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Abstract

The present work is concerned with developing a finite difference code for modeling the physics
of the plasma edge in fusion devices. It allows the treatment of a complex 3D geometry and an
ergodic structure of field lines in the plasma edge, like in W7-X and TEXTOR-DED, using a
finite difference code approach. The code described in the present work requires only a magnetic
field configuration data file and specified boundary conditions in order to generate solutions of
the plasma transport equations. The concept of local magnetic coordinates is used to handle
the different geometries consistently. The pre-processing steps of the general algorithm are
grid construction, finding poloidal neighbours and calculation of metric coefficients. For this, a
general tracing procedure was developed in a sequential and a parallel version to solve the system
of ordinary differential equations for the different local magnetic coordinate systems (LCMS)
needed for the discretization stencil.

The neighbours are found with a shadowing algorithm. To solve the coupled set of trans-
port equations in the LCMS representation a solver for conduction-convection equations using
a “semi-explicit” generalized upwind scheme for non-staggered grids was developed. For the
parallel direction all terms are treated implicitly, whereas the rest of the terms are calculated
explicitly. This allows to reduce the amount of memory needed for the calculations and also to
use simple tridiagonal and cyclic tridiagonal solvers which are extremely fast. At the same time
the procedure remains robust enough due to the fact that the dominant process of the parallel
transport is calculated implicitly. The non-parallel terms are not expressed as a divergence of
the flux. Instead, all derivatives are derived with the help of the “free point” method. This
conduction-convection solver was successfully validated with analytical solutions and bench-
marked with two other codes.

The key physics question addressed in the present work is the problem of power loads at
the divertor plates, including the influence of ergodicity and 3D configuration of the field on
the heat transport. The study of conductive heat transport was done as a first step towards
the analysis of the heat flux pattern. A W7-X divertor case was studied as a reference case for
the purely conductive problem. Also, a comparison between limiter and divertor scenarios for
W7-X was done.

The effect of ergodicity was studied for TEXTOR-DED. A close relation between the struc-
ture of the magnetic field lines and the transport was discovered. The correspondence between
the connection length and the heat transport was found. The effect of convective terms are dis-
cussed for a W7-X divertor case and compared with the purely conductive case. This allows to
identify the importance of the convective effects for the power load patterns at the target plates.
It was found that electrons do not change much, but just get larger values of power flux density
due to the additional convective energy. Their heat flux density distribution is mostly deter-
mined by the field line lengths as in the purely conductive case. A more homogeneous pattern
of the ion heat flux density due to the convective heat flux is shown compared with the purely
conductive case, which showed more pronounced maxima. The coincidence of the maxima of
electron heat flux, ion heat flux and particle flux densities in the target patterns demonstrates
the importance of the convective heat fluxes. The full capability of this code will require further
numerical developments: a domain-decomposition based parallel version will have to be created
to satisfy the resolution requirements of the metrics and neutral dynamics.
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Chapter 1

Introduction

The present work is concerned with developing a finite difference code for modeling the physics
of the plasma edge in fusion devices. We are interested in a quantitative understanding of
the energy transport from the plasma core to the vessel wall in order to optimize steady state
operation of magnetic fusion devices. One problem to consider is the broadening of the power
deposition pattern on the wall structures. This broadening is necessary to avoid power loads
that exceed the engineering limits. This introduces the need for the development of new concepts
and tools for handling such situations. The present work allows the treatment of a complex 3D
geometry and an ergodic structure of field lines in the plasma edge, like in W7-X and TEXTOR-
DED.

In any transport code for modeling the physics in a magnetized plasma the following charac-
teristics must be considered. First, the extreme anisotropy of energy transport caused by very
strong electron heat conduction along the magnetic field lines. This parallel conduction is typi-
cally 104 − 107 [1, 2] times higher than the transport across the field lines. Second, conduction

along the field lines is mainly by Coulomb collisions and is strongly non-linear, with κ‖ ∝ T
5/2
e .

By contrast, conduction across the field lines is driven by turbulence in the plasma [3] and can
be described as a diffusive process with χ⊥ ≈ 1m2s−1. Third, the geometry of the plasma may
further complicate the application of the computational method, especially for 3D devices such
as W7-X. Fourth, in the edge region of a fusion plasma, the field lines may have an ergodic
geometry, meaning spatially chaotic trajectories.

The special advantage of a finite difference code in modeling plasma physics in fusion ex-
periments is its applicability to any device regardless of anisotropy, ergodicity or geometry.
Essentially, the code described in the present work requires only a magnetic field configuration
data file and specified boundary conditions in order to generate solutions of the plasma transport
equations.

A key question addressed in the present work is the problem of power loads at the divertor
plates. The influence of conduction and convection will be discussed and comparison with
experimental results for TEXTOR-DED will be presented.

The present work is structured as follows. Chapter 2 introduces the basics of magnetic
confinement and edge physics followed by a summary of the current state of the art in 3D
edge modeling. Chapter 3 introduces the specific transport equations used in this work. A
particular coordinate system suitable for the task we want to solve is introduced. The way of
constructing the grid in such a coordinate system, as well as metric coefficients for it, is discussed.
Chapter 4 gives a full description of the framework including pre-processing procedures and
the main algorithm. Different discretization schemes are presented and validation of the main
solver is done. Results obtained with this code are gathered in chapter 5. Firstly, for the pure
conduction problem results for W7-X and TEXTOR-DED geometries are discussed. After that,
the extended model including convection is applied to W7-X with the main emphasis on the
target loads and the impact of the convection to that. In chapter 6 a neutral fluid model is
introduced to include the influence of the neutral dynamics. The results for 1D calculations are
shown. Finally conclusions are presented.
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Chapter 2

Basics

2.1 Magnetic confinement

One of the greatest challenges in this century is the limitation of resources, especially energy.
Fossil fuel, especially oil, is mostly used for this purpose at the moment. The growing demand
of the energy resources and at the same time the depletion of the oil and gas sources leads more
and more to the need of finding alternative sources of the energy. Fusion energy is one possible
option. The aim of fusion is to provide an energy source using the same principle as in stars. A
fusion reactor is designed to fuse the hydrogen isotopes deuterium (D or 2

1H) and tritium (T or
3
1H) into helium, where an additional neutron is created. The major technology which supposed
to be used for the future fusion reactors is magnetic confinement. In a magnetic confinement
fusion reactor a plasma is confined by powerful magnetic fields in order to create the conditions
necessary for fusion reactions to occur in the plasma core and release energy [4]. This energy
can be converted to heat and used to drive steam turbines to generate electricity. The most
promising designs for the magnetic confinement concept [5] are tokamaks and stellarators which
are toroidal devices. Fig.2.1 shows a generalized tokamak configuration.

In the tokamak the central transformer coil adds a helical twist to the magnetic field lines.

Figure 2.1: In a tokamak the plasma cross-section remains a constant shape at all toroidal
positions, therefore the tokamak may be treated as a 2D device. A central transformer coil drives
a toroidal current in the plasma.

This short-circuits the creation of electric fields and an outward drift which would destabilize
the plasma [6, 7]. The current flowing in the plasma boosts the core temperature by Ohmic
resistance, though only at relatively low temperatures. Higher temperatures are achieved by
additional heating methods such as Neutral Beam Injection (NBI), and Ion and Electron Cy-
clotron Resonance Heating (ICRH, ECRH). The use of the transformer principle for creation a
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Chapter 2. Basics

toroidal current in the plasma means that the tokamak operates as a pulsed device [5].
A successful fusion power plant must operate in a steady state mode over long time intervals.

Therefore the plasma must be kept clean and stable. In a steady state fusion experiment, fuelling
and pumping of the helium “ash” (produced during the fusion reaction) has to be realized. The
“ash” must be removed from the core to prevent contamination of the plasma [8]. Further
contamination may come from the reactor walls and the divertor plates as a result of plasma
erosion. If the impurities in the plasma core exceed a critical threshold, only a few percent, then
the fusion reactions will stop [9]. Fig.2.2 shows two cross-sections of a tokamak plasma and two
basic concepts of power and particle removal.

+

--

+

"Limiter"
     (material boundary)

"Divertor"
         (magnetic limiter)

Figure 2.2: (left) A limiter intersecting the plasma edge. (right) Additional poloidal coils divert-
ing the plasma edge onto 2 divertor plates at the bottom.

In the first concept a limiter structure directly impinges on the hot plasma core. The
advantage of this concept is its simplicity and its direct influence on the core. However, direct
contact with the core can produce high power loads on the limiter structure, resulting in severe
erosion and impurity problems. In the second concept, additional coils create an x-point in the
separatrix (the boundary between closed and open field lines). In this way, the outer part of the
plasma is scraped off and diverted onto the divertor plates [10]. This so-called Scrape-Off-Layer
(SOL) is the region of open field lines in the plasma edge which intersect the divertor plates.
It plays a critical role in maintaining the purity and stability of the plasma. The purpose of
such plasma edge diversion is to move the interaction zone between the divertor plates and the
plasma, away from the plasma core. This offers the possibility of good impurity control [11] and
also the reduction of the heat flux to the divertor plates due to radiation losses. The divertor
concept is now the standard solution for all reactor designs [12].

Fig. 2.3 shows the W7-X stellarator configuration. In a stellarator there is no central trans-
former coil and practically no plasma current. The lack of a central transformer coil allows the
possibility of steady state (non-pulsed) operation [13]. The short-circuiting of electric fields is
achieved by the complex shape of the plasma.

In W7-X, which is an optimized stellarator [14], we make use of the intrinsic islands which
naturally divert the exhaust power fluxes from the core into the islands. By placing target plates

3



Chapter 2. Basics

Figure 2.3: In the W7-X stellarator the cross-section of the plasma, shown in yellow, changes
with toroidal position, therefore a stellarator can only be treated as a fully 3D device. The plasma
is shaped by a series of non-planar field coils shown in blue.

at the interaction zones we can introduce a similar concept of plasma wall interaction control
away from the core, like in the tokamak divertors. Therefore, such islands are called island
divertors, and because of the 3-dimensionality of the plasma in W7-X these divertors have a
more complex shape. See Fig.2.4.

Figure 2.4: Possible island divertor configuration in W7-X. The divertor structures are shown
in green. At right is a plasma cross-section showing how the divertor plates intersect the plasma
at toroidal position φ = 0◦.

In the stellarator concept, there is the possibility to operate at higher plasma density without
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Chapter 2. Basics

the danger of disruptions because the stellarator is internally current-free. Also, one can use
the 3-dimensionality for impurity and neutral screening. Potential problems are the danger of
producing local instabilities even earlier than in the tokamak divertor, and the more complex
baffling and pumping due to the plasma geometry.

2.2 Transport along field lines

The dominant mode of heat transfer in the magnetized plasma is electron heat conduction along
magnetic field lines which is governed by Coulomb collisions [15]. The electron mean-free path
length λe = vτe =

√
3vthτe for a test particle with energy mv2/2 = 3

2kT and a thermal velocity

vth = (kT/m)1/2 is:

λe = 1.5 · 1016 × T 2
e

n
, (2.1)

where T is temperature in electron Volts (eV) and the other quantities are in MKS-units. The
electron mean-free path length is an average distance that an electron ”runs”, until it changes
its direction by 90 degrees. This change happens due to the multiple collisions that make the
electron change its direction by some small angles. According to the Rutherford scattering
formula the mean-free path scales with v4. The ion-ion and electron-ion mean-free paths are
practically identical to the electron-electron mean-free path, within a factor of 1/

√
2. The

electron heat conduction along the magnetic field is:

qe,‖ = −κe,‖∇‖Te = −χe,‖ne∇‖Te, (2.2)

where qe and Te are the electron heat flux and temperature respectively. The heat diffusivity is
given by:

χe,‖ ≈ 1.8 · 103 × T 5/2
e (2.3)

This defines a very strong non-linearity in the heat conduction.

2.3 Plasma wall interaction

A plasma in contact with a boundary forms a sheath layer at the boundary. This is due to the
electron velocity being much higher than the ion velocity (mass difference) [15, 16]. The sheath
layer can be divided into different regions (sheath and pre-sheath) which can be characterized
qualitatively by the properties of the plasma in this region [17] (see Fig.2.5). The recycling
neutrals get ionized at a distance λion in the pre-sheath where ions are accelerated to sound
speed at the sheath edge xS , as described by the Bohm criterion [1, 2].

For fluid models the sheath effects are introduced as effective boundary conditions at the
sheath edge, that is, the acceleration of the plasma ions to velocities which satisfy the Bohm
condition [18]:

vi,potential ≥
√

kTe

mi
, (2.4)

and an effective boundary condition for the heat flux:

Qe,x(xsheath) = δeTe,sheathΓe,x, (2.5)

taking into account the electron reflection properties of the sheath and introducing a kinetic
factor of about δe = 5.
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 2.5 kT/e

cs cs

sheath edge

cs

sheath wall

Φx
≅  0.5 kT/e 
(presheath) sheath edge

sheath
   ≅ λ D

≅

wall

λ ion
xS

e Ion

Figure 2.5: Schematics of the sheath potential in front of the wall without magnetic field (top).
The relevant lengths scales are shown: Debye-length λD, sheath edge position xS and ionization
length for neutrals λion. At the bottom, the velocity distribution functions for ions fi and elec-
trons fe are shown at the sheath edge, in the sheath, and at the wall. The electrons have a cut-off
Maxwellian (with a cut-off velocity vcs at the sheath edge). At the wall no electrons are going
back (half Maxwellian). At the sheath edge the ions already have a non-Maxwellian distribution
function as they are accelerated to cS or larger because of the Bohm criterion. (Figure from R.
Chodura)
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Chapter 2. Basics

The general edge problem is complex because of the interaction with neutrals and impurities
and other phenomena which have to be included [19]. The description of plasma wall interaction
needs many disciplines:

1. Magnetohydrodynamic equilibrium studies are a necessary prerequisite in edge physics.
From plasma fluid theory we obtain the transport equations which govern edge transport.

2. Kinetic theory describes the sheath forming in front of a plasma-facing structure. This
defines the boundary conditions for fluid model transport codes. The classical transport
of neutrals strongly determines the operational parameters in divertor plates.

3. Turbulence and anomalous radial transport. Due to these effects, scaling laws or
direct coupling to turbulence codes is necessary for good modeling. Drift-wave turbulence
in full geometry has the potential for a full predictive capability for the edge transport.
Anomalous transport is still the largest uncertainty in edge physics.

4. Atomic and molecular processes strongly affect the plasma through ionization, charge
exchange and recombination.

5. Materials science and plasma wall interaction involve the study of sputtering, reflection
and recombination.

6. Numerics. Transport codes for heat conduction/convection problems may use various nu-
merical methods, but they must allow for physical characteristics such as strong anisotropy,
ergodicity and complex geometry.

2.4 Braginskii equations

The basic description for plasma transport on open field lines relies on a fluid picture due to the
high collisionality. One can derive the fluid equations for the plasma, multiplying the kinetic
equation by the combination of the velocity components, that correspond to the appropriate
moment and then integrating the kinetic equation. This scheme was originally presented by
S.I.Braginkii [20]. The complete set of the fluid equations is presented below.
The continuity equations for ions and electrons look as follows:

∂ni

∂t
+ ~∇ ·

(

ni
~Vi

)

= Sni
;

∂ne

∂t
+ ~∇ ·

(

ne
~Ve

)

= Sne
. (2.6)

The total momentum equation for ions and electrons is:

∂

∂t

(

mini
~Vi

)

+ ~∇ ·
(

mini
~Vi

~Vi

)

=

− ~∇p − ~∇←→
Π i +~j × ~B + ~Smi

~Vi
, (2.7)

where total electric current density ~j and total pressure p are:

~j = e
(

ni
~Vi − ne

~Ve

)

;

p = neTe + niTi.
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The electron energy equation (simplified) and the total ion energy equation look as follows:

∂

∂t

(
3

2
neTe

)

+ ~∇ ·
(

5

2
neTe

~Ve + ~qe

)

=

− ene
~E~Ve + ~R · ~Ve + Qei + SEe

; (2.8)

∂

∂t

(
3

2
niTi +

mini

2
~V 2

i

)

+ ~∇ ·
[(

5

2
niTi +

mini

2
~V 2

i

)

~Vi +
←→
Π i · ~Vi + ~qi

]

=

(

eni
~E − ~R

)

· ~Vi − Qei + SEi
, (2.9)

where the energy fluxes for electrons and ions are:

~qe = −κe
||
~∇||Te − κe

⊥
~∇⊥Te + κe

∧

~B

B
× ~∇⊥Te

− 0.71
Te

e
~j|| −

3

2

Te

eωeτeB
~B ×~j⊥,

~qi = −κi
||
~∇||Ti − κi

⊥
~∇⊥Ti + κi

∧

~B

B
× ~∇⊥Ti,

and the energy exchange term between electrons and ions is:

Qei =
3me

mi

ne

τe
(Ti − Te) . (2.10)

2.5 Ergodic effects

In some configurations or devices, a spatially chaotic structure of field lines [21] can exist. In
W7-X this ergodicity is created by intrinsic plasma effects (finite beta). In TEXTOR-DED,
such a structure is introduced by additional toroidal coils.
The plasma core is a non-ergodic region in which the field lines form a tightly packed series of
nested flux surfaces, and there is an ordered temperature gradient across the surfaces. In the
plasma edge some field lines are ergodic which means that they fill out volumes, and neighboring
field lines diverge from each other exponentially, on average. To measure the ergodicity a so-
called Kolmogorov length was introduced:

Lk =
S

log

(
δ0

δ1

) (2.11)

From the formula above and the Fig. 2.6 One can observe, that Kolmogorov length, traversing
along two magnetic lines, measures how far one magnetic line will “run” from the other one.
This is the fundamental characteristic, that should be taken into account while resolving ergodic
systems. Note that in the SOL, the open field lines have varying lengths. Those that are shorter
than the Kolmogorov length do not exhibit ergodicity, and their structure is laminar.

