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Experiments in statistical mechanics
Jeffrey J. Prentisa)

Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, Michigan 48128

~Received 30 June 2000; accepted 21 July 2000!

We present experiments designed to illustrate the basic concepts of statistical mechanics using a gas
of ‘‘motorized molecules.’’ Two molecular motion machines are constructed. The pressure
fluctuation machine~mechanical interaction simulator! is a working model of two gases separated
by a movable piston. The Boltzmann machine~canonical simulator! is a working model of a
two-level quantum system in a temperature bath. Dynamical probabilities~fraction of time! are
measured using mechanical devices, such as stop watches and motion sensors. Statistical
probabilities~fraction of states! are calculated using physical statistics, such as microcanonical and
canonical statistics. The experiments enable one to quantitatively test the fundamental principles of
statistical mechanics, including the fundamental postulate, the ergodic hypothesis, and the statistics
of Boltzmann. © 2000 American Association of Physics Teachers.
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I. INTRODUCTION

If you measure the pressurep, volumeV, mole numbern,
and temperatureT of a gas in equilibrium and discover tha
pV5nRT, then this can be considered to be an indirect
perimental test of the principles of statistical mechanics
you could measure the amount of timet(E) that a molecule
of the gas spends in a quantum state of energyE and dis-
cover thatt(E);exp(2E/kT), then this would be a direc
experimental proof of the basic principles of statistical m
chanics, namely the ergodic hypothesis and Boltzmann
tistics. The experiment that measuresp, V, n, and T is a
macroscopic experiment in thermodynamics. The theoret
journey that goes fromt(E);exp(2E/kT) to pV5nRT is a
long trek on a winding road. The experiment that measu
t(E) is a microscopic experiment in pure statistic
mechanics—an experiment that focuses solely on statis
and mechanical concepts, without reference to thermal c
cepts. The primitive mechanical concepts are ‘‘time spen
a state’’ and ‘‘energy of a particle.’’ The primitive statistica
concept is ‘‘Boltzmann statistics.’’

In general, statistical mechanics is characterized by
mechanics of particles and the statistics of states. The b
mechanical object is the state of the system as a functio
time: s(t). All mechanical quantities, such as energy, depe
on s(t). The basic statistical object is the probability of th
state:Ps . All statistical quantities, such as average and fl
tuation, are determined fromPs . In contrast to statistica
mechanics, the subject of thermodynamics is character
by a set of thermal objects that describe the thermal pro
ties of bulk matter: temperatureT, pressurep, heatQ, work
W, energyU, and entropyS.

An experiment in equilibrium statistical mechanics in
purest form is one in whichs(t) and Ps are directly mea-
sured. Such a pure statistical mechanics experiment, ‘‘unc
taminated’’ by thermal quantities, is rare. This is understa
able given the impossibility of experimentally monitoring th
dynamical behavior of each particle in a molar sample
matter. Thus in general,s(t) and Ps are not observable. In
fact, there exist several theoretical probability functionsPs
~microcanonical, canonical, grand canonical! that yield, via a
sum over states, the same thermodynamical observables~av-
erages!. In contrast to the scarcity of experiments in statis
1073 Am. J. Phys.68 ~12!, December 2000 http://ojps.aip.or
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cal mechanics, experiments in thermodynamics are comm
place. In the macroscopic world of thermal physics, th
exist plenty of instruments that can readily measure the th
mal properties of matter. Thermometers measureT, barom-
eters measurep, and calorimeters measureQ. Unfortunately,
there do not exist instruments to measure the mechanical
the statistical properties. It would be wonderful if there e
isted a ‘‘state-ometer’’ to measure s(t) and a ‘‘prob-
ometer’’ to measurePs .

A few experiments in statistical mechanics exist. Perh
the best known experiment is Brownian motion, first pe
formed by Jean Perrin1 and analyzed by Albert Einstein2 as a
proof of molecular reality. Demonstration apparatus is co
mercially available in which the Brownian motion of smok
particles is observed using a microscope.3 A laboratory ex-
periment for undergraduate students has been develope
study the Brownian motion of polystyrene microspheres
water.4 A random walk experiment using a toy ball has be
performed to illustrate the energy outflow in stars.5 Another
experiment for the undergraduate laboratory is the sedim
tation equilibrium of colloidal suspensions, whereby sm
plastic spheres suspended in a fluid form a miniat
atmosphere.6 This type of experiment was suggested by E
stein and first performed by Perrin. The concentration
spheres is measured at different heights and found to ob
Boltzmann distribution. Demonstration equipment is a
commercially available which illustrates the random moti
of molecules by shaking a system of small balls.7 Similar
equipment has been used to perform quantitative exp
ments which measure the velocity8,9 and height9 distribution
of the ‘‘gas’’ of agitated balls. A transistor experiment th
demonstrates the canonical distribution has recently b
described.10

In this paper, we present two complete experiments
pure statistical mechanics—the pressure fluctuation mac
and the Boltzmann machine. Each experiment involves a
namical system whose mechanicals(t) and statisticalPs
properties are measured and analyzed.

II. THE SCIENCE OF STATISTICAL MECHANICS

In every branch of science, the scientific method gener
consists of three basic ingredients:~1! Perform an experi-
ment.~2! Formulate a theory.~3! Compare the experimenta
1073g/ajp/ © 2000 American Association of Physics Teachers
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observations with the theoretical predictions. For the purp
of organizing our experiments into a coherent whole,
define the science of statistical mechanics as follows. Lx
denote the variable that labels the macrostate of a sys
Let t denote the total amount of time that the dynamics
the system is monitored andt(x) the amount of time that the
system spends in the macrostatex. Let V denote the total
number of microstates accessible to the isolated system
V(x) denote the number of microstates accessible to the
tem when it is in the macrostatex. The scientific method of
statistical mechanics consists of the following ingredients

~1! Experiment: Measure the timet(x) and construct the
dynamical probabilityPdyn(x)5t(x)/t.

