der Kristall drehbar gelagert und bei verschie-



denen Drehwinkeln wird die Strahlungsintensitiit gemessen. Der Drehwinkel ldsst dabei mit
GL. 9.1 direkten Riickschluss auf die betrachtete Wellenlidnge zu. Somit kann man die Intensitit
der Rontgenstrahlung nun wellenléingenaufgelost bestimmen.

ABscHNITT 9.4

Compton-Effekt

Die Entdeckung der Rontgenstrahlung und die Moglichkeit deren Wellenldnge zu bestimmen
fiihrte nun zu neuen experimentellen Mdoglichkeiten. Arthur Holly Compton (1892-1962)
untersuchte die Wechselwirkung harter Rontgenstrahlung mit einem Festkorper. Im Wellen-
modell des Lichtes wiirde man erwarten, dass die einfallende Lichtwelle die Elektronen des
Targetmaterials in Schwingung versetzt und dann wieder (abgeschwicht) mit gleicher Fre-
quenz das Target verlisst. Beobachtet wurde aber auch eine Verringerung der Frequenz beim
ausgetretenen Licht. Fiir das Experiment und dessen Erkldrung wurde Compton 1927 der
Nobelpreis verlichen. Fiir die Erklirung muss man annehmen, dass sich das Licht als Teilchen
verhdlt. Um die iiblichen Rechnungen der Kinematik fiir Stofle zu benutzen, benétigt man
die Angabe eines Impulses fiir die Photonen. Der bekannte Impuls p = m - v ergibt hierbei
keinen Sinn, da die Ruhemasse des Photons m ,;, = 0 ist. Man kann aber iiber die Energie eine
Impulsbeschreibung herleiten, allerdings muss man hierfiir die relativistische Beschreibung
verwenden. Die relativistische Energie berechnet sich durch den Energie-Impuls-Satz nach

E’= 1)2c2 +m(2)c4.
Da das Photon keine Ruhemasse m hat, folgt daraus E = p - c. Mit der bereits vom Photoeffekt
bekannten Gleichung E = Av kann man also den Impuls eines Photons bestimmen durch

Impuls des Photons

hy  2m h h 2n
E = p-c= hy — pP= -;— = E;;'—ji—— = E;;‘ Ti— =hk.
——

A=c/v

Die Konstante 7 (gesprochen “h quer”) wird noch oft verwendet werden und bestimmt sich
durch 71 = h/(27) ¥7. Wenn man dem Photon nun also diesen Impuls zuordnet, kann man das
Experiment von Compton als Stof} (direkt und elastisch!) eines Photons mit Impuls ppp = ik
und einem ruhenden Elektron mit schwacher Atombindung (Ep < hvpj,) beschreiben wie es
in Abb. 35 skizziert ist. Der Stoprozess ist dann

+e +e~

— h-vg
EkinzO

h'V()

vor nach Exin

Nachdem man diesen StoBprozess durch relativistische Energie- und Impulserhaltung be-
trachtet hat, findet man die Relation

Compton-Effekt
A=A, — Ay = 2Ac sin> (g) = Ac(1=cos p)

mit der Compton-Wellenlinge A¢ des Elektrons

h

MecC

Ac=

Die Messergebnisse beim Compton-Versuch zeigen genau das hier beschriebene Verhalten:

ComPTON-EFFEKT

37 Durch die Verwendung von 7 er-
spart man sich sehr oft das schreiben
des Faktors 27 in vielen Gleichun-

gen.

Abbildung 35. Energie- und Impulsbi-
lanz bei der Compton-Streuung. Die Be-
obachtung lésst sich nur erkldren, wenn
dem Photon Teilcheneigenschaften zu-
geordnet werden.
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38 Zum Gliick diirfen wir das letzte-

nendes doch.
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Man findet unter dem Streuwinkel ¢ die um AA vergroferte Wellenlinge des gestreuten
Lichtes. Hier fiihrt also die Betrachtung des Lichts als Teilchen mit der Fahigkeit zu einem
StoBprozess zur korrekten Beschreibung der Versuchsergebnisse.

AsscHnITT 10

Wellenbeschreibung von Teilchen

Nachdem es sich fiir Licht als sinnvoll erwiesen hat, einem vermeintlichen Wellenobjekt
Teilcheneigenschaften zuzuschreiben, wurde auch der umgekehrte Weg beschritten. 1924
schlug Louis de Broglie (1892-1987) vor, die Impulsbeschreibung von Licht p = ik auch
auf Teilchen wie Elektronen, Atome und Neutronen anzuwenden [40]. Fiir die Herleitung der
Debroglie-Wellenlidnge unterscheiden wir zundchst 2 Fille: Teilchen ohne Ruhemasse und
Teilchen mit Ruhemasse [41].

Teilchen ohne Ruhemasse Als ein Teilchen ohne Ruhemasse haben wir das Photon aus der
Erklarung des Photoelektrischen Effektes kennengelernt. Fiir dieses Teilchen mit mg = 0 wird
der Energie-Impuls-Satz zu E = p - c¢. Dies kombinieren wir nun mit dem Energiequant des
Photons E =h-v zu

p-c=h-v—>p=h-K=—=h~k
c A

Wir kénnen also einem Photon einen Impuls zuordnen, wie man dies bei einem klassischen
Teilchen gewohnt ist.

Teilchen mit Ruhemasse Fiir diesen Fall eines Teilchens mit Ruhemasse m¢ # 0 und Impuls
p =m-v, z.B. ein Elektron, konnen wir nicht einfach p = 4/A nutzen und dem Teilchen so
eine Wellenlénge zuordnen — fiir die Herleitung war im Eneregie-Impuls-Satz explizit my =0
gefordert 3%, Die Idee von de Broglie war es, eine dhnliche Beziehung auch fiir typische
Teilchen zu finden. Hierfiir nahm er an, dass diese sich auch durch eine Welle beschreiben
lassen konnten. Die Teilchengeschwindigkeit v wire dann, wie spéter im Kapitel gezeigt, mit
der Gruppengeschwindigkeit v, eines Wellenpaketes v = vy = C(‘i—‘;: assoziiert. Auflerdem gilt
natiirlich auch hier der Energie-Impuls-Satz. Wenn wir also nach einer Beziehung p = p(1) =
p(k) fiir diesen Fall suchen, dann nutzen wir wieder die Aquivalenz der Energien wie im
oberen Ansatz:

h-v=hw=

Nun leiten wir beide Seiten der Gleichung nach k ab, um die Teilchengeschwindigkeit vt in
die Gleichung zu integrieren:

do 17,5 2.4 -1 ,dp
h_dk = 5( ¢ +mye ) 2pc %
—————

-E?
pc*dp
E dk
_ ngrva/d_p

 ymge dk
d
hot = prge



MATERIEWELLEN UND WELLENFUNKTIONEN

Nun konnen wir durch Integration den Zusammenhang

p=p(k)=/hdk=hk+c

erhalten. Aus Symmetriegriinden ((—p) = hi(—k) + ¢) muss die Integrationskonstante ¢ =0
sein. Wir erhalten also den gleichen Zusammenhang p = fik = h/A wie fiir das Photon — nur
gibt es diesmal ebenfalls den kinematischen Impuls p = m - v. Die Wellenldnge, die diesem
Impuls entspricht, wird de Broglie-Wellenlinge genannt.

de Broglie-Wellenldnge

P I

m-v  \2m- Expn
Durch den sehr kleinen Zahlenwert von / erkennt man leicht, dass es sich dabei um sehr kleine
Wellenldngen bzw. sehr grole Frequenzen handelt. Das macht es experimentell schwierig,
solche Wellenphinomene zu beobachten 3°. Fiir diese neuartige Idee erhielt de Broglie 1929
den Nobelpreis. Erst 1929 wurde eine erfolgreiche experimentelle Bestitigung durch Davisson
und Germer moglich. Dabei wurde die Elektronenbeugung an einem MgO-Kristall nachge-
wiesen. Dabei stellt also ein Elektronenstrahl die einfallende Welle dar und der MgO-KTristall
wirkt als Beugungsgitter. Spater konnten auch Beugungseftekte neutraler Atome nachge-
wiesen werden. AbschlieBend kann man also bestitigen: Auch “typische Teilchen” haben
Welleneigenschaften.

AsscunitT 10.1

Materiewellen und Wellenfunktionen

Louis de Broglie hat vorhergesagt, dass man Teilchen immer auch Welleneigenschaften zu-
ordnen kann. Als konsequente Weiterentwicklung muss man sich nun auch fragen, ob diese
Teilchen nicht auch durch eine Wellenfunktion beschrieben werden kdnnen statt durch ei-
ne Massepunkt-Bewegung. Ein direkter Ansatz wire es, statt der iiblichen harmonischen
Wellenfunktion

lll(x,t) =C. ei(wt—kx)

die Kreisfrequenz w und die Wellenzahl k durch E = hy = hw und p = hk zu ersetzen. Dies
fiihrt zur Wellenfunktion

W(x,t)=C-e(F1=F%) = C.ei(Et=p) (10.1)

die nun durch Parameter festgelegt ist, die auch Teilcheneigenschaften sind wie die Energie
und der Impuls. Es gibt aber ein grundlegendes Problem mit dieser einfachen Formulierung:
Die Wellenfunktion 10.1 ist nicht lokalisiert, wie man es von einem Teilchen erwarten kann.
Diese Welle breitet sich im ganzen Raum aus, was der kinetischen Beschreibung einer Teil-
chenbahn widerspricht. Im folgenden Abschnitt betrachten wir aber eine Mdglichkeit, ¢ so
zu modifizieren, dass der Teilchencharakter besser beriicksichtigt wird.

AsscunitT 10.2

Wellenpakete

Statt von einer ebenen Welle ausgehend die Wellenfunktion fiir ein Teilchen zu formulieren,
soll nun das Modell der Wellenpakete besprochen werden. Grundlage dafiir ist die Uberla-
gerung von mehreren harmonischen Wellen mit jeweils verschiedenen Frequenzen und/oder
Amplituden. Einfaches Beispiel hierfiir ist die sogenannte “Schwebung” aus Abb. 36. Dabei

39 Um ein Interferenzmuster eines
Elektronenstrahles (m, ) durch einen
Einzelspaltversuch zu beobachten,
diirfte der Spalt nur einige Nanome-
ter (oder weniger) breit sein!
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Abbildung 36. Uberlagerung zweier
Wellenfunktionen resultiert in einer
Schwebung.

40 Dies tut man auch in der Elektro-
technik, wo man etwa durch Uber-
lagerung von verschiedenen Sinus-
Schwingungen ein Rechtecksignal
oder eine Sigezahnspannung er-
zeugt.

41 Es gehen also Funktionen AL-
LER Frequenzen in unsere Summe
ein.

42 Also noch kein unendlicher Wert
fiir k 1.
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werden zwei Wellen gleicher Amplitude, aber leicht unterschiedlicher Frequenz miteinander
addiert. Die entstehende Welle besitzt eine Hiillkurve, in der das Signal dann mit der Frequenz
SRes = “'2;‘”‘ oszilliert. Die Hiillkurve selbst hat die Frequenz fign = “25. Diese iiberlager-
te Welle ist aber noch immer unendlich im Raum ausgedehnt. Das heift, fiir alle Werte von x
finden sich fiir alle Zeiten die “normalen” Amplituden. Schoner wire es, wenn die Amplituden
nur bei bestimmten (x,7)-Kombinationen relevant wiren. Man kann die Wellenfunktion aber
tatsdchlich auf einen bestimmten Raumbereich begrenzen, indem man auf geschickte Art und
Weise unendlich viele Funktionen verschiedener Frequenzen iiberlagert.*0 Hierfiir schreiben
wir zundchst die Wellenfunktion mit einer Amplitude C(k), die nun die Stirke der aufgeprig-
ten Wellenfunktionen représentieren soll. Ohne Begriindung oder Herleitung wihlen wir hier
die folgende Zusammenstellung: Es sollen zur urspriinglichen Wellenfunktion mit Frequenz
wo und Wellenzahl kg noch weitere Wellen addiert werden, die

* eine Gauss-verteilte Amplitude C (k) haben
¢ Wellenzahlen im Bereich von —oo bis +oco aufweisen.

Daraus ergibt sich das Integral

ko+ki
W(x,1)=Cy- / e‘(%)2(k—ko)ze—i(wot—ko)c)dk (10.2)
ko—kl
mit der Amplitudenfunktion
a2
C(k)=Co-e(8) (kko)® (10.3)

Das Integral ist fiir k; — co*! analytisch 16sbar und ergibt fiir den Zeitpunkt ¢ = 0 die
Wellenfunktion

2\ e
w(x,O)z(—Z) ceT M A gthox (10.4)
ma
Diese Wellenfunktion istin Abb. 37b dargestellt. Abbildung 37a soll veranschaulichen, wie der
Weg zu einer lokalisierten Welle erfolgt. Mit zunehmender Breite des Integrationsbereiches 4>
aus GI. 10.2 werden die grofleren Amplituden auf einen immer engeren Raumbereich konzen-
triert. So sieht man also bei stetiger Zunahme von k| iiber k, > k| zu k3 > k,, wie die Auslaufer
in den Randbereichen sich auflerdem mehr und mehr abflachen. Fiir einen unendlichen Inte-
grationsbereich zeigt sich dann das Wellenpaket in Abb. 37b. Zu einem gegebenen Zeitpunkt ¢
ist demnach die Amplitude der Wellenfunktion auf einen bestimmten Ort beschrankt und wir
haben somit die gesuchte Lokalisierung des Teilchens erreicht. Das Maximum (¢ /dx = 0)
dieser Funktion befindet sich iibrigens immer bei x(¢) = %—‘i’ -t. Dies ist genau die Definition
der Gruppengeschwindigkeit einer Welle. Diese Gruppengeschwindigkeit ist unter Nutzung
von
w=E/[h=p*/(2mh) = (hk>)/(2m)

iiber
_dw Bk _p
BT T m T m T
als Teilchengeschwindigkeit vy identifizierbar. Damit bewegt sich also das Maximum der
Wellenfunktion mit der Geschwindigkeit vz - # im Raum fort. Ein solches Wellenpaket kann
also sowohl fiir Welleneigenschaften (es ist ja schlielich eine Wellenfunktion mit Frequenz
und Wellenlidnge) als auch fiir die Beschreibung der Teilcheneigenschaften (Ort, Impuls,
Geschwindigkeit) genutzt werden.
Wir haben damit zwar das Problem der Lokalisierung der Wellenfunktion gelost, aber es
bleiben noch immer Unstimmigkeiten bei der Interpretation der Wellenfunktion als Teilchen-

beschreibung:



STATISTISCHE DEUTUNG DER WELLENFUNKTION

Abbildung 37. a) Der Verlauf der Summation mit zunehmendem Bereich fiir k. Der Summationsbereich
nimmt von k; bis k3 zu und offenbar schrinkt sich der Raumbereich der Welle dadurch immer mehr
ein. b) Fiir unendliche Summation folgt schlieBlich das gesuchte Wellenpaket.

* iy kann komplexe Werte annehmen. Dafiir ist keine physikalisch sinnvolle Interpretation
moglich.

¢ Die Wellenfunktion lduft mit der Zeit auseinander, ein echtes Teilchen aber behilt
natiirlich seine Lokalisation bei.*?

Eine Moglichkeit, die Wellenfunktion eines Teilchens physikalisch sinnvoll zu interpretieren
ist die folgende, gemeinhin auch als “Bornsche Wahrscheinlichkeitsinterpretation” bezeich-
nete Variante.

AsscunitT 10.3

Statistische Deutung der Wellenfunktion

Um 1926 wurde von Max Born vorgeschlagen, die Wellenfunktion ¢ als eine Wahrschein-
lichkeitsdichte zu interpretieren. Dabei solle das Quadrat der Wellenfunktion |y (x,7)|? die
Wahrscheinlichkeit W (x,t) dafiir darstellen, dass sich ein Teilchen zur Zeit ¢ in einem Ortsin-
tervall x bis x +dx aufhalt:

Born’sche Wahrscheinlichkeitsinterpretation

W(x,1)dx = |y (x,7)>dx

Damit diese Interpretation von |y (x,7)|?> als Wahrscheinlichkeit sinnvoll ist, muss man dafiir
sorgen, dass fiir die Wahrscheinlichkeiten W auch das Intervall 0. .. 1 abgedeckt wird. Man
konnte auch sagen, das Teilchen “muss sich irgendwo befinden”. Dieses Verhalten kann man
mit der sogenannten Normierung

Normierung der Wellenfunktion

X=00

/ v (x,1)|Pdx = 1 (10.5)

X=—00

sicherstellen. Mit dieser Interpretation ergibt sich dann, dass die Wahrscheinlichkeit, dass Teil-
chen im Zentrum des Wellenpaketes zu finden, am groBten ist. Jedoch ist auch in einer kleinen
Umgebung darum die Wahrscheinlichkeit nicht verschwindend klein - der Aufenthaltsort des
Teilchens ist also in gewisser Weise “unscharf”.

4 Dies zeigen wir spiter mit
der Heisenberg’schen Unbestimmt-
heitsrelation in Abschnitt 1 1.
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4 Das Sternchen steht fiir die
komplex-konjugierte Wellenfunkti-
on. Der Imaginirteil hat darin das
entgegengesetzte Vorzeichen.
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ABscHNITT 11

Heisenberg’sche Unbestimmtheitsrelation

Um die Unschirfe des Ortes in der Wellenfunktion naher zu untersuchen, betrachten wir nun
die Wellenpakete mit den Gauss-Verteilten Amplituden gemif} Gleichung 10.3. Es ergibt sich
also mit etwas Umstellen der Gleichung fiir das gesuchte Wellenpaket das Integral nach 10.2

y(x,t) = C()/ e_(%)z(k—ko)zei(kx—wt)dk’

—00

welches analytisch gelost werden kann. Um die Normierung gleich vorwegzunehmen, setzt
man nun Cy = (2”% und erhélt die Funktion bzw. die Wahrscheinlichkeitsdichte fiir das
Wellenpaket zum Zeitpunkt # = 0:

%2

2\F e
W(X,I)Z(—z) e a? -
wna

Die Wahrscheinlichkeitsdichte fiir diese komplexe Wellenfunktion ** betriigt nun

eikox

e, = g (xn) - (x,0)*

1
1 2 . 1 .
= (i) '6_27 .elkox . (i) .e_i .e_lkox
% 2 2
wa

1
2 \2 _2?
= —_— -C a2
na?