In terms of field line trajectories, ergodicity means that as a field line travels around a
torus it undergoes excursions in the radial direction. This results in a mixing of the strong
parallel transport with radial transport. Thus, the radial transport is enhanced and there is a
flattening of the temperature profile across the edge region. This broadening of the temperature
profile was the origin of the idea to use ergodic perturbations to relax the power load problem.
However, on open field lines (connected with the target plates) this idea fails, because they are
usually shorter than the Kolmogorov length. Nevertheless, as was shown in [22], a broadening
of the heat deposition zone still occurs due to the cascading of energy from long to short field

8



Chapter 2. Basics

Figure 2.6: Explanation of the meaning of the Kolmogorov length.

lines and the modulation of radial fluxes in the ergodic region. Nowadays, the introduction of
additional perturbation coils is mostly motivated to get tools for ELM (edge localized modes)
control, like in DIII-D. Fig.2.7 illustrate the idea of the ergodicity usage for for the temperature
profile broadening. Three different regions are shown schematically. The lowest is the region
correspondent to the plasma core with where closed flux surfaces can be observed. In the top
on the picture the region with open field line is shown. This part, as it is clear from the picture,
is not affected by the perturbation and remains laminar. And in the middle one can see the
ergodic layer, where field lines are mixtured chaotically and thus the huge parallel conduction
contributes to the radial direction, which is schematically shown in the middle of the picture. The
temperature profile shown on the right demonstrate, its behaviour in different above mentioned
regions.

An attempt to describe the effect of the ergodicity on plasma transport was done by Rechester
and Rosenbluth (see [23]). They tried to express the impact of the parallel transport to the
radial one that occurs due to the ergodization in terms of the diffusion coefficient. The estimate
looks like:

χ(RR)
r = DflD||e

[

Lkln

(

1

rkθ

(
χ||e

χ⊥e

) 1

2

)]−1

, (2.12)

where Dfl is the field line diffusion coefficient, kθ = m/r is the characteristic perpendicular wave
number, Lk is the Kolmogorov length, r is the minor radius and m is the poloidal number of
the perturbation; χ||e, χ⊥e are the ordinary transport coefficients arising from the underlying
plasma transport. According to this estimate the ergodization leads to a flattering of the elec-
tron temperature profile in the correspondent region. Based on the field line diffusion coefficient,
Dfl, one can calculate the diffusion of each population of free streaming particles along the field
lines [24]. The diffusion is then simply Dflvth where vth is the typical velocity of each species,
namely the thermal velocity. The ratio of electron to ion transport is therefore

√

mi/me. Using
this order of magnitude, one readily expects a large plasma response for “electronic” fields, such
as the electron temperature, the toroidal component or the radial electric field, and a relatively
small direct response for the “ionic” fields, ion temperature, density and plasma momentum.
As discussed before the original idea of the transport of power in the stochastic layer has been
treated as a diffusive process [23], which gives a significantly enlarged effective cross-field trans-
port for the electron energy. As a result a widening of the contact zone between plasma and wall
[25] should be observed. Subsequent experiments at different devices (Tore Supra [26], TEX-
TOR [27] and DIII-D [28]) proved that the heat and particle deposition patterns are strongly
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Figure 2.7: Effect of ergodicity on transport in the edge region.

structured. This is a result of the heterogeneous topology of the open chaotic region, which
consists of magnetic field lines with dramatically different connection lengths [29].

The inner ergodic layer is composed of stochastic field lines with connection length (Lc) of
many poloidal turns, which form a “woven” structure. Here the significant increase of the field
line diffusion coefficient results in the enhancement of the heat radial transport. Experimental
examples of such flattening are found in Tore Supra, Text and JFT-2M [30]. The 3D transport
modeling of the heat conduction equation in the ergodic region of Tore Supra with the ERGOT
code reproduced such flattening [31].

In the outermost layer, the interaction of the near field with field lines forms the flux tubes,
which have very short wall-to-wall connection length (i.e. one or two poloidal turns). This area
is known in literature as a laminar region. Here it is expected that the parallel convection is
the main transport mechanism rather then radial diffusion [32, 33]. There is no clear boundary
between the ergodic and laminar region, while the flux tubes formed by the long connection
length field lines are adjacent to the flux bundles of laminar field lines. It is typically assumed
that these field lines have connection length much shorter than Kolmogorv length (Lc ≪ Lk).
This different areas have been identified experimentally on TEXTOR [34, 33], where it has
been shown that the topology of the perturbed volume is three dimensional. The resulting
heat deposition pattern reflects the complicated structure of the perturbed volume. It has been
shown in [35, 36] that the connection length and the radial penetration of the magnetic field
lines defines the amount of power deposited on the target structures. The maximum of the heat
flux density corresponds to the field lines with long connection length, however those shallow
penetrating seem to be strongly affected by the collisionality [37] in contrary to the field lines

10



Chapter 2. Basics

with deep penetration, which connect outermost existing island chain to the divertor surface.
These field lines are strongly linked to the topology of the homo- [28] or heteroclinic tangles [35].

Although the Rechester Rosenbluth formula (2.12) is very useful for understanding the basic
influence of the ergodicity on transport, it can be only used for a rough estimate of that impact
and can not help to see the structure of the target loads and temperature profiles.

2.6 Local magnetic coordinate system

The basic concept that allows to investigate the properties of the SOL plasma affected by the
ergodic effects is the local magnetic coordinate concept. Its idea comes from the properties of
the plasma. The characteristics of the plasma make the other ”standard” coordinate systems
inapplicable. In this section we will describe these properties and give reasons for preference of
the local magnetic coordinate system (LMCS).
The problem we want to attack is characterized by following features:

1. strong parallel heat conduction (106−107 times greater) with respect to the perpendicular
one;

2. unavoidable existence of the 3D effects in the scrape-off layer plasma;

3. ergodic behaviour of the magnetic field in stellarators and modern tokamaks.

The first property gives us a demand for the separation of the parallel fluxes from the perpen-
dicular ones, as we need to avoid their contribution to the perpendicular flows. Otherwise, even
a small error in the flux component calculations will cause a huge increase of the perpendicular
heat transport. The second property obviously requires a 3D mesh. The ergodicity effects con-
strain us in use of a unique coordinate system for the whole domain. This property appears to
be the strongest one and makes such coordinates as Boozer coordinates [38], [39] inapplicable
for the current task.
The main idea of the local magnetic coordinate system is to use a set of the overlapped non-
orthogonal, curvilinear coordinate systems. In each coordinate system in the set the coordinate
curves (see [40]) of one of the coordinate are aligned with magnetic field lines in all points of
the sub-domain. This allows one to separate the huge parallel flows from perpendicular ones
and, thus, to avoid a numerical diffusion which can be significantly big for such an asymmetric
system. One should keep in mind that the contribution from the radial transport to the parallel
one still exists, but it is considered to be negligible. The other two coordinates can be chosen
arbitrary, but the most natural choice is to take them lying on the radial cut plains. As the
magnetic field lines in ergodic region intersect the radial cuts with a tip each coordinate system
in the set LMCSs is in general a nonorthogonal curvilinear coordinate system.
It is particularly important to point out that the length of the unique LMCS should be less then
the above mentioned Kolmogorov length, see Eq. (2.11). The restriction on the length of the
unique LMCS, arises from the following fact. If this length is taken greater than Kolmogorov
length, then the magnetic lines will mix with each other and, thus, it will be impossible to
construct a consistent coordinate system.

Fig. 2.8 shows 3 consecutive cuts in a toroidal geometry. There are two eigenvectors showing
orthogonal poloidal coordinates x1 and x2 on the central cut. So the coordinate curves of
coordinates 1 and 2 are just orthogonal lines here. The third eigenvector is locally tangential to
the magnetic field line. Following the field line we see, that coordinate curves 1 and 2 change so
that on the forward and backward cuts we have the non-orthogonal eigenvectors tangential to
the respective coordinate curves.
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Figure 2.8: Schematics of the local magnetic coordinate system. Three toroidal cuts is shown.
The central cut is the reference one where two non-aligned with the field lines coordinate curves
coincide with the Cartesian coordinate curves. On the other two cuts coordinate curves performs
arbitrary shaped.

2.7 State of the art

In recent years a number of codes have been developed for the numerical solution of the plasma
fluid transport equations in tokamak and stellarator 3D configurations. The motivation is the
need for tools which can handle strong anisotropy in complex 3D topologies including flux sur-
faces, islands, ergodic regions and complicated surfaces of plasma-surface interaction. Presently,
the most advanced codes in this field of computational physics are the BoRiS [41], EMC3-
EIRENE [42, 43], and E3D [44, 45].

BoRiS is a 3D Scrape-Off-Layer transport code for solving a system of coupled partial dif-
ferential equations using a finite volume method. It has been developed for 3D edge modeling
in W7-X but is also applicable to other devices without ergodicity. The code is characterized by
interpolation for mixed convection-diffusion, generalized magnetic coordinates and the Newton
method. The development of BoRiS was influenced by experience with 2D codes like B2-Eirene
[46] and UEDGE [47, 48].

The EMC3-EIRENE code uses a Monte-Carlo technique in real space using a field-aligned
local orthogonal vector basis which reduces the diffusion tensor to a diagonal form. The parallel
and perpendicular transport are separated by integrating the parallel transport along the field
lines. Presently the code is being applied to several machines, e.g. W7-AS, W7-X and TEXTOR-
DED.

The E3D code uses a multiple coordinate system approach (MCSA) with local magnetic
coordinates and the appropriate full metric tensor. The local or piecewise treatment of field lines
allowed in the Monte Carlo method makes it applicable for modeling in ergodic regions. Also, the
grid used in the Monte-Carlo approach can be refined at point resolution. Disadvantages of the
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Monte Carlo approach are the computational expense and the noise in the solutions which make
it difficult to identify a steady state. E3D was developed for modeling in TEXTOR-DED[49]
but has also been applied to W7-X and DIII-D.

A general finite volume method requires a continuum of the computational grid which is
only available for certain magnetic configurations with closed flux surfaces. By comparison,
using Monte Carlo methods, transport in ergodic regions can be treated locally which allows
greater flexibility in the mesh construction. Regardless of the numerical method used, the strong
anisotropy of the transport requires a complete separation of parallel and radial transport terms.
This may be achieved by a clear identification of the parallel direction such as the magnetic
coordinates used in BoRiS, the local magnetic coordinates used in E3D, and the finite flux
tube coordinates used in EMC3. The finite difference approach has a number of advantages in
comparison to other methods, mentioned above. For example, it allows to avoid such problems
as the volume connections and vessel walls transfer into magnetic coordinate system, which are
encountered in a finite volume case (BoRiS). Its advantage over Monte-Carlo approach is that
the finite difference scheme does not produce noisy results that need smoothing.

The main idea of the finite difference method is to discrete the parallel (to the magnetic
field) and radial transport components separately. This separation is carried out by applying
a specific grid generation procedure. The mesh is formed of the points that result from the
intersection of the magnetic field lines and a predefined number of the toroidal cuts. We repeat
this tracing procedure for a number of lines in the domain of interest and end up with a set
of Poincarè plots, that contain additional information about the toroidal point connections. To
obtain a complete discretization of the derivatives one needs to use the information about the
neighbours on each toroidal cut.
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Transport equations in LMCS

representation

3.1 Findif grid

The choice of the coordinate system determines the grid and also the way of its construction. As
it was stressed in Chap. 2 the goal of using the LMCS is to separate the parallel transport from
the radial one. This separation is carried out by applying a specific grid generation procedure.
The mesh is formed of points that result from the intersection of the magnetic field lines and a
predefined number of the toroidal cuts (see Fig. 3.1). We repeat this tracing procedure for a
number of lines in the domain of interest and end up with a set of Poincarè plots, that contain
additional information about the toroidal point connections.

To give a concrete way of the grid construction first we have to describe mathematically a

Figure 3.1: Construction of the mesh procedure. Tracing and matching points of intersection
with poloidal cuts.

magnetic field line. Following [40] we can write down the equation of a magnetic field line in
the component form.

B

dl
=

B1

du1
=

B2

du2
=

B3

du3
(3.1)

Substituting the components ui by the cylindrical coordinates r, z, φ we obtain a set of two
ordinary differential equations:

dr

dφ
=

Br

Bφ

dz

dφ
=

Bz

Bφ

(3.2)
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Following the field line means solving the set of equations (3.2) starting from some initial point.
The coordinates of the starting point serves as initial conditions for the ODEs. Solving the
system Eqs. (3.2) for the next toroidal cut with ϕ = ϕ0 + δϕ, where ϕ0 is the toroidal angle
of the initial point and δϕ is the angle distance from the initial cut to the next one, we obtain
coordinates r, z on the next cut and thus determine the point lying on the field line started from
the initial point.
There are two possible kind of magnetic field lines, which exist in the SOL. First is the infinite
line either forming the closed flux surface or traversing in the ergodic layer. Second is an open
field line, which starts and ends on the wall. The second type of the field lines gives no problem
for the grid construction. The first, on the other hand, as they have an infinite length have to be
treated specially using a so-called closing criteria. After some turns a line can come again close
to the starting point. This fact is used for “closing” the line, i.e. the line “closes” at its starting
point instead of making an infinite number of turns, that cover the flux surface or some part
of the ergodic layer. In the grid construction only those starting points are accepted satisfying
this criterion.
Of course, this artificial closing of the line introduces some error and it is intuitively understand-
able, that this error decreases with more turns. To estimate the introduced error such a criteria
has been derived:

∆ << S||

√
χ||

χ⊥
, (3.3)

where χ|| and χ⊥ are the parallel and perpendicular conductivities, S|| is a length of the line
and ∆ is the distance between the start and final point on the same toroidal cut. Except this
there are other constrains on the mesh that have to be fulfilled. The mesh should be dense
enough to resolve all gradients of the variables (temperatures, densities, etc.) in both toroidal
and radial directions. As we have to know the solution in advance to evaluate the mesh density,
we can not use such a criteria for the real mesh production. To construct a mesh which will be
dense enough we follow another considerations. For toroidal resolution we know, that we have
to resolve the variation of all the metric coefficients and Jacobian along the field line. So this
serves as a criteria for this direction. As for the radial resolution at the moment we do not have
an additional ‘a priori‘ criteria and, therefore, we just try to construct a reasonably radially
resolved mesh.

3.2 Metrics of the LMCS

The finite difference representation of the equations to be solved (see Chap. 4) needs a set of
overlapping coordinate systems (see Chap. 2). All the inner points in the grid can be considered
belonging to three different coordinate systems: connected with the point itself, connected with
the previous point, connected with the next point. Points at the ends of the open field lines can
be observed only within two coordinate systems. So in general there are 27 metric quantities
connected with each point. The following subsection describes the procedure for constructing
these values (a description of this procedure for turbulence computations can be found in [50]).

Our goal is to construct a set of coordinates (v1, v2, τ), which are aligned to an arbitrary
magnetic field configuration. In this coordinate system the coordinate τ locates the position
along the field line, whereas two others v1, v2 determine it’s form. These two coordinates are
known as Clebsch-type ones. For such a coordinate system the contravariant components of the
magnetic field line should be zero e.g. the following demand should be satisfied:

B1 = B2 = 0 (3.4)

First we take a poloidal cut at some φ = φ0 with a Cartesian grid on it defined by curves
r = const and z = const. This determines initial coordinates v1 and v2. Each point (r, z) on the
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cut serves as a starting point for a magnetic field line and thus r = const and z = const lines
in the φ = phi0 can be considered as a ”magnetic surfaces” intersecting the reference cut. It
have to be mentioned, that these surfaces do not coincide with the flux surfaces. The magnetic
field line passed through each grid point (ri, zi, φ0) can be envisaged as the intersection of two
“magnetic surfaces”. These two surfaces can be described with two equations: v1(~R) = const
and v2(~R) = const. On the reference cut (φ = φ0) these relationships will degenerate to
r = const and z = const, respectively. It should be stressed here, that the choice of the Clebsch-
type coordinates v1 and v2 are not unique. It is possible to define another kind of “magnetic
surfaces”, but in our setup, coordinates described here are the most suitable.
To have a complete basis the third coordinate should be introduced. The main property of this
coordinate is such, that it’s covariant basis vector is tangential to the field line. The natural
choice of such a coordinate would be the arc length l. However, the most convenient way of
describing such a coordinate in our case is a dimensionless coordinate τ . The τ coordinate is
connected with the arc length through the following expression:

l′(τ) =
B

Bφ
, (3.5)

This relation means, that the τ is not a physical parameter for the representation of the field
line. The reason for this choice of the parametrization is that τ represents in it an angle-like
coordinate. Further we will prove, that this coordinate coincides with the toroidal angle φ
shifted by some constant value. The field line equation in the cylindrical coordinate system can
be written in the form:

B

dl
=

Bφ

dφ
=

Br

dr
=

Bz

dz
, (3.6)

This leads to the expression:
dφ

dl
=

Bφ

B
, (3.7)

Substituting dl from (3.5) we obtain the relation

dτ = dφ (3.8)

Using the fact, that for the reference cut we have τ(0) = φ0 as initial condition and integrating
we end up with the relationship:

τ = φ − φ0 (3.9)

The coordinate system constructed in such a way satisfies the Eq. (3.4). And for the third
component of the field line we derive:

Bτ = ~B · ~∇τ = ~B · ~∇φ = Bφ (3.10)

After the definition of the coordinate system we will describe the procedure for constructing the
metric coefficients. First let us denote (following the notation in [50]) cylindrical coordinates
(r, z, φ) as (y1, y2, y3) and τ as v3.
By definition, the metric coefficients for the transformation from cylindrical coordinate system
to our coordinate system are

gkl =
3∑

i,j=1

gij
c

∂vk

∂yi

∂vl

∂yj
, (3.11)

where

gc =






1 0 0
0 1 0

0 0
1

r2




 (3.12)
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From Eq. (3.11) it is obvious, that in order to obtain the metric coefficients we have to calculate

the derivatives
∂vk

∂yi
. Let us denote them as:

Ck
i ≡ ∂vk

∂yi
(i, k = 1, 2, 3), (3.13)

For determining this quantities we will start from rewriting the Eq. (3.4) as

~B · ~∇vl = 0 (l = 1, 2) (3.14)

or using our notation of C l
k

3∑

k=1

Bk
c C l

k = 0 (l = 1, 2) (3.15)

where Bk
c (for k = 1, 2, 3) are contravariant cylindrical components of the magnetic field. Now,

we differentiate Eq. (3.15) with respect to yj (j = 1, 2, 3) and obtain

3∑

k=1

Bk
c

∂C l
k

∂yj
+

3∑

k=1

C l
k

∂Bk
c

∂yj
(l = 1, 2), (3.16)

and taking into account the relation (which just gives us a constrain on the class of functions
used for setting up the coordinates v1, v2, namely vl ∈ C2)

∂C l
k

∂yj
≡

∂C l
j

∂yk
(3.17)

we end up with an expression

3∑

k=1

Bk
c

∂C l
j

∂yk
= −

3∑

k=1

C l
k

∂Bk
c

∂yj
(l = 1, 2), (3.18)

Now, we will proceed further obtaining a system of ordinary differential equations from the
system of partial differential Eqs. (3.18). This will be done with the help of the field-line
equation written in cylindrical coordinates. From the Eq. (3.6) we take:

dr

dl
=

Br

B
dz

dl
=

Bz

B

(3.19)

Now we can write down the field-line Eq. (3.19) in terms of τ parametrization (here we also come
back to the notation of Bk

c as cylindrical components of the magnetic field and yk as cylindrical
coordinates itself):

dyk

dτ
= l′(τ)

Bk
c

B
. (3.20)

To go further we can figure out that the full derivatives over C l
j quantities with respect to τ can

be expressed as:

d

dτ
C l

j =
3∑

k=1

∂C l
j

∂yk

dyk

dτ
(3.21)
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The expression (3.21) can be used to construct the
d

dτ
over the C l

j in equation (3.18). Using

in addition the Eq. (3.5) we come to the final form:

d

dτ
C l

j = −
3∑

k=1

C l
k

Bφ

∂Bk
c

∂yj
(3.22)

To be able to solve Eqs. (3.22) we have to impose additionally the initial conditions. As we
started from the surface φ = φ0 with coordinate lines v1 = const, v2 = const that coincide with
the r = const, z = const (the isolines in cylindrical coordinates) we have

Cm
n (τ = 0) = δm

n (m, n = 1, 2). (3.23)

Due to the relation between coordinates τ and φ initial condition for the C3
3 is

C3
3 = 1 (3.24)

The two quantities C1
3 and C2

3 are derived from the Eq. (3.15). The exact expression is

C1
3 (τ = 0) = −Br

Bφ

C2
3 (τ = 0) = −Bz

Bφ

(3.25)

After solving the above system of ordinary differential equations with the initial conditions
(3.22)- (3.25) we get all needed gij quantities.
The Jacobian is another important quantity, that should be calculated. This can be done both
from the coefficients gij and through the procedure similar to that was described for the metric
coefficients.
We start to write down the Jacobian after applying a chain rule in the form:

J = Jc

∣
∣
∣
∣

∂(y1, y2, y3)

∂(v1, v2, τ)
,

∣
∣
∣
∣

(3.26)

where Jc stands for the Jacobian for cylindrical system and as well known

Jc = r, (3.27)

So, to compute Jacobian we need to obtain similar quantities as for the metric coefficients. We
denote

Di
j ≡

∂yi

∂vj
(i, j = 1, 2, 3), . (3.28)

Now we connect new quantities Di
j with Ci

j through the equality

3∑

k=1

Dl
kC

k
m = δl

m. (3.29)

Then we differentiate the identical equation (3.29) with respect to τ and get

3∑

k=1

Dl
k

dCk
m

dτ
+

3∑

k=1

Ck
m

dDl
k

dτ
= 0. (3.30)
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Finally we can use equation (3.22) for substituting the
d

dτ
Ck

m and get the result

d

dτ
Dl

j =
3∑

k=1

Dk
j

Bφ

∂Bl
c

∂yk
(l, j = 1, 2). (3.31)

And for initial conditions we have

D3
1 = D3

2 = 0

D3
3 = 1

D1
3 = 1

D3
1 =

Br

Bφ

D2
3 =

Bz

Bφ

(3.32)

The above was obtained in a similar way to what was done for Cm
n . We used the equation (3.29)

and take into account initial conditions on the φ = φ0 surface which look like

Dm
n (τ = 0) = δm

n (m, n = 1, 2). (3.33)

3.3 Findif transport equations

To formulate the set of fluid equations for plasma transport we use a number of additional
assumptions:

1. Plasma is quasineutral. This allows us to put~j = 0 and not to solve the electron momentum
equation separately;

2. Moreover, we assume that the plasma is locally neutral, hence, we put ne = ni, so it
suffices to solve only one density equation for the plasma as a whole;

3. Anomalous radial transport is assumed, which is much stronger than the classical terms.
Thus, we keep all radial transport only diffusive and neglect the classical terms for it;

4. Viscosity tensor is simplified, so that we neglect all cross-terms in it.

These assumptions and, thus, the equations are similar to the ones used in the standard B2
model [51, 52]. Taking these considerations into account we write down the “Findif” equations.
So, the plasma density equation has the following form:

∂ni

∂t
+

1√
g

∂

∂x3

√
g

[

h3Vi||ni − Dni⊥

(

g33 ∂ni

∂x3
− (h3)2

∂ni

∂x3

)]

−

1√
g

∂

∂x3

√
gDni⊥

(

g31 ∂ni

∂x1
+ g32 ∂ni

∂x2

)

−

1√
g

∂

∂x1

√
gDni⊥

(

g11 ∂ni

∂x1
+ g12 ∂ni

∂x2
+ g13 ∂ni

∂x3

)

−

1√
g

∂

∂x2

√
gDni⊥

(

g21 ∂ni

∂x1
+ g22 ∂ni

∂x2
+ g23 ∂ni

∂x3

)

= 0;

(3.34)

To achieve a stable solution we use only the parallel component of the pressure for the
momentum equations. We take the parallel velocity as a primary variable and, thus, the time
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derivative over the density will be a part of the sources. Parallel velocity equation looks as
follows:

mni
∂

∂t

(
Vi||

)
+

1√
g

∂

∂x3

√
g

[

mniVi||(h
3Vi|| + V 3

i⊥) −
[
ηA

i g33 + (η0
i − ηA

i )(h3)2
] ∂Vi||

∂x3

]

−

1√
g

∂

∂x3

√
g

[

ηA
i

(

g31 ∂Vi||

∂x1
+ g32 ∂Vi||

∂x2

)]

+

1√
g

∂

∂x1

√
g

[

mniVi||V
1
i⊥ − ηA

i

(

g11 ∂Vi||

∂x1
+ g12 ∂Vi||

∂x2
+ g13 ∂Vi||

∂x3

)]

+

1√
g

∂

∂x2

√
g

[

mniVi||V
2
i⊥ − ηA

i

(

g21 ∂Vi||

∂x1
+ g22 ∂Vi||

∂x2
+ g23 ∂Vi||

∂x3

)]

= −g33 ∂pi

∂x3
− mVi||

∂ni

∂t
.

(3.35)

We take the temperatures for the heat balance equations as the primary variables. That is why,
the time derivative over the density is represented as sources.

In the electron temperature equation we consider only the parallel component of the electric
field, which gives us the Vi||∇̇||pe term. So, the electron temperature equation looks as follows:

3

2
ni

∂

∂t
(Te) +

1√
g

∂

∂x3

√
g

[
5

2
niTe(h

3Vi|| + V 3
i⊥) −

[
κA

e g33 + (κ0
e − κA

e )(h3)2
] ∂Te

∂x3

]

−

1√
g

∂

∂x3

√
g

[

κA
e

(

g31 ∂Te

∂x1
+ g32 ∂Te

∂x2

)]

+

1√
g

∂

∂x1

√
g

[
5

2
niTeV

1
i⊥ − κA

e

(

g11 ∂Te

∂x1
+ g12 ∂Te

∂x2
+ g13 ∂Te

∂x3

)]

+

1√
g

∂

∂x2

√
g

[
5

2
niTeV

2
i⊥ − κA

e

(

g21 ∂Te

∂x1
+ g22 ∂Te

∂x2
+ g23 ∂Te

∂x3

)]

= (Vi||h
3 + V 3

i⊥)g33 ∂pe

∂x3
− 3

2
Te

∂ni

∂t
− k(Te − Ti);

(3.36)

And ion temperature equation looks:
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3

2
ni

∂

∂t
(Ti) +

1√
g

∂

∂x3

√
g

[
5

2
niTi(h

3Vi|| + V 3
i⊥) −

[
κA

i g33 + (κ0
i − κA

i )(h3)2
] ∂Ti

∂x3

]

−

1√
g

∂

∂x3

√
g

[

κA
i

(

g31 ∂Ti

∂x1
+ g32 ∂Ti

∂x2

)]

+

1√
g

∂

∂x1

√
g

[
5

2
niTiV

1
i⊥ − κA

i

(

g11 ∂Ti

∂x1
+ g12 ∂Ti

∂x2
+ g13 ∂Ti

∂x3

)]

+

1√
g

∂

∂x2

√
g

[
5

2
niTiV

2
i⊥ − κA

i

(

g21 ∂Ti

∂x1
+ g22 ∂Ti

∂x2
+ g23 ∂Ti

∂x3

)]

=
3

2
Ti

∂ni

∂t
− ∂

∂t

(
1

2
miniV

2
i||

)

−

1√
g

∂

∂x1

√
g

(
1

2
miniV

1
i⊥(Vi||)

2

)

−

1√
g

∂

∂x2

√
g

(
1

2
miniV

2
i⊥(Vi||)

2

)

−

1√
g

∂

∂x3

√
g

(
1

2
mini

(
V 3

i⊥ + h3Vi||

)
(Vi||)

2

)

+

1√
g

∂

∂x1

√
gg11

(

1

2
ηA

i

∂(Vi||)
2

∂x1

)

+

1√
g

∂

∂x2

√
gg22

(

1

2
ηA

i

∂(Vi||)
2

∂x2

)

+

1√
g

∂

∂x3

√
g
1

2

[
ηA

i g33 + (η0
i − ηA

i )(h3)2
] ∂(Vi||)

2

∂x3
−

(Vi||h
3 + V 3

i⊥)g33 ∂pe

∂x3
+ k(Te − Ti);

(3.37)

In equations (3.35)-(3.37) Vi⊥ is taken as:

V 3
i⊥ = −Di⊥

[

(g33 − (h3)2)
∂ni

∂x3
+ g31 ∂ni

∂x1
+ g32 ∂ni

∂x2

]

/ni

V 2
i⊥ = −Di⊥

(

g21 ∂ni

∂x1
+ g22 ∂ni

∂x2
+ g23 ∂ni

∂x3

)

/ni

V 1
i⊥ = −Di⊥

(

g11 ∂ni

∂x1
+ g12 ∂ni

∂x2
+ g13 ∂ni

∂x3

)

/ni

(3.38)

Due to the choice of the coordinate system (see Chap. 2) the metric coefficients, which charac-
terize geometry enter in all equations. The full metric tensor has 9 values:





g11 g12 g13

g21 g22 g33

g31 g32 g33





The next chapter is dedicated to the numerical solution of the equations described in current
chapter. The codes, that realized the preliminary procedures such as: construction the grid,
finding poloidal neighbours and metric coefficients calculation as well as the main code “Findif”
will be presented.
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Chapter 4

Numerical setup

4.1 Pre-processing

Before starting the main code which solves the set of transport equations a number of the pre-
processing procedures have to be done, namely the grid construction, finding poloidal neighbours
and calculation of metric coefficients as discussed before.

4.1.1 Mesh generation

The first step is constructing the grid. As it was mentioned in the previous chapter (see Ch.
3) to do this we have to solve the set of Eqs. (3.2). This gives us the possibility to follow the
field line, started from some starting point and match the points of intersection between the line
and toroidal cuts forming the grid. The field line tracing code described in the present work
uses a 4th order Runge-Kutta integrator with adaptive step described in [53] to solve the above
equation. The detection of the collision of the field line with the wall on each step of the tracing
was implemented. The code needs the wall geometry for determining collisions. The tracing
procedure is done by a separate code “gmesh”. Two more informations are needed, namely a
correct list of starting points and a magnetic field (can be a 2D and a 3D equilibrium). An
important parameter, that the user should set is the discriminating radius for neighbour points.
The main idea of the algorithm is to provide a rather big amount of starting points covering the
region of interest. After tracing a line a discarding procedure discriminates all starting points,
that lie in a circle of prescribed radius over each point of the mesh on each plot. This allows
one to easily manipulate the point density of the final mesh and, thus, its quality and speed of
calculations. Unfortunately, the procedure of constructing the mesh is not completely automatic
because it needs a list with the starting points, but with such an approach this list can be easily
generated by another code, specific for a concrete device. For example, for W7-X it has been
done in 4 steps.

1. Determining suitable points for constructing the outermost and the innermost fluxes.

2. Finding (roughly) the position of the point on Z = 0 line from which the island starts on
a bean-like shape poloidal cut.

3. Generating a list of starting points on the Z = 0 line on all five bean-like shape cuts of
the W7-X.

4. Constructing a mesh stencil with the help of tracing routine without checking collisions
with boundaries etc. e.g. make a fix number of turns.

After this we can use the stencil mesh for producing different meshes with different density of
points on the cut so as with different number of cuts. On each of the tracing step a collision
with the wall is checked. These checks can be switched on or off individually for each point in
the starting point list. This possibility is used in two cases: first for constructing of the stencil
mesh and second for inner most and outer most flux surfaces, which are used as boundaries.
Details of the procedure implementation can be found in the algorithm (1) and (2).
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Algorithm 1 Mesh generation (field line tracing) procedure

Require: StartingPoints array, magnetic field and walls (2D segments or 3D triangle strips),
parameters
MeshPoints ⇐ NULL
for all pi ∈ StartingPoints do

if pi is valid then

TracedPoints ⇐ NULL
FieldLineType ⇐ 0
TracingDirection ⇐ 1
status = Trace(pi, T racingDirection, TracedPoints, F ieldLineType) {Tracing proce-
dure fills TracedPoints array in, recognizes the type of the field line, returns the operation
termination status}
DelRadius ⇐ 0
if status = 1 then

DelRadius ⇐ R {R is an input parameter}
else

DelRadius ⇐ R ∗ ǫ {ǫ is a very small value}
end if

for all pj ∈ TracedPoints do

Delete(StartingPoints, pj, DelRadius) { Delete all the starting points that lie in
DelRadius from pj }

end for

if FieldLineType = OPEN then

SaveToMesh(FieldLineType, TracedPoints) {Save the type of the field line and the
traced points}

else if FieldLineType = CLOSED then

AddFakePoints(TracedPoints) {Add some fake points to the innermost and the out-
ermost flux surfaces}
SaveToMesh(FieldLineType, TracedPoints)

else if FieldLineType = LONG then

print "ERROR: Line is too long!!!"

else if FieldLineType = SHORT then

print "ERROR: Line is too short!!!"

end if

end if

end for

return MeshPoints

In addition to this non-parallel version a parallel version has been developed. It has been
done to be able to deal with very big meshes which can potentially appear for complex 3D
devices. Due to the fact, that the tracing procedure itself can be done completely independent,
it is possible to distribute all starting points among the processors. The only place where the
exchange of the data is needed is then the eliminating procedure. At the same time the tracing
procedure (2) remains the same for both cases. Fig. (4.1) shows an example of the “bean-like”
and Fig. (4.2) a “triangle-like” Poincarè plot for the zero beta W7-X case.
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Algorithm 2 Trace(pi, T racingDirection, TracedPoints, F ieldLineType)

Require: Walls information, MaxIterCount, NumbeOfCuts, MinNumberOfPointsInLine

if pi lies between the Cuts then

Trace to the nearest cut
pi ⇐ PointOnCut

end if

∂φ = 2π
NumbeOfCuts

for i = 1 to MaxIterCount do

ResultPoint ⇐ NULL
ResultPoint.φ ⇐ pi.phi + ∂φ
IntegratorStatus = ODEIntegrator(pi, ResultPoint) {Find the coordinates of
ResultPoint solving the differential equations ∂r

∂φ = F1(r, φ, z), ∂z
∂φ = F2(r, φ, z)}

add ResultPoint to TracedPoints
if IntegratorStatus = WALL AND TracingDirection = +1 then

TracingDirection ⇐ −1
TraceStatus = Trace(pi, T racingDirection, TracedPoints, F ieldLineType) {Recursive
call of Trace procedure in the opposite (negative) direction}
if TraceStatus = 1 then

if TracedPoints.Size < MinNumberOfPointsInLine then

FieldLineType ⇐ SHORT
return 0

end if

Sort(TracedPoints)
return 1

else

return 0
end if

else if IntegratorStatus = WALL AND TracingDirection = −1 then

return 1
else if IntegratorStatus = OK AND TracingDirection = +1 then

if CheckLineClosed(pi, ResultPoint) = 1 then

FieldLineType ⇐ CLOSED
return 1

end if

end if

end for

FieldLineType ⇐ LONG
return 0
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Figure 4.1: W7-X bean-like shape Poincarè plot.
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Figure 4.2: W7-X triangle-like shape Poincarè plot.
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4.1.2 Metrics calculation

To compute metrics we have to solve the set of Eqs. (3.22), (3.25) and Eqs. (3.31), (3.33) derived
in chapter 3. This is done by the separate code named “tracer”. The code is suited for a great
variety of tasks and machines. It produces metric information not only for this code, but also for
turbulence codes GS2 [54] and GENE [55]. Nowadays “tracer” is a part of the GENE framework.