~2! Theory: Count the statesV(x) and construct the statis
tical probabilityPstat(x)5V(x)/V.

~3! Experiment versus theory: IsPdyn(x)5Pstat(x)?

Note that the dynamical probability,t(x)/t, is a fraction of
theamount of time, while the statistical probability,V(x)/V,
is a fraction of thenumber of states. The conjectured equality
of these two probabilities is a statement of the ergo
hypothesis.11 Any experiment for whicht(x) can be mea-
sured andV(x) can be computed provides an experimen
test of the ergodic hypothesis. In this paper, we meas
Pdyn(x), calculatePstat(x), and showPdyn(x)5Pstat(x).

In the standard undergraduate treatment of equilibri
statistical mechanics, the focus is on the statistics, rather
the mechanics. There is little discussion of the dynam
evolution of the states(t), the dynamical probabilityt(x)/t,
the dynamical origin of the fundamental statistical postula
or the ergodic hypothesis. And yet, these temporal featu
are the vital mechanical ideas that underlie all the statist
arguments and concepts. Although the thermodynamic
servables of a macroscopic system in thermodynamic e
librium are independent of time, the constituent particles
the system are forever moving through time. The fraction
time that the system spends in a state is the mechanica
gin of the notion of probability in statistical mechanics.
our experiments, the dynamical objects,s(t) and Pdyn(x)
5t(x)/t, are directly measured using mechanical devic
such as rulers and clocks.

The key mechanical hardware in all our experiments i
motorized ball, known commercially as a Squiggle Ball™12

The ball has a mass of 120 g and a radius of 4 cm. It cons
of a plastic spherical shell in which there is a batte
powered motor mounted along the axis. The motor rota
the shell at approximately 3 rev/s around the axis. Wh
placed on a surface, the ball rolls, mostly without slip.
small rubber O-ring around the circumference of the sh
provides the optimal grip. The maximum speed of the cen
of mass is approximately 1 m/s. When the ball collides w
a wall, it rebounds in a random direction. When placed
the floor of a room with furniture or other obstacles, the b
will continue to move, never getting stuck anywhere. T
ball moves with a distribution of speeds. Over time, the b
will eventually visit every square centimeter~cell! of the
floor ~phase space!. In this sense, the ball dynamics is e
godic. Given the random and ergodic motion of this se
propelled ball, we call this ball a ‘‘motorized molecule.’’
1074 Am. J. Phys., Vol. 68, No. 12, December 2000
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III. PRESSURE FLUCTUATION MACHINE

In this experiment, we study the mechanical interact
between two gases of motorized molecules. A picture of
apparatus is shown in Fig. 1. It consists of a rectangu
frame constructed from PVC pipe~1/2 in. diameter!. The
frame is 68 cm long and 34 cm wide. In units of ball diam
eters, the frame is approximately eight balls long and fo
balls wide. The frame is elevated 6 cm above the grou
using four PVC legs at each corner. The frame is placed o
level surface and the motorized molecules move on the
face within the rectangular frame. A movable wall, whic
acts as a piston, partitions the rectangular region into
regions. The wall consists of a 32-cm-long PVC pipe~3/4 in.
diameter! fitted with t-joint connectors at each end. Eac
long pipe of the frame loosely fits through the hollow co
nectors allowing the joints to slide over the pipe and the w
to move freely. Many other mechanisms can be utilized
the sliding wall. We have also used pulleys riding on gui
wires. Sliding-drawer tracks will also work. This apparatu
consisting of a rectangular frame, sliding wall, and mot
ized balls, constitutes a pressure-fluctuation machine
simulates the mechanical interaction between two ga
separated by a movable piston.

The fundamental problem to be investigated both exp
mentally and theoretically with the mechanical interacti
simulator is depicted in Fig. 2 and defined as follows:
Given: NL[Number of balls on the left andNR[Number of

balls on the right.
Find: P(x)[Probability that the wall is at the positionx.

The experiment consists of placingNL motorized mol-
ecules in the left area andNR motorized molecules in the
right area, and monitoring the motion of the wall. The po
tion of the wall as a function of time,x(t), is measured using
a motion detector. Such motion sensors are commerci

Fig. 1. Photograph of the pressure fluctuation machine~mechanical interac-
tion simulator!.

Fig. 2. Mechanical interaction between two gases of motorized molecu
The left gas hasNL53 molecules and the right gas hasNR52 molecules.
The positionx of the wall ~piston! is the time-dependent variable that cha
acterizes the fluctuating macrostate.
1074Jeffrey J. Prentis
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available and widely used in introductory physi
laboratories.13 A small flag mounted on the wall provides th
target for the sound pulses emanating from the motion de
tor. The motion detector collected data at the rate of
pulses per second. To minimize errors, the surface shoul
level, the frame should be stationary, the wall friction sho
be minimal and uniform, the batteries should be uniform
power, and the motion detector should be accurately zer

We performed experiments to measure the dynamics
the wall for three different systems: (NL ,NR)5(2,2), ~4, 3!,
and~8, 8!. The position of the wallx(t) as a function of time
for these systems during the first 100 s is graphed in Fig
A qualitative inspection of these world lines reveals that
average position of the wall is near the center of the app
tus for the~2, 2! and ~8, 8! systems, and shifted to the righ
of center for the asymmetrical~4, 3! system. Furthermore
the fluctuations around the average position decrease as
motorized molecules are added to the system.