Diese Wahrscheinlichkeitsdichte wollen wir nun eingehender untersuchen. Fiir den ge-
wihlten Zeitpunkt # = 0 ist die Amplitude offenbar bei x = 0 maximal, weil dort die e-Funktion
ihren grofiten Wert annimmt. Dies ist also der wahrscheinlichste Aufenthaltsort. An den Punk-
ten xyp = +% ist lr|* wegen

S}

1 1
2\ _2? 2\ 1
= | ceT1kI =] e =y (0,0)]> —
R Ve

auf 1/+/e abgesunken. Die “volle Breite” der Wellenfunktion wird nun {iblicherweise genau
mit diesen Werten x| —x, = a = Ax definiert (siche Abb. 38 oben). Diese Differenz wird auch
als Ortsunschirfe bezeichnet.

Wie sich die Verteilung der Wellenzahlen verhiilt, kann man durch dhnliche Uberlegungen
an der Amplitudenfunktion 10.3 untersuchen. Hier sinkt der Funktionswert von |C (k)|* bei den
Grenzen k5 = i% auf den 1/+/e-Teil ab. Die Breite der Verteilung ist dann Ak = k| —ky =
é(siehe Abb. 38 unten). Uber den Parameter @ kann man nun die Ortsunschirfe und die
Unschirfe der Wellenzahlen verbinden und erhélt Ax - Ak = 1. Durch die Impulsbeschreibung
von de Broglie (p = fik) kann man nun den Wellenzahlintervall Ak durch die Impulsunschirfe
Ap =T - Ak ersetzen und erhilt so Ax-Ap = 7. Man kann mathematisch beweisen, dass
die hier gewihlte Gauss-Verteilung fiir die Wellenzahlamplituden zum geringst-mdglichen
Produkt aus Ax und Ap fiihrt. Somit folgt die Heisenberg’sche Unbestimmtheitsrelation:



Heisenberg’sche Unbestimmtheitsrelation

Ax-Ap >h (11.1)
Analog, wenn man ein Zeitintervall statt ein Ortsintervall betrachtet, folgt daraus die
Unschérferelation fiir Energie und Zeit

AE-At>h (11.2)

Diese Ergebnisse stehen im starken Gegensatz zur klassischen deterministischen Physik.
Die Relation 11.1 besagt, dass es nicht moglich ist den Impuls und den Ort eines Teilchens
gleichzeitig exakt zu kennen. Durch das Produkt muss eine hohe Prézision des einen Wertes
durch eine geringere Prézision des anderen Wertes erkauft werden. Wenn man nun auch noch
die zeitliche Entwicklung der Bewegung betrachtet, verstirken sich die Auswirkungen noch:
Ein unscharfer Impuls zur Zeit ¢ fiihrt zu einer spéteren Zeit t; zu einem grof3en Toleranzbe-
reich in dem ein Teilchen anzutreffen ist. Die Energie-Zeit-Relation bedeutet aulerdem, dass
bei sehr kleinen Zeitintervallen die Energie eines Elementarteilchens in bestimmten Bereichen
schwankt. Wir sehen hier auf einfache Weise die Auswirkungen der Quantenelektrodynamik
(QED), die auch Energieschwankungen im Vakuum (auf kleinsten Zeitskalen) beschreibt —
manchmal wird dieses Phdnomen populir auch als Quantenschaum bezeichnet.

Welche Konstante genau auf der rechten Seite der Ungleichung 11.1 steht, hingt von der
Definition der Breite der Verteilungen ab. Wenn die Funktionen auf den é-ten Teil abfallen
sollen, folgt Ax-Ap > 4h. Wenn man die Breite bis zur ersten Nullstelle definiert, folgt
Ax-Ap > h.

AgscaNITT 11.1

Casimir-Effekt

Wir haben soeben gelernt, dass auf sehr kurzen Zeitskalen Az < AE /h auch im Vakuum Energie
erzeugt und wieder vernichtet werden kann. Darauf beruht der sogenannte Casimir-Effekt, der
eine nicht-intuitive Kraft zwischen zwei dicht angenédherten Objekten vorhersagt.

Man nimmt dafiir an, dass aus den Vakuumfluktuationen fiir kurze Zeiten sogenannte
virtuelle Teilchen geschaffen werden. Um die Gesetze der Energieerhaltung nicht zu verletzen,
miissen diese Teilchen auch stets wieder vernichtet werden. Ein moglicher Prozess ist etwa
die Entstehung von Teilchen- Antiteilchenpaaren fiir At ~ %, die sich nach Entstehung
durch Annihilation wieder vernichten. Meist werden bei diesem Prozess Photonen erzeugt,
aber auch andere Teilchenarten sind moglich. Dieser Prozess ist nicht spekulativ, sondern
kann direkt messtechnisch bestitigt werden. So springen etwa angeregte Atome wegen der
Vakuumfluktuationen auf den Grundzustand. Schwieriger zu messen ist der nun vorgestellte
Casimir-Effekt: Eine Skizze zum Effekt ist in Abb. 39 zu sehen. Die Platten mit der Flidche
A seien hier sehr dicht beieinander positioniert. Der Casimir-Effekt beruht nun darauf, dass
der Strahlungsdruck im AufBlenbereich der Platten grofer ist als dazwischen und es so eine
effektive Kraftwirkung zum Zentrum gibt. Die Vakuumenergie, die aus allen Energiequanten
besteht kann man als

E() = Z hi-w k
k

ausdriicken. Wir betrachten nun alles zunichst als eindimensionales Problem. Zwischen den
Platten mit sehr geringem Abstand, konnen nur Photonen mit Wellenldngen existieren, deren
Wellenlidngen auch “exakt” zwischen die Platten mit Abstand L passen. Das ergibt eine
Einschrinkung fiir die Photonen-Wellenzahl. Wir gehen von Wellenfunktionen aus. Damit
die Randbedingungen zu den Platten passen, muss etwa eine Sinus-Funktion sin(k - x) dort

CASIMIR-EFFEKT

W)
Ax

ck /" ap

Abbildung 38. (oben) Ortsunschirfe
der Wellenfunktion eines Teilchens.
(unten) Unschirfe der Wellenzahl bzw.
des Impulses.

Flache A

Efree EO Efree
(alle A) (nur nA=2L) (alle A)

Abbildung 39. Durch Vakuumfluktua-
tion werden beim Casimir-Effekt nahe
Platten zusammengedriickt.
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immer Null sein, dass fithrt zu k- x =7, 2nm, ...
Lk=nt — k:% n=1,2,3,...

mit n als Zihlvariable fiir die moglichen Vielfachen der Wellenldnge. Innerhalb der Platten
betrdgt dann die Vakuumsenergie:

EO_Zh wk—Zh c- k—”TZ

. Fiir den Bereich auBlerhalb der Platten gilt die Einschrinkung fiir die Wellenzahlen nicht.
Damit wird die Energie im Auflenbereich zu

(o]
7T
Eaussen = —
L

n=0

Die Energiedifferenz zwischen diesen beiden Termen betrédgt dann

ﬂhc - r
AE = Ep — Egyssen = Zn /I’l dn

n=1 n=0

Diesen Ausdruck kann man mit einer Summenformel analytisch auswerten und kommt zum
Ergebnis

12L oL 1212
Wenn man nun die Betrachtungen im dreidimensionalen Raum macht, dndern sich nur die
Vorfaktoren. Bezogen auf eine Fliche der Platten A erhilt man also die tatsdchlichen Aussagen
fiir den 3D-Fall:

Casimir-Effekt

2
n<hc
Ecos=——- 11.3
Cas 720L3 ( )
ntic
Foas = ——— - 11.4
Cas 240L4 ( )

Dies ist eine anziehende Kraft, die bewirkt dass die beiden Platten nidher zusammenge-
driickt werden.

Zwei Metallplatten der Fliche A = 1 cm? befinden sich in einem Abstand von L = 1 um. Die
wirkende Casimir-Kraft ist dann Feu ~ 1.3- 1077 N.

Diese vorhergesagte Kraft wurde experimentell mit hoher Genauigkeit bestétigt. Meist
wird die Kraft zwischen einer Kugel und einer Planfliche gemessen. Die Casimir-Kraft hat
starke Auswirkungen auf Technik im Nanometer-Maf3stab. So bewirkt sie etwa das kleine
Nanomechaniken “zusammenkleben”. Durch diesen Effekt wird also sozusagen eine proble-
matische Grenze fiir die Miniaturisierung von Technik geschaffen.



AUSEINANDERLAUFEN DES WELLENPAKETES

i~
>

X

Abbildung 40. Die Breite eines Wellenpaketes vergoBert sich bei fortschreitender Zeit. Die Flache der
Wellenfunktion bleibt erhalten.

ABscHNITT 11.2

Auseinanderlaufen des Wellenpaketes

Wie wir gesehen haben, nimmt die Unsicherheit iiber die Position und den Impuls eines
Teilchens mit der Zeit zu. Wie kann man dieses Phinomen quantitativ erfassen? Die Aus-
breitungsgeschwindigkeit eines Teilchens kann man, wie bereits gezeigt, iiber die Gruppen-
geschwindigkeit der Wellenfunktion vr = v = % beschreiben. Durch die Unschérferelation
kennen wir nun aber lediglich den Impuls mit einer gewissen Toleranz, ndmlich p + Ap. Die
Unschirfe der Geschwindigkeit folgt dann durch Einsetzen:

1 1 7
Avy =—Ap=——
U m P m Axg
Hierbei ist Ax die urspriingliche Breite des Wellenpaketes. Der Weg-Zeit-Zusammenhang
wird dann

Ax(t) = Axg+Avg -t = Axg+ t

n- AXQ

Wie in Abb. 40 gezeigt, nimmt die Breite des Wellenpaketes also mit der Zeit zu. Inter-
essanterweise wird dieses Auseinanderlaufen des Wellenpaketes besonders stark, wenn die
urspriingliche Breite gering war. Es hingt nimlich Avg = m'ZxO indirekt proportional von Axg
ab. Obwohl die Breite des Wellenpaketes mit der Zeit zunimmt, indert sich die gesamte Fliche
jedoch nicht. Dies wird durch die Normierung (die auch die Zeitkoordinate mit einschlief3t)

durch GI. 10.5 sichergestellt.

ABSCHNITT 12

Zusammenfassung: Welle-Teilchen Dualismus

Wir haben in den letzten Kapiteln das Licht sowohl als Teilchen- als auch als Welle ken-
nengelernt. Besonders im Teilgebiet der Optik ist die Wellenbeschreibung des Lichtes sehr
erfolgreich. Fiir die Erkldrung einiger Beobachtungen (Photoeffekt, Compton-Effekt) war es
jedoch notig, dem Licht Teilcheneigenschaften zuzuordnen um die Experimente erklédren zu
konnen. Diese Teilcheneigenschaften wiederum hingen von typischen Welleneigenschaften
wie Frequenz oder Wellenlénge ab. Dieser sogenannte Welle-Teilchen-Dualismus ist ein {ib-
liches Narrativ, wenn man in der Schule die Natur des Lichts untersucht. Licht ist demnach
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also nicht Welle oder Teilchen, sondern sowohl Welle als auch Teilchen. Auch begriindet
durch die Unbestimmtheitsrelation kann man nie “alles” iiber ein Teilchen wissen, sondern
beobachtet immer nur die Manifestation einer bestimmten Eigenschaft. Es sollte aber bei
der Nutzung dieses Konzeptes nicht die Vorstellung iibertragen werden, das man sich hier
in einem undefinierbaren Gebiet bewegt und es hier eine Unvollstindigkeit gibt. Vielmehr
ist diese Kontroverse seit mehreren Jahrzehnten — seit Entdeckung der Quantenfeldtheorie —
ausgeraumt. Demnach ist das Photon ein Austauschteilchen der elektromagnetischen Wechsel-
wirkung und genau wie das Elektron ein Quantenobjekt — man kommt also ganz ohne Begriffe
wie Welle oder Teilchen aus. Die Quantenelektrodynamik selbst ist eine Feldtheorie jenseits
der Moglichkeiten der Schulmathematik und oft auch des Universitétsstudiums. Um sich der
Quantenphysik aber dennoch zu néhern, bietet es sich an, im Rahmen des Physikunterrichtes
und auch an der Universitit auf dieses Konzept des Dualismus zuriickzugreifen.
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Quantenphysik

Wenn dich die Quantenmechanik nicht grundsitzlich geschockt hat, hast du sie

noch nicht richtig verstanden. (Niels Bohr)

Im vorherigen Kapitel wurden die Grundlagen fiir die moderne Beschreibung der Atome
gelegt. Es fanden sich experimentelle Ergebnisse, die Teilchen einen Wellencharakter zuord-
nen. Ebenso zeigte sich, dass elektromagnetische Wellen auch Teilcheneigenschaften besitzen.
Aus den gesammelten Erkenntnissen werden wir nun ein quantenphysikalisches Atommodell
entwickeln. Dies erweitert die aktuell in der Gesellschaft allgemein verbreitete Vorstellung,
die noch dem Rutherfordschen Atommodell entspringt: Ein Elektron (Teilchen!) kreist dabei
um einen kleinen aber massereichen Atomkern (auch ein Teilchen!). Das modernere Modell
wird auf Wellenfunktionen fiir die Elektronen und deren Aufenthaltswahrscheinlichkeiten

gegriindet.

ABSscHNITT 13

Bohrsches Atommodell

Im Jahr 1913 veroffentlichte Nils Bohr sein “Planetenmodell des Atoms”, fiir das er 1922 den
Nobelpreis erhielt. Das Modell war das Ergebnis seiner Bemiihungen, die Energieniveaus der
Elektronen zu verstehen. Dabei war der Ausgangspunkt das Modell von Rutherford. Wenn ein

Elektron als Teilchen um den Atomkern kreist, muss sich die Zentrifugalkraft gerade mit der
Coulomb-Anziehung ausgleichen und es muss gelten Abbildung 41. zum Bohrschen Atom-

modell: Der Bahnumfang muss das
Fy = Fc (13.1) Vielfache der de-Broglie-Wellenldnge
des Elektrons sein.

2 2
mev 1 Z-e
= _ 13.2
r drey 1?2 (13.2)
Z-e?
AL (13.3)
4regmev?

Problematisch beim Ausdruck fiir den Radius ist nun, dass dieser gemil3 Wahl von v beliebige
kontinuierliche Werte annehmen kdnnte. Die Beobachtungen der Atomspektren zeigten aber,
dass Elektronen immer nur diskrete Energien zu haben scheinen. Die neue Idee von Bohr war
es nun, das Elektron durch eine Materiewelle mit der de Broglie-Wellenlidnge zu beschreiben.
Diese soll dann eine stehende Welle sein, deren vielfache Wellenlidnge n-Ap genau dem
Bahnumfang 277 entsprechen muss, wie dies in Abb. 41 skizziert ist. Diese Annahmen

Ap =

-0

2nr

h

m-v
h

m-/lD

n-Ap n=1,2,3,...

kann man nun in Gleichung 13.3 einsetzen und erhilt
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Bohrscher Radius

272 2

n-h-e n
= —=— 13.4
T mme-Ze? Z a0 (13.4)

h2
ay = —2 - =52917-10""'m (13.5)
M, - e

wobei ag als erster Bohrscher Radius bezeichnet wird. Die moglichen Radien der Um-
laufbahn sind nun nach Gl. 13.4 nicht mehr kontinuierlich, sondern konnen abhingig von
der Wahl fiir n nur noch diskrete Werte annehmen. Das Wasserstoffatom besteht aus einem
Elektron sowie einer positiven Kernladung (Z = 1). Fiir den niedrigsten energetischen Zustand
(n =1) folgt also, dass der Bahnradius des Elektrons

n? 1

1= —do = 140 =do
genau dem Bohrschen Radius entspricht. Mit der nun eingefiihrten Quantelung des Bahnradi-
us bzw. der Bahngeschwindigkeit, folgt direkt auch die Quantelung der Energie des Elektrons.
Diese setzt sich zusammen aus der kinetischen und der potentiellen Energie Epo im Cou-
lombfeld des Kerns. Die potentielle Energie Epo entspricht der bekannten Energie fiir ein
Punktladungsfeld
Eoo= Ze?
pot — _FE()V

und die kinetische Energie ldsst sich aus Gleichung 13.2 herleiten:

mev? B 1 Z-é2 1
T 4mey 2 ”'5
mev? 11 Z-e?
/2 B 547reo r

Exin = 1 Epot
2
Die Gesamtenergie E des Elektrons betrigt dann also

Energie im Bohrschen Atommodell

1 Ze? Ze? mee? - Z* A
B e o L _ __ —_ry. 2 13.6
kT ROt T S A reorn  ATeorn 8esh?n? Y (13.6)

mit der Rydberg-Konstanten Ry* ~ 13.6¢eV. Diese Energie entspricht gerade der Energie,
die notig ist um das Elektron (im Grundzustand) vom Atomkern des Wasserstoffes vollstindig
zu 16sen. Weil dabei ein Ion entsteht, nennt man diesen Vorgang auch Ionisierung bzw. E,
auch die Ionisierungsenergie.



QUANTISIERUNG DES DREHIMPULSES

AgschNITT 13.1

Quantisierung des Drehimpulses

Dadurch, dass die Bahnradien durch die diskreten erlaubten Wellenlidngen eingeschrinkt
wurden, sind auch nicht mehr alle Drehimpulse fiir das Elektron auf seiner Bahn erlaubt. Aus
der Geschwindigkeit v,,

h
Vp=n-——
2nmery,
kann man durch Umstellen und Erweitern
Quantisierter Bahndrehimpuls
Me-r-vp=|ll=n-h (13.7)

auch einen Ausdruck fiir den Drehimpuls herleiten. Diese Formulierung der Quantisie-
rung ist equivalent zu der Aussage 2nr = n-Ap aus dem vorigen Abschnitt. Wenn spéter noch
auf Mehrelektronensysteme eingegangen wird, dann bekommt der Bahndrehimpuls noch ei-
ne wichtige Bedeutung. Weil der Drehimpuls genau wie in der klassischen Kinematik eine
Erhaltungsgrofe ist, lassen sich viele Problemstellungen angenehmer mit dem Drehimpuls
beschreiben als etwa mit der Bahngeschwindigkeit oder dem Bahnradius.

