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1 MOTIVATION

1 Motivation

Why one is interested to simulate water? The answer to this question is quite obvious,
due to the vital importance of water for human existence. The dominant natural source
for water is rain, where raindrops [1, 2] usually hit a surface. Such an interaction of
a raindrop with a surface is rather difficult to simulate resolving the full molecular
complexity because of the extraordinary large number of molecules. For a mono layer
of water with a radius of 0.5 cm and a molecular size of 0.305871 nm there are 1014

molecules in this thin layer. A spherical water drop with a radius of 0.5 cm consists of
1021 molecules. In addition, the dynamics of drops on surfaces is of interest, because
this is needed in micro-fluid applications in biology and medicine. Here, sometimes
quite surprising effects can appear, like the uphill movement of drops using resonant
shaking of the surface or liquid marbles generated by addition of hydrophobic powder
to the drop [3–7].

Figure 1.1: A water drop on a leaf [8]

For situations, where mesoscopic length scales get important, new methods are needed
to allow realistic simulations of water drops and their interactions with surfaces. Micro-
scopic systems are usually treated by Molecular Dynamics resolving the full atomistic
characteristics. In contrast, macroscopic models use fluid models of Navier-Stokes equa-
tions with additional terms like surface tension. In this work, a method developed by D.
Greenspan [9] is evaluated which tries to handle a waterdrop introducing a macroscopic
pseudo-particle model to treat realistic sizes of waterdrops. This model is a kind of hy-
brid approach, because a waterdrop is described by the interaction of pseudo-particles,
where one particle still contains a large number of water molecules, and the particle
ensemble represents a waterdrop on a macroscopic scale with effective and simplified
interaction models.

The basic goal of this work is to qualify this approach and to evaluate it with respect
to computational and physics aspects, especially the physics of water drops introduced
in Section 2. The basic idea of the method is presented in Section 3 , discussing es-
pecially the construction of effective potentials for the pseudo-particles. Also, a com-
parison with other methods, like Molecular Dynamics and Navier-Stokes fluids models
is given. Afterwards, the specific numerical implementation is presented. Results for
different complexity (2D, 3D) are shown in Section 5 and the validation of the method
is discussed.Finally, the results of this work are summarised.
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2 BASIC PHYSICS OF WATER DROPS

2 Basic physics of water drops

In this Section, the basic physics of water drops will be shortly introduced as needed for
model validation in Section 5. The following topics are discussed

• the surface tension of a water drop

• the contact angle of a water drop with a surface

In the following a constant mass density is assumed for water, neglecting its variation
with temperature

ρ = 1
g

cm3 . (2.1)

2.1 Surface tension

Surface tension is an effect of the interaction between a liquid and another material like
vapour, solid or a different liquid, where the molecules of the liquid are kept together by
a contracting force. This force originates from the pressure gradient between the liquid
and the other material [10, 11]. Outer molecules of e.g. a water drop experience a force
directed to the inside of the ensemble, because they are missing neighbours outside the
fluid. By minimising the free energy of the system (or in other words the ratio of surface
versus volume) this leads to the formation of a perfect sphere. In Tab. 1 some typical
values for pure water of the nonlinear dependency of the surface tension as a function
of temperature are listed. The surface tension can be reduced dramatically if small
amounts of surfactants are added and can be raised if strong electrolytes are added.
Therefore, measurements can vary greatly if the water is contaminated. For surface
tensions between graphite and water or air no values were found. As an approximation
for the graphite-air interaction the graphite-vacuum surface tension at 90 K will be
used [12]:

γg−a
!= γg−v = 446

dyn
cm

(2.2)

T/◦C Surface Tension γ/dyncm

0 75.83
20 72.88
40 69.92
60 66.97
80 64.01
95 61.8

Table 1: Surface tension as a function of temperature [13]
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2.2 Contact angle 2 BASIC PHYSICS OF WATER DROPS

2.2 Contact angle

If a drop is not only surrounded by air but also in contact with a solid, the surface
tension is usually different for each interface. As a consequence a force equilibrium is
established at the contact point between these three interfaces (water-air, graphite-air
and graphite-water), which leads to a characteristic contact angle ϑ between the liquid
and the solid ( in air, at constant pressure). This force equilibrium is described by the
Young-equation [14]

γg-a = γg-w+γw-a cosϑ (2.3)

Only, if this equation is fulfilled, the surface will not wet completely.