The dynamical data for the positionx(t) of the wall can be
represented as a probability distribution. In particular, we
a spreadsheet to convert the columns of thex vs t data into a
histogram that gives the timet(x) that the wall spends at
position betweenx andx1Dx. We have chosen the bin in

Fig. 3. Dynamics of the moving wall~position as a function of time! as
measured with a motion detector for three different systems:~a! NL , NR

52,2 ~b! NL , NR54,3 ~c! NL , NR58,8.
1075 Am. J. Phys., Vol. 68, No. 12, December 2000
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terval Dx to be 2 cm, which is one-fourth the diameter of
ball. The dynamical probability to find the wall at a positio
betweenx andx1Dx is

Pdyn~x!5
t~x!

t
, ~1!

wheret is the total observation time given by

t5(
x

t~x!. ~2!

For the~2, 2! system and the~4, 3! system, we monitor the
dynamics fort530 min. For the~8, 8! system, the observa
tion time ist545 min. The dynamical probability function
Pdyn(x) for these experiments are graphed in Fig. 4. T
probability functions,Pdyn(x), in Fig. 4 exhibit the statistica
content of the dynamical functions,x(t), in Fig. 3. In the
experiments, one can vary the observation timet. In the
analysis, one can vary the bin intervalDx. We find that
running the experiment for much shorter times, such at

Fig. 4. Dynamical probability that the wall is at the positionx for three
different systems:~a! NL , NR52,2 ~b! NL , NR54,3 ~c! NL , NR58,8. The
dynamical probability is the fraction of time that the wall spends at
positionx. The probability graphsP(x) represent the statistical behavior o
the mechanical graphsx(t) in Fig. 3.
1075Jeffrey J. Prentis
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55 min, produces similar statistics—the same overall sh
of Pdyn(x) with similar average and fluctuation. Evidentl
this time interval is sufficient to allow the system to cove
region of phase space that is a representative sample o
exact equilibrium distribution.

The averagêx& and the fluctuations can readily be com-
puted from the dynamical functionx(t) by summing over
time, or equivalently from the statistical functionPdyn(x) by
summing over states:

^x&[(
x

Pdyn~x!x, ~3!

s2[(
x

Pdyn~x!~x2^x&!2. ~4!

The experimental values of these statistical descriptors
listed in Table I. As expected, the average position^x& of the
wall is located at the center of the container for the~2, 2!
system and the~8, 8! system, and displaced to the right of th
center for the~4, 3! system. The fluctuationss around the
average are smaller for systems with a larger number of m
ecules. In particular, the relative fluctuations/^x& for the ~2,
2!, ~4, 3!, and ~8, 8! systems are 29%, 20%, and 12%, r
spectively. The values of the average position of the wall t
we have measured are such that when the wall is at th
positions, the concentration of molecules~number per area!
in the left area is equal to the concentration in the right ar
nL5nR . The equality ofnL andnR has a theoretical expla
nation, assuming that a system of motorized molecules ob
a two-dimensional ideal-gas equation of state of the formp
5nT, wherep is the pressure~force per unit length! on the
wall. We also assume that the ‘‘temperature’’T is constant
(TL5TR) because the average speed of a motorized m
ecule is constant.14 Given these assumptions, the equality
concentrations,nL5nR , is equivalent to the equality of pres
sures,pL5pR . This is the statistical mechanical principle
mechanical equilibrium—the average~most probable! posi-
tion of the wall occurs at a value for which the average fo
on the wall due to the left molecules is equal and opposit
the average force due to the right molecules. Thus our
perimental results are consistent with the theoretical co
tion for the mechanical equilibrium of two interacting gas
at constant temperature.

We now turn to the statistical mechanical theory that c
explain the dynamical details~not just the average values! of
the observed behavior of the fluctuating wall. The statisti
probability to find the wall at a positionx is

Pstat~x!5
V~x!

V
, ~5!

whereV(x) is the number of microstates accessible to
system of balls when the wall is atx and V is the total
number of microstates given by

Table I. Statistical parameters from the pressure fluctuation experimen

NL ,NR ^x& ~cm! s ~cm!

2, 2 33.5 9.64
4, 3 39.0 7.71
8, 8 33.3 4.12
1076 Am. J. Phys., Vol. 68, No. 12, December 2000
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V~x!. ~6!

Equation~5! is a symbolic statement of the fundamental po
tulate of statistical mechanics.15 In general, the fundamenta
postulate states that for an isolated system in equilibriu
each accessible microstate is equally probable. The num
of microstates accessible to the composite system is a p
uct of the number of microstates accessible to each s
system:

V~x!5VL~x,NL!•VR~x,NR!. ~7!

Thus to calculate the statistical probabilityPstat(x), one must
count states.

The simplest model whose states can readily be enum
ated is a lattice gas. Imagine partitioning the total area
cessible to the moving balls into a lattice of sites, or a che
erboard of square cells as shown in Fig. 5. The length of
edge of each cell is equal to the diameter of the ball. T
balls occupy the cells of the lattice, just as checkers occ
the squares of a checkerboard. Two balls cannot occupy
same cell. This digitization of the continuous area into
lattice of cells~sites! simplifies the counting of states. As a
example, consider the situation shown in Fig. 5. The wal
at the lattice positionx55. In the left area, there areNL

53 balls moving on 20 squares. In the right area, there
NR52 balls moving on 12 squares. The total number
microstatesV(x) accessible to this system when the wall
at x55 is

V~5!5VL•VR , ~8!

where

VL520•19•18,

VR512•11.

Thus, for the macrostateNL53, NR52, x55, the number of
microstates isV(x)5902,880. For positions of the wall tha
lie between the integer-valued lattice positions, one can
use this integer-valued counting algorithm. When the po
tion of the wall changes by one bin interval distanceDx
52 cm, which is one-fourth the length of a cell, the ar
accessible to a ball changes by one lattice cell area. Thus
number of effective sites in the lattice takes on an inte
value for each of the discrete values of the wall positionx.