ABSCHNITT 13.2

Atomspektren

Die mit dem Bohr’schen Atommodell hergeleiteten diskreten Energien der gebundenen Elek-
tronen kann man direkt mit Experimenten beobachten. Schon 1859 entdeckten Kirchhoff und
Bunsen, dass Atome/Gase nur Licht mit bestimmen Wellenldingen absorbieren oder emit-
tieren konnen. Ein Versuchsaufbau zur Absorption von Licht ist in Abb.43 oben gezeigt.
Eine Lichtquelle erzeugt Licht mit einem kontinuierlichen Spektrum. Dieses Licht wird durch
einen Behilter mit atomarem Gas gelenkt. Dort kann dann das Licht moglicherweise mit
den Gasatomen interagieren und ggf. absorbiert werden. Das wieder austretende Licht wird
dann von einem Spektrometer oder per Photoplatte wie in Abb. 42 analysiert. Im Spektrum
von Abb.43 (unten rechts) sieht man, dass offenbar nur bestimmte Wellenlédngen von der Abbildung 42. Spektrometer: Man zer-
Lichtquelle emittiert wurden. Der grofite Teil des Spektrums bleibt schwarz. Ein solches  |egt das Licht mit einem Kristall/Prisma
Linienspektrum ist charakteristisch fiir Atome die als Gas bzw. in verdampfter Form vorlie-  in seine Bestandteile und lenkt das Er-
gen. Das ist eine direkte Folge der diskreten, manchmal aber vielfiltigen, Energiezustinde  gebnis auf eine Photoplatte um.

in der Atombhiille. Die Eigenschaften von Atomspektren lassen sich in vereinfachter Form

zusammenfassen als:

Eigenschaften von Atomspektren
» Absorbierte Wellenlidngen konnen auch als Emission auftreten.

* Die Emissions-/Absorptionsspektren sind fiir jedes Atom charakteristisch und ein-
deutig.

 Spektrallinien sind nicht beliebig scharf, sondern haben eine “natiirliche Linienbrei-
te”.

Fiir die Linien in Atomspektren sind nicht nur die Energien E,, nach Gl. 13.6 zustindig,
sondern auch die méglichen Niveauspriinge von E zu E;. Die Energieliicke

AE=Ey—-E;=h-v
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Abbildung 44. Verschiedene mogliche
Uberginge in den Zustinden des Was-
sertstoffatoms.
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Abbildung 43. (a) schematischer Versuchsaufbau fiir ein Absorptionsspektrum. (b) schematischer
Aufbau fiir Emission eines Linienspektrums. Rechts ist das Emissionsspektrum einer Quecksilber-
Dampflampe gezeigt.

entspricht dann genau der moglichen Absorptions-/Emissionslinie des Atoms. Die Differenz
wird nun in Form eines Photons freigesetzt. Mit Gleichung 13.6 wird diese Differenz zu

Ubergiinge in der Elektronenhiille (Wasserstoff)

Ry 1 1
= 'Z —_—— —

Man bezeichnet nun die Energiedifferenzen mit festen Ausgangsniveaus k als eine “Serie”.
Am einfachsten zu beobachten sind hier die sogenannte Lyman-Serie fiir k =1 ((E| — E;))
und die Balmer-Serie fiir k =2 (E, — E;), die beispielhaft in Abb. 44 gezeigt sind.

Auf Seite 123 wird ein Demonstrationsversuch zur Beobachtung eines Linienspektrums
beschrieben.

Damit ergibt sich nun insgesamt schon ein befriedigendes Gebdude von Modellen und
Experimenten. Das Atomspektrum von Wasserstoff ist zunichst hinreichend gut verstanden
und kann auch berechnet werden. Es gibt aber noch ein bisher ignoriertes Problem beim
Bohrschen Atommodell: Wie wir bereits bei der Rontgenstrahlung anerkannt haben, senden
beschleunigte Ladungen elektromagnetische Wellen aus. Ein Elektron, dass sich also auf
einer Bahn um den Atomkern befindet (sog. semi-Klassisches Modell), miisste stindig Ener-
gie verlieren und schlieBlich in den Kern stiirzen. Dennoch ist das Bohrsche Modell, dass
dieses Problem schlicht ignoriert, sehr erfolgreich in der Beschreibung der Experimente. Es
bleibt also die Frage: Warum gibt es iiberhaupt stabile Atome und warum ist das Bohrsche
Atommodell so erfolgreich?



AgschNITT 13.3

Stabilitit der Atome

Wir konnen die Frage nach stabilen Atomen durch Beschreibung des Elektrons mit der
Wellenfunktion beantworten. Wir nehmen zunéchst an, dass der mittlere Radius des Wasser-
stoffatoms, inklusive Elektronenhiille, » sei. Dann muss also die Ortsunsicherheit Ar < a sein,
denn irgendwo im Bereich der Hiille muss sich das Elektron schlieBlich authalten. Nach der
Unbestimmtheitsrelation folgt daraus die Unschérfe des Impulses mit Ap, > % Nun konnen
wir noch folgendes annehmen: Der Impuls p, selbst muss also ebenfalls groBer als p, > %
sein, denn sonst wiirde der Impuls ja genauer bekannt sein als seine Unsicherheit es erlaubt.
Fiir die kinetische Energie folgt dann

p? _(Ap)? W

Eiin = L
kin 2m, 2m, 2mea?

Die Gesamtenergie ist dann

E =Exin+Epo > .
PN omea?  4mea

Diese Funktion E(a) nimmt fiir einen bestimmten Wert einen minimalen Wert an. Dieses
Extremwertproblem kann man durch

dE 71’ 2
- = L + ¢ - 0
da Zmea?‘ 47r60ﬂz

beschreiben. Diese Gleichung wird fiir den minimalen Atomradius

drey H2 eoh?
Qmin = 2 =

= 3 =aqa
Me TTMee

erfiillt. Dabei ist amin = a¢ genau der Bohrsche Radius. Dort befindet sich das Elektron also
in einem Energieminimum. Wenn es weiter Energie verlieren wiirde, wiirde die Bilanz der
Unbestimmbheitsrelation zu einer ungiinstigeren Energie fiihren.

AsscuniTT 13.4

Franck-Hertz-Versuch

Der Franck-Hertz Versuch von 1914 ist nun auch der experimentelle Beweis, dass die Quan-
telung der Elektronenenergie bei Sto3prozessen eine enorme Bedeutung hat. Das Experiment
kann man aus heutiger Sicht als Bestitigung des Bohrschen Atommodells auffassen. Ur-
spriingliche Idee des Experimentes war es, die Ionisationsenergie der Quecksilberatome zu
bestimmen. Dementsprechend wurden die Versuchsergebnisse von Franck und Hertz auch
zunichst falsch interpretiert, weil ihnen das Bohrsche Atommodell zu der Zeit nicht bekannt
war.

Der Versuch wurde von James Franck und Gustav Hertz durchgefiihrt und 1925 wurde
ihnen dafiir der Nobelpreis verliehen. Der Versuchsaufbau, im Original mit Quecksilberdampf,
istin Abb. 45a skizziert. Es handelt sich um eine Elektronenrdhre, die bei geringem Druck von
p =~ 1 Pa mit Quecksilberdampf gefiillt ist. Die Gliihkathode erzeugt bei angelegter Spannung
eine Elektronenwolke im ndheren Raumbereich. Zwischen der Kathode und einem Gitter kann
man eine variable Spannung U, anlegen und so die Elektronen in Richtung des Gitters bis auf
die Energie e - U beschleunigen **. AuBerdem liegt noch eine zweite Spannung U zwischen
der dem Gitter einer letzten Elektrode an. Diese Spannung wird gewissermaBen als Filter

STABILITAT DER ATOME

4 Das ist ganz dhnlich wie bei
der Rontgenrohre, die Beschleu-
nigungsspannung ist aber deutlich
kleiner.

85




BOHRSCHES ATOMMODELL

86

a) : b) s
L * ° o o 4
1z [ ] NP H [ ]
Le~ © -8 )
° =y e 3
® o o <
o © ;@ =

0 20 40 60 80
Us UinV
Abbildung 45. a) Schematischer Aufbau des Franck-Hertz-Versuches. Elektronen werden in einer R6h-
re mit Hg oder Ne-Dampf beschleunigt. Wenn die Elektronen die Anode erreichen, wird ein Strom

gemessen. b) Gemessener Anodenstrom abhingig von der Beschleunigungsspannung im PHYWE-
Demonstrationsversuch mit Neon. [42].

benutzt und stoBt Elektronen durch eine Gegenspannung mit einer Energie Ey;, < e - AU wieder
zuriick. Das Experiment lauft nun ab, indem die Spannung langsam kontinuierlich erhoht
wird und man stindig den Anodenstrom misst. Daraus ergeben sich dann die Messpunkte,
die in Abb. 45b gezeigt sind. Man sieht, dass der Anodenstrom in regelmifligen Abstinden
zusammenbricht. Bei einem Versuch mit Quecksilber ist das jeweils alle 4.9V der Fall, beim
Demonstrationsversuch mit Neon sinkt der Strom etwa alle 19V ab. Die Erklidrung werden wir
nun im Folgenden beschreiben. Die inelastischen Sto8e der Elektronen mit den Hg-Atomen
kann man in der Form
e +Hg - Hg*(Ea) +e” — AEyin
——
~E,

darstellen. Es treten natiirlich auch elastische Stoe auf. Der Einfluss auf Ey;, ist aber durch
den groen Massenunterschied der StoBpartner zu vernachlédssigen. Klassisch miisste man
erwarten, dass beliebige Energieportionen E, bei den Std8en aufgenommen werden - bis
hin zur Ionisationsgrenze. Die Messung zeigt aber, dass offenbar immer schon weit vor
der Ionisationsenergie von Quecksilber (El’fIg = 11.4eV) die Elektronen bei dem Erreichen
von 4,9¢eV ihre Energie abgeben. Wenn die Beschleunigungsspannung die Elektronen nur
auf < 4,9eV beschleunigt, finden keine inelastischen Stofe statt. Wenn die Elektronen bei
hoheren Spannungen die Moglichkeit haben, nach einem Stofl (mit Verlust von E, = 4.9¢eV)
erneut die notige Energie fiir einen weiteren Stofl aufzunehmen, dann sinkt der Anodenstrom
erneut usw. Dieses Experiment zeigt also:

Franck-Hertz Versuch Atome konnen ihre Energie nur in bestimmten diskreten Energie-
quanten aufnehmen.

Nach dem in der Rohre die Hg-Atome angeregt wurden, wird durch die folgenden Abre-
gungsprozesse wieder ein Photon emittiert geméf

Hg* —» Hg+h-v

Wenn man den Versuch mit Quecksilberdampf, wie im Original, durchfiihrt, entsteht bei den
StoBen ein Photon mit der Energie 4,9eV und der Wellenldnge A = 253 nm. Diese liegt leider
im unsichtbaren UV-Bereich . Fiir Schulen gibt es aber auch Demonstrationsexperimente die



mit Neon als Fiillgas arbeiten. Dabei findet (iiber Umwege) auch ein Abregungsprozess statt,
der Photonen mit A = 500nm erzeugt. Dies ist dann als ein leuchtender Bereich in der Rohre
sichtbar. Beim Erhohen den Beschleunigungsspannung kann man dann auch einen zweiten
und dritten StoBbereich an der Leuchterscheinung erkennen. Leider passen in dieser Variante
die Wellenldngen der Emission nicht zum Spannungsabfall bei AU =~ 19V, da die Emission
iiber Umwege erfolgt.

| Auf Seite 124 wird der Franck-Hertz-Versuch als Demonstrationsexperiment beschrieben.

ABSCHNITT 14

Schrodingergleichung

Die Indizien und Beweise fiir die Quantennatur der Materie und des Lichtes sind mittlerweile
unwiderlegbar. Nur fehlt bis dato noch ein Mittel, um mit den als Wellenfunktion beschrie-
benen Teilchen auch tatsidchlich Prozesse (Bewegung, Beugung, usw.) zu beschreiben. Fiir
die klassische Physik mit Massepunkten und starren Korpern findet man diese Beschreibung
durch die Newtonsche Bewegungsgleichung )’ F = i—’t’. Das Aquivalent in der Quantenphysik
wird Schrodingergleichung (kurz: SGL) genannt. Diese 1926 von Erwin Schrodinger postu-
lierte Gleichung beschreibt statt einer Bahnkurve 7(¢) die zeitliche und raumliche Entwicklung
einer Wellenfunktion ¢ (x, y, z,t). Wir erinnern uns, dass diese Wellenfunktion die allgemeine
Form _
y(x,t)=A- eilkx—wt) _ A o5 (px—Einf)

haben kann. (Zur Vereinfachung der Rechnung lassen wir hier die Formulierung als Wel-
lenpaket kurz beiseite.) Zunichst wollen wir die Annahme treffen, dass die Wellenfunktion
“stationdr” ist. Das bedeutet, die Wellenfunktion ¢ besteht aus einem ortsabhéngigen und
einem zeitabhingigem Teil, die beide voneinander trennbar sind. Wir nehmen also damit an,
dass man im eindimensionalen Fall  (x,¢) auch als ¢ (x) - ¥, () schreiben kann. Die ebene
Welle

lﬁ(x,[) — ei(kx—a)t)

kann man auch in diesem Sinne zerlegen. Durch Anwendung der Exponentialregeln folgt:
l//(x t) — ei(kx—u)t) — eikx+(—iwt) — eikx .e—iwt — lﬁ(x) .e—iwt
Wenn man das in die allgemeine Wellengleichung mit der Ausbreitungsgeschwindigkeit u

Py _ 1%y
ox2  u? or?

einsetzt, folgt

52 . 2 2
FWE L) oy )y (0 =-Lo )0 = =22 B (0 90 (14D

fiir die 2-fache partielle Ableitung nach x. Der Impuls wurde hier durch die Kombination von

Exin = 5’7; und p = hik ersetzt. Der Zeitanteil ist wegen der geforderten partiellen Ableitung
als konstant zu behandeln und bleibt unverdndert. Analog folgt fiir die 2-fache partielle
Zeitableitung

2 2(a—iwt

Die Gesamtenergie des Teilchens setzt sich zusammen aus der potentiellen Energie E}o; und
der kinetischen Energie aus Gleichung 14.1. Damit wird Gleichung 14.1 nach Einsetzen von
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Exin = E — Epot Zu
92 2
wher- T - 2 poyy () -y

und damit zur stationéren Schrddingerglelchung:

Stationdre Schrodingergleichung

w9y

~ o5+ Epots = EY (14.2)

Anmerkung: Hier wurde stets nur ein eindimensionales Problem der Koordinate x behan-
delt. Die Gleichung gilt natiirlich auch fiir eine dreidimensionale Wellenfunktion, wenn

aaa)

man statt der partiellen Ableitung nach x den Differentialoperator V-V = A = (5, By’ Oz

verwendet.

Etwas komplizierter wird es, wenn wir auch die zeitliche Entwicklung der Wellenfunktion
betrachten wollen. Dazu bilden wir zunéchst die erste partielle Zeitableitung der Wellenfunk-
tion:

al,l/ _ 0 ikx L—iwt _ E
by (e e ) —iwy = —i - 1/ (14.3)
Mit i~! = —i kann man dies Umstellen, um einen Ausdruck fiir Ey zu erhalten:
Ey = 1h2—"b (14.4)

Ziel ist es nun, diesen zeitabhéngigen Ausdruck mit der stationiren Schrodingergleichung 14.2
zu verbinden. Wir setzen dafiir im potentialfreien Fall (E, = 0) einfach GI. 14.4 in Gl. 14.2
ein und erhalten

w9y aw

2m ox2 6t ’
was auch zeitabhdngige potentialfreie (fiir ein freies Teilchen) Schrodingergleichung genannt
wird:

+0=Ey =

Zeitabhingige Schrodingergleichung fiir Epo =0

n* 8%y oy
— = hat (14.5)

Was aber ist zu tun, wenn wir eine zeitabhédngige Schrodingergleichung mit potentieller
Energie betrachten? Fiir diesen Fall gibt es tatsichlich keine Herleitung. In GI. 14.3 haben
wir vorausgesetzt, dass die Energie konstant ist und damit auch w konstant ist. Die Ableitung
miisste also unter Einfluss eines Potentials komplizierter werden. Erwin Schrodinger hat
dennoch die Kombination der stationdren und der potentialfreien SGL wie folgt postuliert:

Zeitabhingige Schrodingergleichung

1 92 i)
‘%af Epoy = m—‘” (14.6)

Diese Gleichung ist die bis heute experimentell bestitigte Grundgleichung der Quan-
tenmechanik. Obwohl ohne explizite Herleitung, gibt es bisher keinen Anhaltspunkt gegen
dieses Postulat. Sie liefert das Gegenstiick der Quantenmechanik zur Newtonschen Bewe-
gungsgleichung in der klassischen Physik. Auerdem kann man die Schrodingergleichung
auch als dquivalent zum klassischen Energiesatz auffassen, indem die einzelnen Teile mit der



kinetischen bzw. der Gesamtenergie assoziiert werden:

1 8%y Oy
o an2 T =,
N——
————
Exiny R Ey

Bevor nun verschiedene grundlegende Anwendungen der Schrodingergleichung gezeigt
werden, soll noch einmal zusammengefasst werden, womit man es hier eigentlich zu tun hat.
In der klassischen Physik gilt das Prinzip des Determinismus. Wenn man Impuls und Ort eines
Teilchens sowie die darauf wirkenden Kréfte kennt, kann man fiir alle Zeiten den Ablauf dessen
Bewegung vorausberechnen — analytisch oder ggf. numerisch mit beliebiger Genauigkeit.
Dieses Prinzip des Determinismus hat nun die Quantenphysik hinter sich gelassen. Die Bahn
7(¢) kann man nur noch innerhalb der Grenzen der Unschirferelation betrachten. Man kann
nur noch Wahrscheinlichkeiten angeben, bei denen ein Teilchen zu einer Zeit zu finden ist.
Zusitzlich beeinflusst die Kenntnis (also die Messung) des Ortes die Unschérfe selbst. Wir
haben es also tatsdchlich mit einer neuen Art von Physik zu tun, die nicht umsonst als
“Quantenphysik” von der “klassischen Physik” abgegrenzt wird.

