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Experiments in statistical mechanics

Jeffrey J. Prentis®
Department of Natural Sciences, University of MichigBearborn, Dearborn, Michigan 48128

(Received 30 June 2000; accepted 21 July 2000

We present experiments designed to illustrate the basic concepts of statistical mechanics using a gas
of “motorized molecules.” Two molecular motion machines are constructed. The pressure
fluctuation machinémechanical interaction simulafois a working model of two gases separated

by a movable piston. The Boltzmann machi@nonical simulatgris a working model of a
two-level quantum system in a temperature bath. Dynamical probabilft@stion of time are
measured using mechanical devices, such as stop watches and motion sensors. Statistical
probabilities(fraction of statesare calculated using physical statistics, such as microcanonical and
canonical statistics. The experiments enable one to quantitatively test the fundamental principles of
statistical mechanics, including the fundamental postulate, the ergodic hypothesis, and the statistics
of Boltzmann. © 2000 American Association of Physics Teachers.

I. INTRODUCTION cal mechanics, experiments in thermodynamics are common-
place. In the macroscopic world of thermal physics, there
If you measure the pressupevolumeV, mole numben,  €Xist plenty of instruments that can readily measure the ther-
and temperatur@ of a gas in equilibrium and discover that Mal properties of matter. Thermometers measijrearom-

pV=nRT, then this can be considered to be an indirect exE€rs measurp, and calorimeters measu@ Unfortunately,

perimental test of the principles of statistical mechanics. there do not exist instruments to measure the mechanical and
you could measure the amount of tit(&) that a molecule the statistical properties. It would be wonderful if there ex-
of the gas spends in a quantum state of endtgynd dis- |stedt ?t state—ome;é‘r to measure s(t) and a “prob-
cover thatt(E)~exp(—E/KT), then this would be a direct onxefe 0 meqsuret S tatistical hani ist Perh
experimental proof of the basic principles of statistical me- ew experiments In statistical mechanics exist. Ferhaps

- : : he best known experiment is Brownian motion, first per-
‘%ha.”'cs' hamely the ergodic hypothesis and Boltzrr_lann st ormed by Jean Perrtfrand analyzed by Albert Einstéias a
tistics. The experiment that measungsV, n, and T is a

: . . . ._proof of molecular reality. Demonstration apparatus is com-
macroscopic experiment in thermodynamics. The theoreuc4fnercially available in which the Brownian motion of smoke

journey that goes from(E) ~exp(-E/kT) to pvV=nRTis a  anicles is observed using a microscopk.laboratory ex-
long trek on a winding road. The experiment that m?as_“regeriment for undergraduate students has been developed to
t(E) is a microscopic experiment in pure statistical stydy the Brownian motion of polystyrene microspheres in
mechanics—an experiment that focuses solely on statisticglater® A random walk experiment using a toy ball has been
and mechanical concepts, without reference to thermal corperformed to illustrate the energy outflow in starsnother
cepts. The primitive mechanical concepts are “time spent irexperiment for the undergraduate laboratory is the sedimen-
a state” and “energy of a particle.” The primitive statistical tation equilibrium of colloidal suspensions, whereby small
concept is “Boltzmann statistics.” plastic spheres suspended in a fluid form a miniature
In general, statistical mechanics is characterized by thetmospheré.This type of experiment was suggested by Ein-
mechanics of particles and the statistics of states. The basigein and first performed by Perrin. The concentration of
mechanical object is the state of the system as a function &pheres is measured at different heights and found to obey a
time: s(t). All mechanical quantities, such as energy, dependoltzmann distribution. Demonstration equipment is also
on s(t). The basic statistical object is the probability of the commercially available which illustrates the random motion
state:Ps. All statistical quantities, such as average and fluc-0f molecules by shaking a system of small blSimilar
tuation, are determined frorRs. In contrast to statistical equipment has been used to _perform quantitative experi-
mechanics, the subject of thermodynamics is characterize@€nts which measure the velocifyand heigftt distribution
by a set of thermal objects that describe the thermal propeRf the “gas” of agitated balls. A transistor experiment that
ties of bulk matter: temperatuf® pressurep, heatQ, work demonstrates the canonical distribution has recently been

b {0
W, energyU, and entropyS described. _ _
An experiment in equilibrium statistical mechanics in its N tis paper, we present two complete experiments in
purest form is one in whicts(t) and P, are directly mea- pure statistical mechanics—the pressure fluctuation machine
S

sured. Such a pure statistical mechanics experiment, “uncorifjlnd f[he Boltzmann machine. Eac_h experiment 'F‘V‘?'Ves a dy-
taminated” by thermal quantities, is rare. This is understang@mical system whose mechanic(t) and statisticalPs
able given the impossibility of experimentally monitoring the Properties are measured and analyzed.

dynamical behavior of each particle in a molar sample of

matter. Thus .in generag(t) and .PS are not .o.bservab.le. N || THE SCIENCE OF STATISTICAL MECHANICS

fact, there exist several theoretical probability functidhs

(microcanonical, canonical, grand canonjdaht yield, via a In every branch of science, the scientific method generally
sum over states, the same thermodynamical observébles consists of three basic ingredientd) Perform an experi-
erages In contrast to the scarcity of experiments in statisti-ment.(2) Formulate a theory(3) Compare the experimental
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observations with the theoretical predictions. For the purpose
of organizing our experiments into a coherent whole, we
define the science of statistical mechanics as follows.xLet
denote the variable that labels the macrostate of a system.
Let 7 denote the total amount of time that the dynamics of
the system is monitored angx) the amount of time that the
system spends in the macrostateLet () denote the total
number of microstates accessible to the isolated system and
Q) (x) denote the number of microstates accessible to the sys-
tem when it is in the macrostate The scientific method of
statistical mechanics consists of the following ingredients.

Fig. 1. Photograph of the pressure fluctuation mackinechanical interac-
tion simulatoy.