To justify this lattice model, we turn to classical statistic
mechanics where the number of microstates is proportio
to the area of phase space.16 Consider two balls, labeled 1

Fig. 5. Lattice~checkerboard! gas model of the mechanical interaction b
tween two gases of motorized molecules.
1076Jeffrey J. Prentis
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and 2, moving in a region of the plane. Let (x1 ,y1) and
(x2 ,y2) denote the positions of the center of mass of e
ball. LetA denote the area accessible to the center of mas
one ball moving in the region~without the other ball!. Let
the excluded area per ball be denoted bya and defined as the
area that one ball excludes from the occupation by ano
ball. For now, assume thata is a constant. The number o
microstates accessible to the two balls moving in this reg
is proportional to the positional area of phase space:

E dx1 dy1E dx2 dy25A•~A2a!5a2S A

a D •S A

a
21D .

~9!

This continuum expression is equivalent to the lattice exp
sion because the ratioA/a is the effective number of sites o
the lattice. The proportionality constanta2 is an irrelevant
factor that cancels out in the ratioV(x)/V.

We have calculated the statistical probability functi
Pstat(x) based on the simple method of counting states in
checkerboard model. The results for (NL ,NR)5(2,2) are
shown in Fig. 6. Similar results are obtained for the~4,3!
system and the~8,8! system. For each system, the over
shape of the theoretical curve matches the profile of the
perimental histogram. The mismatch occurs near the ce
~ends! of the probability curve where the theoretical valu
are smaller~larger! than the experimental values.

This lattice model is a simple~zeroth-order! approxima-
tion to the exact theory. The lattice statistics can be taugh
students in introductory physics by analogy to the statis
of checkers on a checkerboard. One can formulate a m
accurate theory by making modest corrections to this mo
These corrections are due to the finite size of the ball. Th
are two important finite-size effects. First, the configuratio
phase-space area accessible to one ball is equal to the
space area accessible to the center of mass of the ball
example, if the moving ball is confined to a real-space a
of dimensions 634 ~in units of ball diameters!, then the
phase-space area is 533. Second, the excluded area para
etera of a ball depends on the position of the ball. If a ball
the interior of the container excludes an areaa, then a ball on
the edge excludes an areaa/2, and a ball in the corner ex

Fig. 6. Experimental dynamical probability~histogram! vs theoretical sta-
tistical probability ~curve! for the system withNL , NR52,2. The experi-
mental histogram is measured using a motion sensor. The theoretical
is calculated using the simple~zeroth-order! lattice gas model.
1077 Am. J. Phys., Vol. 68, No. 12, December 2000
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cludes an areaa/4. These finite-size effects are illustrated
Fig. 7. Another finite-size effect occurs only when the wall
near the extreme ends of the apparatus and the balls
trapped so that they cannot move past one another. In ef
two trapped balls cannot exchange places, thereby ma
some microstates inaccessible.

To incorporate the finite-size effects into a theory, w
modify the simple lattice gas theory described above. T
simple lattice theory is characterized by two parameters—
size parameter, which is equal to the number of sites~square
cells! accessible to the ball, and the exclusion parame
which is equal to a constant value of 1~one occupied
square!. Our modified theory preserves the checkerboard
ture of the simple theory by merely modifying the values
the two checkerboard parameters. In the modified theory,
number of accessible sites is equal to the effective numbe
square cells accessible to the center of mass of the ball
keep the calculations simple, we use an effective exclus
parameter equal to a constant value of1

2. This number repre-
sents a ‘‘mean-field’’ value of the possible values of t
exclusion factor, 1,12, and 1

4. The effective exclusion factor is
an approximate average of the position-dependent exclu
factors over the possible positions of the ball and the wall
this mean-field approximation, the value of1

2 for the lattice-
model exclusion factor reflects the typical distribution of i
terior sites~1!, edge sites~1/2!, and corner sites~1/4! in the
lattice.

It should be emphasized that this modified lattice g
theory is an approximate, coarse-grained version of the e
theory. To keep the theoretical analysis simple and pedag
cal in this experimental paper, we have formulated a latt
theory that incorporates the important finite-size effects, a
at the same time preserves the simple structural features
counting statistics of the checkerboard model. A more a
lytical kinetic theory of nonideal gases, such as van
Waals theory, would be difficult to apply to a system
motorized molecules because of their liquid-like concent
tions. Furthermore, the dynamics of a motorized molecule
not the same as the dynamics of a real molecule. A rigor
classical theory, based on a continuum model, would
volve the computation of phase-space integr
(*dq1 dp1¯dqN dpN) for a system of self-propelled har

rve

Fig. 7. Finite-size effects in the lattice-gas theory. The area accessible t
center of mass of a ball is the area enclosed by the dashed square. F
434 lattice, this accessible~phase-space! area is equivalent to the geometri
area of a 333 lattice. Cellular subsets of this area are labeled by the va
of the exclusion parameter for interior cells~1!, edge cells~1/2!, and corner
cells ~1/4!.
1077Jeffrey J. Prentis
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spheres moving in a planar region. The integral~sum! over
position states could be computed for a small number
spheres by directly enumerating~simulating! the possible
configurations of the spheres. The integral~sum! over mo-
mentum states would be a challenge to compute withou
detailed knowledge of the unnatural dynamics of the unna
ral ~motorized! molecules.

In Fig. 8, we display the results of our modified lattice g
theory. The agreement between the theoretical statis
probability and the experimental dynamical probability
good.17 Thus, this experiment provides an illustration of t
ergodic hypothesis and the fundamental postulate of sta
cal mechanics.