As the surface tensions have nonlinear temperature dependencies, this contact angle
changes also with temperature due to the changed force equilibrium. The contact angle
for a water drop on a flat graphite surface is [9]

ϑ= 60◦ (2.4)

From this contact angle the height of a drop on a surface can be derived knowing the
surface tension γw−a, the density ρ and the gravitational acceleration g [7]

h=

√

2γw−a (1−cosϑ)
gρ

(2.5)

As the surface tension is volume independent the height of a drop is it, too. Therefore, a
maximum height for all water drops on a certain surface is expected. At a temperature
of 293K this height is

hH2O = 0.27 cm (2.6)

for a water drop on a graphite surface.
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3 CONCEPT OF THE HYBRID MODEL

3 Concept of the hybrid model

In this Section, the basic concept of the hybrid model of Greenspan [9] is presented,
especially the derivation of the effective interaction potentials of the pseudo-particles.

This model aims to preserve as much as possible microscopic characteristics without
the massive amount of computation power needed for full Molecular Dynamics due to
the great number of molecules. Pseudo-particles are introduced, which contain a large
number of water particles. To describe the behaviour of these pseudo-particles on a
macroscopic scale their interactions are calculated from Mie-potentials, which need to
be determined for the system studied. Extra terms for surface tension can be avoided
unlike in Navier-Stokes-fluid models because this is already represented in the effective
interaction potentials.

Water molecules are influenced by gravity and the interaction with other molecules. The
gravitational force is the same for all molecules. The interaction force between particles
is described by a kind of a Mie-potential

F =−
G

Rp
+

H

Rq
, G > 0, H > 0, q> p. (3.1)

In Eq. (3.1) the first component describes the attraction and the second repulsion. For
real water molecules the interaction between two molecules can be approximated by a
force derived from a Lennard-Jones-potential (in dyne)

F(r)= (1.9646383)10−5
(

12
(2.725)12

r13
−6

(2.725)6

r7

)

. (3.2)

Following Eq. (3.2) the equilibrium distance between two water molecules is

req = 3.05871Å= 3.05871 ·10−8 cm (3.3)

D. Greenspan [9] used in his model a force with p= 3 and q= 5

F(R)=−
G

R3 +
H

R5 . (3.4)

with the potential

Φ1 =−
G

2 ·R2 +
H

4 ·R4 (3.5)

To calculate H and G, the interaction force needs to be zero between two particles at
equilibrium distance. In this case the equilibrium distance of the pseudo-particles are
those of molecules scaled up by a factor ν. ν is chosen with respect to numerical limits
(mostly run-time limit) in the following way: for a water drop with a diameter of 1 cm
and for a maximum number of about 1000 pseudo-particles in a 2D case, a ν to an req w-w

in order of 10−2 cm is reasonable. As the equilibrium distance of water molecules in
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3 CONCEPT OF THE HYBRID MODEL

Eq. (3.3) is of the order of 10−8 cm a scaling factor ν = 10−6 was chosen to achieve an
equilibrium distance:

req w-w = 0.0305871 cm (3.6)

which lead to

N = 823 (3.7)

Therefore, one gets

−(0.0305871)2 ·G+H = 0. (3.8)

To determine G and H it is necessary to use a second condition, namely the total po-
tential energy of all real molecules in the system (around 707 ·1012 molecules) approx-
imated with a (6-12) Lennard-Jones potential [9](neglecting all kinds of other energy,
like kinetic, vibrational, rotational and electromagnetic):

Ewat.mol. = 3 ·707 ·1012 ·1.9646 ·10−13
[(

2.725
3.05871

)12

−
(

2.725
3.05871

)6]

erg (3.9)