(1) Experiment: Measure the time(x) and construct the

dynamical probabilityP gy(x) = 7(x)/ 7. 1ll. PRESSURE FLUCTUATION MACHINE
(2) Theory: Count the stateQ(x) and construct the statis-
tical probability Pga(X) = Q(x)/ Q. In this experiment, we study the mechanical interaction

between two gases of motorized molecules. A picture of the
apparatus is shown in Fig. 1. It consists of a rectangular

: o : - frame constructed from PVC pip€l/2 in. diameter The
Note that the dynamical probability(x)/ 7, is a fraction of frame is 68 cm long and 34 cm wide. In units of ball diam-

theamount of timewhile the statistical probabilit2(x)/€2,  eters, the frame is approximately eight balls long and four
is a fraction of thenumber of statesThe conjectured equality pgis wide. The frame is elevated 6 cm above the ground
of these two probabilities is a statement of the ergodicysing four PVC legs at each corner. The frame is placed on a
hypothesis® Any experiment for whichr(x) can be mea- level surface and the motorized molecules move on the sur-
sured and}(x) can be computed provides an experimentalface within the rectangular frame. A movable wall, which
test of the ergodic hypothesis. In this paper, we measur@Cts as a piston, partitions the rectangular region into two
Payn(X), calculatePg(x), and ShowP g, (X) = Pga(X). regions. The wall consists of a 32-cm-long PVC piB#t in.

In the standard undergraduate treatment of equilibriujj'amete) fitted with t-joint connectors at each end. Each
statistical mechanics, the focus is on the statistics, rather thdf"d PiPe Of the frame loosely fits through the hollow con-
the mechanics. There is little discussion of the dynamic ectors allowing the joints to slide over the pipe and the wall

. . - o move freely. Many other mechanisms can be utilized for
evolution of the stats(t), the dynamical probability(x)/7,  {he sliding wall. We have also used pulleys riding on guide

the dynamical origin of the fundamental statistical postulateyyjres. Sliding-drawer tracks will also work. This apparatus,
or the ergodic hypothesis. And yet, these temporal featuregonsisting of a rectangular frame, sliding wall, and motor-
are the vital mechanical ideas that underlie all the statisticakzed balls, constitutes a pressure-fluctuation machine that
arguments and concepts. Although the thermodynamic olsimulates the mechanical interaction between two gases
servables of a macroscopic system in thermodynamic equiseparated by a movable piston.

librium are independent of time, the constituent particles of The fundamental problem to be investigated both experi-
the system are forever moving through time. The fraction ofmentally and theoretically with the mechanical interaction
time that the system spends in a state is the mechanical ogimulator is depicted in Fig. 2 and defined as follows:

gin of the notion of probability in statistical mechanics. In Given N.=Number of balls on the left anlz=Number of

our experiments, the dynamical objectf) and Pgyq(x) balls on the right.

= 7(x)/r, are directly measured using mechanical devicesNd: P(x)=Probability that the wall is at the position
The experiment consists of placind, motorized mol-

such as rulers and clocks. ; A .
The key mechanical hardware in all our experiments is £cules in the left area ani motorized molecules in the
motorized ball, known commercially as a Squiggle Bafiiv_ right area, and monitoring the motion of the wall. The posi-

The ball has a mass of 120 g and a radius of 4 cm. It consistéOn Of the wall as a function of time(t), is measured using
of a plastic spherical shell in which there is a battery—a motion detector. Such motion sensors are commercially

powered motor mounted along the axis. The motor rotates
the shell at approximately 3 rev/s around the axis. When
placed on a surface, the ball rolls, mostly without slip. A
small rubber O-ring around the circumference of the shell . . .
provides the optimal grip. The maximum speed of the center

of mass is approximately 1 m/s. When the ball collides with . ‘

(3) Experiment versus theory: Byn(X) = Pga(X)?

a wall, it rebounds in a random direction. When placed on
the floor of a room with furniture or other obstacles, the ball
will continue to move, never getting stuck anywhere. The
ball moves with a distribution of speeds. Over time, the ball X

will eventually visit every square centimetécell) of the _ o _ _
Fig. 2. Mechanical interaction between two gases of motorized molecules.

ﬂoor (ph"?‘se spage|n this sense, the_ ball d_ynam|cs_ IS er- The left gas hadN, =3 molecules and the right gas hidg=2 molecules.
godic. Given the random and ergodic motion of this self-the positionx of the wall (piston is the time-dependent variable that char-

propelled ball, we call this ball a “motorized molecule.”  acterizes the fluctuating macrostate.

v
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Fig. 3. Dynamics of the moving wallposition as a function of timeas
measured with a motion detector for three different syste@sN, , Ng
=2,2(b) N., Nk=4,3(c) N_, Ng=8,8.

Position of Wall

Fig. 4. Dynamical probability that the wall is at the positigrfor three
different systemsta) N, Ng=2,2 (b) N, N;=4,3(c) N, N;=8,8. The
dynamical probability is the fraction of time that the wall spends at the
positionx. The probability graph®(x) represent the statistical behavior of

. . . . . the mechanical graphgt) in Fig. 3.
available and widely used in introductory physics

laboratories® A small flag mounted on the wall provides the

target for the sound pulses emanating from the motion detec-

tor. The motion detector collected data at the rate of 1Q@erval Ax to be 2 cm, which is one-fourth the diameter of a

pulses per second. To minimize errors, the surface should Heall. The dynamical probability to find the wall at a position

level, the frame should be stationary, the wall friction shouldbetweenx andx+ Ax is

be minimal and uniform, the batteries should be uniform in

power, and the motion detector should be accurately zeroed. p (x)= (%) 1)
We performed experiments to measure the dynamics of o T’

the wall for three different systemsN( ,Ng)=(2,2), (4, 3,

and(8, 8). The position of the walk(t) as a function of time

for these systems during the first 100 s is graphed in Fig. 3.