Fig. 8. Experimental dynamical probability~histogram! vs theoretical sta-
tistical probability~curve! for three different systems:~a! NL , NR52,2 ~b!
NL , NR54,3 ~c! NL , NR58,8. The dynamical probability is the fraction o
the amount of timethat the wall spends at each position. The statisti
probability is the fraction of thenumber of microstatesaccessible to the
system of balls for each position of the wall. The experimental histogra
are measured using a motion detector. The theoretical curves are calcu
using the modified lattice gas model.
1078 Am. J. Phys., Vol. 68, No. 12, December 2000
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IV. BOLTZMANN MACHINE

The Boltzmann factor is one of the most potent and v
satile factors in science. It governs the statistical mechan
behavior of all systems in nature that are exchanging ene
with their environment. Although the Boltzmann factor
ubiquitous in theoretical physics, direct experimental tests
this factor are scarce.

We have designed a dynamical machine that simula
canonical statistics and provides a simple experimental
of the Boltzmann factor. A schematic version of this cano
cal simulator appears in Fig. 9. It consists of two horizon
surfaces separated by a vertical step of heighth. A motorized
ball is confined to each level. A ping-pong ball of massm is
free to move from one level to the other level via collisio
with the motorized ball. The motorized ball acts as an ag
tor. In the language of statistical mechanics, the ping-po
ball is the system and the motorized ball is the environme
The lower level is the ground state~0! and the upper level is
the excited state~1!. The system ‘‘borrows’’ energy from the
environment to make the transition from state 0 to state
The motor-ball environment acts as a reservoir in the se
that its average energy remains constant, independent o
energy exchanges with the ping-pong system.

A photograph of the actual Boltzmann machine appear
Fig. 10. Each level is constructed from a wooden board t
is 33 cm long, 29 cm wide, and 2 cm high. Each board
made into a ‘‘boxing ring’’ so as to contain the balls. Th
boxing ring consists of a top and a bottom tier of rubb
bands stretched between vertical nails mounted in each
ner of the board. The bottom rubber-band wall confines
ping-pong ball, while the top rubber-band wall confines t
motorized ball. The elasticity of the rubber-band walls he
to perpetuate the motion of the ping-pong ball. To he
smooth out the motion around a corner, we have inserte
6-cm-long rubber band into the corner so as to connect
two sides of the bottom wall, thereby rounding out the squ
corner. At the boundary between the levels, there is only
top rubber-band wall. This blocks the motorized ball a
allows the ping-pong ball to pass. In effect, this bounda
wall is a ‘‘semi-permeable membrane.’’ To achieve a smo
transition between the levels, we simply cover the surfa
with a piece of paper.

l

s
ted

Fig. 9. The Boltzmann machine is a two-level dynamical system in whic
particle ~ping-pong ball of massm! is free to make transitions between th
lower ground level~energy 0! and the upper excited level~energymgh! via
collisions with its environment~motorized ball!.

Fig. 10. Photograph of the Boltzmann machine~canonical simulator!.
1078Jeffrey J. Prentis
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The fundamental Boltzmann problem to be studied b
experimentally and theoretically using the Boltzmann m
chine is depicted in Fig. 11 and defined as follows:
Given: m[mass of the ping-pong ball,h[height of the step,

a0[area of level 0,a1[area of level 1.
Find: t0[time that the ping-pong ball spends on level 0,

t1[time that the ping-pong ball spends on level 1.

The experiment consists of monitoring the dynamics
the ping-pong ball. It is a simple procedure to watch the b
and record the amounts of time that it spends on the
levels, t0 and t1 , using a stopwatch. One person recordst0

and another person recordst1 . Alternatively, one person ca
perform the experiment by focusing on one level at a tim
The person randomly rolls the ping-pong ball onto the le
and then records the time it spends on the level before m
ing the jump to the next level. This alternative procedure
the advantage of requiring the use of only one motorized
on the level of interest. Using the same motorized ball
each level ensures that the distribution of speeds of the p
pong ball on each level is the same. This ensures that
average kinetic energy of the ping-pong ball, or the ‘‘te
perature,’’ is the same. This preserves the canonical pic
of statistical mechanics in which the temperature of the s
tem is constant. Since two motorized balls do not have
actly the same power and dynamical behavior, the temp
ture is not exactly the same on the two levels contain
different motorized balls. In most cases, this slight differen
in temperature has a negligible effect on the experime
results.

The results of our experiment using the Boltzmann m
chine are displayed in Table II. In this experiment, the ar
of the two levels are equal. The same motorized ball is u
on each level and the measurement of the time on each
is repeated 100 times. Two different masses~2.195 and
3.278 g! of ping-pong balls are used. Four different st
heights~0, 0.525, 1.025, and 1.550 cm! are used. A variable-
mass ping-pong ball can be made by inserting a th
variable-length wire through a tiny hole in the ball so that t
wire uniformly conforms to the inner spherical surface. I
stead of ping-pong balls, we find that plastic golf balls a
work well. It is important not to mix ping-pong balls an

Fig. 11. Parameters that characterize the Boltzmann machine are the
~m! of the ping-pong ball, the height~h! of the step, the surface area (a0) of
the lower level, and the surface area (a1) of the upper level. The time tha
the ping-pong ball spends on each level,t0 andt1 , depends onm, h, a0 , a1 .

Table II. Experimental data from the Boltzmann machine.

m ~g! h ~cm! mgh ~mJ! t0 /t1

2.195 0 0 1.02
3.278 0 0 0.95
2.195 0.525 113 1.54
3.278 0.525 169 1.83
2.195 1.025 220 2.16
3.278 1.025 329 3.39
2.195 1.550 333 3.64
3.278 1.550 498 6.64
1079 Am. J. Phys., Vol. 68, No. 12, December 2000
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golf balls in the same experiment because they have diffe
dynamical~collisional! interactions with the motorized ball
In particular, because of the differences in size and elastic
the average speed of a ping-pong ball is different than tha
a golf ball having the same mass. The ratio of timest0 /t1
that the ping-pong ball spends on the two levels is displa
in Table II. As we will show, this ratio can be calculate
theoretically from the Boltzmann factor. The experimen
value for the time ratio is obtained from the ratio of the to
times that the ball spends on each level during the 1
jumps. For example, the time ratiot0 /t151.024, correspond-
ing to the smallest energy stepmgh50, results from the ratio
of t05307.6 s andt15300.5 s. The largest time ratiot0 /t1

56.64, corresponding to the largest energy stepmgh5498
mJ, results from the ratio oft052109.6 s andt15317.5 s. In
other words, for the energy stepmgh5498 mJ, the average
lifetime of the ping-pong ball in the ground state is 21.1
and the average lifetime in the excited state is 3.17 s.