AsscuniTT 14.1

Teilchen im Kastenpotential I

Als Beispiel fiir die Einfiihrung in die Verwendung der SGL wird oft das Kastenpotential ver-
wendet. Wir betrachten hierbei eine Wellenfunktion ¢ (x) ohne Zeitabhingigkeit im Potential
der Form
o, Yx<0
Epi(x) =40, VO<x<a
o, Vx>a

wie es auch in Abb. 46 skizziert ist. Weil die potentielle Energie auflerhalb des Potentials
unendlich grof ist, konnen wir problemlos voraussetzen, dass die Wellenfunktion dort nicht
vorhanden sein darf (i (x < 0 und x > a) =0). Wir werden nun erstmalig die Schrodingerglei-
chung zur Beschreibung eines Systems verwenden. In diesem Kurs werden wir uns zunichst
auf die stationdre Schrodingergleichung beschrinken. Diese wird vornehmlich benutzt wer-
den um zulédssige Wellenfunktionen zu finden. Aulerdem kann man die Energieniveaus dieser
Wellenfunktionen berechnen. Das wollen wir fiir dieses Beispiel des Potentialtopfes nun sehr
detailiert tun.
Die stationdre Schrodingergleichung (Gl. 14.2) lautet:

1 0%y
“am gz TV = EY
Zunichst formen wir die SGL um fiir den inneren Bereich des Kastens, wo die potentielle

Energie Null ist:

1 9%y 2m

-———=E - — 14.7
2m Ox2 v | 72 (14.7)

% 2m 5 2mE
T _-"FE k* = 14.8
Fro i) 1/ | 2 (14.8)

%y

0=k +— 14.9
v (14.9)

Hier sieht man jetzt eine ganz normale Differentialgleichung, wie man sie schon aus der
Mechanik von Schwingungen kennt. Die Losung sollte einfach durch eine Wellengleichung

TEILCHEN IM KASTENPOTENTIAL |

E =c E =o

pot

0

pot_

»

0 a X
Abbildung 46. Potentialkasten von x =

0 bis x = a. Die Winde des Potentialkas-
tens sind “unendlich hoch”.
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moglich sein. Wir wihlen
Y(x)=A-sin(kx)+B-cos(kx)

als Ansatz, womit ganz allgemein alle moglichen Schwingungen eingeschlossen sind. Durch
die Kombination von Sinus und Cosinus kann man iiber Additionstheoreme auch Phasenver-
schiebungen usw. mit abdecken. Als nichstes muss man den Ansatz noch fiir das gegebene
Problem “zuschneiden” - also alle Randbedingungen beriicksichtigen. Die gesuchte Wellen-
funktion soll aulerhalb des Bereiches 0 < x < a verschwinden. Damit die Wellenfunktion auch
stetig in diese Bereiche iibergeht, muss also auch an diesen Punkten selbst die Wellenfunktion
=0 sein:
Yy(0)=0 — Y (0)=A-sin(0)+B-cos(0)=B-1

Dies ist nur zu erfiillen, wenn der Koeffizient B = 0 ist. Das heif3t, den Kosinus-Term konnen
wir aus der Losung schon streichen weil er nicht den Randbedingungen geniigen wiirde.
Auferdem muss gelten:

Y(a)=0 — yY(a)=A-sin(k-a)=0

Da der Sinus immer bei ganzzahligen Vielfachen von 7 verschwindet, muss nun also das k
entsprechend fiir die Losung dieser Gleichung sorgen. Das funktioniert nur, wenn k-a =7 -n
ist. Dabei ist n eine natiirliche Zahl groBer oder gleich 1. Das fiihrt zu

kn=Zn  n=1,2,3,....
a

Nun fehlt fiir die Nutzung der Wahrscheinlichkeitsinterpretation noch die Normierung der
Wellenfunktion. Die ergibt sich aus der Forderung

a

a
1=/|A-sin<£'nx)|2dx=A2-/sin2(£-nx)dx
a a

0 0
_ a2 [)_c _sin(2znx/a) “
B 2 4drtn/a 0
_x ([ﬂ ~ sin(Znna/a)] ~ [0_ sin(0) ) _ 24
2 4dntn/a 4dnn/a 2

\/5
— A =4/-,
a

fiir die die passende Stammfunktion zu sin?(C - x) in einem Tabellenwerk nachgeschlagen
werden kann [36]. Nun setzen wir die passende (also den Randbedingungen geniigende)

Funktion
2 . r
Y(x)=4/— ~s1n(— -nx)
a a

in die Schrodingergleichung 14.7 ein um die korrespondierenden Energien zu finden. Das
fiihrt zu:

(14.10)

_r 14.11
2m 0x? ( )
K2 2 T \2 2
B 2 2N AT =542 - ) 14.12
/2mj7/l’f = ; nx) (a n - ; nx ( )
T \2 #? h?

Ez(_. ) oo -2 E* 14.1
- a " 2m 8ma? " ( )



»
'

x=0 a X

Abbildung 48. Skizze zum Tunneleffekt. Die Eingangsenergie reicht eigentlich nicht aus, um das
Potential zu iiberwinden. Dennoch gibt es eine Aufenthaltswahrscheinlichkeit auch hinter der Barriere.

Die Energie des Teilchens in diesem unendlich hohen Potentialtopf ist also erneut nicht
kontinuierlich, sondern kann nur in gequantelten Zustinden

Energieniveaus im (unendlich hohen) Potentialtopf

h2
8ma?

E,=n>- n*- E* n=1,2,3,...

vorkommen. Dies deckt sich mit den Ergebnissen, wie sie beim Bohrschen Atommodell
erhalten worden sind. Die Wellenfunktionen miissen, geméll den Randbedingungen, also
immer genau zwischen die Barieren passen wie es in Abb. 47 skizziert ist. Mit abnehmender
Wellenlidnge erhoht sich dann entsprechend E = & - ¢/A die Energie. Der niedrigste Zustand
fiir n = 1 wird als Grundzustand bezeichnet.

ABscuNITT 14.2

Tunneleffekt

Fiir das Teilchen im unendlich hohen Potentialtopf haben wir bereits gesehen, wie man die
Schrodingergleichung nutzen kann um Aussagen zu einer Problemstellung zu bekommen.
Jetzt wollen wir einen komplizierteren Fall untersuchen. Die Ausgangssituation ist in Abb. 48
skizziert. Eine Welle (bzw. ein Teilchen) soll mit Wellenldnge A = ZT” auf eine Potentialbarriere
der Breite a und Hohe E treffen. Die Potentialbarriere ist diesmal also endlich und man kann
nicht direkt annehmen, dass die Wellenfunktion dort verschwindet. Um den Tunneleffekt nun
genau zu untersuchen und zu beschreiben, miissen wir wieder entsprechende Losungsansétze
fiir die Schrodingergleichung machen und die geltenden Randbedingungen anwenden. Wir
suchen die Wellenfunktionen fiir die drei Bereiche I, Il und 11T aus Abb. 48. Als Ansitze nutzen
wir wieder einfache Wellenfunktionen - mit einer leichten Ergidnzung. Um maximal flexibel
in der Losung zu sein (die Randbedingungen lassen dann spéter ggf. Terme wegfallen), lassen
wir Losungen der Form A - etkx ¢ B.e %X 74 was auch reflektierte Wellen erlaubt. Denn:
negative k-Werte in der Wellenfunktion bedeuten Ausbreitung entgegengesetzt zu x. Fiir die
drei Bereiche nutzen wir die Ansitze

wl = A . elk[x +B . e—lk,x
lﬂII — C . eik”x +D . e*ik”x
U = A

wobei fiir den Teil III keine Reflektion mehr moglich ist, weil ja keine weitere Barriere folgt.
Zusitzlich kann man folgende sinnvolle Forderungen stellen, welche die Konstanten dann

TUNNELEFFEKT

Abbildung 47. Mogliche Aufenthalts-
wahrscheinlichkeiten im Potentialkas-
ten mit unendlich hohen Winden.
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festlegen:

+ Die Wellenfunktionen 7,7,y miissen an den Ubergangsstellen 0 und a jeweils
den gleichen Wert haben, damit sie nahtlos ineinander iibergehen.

= Y1 (0)=y¢1(0) 5 ¥rr(a) =yr(a)

* An den Ubergangsstellen 0 und a muss der Ubergang stetig sein. Das verbietet also
etwa einen “Knick” als mogliche Fortsetzung.

_ OYni

- Ox

oY1
> Ox
x=0

_ O

(74
- ox

ox

x=0 x=a x=a

Wenn man die Ansétze in die stationdre Schrodingergleichung einsetzt und die Randbedingun-
gen anwendet, erhélt man ein System von 4 Gleichungen fiir die Koeffizienten A, B,C,D,A’.
Um den Tunneleffekt zu beschreiben sind nun nicht alle Losungen dieser Gleichungen notig
— es geniigt, die Amplituden nach dem Durchgang ;7 (x > a) mit der einlaufenden Welle
Y1 (x <0) zu vergleichen. Die sogenannte Transmission 7" berechnet sich dann gemafB

Quantenmechanischer Tunneleffekt

2 P
= A’] z16_E En—E)- ~2q Y0ZE)
i B (Eo-E)-e :

0

Diese Transmissionsrate beschreibt die absolute Wahrscheinlichkeit, dass ein Teilchen
mit der Energie E hinter der Potentialbarriere mit E,, = Eo und Breite a anzutreffen ist.
Dieser Wert ist auch groBer als 0, obwohl die Potentialbarriere hoher als die eigene Energie
ist (Eg— E) > 0. Dies ist aus klassischer Sicht nicht moglich und ein typischer Effekt der
Quantenphysik. Relevant ist der Tunneleffekt beispielsweise beim Alphazerfall. Dabei verldsst
ein Helium-4-Kern (2 Protonen und 2 Neutronen) ein gréferen Atomkern. Der Potentialwall
aus anziehender Kernwechselwirkung und abstofSender Coulomb-Wechselwirkung ist deutlich
hoher als die zur Verfiigung stehende Energieschwankung im Kern. Wenn es den Tunneleffekt
nicht giibe, miisste ein Alphazerfall deutlich seltener stattfinden und auBerdem hétten die freien
Alphateilchen groBere kinetische Energien. Nur mit der Anwendung des Tunneleffektes kann
man die beobachtete Energieverteilung und Zerfallshdufigkeit erkliren.

ABSCHNITT 14.3

Zweidimensionales Kastenpotential

Als eine wichtige Vorstufe zur Beschreibung des Wasserstoffatoms mit der Schrodinger-
gleichung, wollen wir zunichst noch ein zweidimensionales Kastenpotential wie in Abb. 49
untersuchen. Es soll sich analog zum eindimensionalen Fall um ein Potential der Form

0, VO<x<a
Epoi(x,y) =10, VO<y<b
0o, sonst

handeln. Nun muss man einen Losungsansatz fiir die stationire Schrodingergleichung finden.
Vereinfacht wird dies durch die Annahme, dass die gesuchte Losung sich in zwei Faktoren
zerlegen ldsst gemif

Y(x,y)=f(x)-g(y).
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Die Schrodingergleichung Iésst sich dann in zwei voneinander unabhéngige Gleichungen, jede
fiir eine Variable, teilen:

n* 9 f(x)

—EW"‘Epotf(x):Ef(x) (14.14)
n? 9%

5 ai(;))+Epotg(y):Eg(y) (14.15)

Die Losung fiir jede dieser Gleichungen kennen wir bereits aus dem eindimensionalen Fall.
Sie lauten analog zu Gl. 14.10:

f(x)=A-sin(n’;”.x) ne=1,23,... (14.16)

. (NyT
g()’)=B'SIH(T~y) ny=1,23,... (14.17)
— Y(x,y)=A-B s1n( P x) s1n( 3 y) (14.18)

Diese Wellenfunktion muss noch normiert werden, damit man das Betragsquadrat spiter
als Aufenthaltswahrscheinlichkeit interpretieren kann. Aus der Normierungsbedingung ergibt
sich dann

a b a b
f / 0 (ey) Pdvdy = 1 = / £ () f g)Pdy — A-B= =
y=0

Va-b

x=0y=0 x=0

Durch Einsetzen der normierten Wellenfunktion in die stationire SGL kann man nun die
Energieniveaus erhalten. Es ergibt sich

Energieniveaus 2D-Kastenpotential

hzﬂz I’l2 n?’ ) E)
E(nxany)z_zm (—;+ﬁ :Exnx+Eyny

a
Wir sehen also, dass es nun eine Vielzahl von moglichen Kombinationen fiir die Energie-
niveaus gibt. Erstmalig zeigt sich hier auch der Fall, dass man durch verschiedene Kombination
der Quantenzahlen n, und 7, zu identischen Energieniveaus kommen kann, falls beispiels-
weise der Potentialkasten quadratisch ist und damit a = b gilt. Dies ist dann etwa der Fall fiir
die Kombinationen ny = 7,ny = 1 und n, = n, =5, fiir die man jeweils n% +n§ =50 erhilt.

Entartete Zustiinde Energieniveaus, die man durch m verschiedene Kombinationen von
Quantenzahlen erreichen kann, nennt man “m-fach entartet”.

ABscHNITT 14.4

SGL mit kugelsymmetrischem Potential

Bisher wurde die Schrodingergleichung fiir kartesische Koordinaten (x,y, z) betrachtet. Fiir
erste Erkenntnisse zu ein- und zweidimensionalen Problemen war das bereits sehr hilfreich.
Ein Coulombpotential E, = 1/(47e) - Q/r), wie es etwa um den Kern eines Wasserstoffa-
toms besteht, ist aber radialsymmetrisch und kann daher am sinnvollsten mit Kugelkoordinaten
bzw. sphirischen Koordinaten (7,8, ¢) beschrieben werden.

Sy

X

Abbildung 50. Zur Definition der Ku-
gelkoordinaten r, 6, ¢
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Fiir die Vergesslichen: Die Definition der Kugelkoordinaten kann man sich in Abb. 50 noch-
mals vor Augen fiihren. Die Umrechnungsvorschriften lassen sich direkt aus der Zeichnung
erahnen, indem man jeweils die Sinus- und Kosinussitze anwendet. Zusammengefasst:

x=r-sinfcosyp r=x2+y2+22
. . Z
y=r-sinfsing 0 = arccos =~
r
= _ Y
z=r-cosf (@ = arctan =
X

AuBerdem dndern sich die Ausdriicke fiir die Differentiale dx,dy,dz. Was wir bendtigen,
ist beispielsweise der Gradient V, bzw. der Laplaceoperator V2 = A in Kugelkoordinaten:

o1o 1 9
" \dr’r a0’ r-sing dy

"7 29r\" dr) r2-sin@ 96 00  r2.sin?0 0>

In Kugelkoordinaten lautet die stationdre Schrodingergleichung nun also

10,00 1 8 (. oy 1 0% 2m B
23 (r 6r)+ (sm@ae) r2-sin20(9902+h2 (E—Epot(r))y =0

r2-sin6 0

Diese Differentialgleichung sieht nun erstmal recht unangenehm aus. Es ist aber moglich,
ihre Komplexitit deutlich zu reduzieren. Wir hoffen auch diesmal wieder, dass eine mogliche
Losung ¢ (r, 0, ) sich in Faktoren zerteilen 14sst, von denen jeder iiber nur eine Koordinaten-
abhingigkeit verfiigt:

Y (r,0,0) =R(r)-0(6) - ®(p)

Das Einsetzen dieses Ansatzes fiihrt dazu, dass man die Terme etwas umordnen kann. Unser
Ziel fiir die Losung dieser Differentialgleichung nennt sich im Allgemeinen “Trennung der
Variablen™:

sing d ( 2clle) sinf d
—\|r +__

. dO\ 2m .
R dr 5 ® do (sm@—) (E_Epot(r))rzmnze:——T (14.19)

T
Man kann hier also die Gleichung in zwei Seiten aufteilen: Auf der linken Seite gibt es nur
Abhingigkeiten von r und 6, die rechte Seite hidngt nur von ¢ ab. Da unsere gesuchte Losung
¥ natiirlich fiir eine beliebige Wahl der Koordinaten die SGL erfiillen soll, kann jede Seite
fiir sich genommen nur konstant sein. Wir konnen jetzt also die linke und rechte Seite der
Gleichung getrennt voneinander als konstant betrachten. Zunéchst soll auf die rechte Seite
eingegangen werden:

Der konstante Wert beider Seiten der Gleichung soll C; genannt werden. Damit ergibt
sich

Die Losung fiir diese Gleichung ist offensichtlich eine e-Funktion der Form

D=A-HVOY

Diese komplex-wertige Funktion wiederholt ihren Wert nach einer Phasenverschiebung von
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n-2nx. Wir fordern, dass sich an der physikalischen Aussage dadurch nichts dndern darf:

D(p) =D(p+2m-n) (14.20)
A-eHCTP = | oHVETP osiVCi2mn (14.21)
1 = e*iVCi27n (14.22)

Die letzte Gleichung kann nur dauerhaft erfiillt sein, wenn auch vC; immer eine ganze Zahl
m € Z ist. Die Funktion ®(¢) nimmt also die Form

D(p) = A-e"¥

an. Durch die Normierungsbedingung fozﬂ dp|®|? = 1 kann man den Parameter A festlegen
und hat die Funktion

1 .
D) = =

gefunden.