A qualitative inspection of these world lines reveals that the

average position of the wall is near the center of the appara- .

tus for the(2, 2) and (8, 8 systems, and shifted to the right a}:or the_(2, 2 system_and the4, 3 system, we monitor the

of center for the asymmetrica#t, 3 system. Furthermore, dynamics forr=30min. For the(8, 8 system, the observa-

the fluctuations around the average position decrease as mdi@n time is 7=45min. The dynamical probability functions

motorized molecules are added to the system. Payn(X) for these experiments are graphed in Fig. 4. The
The dynamical data for the positiosit) of the wall can be  probability functionsPy,(x), in Fig. 4 exhibit the statistical

represented as a probability distribution. In particular, we useontent of the dynamical functiong(t), in Fig. 3. In the

a spreadsheet to convert the columns oftlwst data into a  experiments, one can vary the observation timdn the

histogram that gives the timg(x) that the wall spends at a analysis, one can vary the bin intervak. We find that

position betweenx andx+ Ax. We have chosen the bin in- running the experiment for much shorter times, suchras

where 7 is the total observation time given by

rzg 7(X). 2)
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N ,Ng (X) (cm) o (cm)

2,2 335 9.64
4,3 39.0 7.71
8,8 33.3 4.12

Table |. Statistical parameters from the pressure fluctuation experiment. ‘

=5min, produces similar statistics—the same overall shape "
of Pgyn(X) with similar average and fluctuation. Evidently,
thIS_ time interval is SUfﬂC'ent_ to allow the System to cover aFig. 5. Lattice(checkerboardgas model of the mechanical interaction be-
region of phase space that is a representative sample of thgeen two gases of motorized molecules.
exact equilibrium distribution.
The averagéx) and the fluctuatiorr can readily be com-
puted from the dynamical functior(t) by summing over
time, or equivalently from the statistical functidty,(x) by 0= ; Q(x). (6)
summing over states:

Equation(5) is a symbolic statement of the fundamental pos-
X)=> P ayr(¥)X, (3)  tulate of statistical mechanics.In general, the fundamental
X postulate states that for an isolated system in equilibrium,
each accessible microstate is equally probable. The number
0252 den(x)(x—<x>)2. (4) of microstates accessible_ to the composite_ system is a prod-
X uct of the number of microstates accessible to each sub-

The experimental values of these statistical descriptors ar stem:

listed in Table I. As expected, the average positigrof the QX)=Q(X,N) - Qr(X,NR). )
wall is located at the center of the container for (e 2)

system and théB, 8) system, and displaced to the right of the
center for the(4, 3 system. The fluctuations around the ~COUNt states.

average are smaller for systems with a larger number of mol-_ 1 n€ Simplest model whose states can readily be enumer-
ecules. In particular, the relative fluctuatio(x) for the (2, ated is a lattice gas. Imagine partitioning the total area ac-

2), (4, 3, and (8, 8 systems are 29%, 20%, and 12% re. cessible to the moving balls into a lattice of sites, or a check-

: o rboard of square cells as shown in Fig. 5. The length of the
spectively. The values of the average position of the wall thagdge of eacﬂ cell is equal to the diargeter of the %all. The

we have measured are such that when the wall is at thesé T
positions, the concentration of molecul@aimber per aréa Palls occupy the cells of the lattice, just as checkers occupy

in the left area is equal to the concentration in the right areat'he squares of a checkerboard. Two balls cannot occupy the

- Th litv ofn dne h h tical | same cell. This digitization of the continuous area into a
N ~Ng. IN€ equally oln,_ andng nas a theoretical expla- |5yice of cells(sitey simplifies the counting of states. As an
hation, assuming th_at a system of motorlzed molecules obey, ample, consider the situation shown in Fig. 5. The wall is
itwo-d|rr:1en3|9narl] ideal-gas equation of gtallte of the fg)rm at the lattice positiork=5. In the left area, there amd,
=nT, wherep is the pressuréforce per unit lengthon the - _ 3 55 moving on 20 squares. In the right area, there are
wall. We also assume that the “temperatur€’is constant Ng=2 balls moving on 12 squares. The total number of

_ ; NR= .
(T'-_TR) because t.he average speed .Of a motorlzeq mo'microstatesﬂ(x) accessible to this system when the wall is
ecule is constarift Given these assumptions, the equality of :
. . . . atx=5is

concentrationsy, =ng, is equivalent to the equality of pres-
sures,p, =pr. This is the statistical mechanical principle of QB)=Q,-Qr, (8
mechanical equilibrium—the averagmost probable posi- where
tion of the wall occurs at a value for which the average force
on the wall due to the left molecules is equal and opposite to | =20-19- 18,
the average force due to the right molecules. Thus our ex- Qu=12.11
perimental results are consistent with the theoretical condi- RT-& =0
tion for the mechanical equilibrium of two interacting gasesThus, for the macrostafd, =3, Nr=2, x=5, the number of
at constant temperature. _ microstates i€)(x) =902,880. For positions of the wall that

We now turn to the statistical mechanical theory that canje petween the integer-valued lattice positions, one can still

explain the dynamical detailsiot just the average valuesf  yse this integer-valued counting algorithm. When the posi-
the observed behavior of the fluctuating wall. The statisticalion of the wall changes by one bin interval distante

probability to find the wall at a positior is =2cm, which is one-fourth the length of a cell, the area
Q(x) accessible to a ball changes by one lattice cell area. Thus the
Psta( X) = =~ (5 number of effective sites in the lattice takes on an integer
value for each of the discrete values of the wall position
where () (x) is the number of microstates accessible to the To justify this lattice model, we turn to classical statistical
system of balls when the wall is at and Q) is the total mechanics where the number of microstates is proportional
number of microstates given by to the area of phase spaeConsider two balls, labeled 1

Thus to calculate the statistical probabilRy,(x), one must
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Fig. 6. Experimental dynamical probabilithistogram vs theoretical sta- 4X 4 lattice, this accessiblphase-spagearea is equivalent to the geometric
tistical probability (curve for the system withN, , Ng=2,2. The experi- &€ of a X3 lattice. Cellular subsets of this area are labeled by the value

mental histogram is measured using a motion sensor. The theoretical cunf the exclusion parameter for interior celts, edge cell{1/2), and corner
is calculated using the simpleeroth-order lattice gas model. lls (1/4).