Note that the value of the energymgh in Table II is the
characteristic energy gap separating the levels. It is the
ergy that the ping-pong ball must ‘‘borrow’’ from the mo
torized ball in order to make the transition from the low
level to the upper level. If the motion of the ping-pong ba
obeys Boltzmann statistics, then, as we discuss later, the
tio of times t0 /t1 should be an exponential function of th
energy gapmgh. In particular, note that in Table II, there ar
two energy gaps~mgh5329 and 333mJ! that are approxi-
mately equal and that correspond to two different ma
height combinations, namely (m,h)5(3.278 g,1.025 cm)
and~2.195 g, 1.550 cm!. For these energy gaps, the ratios
times ~t0 /t153.39 and 3.64! are also approximately equal.

We now turn to the statistical mechanical theory that c
explain the observed dynamical behavior of the Boltzma
machine. In the language of quantum mechanics, the Bo
mann machine is a two-level system. The spectrum of st
of this system is pictured in Fig. 12. A pedagogical value
the Boltzmann machine is that the two energy levels in
ergy space correspond to the two board levels in real sp
Furthermore, the degeneracy of a level~number of quantum
states, or area of classical phase space! is proportional to the
surface area of the board. Thus there is a one-to-one map
between the mechanical concepts~energy and degeneracy!
and the architectural elements~step height and surface area!.
This correspondence is evident from looking at the mach
schematic in Fig. 11 and the atomic spectrum in Fig. 12. T
symbolic connection between the spectral parame
(E0 ,E1 ,V0 ,V1) and the machine parameters (m,h,a0 ,a1)
is

ass

Fig. 12. The energy spectrum of the Boltzmann machine. Note the v
similarities between the theoretical structure of the spectrum and the ph
cal structure of the machine in Fig. 11. The spectral parts,E12E0 and
V1 /V0 , correspond exactly to the machine parts,mghanda1 /a0 , respec-
tively.
1079Jeffrey J. Prentis
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E12E05mgh, ~10!

V1

V0
5

a1

a0
. ~11!

This energy difference and degeneracy~multiplicity! ratio
are the relevant mechanical inputs to the statistical mech
cal theory.

In order to compare theory with experiment, we need
calculate the time that the ping-pong ball spends on the
levels. According to the ergodic hypothesis of statisti
mechanics,11 averages over time are equal to averages o
~phase! space. An equivalent statement is that the time
system spends in a macrostate is proportional to the vol
of phase space associated with the macrostate. In o
words, the dynamical probability of a state is equal to
statistical probability of the state. Hence the ratio of tim
that the ping-pong ball spends on the two levels is equa
the ratio of statistical probabilities to find the ping-pong b
on the two levels:

t0

t1
5

P0

P1
. ~12!

According to Boltzmann statistics, for any system in therm
equilibrium with a reservoir of temperatureT, the probability
for the system to have an energyE is P(E)5V(E)
3exp(2E/kT)/Z, whereV(E) is the degeneracy,k is Boltz-
mann’s constant, andZ is the partition function.18 Using this
canonical probability, the ratio of times in Eq.~12! becomes
a ratio of Boltzmann factors:

t0

t1
5

V0 exp~2E0 /kT!

V1 exp~2E1 /kT!
. ~13!

This can be algebraically simplified to

t0

t1
5

V0

V1
exp@~E12E0!/kT#. ~14!

By substituting the energy difference and the multiplic
ratio from Eqs.~10! and ~11! into Eq. ~14!, we arrive at19

t0

t1
5

a0

a1
exp~mgh/kT!. ~15!

This is the basic theoretical equation that relates the dyn
ics (t0 ,t1) of the Boltzmann machine to the hardware para
eters of its construction (m,h,a0 ,a1). We will discuss the
temperature parameterT later.

For the analysis of the experimental data, it is conveni
to take the logarithm of the theoretical Eq.~15!:

lnS t0

t1
D5

1

kT
mgh1 lnS a0

a1
D . ~16!

This expression provides an interesting relation between t
(t), energy (mgh/kT), and entropy (k ln a), which we denote
symbolically as

Time⇔Energy1Entropy.

In terms of the free energyF[E2TS, Eq. ~16! can be writ-
ten in the condensed form

lnS t0

t1
D5

DF

kT
, ~17!

whereDE5mghandDS5k ln(a1 /a0).
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According to the canonical theory of Boltzmann, as rep
sented by Eq.~16!, a graph of ln(t0 /t1) vs mgh should pro-
duce a straight line with a slope equal to 1/kT and an inter-
cept equal to ln(a0 /a1). The slope provides information o
the energy and the intercept provides information on the
tropy. A graph of the theoretical expression in Eq.~16! is
shown in Fig. 13. A graph of the experimental data in Ta
II is shown in Fig. 14. The data points form a straight lin
The best-fit line through the points is given by the equat
ln(t0 /t1)50.0038 mgh20.024. Thus the dynamics of th
Boltzmann machine obeys a Boltzmann distribution of te
peraturekT5260mJ:

t0

t1
50.98 exp~mgh/260mJ!. ~18!

The degeneracy ratioa0 /a150.98 expresses the fact that th
areas of the levels are equal within the uncertainties of
experiment. The area on which the motion occurs is sub
to experimental uncertainty due to the small transitional a
between the levels and the slightly changing shape of
elastic walls.