=−104.1745 erg

The total energy of the system is now calculated for the total number of pseudo-particles
(in this case 823) used for the simulation of the water drop [9,15]

E1 = 3 ·823 ·
(

−
G

2 · (0.0305871)2
+

H

4 · (0.0305871)4

)

. (3.10)

It is now assumed, that the ensemble of pseudo-particles should have the same energy
[15] as the ensemble of real particles

E1 = 3 ·823 ·
(

−
G

2 · (0.0305871)2
+

4
4 · (0.0305871)4

)

(3.11)

!=Ewat.mol.=−104.1745 erg

Together with Eqs. (3.8) and (3.11) the parameters G and H can be determined to

G = 1.57898 ·10−4, H = 1.47725 ·10−7. (3.12)

Inserted in Eq. (3.5) one gets

Φi(R)= 4ǫi

[

−
(σi

R

)2
+

(σi

R

)4
]

. (3.13)

ǫw = 0.0421929, σw = 0.0216284=
reqp
2

(3.14)
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3 CONCEPT OF THE HYBRID MODEL

with ǫ representing the minimum energy at distance σ. Combined with Eq. (3.10)
follows for the potential energy with the number of particles Eq. (3.7):

E1(R)= 3 ·823 ·4ǫi
[

−
(σi

R

)2
+

(σi

R

)4
]

. (3.15)

which results in an energy per particle in the initial state

E i(min0) =Φmin = 3 ·ǫw (3.16)

= 0.128 erg (3.17)

-0.05
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Φ
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Φg−g(R)
Φw−g(R)

Figure 3.1: Potentials for the different interactions

Next the mass of each water particle needs to be calculated for the gravitational force
using the mass of each water molecule

m= 3,0103 ·10−23 g. (3.18)

Multiplied with the total number of molecules in the system and divided by the number
of pseudo-particles, the pseudo-particle mass is given by

mw = 2.586 ·10−11 g (3.19)

A similar procedure is done to obtain the potential for the interaction of two graphite
pseudo-particles with a equilibrium distance of

req g-g = 0.03834 cm (3.20)
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3 CONCEPT OF THE HYBRID MODEL

and a mass of

mg = 1.5887 ·10−11 g. (3.21)

Also, a potential like in Eq. (3.13) for the graphite - graphite interaction can be derived:

ǫg = 3.048013 ·10−3, σg = 0.0271105. (3.22)

If Eqs. (3.22) and Eq. (3.14) are combined to

ǫgw =
√

ǫw ·ǫg = 0.0113404, σgw =
1
2
(σw+σg)= 0.02436945, (3.23)

one gets a potential, which describes the graphite-water interaction. Finding the min-
imum of Eq. (3.23) the equilibrium distance between a graphite and a water particle
is

req w-g = 0.03446 cm. (3.24)

Based on the potentials, the three interaction forces are given:

Fw-w(R)=−
1.579
R3 ·10−5+

1.477
R5 ·10−7 (3.25)

Fg-g(R)=−
1.792
R3 ·10−5+

2.634
R5 ·10−8 (3.26)

Fw-g(R)=−
5.388
R3 ·10−5+

6.399
R5 ·10−8. (3.27)

To obtain the equations of motions for the particles, the sum of all interaction forces and
the gravitational force is calculated:

Fi,ges =mi · g+
∑

i 6= j

F(r i j) (3.28)

As an example, one gets for a water particle i

Mw
d2R i

dt2
=−980Mw+α1

∑

j

(

−
1.579

R3
i j

·10−5+
1.477

R5
i j

·10−7
)

(3.29)

with a scaling factor αi for the force of interaction. To derive αi D. Greenspan [9] uses
the empirical argument that the force between two particles with a distance of five
equilibrium distances away should only be a small part of the gravitational force,and
suggests to use 5%. This factor and the assumed distance of interaction are important
parameters determining the physics of the system as will be discussed in Section 2.