and 2, moving in a region of the plane. Let;(y;) and cludes an area/4. These finite-size effects are illustrated in
(X»,Y,) denote the positions of the center of mass of eachrig. 7. Another finite-size effect occurs only when the wall is
ball. LetA denote the area accessible to the center of mass ¢fear the extreme ends of the apparatus and the balls are
one ball moving in the regiofwithout the other baJl Let  trapped so that they cannot move past one another. In effect,
the excluded area per ball be denotedaynd defined as the two trapped balls cannot exchange places, thereby making
area that one ball excludes from the occupation by anothesome microstates inaccessible.
ball. For now, assume that is a constant. The number of  To incorporate the finite-size effects into a theory, we
microstates accessible to the two balls moving in this regiormodify the simple lattice gas theory described above. The
is proportional to the positional area of phase space: simple lattice theory is characterized by two parameters—the
size parameter, which is equal to the number of giesiare
é—l cells) accessible to the ball, and the exclusion parameter,
a which is equal to a constant value of (bne occupied
square. Our modified theory preserves the checkerboard na-

This continuum expression is equivalent to the lattice expresiure of the simple theory by merely modifying the values of
sion because the ratit/a is the effective number of sites of (€ two checkerboard parameters. In the modified theory, the
the lattice. The proportionality constaaf is an irrelevant number of accessmlg sites is equal to the effective number of
factor that cancels out in the ratd(x)/. square cells accgssmle_ to the center of mass c_>f the baII.'To
Y . ._keep the calculations simple, we use an effective exclusion
We have calculated the statistical probability function j, .2 atar equal to a constant valuekoThis number repre-
Psta{X) based on the simple method of counting states in theants a “mean-field” value of the possible values of the
checkerboard model. The results foN(,Ng)=(2,2) are  exclusion factor, 1}, and:. The effective exclusion factor is
shown in Fig. 6. Similar results are obtained for ##3)  an approximate average of the position-dependent exclusion
system and thé8,8) system. For each system, the overallfactors over the possible positions of the ball and the wall. In
Shape of the. theoretical CUI’VG_ matches the proflle of the €Xhis mean-field approximation’ the value %)for the lattice-
perimental histogram. The mismatch occurs near the centgfodel exclusion factor reflects the typical distribution of in-
(ends of the probability curve where the theoretical valuesterior sites(1), edge siteg1/2), and corner site§l/4) in the
are smaller(largen than the experimental values. |attice.
~ This lattice model is a simplézeroth-order approxima- It should be emphasized that this modified lattice gas
tion to the exact theory. The lattice statistics can be taught t%eory is an approxima’[e, Coarse_grained version of the exact
students in introductory physics by analogy to the statisticsheory. To keep the theoretical analysis simple and pedagogi-
of checkers on a checkerboard. One can formulate a morga| in this experimental paper, we have formulated a lattice
accurate theory by making modest corrections to this modetheory that incorporates the important finite-size effects, and
These corrections are due to the finite size of the ball. Thergt the same time preserves the simp|e structural features and
are two important finite-size effects. FirSt, the Configurationalcounting statistics of the checkerboard model. A more ana-
phase-space area accessible to one ball is equal to the regltical kinetic theory of nonideal gases, such as van der
space area accessible to the center of mass of the ball. Fgyaals theory, would be difficult to apply to a system of
example, if the moving ball is confined to a real-space areanotorized molecules because of their liquid-like concentra-
of dimensions &4 (in units of ball diametejs then the tions. Furthermore, the dynamics of a motorized molecule is
phase-space area is<8. Second, the excluded area param-not the same as the dynamics of a real molecule. A rigorous
etera of a ball depends on the position of the ball. If a ball in classical theory, based on a continuum model, would in-
the interior of the container excludes an asethen a ballon volve the computation of phase-space integrals
the edge excludes an ara#, and a ball in the corner ex- (fdqg;, dp;---dgydpy) for a system of self-propelled hard

A
J dxldylf dx, dy,=A-(A—a)=a? 3
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Fig. 9. The Boltzmann machine is a two-level dynamical system in which a
particle (ping-pong ball of mass) is free to make transitions between the
lower ground levelenergy 0 and the upper excited levétnergymgh via
collisions with its environmentmotorized ball.

IV. BOLTZMANN MACHINE

The Boltzmann factor is one of the most potent and ver-
satile factors in science. It governs the statistical mechanical
behavior of all systems in nature that are exchanging energy
with their environment. Although the Boltzmann factor is
ubiquitous in theoretical physics, direct experimental tests of
this factor are scarce.

We have designed a dynamical machine that simulates
canonical statistics and provides a simple experimental test
of the Boltzmann factor. A schematic version of this canoni-
cal simulator appears in Fig. 9. It consists of two horizontal
surfaces separated by a vertical step of heligiit motorized
ball is confined to each level. A ping-pong ball of masss
free to move from one level to the other level via collisions
with the motorized ball. The motorized ball acts as an agita-
tor. In the language of statistical mechanics, the ping-pong
ball is the system and the motorized ball is the environment.
The lower level is the ground stat8) and the upper level is
the excited statél). The system “borrows” energy from the
environment to make the transition from state 0 to state 1.
The motor-ball environment acts as a reservoir in the sense
that its average energy remains constant, independent of the
energy exchanges with the ping-pong system.

A photograph of the actual Boltzmann machine appears in
Fig. 10. Each level is constructed from a wooden board that
is 33 cm long, 29 cm wide, and 2 cm high. Each board is
made into a “boxing ring” so as to contain the balls. The
boxing ring consists of a top and a bottom tier of rubber
bands stretched between vertical nails mounted in each cor-
ner of the board. The bottom rubber-band wall confines the
ping-pong ball, while the top rubber-band wall confines the
motorized ball. The elasticity of the rubber-band walls helps

Ni, Nr=4,3(c) N., Nr=8,8. The dynamical probability is the fraction of to perpetuate the motion of the ping-pong ball. To help
the amount of timethat the wall spends at each position. The statistical gmooth out the motion around a corner, we have inserted a

probability is the fraction of theaumber of microstateaccessible to the
system of balls for each position of the wall. The experimental histogram
are measured using a motion detector. The theoretical curves are calcula

using the modified lattice gas model.

6-cm-long rubber band into the corner so as to connect the

l\elo sides of the bottom wall, thereby rounding out the square

corner. At the boundary between the levels, there is only the
top rubber-band wall. This blocks the motorized ball and
allows the ping-pong ball to pass. In effect, this boundary
wall is a “semi-permeable membrane.” To achieve a smooth
transition between the levels, we simply cover the surface

spheres moving in a planar region. The intedglm over  with a piece of paper.
position states could be computed for a small number of
spheres by directly enumeratingimulating the possible
configurations of the spheres. The integ{lm over mo-
mentum states would be a challenge to compute without a
detailed knowledge of the unnatural dynamics of the unnatu-
ral (motorized molecules.