Fig. 13. According to the canonical theory~Boltzmann statistics! of the
Boltzmann machine, a graph of ln(t0 /t1) vs mgh is a straight line whose
slope (1/kT) provides information on the temperature and whose interc
@ ln(a0 /a1)# provides information on the entropy.

Fig. 14. The ratio of times spent on the two levels vs the energy
between the levels. The experimental data points represent the Boltzm
machine data in Table II. The best-fit line through the data points i
Boltzmann distribution,t0 /t15(1/1.02)exp(mgh/260mJ).
1080Jeffrey J. Prentis
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What is the meaning ofkT5260mJ? If we assume tha
the distribution of speeds of the ping-pong ball is a Bol
mann~Maxwellian! distribution, then according to the theo
rem of equipartition,20 the average kinetic energy of the ce
ter of mass of the ping-pong ball moving in two~x,y!
dimensions is

^ 1
2mv2&5^ 1

2mvx
2&1^ 1

2mvy
2&5 1

2kT1 1
2kT5kT. ~19!

The fact that our data points for both the light and the he
ping-pong ball lie on the same line provides experimen
evidence that both ping-pong balls have the same ‘‘temp
ture.’’ Based on the experimental data~slope of line
51/260mJ!, the average translational energy of both pin

pong balls iŝ 1
2mv2&5260mJ. Hence, the root-mean-squa

speed of the light (m52.195 g) ping-pong ball isv
549 cm/s. The root-mean-square speed of the heavym
53.278 g) ping-pong ball isv540 cm/s. These values of th
average speeds are consistent with the estimated value
tained from a qualitative observation of their motion. It
unlikely that the distribution of speeds of the ping-pong b
is exactly Maxwellian. The dynamics of a motorized mo
ecule is not the same as that of a natural molecule.
collision between the motorized molecule and the ping-po
ball is not elastic. Nevertheless, one may assume an e
nential, quasi-Maxwellian distribution of speeds para
etrized by an effective temperature parameterkT5260mJ.
There is other experimental evidence for a Maxwell-like d
tribution of speeds in a system of mechanically agita
balls.8,9

We have performed another experiment to test the
tropic contribution to the Boltzmann theory. The upper lev
of the Boltzmann machine is adjusted so that it has twice
surface area of the lower level.21 In theoretical language, thi
means that there is twice the classical phase-space are
twice the number of quantum states accessible to the p
pong ball when it is in the excited state. In symbols, the ra
of areas isa0 /a15 1

2. In running the experiment, it is impor
tant to place one motorized ball on the lower level and t
motorized balls on the upper level so that the density
motorized balls is the same on both levels. This ensures
the distribution of speeds of the ping-pong ball is the sa
on both levels. In effect, the ‘‘temperature’’ of the enti
system is constant. This is the vital canonical constraint
our experiment, two boxing rings exist on the upper lev
each confining one motorized ball. The ‘‘semi-permea
membrane’’ between the boxing rings blocks the motoriz
ball and allows the ping-pong ball to move freely on t
entire surface. We measure the amount of time that the p
pong ball spends on the upper level before it moves to
lower level. This measurement is repeated 100 times for
light and heavy ping-pong balls. The time spent on the low
level is taken from the first experiment. The experimen
results are graphed in Fig. 15. The data points fall on a
described by the equation ln(t0 /t1)50.0038mgh20.71. This
best-fit line has the same slope as in the first experiment,
a different intercept. Thus the experimental data follow
Boltzmann distribution of temperaturekT5260mJ and de-
generacy ratioV0 /V150.49:

t0

t1
50.49 exp~mgh/260mJ!. ~20!
1081 Am. J. Phys., Vol. 68, No. 12, December 2000
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This theoretical fit to the experimental data agrees with
actual parameters of the Boltzmann machine, namely tha
ratio of the areas of the levels (a0 /a1) is approximately
equal to1

2. Note that the multiplicity factor~0.49! multiplying
the Boltzmann factor in Eq.~20! is equal to one-half of the
multiplicity factor ~0.98! in Eq. ~18!.

We now describe a demonstration experiment that p
vides a vivid illustration of the concepts of dynamical equ
librium, transition rates, occupation numbers, and the
nonical ensemble. The experiment involves running
Boltzmann machine with several ping-pong balls. Instead
focusing on the motion of one ball and the time it spends
each level, this experiment focuses on how the ensembl
balls populates the levels. For example, using nine of
light ping-pong balls (m52.195 g) in the Boltzmann ma
chine with equal-area levels and the intermediate step he
(h51.025 cm), the motion of the balls is such that, on av
age, there are six balls on the lower level and three balls
the upper level. This is shown schematically in Fig. 16. A
demonstration experiment, these average values repre
approximate values obtained by direct observation and
elaborate measurements. The statistical fact that the lo
level is populated with twice the number of balls as the up

Fig. 15. The ratio of times spent on the two levels vs the energy
between the levels. The experimental data points are the results of a
periment in which the surface area of the upper level of the Boltzm
machine is approximately twice the area of the lower level. The bes
line through the data points is a Boltzmann distribution,t0 /t1

5(1/2.04)exp(mgh/260mJ).