With changing the variables to

R̄ = 10R, T = 10t (3.30)
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3 CONCEPT OF THE HYBRID MODEL
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Figure 3.2: Forces for the different interactions

the acceleration of each water particle by water particles is

d2R i

dT2 =−98.0+
∑

j

(

−
18.2627

(R̄ i j)3
+
1.70828

(R̄ i j)5

)

, (3.31)

where the first term is the gravitational force. The acceleration of a graphite particle by
graphite particles is

d2R i

dT2 =−98.0+
∑

j

(

−
35.9575

(R̄ i j)3
+
5.285275

(R̄ i j)5

)

(3.32)

and that of a water particle by a graphite particle is

d2R i

dT2 =−98.0+
∑

j

(

−
26.1085

(R̄ i j)3
+
3.10075

(R̄ i j)5

)

. (3.33)

To calculate the force on a graphite particle by water, it is necessary to multiply the
previous term with the factor of

mgraphite
mwater

[9]. If a water particle is affected by water and
graphite Eqs. (3.32) and (3.33) must be used, but counting the gravitational force only
once.
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4 NUMERICAL IMPLEMENTATION

4 Numerical Implementation

For the Implementation of the hybrid model presented in Section 3 a FORTRAN 90
code was written. The numerical bottleneck is the computation of the interaction of
every particle with all others. This results in a size-scaling of n2 with the number of
particles n , which limits strongly the possible system sizes for this thesis. Therefore,
only proof-of-principle calculations were done in 3D with about 17000 particles, and
most of the work was done in 2D with up to 1000 particles.

In the following, specific details of the implementation will be presented.

4.1 Velocity-Verlet Algorithm

The integration of the equation of motion was done at every time step for every particle
with the Velocity-Verlet algorithm. This algorithm consists of four steps:

1. Calculation of position by

~x(t+∆t)=~x(t)+~v(t) ·∆t+
1
2
~a(t)(∆t)2 (4.1)

2. Calculation of velocity after one half time step

~v

(

t+
∆t

2

)

=~v(t)+
~a(t)∆t

2
(4.2)

3. Calculation of acceleration ~a(t+∆t) with calculating the force Fi for every particle

4. Calculation of velocity after the full time step

~v(t+∆t)=~v

(

t+
∆t

2

)

+
~a(t+∆t)∆t

2
(4.3)

The Velocity-Verlet algorithm has the advantage of velocities and positions being time-
synchronised in contrast to the half time step shifted leap frog method. As no interpola-
tion is needed, no further error is introduced for kinetic or potential energies resulting
in better stability. As a second-order method the accuracy is not as good as a higher or-
der algorithm, like the fourth or fifth order Runge-Kutta. However, this is compensated
by its lower computing cost and controlled by a small enough time step, which will be
evaluated next.

4.2 Time-step

As already mentioned in Section 1 the goal of this work was to create a model which is
able to describe macroscopic effects. Due to the limiting factor computing time, smaller
time steps cause longer run times, as more iterations for solving the equations of motion
are needed. Here, the limit of the time step is analysed.
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4.2 Time-step 4 NUMERICAL IMPLEMENTATION

To guarantee that a particle is interacting with the proper potential and to avoid that
it will penetrate through a potential wall due to numerical errors, it is necessary to
estimate the largest acceptable time step. An appropriate time step will guarantee a
smoother change of the force and prohibit sudden artificial accelerations of some parti-
cles which could cause instabilities in the drop. To estimate the time step the potential
Eq. (3.13) for the interaction of two particles is expanded in a Taylor series near the
potential minimum at r =σw with

∇·Φw(req w-w)=
∂Φw(req w-w)

∂r
=−F(req w-w)= 0 (4.4)

to

Φw(r)= 4ǫi

[

−
(σi

r

)2
+

(σi

r

)4
]

(4.5)

=Φw(req w-w)+
∂Φw(reqw−w)

∂r
· (r− req w-w)

+
1
2
·
∂2Φw(reqw−w)

∂r2
· (r− req w-w)

2+O(r3)

(4.6)

=−ǫw+4 ·ǫw

[

−
6 ·σ2

w

r4eq w-w
+

20 ·σ4
w

r6eqw−w

]

· (r− req w-w)
2 (4.7)

=−ǫw+
1
2
·
4 ·ǫw
σ2
w

· (r− req w-w)
2 (4.8)

The result is a harmonic oscillator potential:

Φ(r)=V0+
m ·ω2

2
· (r− reqw−w)

2 (4.9)

The coefficients gives the frequency or with τ= 2·π
ω

the period of the oscillation for two
water particles.