In Fig. 8, we display the results of our modified lattice gas
theory. The agreement between the theoretical statistical
probability and the experimental dynamical probability is
good?!’” Thus, this experiment provides an illustration of the
ergodic hypothesis and the fundamental postulate of statisti-
cal mechanics.

Fig. 10. Photograph of the Boltzmann machieanonical simulatgr
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m
h E;
Ao O
Fig. 11. Parameters that characterize the Boltzmann machine are the mass
(m) of the ping-pong ball, the heiglh) of the step, the surface areay] of E QO
0

the lower level, and the surface arem ) of the upper level. The time that Q7 7

the ping-pong ball spends on each levglandt,, depends om, h a,, a; .
ping-pong P § ! P 0ot Fig. 12. The energy spectrum of the Boltzmann machine. Note the vivid

similarities between the theoretical structure of the spectrum and the physi-

. cal structure of the machine in Fig. 11. The spectral pdtts; E, and
The fundamental Boltzmann problem to be studied bot /04, correspond exactly to the machine parfighanda, /a, , respec-

experimentally and theoretically using the Boltzmann masjyeyy.
chine is depicted in Fig. 11 and defined as follows:
Given m=mass of the ping-pong bal=height of the step,

ap=area of level 0a,=area of level 1.
Find: ty=time that the ping-pong ball spends on level 0,

t,=time that the ping-pong ball spends on level 1. golf balls in the same experiment because they have different
fdynamical(collisionab interactions with the motorized ball.
In particular, because of the differences in size and elasticity,
he average speed of a ping-pong ball is different than that of
a golf ball having the same mass. The ratio of ting4,

The experiment consists of monitoring the dynamics o
the ping-pong ball. It is a simple procedure to watch the bal
and record the amounts of time that it spends on the tw

le:glshtotﬁn:jtl’r usr,:r;g a sto&\v;/tatr(;h.ﬂ(\?r}e pirson rrecr:)'rgsn that the ping-pong ball spends on the two levels is displayed
a fa othe persol ectokr)t)isf ernatively, o Fpel sct) Ct"_" in Table 1. As we will show, this ratio can be calculated
periorm the experiment Dy Tocusing on one ievel at a Imetheoretically from the Boltzmann factor. The experimental

The person randomly rolls the ping-pong ball onto the level ;) ¢ for the time ratio is obtained from the ratio of the total
and then records the time it spends on the level before malﬁmes that the ball spends on each level during the 100

ing the jump to the next level. This alternative procedure ha; mps. For example, the time ratig/t, = 1.024, correspond
. y 1— 4 y -

the advantage of requiring the use of only one motorized baing to the smallest energy stepgh=0, results from the ratio

on the level of interest. Using the same motorized ball on :

each level ensures that the distribution of speeds of the pindf to=307.6s and,=300.5s. The largest time ratig/t,
pong ball on each level is the same. This ensures that the 6-64, corresponding to the largest energy Stegi—498
average kinetic energy of the ping-pong ball, or the “tem-#J, results from the ratio dp=2109.6 s and;=317.5s. In
perature,” is the same. This preserves the canonical picturgther words, for the energy stepgh=498 uJ, the average

of statistical mechanics in which the temperature of the syslifetime of the ping-pong ball in the ground state is 21.1 s,
tem is constant. Since two motorized balls do not have exand the average lifetime in the excited state is 3.17 s.

actly the same power and dynamical behavior, the tempera- Note that the value of the energgghin Table Il is the
ture is not exactly the same on the two levels containing-haracteristic energy gap separating the levels. It is the en-
different motorized balls. In most cases, this slight differenceergy that the ping-pong ball must “borrow” from the mo-

in temperature has a neg||g|b|e effect on the experimentdprlzed ball in order to make the FranSition from the lower
results. level to the upper level. If the motion of the ping-pong ball

The results of our experiment using the Boltzmann mabeys Boltzmann statistics, then, as we discuss later, the ra-

chine are displayed in Table II. In this experiment, the areadio of timest,/t; should be an exponential function of the
of the two levels are equal. The same motorized ball is useénergy gapngh In particular, note that in Table I, there are
on each level and the measurement of the time on each levévo energy gapsmgh=329 and 333wJ) that are approxi-
is repeated 100 times. Two different masg¢@sl95 and mately equal and that correspond to two different mass-
3.278 g of ping-pong balls are used. Four different stepheight combinations, namely m;h)=(3.2789,1.025cm)
heights(0, 0.525, 1.025, and 1.550 ¢rare used. A variable- and(2.195 g, 1.550 cm For these energy gaps, the ratios of
mass ping-pong ball can be made by inserting a thintimes(ty/t;=3.39 and 3.6%are also approximately equal.
variable-length wire through a tiny hole in the ball so that the We now turn to the statistical mechanical theory that can
wire uniformly conforms to the inner spherical surface. In-explain the observed dynamical behavior of the Boltzmann
stead of ping-pong balls, we find that plastic golf balls alsomachine. In the language of quantum mechanics, the Boltz-
work well. It is important not to mix ping-pong balls and mann machine is a two-level system. The spectrum of states
of this system is pictured in Fig. 12. A pedagogical value of

_ _ the Boltzmann machine is that the two energy levels in en-
Table Il. Experimental data from the Boltzmann machine. ergy space correspond to the two board levels in real space.
Furthermore, the degeneracy of a le@imber of quantum

m© h (em moh () foty states, or area of classical phase sp#&eroportional to the
2.195 0 0 1.02 surface area of the board. Thus there is a one-to-one mapping
3.278 0 0 0.95 between the mechanical concepénergy and degeneracy
2.195 0.525 113 154 and the architectural elemer{ttep height and surface ajea
gi;g (1)822 ;gg ;-22 This correspondence is evident from looking at the machine
3278 1025 329 3.39 schema_\tlc in Fig. 11 and the atomic spectrum in Fig. 12. The
2195 1550 333 364 symbolic connection betweep the spectral parameters
3.978 1.550 498 6.64 (Eo,E1,90,0Q;) and the machine parametens,f,ay,a,)

is
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E;—Ep=mgh (10) In(to/t;)

QO a
Qy ag’

11

slope = 1/kT

This energy difference and degeneracyultiplicity) ratio
are the relevant mechanical inputs to the statistical mechani-
cal theory.