Fig. 16. Running the Boltzmann machine with several ping-pong balls
lustrates the concepts of transition rates, detailed balance, occupation
bers, and the canonical ensemble. For a system of nine balls and an e
gap ofmgh5220 mJ, the average lifetime of a ball on the lower level~0! is
approximately 6 s and the average lifetime on the upper level~1! is approxi-
mately 3 s. The equilibrium state is dynamically characterized by b
jumping between the levels at an average rate of approximately 1 ba
both in the forward direction (0→1) and the reverse direction (1→0). The
equilibrium state is statistically characterized by a canonical population
the levels such that on average, six balls occupy the lower level and t
balls occupy the upper level.
1081Jeffrey J. Prentis
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level is the ensemble version of the dynamical fact that e
ball spends approximately twice the amount of time on
lower level than on the upper level. Indeed, from the Bol
mann machine data in Table II, the ratio of times for the
values ofm andh is t0 /t152.16. In the language of atomi
physics, the lifetime of a ball in the ground state is appro
mately twice the lifetime of the ball in the excited state.
the language of quantum statistics, the occupation num
for the ground state is six and the occupation number for
excited state is three. The set of balls distributed in t
way between the two levels represents a canonical ens
ble of balls described by the Boltzmann fact
exp(2mgh/260mJ). One can further observe that the av
age rate~number of balls per unit time! at which balls jump
from 0 to 1 ~from lower level to upper level! is approxi-
mately equal to the rate at which balls jump from 1 to 0. T
delicate balance between the forward and the reverse tra
tions ~for every pair of states! is called the principle of de-
tailed balance.22 It is a dynamical condition for thermal equ
librium ~time-independent population of states!. Thus, when
the Boltzmann machine is run with several balls, the o
server can literally see the dynamical process~detailed bal-
ance! whereby equilibrium is maintained. At the same tim
the observer can see the statistical complement of this
namical process, namely a canonical ensemble, or Bo
mann distribution of agitated balls.

V. CONCLUSION

The experiments presented in this paper are designe
illustrate the fundamental concepts and principles of stat
cal mechanics. The experiments focus solely on the mech
cal and the statistical elements of statistical mechanics. T
are no thermal objects, such as thermometers, calorime
or heating elements. There are no gambling objects, suc
coins, dice, or cards. The notion of probability as the fract
of time that a system spends in a state is the hallmark
statistical mechanics that distinguishes physical statis
from mathematical statistics. This dynamical notion of pro
ability is a common theme in the experiments presented
this paper. In each experiment, we use mechanical eq
ment ~stopwatch, motion sensor! to measure Pdyn(x)
5t(x)/t. We use physical statistics~fundamental postulate
Boltzmann statistics! to calculatePstat5V(x)/V. In each ex-
periment, we findPdyn(x)5Pstat(x). In this sense, these ex
periments provide simple and direct experimental proofs
the ergodic hypothesis, the fundamental postulate, and
statistics of Boltzmann. It should be noted that since th
experiments utilize toy molecules and not real molecules,
experimental tests are toy tests and not real tests. Real
of the foundations of statistical mechanics, in which the
perimenter measures the motion of individual molecules
bulk matter, are virtually nonexistent. Insofar as real tests
not exist, it is gratifying that there exists a dynamical syste
albeit a toy system, that illustrates the primitive foundatio
of statistical mechanics.

The experiments are low in technology and high in pe
gogy. They can be used as demonstration equipment o
complete laboratory experiments in both introductory a
advanced physics courses. Each experiment involves a h
tic mix of experimental technique and theoretical analys
By using ‘‘easy-to-see molecules’’ and simple devices
measure the ‘‘time spent in a state,’’ the experiments prov
concrete imagery of abstract concepts. When the pres
1082 Am. J. Phys., Vol. 68, No. 12, December 2000
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fluctuation machine is running, the observer directly sees
irregular motion of a piston in a gas and the molecular c
lisions that drive the motion. In essence, this device is
large-scale barometer, one in which the Brownian motion
the piston can be visualized, measured, and analyzed on
scale of human sensation, rather than on the anti-intui
~nanometer! scale of atoms. Statistical mechanical concep
such as probability, average, fluctuation, and equilibriu
also take on a life-size meaning.

Similarly, the Boltzmann machine is a life-size dynamic
simulator of Boltzmann statistics. It is a working model of
two-state atomic system in a temperature bath. The mac
hardware mimics the spectral elements. The Boltzmann
chine also represents a paradigm of nature—the ubiqui
process of ‘‘borrowing’’ energy. For most systems in natu
there exists a characteristic energyDE that the system mus
borrow from its environment in order to change its state. F
example, in the atmosphere, the characteristic energy is
gravitational energy~mgh!. In chemical reactions, the cha
acteristic energy is the activation energy (Ea). In phase
changes, the characteristic energy is the latent heat~L!. In
semiconductors, the characteristic energy is the energy
(Eg). The Boltzmannian paradigm is as follows: Th
‘‘price’’ that a system must pay to ‘‘borrow’’ an amount o
energyDE from an environment of temperatureT is propor-
tional to exp(2DE/kT). The relevant dimensionless param
eter isDE/kT, which can be interpreted as the ratio of th
energy needed to the energy available. The Boltzmann
chine is an archetypical device that illustrates the Boltzm
nian paradigm. The operator of the Boltzmann machine
literally see the system~ping-pong ball! borrowing energy
~mgh! from its environment~motorized ball!, the dynamical
mechanism~collisions! responsible for the energy exchang
and the resulting quantum jump~ground level to upper
level!. Watching the Boltzmann machine in action, one se
and hears a rather chaotic motion—balls banging into e
other, randomly bouncing off walls, and moving with a v
riety of positions and velocities. It is gratifying to discove
both experimentally and theoretically, that there exists a
tistical regularity in the dynamical data that brings an ord
to the chaos. This order in the dynamics is the statistics
Boltzmann.

Many other experiments in thermal and statistical phys
can be performed using motorized molecules. The diffus
interaction between two gases can be studied. Liquids
solids can be simulated. Temperature effects can be stu
by changing the speed of the molecular motor. Concept
kinetic theory, such as mean-free path and diffusion, can
analyzed. We are currently finishing experiments for futu
publication on Brownian motion, polymer statistics, and t
equation of state~pV diagram! of a gas of motorized mol-
ecules.
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