Nun wollen wir die linke Seite von Gl. 14.19 betrachten. Es ist auch hier wieder moglich,

die einzelnen Variablen zu separieren. Das ergibt dann die beiden Teile 6 4 Hier wurde Cj = m? = — é 327(12)
1d{,dR) 2 1 d 4e 2 eingesetzt.
2 m o . m
R\ @ T T E b =—gae g e |t o7, =€ 14.23
Rdr (V dr ) e ( pot) Osind do (Sm do ) e 2 ( )

die wiederum nur von einer Variable abhingen und also konstant C, sein miissen, damit die

Losung universell fiir alle gewéhlten Koordinaten gilt. Fiir die rechte Seite dieser Gleichung
kennt man aus der Mathematik die Losung unter dem Namen “Legendre-Polynome” P}".
Daraus kann man die Konstante C, = [(/ + 1) bestimmen, mit einer ganzen Zahl (spéter:
Quantenzahl) | € N. Auflerdem muss —/ < m <[ gelten. Weil wir spiter noch oft solche
Quantenzahlen betrachten werden, sei hier betont: Es handelt sich um eine mathematische
Notwendigkeit fiir die Losung der Differentialgleichung. Es gibt also keine (offensichtliche)
physikalische Notwendigkeit fiir die Forderungen an / und m.

Die Verbindung der Funktion ®(¢) und P} nennt man Kugelflichenfunktionen

Kugelflachenfunktionen

Y"(0,0) =®(¢)-P'(cos) —-l<m<l,leN;meZ

Diese Funktionen kann man fiir die entsprechenden / und m Werte mitsamt Normierung

gemal
1 [20+1 (I-m)! (=)™ d"*m(cos? 9 —1)*
Ylm(09¢): + ( m) ( ) (l—COSZﬁ)m/z (COS )
271 2 (I+m)! [-20 (dcos)l+m

berechnen [36]. Da wir in der Regel nur kleine Zahlenwerte fiir / und m betrachten, sind in
Tab. 1 die Kugelflichenfunktionen fiir / < 2 und |m| < 2 angegeben. Diese Funktionen sind
immer dann die Losungen fiir den Winkelanteil der Wellenfunktion ®(8) - ®(¢), wenn das
Potential radialsymmetrisch E,o = Epo(r) ist. Dies wird auch der Fall sein, wenn wir nun
konkret als radialsymmetrisches Potential das Coulombpotential wihlen und die Schrodin-
gergleichung fiir das Wasserstoffatom 16sen.
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[=0 [=1 [=2
m=-2 % sin® Fe~ ¢
m=—1 Vs sinde ¥ 2> sind cos e ¥

_ 1 3 [ s 29
m=0 s iz cos®? 2= (3cos* ¥ - 1)
m=1 —\J=sindel? | — /L sind cosPel?

87 8

_ [15 2 g 2ip

m=2 755 Sin de

Tabelle 1. Die Kugelfiachenfunktionen Y, l’"(@,(p) fir/ <2und |m| <.

ABscHNITT 15

Das Wasserstoffatom

Das Wasserstoffatom mit Formelzeichen H besteht aus einem Proton und einem Elektron. Es ist
damit das leichteste und auch unkomplizierteste Atom, welches uns fiir die Quantenphysik zur
Verfiigung steht. Das negativ geladene Elektron befindet sich dabei im Coulomb-Potential des
positiv geladenen Kerns. Wir haben es also erneut mit einem Elektron in einem Potentialtopf
zu tun — nur ist diesmal die Form des Potentials kugelsymmetrisch gemiB V (r) = —e?/ (4nepr).

ABscHNITT 15.1

Schrodingergleichung mit Coulomb-Potential

Fiir die Wellenfunktion des Wasserstoffatoms nehmen wir zunéchst vereinfachend an, dass der
Atomkern ortsfest ist. Fiir die Wellenfunktion muss dann wieder die Schrodingergleichung

—1? Z-e?
__Ar\P(r’ea‘P)_ \P(r,‘gaéa):E\P(V,@,‘P)
2m dreyr
gelten. Weil es sich um ein radialsymmetrisches Potential handelt, konnen wir die Kugelfla-
chenfunktionen als Losung fiir die Winkelanteile ;" in W(r,9,¢) = R(r) - Y" (3, ¢) direkt
iibernehmen. Es bleibt nun noch die Lésung fiir den Radialteil R (r) und das Coulomb-Potential
zu finden.
1d{,dR
—— 2=
R dr dr

Die Losung dieser sogenannten Laguerre-Differentialgleichung wird hier ausgelassen. Gesagt
sei, dass die gesuchten Funktionen R(r) die “verallgemeinerten Laguerre-Polynome” Ry, ;(r)
sind, die ebenfalls durch eine Rekursionsformel berechnet werden konnen [36]. Die Losung
ist durch eine natiirliche Zahl n und / < n — 1 bestimmt. Einige Funktionen fiir den Radialteil
sind in Tab.2 dargestellt. Mit den Laguerre Polynomen ergibt sich durch Einsetzen in die
Schrodingergleichung die Energie

2m
)+?r2(E—Ep0t) =Cy=1(I+1)

mZzZ2e* L 22
SEghzn2

n= —Ry—2 lSn—l
n

fiir die Zustinde mit der Hauptquantenzahl n. Wir werden sehen, dass diese zunéchst rein
mathematisch begriindete Forderung auch fiir die Eigenschaften des Wasserstoffatoms wichtig



ExkURs: OPERATOREN IN DER QUANTENMECHANIK

n |l R, (r)
1|0 4 erlao
0
210 2178.(1_2%0)64/(200)

[(1_ . r . o-r/Qag)

2 1 72a8 aop € !
[4 _(1_ 20 4 202 ) e-r/Gag)
310 Gag)? (1 3a0+27a3)er ao

301 i.(L_ﬁr_z)e—r/oao)
0

ao ao

[ 8 . ri.-r/(3ao)
312 3645(3a)3 age He

Tabelle 2. Die Radialteile R,;; (r) der Wasserstoff-Wellenfunktion fiirn <3 und / <n—1.

sein wird. Die gefundenen Energieniveaus stimmen iibrigens exakt mit denen aus dem Bohr-
schen Atommodell liberein. AuBBerdem hiingt die Energie offenbar nur von der Quantenzahl n
und nicht von [ oder m ab. Hier liegt also wie im Fall des zweidimensionalen Kastenpotentials
eine Entartung vor: Es gibt mehrere Wellenfunktionen fiir das Elektron (z.B. verschiedene /)
mit identischer Energie.

Wenn nun die Wellenfunktion fiir das Elektron des Wasserstoffatoms bekannt ist, kann
man die Aufenthaltsorte des Elektrons untersuchen. Gemif3 der Wahrscheinlichkeitsinterpre-
tation suchen wir also eine Darstellung von |¥(r,, ¢)|?. Fiir einige Quantenzahlen sind die
entstehenden Verteilungen, sogenannte Orbitale, in Abb. 51 gezeigt. Es ist jeweils die farb-
codierte Wahrscheinlichkeitsdichte (gelber = wahrscheinlicher) in einem Querschnitt gezeigt.
Wenn man sich die Querschnitte fiir steigende Hauptquantenzahlen n bei / = 0 ansieht, erkennt
man den zunehmenden Abstand des Elektrons vom Zentrum an den gro3er werdenden gelben
Ringen. Dies entspricht der bereits bekannten Zunahme der Bohrschen Radien bei hoheren
Hauptquantenzahlen. Die Orbitalformen fiir / # 0 werden zunehmend kompliziert und zeigen
eine deutliche Winkelabhingigkeit durch den Einfluss der Kugelflichenfunktionen ¥;" (¢, ¢).

ABSCHNITT 15.2

Exkurs: Operatoren in der Quantenmechanik

Um in der Quantenmechanik einen Zustand aus einer Wellenfunktion zu bestimmen (also
quasi eine Messung), nutzt man sogenannte Operatoren. Die Wirkung eines Operators auf eine
Wellenfunktion entspricht mathematisch einer Messung. Um die Operatoren einzufiihren, ist
es zweckmiBig zunidchst die Momente einer Zufallsvariable zu veranschaulichen. Unbewusst
ist das schon fiir die Schwerpunktberechnung oder sogar fiir das Bilden eines Mittelwertes
bereits bekannt. Allgemein definiert ist das k-te Moment einer Verteilung f(x) durch

k-tes Moment einer Verteilung f(x)
myg = /xkf(x)dx

Um diese Definition etwas zu verinnerlichen, hilft es vielleicht sich die Berechnungsvor-
schrift fiir den Massenschwerpunkt eines starren Korpers anzuschauen. Man Berechnet den
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47 Hinweis: Die Gesamtmasse ist

das 0-te Moment.
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Abbildung 51. |¥|? fiir einige Quantenzahlen n und /. Der Betrag der Wahrscheinlichkeitsdichte ist
farbcodiert entsprechend der Farbleiste rechts. Die Form der Winkelverteilung nennt man Orbital. Fiir
steigende n nimmt der wahrscheinlichste Aufenthaltsradius zu. Mit steigenden / wird die allgemeine
Form zunehmend komplex. (berechnet und dargestellt mit MATLAB [43])

Schwerpunkt durch
f x-p(x)dx
- f p(x)dx

Uber dem Bruchstrich ist sofort das erste Moment wiederzuerkennen. Unter dem Bruchstrich
ergibt das Integral die Gesamtmasse*’ und ist somit eine Normierung fiir das erste Mo-
ment. Das arithmetische Mittel einer Reihe von N Schulnoten x; kann man bekanntermaf3en

berechnen durch > .
o ZiXi 1 )
A TN

Wie passt diese Berechnung mit dem eben vorgestellten ersten Moment zusammen? Die
Verteilung der Noten ist jeweils konstant — keine Note wird bevorzugt vergeben. Damit erhalt
jede Schulnote die “Wahrscheinlichkeit” von f(x;) = const. = 1/6. Das (normierte) erste
Moment dieser Verteilung ist dann

Xs

Tixif(a)  gidi Nxi
Si1/6 Ly - N

=X

und damit identisch zum weithin bekannten arithmetischen Mittel einer gleichverteilten Reihe
von Zahlen. Auch das zweite Moment ist bereits indirekt bekannt: Fiir die Gauss-Verteilung
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ist das zweite Moment gleich der Varianz:

00

1 52
/x2~ 5 202 dx = o?
2no

—00

Das erste Moment dieser Gaussverteilung wire beispielsweise 0, was auch deren Mittelwert
entspricht. So wie durch die Anwendung dieser Momente, kann man auch in der Quantenme-
chanik durch gewisse Operator-Funktionen “Messungen” an Wellenfunktionen/Verteilungen
vornehmen. Ganz allgemein soll nun solch ein Operator £ von der Form

(F) = / v Fydv

geschrieben werden. Wir erkennen auch hier die Vorschrift zur Berechnung eines Momentes
wieder: Die Verteilungsfunktion f(x) istin diesem Falle die Wahrscheinlichkeitsdichte y* - =
|¢/|*> und der Operator ist gewissermaBen die Variable, die es zu untersuchen gilt. Das F
wird Observable genannt, mit den eckigen Klammern driickt man den Erwartungswert aus.
Welche Operatoren sind nun zur Einfithrung ins Thema geeignet? Zunichst wollen wir den
Ortsoperator X einfiihren. Dieser ist denkbar einfach: Die Variable x selbst.

Ortsoperator X

()?):i:/z//*-x-z//dv

AufBerdem ist es niitzlich, wenn man bei einem quantenmechanischen Teilchen den Impuls
bestimmen kann. Dies geschieht mit dem Impulsoperator p:

Impulsoperator py
N e [ 0
(Px) =DPx = / I/ (_lhﬁ_) ydv
X

Um sich zu vergewissern, dass der Ortsoperator auch wirklich den Aufenthaltsort eines
Teilchens ermittelt, konnen wir dies am Beispiel des Elektrons im Potentialtopf testen. Die
Wellenfunktion fiir einen unendlich hohen Potentialtopf mit Lénge L lautete

Y(x) = \/g-sin(% ~x)

Jetzt konnen wir mit dem Ortsoperator ermitteln, an welchem Ort das Teilchen bei einer
Messung am wahrscheinlichsten zu finden ist:

L
<x>=/lﬁ*xlﬁdx=%/x-sinz(%'x)dx
0

0

Nun muss die passende Stammfunktion zu x - sin® ax gefunden werden und die Integrations-
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grenzen werden eingesetzt:

nxy . (sin( 222 x ) - 22 x ) +cos( ZZEx "
2 L L L L
=7 8n2n2/L?
| 0
(x) = 2 _”‘T"L-(O—%L)n ~ _0~(0—%0)+1
L 8n2n?/L? 8nn?/L?
2[( . ,-2n’n%+1 L?
= —||-L +
&) L ( 8n2n? ) (8n2ﬂ2
) = 2 [ LPn*a* L . L2 ] L
YV EL | 8n2x2  8n2x?  8nlx%| 2

Es ergibt sich also, dass der Erwartungswert des Ortsoperators immer genau in der Mitte des
Potentialtopfes liegt — unabhéngig von der Quantenzahl n. Wenn man sich die skizzierten Ver-
laufe der Wellenfunktionen (Abb. 47) in Erinnerung ruft, erkennt man aulerdem gut dass der
Erwartungswert des Ortsoperators nicht zwingend identisch ist mit der grofiten Aufenthalts-
wahrscheinlichkeit. Bei n = 2 ist der Erwartungswert/Mittelwert des Aufenthaltsortes wieder
in der Mitte bei x = L/2, die Aufenthaltswahrscheinlichkeit ist dort jedoch | (L/2)|> = 0.

Allgemein ist der Messprozess in der Quantenphysik iiber sogenannte Eigenwerte be-
stimmt. Eigenwerte sind die Werte f,,, die durch Anwendung eines Operators £ auf die
Wellenfunktion entstehen gemif3

Fwn =fn¢n-

Das heifit, die Anwendung eines Operators auf eine Wellenfunktion erzeugt wieder dieselbe
Wellenfunktion und eine zusitzliche Konstante. Diese Konstante ist der “Messwert”. Das
bekannteste Beispiel hierfiir ist der sogenannte Hamilton-Operator, der die Energieniveaus
als Eigenwerte erzeugt:
A2
A P
Hyy, = (ZL +V(x)) Un=Enfn
m
Wenn man also eine Wellenfunktion fiir das Wasserstoffatom mit Quantenzahlen n =1,/ =
0,m = 0 aufstellt, so erhilt man durch die Anwendung des Hamiltonoperators (darin steckt
auch der Impulsoperator py) das entsprechende Energieniveau fiir n = 1 als Eigenwert.

ABscHNITT 15.3

Wasserstoffatom im Magnetfeld

Als Vorbereitung fiir das Verhalten eines Wasserstoff-Atoms im Magnetfeld ist es zweckmaBig,
den Begriff eines magnetischen Momentes zu wiederholen. Wir betrachten dafiir nun das
magnetische (Dipol-)Moment ji. Das magnetische Moment ist eine vektorielle Grofe — besitzt
also eine Richtung und einen Betrag. Man muss daher bei der Berechnung von [ immer
die Richtung der beteiligten Grolen beachten. Wir nehmen nun zunichst an, dass dieses
magnetische Moment durch ein sich im Kreis bewegendes Proton wie in Abb. 52 erzeugt wird.
Dann berechnet sich i nach i = A - I. Wenn sich nun ein solches magnetisches Moment im
dulBeren Magnetfeld befindet, wirkt darauf ein Drehmoment M= X B. Dieses Drehmoment
ist so gerichtet, dass es den Dipol in Richtung der Magnetfeldlinien ausrichten mochte. Dies ist
der Fall, da dadurch die potentielle Energie dieser Anordnung minimiert wird. Die potentielle
Energie E},o betriigt hierbei namlich

Epot = —ji- B =—|fil|B| - cos ()



und wird minimal bei ¢ = 0°. Man spricht in Bezug auf diese potentielle Energie auch von einer
“Kopplung von ji an B”. Diese Kopplung von magnetischen Momenten an ein Magnetfeld
werden wir im Verlauf dieses Abschnittes noch dfter beschreiben.

Wir werden nun den Fall untersuchen, dass sich das Wasserstoff-Atom mitsamt seinem
Elektron in einem dufleren Magnetfeld B aufhilt. Bisher haben wir gesehen, dass die Ener-
gieniveaus in der Quantenzahl / entartet sind. Diese Entartung wird sich in der folgenden Be-
trachtung nun auflésen. Wir betrachten dafiir das Elektron in einem semiklassischen Modell:
Es fiihrt eine Kreisbewegung um den Kern aus (klassisch), besitzt aber nur diskrete Energie-
zustidnde (QM). Damit ist auch der Drehimpuls dieses Elektrons gequantelt. Das magnetische
Moment kann man nun gemiR Abb. 52 durch i =i- A beschreiben. Der Strom [ soll nun durch

ein mit bekannter Frequenz umlaufendes Elektron realisiert werden: [ = —e - f = —e - 5% Fiir
das magnetische Moment ergibt sich nun also betragsmifig
lil=1-A w o _ell (15.1)
=l -A=—-¢-— r'=- .
K 2 2m,

mit dem Drehimpuls |7| = |FXm, - 0| =r-mewr. Damit wollen wir nun den Drehimpuls des
Wasserstoff-Elektrons bestimmen.