In order to compare theory with experiment, we need to
calculate the time that the ping-pong ball spends on the two
levels. According to the ergodic hypothesis of statistical
mechanics?! averages over time are equal to averages over
(phase space. An equivalent statement is that the time &ig 13 According to the canonical theofoltzmann statistiosof the
system spends in a macrostate is proportional to the volumgoitzmann machine, a graph of tg(t,) vs mghis a straight line whose
of phase space associated with the macrostate. In othelope (1kT) provides information on the temperature and whose intercept
words, the dynamical probability of a state is equal to theIn(a;/ap] provides information on the entropy.
statistical probability of the state. Hence the ratio of times
that the ping-pong ball spends on the two levels is equal to

the ratio of statistical probabilities to find the ping-pong ball  According to the canonical theory of Boltzmann, as repre-

1 intercept = In(ag/a;)

mgh

on the two levels: sented by Eq(16), a graph of Iny/t;) vs mghshould pro-
ty P duce a straight line with a slope equal t&T/and an inter-
E: P_l (12) cept equal to Irdy/a;). The slope provides information on

the energy and the intercept provides information on the en-
According to Boltzmann statistics, for any system in thermakropy. A graph of the theoretical expression in Ef6) is
equilibrium with a reservoir of temperatuiie the probability  shown in Fig. 13. A graph of the experimental data in Table
for the system to have an enerdy is P(E)=Q(E) Il is shown in Fig. 14. The data points form a straight line.
X exp(—E/KT)/Z, whereQ)(E) is the degenerack is Boltz-  The best-fit line through the points is given by the equation
mann’s constant, and is the partition functiort® Using this  In(ty/t;)=0.0038 mgh—0.024. Thus the dynamics of the
canonical probability, the ratio of times in E(L2) becomes Boltzmann machine obeys a Boltzmann distribution of tem-

a ratio of Boltzmann factors: peraturek T=260uJ:
to Qoexp(—Eq/kT) to
—= . 13 - =
t;  Qexp—E,/kT) (13 ' 0.98 exymgh260.J). (18)
This can be algebraically simplified to The degeneracy ratia,/a; =0.98 expresses the fact that the
t. O areas of the levels are equal within the uncertainties of the
2= —Oexp:(El— Eo)/KT]. (14  experiment. The area on which the motion occurs is subject
th O to experimental uncertainty due to the small transitional area
By substituting the energy difference and the multiplicity between the levels and the slightly changing shape of the
ratio from Eqgs.(10) and (11) into Eq. (14), we arrive at’ elastic walls.
fo_2 HKT 15
= a, OmHKkT). (15) ,

This is the basic theoretical equation that relates the dynam-
ics (tg,t;) of the Boltzmann machine to the hardware param-

eters of its constructionnf,h,ay,a;). We will discuss the e
temperature paramet@rlater.
For the analysis of the experimental data, it is convenient 1]
to take the logarithm of the theoretical E4.5): =
in[ 2] = L mgh in 22 16 £
N &)= iermantini 3 ) (16) 051

This expression provides an interesting relation between time
(t), energy (ngh/kT), and entropy K In a), which we denote 04
symbolically as

Time=Energy+Entropy. 05 . .
In terms of the free energy=E—TS, Eq.(16) can be writ- 0 200 400 600
ten in the condensed form mgh (uJ)
In t_O _ A_F (17) Fig. 14. The ratio of times spent on the two levels vs the energy gap
ty kT’ between the levels. The experimental data points represent the Boltzmann
machine data in Table Il. The best-fit line through the data points is a
whereAE=mghandAS=k In(a,/ay). Boltzmann distributiont, /t; = (1/1.02) exptgh260 1.J).
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What is the meaning okT=260uJ? If we assume that 15
the distribution of speeds of the ping-pong ball is a Boltz-
mann(Maxwellian) distribution, then according to the theo-
rem of equipartitiorf° the average kinetic energy of the cen-
ter of mass of the ping-pong ball moving in tw,y)
dimensions is

(3mu?)=(3muZ)+(3mvj)=3KT+3KT=KT. (19)

Intoty)

The fact that our data points for both the light and the heavy
ping-pong ball lie on the same line provides experimental
evidence that both ping-pong balls have the same “tempera-
ture.” Based on the experimental dat@lope of line
=1/260uJ), the average translational energy of both ping-

pong balls is(3mv?)=260uJ. Hence, the root-mean-square 4 , ,
speed of the light fHi=2.195g) ping-pong ball isv 0 200 400 600
=49cm/s. The root-mean-square speed of the heamy ( mgh (uJ)

=3.278 g) ping-pong ball is=40cm/s. These values of the _ _
average speeds are consistent with the estimated values cgtg\'NlE" The ratio of times spent on the two levels vs the energy gap

. e - . . - een the levels. The experimental data points are the results of an ex-
tained from a qual'tatlve observation of their motion. It is periment in which the surface area of the upper level of the Boltzmann