The code consists of a few subsystems, which can be individually adapted to the work needs.
The input part, that reads the list of starting points and the output part, that writes the metric
coefficients are task-dependent. The type of the input and output files can be changed through
input parameters in the configuration file. The part, which provides magnetic field information,
is device-dependent. Its behaviour can also be controlled through the configuration file. At the
moment, the list of supported devices includes: W7-X, NCSX, DIII-D, TOK, NSTX, AUG, JET
and TEXTOR. There are two main modes, in which this subsystem can work. First is “normal
mode”, in which the code uses the magnetic field information defined in the rectangular mesh
nodes and second is a “VMEC” mode, which allows to use directly information provided by the
“VMEC” [56] code. The core routine which traces along the magnetic field line and calculates
all metrics information is independent of both the machine- and the task-type modes. This
routine sequentially takes starting points, and depending on its type, traces along the magnetic
line from that point. The direction, distance of the trace and the number of intermediate output
points are defined by the type of the starting point. Due to the fact, that calculations of the
metric coefficients for individual starting points are independent from each other, an effective
parallelization was done. For the parallel version the whole set of the starting points was divided
between processes and then all calculations were done independently. The output in the parallel
version of the code is also realized independently on each process into the “netCDF” file format.
Afterwards, it is possible to merge all outputs from all processors into one file with the help of
special utility written for that purpose.

4.1.3 Determining poloidal neighbours

To construct a discrete form of the transport equations we are solving (Eqs. (3.34)-(3.37)), we
need the neighbours information on each of the point of the mesh both in toroidal and poloidal
directions. Due to the tracing procedure that is used for constructing the mesh we already have
a list of toroidal neighbours. Finding neighbours on the Poincaré plot is a separate task that is
done as a pre-processing step.
In the previous version of the code (see [57]) this was done with the help of a Delaunay triangu-
lation procedure (see [58]). Delaunay triangulation covers the plane with a number of scattered
points with a set of non-overlapping triangles, where the vertices lie in these points. An im-
portant property of the resulting set of triangles is that these triangles tend to form equilateral
triangles. The drawback of the procedure is that the simple realization of the algorithm is very
time consuming and one can not control the number of the neighbours for each point which
it will produce. Also in the case of a very non-homogeneous mesh one can get very narrow
triangles which can lead to large numerical errors. The use of the Delaunay triangulation was
caused by the way of discretization of the equations in the previous version of the code. It was
necessary to use an information about triangles as the code constructed fluxes in the center of
each of them and then took the divergence of those fluxes.
In the present code we use a direct calculation of the derivatives in the mesh points and thus we
don’t need an information about triangles. Instead of this we use some fixed number of nearby
points. The task in this case is to find as equally spatially distributed neighbours as possible.
It is clear that the most preferable points are those with the shortest distances to the reference
point. So it should be a trade-off between how far the neighbours are away and how uniform
they are distributed.
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The main idea of the neighbour-finding algorithm in this work follows [59]. It was proposed to
use a ”shadow” from points that were already chosen to discriminate other points. Taken this
idea as a basis we constructed our own algorithm for solving the problem.

There are three parameters: number of neighbours for each point, far cut-off border, and
near cut-off border. The far cut-off border is needed for speed up the code. It should be big
enough to cover sufficiently large number and well distributed neighbours. The near cut-off
border is used to discard the points which lie too close to the reference point. Taking all the
points one by one the code finds neighbours for them independently from each other.

The neighbours procedure is done in a separate code (“nbh”). In this code neighbours for
each of the point are found within several steps. As a first step, only points that lie between
two borders are taken. Then they are sorted according to their distance to the reference point.
After that the initial shadowing procedure is done. During this procedure points from the sorted
list are taken one by one and, if they are not already discarded, a shadow circle is constructed
around it. Then the rest of the points are marked to be shadowed or not. If some point occurs to
be shadowed it is labeled as discarded and the procedure continues. The procedure is presented
schematically in Fig. 4.3. For the radius of the shadow circle we use the following considerations:

Figure 4.3: Schematics of the shadowing procedure.The reference point for which the set of
neighbours should be found is red. Two cut-off border line are painted with a dashed line. The
inner cut-off region is light blue. The shadow circle around the point is grey. Discarded points
are green.

if we assume that all our neighbours (e.g. eight) are equally distributed around the reference
point, then the rest of the region should be completely shadowed by them (see Fig. 4.4). In this
case we can calculate the radius of the shadow circle as:

Rsh = R0sin

(
2π

8 · 2

)

(4.1)

Where Rsh is a radius of a shadow circle, R0 is the distance to the reference point.
So for the case of spatially distributed points we can take the shadowing radius as Rsh =

R0sin

(
π

nN

)

, where nN is the number of needed neighbours (8 in the example above). This

formula is only valid for the case of points equally distributed in the space around the reference
point, which is usually not true for practical cases. To achieve a better result the formula have
to be corrected in order to take into account unequal distribution of neighbours in all directions.
To do this we use two passes of the shadowing procedure. In the first pass we assume, that all
points are distributed within an angle of π/4, which in fact is an underestimate (usually it varies
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Figure 4.4: The figure demonstrates the consideration, that was used for obtaining the radius of
the shadow circle. Eight points around the reference point are distributed equally in space. There-
fore they lie on the circle circumscribed about the reference point and form a regular octagon.
The radius of the shadow circle should be the half of the side of the octagon.

from π to 2π). Then, for each neighbour point i we calculate the shadow radius as:

Ri
sh = Ri

0sin

(

πk̃

nN

)

, (4.2)

where k̃ = 0.25 according to our “a priori” assumption. We take such a small coefficient for this
step in order to obtain more neighbours than needed. After that we correct the coefficient taken
for the calculation of the shadowing radius in such a way:

k = k̃
ñN

nN
, (4.3)

where ñN is the number of neighbours found after initial shadowing procedure. The corrected
coefficient k then is used for the final shadowing procedure. In the final shadowing stage we take
all the points from the list of points that was found in the region between two cut-off borders.
As the first point is the nearest, we take it as it is. After that the code calculates the penalty
factors for the rest of the points. The penalty factor is constructed in such a way, that it is
proportional to the distance from the point to the reference point and inversely related to the
distance to the center of the summary shadow region. If the point lies inside the shadow region
it’s penalty factor grows much faster with decreasing the distance to the center of the shadow
region than if the point lies outside the region. Then, the code takes as a next neighbour the
point with the smallest penalty factor. After that, the shadowing region is recalculated in order
to include the shadowing from the newly added point and the procedure continues. When there
are few separate parts of the shadowing region the penalty factor is calculated as a sum of the
factors with respect to each of the shadowing sectors. The procedure described above is executed
until the requested number of points are chosen. The described algorithm can be found in Alg.
3. An example of the resulting neighbours on a part of the W7-X mesh is shown in Fig. 4.5.
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Algorithm 3 Finding neighbours of a specific point. Return ListOfNeighbours.

Require: Point p, List of grid points GridPts, NumberOfNeighbours, Initial radius R0,
NearBorder, FarBorder, empty of partially filled ListOfNeighbours
Find in GridPts all the point between (NearBorder, FarBorder)
Pts ⇐ found points
Sort(Pts)
Execute initial shadowing:
for all pi ∈ Pts do

if pi is not discarded then

Draw a shadow circle with radius R0 around it
for pj = pi + 1 to Pts.Last do

if pj is shadowed then

pj ⇐ discard
end if

end for

end if

end for

Update R0

Remove discarded points from Pts
Execute final shadowing:
Add Pts[1] to ListOfNeighbours
p1 ⇐ Pts[1]; Remove 1 point from Pts;
Calculate ShadowAngle
while ListOfNeighbours.Size < NumberOfNeighbours do

MinPenalty ⇐ 10000000; pn
for all pi ∈ Pts do

Calculate PenaltyFactor ⇐ F (pi, p1, ShadowAngle)
if PenaltyFactor < MinPenalty then

pn ⇐ pi;
MinPenalty ⇐ PenaltyFactor

end if

end for

Add pn to ListOfNeighbours
end while

return ListOfNeighbours

4.2 Finite difference solution of the conduction-convection

problem

All transport equations ((3.34) – (3.37)) can be rewritten in a generalized form:

At
∂f

∂t
+

1√
g

∂

∂xi

√
g

(

V if − Dij ∂f

∂xj

)

︸ ︷︷ ︸

L◦f

+νf = Q, (4.4)

where Dij is given by
Dij = D⊥gij +

(
D|| − D⊥

)
hihj (4.5)

and it acts as a generalized diffusion matrix; V i is a generalised velocity; At is a coefficient
possibly dependent on other quantities like density, velocity etc.; ν is an implicit and Q an
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Figure 4.5: A part of the W7-X bean-like shape Poincarè plot with neighbours on it.

explicit part of the source. Here, a summation over repeated subscripts i, j is assumed. Hence,
to solve the coupled set of transport equations it is enough to develop a solver for a generalized
form of conduction-convection equations and assign appropriate values to generalized diffusion
coefficients, velocity, At coefficient and sources for each equation.
Different discretization schemes for parallel and “mixed” terms were applied. Along the field
line we use a simple central-difference scheme. For poloidal and “mixed” terms this is impossible
because of the unstructured character of the mesh on the cut. That is why we are forced to use
other methods, like a least-square method (see appendix refch:appendix).
We take from Eq. ((4.4)) operator L acting on f , and split it into two parts:

L = L|| + L6 , (4.6)

where L|| is an L with (i, j) = (3, 3) and L6 denotes the rest combination of indexes for the L.
In this section we are interested in discretizing the L|| term.

4.2.1 Discretization of parallel terms

Upwind scheme

First let’s construct the simplest scheme for the parallel term. To do this we have to consider
the L|| ◦ f . This is a parallel part of the divergence of the parallel flux:

L|| ◦ f = ∇||F|| =
1√
g

∂

∂x3

(√
g

(

V Φ − D
∂f

∂x3

))

(4.7)
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To discretize it, let us denote △ = (δx+
w + δx−

e )
−1

. After applying the central difference scheme
to equation (4.7) we have

∇||F|| =
1√
g
△ (

√
geFe −

√
gwFw) , (4.8)

where Fw and Fe are defined due to the up-wind scheme as follows:







Fw = VwfW − Dw
fP − fW

δxw
if Vw > 0

Fw = VwfP − Dw
fP − fW

δxw
otherwise

(4.9)







Fe = VefP − De
fE − fP

δxe
if Ve > 0

Fe = VefE − De
fE − fP

δxe
otherwise

(4.10)

Here we use the notation from [60] where P means the reference point, W – west, E – east, w
– west interface point and e – east interface point.
To express both cases of Fw and Fe simultaneously we can rewrite equations (4.9) and (4.10)
in the following form:

Fw =
1

2
fW (Vw + |Vw|) +

1

2
fP (Vw − |Vw|) − Dw

fP − fW

δxw
(4.11)

Fe = −1

2
fE (|Ve| − Ve) +

1

2
fP (|Ve| + Ve) − De

fE − fP

δxe
(4.12)

And the complete discretized form of equation (4.7) is

∇||F|| =
1√
gP

△ (
√

geFe −
√

gwFw) ≡ (4.13)

fE

[√
ge

(

−1

2
(|Ve| − Ve) −

De

δxe

)]

+

fP

[√
ge

(
1

2
(|Ve| + Ve) +

De

δxe

)

−√
gw

(
1

2
(Vw − |Vw|) −

Dw

δxw

)]

+

fW

[

−√
gw

(
1

2
(|Vw| + Vw) +

Dw

δxw

)]

Generalized upwind scheme

The method described above is of course not the only one for discretization such an equation.
It is possible to construct a more accurate approximation for mixed conduction and convection.
Such a scheme was proposed by Patankar [60]. Then it was generalized in [61] for a non-staggered
grid case with a constant source within the cell. The idea of the method is simple and at the
same time very prominent. First let’s assume that within a region of one cell the diffusion
coefficient, the velocity and source remains constant. After that we can solve a boundary value
problem with a Dirichlet boundary conditions on one cell for such an equation:

∂

∂x3

(

Fφ − Γ
∂φ

∂x3

)

= S (4.14)
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where

F =
√

gV 3 (4.15)

Γ =
√

gD33 (4.16)

S =
√

gQ (4.17)

Here the notation from [61] was used. For the specific assumptions we can replace the partial
with full derivatives, so Eq. (4.14) is (omitting the indices)

d

dx

(

Fφ − Γ
dφ

dx

)

= S (4.18)

Eq. (4.18) can be solved exactly if Γ and F are taken to be constant and if S is a function of x
only or a linear function of φ. Here we consider only the case with a constant S. To solve the
equation (4.18) first we directly integrate it. After integration we have:

FΦ − Γ
dΦ

dx
= Sx + c (4.19)

This differential equation belongs to a class of first-order linear ordinary differential equations:

y′ (x) + p (x) y (x) = r (x) (4.20)

The general solution of such kind of equation can be written in the form

y = exp (−a (x))

(∫

r (x) exp (a (x)) dx + k

)

(4.21)

where a (x) =
∫

p (x) dx. We rewrite Equation (4.19) in the form of Equation (4.20)

dΦ

dx
− F

Γ
Φ = − 1

Γ
(Sx + c) (4.22)

and assign p(x) as

p (x) = −F

Γ

r(x) as

r (x) = − 1

Γ
(Sx + c)

and a(x) as

a (x) = −F

Γ
x.

With these definition the resulting solution is written as

Φ = exp

(
F

Γ
x

) (∫

− 1

Γ
(Sx + c) exp

(

−F

Γ
x

)

dx + k

)

(4.23)

In the expression above the integral splits into two pieces which can be taken separately:

− 1

Γ
S

∫

x exp

(

−Fx

Γ

)

dx =
S

F
x exp

(

−F

Γ
x

)

+
SΓ

F 2
exp

(

−F

Γ
x

)

−
∫

1

Γ
C exp

(

−Fx

Γ

)

dx =
C

F
exp

(

−Fx

Γ

) (4.24)
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Substituting the resulting expressions from (4.24) into Eq. (4.23) we get

Φ = exp

(
F

Γ
x

) (∫

− 1

Γ
(Sx + c) exp

(

−F

Γ
x

)

dx + k

)

=
S

F
x +

SΓ

F 2
+

C

F
+ k exp

(
Fx

Γ

) (4.25)

To determine the constants we have to use the boundary conditions which in our case are as
follows:

x = 0 : Φ = Φ0

x = L : Φ = ΦL
(4.26)

We obtain coefficients:

k =
ΦL − Φ0 −

SL

F

exp

(
SL

F

)

− 1

C = Φ0F − SΓ

F
− F

ΦL − Φ0 −
SL

F

exp

(
SL

F

)

− 1

(4.27)

After the substitution of the coefficients from (4.27) into the (4.25) we finally get the solution:

Φ = Φ0 +
S

F
x +

ΦL − Φ0 − (SL/F )

exp (FL/Γ) − 1

[

exp

(
Fx

Γ

)

− 1

]

(4.28)

Then, the flux Jx is

Jx = FΦ − Γ
dΦ

dx
= FΦ0 + Sx − F

ΦL − Φ0 − SL/F

exp (FL/Γ) − 1
− SΓ

F
(4.29)

With this definition, Equation (4.18) can be written in the form

dJx

dx
= S (4.30)

Now we can integrate Eq. (4.30) withing the cell e.g. from the interface point w to the interface
point e. However here we should take the flux Jx and thus the source S, the convection F and
the conduction Γ constant between grid points (e.g. P ,W and P ,E). After integration we have:

Jx
e − Jx

w = Seδx
−
e + Swδx+

w (4.31)

The solution (4.28) is continuous only between the grid points and thus we can obtain fluxes
on the interface points basing on the correspondent solution for the nearby grid points. So
for Jx

e we take δxe as L, ΦP as Φ0, ΦE as ΦL. Also quantities F, Γ, S are taken as Fe, Γe, Se.
And coordinate x will be the distance from the first point i.e. δx−

e . For the Jx
e flux we take

correspondent values δxw, ΦW , ΦP , Fw, Γw, Sw, δx−
w as L,Φ0, ΦL, F, Γ, S, x. In this case, the value

ΦP is taken as ΦL, whereas for the Jx
e it was taken as Φ0. So the fluxes look now as follows:

Jx
e = FeΦP + Seδx

−
e − Fe

ΦE − ΦP − Seδxe/Fe

exp (Feδxe/Γe) − 1
− SeΓe

Fe

Jx
w = FΦW + Swδx+

w − Fw
φP − φW − Swδxw/Fw

exp (Fwδxw/Γw) − 1
− SwΓw

Fw

(4.32)
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Further, expressions for Jx
e and Jx

w are substituted into Eq. (4.31) and coefficients are
combined such, that we end up with the expression:

CΦW + BΦP + AΦE = R. (4.33)

To do this we also introduce a so called Peclèt number, which is the ratio between convection
and conduction.

Pw =
Fweδxw

Γw
, (4.34)

and Pe as

Pe =
Feδxe

Γe
. (4.35)

Also taking into account, that in our setup we have δx−
w = δx+

w = 0.5δxw and δx−
e = δx+

e =
0.5δxe, we find A, B, C as

A = − Γe

δxe

(
Pe

expPe − 1

)

B = Fe +
Fe

expPe − 1
+

Fw

expPw − 1

C = − Γw

δxw

(

Pw +
Pw

expPw − 1

)

(4.36)

We denote as A(P ) the function:

A(P ) =
P

expP − 1
(4.37)

and rewrite the expression for C coefficient as

C = − Γw

δxw

( −Pw

exp(−Pw) − 1

)

.