ABSCHNITT 15.4

Quantenmechanischer Drehimpuls

In Abschnitt 15.2 haben wir bereits den Orts- und den Impulsoperator kennengelernt. Um nun
den Drehimpulsoperator zu bestimmen, konnen wir den Impulsoperator (p = —iAaV) direkt wie
folgt nutzen:

[=Fxp—l=fxp=-ih(FxV)

Damit kann man den Operator komponentenweise bestimmen:

0
Iy =—il|y——z—
l (yaz ay)
A 0 0
ly =—in (za—x —xa—z)
A 0 0
lp=—ih{x——-y— 15.2
= ih(x5- ) (152)

Der Drehimpulsoperator wurde hier in kartesischen Koordinaten formuliert. Die Wellenfunk-
tion fiir das Wasserstoffelektron wurde jedoch in Kugelkoordinaten beschrieben. Um damit
kompatibel zu sein, muss also auch der Gradient V in Kugelkoordinaten formuliert werden,
was leider die Gleichungen fiir den Drehimpulsoperator sehr kompliziert werden ldsst. Als
einzigen Punkt mochte ich hier auf die z-Komponente hinweisen: In Kugelkoordinaten ergibt
sich fiir Gl. 15.2 die kompakte Formulierung

Wenn wir dies auf die Wasserstoffwellenfunktion (r,6,¢) = R(r) - ©(6) - ™% anwenden,
erhalten wir als Eigenwert fiir die z-Komponente des Drehimpulses

QUANTENMECHANISCHER DREHIMPULS

H,
A
e/p
T8
\

Abbildung 52. Dipolmoment eines
Elektrons auf einer Kreisbahn um die
Fliche A.
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Abbildung 53. Zur Herleitung des

Zeemann-Effektes.
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QM-Drehimpuls, z-Komponente

Ly = _ihil// =—ihR(r)-BO(0) - ieim‘/’ = mhy
dp dy

—l; =m-h

Die bisher recht mysteriose Quantenzahl m ist also verantwortlich fiir die Quantelung
der z-Komponente des Drehimpulses, wie dies schematisch in Abb. 53 dargestellt ist. Der
Betrag des kompletten Drehimpulses (also die Linge der blauen Vektorpfeile in Abb. 53)
ergibt sich aus [% = l?c +l§ + lz Die Quantelung der /,-Komponente schrinkt dann wie in
der Abbildung gezeigt die moglichen Orientierungen bzw. Winkel ein. Die Formulierung
fiir den Drehimpulsbetrag erhilt man durch Koeffizientenvergleich von [? = l?c + i§ + 12 (in
Kugelkoordinaten) mit der Losung der Schrodingergleichung in GI. 14.23. Der konstante
Wert ©(6) = C> = [(I+1) wird dann mit dem /2 in Kugelkoordinaten verglichen (bis auf /2
identisch!) und man findet das Ergebnis. Es ergibt sich

QM-Drehimpuls, Betrag

Py =11+ DRy (15.3)
S 112 = 11+ )R> (15.4)

Wir haben also fiir das Elektron des Wasserstoffes sowohl den Drehimpulsbetrag als auch
den Wert [, der z-Komponente identifiziert. Die iibrigen Komponenten /, und /, ergeben
Ausdriicke, die Kombinationen der Quantenzahlen / und m sind. Wir werden sehen, dass es
also am einfachsten ist, alle “Phinomene”, z.B. Magnetfelder, in z-Richtung zu betrachten.
Dies macht die Gleichungen dann oft sehr viel einfacher zu behandeln.

Hinweis Man darf nicht den Drehimpulsvektor 7 mit dem Drehimpulsoperator [ oder der
Drehimpulsquantenzahl / verwechseln! Die gleichen Formelzeichen sind etwas irrefiihrend,
entsprechen aber der allgemein gebrdauchlichen Form.

ABSCHNITT 15.5

Kopplung von Bahndrehimpuls und Magnetfeld

Den Betrag des Drehimpulses fiir das Elektron kennen wir nun und konnen ihn also entspre-
chend in GI. 15.1 einsetzen und erhalten:

Bahndrehimpuls des Elektrons

il = I+ 1)l = ug I+ 1) (15.5)

2m

mit ug = 2;’1 als sogenanntem Bohrschem Magnetron. Um zu sehen, welche potentielle

Energie in diesem magnetischen Moment in einem dufleren Magnetfeld steckt, untersuchen wir
die “Kopplung” von /i an B. Die potentielle Energie berechnet sich dann durch Epo = —fi - B.

Wenn wir nun einfacherweise das Magnetfeld in z-Richtung ausrichten, also B= B, wihlen,
brauchen wir wegen fi- B = [, - B, nur die z-Komponente des gequantelten Drehimpulses fiir
die Kopplung zu beriicksichtigen. Es ergibt sich also

L o> el
Epot:_ﬂ'B: -

-B;.



ABSORPTION UND EMISSION VON STRAHLUNG

Die z-Komponente des Bahndrehimpulses ist durch die bereits bekannte Quantenzahl m durch
I, = m -1 beschrieben. Damit kann nun die potentielle Energie der Kopplung von Drehimpuls
und externem magnetischen Feld durch

Zeemann-Effekt

Epot=—fi-B=—— B, =mup-B; (15.6)

berechnet werden. Aufgrund der Verwendung in diesem Zusammenhang mit dem Ma-
gnetfeld wird m; auch magnetische Quantenzahl genannt. Die Energieniveaus sind bei einem

Magnetfeld B, # 0 also in (—m...m) = 2/ + 1-verschiedene Energieniveaus aufgeteilt wie B=0 B#0
in Abb. 54 gezeigt ist. Die Abstinde zwischen den Niveaus sind also jeweils konstant und m=+2
betragen AE = ug - B,. Dieser auch “normale Zeemann-Effekt” genannte Effekt hebt also die
Entartung in / auf, sofern ein dufleres Magnetfeld vorhanden ist. Dann spaltet ndmlich jedes m=+1
Energieniveau E, abhingig von der Quantenzahl / in 2/ + 1 Niveaus auf. Wir werden spi-
ter noch andere Phinomene kennenlernen, die weitere solcher Energieniveauaufspaltungen =2 m=0
begriinden werden. <

O e
AsschNITT 15.6 m=-2

Absorption und Emission von Strahlung

Abbildung 54. Energieaufspaltung
Der wesentliche Aspekt bei der Absorption und Emission von Strahlung ist der Drehimpuls ~ durch den einfachen Zeemann-Effekt.
eines Photons. Ohne Herleitung wird der Drehimpuls als

Drehimpuls des Photons
|lpn| =1 15.7)

definiert. Fiir die quantenmechanischen Drehimpulse gilt bei Sté8en wie in der Mechanik der
Drehimpulserhaltungssatz

lAtom,vorher = lAtom,nachher + lPh- (158)

Da der Drehimpuls des Photons 7 betrédgt, muss sich bei einer Absorption oder Emission der
Drehimpuls des StoBpartners auch um diesen Betrag dndern. Wir haben es hier allerdings mit
einer Addition von Vektoren zu tun, also gibt es (abhédngig von /) mehrere Moglichkeiten den
Drehimpulserhaltungssatz zu befolgen. Dies ist in Abb. 55 fiir das Beispiel [ = 2 gezeigt. Dort
wird der Erhaltungssatz gezeigt fiir:

. Tvorhcr (blauer Pfeil) hat den Betrag +/3(3 + 1)7% und die z-Komponente [, = 37.

¢ Dieser Vektor kann auch als die Summe von Tnachher mit Betrag +/2(2+1)A und z-
Komponente [, = 2/i UND dem Photon mit |7ph| = 1% dargestellt werden.

Durch Uberlegungen zu dieser Art von vektorieller Addition kann man nun die sogenann-
ten Auswahlregeln herleiten. Immer, wenn die Drehimpulshaltung gelten soll und ein Photon
am StoBprozess beteiligt ist, miissen die folgenden Auswahlregeln gelten:

Auswahlregeln fiir Emission und Absorbtion eines Photons
Al=+1 Am;==1,0 (15.9)
Demnach muss sich also zwingend die Drehimpulsquantenzahl dndern, bei der magneti-

schen Quantenzahl gibt es dann mehrere Optionen. Welche dieser Optionen von m; realisiert
wird, ist mit der Polarisation des Lichtes verkniipft. Dabei gilt entsprechend:
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=3, m=3 =2, m=2
A A
m:+3__ ..................... m:+3__ ....................
m=+21 Ip=12nt A=t Am=1 oL ) !
m=+1 A 70 m=+1 A IIF = 61
. l=2n

Abbildung 55. Moglichkeiten der vektoriellen Addition von Drehimpulsen. Zur Herleitung der Aus-
wahlregeln bei Emission und Absorption von Strahlung.

Am;=+1 — o (rechts-zirkular polarisiert)
Am;=0 — n (linear polarisiert)
Am;=-1 — o~ (links-zirkular polarisiert)

Man kann also durch Analyse der Lichtpolarisation auf die Natur des Ubergangs Riickschliisse

ziehen!

ABscHNITT 15.7

Spin des Elektrons

Wir haben im letzten Abschnitt gelernt, dass ein dufleres Magnetfeld Einfluss auf die Be-
wegung des Elektrons um den Atomkern hat. Es gibt neue Wechselwirkungen zwischen
Magnetfeld und Elektrondrehimpuls, die zu neuen Energieniveaus fiithren. Jetzt werden wir
ein Experiment kennenlernen, dass noch eine weitere — ganz dhnliche — Eigenschaft des Was-
serstoffatoms aufdeckt. Das Experiment von Otto Stern und Walter Gerlach (Stern-Gerlach-
Experiment) wurde 1921 durchgefiihrt. Dabei wird die Ablenkung von Silberatomen in einem
inhomogenen Magnetfeld untersucht. In Abb. 56 ist der Versuch schematisch gezeigt. Durch
die individuell geformten Magnetpole wird im Strahlenkanal ein inhomogenes Magnetfeld
erzeugt. Die freien Silberatome des Strahls werden zunichst durch Verdampfen in einem ent-
sprechenden Ofen erzeugt und durch eine Blende zu einem Strahl kollimiert. Die Silberatome
sind elektrisch neutral, konnen also nicht durch die Lorentzkraft oder eine elektrische Feldkraft
abgelenkt werden. Man wiirde erwarten, dass der Strahl von Silberatomen das inhomogene
Magnetfeld einfach durchfliegt und dabei am Schirmende einen statistisch verbreiterten (die
Fokussierung ist ja nicht perfekt) Bereich mit hochster Intensitét in der Mitte zeigt. Was sich
jedoch im Experiment zeigt, ist die in Abb. 56 rechts angedeutete Aufspaltung des Strahls. Es
gibt zwei voneinander getrennte Bereiche in denen die Silberatome auftreffen. Es muss also
irgendeine Wechselwirkung des inhomogenen Magnetfeldes mit einer (noch nicht bekannten)
Eigenschaft des Silberatoms geben. Wie gesagt, das Silberatom ist elektrisch neutral und
der Bahndrehimpuls der Elektronen seiner Hiille ist Tges = 0. Es gibt also kein magnetisches
Moment der Elektronen. Es muss noch irgendein (neues) magnetisches Moment geben, dass
mit dem inhomogenen Magnetfeld wechselwirkt.

1925 haben Goudsmit und Uhlenbeck eine Hypothese zur Erkldarung des Stern-Gerlach
Versuches formuliert. Demnach solle das Elektron neben seinem Bahndrehimpuls auf dem
semi-klassischen Weg um den Atomkern auch noch einen Eigendrehimpuls besitzen. Klas-
sisch wiirde das bedeuten, dass das Elektron sich neben seiner Bahnbewegung auch noch
um sich selbst dreht. Dieser Eigendrehimpuls des Elektrons wird Spin § genannt. Nach der
Spinhypothese wiirde dieser Spin zu einem magnetischen Moment fiihren und konnte die
Aufspaltung des Silberstrahles erkléren.
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Abbildung 56. Schematischer Aufbau des Stern-Gerlach Versuches. (links) Ein Strahl aus neutralen
Silberatomen durchfliegt ein inhomogenes Magnetfeld. (rechts) Die Silberatome werden vom Magnetfeld
nach links und rechts abgelenkt, obwohl sie keinen Bahndrehimpuls haben (I = 0). Die beobachtete
Verteilung der Silberatome auf dem Schirm Nag (x) ist als blaue Kurve skizziert.

Wir wollen diese Hypothese nun weiterverfolgen und versuchen, das Stern-Gerlach Expe-
riment zu erkliren. Der postulierte Eigendrehimpuls wiirde in der SGL zu genau den gleichen
Drehimpulseigenschaften wie der Bahndrehimpuls fiihren. Ein hypothetischer Spin § hitte
also die Eigenschaften |s| = v/s(s+1)%, s, = m, - i mit s < mg < s mit der Spinquantenzahl s
und der magnetischen Spinquantenzahl m. Die Herleitung der potentiellen Energie durch die
Kopplung von Spin und Magnetfeld erfolgt genauso wie fiir den Zeemann-Effekt. Die poten-
tielle Energie fiir die Kopplung ist dann Epo = —pt - B. Die daraus resultierende ablenkende

Kraft F,, wire

4B
Fapl. = —VEpy = usa—;. (15.10)

Im Experiment mit Silberatomen kann man genau zwei Aufspaltungen beobachten. Es gibt
also offenbar nur zwei verschiedene Zustinde fiir die magnetische Spinquantenzahl m;. Aus
s <mg < sund Amg = +1 folgt die einzig mogliche Losung s = % und mg = i%. Damit kdnnen
wir also den Betrag des Elektronenspins konkret benennen:

Elektronenspin
. 1
Spinquantenzahl s = 3 (15.11)
3
5] = £h (15.12)
2
1
Sz =i§-h (15.13)
s<mg<s (15.14)

Aus der Vermessung der Peaks fiir den Stern-Gerlach-Versuch kann man nach Glei-
chung 15.10 auch auf das magnetische Moment fiir den Spin schlussfolgern. Wihrend das
magnetische Moment des Bahndrehimpulses durch g; = —% yBT gegeben war, findet man nun
iberraschenderweise fiir den Spin das doppelte Verhiltnis von magnetischem Moment und

mechanischem Drehimpuls:

1
_2,:—2-— 5
M, h'uBS

Dies wird auch als Finstein-de-Haas-Effekt bezeichnet. Der Faktor 2 (genauer: 2.0023) wird
auch als Landé-Faktor g, bezeichnet und kann auch theoretisch berechnet werden. Aktuelle
Hochprizissionsexperimente suchen nach einer Abweichung des errechneten Wertes von
gs — 2, um ggf. die Grenzen der Quantenmechanik auszuloten.

Als letzten Schritt muss nun die bisherige Wellenfunktion des Wasserstoffatoms so ange-
passt werden, dass auch die neue Spinquantenzahl beriicksichtigt wird. Es muss also moglich
sein, durch Anwendung eines Spin-Operators §, als Eigenwerte die Spinquantenzahl m des
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aktuellen Zustandes zu erhalten. Dies wird realisiert durch das Hinzufiigen eines weiteren
Faktors zur Wellenfunktion nach der Form

wn,m,l,s = Rn,lYme
1

Die Funktionen X fiir den Modus “Spin = +1/2” und “Spin = —1/2” werden nun durch einen
Vektor dargestellt. Die Spinfunktion nimmt dabei die Werte

5 (1
XT:z(o)
h (0
Xlzz(l)

an. Dies sollen nun die Eigenwerte bei Anwendung des Spinoperators § sein. Dieses Verhalten
kann man erreichen, wenn der Operator die Form der folgenden Matrizen besitzt:

. _h(01
S* =501
. _h(0-i
Sy =31 o
. _h(10
52 = 510 -1

Dies soll nun an einem Beispiel getestet werden. Wir nehmen an, dass die Wellenfunktion mit
“Spin-Up” vorliegt und wenden den Operator an.

AXT_@IO (N _n 1+0_+§1

S22 1= 310 -1) (o) T210+0) 72 {0

Der Operator, der den “Up” bzw. “Down” Status des Spins ermittelt, hat also erfolgreich den
Zustand “Up” ermittelt.

ABscHNITT 15.8

Spin-Bahn Kopplung

Bisher haben wir betrachtet, dass sich das Elektron (mit magnetischem Moment) auf einer
Kreisbahn in einem dufleren Magnetfeld befindet. Jetzt versetzen wir uns mal in die Lage des
Elektrons: Es sieht fiir uns nun so aus, als wenn wir uns in Ruhe befinden und sich das Proton
im Kreis um uns herum bewegt. Dieses Proton auf einer Kreisbahn um uns erzeugt natiirlich
ein Magnetfeld gemifl dem Gesetz von Biot-Savart:

= _ MoZe
B =
! 473

(5x7)

Nachdem nun die Inertialsysteme transformiert und gewisse Kreiselelemente beriicksichtig
wurden (Stichwort: Thomas-Prézession) betrdgt das so erzeugte Magnetfeld den Wert

. Ze -
B, = Ho%€

1= .
8nr3m,

Man spricht nun von Spin-Bahn-Kopplung, wenn das magnetische Moment des Elektronen-
spins ji; und das lokale Magnetfeld B; der Proton-Bahnbewegung gekoppelt werden gemif

R 1 pwoZe* | -
AE; s =—ls-B; = gs/lBﬁ

-1. 15.15
8m2r3 ( )



LAMB-SHIFT UND RELATIVISTISCHE KORREKTUR

Wie aber soll das Skalarprodukt 5 - T berechnet werden? Es ist hilfreich, statt dem Produkt
zunichst die Summe der beiden Vektoren zu berechnen. Diese Summe nennt man Gesamtdre-
himpuls fmit allen iiblichen Eigenschaften von quantenmechanischen Drehimpulsen. Dabei
gibt es nun also auch eine Gesamtdrehimpulsquantenzahl j usw. Durch diesen “Trick” kdnnen
wir nun das gesuchte Skalarprodukt {iber einen Umweg berechnen:

J=1+3
2= Pyste2l-s

> 1
5= 5 (7 -r=)

“l
1l

> h2
-5 = ?(j(j+l)—l(l+l)—s(s+1))
Damit wird Gl. 15.15 zu
L = 1 poZe* w> . .
AE;s =~y By = gopn s (j(j+1) ~ 11+ 1) = s(s+1)).
h8rmir3 2

Der Quantenmechanische Erwartungswert fiir diese Energie 14sst sich berechnen durch

1 uoZe? v?> . | 1
AEp = goppy oo (j(+1) (I + D) = s(s+1) < = > (15.16)
/] 8rmz 2 r
Z2a?
AEj, = -En— 20— (j(j+1)=I(I+1) = s(s+1)) (15.17)

“on- 11+ 1)1+ 1)
mit der Feinstrukturkonstanten o = £ ‘Z;';z & % Welche Energieniveaus sind hier nun mog-
lich? Die Drehimpulsquantenzahl [ ist fiir einen bestimmten Zustand gegeben, die Spinquan-
tenzahl betrdgt immer s = 1/2. Allerdings gibt es nun zwei Moglichkeiten den Gesamtdrehim-
puls aus 7 und § zu bilden: Der Spin kann positiv oder negativ ausgerichtet sein. Es ergeben
sich die Gesamtdrehimpulsquantenzahlen j =/+1/2 und j =/ —1/2. Die Energieniveaus
E,; sind also aufgespalten in die Niveaus E,, ; s = E, ; = AE; ;. Diese Aufspaltung, genannt
Feinstruktur, ist nur bei sehr genauen Messungen erkennbar. Nach Einsetzen aller Konstanten
ergibt sich

Feinstrukturaufspaltung
2

AE; s ~-53-107E, ———.
= nd(l+1)

Die GroBle dieses Effektes ist also sehr klein im Vergleich zu E,,, auerdem wird der
Effekt mit gréBeren Quantenzahlen n und / sogar noch kleiner.