_Un”kely that the dis_tribUtion of speeds of the ping_—pong ballmachine is approximately twice the area of the lower level. The best-fit
is exactly Maxwellian. The dynamics of a motorized mol- jine through the data points is a Boltzmann distributioty/t;

ecule is not the same as that of a natural molecule. The (1/2.04)expingh260.J).
collision between the motorized molecule and the ping-pong
ball is not elastic. Nevertheless, one may assume an expo-
nential, quasi-Maxwellian distribution of speeds param-This theoretical fit to the experimental data agrees with the
etrized by an effective temperature paramdt®~=260uJ.  actual parameters of the Boltzmann machine, namely that the
There is other experimental evidence for a Maxwell-like dis-ratio of the areas of the levelsa{/a;) is approximately
tribution of speeds in a system of mechanically agitatedequal to3. Note that the multiplicity factof0.49 multiplying
balls®® the Boltzmann factor in Eq20) is equal to one-half of the
We have performed another experiment to test the enmultiplicity factor (0.98 in Eq. (18).
tropic contribution to the Boltzmann theory. The upper level We now describe a demonstration experiment that pro-
of the Boltzmann machine is adjusted so that it has twice theides a vivid illustration of the concepts of dynamical equi-
surface area of the lower lev&In theoretical language, this librium, transition rates, occupation numbers, and the ca-
means that there is twice the classical phase-space area, fnical ensemble. The experiment involves running the
twice the number of quantum states accessible to the pingoltzmann machine with several ping-pong balls. Instead of
pong ball when it is in the excited state. In symbols, the raticfocusing on the motion of one ball and the time it spends on
of areas isqy/a; = 3. In running the experiment, it is impor- each level, this experiment focuses on how the ensemble of
tant to place one motorized ball on the lower level and twoballs populates the levels. For example, using nine of the
motorized balls on the upper level so that the density ofight ping-pong balls ;hn=2.195¢g) in the Boltzmann ma-
motorized balls is the same on both levels. This ensures thghine with equal-area levels and the intermediate step height
the distribution of speeds of the ping-pong ball is the samgh=1.025 cm), the motion of the balls is such that, on aver-
on both levels. In effect, the “temperature” of the entire age, there are six balls on the lower level and three balls on
system is constant. This is the vital canonical constraint. Irhe upper level. This is shown schematically in Fig. 16. As a
our experiment, two boxing rings exist on the upper level,demonstration experiment, these average values represent
each confining one motorized ball. The “semi-permeableapproximate values obtained by direct observation and not
membrane” between the boxing rings blocks the motorizetb|aborate measurements. The statistical fact that the lower

ball and allows the ping-pong ball to move freely on the|evel is populated with twice the number of balls as the upper
entire surface. We measure the amount of time that the ping-

pong ball spends on the upper level before it moves to the

lower level. This measurement is repeated 100 times for the 7 i
light and heavy ping-pong balls. The time spent on the lower 0°00 % /m
level is taken from the first experiment. The experimental = =

results are graphed in Fig. 15. The data points fall on a IIr‘qkig. 16. Running the Boltzmann machine with several ping-pong balls il-
described by the equation tg(t;)=0.0038mgh—0.71. This  lustrates the concepts of transition rates, detailed balance, occupation num-
best-fit line has the same slope as in the first experiment, biers, and the canonical ensemble. For a system of nine balls and an energy
a different intercept. Thus the experimental data follow agap ofmgh=220 .J, the average lifetime of a ball on the lower led@) is

Boltzmann distribution of temperatuteT=260xJ and de- approximatef 6 s and the average lifetime on the upper le\tglis approxi-
M mately 3 s. The equilibrium state is dynamically characterized by balls

generacy ratidly/();=0.49: jumping between the levels at an average rate of approximately 1 ball/s,
both in the forward direction (1) and the reverse direction {10). The
to equilibrium state is statistically characterized by a canonical population of
—=0.49 expmgh260J). (20 the levels such that on average, six balls occupy the lower level and three
ty balls occupy the upper level.
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level is the ensemble version of the dynamical fact that eacHuctuation machine is running, the observer directly sees the
ball spends approximately twice the amount of time on thdrregular motion of a piston in a gas and the molecular col-
lower level than on the upper level. Indeed, from the Boltz-lisions that drive the motion. In essence, this device is a
mann machine data in Table I, the ratio of times for thesdarge-scale barometer, one in which the Brownian motion of
values ofmandh is ty/t;=2.16. In the language of atomic the piston can be visualized, measured, and analyzed on the
physics, the lifetime of a ball in the ground state is approxi-scale of human sensation, rather than on the anti-intuitive
mately twice the lifetime of the ball in the excited state. In (nanometerscale of atoms. Statistical mechanical concepts,
the language of quantum statistics, the occupation numbeuch as probability, average, fluctuation, and equilibrium
for the ground state is six and the occupation number for th@lso take on a life-size meaning.

excited state is three. The set of balls distributed in this Similarly, the Boltzmann machine is a life-size dynamical
way between the two levels represents a canonical enseraimulator of Boltzmann statistics. It is a working model of a
ble of balls described by the Boltzmann factor two-state atomic system in a temperature bath. The machine
exp(—mgh260.J). One can further observe that the aver-hardware mimics the spectral elements. The Boltzmann ma-
age rate(number of balls per unit timeat which balls jump ~ chine also represents a paradigm of nature—the ubiquitous
from 0 to 1 (from lower level to upper levglis approxi- ~ Process of “borrowing” energy. For most systems in nature,
mately equal to the rate at which balls jump from 1 to 0. Thethere exists a characteristic ener§y§ that the system must
delicate balance between the forward and the reverse trandiorrow from its environment in order to change its state. For
tions (for every pair of statgsis called the principle of de- example, in the atmosphere, the characteristic energy is the
tailed balancé? It is a dynamical condition for thermal equi- gravitational energymgh. In chemical reactions, the char-
librium (time-independent population of state$hus, when acteristic energy is the activation energi,f. In phase

the Boltzmann machine is run with several balls, the ob-changes, the characteristic energy is the latent featin
server can literally see the dynamical procédstailed bal- semiconductors, the characteristic energy is the energy gap
ance whereby equilibrium is maintained. At the same timE,(Eg). The Boltzmannian paradigm is as follows: The
the observer can see the statistical complement of this dy+price” that a system must pay to “borrow” an amount of
namical process, namely a canonical ensemble, or BoltzenergyAE from an environment of temperatufeis propor-

mann distribution of agitated balls. tional to exp-AE/KT). The relevant dimensionless param-
eter iISAE/KT, which can be interpreted as the ratio of the
V. CONCLUSION energy needed to the energy available. The Boltzmann ma-