Finally, we write the coefficients as

A = − Γe

δxe
A(Pe)

B = Fe − Fw − C − A

C = − Γw

δxw
A(−Pw)

(4.38)

Now, we come to the discussion of the source term and coefficient R. After some algebraic
transformation we can obtain R:

R = Seδxe

(
1

Pe
− 1

expPe − 1

)

+ Swδxw

(

1 − 1

Pw
+

1

expPw − 1

)

(4.39)

Another function can be introduced

W (P ) =
1

P
− 1

expP − 1
. (4.40)

which is connected with the previously introduced function A as

W (P ) =
1 − A(P )

P
. (4.41)
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With such a definition the coefficient R looks like:

R = SeδxeW (Pe) + Swδxw (1 − W (Pw)) (4.42)

The functions A and W are illustrated in Figs. 4.6 and 4.7. For large negative values of the Peclèt
number the function A(P ) can be approximated with the value of P itself and for P → +∞ it
approaches 0. The opposite behaviour has the function A(−P ).
The W (P ) and 1−W (P ) act as step functions. The relative impact of the sources vary from 1
to 0 depending on the sign and the strength of the Peclèt number such that for large negative
values the front source have the greatest impact and for large positive values the one behind.
For zero Peclèt number the velocity contribution from both sources are equal (1

2 of the total).
In most cases, the upwind scheme is enough for obtaining a correct solution, on the other hand
computational costs of the generalized upwind scheme can be quite big, so that one can be
satisfied with a simpler solution. Therefore, a simple upwind scheme is used and only the cor-
rection of the source for the pressure gradient term in the momentum equation is done with the
algorithm described here. The implementation of such a weighting of the neighboring sources
allows to avoid an unstable behaviour of the equation known in literature [61].

4.2.2 Discretization of the non-parallel terms

The non-parallel terms are treated in a completely different way. Here, we do not express terms
as a divergence of the flux. Instead we use a chain rule to obtain “pure” derivatives over our
major quantity and then calculate these derivatives with the help of the “free point” method.
Taking the definition of the L6 from Eq. (4.6) and using Eq. (4.4) we can write down:

L6 ◦ f =
1√
g

∂

∂xi

√
g

(

V if − Dij ∂f

∂xj

)

(4.43)

and after applying the chain rule we have:

L6 ◦ f =
1√
g

[
∂

∂xi

(√
gV if

)
−√

gDij ∂2

∂xi∂xj
f − f

∂2

∂xi∂xj

(√
gDij

)
]

(4.44)

To discretize Eq. (4.44) we have to find out the discrete form of the first order derivatives
∂

∂xi

and the second order derivatives
∂2

∂xi∂xj
. Having an information about poloidal neighbours for
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each point we want in general to calculate their weighting coefficients. The coefficients have to
give us a derivative value while multiplying the function values in the neighbours and reference
point on them:

f ′ =
N∑

i=0

aifi, (4.45)

where i is the index of neighbour and the reference value, N is the neighbours, ai is the coefficient
for i’th neighbour. A reference point is labeled as i = 0. In the same way we want to discretize
all first and second derivatives. One of the possibilities to construct such a set of coefficients is
to use the least squares method. We can estimate (using a first order derivatives) a function
value in some neighbour point i using an expression:

f̃i ≈ f0 + f ′
x(xi − x0) + f ′

y(yi − y0) (4.46)

where,
f0 : the function value in the reference point
f̃i : the estimated function value in the neighbour point i
f ′

x, f ′
y : partial derivatives ∂/∂x, ∂/∂y

xi, yi : x and y coordinates of a poloidal neighbour i
x0, y0 : x and y coordinates of the reference point
The better we find partial derivatives f ′

x, f ′
y the closer the difference between the value of the

function f in the point i and its estimation based on the reference point. As we have not only
one neighbour we can construct the same estimations for all the neighbour points. We want to
fit partial derivatives in the reference point in such a way, that they will approximate in a best
way all the values of the functions in all the neighbours. To do this we say, that f ′

x and f ′
y have

to minimize the following functional:

A =
N∑

i=1

(fi − f0 − f ′
x∆xi − f ′

y∆yi)
2ω2

i (4.47)

where N stands for number of neighbours and ωi as some additional weighting factors. In our
realization we take these weighting factors reverse proportional to the distance from the reference
point to the neighbour one. The reason for that is that we expect the bigger impact from the
near points, then from far. To find the minimum for (4.47) derivatives should satisfy:

∂A

∂f ′
x

= 0

∂A

∂f ′
y

= 0
(4.48)

and taking the partial derivatives of the functional A in (4.47) we get (in the following we omit
the boundaries for the sum):

∑

i

(fi − f0 − f ′
x∆xi − f ′

y∆yi)ω
2
i ∆xi

∑

i

(fi − f0 − f ′
x∆xi − f ′

y∆yi)ω
2
i ∆yi

(4.49)

The equation (4.49) can be solved over the derivatives f ′
x, f ′

y. The solution will be represented
exactly as needed for determining coefficients like in (4.45). Coefficients will depend only on the
differences ∆x, ∆y and weighting factors ω.
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The same procedure can be done for determining second order derivatives
∂2

∂x2
,

∂2

∂y2
,

∂2

∂x∂y
. To

do this, we construct first an approximation of the function f in some neighbour point i based
on the reference point 0 as we did before, but keeping now the second order terms:

f̃i ≈ f0 + f ′
x(xi − x0) + f ′

y(yi − y0) +
1

2

(
f ′′

xx(xi − x0)
2 + 2f ′′

xy(xi − x0)(yi − y0) + f ′′
yy(yi − y0)

2
)

(4.50)
Then, taking the definition above we construct another functional, that have to be minimized:

B =
∑

i

[
(
fi − f0 − f ′

x∆xi − f ′
y∆yi

)
− 1

2

(
f ′′

xx∆x2
i + 2f ′′

xy∆xi∆yi + f ′′
yy∆y2

i

)2
]2

ω4
i (4.51)

To minimize Eq. (4.51) second derivatives should satisfy a set of differential equations:

∂B

∂f ′′
xx

= 0

∂B

∂f ′′
xy

= 0

∂B

∂f ′′
yy

= 0

(4.52)

which leads to the linear set of equations:

∑

i

∆x2
i

[

εi −
1

2

(
f ′′

xx∆x2
i + 2f ′′

xy∆xi∆xy + f ′′
yy∆y2

i

)
]

ω4
i

∑

i

∆xi∆yi

[

εi −
1

2

(
f ′′

xx∆x2
i + 2f ′′

xy∆xi∆xy + f ′′
yy∆y2

i

)
]

ω4
i

∑

i

∆y2
i

[

εi −
1

2

(
f ′′

xx∆x2
i + 2f ′′

xy∆xi∆xy + f ′′
yy∆y2

i

)
]

ω4
i

(4.53)

where εi = fi −f0 −f ′
x∆xi −f ′

y∆yi. The first derivatives in the definition of ε are obtained with
the help of the procedure already discussed. As we use here the same number of points as for the
first derivative it is clear, that the resulting error of the procedure for obtaining the second order
derivatives will be squared with respect to the one of the procedure for the first order derivatives.

4.2.3 Conduction-convection solver

In the present version of the main code “Findif” a single solver for solving the conduction-
convection equation in a general form was developed. The code solves sequentially a number of
such equations. Due to such a design it is easier for extensions and management. For example,
withing the configuration file one can set which equations to solve, switch different sources on
and off and manipulate all transport coefficients. For adding new equations (e.g. impurities)
one has to define all physical quantities without modifying the main solver routines. Instead
of using a fully implicit scheme (resulting in large sparse matrices, see Fig. 4.8) a so-called
“semi-explicit” scheme is used. This means that for the parallel direction all terms are treated
implicitly, whereas the rest of the terms are taken explicitly. This allows to reduce the amount
of memory needed for the calculations and also to use a simple tridiagonal and cyclic tridiagonal
solvers which are extremely fast. After using this scheme the amount of memory needed for all
the coefficients passed to the solver reduces by 5-7 times (see Fig. 4.9). The time needed for
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Figure 4.8: The matrix used for solving
the conduction-convection problem with a
fully implicit scheme.
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Figure 4.9: The matrix used for solving
the conduction-convection problem with a
“semi-explicit” scheme.

individual time step calculation decreases by 50 times. At the same time the procedure remains
robust enough due to the fact that the dominant process of the parallel transport is calculated
implicitly. It is also important to stress, that all the diagonal coefficients in all the non-parallel
terms (L6 operator) are taken implicitly. This is done to make the scheme stable.

With this, we complete the description of the algorithm of the finite difference conduction-
convection solver. The detailed description of the “Findif” algorithm can be found in Algs. 4, 5
and 6. The “life cycle” of the frame work as a whole is illustrated in Fig. 4.10.
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Algorithm 4 Main code. Return solution

Require: Config file, Mesh, Neighbours, Metric
Read Config
ListOfCoefficients = FreePointMethod(Neighbours, Mesh) {Find the matrix of coeffi-
cients for further derivative calculation}
Iter ⇐ 0
Set TimeStep from Config
Init CurrentSolution, OldSolution from Config
while Iter < MaxIter do

if Is TimeStep adaptive? then

TimeStep = RecalcuteT imeStep()
end if

Solution ⇐ ExecuteT imeStep()
OldSolution ⇐ CurrentSolution
CurrentSolution ⇐ Solution
Res = GetResidual(CurrentSolution, OldSolution)
if Accuracy in Res achieved? then

return CurrentSolution
end if

end while

return CurrentSolution

Algorithm 5 ExecuteT imeStep() procedure. Return solution on this timestep

Require: Config file, Mesh, Neighbours, Metric
Init FirstResidual
Init OldIterSolution, CurrentIterSolution
InnerIter ⇐ 0
while Iter < MaxInnerIter do

for all Equation ∈ ListOfEquations do

Solve(Equation)
end for

OldIterSolution = CurrentIterSolution
CurrentIterSolution = Solution
Res = GetIterResidual(OldIterSolution, CurrentIterSolution)
if Res/FirstResidual < eps then

return CurrentIterSolution
end if

end while

return CurrentIterSolution
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Algorithm 6 Solve(Equation) procedure. Return solution for one equation

Require: Config file
for all line ∈ FieldLines do

for all p ∈ line do

Execute calculations for selected configuration: 1D or 3D

Calculate
d

dx3

(

V 3f − D33 df

dx3

)

term implicitly with Upwind scheme

Calculate all the other derivative terms explicitly
Calculate explicit and implicit Source terms

end for

Apply BoundaryConditions, if needed
Solve Equation in line with PROGONKA method

end for

return Solution

Figure 4.10: The life cycle schematics of the FINDIF project. Describes the most important
steps for obtaining a temperature, density and parallel velocity stationary solutions for some
device.Consists of three preliminary steps and the main code.
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4.3 Validation of the conduction-convection solver

Every code needs validation with analytical solutions. As we have a conduction-convection
problem it’s worse to check separately two limiting cases: the purely conductive and the purely
convective solution. For the purely conductive case, we can take the diffusion equation, e.g. for
the electron temperature:

d

dx
κe||

dTe

dx
= 0 (4.54)

In the equation above κe|| is the classical electron heat conduction coefficient, which depends

on temperature as κ ∝ T
5

2
e . With additional Dirichlet boundary conditions at the ends of

the domain, the equation can be easily solved analytically. If we set Te(x = 0) = Te0 and
Te(x = L) = TeL then the solution of Eq. (4.54) is:

Te =

(
x

L

(

T
7

2

eL − T
7

2

e0

)

+ T
7

2

e0

) 2

7

(4.55)

The result of the analytical and numerical solutions gives the same values up to the numerical
noise in this case.

Another kind of limiting case is the purely convective case. For this kind of validity test we
have used the simplest system of convective fluid equations, that can be solved analytically: the
stationary coupled one for n, V in 1D. To obtain the solution we omit the viscosity term in the
velocity equation and take the source for density as constant (although it is possible to obtain
solutions without this constraint ). As boundary conditions we suppose the velocity values given
on both ends. We suppose the absolute values of these velocities to be equal, whereas the sign
is chosen opposite. So, the system of equations we solve is:







d (nV )

dx
= S

d
(
nmV 2 + nT

)

dx
= 0

(4.56)

After integration we have:
{

nV = Sx + C1

nmV 2 + nT = C2
(4.57)

where C1 and C2 are constants determined by the boundary conditions. We express n from the
first equation of Eqs. (4.57) and substitute it to the second one, the resulting quadratic equation
with respect to V is:

V 2m (Sx + C1) − V C2 + T (Sx + C1) = 0. (4.58)

The solution of Eq. (4.58) is:

V1,2 =
C2 ±

√

C2
2 − 4mT (Sx + C1)

2

2m (Sx + C1)
. (4.59)

Let V = V0 for x = 0 and V = −V0 for x = L. Using Eqs. (4.57) we obtain the expressions
for coefficients C1 and C2:

C1 = −SL

2
, (4.60)

C2 = −SL
(
V 2

0 m + T
)

2V0
. (4.61)
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Substitute the expressions (4.60), (4.61) to (4.59)

V+,− =

−SL

2

V 2
0 m + T

V0
±

√

(SL)2

4

(
V 2

0 m + T
)2

V 2
0

− 4mT

(

Sx − SL

2

)2

2m

(

Sx − SL

2

) , (4.62)

This solution is defined for ∀x ∈ [0, L] with x 6= L

2
with V0 6= 0. After applying the boundary

condition x = 0 to Eq. (4.62) we found the following constraints on the solution V :

V =

{

V+ if mV 2
0 ≥ T,

V− if mV 2
0 ≤ T

(4.63)

For x, that lies in the neighbourhood of
L

2
, we obtain the following solution, getting rid of the

indeterminate form
0

0
:

V =
2TV0

SL
(
V 2

0 m + T
)

(
SL

2
− Sx

)

. (4.64)

Figures 4.11 and 4.12 show the comparison between the analytical and numerical solutions,
which agree quite well with some small differences. In Fig. 4.12 one can see a small difference
between the two solutions near the walls (the first and the last point) caused by the very steep
gradients. This relatively small difference in the velocity values leads to the visible discrepancy
in the density profile, as one can see in Fig. 4.11, which disappears if one uses the analytical
velocity profile.
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Figure 4.11: Comparison of the density obtained from the analytical and numerical solution.

The benchmark with a 1D code solving coupled pair of the density and velocity equations was
done. The code named “FV1D” was provided by A. Runov. FV1D is a fully explicit code using
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Figure 4.12: Comparison of the velocity obtained from the analytical and numerical solution.

a staggered grid (i.e. velocities are set on the cell interfaces). A fourth order Runge-Kutta ODE
integrator is used for solving the time evolution. For the spatial part an upwind scheme is used.
The benchmark was done for the case with the source of the plasma placed on the left side and
target plate placed on the right. Four quantities, namely electron temperature, ion temperature,
density and velocity were calculated in the Findif code. After obtaining temperatures from the
Findif code (shown in Fig. 4.13) the values were used as a background temperature in the FV1D
code. The results of comparisons are shown in Fig. 4.14 for density and Fig. 4.15 for velocity
and show good agreement.

In this chapter, the code algorithm including pre-processing steps was discussed and the
successful benchmark with analytical and numerical models was presented. Now, the tool is
ready to be used for physics studies.

44



Chapter 4. Numerical setup

 0

 10

 20

 30

 40

 50

 0  1  2  3  4  5  6  7  8  9  10

T
em

pe
ra

tu
re

 [e
V

]

Lenght [m]

Electron temperature
Ion temperature

Figure 4.13: Temperature profiles used for the benchmark with a 1D code.

 0

 1e+18

 2e+18

 3e+18

 4e+18

 5e+18

 6e+18

 7e+18

 8e+18

 9e+18

 1e+19

 0  1  2  3  4  5  6  7  8  9  10

D
en

si
ty

 [1
/m

3 ]

Lenght [m]

FV1D solution
Findif solution
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Chapter 5

Results

The aim of this work is to investigate the influence of the ergodicity and 3D configuration of
the field on the heat transport. The study of conductive heat transport is the first step towards
the analysis of the heat flux pattern, because for temperatures above about 50 eV the parallel
heat conduction is usually dominant and convection terms or neutral sources can be neglected
(at least for electrons). We present calculations for the W7-X stellarator and TEXTOR-DED.

5.1 Heat conduction

The electron and ion temperature equations include the coupling term, that describes energy
exchange between electrons and ions.

3

2
ni

∂Te

∂t
−

1√
g

∂

∂x3

√
g

[
κA

e g33 + (κ0
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] ∂Te
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∂x3

√
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[
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e
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(5.1)

for electron temperature, and
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(5.2)

for ion temperature. Using the concept of a generalized conduction-convection equation, which
was described in Chap. 4 (see Eqs. (4.4) and (4.5) ) with zero velocities, we can rewrite both
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equation:

At
∂Tα

∂t
− 1√

g

∂

∂xi

√
g

(

Dij
α

∂Tα

∂xj

)

+ ναTα = Qα (5.3)

Identifying the terms we have:

Dij
α = Dα⊥gij + (Dα|| − Dα⊥)hihj

Dα⊥ = χα⊥n

Dα|| = χα||n (5.4)

να =
3men

mi

1

τei

Qi =
3men

mi

1

τei
Te

Qe =
3men

mi

1

τei
Ti

Here, the index α refers to the appropriate species either electrons or ions, hi = |∇xi|, n is
the plasma density, me, mi are the electron and ion masses, χα⊥, χα|| are the perpendicular and
parallel thermal conductivities, respectively and τie is the electron-ion collision time. We have
also the contribution from the heat loss rate ν and energy sources Qα from the coupling term.