ABscaNITT 15.9

Lamb-Shift und Relativistische Korrektur

Es gibt nun noch zwei weitere Korrekturen, die beriicksichtigt werden miissen wenn man wirk-
lich alle experimentellen Beobachtungen des Wasserstoftspektrums erkldren mochte. Zunichst
soll der sogenannte Lamb-Shift erldutert werden. Diesen kann man erneut im semi-klassischen
Modell beschreiben. Das Elektron bewege sich dabei als Punktteilchen auf einer Kreisbahn
um den Kern. Das Coulomb-Potential habe die Form E},o o } Gemil der Heisenbergschen
Unschirferelation wird das Elektron auf dieser Bahn kleine Abweichungen seiner Energie AE
auf kurzer Zeitskala erfahren. Dies fiihrt also anschaulich zu kurzzeitigen Verdanderungen des
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Abbildung 57. Zur Herleitung des

Lamb-Shift.

108

Bahnradius wie in Abb. 57 skizziert. Im zeitlichen Mittel verschwindet diese Zitterbewegung
und es ergibt den Bohrschen Radius. Jedoch verlduft die potentielle Energie nicht linear (son-
dern eben Ejop o %), was dazu fiihrt, dass die gemittelte potentielle Energie eben nicht gleich
bleibt:

1 1
i -
T +07 [ eittiches Mittel  \ 7/ zeitliches Mittel
Dieser Beitrag wird also eine (sehr kleine) Verschiebung der Energieniveaus bewirken. Diese
Verschiebung tritt nur fiir die Bahnen mit / = 0 auf und nimmt mit steigendem n ab. Die
Verschiebung kann man mit Mitteln der QED berechnen und erhélt Werte von AELymp <
107%eV.

Eine weitere Korrektur erhélt man bei Beriicksichtigung der relativistischen Geschwin-
digkeiten, mit denen sich das semi-klassische Elektron um den Kern bewegt. Dafiir nutzen
wir den relativistischen Energie-Impuls-Satz. Dieser lautet

Exin = E —moc® = \[p2c2 +m2c* —moc?

Die Néherung fiir den Fall p <« mc soll nun auch den quadratischen Term beriicksichtigen .
Nach Umstellen und Entwicklung in eine Tayler-Reihe folgt

2 2\2
LS -
2m 8 m3c?
schonbekannt neue Korrektur

Eyxin m()c2 +

Um den Energiebeitrag dieses Terms zu berechnen, muss man dessen Erwartungswert quan-
tenmechanisch berechnen. Dies ergibt

-1

AEr = W < ﬁ4 >
1 » . A
- "8 m3c2‘/'¢n,l,mV UnimdV
N el (15.18)
" dn 1+1

Dierelativistische Betrachtung fiihrt also wieder zu einer Aufspaltung, die von n und / abhéngt.
Interessanterweise fiihrt die Addition der Energieaufspaltungen der Feinstruktur (Gl. 15.17)
und der rel. Korrektur (Gl. 15.18) zu einer Korrektur, die NICHT mehr von [/, sondern nur
noch von j und n abhéngt:

Feinstrukturaufspaltung mit rel. Korrektur

Z%a? 1
1+ —
LRV AL St 7

Ein nochmals kleiner Korrekturterm durch den Spin des Atomkerns , die sogenannte
Hyperfeinstruktur, soll hier nicht betrachtet werden.

Enj=En
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Abbildung 58. Zusammenfassung aller uns nun bekannten Energieniveauaufspaltungen.

ABSCHNITT 16

Zusammenfassung: Wasserstoff

Wir haben nun viele verschiedene Korrekturen zum anfinglichen Bild des Wasserstoffatoms
kennengelernt. In Abb. 58 sind alle diese Beitrige (nicht skalengetreu) skizziert. Den wich-
tigsten Energiebeitrag liefert die Hauptquantenzahl n. Das ist hier fiir die Beispiele n = 1 und
n =2 gezeigt. Dann kommt die Aufspaltung der Feinstruktur (Spin-Bahn-Kopplung) und die
relativistische Korrektur zu einer Aufspaltung hinzu, die neben n noch von j abhingt. Fiir
das untere Niveau bei n =1 ist nur / = 0 erlaubt und damit gibt es nur eine Mdoglichkeit die
Quantenzahl j aus [ +s zu ermitteln, nimlich j = O+% = % Den so ermittelten Zustand des
Wasserstoffatoms beschreibt man geméaf

Nomenklatur Wasserstoff
2s+1
n l j

wobei der Exponent 2s+ 1 auch Multiplizitdt genannt wird — dies wird uns bei den
Molekiilen noch eingehender beschiftigen. Die Drehimpulsquantenzahl / wird konventions-
gemil durch die Buchstaben s(I = 0), p( = 1), d(I = 2) usw. bezeichnet. Der Zustand mit
n=1,1=0,s =1/2 wird also als 1s;, bezeichnet. Fiir das obere Energieniveau gibt es nun
drei Moglichkeiten die erlaubten / und s zu kombinieren:

1 S ] Nomenklatur
0 (S) 1/2 12 2S]/2
1(p) 172 32 2p3)
I1(p) -172 172 2p1)2

Wir werden also fiir n = 2 die Zustinde 251,2,2p1/2 und 2p3;, erwarten. Da nur die Quan-
tenzahl n und j fiir die Verschiebung verantwortlich sind, fallen die Niveaus 25/, und 2p >
zusammen. Die Lamb-Verschiebung sorgt nun fiir ein “leichtes” Anheben der s-Orbitale. Der
Zustand 151/, und 251/, werden also geringfiigig angehoben. Als letzte Aufspaltung ist in
Abb. 58 noch die Hyperfeinstruktur eingezeichnet. Diese behandeln wir im Kurs nicht. Sie re-
sultiert aus der Kopplung des Kernspins (analog zum Elektron) und des Gesamtdrehimpulses
des Elektrons. Diese Aufspaltung ist etwa 2000-mal kleiner als die Feinstrukturaufspaltung.
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E=0
E<0
E>0 ..
fs Q
Entstehung

® irtueller Teilchen
Abbildung 59. Entstehung von

Hawking-Strahlung am Ereignishori-
zont.
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ABSCHNITT 17

Exotisches zur Quantenphysik

In diesem Kapitel stelle ich kurz und oft ohne fachliche Tiefe Themen vor, die aus Wiinschen
von Studierenden ausgewdihlt wurden. Es sind hauptsichlich Effekte oder Vorstellungen, wie
Sie in Medien oder Science-Fiction Filmen bekannt sind. Gerade wegen dieser Bekanntheit
sind es aber auch gute Ankniipfungspunkte zwischen SchiilerInnen und LehrerInnen, um
interessante Gespriche iiber Physik zu fiihren.

AsscunITT 17.1

Hawking-Strahlung

Die sogenannte Hawking-Strahlung ist an die Gegenwart eines schwarzen Loches gebunden.
Die hier gegebene Erkléarung ist sehr vereinfacht — um nicht zu sagen: falsch. Trotzdem kann
man sich daran den wesentlichen Kern des Effektes herleiten.

Der Ausgangspunkt dieser sehr vereinfachten Argumentation ist der Prozess der Entste-
hung virtueller Teilchen im Vakuum als Folge der Unbestimmtheitsrelation AE - At > . Diese
Virtuellen Teilchen rekombinieren iiblicherweise nach kurzer Zeit wieder und geben so ihre
“geliehene” Energie wieder ab. Wie in Abb. 59 gezeigt, gilt fiir diese Prozesse also Energieer-
haltung, da E = 0. Wenn jetzt aber dieser Prozess genau am Ereignishorizont eines schwarzen
Loches stattfindet, ist es den beiden entstandenen Teilchen nicht mehr moglich miteinander
wechselzuwirken. Damit die Energieerhaltung E = O fiir diesen Prozess trotzdem gilt, muss
das eine Teilchen also eine negative Energie besitzen. Hinweis: Dies ist nicht einfach mit
einem E < 0 wie etwa in einem gebundenen Zustand im Potential gleichzusetzen. Vielmehr
bedeutet dies auch eine “negative Masse” gemiB E = mc?. Diese negative Energie/Masse wird
vom schwarzen Loch absorbiert und trigt somit zum Energieverlust des schwarzen Loches bei.
Wenn geniigend negative Energie absorbiert wurde, kann das schwarze Loch “zerstrahlen”.

Diejenigen virtuellen Teilchen, die aber mit £ > 0 dem schwarzen Loch entkommen,
sind die hier diskutierte Hawking Strahlung. Die energetische Verteilung dieser Strahlung
entspricht nach Hawking der eines schwarzen Korpers mit einer Temperatur von

hc?

Ty=——o
H = 8rGMkg

17.1)
, wobei G die Gravitationskonstante und M die Masse des schwarzen Loches ist. Das inter-
essante an dieser Temperatur ist die inverse Abhingigkeit von der Masse. Das fiihrt dazu, dass
die abgestrahlte Leistung P(T) = o5 - T* fiir groBe schwarze Locher sehr gering ist und fiir
Messungen auf grofle Entfernungen also nicht zugédngig ist.

Wenn nun aber ein schwarzes Loch eine kleine Masse hat, ist die abgestrahlte Leistung
durchaus wichtig. In der Strahlungsbilanz haben wir dann einen Einstrom von Strahlung
durch die kosmische Hintergrundstrahlung bei 7 = 2.7K und die Abstrahlung der Hawking
Strahlung. Wenn nun also Ty > 2.7 K wird, verliert das schwarze Loch kontinuierlich Energie.
Dies ist der Fall fiir 3

M= hc
8nGkp-2.7K

mit einem dazu passenden Schwarzschildradius von rs = 7.4 pm. Man kann also zumindest
beruhigt sein, dass hypothetische mikroskopische scharze Locher in Teilchenbeschleunigern
von selbst zerstrahlen.

=5-10%"kg



ABSCHNITT 17.2

EPR-Paradoxon

Das EPR-Paradoxon (Einstein-Podolski-Rosen) war urspriinglich darauf angelegt, die Unvoll-
standigkeit der Quantenmechanik zu belegen. Um es vorweg zu nehmen: Das ist den drei
Herren nicht gelungen. Das Paradoxon kann man am Beispiel eines Systems aus 2 Teilchen
mit Spin veranschaulichen. Diese 2 Teilchen mit Spin up oder down sollen z.B. aus Anni-
hilation entstehen und konnen so also nur den gemeinsamen Gesamtspin Null haben. Diese
Teilchen sind also beziiglich des Spins verschréinkt (Gesamtspin = 0, Einzelspins unbekannt).
Diese zwei Teilchen kann man nun — ohne die Einzelzustinde zu bestimmen — an beliebig
entfernte Orte bringen. Wiirde man von Teilchen 1 oder 2 den Spin messen, bekommt man
zu 50% als Ergebnis jeweils Spin-up oder Spin-down. Diese Spinmessung von Teilchen 1 ist
im Rahmen der Unschirferelation mit der Spinmessung von Teilchen 2 verkniipft - so dass
man nicht beide Eigenschaften dieses Teilchenpaares gleichzeitig genau kennen kann. Das
Paradoxon besteht nun aber darin, dass nach einer Messung von Teilchen 1 (das Ergebnis sei:
Spin-up) genau bekannt ist, dass der Spin von Teilchen 2 Spin-down sein muss. Ohne jede
Unsicherheit. Durch dieses Paradoxon scheint also die Unschirferelation ausgehebelt.

Letztenendes kann man dieses Argument entkriften, da die “Indirekte Schlussfolgerung”
einer Eigenschaft mathematisch nicht mit einer “Quantenmechanischen Messung” gleichzu-
setzen ist. Diesbeziiglich ist das Paradoxon also entkriftet. Es gibt aber noch eine weitere
Folgerung dieser Sachlage: Der Spin des Teilchens 2 wird durch die Messung am Teilchen 1
festgelegt — und dies instantan und distanzunabhingig. Diese Verletzung des Lokalitétsprin-
zips*® veranlasste Einstein dazu, von einer spukhaften (im Sinne von “verflixten) Fernwirkung
zu sprechen.

Das Ende dieser Geschichte lautet wie folgt: Alle Experimente und Messungen bestitigen
bisher die Aussagen der Quantenmechanik, auch der Fernwirkung. Die Quantenmechanik ist,
entgegen jedem rationalen Verstidndnis, eine nicht-lokale Theorie.

Folgt nun aus dieser Verschrinkung eine Mdglichkeit der iiberlichtschnellen Kommu-
nikation? Leider nein, denn ohne dass das Ergebnis der Messung 1 auf klassischem Wege
(v = ¢) an den Ort von Teilchen 2 gebracht wurde kann man aus dessen Messung keinen
Informationsgehalt ziehen. Die Geschwindigkeit der Informationsiibertragung bleibt auf die
Lichtgeschwindigkeit beschrénkt.

ABscHNITT 17.3

Ensemble-Interpretation der Quantenmechanik

Ublicherweise, wie auch in diesem Buch, wird die Quantenphysik bzw. genauer die Quan-
tenmechanik mit der Bornschen Wahrscheinlichkeitsinterpretation eingefiihrt. Dabei wird das
Quadrat der Wellenfunktion als Aufenthaltswahrscheinlichkeit gedeutet. Nun ist es aber so,
dass die formal absolut erfolgreiche Quantenmechanik kein eindeutiges Modell als Wirklich-
keitsbeschreibung bedingt. Allein die Rechnung bzw. die Vorhersage von Messungen sagt
noch nichts iiber das “Wie” und “Warum” aus. Es gibt verschiedene Moglichkeiten die Rech-
nungen und Ergebnisse jeweils zu deuten. Die Wahrscheinlichkeitsinterpretation ist dabei Teil
der sogenannten Kopenhagener Interpretation, welche historisch bedeutsam und relativ gut
zuginglich ist.

Es gibt allerdings auch eine Vielzahl anderer ebenfalls giiltiger Interpretationsansitze die
jeweils auch verschiedene Stirken und Vorteile mit sich bringen kénnen. Hier eine Ubersicht
dieser Deutungen vorzustellen, iiberschreitet jedoch den Rahmen dieses Buches. Als weitere
wichtige und physikalisch konsistente Interpretation soll nur kurz die Ensemble-Interpretation
vorgestellt werden.

Als Ensemble wird hierbei die Summe eine Vielzahl von gleich préparierten Systemen
verstanden. Dies kann man wie in der statistischen Physik verstehen, wonach in einem Viel-

EPR-PARADOXON

48 Jede Ursache kann nur eine Wir-
kung in ihrer unmittelbaren Umge-
bung zeigen.
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teilchensystem die Wahrscheinlichkeiten immer nur Aussagen iiber das Ensemble — nicht
jedoch tiber einzelne Teilchen zulassen. Demnach kann man nun auch eine Messung an einem
Quantensystem wie folgt deuten: Weil eine grole Zahl an Systemen vorliegt, sind auch die
moglichen Zustinde (die es zu messen gilt) bereits bei einer Auswahl davon realisiert. Der
Messprozess bringt nun jeweils genau diese Zustdnde hervor. Es ist hier also kein “Kollaps
der Wellenfunktion” notig, der die Kopenhagener Interpretation etwas problematisch bei der
Erklarung einer Messung macht. Die Ensemble-Interpretation besagt demnach, dass man den
konkreten vollstindigen Zustand eines Objektes nicht kennen kann, sondern nur Aussagen
iiber ein Ensemble solcher Objekte treffen kann. Damit gehort diese Interpretation zur Klasse
der Verborgene-Variablen-Interpretationen.
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Abbildung 60. Beispiel fiir das Sektorenmodell. Dargestellt ist der Raum um ein schwarzes Loch. (links)
Die gerade Linie verlduft im “lokal flachen” Raum als Gerade. (rechts) In der gekriimmten Raumzeit
des schwarzen Loches erkennt man diese Gerade nun als Kurve bzw. Geodite. Bearbeitet nach [46].

Demonstrationsexperimente

Hier wird eine Auswahl an Demonstrationsexperimenten vorgestellt. Die Experimente sind
alle Teil der Vorlesungssammlung an der Universitit Greifswald. Es werden bewusst nur Ex-
perimente vorgestellt, die eventuell auch Teil einer Schulsammlung sein kdnnen und nicht zu
komplex oder zu kostenintensiv sind. Die Beschreibung beschrinkt sich auf das Notigste um
die Effekte und die vermittelten Erkenntnisse in den Vordergrund zu stellen. Die konkreten
Versuchsbeschreibungen sind ggf. bei den Herstellern selbst zu erfragen. Auch die Sicher-
heitshinweise konnen sich bei optisch dhnlichen Versuchsmodellen unterscheiden und miissen
stets beachtet werden!

ABSCHNITT 18

Relativitat

AgscaNITT 18.1

Raumkriimmung mit Sektormodellen

Die spezielle Relativititstheorie trifft Aussagen zu groen Geschwindigkeiten, die allgemeine
Relativitit zu enormen Entfernungen und Massen. Beides ist fiir Demonstrationsexperimente
kaum zugidnglich. Fiir das schulische Niveau empfehle ich zumindest die Darstellung der
Raumkriimmung durch sogenannte Sektormodelle [44, 45]. Dabei konnen die SuS durch
Basteln mit Papier und Schere gewissermaBen selbst erfahren wie ein gekriimmter Raum aus
einer Geraden eine gekriimmte Geodate werden lésst. In Abb. 60 ist dies veranschaulicht. Die
lokal flachen Sektoren werden an der jeweiligen Kannte aneinandergelegt wie im linken Bild.
Durch diesen “flachen Raum” kann man nun eine Gerade einzeichnen. Wenn der Raum nun
aber gekriimmt ist und damit so angeordnet wird wie im rechten Bild, ergibt sich eine gebogene
Geodite. Das Beispiel stellt die Aquatorialebene um ein schwarzes Loch mit Schwarzschild-
Metrik dar.
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Abbildung 61. (links) Eisenkugel mit Bohrung bei Zimmertemperatur: Die Bohrung absorbiert das
Licht und erscheint dunkel im Vergleich zur Oberfliche. (rechts) Die Kugel wurde einige Minuten lang
erhitzt bis zur Rotglut. Die Bohrung emittiert nun mehr Licht als die Oberfldche.