. . . . chine is an archetypical device that illustrates the Boltzman-

_The experiments presented in this paper are designed {9an paradigm. The operator of the Boltzmann machine can
illustrate the fundamental concepts and principles of StatIStlmera”y see the systenfping-pong ball borrowing energy
cal mechanics. The experiments focus solely on the mechandmgh) from its environment{motorized ball, the dynamical
cal and the statistical elements of statistical mechanics. Theﬁ%echanisn{collisions responsible for the energy exchange,
are no thermal objects, such as thermometers, calorimeterg,q ine resulting quantum jumfground level to upper
or heating elements. There are no gambling objects, such §sye). Watching the Boltzmann machine in action, one sees
coins, dice, or cards. The notion of probability as the fraction, 4 hears a rather chaotic motion—balls banging into each
of time that a system spends in a state is the hallmark oher randomly bouncing off walls, and moving with a va-
statistical mechanics that distinguishes physical statisticgety of positions and velocities. It is gratifying to discover,
from mathematical statistics. This dynamical notion of prob-ph experimentally and theoretically, that there exists a sta-
ability is a common theme in the experiments presented ifigiica regularity in the dynamical data that brings an order
this paper. In each experiment, we use mechanical equiRy the chaos. This order in the dynamics is the statistics of
ment (stopwatch, motion sensorto measure Py (X) Boltzmann.
=7(x)/7. We use physical statisti¢lundamental postulate,  Many other experiments in thermal and statistical physics
Boltzmann statistigsto calculateP = Q(x)/Q. In each ex-  can be performed using motorized molecules. The diffusive
periment, we findPy,(X) = PgaX). In this sense, these ex- interaction between two gases can be studied. Liquids and
periments provide simple and direct experimental proofs ofolids can be simulated. Temperature effects can be studied
the ergodic hypothesis, the fundamental postulate, and thegy changing the speed of the molecular motor. Concepts of
statistics of Boltzmann. It should be noted that since thesé&inetic theory, such as mean-free path and diffusion, can be
experiments utilize toy molecules and not real molecules, thanalyzed. We are currently finishing experiments for future
experimental tests are toy tests and not real tests. Real tegtgblication on Brownian motion, polymer statistics, and the
of the foundations of statistical mechanics, in which the ex-equation of statépV diagram of a gas of motorized mol-
perimenter measures the motion of individual molecules irecules.
bulk matter, are virtually nonexistent. Insofar as real tests do
not exist, it is gratifying that there exists a dynamical systemACKNOWLEDGMENT
albeit a toy system, that illustrates the primitive foundations . o o
of statistical mechanics. | would I|k_e to thank William Yuh_asz for b_undlng the

The experiments are low in technology and high in pedafram_e use_d in the pressure quct_uatlon experiment and for
gogy. They can be used as demonstration equipment or &¢lping with the computer analysis.
complete laboratory experiments in both introductory and | o _
advanced physics courses. Each experiment involves a hoIislaE'le:C"‘?”'/‘_:\tma”:(g’reé‘t's@vt\‘/mdd%m('fh'edC“T 1990pp. 109-133
tic mix of experimental technique and theoretical analysis. E?rzgt”e'in?mlsesﬁgatg’r‘]"s o the thei’ry St B e .
By using “easy-to-see molecules” and simple devices t0 e New York, 1956 pp. 1-18.
measure the “time spent in a state,” the experiments providescenco Brownian Movement Apparatus, No. 71270U, Central Scientific
concrete imagery of abstract concepts. When the pressureompany, 3300 Cenco Parkway, Franklin Park, IL 60131.
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Nr=4, 2 or 6, 3, it appears thady # Tg. In the(4, 2) system, for example,
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Franklin Park17For the asymmetric systefi, , Ng=4,3), the theoretical curve is slightly

displacedabout 2 cmi to the left of the experimental histogram. Although
this may be due to the approximations in our lattice theory or a systematic
error in the experiment, it is what one would expect in view of the com-
ments in Ref. 14. A system of motorized molecules is a nonideal gas. The
energyE of this gas depends on the ar@aof confinement. A rigorous
theory of asymmetric system&(+# Ng) would need to analyze the dy-
namics of motorized molecules in order to obtain information on the en-
ergy functionE(A). Knowledge ofE(A) is needed to calculat®(x).

More specifically, the wall probability function has the general form
P(x)=Q(E_ AL ,N)Qg(Eg,Ag,Ng)/Q, where the areas and the ener-
gies depend or. For symmetric systems\( = Ng), this energy effector
momentum phase-space effeist less important because the wall spends
most of the time at values of for which the energy is approximately
constant, independent of thegaost probablgvalues ofx.

185ee Ref. 15, p. 205.
9In the canonical probability functior?(E) = Q(E)exp(—E/kT)/Z, the en-

ergy of the ping-pong ball isE=3mu2+ 3lw?+mgh In the level-

the wall spends most of the time at a position that confines the two balls to o - L N
a relatively small area, on the order of a couple of ball diameters in width. probability ratio Po/P,, the kinetic energy contribution cancels because

Based on observation, trapped balls tend to be less agitated. They have éhe set of momentum states in phase space for the ball on Fhe .Iower level
smaller mean free path. Trapped balls move with a smaller average trans-'S €dual to the set on the upper level. The relevant contribution to the
lational speed because they do not have enough area on which to gairphysmal statistics comes from the set of position states in phase space for

momentum by rolling in the optimal orientatiofalong the O-ringg A

each level which is characterized by an energy differemcgh and an

molecule moving with a smaller speed exerts a smaller force on the wall, entropy difference In(a; /ap).
In effect, the “temperature” depends on the area of the gas. Thus, for thé°See Ref. 15, pp. 248-250.

most probable state of asymmetrical systemNs # Ng), we conjecture

2

We have constructed a “variable-entropy” Boltzmann machine whose

that the gas in the left area and the gas in the right area are at differentupper level can be adjusted to form regions of different shapes and sizes.

“temperatures.” The equation of state of each gas has the formT,
where bothn andT depend on the positionof the wall. For two gases at
different temperatures, the mechanical equilibrium conditmrs pg, as-
sumes the fornm T, =ngTg. Thus, if T, >Tg, thenn <ng. In physical

The upper level consists of a large board, approximately twice the length

of the lower board. A series of nails mounted along the perimeter of the

upper board allows the operator to stretch elastic bands between different
nails, thereby changing the geometry of the upper level.

(kinetic theory terms, if the molecules in the right area are moving slower ?’See Ref. 15, pp. 548—553.
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