5.1.1 W7-X geometry

For W7-X we analyze first a limiter configuration for an equilibrium configuration without
ergodic effects and without target plates: here, the limiting structure is assumed to follow
exactly the shape of an outer flux surface. Calculations were done for the electron temperature
only. We use Dirichlet boundary conditions on the innermost and the outermost flux surfaces.
On the innermost the fixed temperature value is taken 300eV and on the outermost 4.6eV . The
anomalous perpendicular diffusion coefficient is taken as 1m2/s. The density was taken constant
on the whole domain and equal 1019 1/m3.
This case is used to benchmark three codes with very different numerical approaches for the
problem of anisotropic electron heat conduction in a 3D geometry including islands. Fig. 5.1
shows the resulting electron temperature distribution in the W7-X bean-like toroidal cut. The
results for the electron temperature profile along the line shown in Fig. 5.1 with black color (a
black line cut the profile on the level z = 0) are compared for BoRiS, E3D and Findif in Fig.
5.2.
A quite good agreement between these different numerical approaches is seen, especially because
all of the codes have to interpolate quite different to obtain the 1-D cut results. As discussed in
chapter 2 BoRiS is a finite volume code in global flux coordinates, E3D and Findif make use of
LCMS, for which E3D is solving the transport equations with Monte Carlo methods, whereas
Findif is using finite differences. All codes show the strong modification of the radial profiles
due to the islands, where the existence of closed field lines flattens the radial profile.

W7-X is clearly not operated in a limiter mode, but has 3D divertor structures (as seen in
Figs. 5.3 and 5.4).

These target plates cut through the islands and lead to large losses to the target plates
resulting in much lower temperatures at the target plates and a different solution than for the
limiter case (see Figs. 5.5 and 5.6 and compare with Fig. 5.1). For the discussed case we
solve the set of equations Eqs. (5.1), (5.2) with a Dirichlet boundary conditions on the inner
and outer boundaries and sheath conditions on the target plates. The boundary values for
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Figure 5.1: Solution of the pure conduction problem for electron temperature. W7-X bean-like
shape.

Figure 5.2: Benchmark of three codes. Electron temperature along the line z = 0 on the W7-X
bean-like cut is shown.

both temperatures are taken equal: 150eV for inner and 5eV for outer boundaries respectively.
Anomalous diffusion coefficient is taken as 2 m2/s.

The heat flux pattern on the target plates reflects for electrons the spatial distribution of the
connection length of the field lines hitting the plate (see Figs. 5.7,5.8, 5.9). This is also visible
on the plot of the electron heat flux density at the target plate as a function of field line length
(Fig. 5.10). The maximum values are clearly correlated with the longest field line lengths. Due
to the radial diffusion, these large heat fluxes also fill up neighboured field lines with shorter
lengths, therefore one gets a rather full triangle in the plot. In contrast to the electrons, ions have
a rather hot-spot-like pattern with localized zones of high ion temperatures. These spots are
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Figure 5.3: Divertor structure on the W7-X geometry.
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Figure 5.4: One part of the divertor structure (W7-X), used for the 3D view of the solution later
on.

created by the coupling terms of electrons to ions, which are heating the ions at those locations
where the density and electron temperature are simultaneously relatively high. Therefore, this
is a convolution of the electron temperature distribution with the (background) electron density.
In this run, we used already for the ion density the results of the following chapter, where in
addition to the energy equations also the parallel momentum and continuity equation is solved.
This density distribution has also large differences in its spatial distribution and creates then
this unusual pattern together with the connection lengths. In the distribution of the ion heat
fluxes, the localized patterns are already much more broadened, because the maximum heat
fluxes do not have to be connected with the largest ion temperatures, because the boundary
heat fluxes are also determined by the particle fluxes (the kinetic boundary condition for a
sheath discussed in chapter 2 see Eq. (2.5)). These particle fluxes are again used from the more
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Figure 5.5: Electron temperature on the “bean-like” toroidal cut.

complex simulation in the next chapter, but only for the boundary conditions, whereas in the
rest of the domain all convective terms are set to zero. This procedure allows (see next section)
a clear separation of conductive and convective effects for the heat flux pattern in this W7-X
case. The ion heat fluxes as a function of connection length show due to these effects discussed
before a more sparse pattern and are less filled up to the maxima compared to the electrons.
If one compares the radial profiles of electrons and ions (as was done before for the limiter
case), we recognize clearly the regions where within the islands the intersection with the target
plates act as strong sinks and reduce strongly the temperatures there. Also, the radial decay
of the electron profile is faster than the ion profile, which is expected, because the parallel heat
conduction of electrons is much larger than of ions (due to the mass difference). Therefore, the
parallel loss is stronger for electrons and their profile decays faster.
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Figure 5.6: Electron temperature on the “triangle-like” toroidal cut.
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Figure 5.7: Connection length on the target plates.
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Figure 5.8: Electron temperature on the target plate.
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Figure 5.9: Electron heat flux on the target plate.

53



Chapter 5. Results

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1  10  100  1000

H
ea

t f
lu

x 
[W

/m
2 ]

connection length [m]

Figure 5.10: Electron heat flux on the target plate with respect to the connection length.
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Figure 5.11: Ion temperature on the target plate.
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Figure 5.12: Ion heat flux on the target plate.
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Figure 5.13: Ion heat flux on the target plate with respect to the connection length.
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5.1.2 TEXTOR-DED geometry

TEXTOR-DED

The Dynamic Ergodic Divertor in TEXTOR [62] is an excellent tool to study the basic properties
of ergodic transport. The main component of the DED is a set of magnetic perturbation coils,
which imposes the magnetic perturbation in the plasma edge region. The set consists of 16
individual coils (four quadruples) plus two compensation coils located at the high-field side. The
base mode of the magnetic perturbation can be varied by the connections of the power supplies
to the coils between (m, n) = (12, 4), (6, 2) and (3, 1), where (m, n) refers to the poloidal and
toroidal mode number. The spectrum of the magnetic perturbation of (12, 4) and (6, 2) base
mode is optimized to influence rational flux surfaces in the plasma edge, whereas the magnetic
perturbation in the (3, 1) configuration reaches the plasma core and investigations here focus
primarily on studies of the physics of the tearing modes [63, 64]. This work is constrained to
the (12, 4) and (6, 2) base modes. The side bands of magnetic perturbation create island chains,
which at certain level of the DED current overlap creating perturbed volume.

For the proper analysis of such a complicated topology, one inevitably needs 3D transport
codes, which could describe such a variety of magnetic field lines. Here, the influence of the field
structure on the heat transport patterns for different operation modes (12, 4) and (6, 2) will be
discussed.

Construction of the grid

In order to solve the plasma transport in the 3D boundary of TEXTOR-DED a numerical mesh
has to be generated as described in detail in Chap. 4.
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Figure 5.15: TEXTOR-DED mesh (
Poincaré section) for the toroidal angle Φ = 0o

(mode 12/4). Here the poloidal radius R is
shifted by R0 (=1.752 m)
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Figure 5.16: TEXTOR-DED mesh (
Poincaré section) for the toroidal angle Φ = 0o

(mode 6/2). Here the poloidal radius R is
shifted by R0 (=1.752 m)

In the present work we constructed meshes for two modes 12/4 and 6/2. For the 12/4 mode
the current in the DED coils IDED = 11 kA and the toroidal magnetic field BT = 1.9 T and for
the 6/2 mode IDED = 7.5 kA and BT = 2 T. We start the line at one cut (say φ = 0o) and we
trace the field line around the torus. We generate a mesh point whenever a field line intersects
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a cut. By following many field lines around the torus, for many toroidal turns (∼ 100), we
generate many points on each cut.

In our finite difference code we make use of an optimized mesh. It consists of two classes of
magnetic field lines:

• “closed” field lines, where the distance between starting and ending points is smaller than
ion gyroradius (2 mm in this case).

• “open” field lines, which appear in the outermost plasma edge, they start and end on the
DED surface or on the wall structures. These field lines are much shorter than the ”closed”
ones. The requirement for them is such that they intersect at least three Poincaré sections.

A full 3D mesh consists of a series of Poincaré plots spaced at regular toroidal intervals. In
Figs. 5.15 and 5.16 we show the sections at toroidal angle Φ = 0o for the mode 12/4 and 6/2
of the TEXTOR-DED tokamak. The mesh for the 12/4 mode is constructed from 629 lines and
contains 108776 points whereas 842 lines is used for the 6/2 mode mesh and it contains 119047
points. It should be noted that in the grid we have also points which do not belong to the
considered 24 cuts. The reason is that the open lines which are followed from the points on the
cuts does not necessarily ends at the Poincaré plots and thus they can hit the wall structures in
the areas between the cuts.
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Figure 5.17: Distribution of plasma tempera-
tures Te and Ti (in eV) at the Poincarè sections
(φ = 0) for ne = 1018 m3 (mode 12/4). The verti-
cal axis shows the plasma radius in respect to the
magnetic (in m) and the poloidal angle is shown
on the horizontal axis.
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Figure 5.18: Distribution of plasma tempera-
tures Te and Ti (in eV) at the Poincarè sections
(φ = 0) for ne = 5 × 1019 m3 (mode 12/4). The
vertical axis shows the plasma radius in respect
to the magnetic (in m) and the poloidal angle is
shown on the horizontal axis.

Results

The finite difference code FINDIF has been used to investigate the energy transport in the
complex 3D TEXTOR-DED tokamak geometry, where the plasma transport is closely related
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to the structure of the magnetic field lines.
Structures of different origin can be recognized in the meshes in Figs. 5.15 and 5.16. In the
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Figure 5.19: Distribution of plasma tempera-
tures Te and Ti (in eV) at the Poincarè sections
(φ = 0) for ne = 1018 m3 (mode 6/2). The verti-
cal axis shows the plasma radius in respect to the
magnetic (in m) and the poloidal angle is shown
on the horizontal axis.
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Figure 5.20: Distribution of plasma tempera-
tures Te and Ti (in eV) at the Poincarè sections
(φ = 0) for ne = 5 × 1019 m3 (mode 6/2). The
vertical axis shows the plasma radius in respect
to the magnetic (in m) and the poloidal angle is
shown on the horizontal axis.

region close to the core plasma, the close field lines form flux surfaces as well as island chains.
Next, we have regions with closed ergodic lines which are followed by wide area of open field
lines. We have solved the transport equations for Te and Ti for different values of the plasma
density (ne = 0.1, 1, 5×1019 m−3) in order to assess the effect of ne on the energy transport. For
the radial transport we have assumed constant conductivity coefficients: χe⊥ = χi⊥ = 5 m2/sec
being of the order of Bohm diffusion. Similar values have been used in the 2D simulation of
TEXTOR edge plasmas with the TECXY code [65]. Constant plasma temperatures have been
specified (T core

e = 150 eV , T core
i = 200 eV ) at the core boundary for all considered plasma

densities.
At the divertor target plates, sheath conditions [66] have been considered, whereas the con-

stant temperatures at the wall structures have been assumed: (Twall
e = 15 eV , Twall

i = 20 eV ).
In Figs. 5.17-5.20 the spatial distribution of the electron and ion temperatures at one of the

Poincaré sections (φ = 0) for different densities (ne = 1018 m−3, 5×1019 m−3) and for both modes
are shown. In all four graphs the abscissa represents the poloidal angle (in degrees) and the
ordinate vessel minor radius (in meters). Electron and ion temperatures are expressed in eV and
energy fluxes in W/m2 (see colorbars on the right hand side of the graphs). It is apparent, that
the magnetic topology is closest reflected in the solution of the electron temperature field at ne =
1018 m−3, which indicates that the parallel transport is dominant. If the density increases, in
particular for Ti, the heat conductivity is reduced forcing development of temperature gradients
along field lines and in addition, the role of the radial transport increases leading to the stronger
mixing of temperatures from different regions, and consequently the mesh structures are less
pronounced. However, the hot spot structure of the temperature distribution close to the target
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Figure 5.21: Ion energy fluxes for ne = 1018 m−3

and both modes.
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Figure 5.22: Ion energy fluxes for ne = 5× 1019

m−3 nd both modes.

is always preserved. It can be well seen from Figs. 5.21- 5.22 where the distribution of the total
ion heat flux (|q| ≡ n2

i gmnχmj
i

∂Ti

∂xj
χnk

i
∂Ti

∂xk
) at the Poincaré section φ = 0 is shown. It appears

that the maximum of the energy flow is concentrated in very well localized areas elongated
radially from the core to the target. It should be noted that in accordance with the previous
modeling attempts [67, 68] the heat preferable goes through the edges of an island.
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Figure 5.23: Total electron energy fluxes
at target plates (start and end points of
field lines) versus field line length (number of
toroidal turns) for ne = 1018 m−3 (mode 12/4)
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Figure 5.24: Total electron energy fluxes
at target plates (start and end points of
field lines) versus field line length (number of
toroidal turns) for ne = 1018 m−3 (mode 6/2)

In order to consider the question which field lines, short or long, contribute stronger to the
heat load to the target, we have analyzed the total parallel energy fluxes at the start and end
points of open field lines as a function of the field line length and the results are plotted in
Figs. 5.23-5.24, for both modes and plasma density ne = 1018 m−3. It can be seen that heat is
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preferably transported to the target by field lines with longer connection length. In case of the
mode 6/2, there is a tendency that the heat delivered to the target increases with the field line
length. However, in the case of the mode 12/4, such conclusion is only true for magnetic field
lines, which have relatively short connection length, less than about connection length shorter
than 40 toroidal turns (roughly 10 poloidal turns). For longer field lines the heat transmitted
to the target does not depend on the field line length. As it has been discussed in [36, 37]
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Figure 5.25: Poloidal profile of electron and ion
energy fluxes at the divertor targets for ne =
1018 m−3 and 12/4 mode.
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Figure 5.26: Poloidal profile of electron and
ion temperature at the divertor targets for ne =
1018 m−3 and 12/4 mode.

the heat flux depends on the radial penetration of magnetic field lines, these which have longer
connection length penetrate deeper within the Kolmogorov length. Most likely magnetic field
lines with (Lc ≈ 40 toroidal turns) reach (within the Kolmogorov length) the innermost part
of the perturbed volume. We note that the difference in the heat flux between long and short
field lines is not large (factor ∼ 4 − 5) whereas the field line length changes by three orders.
Since the number of short field lines is much larger than long field lines (∼ 5 times) therefore
short field lines might contribute to the total heat load as strongly as the long ones. We note
that the picture is qualitatively the same for other densities. This result is not confirmed by
experimental findings (see e.g. [37]), where the heat flux brought to the target by field lines
with long connection length is reduced at higher densities. This would suggest that other terms,
like convective transport might be important. It should be noted also, that since the plasma
temperature at the core interface is the same for all densities, the changes to the heat fluxes due
to larger densities could be override by the changes to the input energy fluxes.
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Figure 5.27: Poloidal profile of electron and ion
energy fluxes at the divertor targets for ne = 5×
1019 m−3 and 12/4 mode.
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Figure 5.29: The measured heat flux density (blue curves, left ordinates) and calculated con-
nection length (green curves, right ordinates) profiles as a function of the poloidal angle for a)
12/4 mode (TEXTOR #95592) and b) 6/2 mode (TEXTOR #1000975)

In Figs.5.25-5.28 poloidal profiles of total energy fluxes and electron and ion temperatures at
the target plates for the toroidal position φ = 180o are shown for the lowest and highest density
and for the mode 12/4. It can be seen that for low plasma density the electron and ion energy
fluxes are comparable but the temperatures are different. However for the high plasma density
the electron energy flux is dominant but the plasma temperatures are very similar due to strong
energy exchange between ions and electrons. From the energy flux poloidal distribution the
hot spot nature of the heat load to the target plates is well visible. The heat flux is strongly
poloidally nonuniform with large isolated peaks close to divertor center. Correspondingly the
temperature is poloidally modulated with maxima at he same positions as the heat peaks.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

5

connection length [p.t.]

he
at

 fl
ux

 d
en

si
ty

 [W
/m

2 ]

 

 

Q for #95592

Q/3 for #100975

Figure 5.30: The measured heat flux density deposited on the surface of the DED as a function
of the field line connection length. The data is evaluated from Fig. 5.29. Blue points show the
dependence for the 12/4 mode (TEXTOR #95592, 150 < θ < 165), the red ones for the 6/2
base mode (TEXTOR #1000975) divided by 3.

The immanent feature of the heat flux deposition pattern in TEXTOR-DED experiment is
that it follows the topology of magnetic field - it has the same helicity and the maximum of the
energy deposited corresponds to the field lines with longest connection length. Two examples
of the experimental data are shown in Fig. 5.29. Here the heat flux density (the blue curves)
and the corresponding connection length profiles (as calculated by ATLAS [29]) are presented
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as a function of poloidal angle for the 12/4 mode (Fig. 5.29a) and 6/2 (Fig. 5.29b). For the
latter mode the number of stripes is reduced by factor of 2 due to lower value of the toroidal
mode. Unfortunately the surface of the DED is not ideally aligned, i.e. some of the tile edges
are protruding over the divertor surface, shadowing some parts of the heat deposition patterns.
However, we have tried to choose least affected part of the divertor surface to evaluate profiles on.
The heat flux density is calculated from the temperature evolution as measured by an infrared
camera (the thermographic setup and method of heat flux evaluation has been discussed in [27]).

It is clear that the heat flux density is strongly related to the magnetic field line connection
length. This is also shown in Fig.5.30. Here the measured heat flux density is plotted against the
connection length (in poloidal turns) of the field lines intersecting the DED surface at the point
of the heat deposition. For both modes deposited energy increases with increasing connection
length (Lc )up to 2 − 3 poloidal turns, what is roughly 7-10 toroidal turns. This is in fair
agreement with calculations for the 12/4 mode as presented in Fig. 5.23. For the 6/2 base mode
the experimental behavior is not satisfactory reproduced by results of simulations. However,
one should note that the heat profile is affected by the tile edge at θ ≈ 166◦ (see Fig. 5.29b) and
it is reduced by effects of shadowing [29] at θ ≈ 173◦. Also the resolution of the measurement
is much lower than for the modeled profiles. In addition, since for the short field lines and
high temperatures the convection might be important, the discrepancy between calculated and
experimental results could be associated to the lack of the convective terms in our model. The
importance of that effect will be discussed in next section.
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5.2 Extended model

For an improved description of the heat flux pattern the plasma transport equations have to be
extended (see chapter 3). Here, we discuss results for W7-X of this extended model and compare
it with the purely conductive case.