ABSCHNITT 19

Quantenphysik

ABscHNITT 19.1
Hohlraum

Man kann mit diesem einfachen Experiment zeigen, dass ein Hohlraum in einem Korper
tatsdchlich ein guter Emitter ist. Dafiir kann man die Metallkugel aus Abb. 61 zeigen und
darauf hinweisen, dass das Loch in der Kugel stets dunkler erscheint als die iibrige Oberfliche
der Kugel. Im zweiten Schritt wird die Metallkugel mit einem Gasbrenner stark erhitzt. Wenn
das Metall beginnt zu gliihen, ist es sehr deutlich sichtbar, dass die vormals dunkle Bohrung
nun deutlich heller ist als die umgebende Oberfldche. Es dauert einige Zeit (ca. 15min) bis die
Kugel die notige Temperatur aufweist. Der Versuch muss also zeitlich entsprechend vorbereitet
werden.
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Abbildung 62. (links) Die Kiste ist mit einem Loch in der Mitte und zwei aufgemalten Kreisen ver-
sehen. Das Loch erscheitn dunkler als die bemalten Flichen. (rechts) Geoffnete Kiste mit beliebigem
Absorbermaterial.

ABSCHNITT 19.2
Schwarzer Korper

In Abb. 62 ist der Eigenbau zur Demonstration eines schwarzen Korpers zu sehen. Er besteht
aus einem schwarz lackierten Innernraum mit schwarzen absorbierenden Elementen (Stoff,
Pappe usw.). Wenn man den Korper verschlossen hat, blickt man an der Vorderseite auf drei
hervorgehobene schwarze Kreise. Die dufleren Kreise sind schwarz lackierte Applikationen,
der mittlere Kreis ist eine Bohrung in den Innenraum. Wie bei der Modellvorstellung zum
schwarzen Korper sieht man auch hier, dass die einfallende Strahlung in den Korper nahezu
vollstidndig absorbiert wird - die Bohrung in den Hohlraum ist stets “schwirzer” als die auflen
aufgebrachte Farbe.



BESTIMMUNG DES PLANCK’SCHEN WIRKUNGSQUANTUMS £

+ Vorwiderstand LED

Abbildung 64. Der Spannungsabfall iiber einer LED wird gemessen. Die Spannungsquelle wird so
angepasst, dass ein fiir alle LEDs identischer Stromfluss registriert wird.

ABscHNITT 19.3

Bestimmung des Planck’schen Wirkungsquantums /

Das Planck’sche Wirkungsquantum ist eine allgegenwirtige Konstante in der Quantenphysik.
Die Bestimmung mit einer kommerziellen Photozelle aus dem Lehrmittelbedarf ist anschau-
lich aber auch sehr teuer. Ich mochte hier eine preisgiinstige alternative Methode durch
Strom- und Spannungsmessungen an verschiedenen LEDs vorstellen. Die Bestimmung des
Wirkungsquantums beruht darauf, dass man durch die Funktionsweise einer LED beim je-
weiligen Spannungsabfall Uy gp eine Lichtemission der Energie 4 - v erzeugt wird. Es muss
also P
c

e‘ULED:h'V:T

gelten. Man sieht hier, dass zwischen der Spannung und dem Term % -¢/(1-e) ein linearer
Zusammenhang besteht mit der Proportionalitdtskonstante /. Durch grafische Darstellung fiir
i verschiedene LEDs von Upgp ; und /- ¢/(4; - e) kann man durch Regression das Wirkungs-
quantum ermitteln.

Versuchsablauf und Beobachtungen

Material: Es sind wie in Abb. 63 gezeigt zwei Multimeter, eine Spannungsquelle, LEDs
verschiedener Wellenlidngen und Vorwiderstinde im Bereich von ca. 100€Q bis 300Q
notig. Die LEDs sollten idealerweise eine vergleichbar grofe Leuchtstirke besitzen.

Abbildung 63. Mit einfachen Mitteln
ist durch bekannte LED-Wellenlingen
die Bestimmung des Wirkungsquan-
tums moglich.
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Abbildung 65. Durch das Aufbringen negativer Ladungen auf die Metallplatte 14dt sich diese auf. Der
Zeiger des Elektrometers zeigt einen starken Ausschlag.

ABscHNITT 19.4

Photoeffekt mit dem Elektrometer

Man kann den Photoeffekt qualitativ gut mit einem Elektrometer demonstrieren. Kern des
Versuches ist eine negativ vorgeladene Zinkplatte, die durch Bestrahlung aus einer UV-
Lichtquelle Elektronen abgibt.

Versuchsablauf und Beobachtungen

Zink-Platte: Im Zuge der Vorbereitung muss die Zinkplatte von einer eventuell vorhandenen
Oxidschicht befreit werden. Dazu muss der Zielbereich der Strahlung mit Scheuermittel
0.4. bis zum Spiegelglanz gereinigt werden.

UV-Lichtquelle: Als UV-Lichtquelle dient eine Quecksilber-Dampflampe. Diese hat in der
Regel eine gewisse Vorwirmzeit und sollte mehrere Minuten vor Versuchsbeginn ein-
geschaltet werden. Fiir den Photoeffekt bei einer Zinkplatte ist es nétig, dass die UV-
Wellenldnge der Lampe auch aus dem Lampenkorper austreten konnen. Bitte vor dem
Versuch priifen, ob diese Wellenlidnge eventuell durch ein Filterglas blockiert wird.
Wenn die UV-Strahlung wie gewiinscht austritt, muss auf jeden Fall auf entsprechende
Sicherheitsmafinahmen wie z.B. Schutzbrillen geachtet werden.

Aufladen der Platte: Wie in Abb. 65 gezeigt, kann man mit einem Kunststoffstab, an dem
ein Lederlappen gerieben wurde, einen negativen Ladungsiiberschuss auf die Platte
transportieren. Dies wird sofort durch einen Zeigerausschlag des Elektrometers ange-
zeigt.

Ladungsabfluss durch Beriihrung: Wenn man die Platte wie in Abb. 66 (links) beriihrt,
flieBen die iiberschiissigen negativen Ladungen durch den Korper ab und der Zeige-
rausschlag geht direkt wieder an den Ursprung zurtick.



Zeigerausschlag
nimmt ab

Abbildung 66. (links) Durch Beriihrung der negativ aufgeladenen Platte flieBen die Ladungen durch
den Korper ab. (rechts) Durch die Strahlung der Quecksilber-Lampe werden die Elektronen durch den
Photoeffekt von der Platte entfernt. In beiden Fillen nimmt der Zeigerausschlag entsprechend ab.

Photoeffekt bei negativ geladener Platte: Wenn die Zinkplatte wie in Abb. 66 (rechts) der
UV-Strahlung ausgesetzt wird, beobachtet man die Verringerung des Zeigerausschla-
ges — und damit auch der Ladungsmenge auf der Zinkplatte. Wenn die UV-Strahlung
blockiert wird, z.B. durch eine Holzplatte, bleibt der Zeigerausschlag und die Ladungs-
menge auf der Zinkplatte konstant.

Kein Photoeffekt bei positiv geladener Platte: Zunichst die Zinkplatte erden um ggf. noch
vorhandene Ladungen abzuleiten. Dann kann man durch Reiben von Zeitungspapier an
einem Glasstab positive Ladungen an die Zinkplatte iibertragen. Das Elektrometer wird
dies wieder durch einen Zeigerausschlag anzeigen. Der Photo-Effekt ermoglicht es,
Elektronen aus einem Material herauszuldsen sofern die Austrittsarbeit nicht zu grof3
ist. Im Falle einer positiv geladenen Zink-Platte gibt es bereits einen Elektronenmangel.
Die Elektronen, die durch die UV-Strahlung entsprechend dem Photoeffekt herausgeldst
werden, haben nicht genug Energie um der elektrostatischen Anziehung der Zink-Platte
zu entkommen. Dies zeigt sich im Experiment: Der Zeigerausschlag am Elektrometer
verandert sich bei UV-Einstrahlung nicht.

PHOTOEFFEKT MIT DEM ELEKTROMETER
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Abbildung 68. Das kontinuierliche
Halogen-Spektrum ist nicht durch
dunkle Bereiche unterbrochen und um-
fasst den gesamten sichtbaren Spektral-
bereich.
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Prisma Linse Blende

Abbildung 67. Die Strahlung einer Halogenlampe wird durch eine Blende geleitet, durch eine Linse
fokussiert und schlieBlich durch ein Prisma in seine spektralen Bestandteile zerlegt.

AsscunITT 19.5

Kontinuierliches Spektrum einer Halogenlampe

Halogenlampen erzeugen Licht durch Gliihemission. Damit wird quasi Strahlung wie die
eines schwarzen Korpers emittiert. Die spektrale Zerlegung zeigt im sichtbaren Bereich ein
vollstindiges Spektrum. In Abb. 67 ist der Aufbau gezeigt und in Abb. 68 sieht man eine
Nahaufnahme des Spektrums.

Versuchsablauf und Beobachtungen
Lichtquelle: Die gewihlte Strahlungsquelle muss ein kontinuierliches Spektrum emittieren.

Blende bzw. Fokus: Je nach Lichtquelle ist eine Blende und/oder eine Sammellinse notig,
um einen moglichst gebiindelten und intensiven Strahl auf das Prisma zu lenken.

Prisma: Man kann hierbei auf normale Prismen oder Geradsichtprismen zuriickgreifen. Beim
normalen Prisma wie in Abb. 67 wird der in Spektrallinien zerlegte Strahl unter einem
bestimmten Winkel austreten. Beim Geradsichtprisma — im Wesentlichen drei normale
Prismen hintereinander — tritt das Linienspektrum in der gleichen Richtung aus wie
auch der einfallende Strahl.

Spektrum: In einem abgedunkelten Raum kann man nun das Spektrum an einer idealerweise
weilen Fldche abbilden. Wie in der Nahaufnahme in Abb. 68 zu sehen, ist das Spektrum
vollstidndig und nicht durch dunkle Bereiche unterbrochen. Eventuell bietet sich der
Einsatz einer Dokumentenkamera an um die Linien fiir alle SuS sichtbar zu machen.



LINIENSPEKTRUM EINER QUECKSILBERLAMPE

Quecksilber-
Prisma Linse Blende = Dampflampe

Abbildung 69. Die Strahlung einer Quecksilberdampflampe wird durch eine Blende geleitet, durch eine
Linse fokussiert und schlieBlich durch ein Prisma in seine spektralen Bestandteile zerlegt.

ABscHNITT 19.6
Linienspektrum einer Quecksilberlampe

Quecksilberdampflampen oder auch alle anderen Linienstrahler (Natriumdampflampe, He-
Ne-Laser, usw.) lassen sich mit einem Prisma in die spektralen Bestandteile zerlegen. Bei
unserem Demonstrationsversuch in Abb. 69 arbeiten wir mit einer sogenannten Quecksilber-
Hoéchstdrucklampe.

Versuchsablauf und Beobachtungen
Linienstrahler: Die gewihlte Strahlungsquelle muss ein Linienspektrum emittieren.

Blende bzw. Fokus: Je nach Lichtquelle ist ggf. eine Blende und/oder eine Sammellinse
notig, um einen moglichst gebiindelten und intensiven Strahl auf das Prisma zu lenken.

Prisma: Man kann hierbei auf normale Prismen oder Geradsichtprismen zuriickgreifen. Beim
normalen Prisma wird der in Spektrallinien zerlegte Strahl unter einem bestimmten
Winkel austreten. Beim Geradsichtprisma — im Wesentlichen drei normale Prismen
hintereinander — tritt das Linienspektrum in der gleichen Richtung aus wie auch der
einfallende Strahl.

Linienspektrum: In einem abgedunkelten Raum kann man nun die Spektrallinien an einer
idealerweise weillen Fldche abbilden. Es sind wie in der Nahaufnahme in Abb. 70 farbig
leuchtende Linien, unterbrochen von dunklen Bereichen, zu beobachten. Eventuell
bietet sich der Einsatz einer Dokumentenkamera an um die Linien fiir alle SuS sichtbar
zu machen.

Abbildung 70. Im Hg-Spektrum sind
gut einzelne Spektrallinien zu erkennen,
die durch dunkle Bereiche unterbrochen
werden.
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Abbildung 71. Versuchsaufbau zum Franck-Hertz-Versuch.

AsscuNITT 19.7
Franck-Hertz-Versuch

Mit dem Franck-Hertz-Versuch kann man nachweisen, dass Atome Energien nur in bestimmten
Energie-Portionen (Quanten) absorbieren konnen. Der Aufbau ist sehr komplex und wird daher
mit (kostenintensiven) Sets der iiblichen Lehrmittelhersteller realisiert. Es gibt diese Sets auf
Basis einer Quecksilberdamp-Rohre (historisch gesehen authentisch) oder einer Neon-Rohre.

Versuchsablauf und Beobachtungen

Aufbau: Der Versuch (sieche Abb.71) besteht aus einer regelbaren Spannungsquelle, die
die Beschleunigungsspannung Ug bereitstellt. Das Experiment (“Franck-Hertz-Gerit”,
links im Bild) selbst erzeugt, abhéngig von der Beschleunigungsspannung, einen Strom-
fluss I an der Anode. Der sehr kleine Stromfluss muss durch einen Messverstéirker
verstiarkt werden und kann dann ausgelesen werden. Es bietet sich an, die Beschleuni-
gungsspannung und den Anodenstrom mit digitaler Messtechnik zu erfassen und direkt
als Funktion 7(Ug) z.B. per Beamer oder Smartboard darzustellen. Die Messwerterfas-
sung und Darstellung wurde hier mit Cassy bzw. CassyLab realisiert.

Messablauf: Die Beschleunigungsspannung kann automatisiert oder manuell erhoht wer-
den, wihrend fortlaufend der Anodenstrom gemessen wird. Ich empfehle das manuelle
Variieren der Spannung, da man den Kurvenverlauf so der eigenen Erkldrung zeitlich
anpassen kann.

Beobachtung: Man erkennt sowohl bei der Quecksilber- als auch bei der Neon-Rohre die
typischen regelmifBigen Einbriiche des Anodenstroms. Bei Quecksilber sind die Minima
jeweils ca. 4,9V, bei Neon ca. 19V voneinander entfernt. Diese entsprechen jeweils
den Ubergingen vom Grundzustand in den ersten angeregten Zustand der Atome. Bei
Neon ist auBlerdem in den Bereichen der Absorption ein orangefarbenes Leuchten zu
sehen. Diese Lichtemission erfolgt auf indirektem Wege durch mehrfache Abregungen
bis es eine Lichtemission im sichtbaren Bereich gibt. Hinweis: Die Leuchterscheinung
findet auf kleinem Raum statt und muss mit technischen Mitteln vergrofert werden
(Dokumentenkamera, Makrokamera).



Abbildung 72. Der Rontgenversuch von PHY WE. Die Versuchsperson trigt zwei Armreife aus Bleidraht
und eine Halskette. Im Rontgenbild sind die Bleiobjekte deutlich zu erkennen und der Kunststoft wird
grofBitenteils durchdrungen.

ABscuNITT 19.8

Rontgenrohre

Rontgenrohren sind leider nicht im Eigenbau herzustellen und man muss daher auf die Lehr-
mittelhersteller zuriickgreifen. Die Erweiterungsmdéglichkeiten fiir Zusatzexperimente wie
verschiedene Anodenmaterialien sind, genau wie der Grundversuch, sehr kostenintensiv. Eine
Anschaffung ist meist nur im Rahmen der Erstausstattung moglich. Dennoch ist Rontgenstrah-
lung bei den SuS sehr bekannt und es gibt oft bereits Vorerfahrungen in der medizinischen
Anwendung. Das bekannteste Merkmal ist die Fahigkeit, Material zu durchdringen und damit
innere Strukturen wie Knochen oder Metall im menschlichen Korper sichtbar zu machen.
Auch das kann man mit den Rohren der Lehrmittelhersteller anschaulich vorfiihren.

Versuchsablauf und Beobachtungen

Anfertigen eines Rontgenbildes: Die Rontgenrdhren konnen mit einem fluoreszierenden
Schirm ausgestattet werden (siehe Abb. 72). Damit wird wie beim medizinischen Ront-
gen die das Objekt durchdringende Strahlung sichtbar gemacht. Das Bild ist nur in
abgedunkelter Umgebung zu erkennen. Empfehlenswert ist es, vorher eine Kamera fiir
die Darstellung des Rontgenbildes vorzubereiten.

Variation des Anodenmaterials: Mit austauschbaren Anoden kann man durch Bragg die
Rontgenspektren verschiedener Materialien bestimmen. In Abb. 73 ist die entsprechende
Aufnahme der Spektren gezeigt.

Anfertigen eines Rontgenspektrums: Das Spektrum der Rontgenstrahlung kann man mit-
tels Drehkristallmethode (Bragg-Streuung) bestimmen. Dazu braucht man ein zum Ver-
such passendes Modul wie in Abb. 72. Der Drehwinkel kann meist motorisiert variiert
werden, womit man am Detektor die Intensitidt der Rontgenstrahlung einer bestimmten
Wellenldnge messen kann. Das Spektrum kann so vollautomatisch aufgezeichnet und
auch direkt dargestellt werden. In Abb. 73 sind die Spektren fiir Molybdén (blaue Linie),
Eisen (rote Linie) und Kupfer (schwarze Linie) dargestellt. Die kontinuierliche Form
der Bremsstrahlung und die Peaks der charakteristischen Strahlung sind gut erkennbar.
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Abbildung 73. Rontgenspektren fiir Molybdin (blau), Eisen (rot) und Kupfer (schwarz). Im linken Bild

ist das Spektrum iiber die Wellenlinge, im rechten Bild iiber die Energie aufgetragen. Dargestellt in
CASSY Lab 2.
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