5.2.1 1D solution for W7-X

As a first step, we study the characteristics of the 1-D solution along the field lines for one long
field line. The geometry information was included through the metric coefficients calculated for
the line. The number of cuts taken for this kind of calculations is 500 per one period. Such a
great amount of cuts is needed due to the strong variations of the metric coefficients and Jacobian
along the field line. The total number of points along that line is 4208 with approximately 8.4
toroidal turns. To analyze the structure in the Jacobian we show both the graph for the whole
domain and the graph for one turn. The same kind of pictures are done for density and velocity
solution. It can be clearly seen from the pictures, that variations of the density and parallel
velocity values coincide with variations of the Jacobian.On the other hand temperature solution
was not so strongly modified with respect to the metric coefficient variations due to the much
larger parallel heat conduction smoothing the profile.
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Figure 5.31: Derivative of the Jacobian taken with a central difference scheme in one local
magnetic coordinate system. The full line is shown.

It is also important to stress here, that due to such strong variations of the metric coefficients
we are forced to take such a large number of cuts as needed for resolving properly these variations.
Thus, the number of cuts can not be less then 500 per period. Combining this with proper
resolution in radial direction we will end up for the total 3D mesh with an approximate number
of about 5 million points or even more. Another kind of complexity appears due to the fact,
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that the appropriate time step for calculations is strongly connected to the distance between
points and thus should be decreased as far as the distance between cuts are increased. Both
demands lead to too large numerical resources for a sequential code and therefore the code needs
to be parallelized. The parallelization of the code will be possible using domain-decomposition.
There are two possible splitting strategies for our setup. The first is a division of the grid with
respect to field lines and the second a division with respect to toroidal cuts. The first allows
to make the whole chain of calculations (up to obtaining the solution on the current time step)
independently on each processor, but for the construction of the radial terms information about
all the quantities from the neighbours is needed. This will need further exchange of information
between processors. The second strategy allows one easily to calculate contributions from the
radial terms, but at the same time all coefficients from each line have to be gathered on a single
processor to have the possibility to obtain the solution for the parallel terms with a tridiagonal
solver. The most promising setup would be a mixing of both cases. As a result, each processor
can be used for two kind of calculations: at a first step the right hand side coefficients from
the radial transport for one or several toroidal cuts are calculated. As the second step, after
all processors have finished the first step and after exchanging data, it can be used for the
calculation of the resulting values along the field line.
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Figure 5.32: Derivative of the Jacobian taken with a central difference scheme in one local
magnetic coordinate system. One turn is shown.
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Figure 5.33: Density solution along the full field line.
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Figure 5.34: Density solution along the field line for one turn.
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Figure 5.35: Electron temperature solution along the full field line.
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Figure 5.36: Ion temperature solution along the full field line.
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Figure 5.37: Parallel velocity solution along the full field line.
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5.2.2 3D W7-X case

Based on the results of the previous section, we would have to use a rather large grid to resolve
the metrics requesting a parallelized code. However, within the practical limits of this thesis, we
decided to use a different ansatz. The additional existence of radial transport will smooth-out
most of the fine structure of the 1D solution driven by the metric coefficients. Therefore, we
created a smoothed metrics of the W7-X case which allows to reduce the number of toroidal cuts
to 50. This procedure enabled the use of the sequential code without the need for parallelizing
and guaranteed the successful test of the physics extensions in a reasonable run time. The
temperature boundary conditions for the considered case are taken the same as for the pure
conductive case described before, i.e. 150eV for inner and 5eV for outer boundaries, respectively,
anomalous conductivity coefficients are taken 2 m2/s for both Te and Ti. In addition we have
a particle diffusion coefficient 5 m2/s and perpendicular anomalous viscosity 0.5 m2/s. For
parallel plasma velocity we set 0 fixed value on both inner and outer boundaries. At the target
plate we use Bohm criteria with V|| set to sound speed. For the plasma density we use again
Dirichlet boundary conditions for inner and outer boundaries with values 1020 and 5.0 · 1018

1/m3 respectively. The boundary conditions at the target plates for densities represents the
outflow of the particles. The density values are completely determined by the previous value
along the field line (pure convective transport). Therefore, no boundary conditions are needed.

Comparing the results of the extended model with the results of the pure conductive problem
allows us to identify the importance of the convective effects for the power load at the target
plates. The contour plots of the electron and ion temperatures on the bean-like and triangle
toroidal cut do not show any clear difference between extended and purely conductive model,
therefore we do not show them here. The effect of the target plates show up clearly in the
contours of the parallel velocity, where the acceleration towards the target plates due to the
Bohm condition is obvious. Analyzing the smaller flow velocities the islands show a rather
symmetric splitting of the flows towards the different targets. Plasma density contour plots
on the cuts look very similar to electron and ion temperatures. Differences appear only in the
radial profiles.

Analyzing the radial profiles of electron and ion temperatures in Fig. 5.45, we observe the
same expected trend as in the pure conductive case: electron temperatures drop steeper than
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Figure 5.38: Parallel velocity solution on the “triangle-like” toroidal cut.
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Figure 5.39: Parallel velocity solution (flows separation) on the “triangle-like” toroidal cut.
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Figure 5.40: Parallel velocity solution on
the “bean-like” toroidal cut.
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Figure 5.41: Parallel velocity solution
(flows separation) on the “bean-like”
toroidal cut.

ion temperatures. The profile of the ion density is similar than the ion temperature, because
both have similar parallel losses. The ion density is characterized in parallel direction by the
parallel momentum equation, which has the parallel viscosity in it. The parallel viscosity now
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Figure 5.42: Density solution on the “triangle-like” toroidal cut.
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Figure 5.43: Density solution on the “bean-like” toroidal cut.

scales as the parallel ion heat conduction and therefore this similarity is expected. However,
we see a broader radial profile of the density compared with the ion temperature and this is
because we used a larger anomalous transport coefficient for particle transport than for the ion
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Figure 5.44: Radial profiles of electron temperature, ion temperature and density.
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Figure 5.45: Radial ion and electron temperatures profiles for two cases, i.e. only conduction
and conduction-convection.

transport.
The comparison of the temperature profiles between the full and the purely conductive case

(Fig. 5.45) shows very similar profiles. Both temperatures just experience some constant shift
due to the convection, where the effect is stronger for ions than for electrons. This is again due to
the dominance of the parallel heat conduction term for electrons and therefore less pronounced
convective effects. The same is obvious looking at the target plate patterns. Electrons do not
change much, but just get larger values due to the additional convective energy. Therefore, also
the heat flux density distribution is mostly determined by the field line lengths. In contrast,
the ion heat flux density now shows a quite different pattern than for the conductive case:
it is strongly determined by the convective heat flux and is more homogeneous than in the
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Figure 5.46: Electron temperature on the target plate.

conductive case. Also, it is broader than the electron heat flux distribution. The filling effect
and broadening also gets visible in the plot of ion heat flux density versus field line length,
where now the figure looks much similar to the electron heat flux and more triangle-like with
homogeneous distribution of the points.

The coincidence of the maxima of electron heat flux, ion heat flux and particle flux densities
in the target patterns also show the importance of the convective heat fluxes and the need
for including them into the analysis of heat flux distributions. Also, in contrast to the pure
conductive case ions contribute as much to the heat flux densities as electrons.
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Figure 5.47: Ion temperature on the target plate.
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Figure 5.48: Density on the target plate.
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Figure 5.49: Electron heat flux on the target plate.
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Figure 5.50: Ion heat flux on the target plate.
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Figure 5.51: Particle flux on the target plate.
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Figure 5.52: Electron heat flux on the target plate as a function of the connection length.
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Figure 5.53: Ion heat flux on the target plate as a function of the connection length.
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Figure 5.54: Particle flux on the target plate as a function of the connection length.
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Effect of neutrals

In the divertor region, in addition to the plasma transport processes the interaction with neutrals
is quite important, because they act as sink and sources for particles, energy and momentum.
Here, we describe neutral fluid model coupled to the plasma fluid equations to study the effects
of neutrals.

6.1 Neutral fluid model

Neutral recycling and further plasma-neutral interaction plays a great role in the SOL physics.
The most accurate description of the problem is given by Monte Carlo methods, although a
fluid model (e.g. described in [69], [70], [71]) usually makes reasonably good approximation in
the case of the neutral mean free path, λN , is small compared to the characteristic spatial scale
length.
The presented neutral fluid model consists of the particle and momentum balance equations. In
addition to that we suppose, that all heavy species (ions and neutrals) have the same temper-
ature, which gives us corrections for the ion temperature equation. The particle neutral fluid
equation looks like:

∂nN

∂t
+ ~∇ ·

(

nN
~VN

)

= −Si + Sr, (6.1)

where nN is the neutral density, ~VN is the neutral flow velocity, and SN,i, SN,r stands for ioniza-
tion and recombination sources, respectively. For the neutral parallel momentum equation the
full Navier-Stokes equation is used:

∂

∂t

(
mnNV||N

)
+ ~∇ ·

(

mni
~VNV||N − η̂N

~∇V||N

)

=

−∇||ρN + mninNKcx

(
V||i − V||N

)
+ mSrV||i − mSiV||N , (6.2)

where V||i is the ion parallel flow velocity, V||N is the neutral parallel flow velocity, m is the
atom mass, ni is the background plasma density, ρN is the neutral pressure, ηN is the neutral
viscosity, and Kcx is the change-exchange rate. The perpendicular neutral velocity is calculated
in the diffusive approximation:

V⊥N = −DN

(
∇||nN/nN + ∇⊥Ti/Ti

)
, (6.3)

In order to receive a realistic solution we have to use a flux limiting procedure that reduces
the diffusive perpendicular particle fluxes to some reasonable values, known from the kinetic
modeling. So we replace jN⊥ with

jN⊥
(

1 + α

(
jN⊥

nNVTi
/4

)γ)1/γ
, (6.4)

where typical parameter values for α and γ are 1 and 2, respectively.
The above-mentioned flux limiting procedure is applied to the perpendicular neutral velocity.
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6.2 Transport equations including neutrals

In this section we formulate the “Findif” set of equations including neutrals. The plasma density
equation has only one difference to Eq. 3.34, that it includes now ionization and recombination
sources in the right hand side. Ionization is a source of plasma, whereas recombination is a sink
(the plasma transforms to the neutrals).
For the neutral density equation we express the perpendicular velocity in an explicit form and
apply the flux limiting procedure to all its components. Hence, we write down the neutral
density equation in a following form:

∂nN

∂t
+

1√
g

∂

∂x3

√
g

[
nN (h3VN || + V 3

N⊥)
]
+

1√
g

∂

∂x1

√
g

(
nNV 1

N⊥

)
+

1√
g

∂

∂x2

√
g

(
nNV 2

N⊥

)
= −Si + Sr; (6.5)

We can express ionization source Si and recombination sink Sr as:

Si = KinNni,

Sr = Krnini;
(6.6)

The perpendicular neutral velocity VN⊥ is taken as:

V 3
N⊥ = −DN⊥

(

(g33 − (h3)2)
∂nN

∂x3
+ g31 ∂nN

∂x1
+ g32 ∂nN

∂x2

)

/nN−

DN⊥

(

(g33 − (h3)2)
∂Th

∂x3
+ g31 ∂Th

∂x1
+ g32 ∂Th

∂x2

)

/Th

V 3
N⊥ = −DN⊥

(

g21 ∂nN

∂x1
+ g22 ∂nN

∂x2
+ g23 ∂nN

∂x3

)

/nN−

DN⊥

(

g21 ∂Th

∂x1
+ g21 ∂Th

∂x2
+ g23 ∂Th

∂x3

)

/Th

V 3
N⊥ = −DN⊥

(

g11 ∂nN

∂x1
+ g12 ∂nN

∂x2
+ g13 ∂nN

∂x3

)

/nN−

DN⊥

(

g11 ∂Th

∂x1
+ g11 ∂Th

∂x2
+ g13 ∂Th

∂x3

)

/Th

(6.7)

For plasma parallel momentum balance equation we also have additional sources describing
the interaction with the neutrals:

SV||i
= mninNKcx(VN || − Vi||) − mSrVi|| + mSiVN ||. (6.8)

From the expression above it is clear, that there are three ways of changing plasma velocity:
the ionization acts as a source of the momentum for the plasma (the same as in the case of the
plasma density), the recombination on the opposite side is the sink of the momentum and the
charge exchange term forwards the momentum from the plasma to neutrals and vice-versa.
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The neutral velocity looks as follows:

mnN
∂

∂t

(
VN ||

)
+

1√
g

∂

∂x3

√
g

[
mnNVN ||(h

3VN || + V 3
N⊥)

]
−

1√
g

∂

∂x3

√
g

[

ηN

(

g31 ∂VN ||

∂x1
+ g32 ∂VN ||

∂x2
+ g33 ∂VN ||

∂x3

)]

+

1√
g

∂

∂x1

√
g

[

mnNVN ||V
1
N⊥ − ηN

(

g11 ∂VN ||

∂x1
+ g12 ∂VN ||

∂x2
+ g13 ∂VN ||

∂x3

)]

+

1√
g

∂

∂x2

√
g

[

mnNVN ||V
2
N⊥ − ηN

(

g21 ∂VN ||

∂x1
+ g22 ∂VN ||

∂x2
+ g23 ∂VN ||

∂x3

)]

= −g33 ∂pN

∂x3
− mVN ||

∂nN

∂t
+

mnNnNKcx(Vi|| − VN ||) + mSrVi|| − mSiVN ||;

(6.9)

Here we see the same sources as was added to the plasma velocity equation but with the opposite
sign.
In the electron temperature equation an additional source term SEe

was added which represents
the energy loss due to hydrogenic line radiation and the energy gain from the three body re-
combination process. It is very important to include the last source because it keeps electron
temperature high enough and does not allow to drop infinitely due to the radiation mechanism.
According to our model all the heavy species in the plasma (namely, the ions and neutrals) have
the same temperature. Hence, we summarize the ion temperature and the neutral temperature
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equations in a common heavy particle temperature equation:

3

2
(ni + nN )
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(6.10)

6.3 Implementation details

There are two main processes which define the diffusive behaviour of the neutrals - charge
exchange and neutral-neutral interaction with cross-sections σcx and σnn respectively. The
mean free path of a neutral H atom λ before exchanging charge with H+ ion of velocity vi is

λcx =
v0

ni < σcxvi >
, (6.11)

where v0 = vi =
√

2kT0/m0. Such a process can be described as diffusive with a diffusion coef-
ficient Dcx = v0/(niσcx). By analogy we can describe the process of neutral-neutral collisions:
DNN = v0/(nNσNN ). To construct the diffusion coefficient taking into account both processes
we take the harmonic average of Dcx and DNN . The viscosity coefficient for both parallel and
radial cases is taken as η = mNnNDN , where DN is the above introduced diffusion coefficient.
For the practical calculations we take σcx = 2.0 · 10−18 and σnn = 2.0 · 10−19.
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Reaction rates for ionization, charge exchange and recombination are taken as:

Ki =
3 · 10−14 (Te/10.)2

(

3 + (Te/10.)2 +
0.1

(Te/10.)5

)

Kcx = σcxv0

Kr = 4.684 · 10−19 1

T
3

2
e

(
1
Te

+ 0.0434
)

(6.12)

All described reaction rates with respect to the temperature are shown in Fig. 6.1.

i-n collisions

vol. rec.

Charge exchange

Recombination

Ionization

1e18

1e21

Figure 6.1: Reaction rates for charge-exchange, ionization and recombination for hydrogen (in
m3s−1) versus temperature (in eV).

There are two kind of energy sources included in the code: hydrogenic line radiation and three
body recombination. The hydrogenic line radiation source is taken as SEe,h = −25.0 eV ·Ki. The
three body recombination describe collision of three particles - two electrons and one ion. As a
result of such a collision appears a neutral and the second electron gain 75% of recombination
energy (13.6 eV for hydrogen), the difference is radiated. Thus we have SEe,r = 0.75·13.6 eV ·Kr.

An important part of the neutral model are the boundary conditions. Determining recycling
boundary conditions for the neutral fluid model, one faces the problem transferring kinetic
boundary conditions of reflected particles into a fluid picture. The recycling boundary condition
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means, that a part of plasma particle flux Γi impinging on the target plates returns as a neutral
flux ΓN directed towards the plasma: ΓN⊥ = γΓi⊥. This relation does not allow to determine the
neutral density and neutral velocity separately and, thus, an additional condition is needed. It
is impossible to determine a boundary value of either neutral density or neutral velocity based
on the knowledge of the macroscopic parameters as these values itself are integral quantities
self-consistently defined by the process of plasma-neutral interaction. In practice, the neutral
velocity is taken as a fraction of the sound speed from comparison with full kinetic Monte Carlo
simulations taking the spatial average over the first cell. In combination with the above relation
it allows to determine then the neutral density.

6.4 1D solution

In this section, we present results of the solution of the plasma transport problem including
neutral interaction in 1D by the neutral fluid model described before. The 1D setup is not
applicable to real devices, but it allows to obtain results for interpretation and verification of
the code. The total field line length was 1m.
For the 1D cases presented here, we used a plasma source boundary condition on the left and
target plate boundary conditions on the right. For incoming plasma we used constant values.
On the right side, we apply sheath boundary conditions for plasma and recycling conditions
for neutrals described before. We present here two cases with and without neutrals and for
two different temperatures at the left boundary of 50 and 10 eV . The plasma density at the
left boundary is prescribed to 1019 1/m3 and velocity to 5000 m/s for all cases. The neutral
recycling coefficient γ is kept as 0.85. The penetration depth of the neutrals can be estimated
with Eq. 6.11. In our case for a plasma density at the target plate of about 1019 we get λcx ≈ 5
cm.

Figs. 6.3, 6.2 show the drop of the heavy particles temperature with respect to the case
without neutrals. This drop is caused by the redistribution of energy on the kinetic part included
by adding neutrals. The electron energy also drops, but only slightly compared with the heavy
particles temperature. The reason of such a drop is the coupling term which brings electron
temperature towards the heavy particle temperature. Radiation losses for electrons are still too
small due to the low neutral density to appear in the profile. For plasma density, the rise of
the profile near the target plate due to recycling can be observed in Fig. 6.4. For the lower
temperature we see, that due to the ionization of the neutrals a large recycling neutral flux
converts to the plasma flux as seen in Fig. 6.5. It fills the whole domain such, that the density
inside the domain can be bigger than the boundary density.
In the case of 50 eV the coupling of the momentum equations between ions and neutrals is still
quite small and only small differences for the parallel velocity of ions with and without neutrals
appear. For the 10 eV case the charge-exchange coupling gets quite strong and the neutrals slow
down the plasma flow considerably being on the other hand accelerated themselves.
All these results support the correct implementation of the neutral fluid model into the code.
A full run of W7-X including neutrals and ions experiences unfortunately a resolution problem.
The metrics requires a very fine resolution as also the neutral dynamics does due to the fast
profile decay on the length scale of the neutral mean free path. Therefore, only a parallel code
will be able to treat such a case, which is beyond the scope of this work.
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Figure 6.2: Temperature solution for a fixed temperature at the left boundary of 50eV .
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Figure 6.3: Temperature solution for a fixed temperature at the left boundary of 10eV .
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Figure 6.4: Plasma density solution for a fixed temperature at the left boundary of 50eV .
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Figure 6.5: Plasma density solution for a fixed temperature at the left boundary of 10eV .
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Figure 6.6: Plasma velocity solution for a fixed temperature at the left boundary of 50eV .
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Figure 6.7: Plasma velocity solution for a fixed temperature at the left boundary of 10eV .
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Figure 6.8: Neutral density solution for a fixed temperature at the left boundary of 50eV .
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Figure 6.9: Neutral density solution for a fixed temperature at the left boundary of 10eV .
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Figure 6.10: Neutral velocity solution for a fixed temperature at the left boundary of 50eV .
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Figure 6.11: Neutral velocity solution for a fixed temperature at the left boundary of 10eV .
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Conclusions

The present work was concerned with developing a finite difference code for modeling the physics
of the plasma edge in fusion devices. It allows the treatment of a complex 3D geometry and an
ergodic structure of field lines in the plasma edge, like in W7-X and TEXTOR-DED, using a
finite difference code approach. The code described in the present work requires only a magnetic
field configuration data file and specified boundary conditions in order to generate solutions of
the plasma transport equations. The concept of local magnetic coordinates was used to handle
the different geometries consistently. The pre-processing steps of the general algorithm are
grid construction, finding poloidal neighbours and calculation of metric coefficients. For this, a
general tracing procedure was developed in a sequential and a parallel version to solve the system
of ordinary differential equations for the different local magnetic coordinate systems (LCMS)
needed for the discretization stencil.

The neighbours are found with a shadowing algorithm. To solve the coupled set of trans-
port equations in the LCMS representation a solver for conduction-convection equations using
a “semi-explicit” generalized upwind scheme for non-staggered grids was developed. For the
parallel direction all terms are treated implicitly, whereas the rest of the terms are calculated
explicitly. This allows to reduce the amount of memory needed for the calculations and also to
use simple tridiagonal and cyclic tridiagonal solvers which are extremely fast. At the same time
the procedure remains robust enough due to the fact that the dominant process of the parallel
transport is calculated implicitly. The non-parallel terms are not expressed as a divergence of
the flux. Instead, all derivatives are derived with the help of the “free point” method. This
conduction-convection solver was successfully validated with analytical solutions and bench-
marked with two other codes.

The key physics question addressed in the present work is the problem of power loads at
the divertor plates, including the influence of ergodicity and 3D configuration of the field on the
heat transport. The study of conductive heat transport is the first step towards the analysis of
the heat flux pattern, because for temperatures above about 50 eV the parallel heat conduction
is usually dominant and convection terms or neutral sources can be neglected (at least for
electrons). A W7-X divertor case was studied as a reference case for the purely conductive
problem. The target plates cut through the islands and lead to large losses to the target plates
resulting in much lower temperatures at the target plates and a different solution than for
a limiter case. The heat flux pattern on the target plates reflects for electrons the spatial
distribution of the connection length of the field lines hitting the plate. The maximum values
are clearly correlated with the longest field line lengths. The radial decay of the electron profile
is faster than the ion profile, because the parallel heat conduction of electrons is much larger
than of ions (due to the mass difference) and therefore the parallel loss is stronger.

The energy transport in the complex 3D TEXTOR-DED tokamak geometry with large er-
godic regions was studied, where the plasma transport is closely related to the structure of the
magnetic field lines. The magnetic topology is closest reflected in the solution of the electron
temperature field at low densities, which indicates that the parallel transport is dominant. If the
density increases, the heat conductivity is reduced forcing development of temperature gradients
along field lines, in addition, the role of the radial transport increases leading to the stronger
mixing of temperatures from different regions, and consequently the mesh structures are less
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pronounced.
However, the hot spot structure of the temperature distribution close to the target is always

preserved. It appears that the maximum of the energy flow is concentrated in very well localized
areas elongated radially from the core to the target, because the heat preferable goes through
the edges of an island. heat is preferably transported to the target by field lines with longer
connection length. In case of the mode 6/2, there is a tendency that the heat delivered to
the target increases with the field line length. However, in the case of the mode 12/4, such
conclusion is only true for magnetic field lines, which have relatively short connection length,
less than about connection length shorter than 40 toroidal turns (roughly 10 poloidal turns).
For longer field lines the heat transmitted to the target does not depend on the field line length
for all densities. This result is not confirmed by experimental findings, where the heat flux
brought to the target by field lines with long connection length is reduced at higher densities.
This suggests that other terms, like convective transport might be important.

Therefore, the effect of convective terms are discussed for a W7-X divertor case and compared
with the purely conductive case. This allows to identify the importance of the convective effects
for the power load patterns at the target plates. Electrons do not change much, but just get
larger values due to the additional convective energy. Their heat flux density distribution is
mostly determined by the field line lengths as in the purely conductive case. In contrast, the ion
heat flux density now shows a quite different pattern than for the conductive case: it is strongly
determined by the convective heat flux and is more homogeneous than in the conductive case.
Also, it is broader than the electron heat flux distribution. The coincidence of the maxima of
electron heat flux, ion heat flux and particle flux densities in the target patterns also show the
importance of the convective heat fluxes and the need for including them into the analysis of
heat flux distributions. Also, in contrast to the pure conductive case, ions contribute as much
to the heat flux densities as electrons.

A neutral fluid model was coupled to the plasma fluid equations to study the effects of neu-
trals. In 1D, the correct implementation of the neutral fluid model into the code was validated.
However, a full run of W7-X including neutrals and ions was not possible within this work,
because there is a severe resolution problem. The metrics requires a very fine resolution as also
the neutral dynamics does due to the fast profile decay on the length scale of the neutral mean
free path. Therefore, only a parallel code will be able to treat such a case, which was beyond
the scope of this work.

In summary, a new finite difference code for general plasma edge transport problems was
successfully developed and first applications analyzing the heat flux patterns of W7-X and
TEXTOR-DED were presented. The full capability of this concept will require further numerical
developments of the code according to concepts presented already in this thesis: a domain-
decomposition based parallel version will have to be created to satisfy the resolution requirements
of the metrics and neutral dynamics.
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Appendix A

Implicit algorithm of the Free Point

Method

The Free point method was proposed by Dyachenko for the simulation of the plasma focus
dynamics. It is an unstructured grid method suitable for large deformation problems. An
extended variant of this method has been developed by Jach and Stepniewski.

The idea of the method is based on the assumption, that with each mesh point a set of
neighbouring points is associated. These neighbour points should be spread more or less homo-
geneously around the central point and they can be changed during the evolution of the system.
On the basis of the information collected from the neighbours one can find the first and second
derivatives.

Let us consider a point i and the set of its neighbours, defined by points f1, f2, ...fm(i) (m(i)
stands for the number of neighbours of point i). The first derivatives of the two dimensional
function f(x, y) are computed by the least squares method based on finding the minimum of the
following functional:

A =
∑

k

(fk − fi − fx△xk − fy△yk)
2 w2

k, (A.1)

where k = 1, 2, ..., m(i). In the following, we use only sum over (k) without specifying the limits.
The condition for the minimum of the functional A is:

∂A

∂fx
= 0;

∂A

∂fy
= 0, (A.2)

giving us two equations for the unknown first derivatives fx, fy of function f ,i.e.

∑

k

(fk − fi − fx△xk − fy△yk)w2
k△xk = 0 (A.3)

∑

k

(fk − fi − fx△xk − fy△yk)w2
k△yk = 0. (A.4)

(A.5)

The above system of two linear algebraic equations can be written as:

[
X2 XY
XY Y 2

] [
fx

fy

]

=

[
FX
FY

]

, (A.6)
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where

X2 =
∑

k

△x2
kw

2
k;

Y 2 =
∑

k

△y2
kw

2
k;

XY =
∑

k

△xk△ykw
2
k;

FX =
∑

k

(fk − fi)△xkw
2
k;

FY =
∑

k

(fk − fi)△ykw
2
k.

By solving this system we find the first derivatives:

fx =
FX · Y 2 − FY · XY

DET
;fy =

FY · X2 − FX · XY

DET
, (A.7)

where DET = X2 · Y 2− (XY )2. The derivatives of function f(x, y), fx, fy at mesh point i can
be written as a linear combination of values of the function f in the central and neighbouring
points.

fx =
∑

k

Ak
x (fk − fi) (A.8)

fy =
∑

k

Ak
y (fk − fi) ,

where coefficients Ak
x, Ak

y are:

Ak
x =

w2
k

DET
(Y 2 · △xk − XY · △yk)

Ak
y =

w2
k

DET
(X2 · △yk − XY · △xk) .

Finally, we have

fx = −fi

∑

k

Ak
x +

∑

k

Ak
x · fk

fy = −fi

∑

k

Ak
y +

∑

k

Ak
y · fk.

From these expressions we can find the contribution from each neighbour to the derivatives fx

and fy. The corresponding metric elements are:

[fx] ⇒ [fx]ii = −
∑

k

Ak
x

[fx]ik = Ak
x

[fy] ⇒ [fy]ii = −
∑

k

Ak
y

[fy]ik = Ak
y
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The problem of finding the second derivatives can be split into two steps. First, the first
derivatives are found as described above, and, then, in each point we define the functional being
the Taylor expansion of the function f(x, y) in the vicinity of point i:

B =
∑

k

[

(fk − fi − fx△xk − fy△yk) −
1

2

(
fxx△x2

k + 2fxy△xk△yk + fyy△y2
k

)
]2

w4
k. (A.9)

Let us introduce εk = fk − fi − fx△xk − fy△yk being the difference between value fk and its
linear approximation (residual at point k). Now the functional B can be written as

B =
∑

k

[

εk − 1

2

(
fxx△x2

k + 2fxy△xk△yk + fyy△y2
k

)
]2

w4
k, (A.10)

and we can evaluate the residual εk:

εk = fk − fi −
∑

j

Aj
x (fj − fi)△xk −

∑

j

Aj
y (fj − fi)△yk

= fk − fi ·



1 −
∑

j

(
Aj

x△xk + Aj
y△yk

)



 −
∑

j

fj

(
Aj

x△xk + Aj
y△yk

)

= −fi ·



1 −
∑

j

(
Aj

x△xk + Aj
y△yk

)



 −
∑

j

fj

(
Aj

x△xk + Aj
y△yk − δjk

)
, (A.11)

where δjk is the Kronecker symbol. Second derivatives are found from the conditions for the
minimum of the functional B:

∂B

∂fxx
= 0;

∂B

∂f2xy
= 0;

∂B

∂fyy
= 0.

Thus,

∑

k

△x2
k

[

εk − 1

2

(
fxx△x2

k + 2fxy△xk△yk + fyy△y2
k

)
]

w4
k = 0

∑

k

△xk△yk

[

εk − 1

2

(
fxx△x2

k + 2fxy△xk△yk + fyy△y2
k

)
]

w4
k = 0

∑

k

△y2
k

[

εk − 1

2

(
fxx△x2

k + 2fxy△xk△yk + fyy△y2
k

)
]

w4
k = 0

and the set of algebraic equations for the unknown derivatives fxx, fxy, fyy finally looks as follows:

fxx

∑

k

△x4
kw

4
k + 2fxy

∑

k

△x3
k△ykw

4
k + fyy

∑

k

△x2
k△y2

kw
4
k = 2

∑

k

εk△x2
kw

4
k,

fxx

∑

k

△x3
k△ykw

4
k + 2fxy

∑

k

△x2
k△y2

kw
4
k + fyy

∑

k

△xk△y3
kw

4
k = 2

∑

k

εk△xk△ykw
4
k,

fxx

∑

k

△x2
k△y2

kw
4
k + 2fxy

∑

k

△xk△y3
kw

4
k + fyy

∑

k

△y4
kw

4
k = 2

∑

k

εk△y2
kw

4
k.
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Let us introduce for simplification:

X4 =
∑

k

△x4
kw

4
k

Y 4 =
∑

k

△y4
kw

4
k

X3Y =
∑

k

△x3
k△ykw

4
k

X2Y 2 =
∑

k

△x2
k△y2

kw
4
k

XY 3 =
∑

k

△xk△y3
kw

4
k

FX2 = 2
∑

k

εk△x2
kw

4
k

FY 2 = 2
∑

k

εk△y2
kw

4
k

FXY = 2
∑

k

εk△xk△ykw
4
k.

and the set of equations can be rewritten as:





X4 X3Y X2Y 2
X3Y X2Y 2 XY 3
X2Y 2 XY 3 Y 4









fxx

2fxy

fyy



 =





FX2
FXY
FY 2



 . (A.12)

The solution of the three algebraic equations has the form:

fxx = FX2 · A1 + FXY · A2 + FY 2 · A3

2fxy = FX2 · B1 + FXY · B2 + FY 2 · B3

fyy = FX2 · C1 + FXY · C2 + FY 2 · C3,
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where
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∣
∣
∣
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∣
∣
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A2 =
−1

DET3

∣
∣
∣
∣

X3Y X2Y 2
XY 3 Y 4

∣
∣
∣
∣

A3 =
1

DET3

∣
∣
∣
∣

X3Y X2Y 2
X2Y 2 XY 3

∣
∣
∣
∣

B1 =
1

DET3

∣
∣
∣
∣

X3Y XY 3
X2Y 2 Y 4

∣
∣
∣
∣

B2 =
−1

DET3

∣
∣
∣
∣

X4 X2Y 2
X2Y 2 Y 4

∣
∣
∣
∣

B3 =
1

DET3

∣
∣
∣
∣

X4 X2Y 2
X3Y XY 3

∣
∣
∣
∣

C1 =
1

DET3

∣
∣
∣
∣

X3Y X2Y 2
X2Y 2 XY 3

∣
∣
∣
∣

C2 =
−1

DET3

∣
∣
∣
∣

X4 X3Y
X2Y 2 XY 3

∣
∣
∣
∣

C3 =
1

DET3

∣
∣
∣
∣

X4 X3Y
X3Y X2Y 2

∣
∣
∣
∣

DET3 =

∣
∣
∣
∣
∣
∣

X4 X3Y X2Y 2
X3Y X2Y 2 XY 3
X2Y 2 XY 3 Y 4

∣
∣
∣
∣
∣
∣

.

Now, introducing

FX2 =
∑

k

εkγ
xx
k ,

FY 2 =
∑

k

εkγ
yy
k

FXY =
∑

k

εkγ
xy
k ,

where

γxx
k = 2 (△xk)

2 · w4
k,

γyy
k = 2 (△yk)

2 · w4
k,

γxy
k = 2△xk△yk · w4

k,

we can write the solution in the following form

fxx =
∑

k

εk

(
A1 · γxx

k + A2 · γxy
k + A3 · γyy

k

)
,

fxy =
∑

k

εk

(
B1 · γxx

k + B2 · γxy
k + B3 · γyy

k

)
,

fyy =
∑

k

εk

(
C1 · γxx

k + C2 · γxy
k + C3 · γyy

k

)
,
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or by denoting

αxx
k = A1 · γxx

k + A2 · γxy
k + A3 · γyy

k ,

αxy
k = B1 · γxx

k + B2 · γxy
k + B3 · γyy

k ,

αyy
k = C1 · γxx

k + C2 · γxy
k + C3 · γyy

k ,

the solution can be written as

fxx =
∑

k

εkα
xx
k ,

fxy =
∑

k

εkα
xy
k ,

fyy =
∑

k

εkα
yy
k .

Let us first consider the term fxx. Substituting here Eq. (A.11) for εk we can write:

fxx =
∑

k

εkα
xx
k

=
∑

k

αxx
k ·



−fi



1 −△xk

∑

j

Aj
x −△yk

∑

j

Aj
y



 −
∑

j

fj

(
△xkA

j
x + △ykA

j
y − δjk

)





= −fi ·
∑

k

αxx
k + fi ·

∑

k

αxx
k △xk




∑

j

Aj
x



 + fi ·
∑

k

αxx
k △yk




∑

j

Aj
y





−
(

∑

k

αxx
k △xk

)
∑

j

fjA
j
x −

(
∑

k

αxx
k △yk

)
∑

j

fjA
j
y +

∑

k

αxx
k fk.

From the above expression we can find the contribution from each neighbour to the second
derivative fxx. The correspondent metric elements are:

[fxx] ⇒ [fxx]ii = −
∑

k

αxx
k +

∑

k

αxx
k △xk




∑

j

Aj
x



 +
∑

k

αxx
k △yk




∑

j

Aj
y



 ,

[fxx] ⇒ [fxx]ik = αxx
k − Ak

x ·




∑

j

αxx
j △xj



 − Ak
y ·




∑

j

αxx
j △yj



 .

Expressions fro fxy, fyy can be easily found from the above equations by simply replacing αxx
k

by αxy
k and αyy

k , respectively.
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