τw−w =π ·

√

m ·σ2
w

ǫw
= 1,6822 ·10−6 s. (4.10)

To resolve the movement of the pseudo-particles one needs to choose a time step at least
10 times smaller then this period. For the interaction of a graphite and a water particle
a time step of

τw−g = 3,6896 ·10−6 s (4.11)

is needed. The time step for the calculations in this work was chosen in the range
between τ = 5 · 10−7 to 1 · 10−8 s. D. Greenspan chose a much larger time step of
τ = 5 · 10−5 s [9] well beyond this limit, which obviously can cause artificial results.
Such a time step can lead to results where the drop is unstable and sometimes looses
some particles. Also the interaction with the surface is not correctly resolved and the
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4.3 Damping 4 NUMERICAL IMPLEMENTATION

drop can penetrate the surface without resistance. Therefore, even if a physically plau-
sible result is observed at the end of a calculation, if the time step is chosen too large, its
interpretation is uncertain due to numerical errors. The same is true, if particles have
too large kinetic energies as a too fast particle may also not experiences the correct in-
teraction, because its larger velocity requires shorter time steps. Therefore, a limitation
of the kinetic energy is needed, introduced by damping in this model.

4.3 Damping

Damping is needed for different reasons. As a thermal temperature is not existing in
the model, viscous damping of the velocities is used to relax to reasonable steady-state
conditions. Some particles can gain energy due to numerical errors, although no force is
existing. Again, damping is needed to stabilise the numerics. Also, oscillations around
an equilibrium state can be avoided by moderate damping to obtain equilibrium states.

To save computing time the damping is not calculated individually for each particle as a
viscous force depending nonlinear on its velocity or the difference of velocity to its neigh-
bours. Instead, a constant re-scaling factor less than one is multiplied after a given
number of time steps to all velocities. After applying the viscous damping spikes ap-
peared in (∆r)2 and (∆v)2, because positions and velocities are no longer consistent and
produced therefore transiently large numerical accelerations. Variation of the damping
shows that the final results are independent from this damping factor, if it is above a
certain level and avoids numerical errors due to too high velocities. In fact, a stronger
damping caused only a longer run time, as the damping limits the maximum of kinetic
energy and so the maximum velocity of a falling drop onto the surface as the equilibra-
tion time needed. An example of the influence of too high kinetic energy is a collision of
drops. Here, if the initial velocity is chosen too large, the collision leads to the creation
of a large number of smaller drops (see Fig. 4.1).

4.4 Initial conditions

Damping is also used for the initialisation of water drops. For this, the particles are
chosen on a cube with random velocities. Then, this system is equilibrated until a
sphere is formed and the initial velocities are damped to zero. For the simulation of a
falling drop, the drop centre is positioned above the middle of the plate.

The creation of a graphite plate as a surface, which the drop hits, is more complicated.
Here, one has to avoid the natural tendency of the graphite particles to equilibrate a
sphere. Different approaches were tested: one with mirroring the particles at the de-
fined boundaries or one using static particles defining the plate boundaries. One result
is shown in Fig. 4.2. Here, several layers of fixed particles were used and additional
free-moving graphite particles were put on top. However, these formed a contracted
cluster, destroying the initial plate configuration.

In the end, also for reducing the computational costs considerably, all graphite particles
are considered as static.
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4.5 Run-time optimisation 4 NUMERICAL IMPLEMENTATION
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Figure 4.1: Collision of two water drops with large velocities, which caused a splitting

into smaller droplets

To initiate a specific configuration a control tool was written, which allows to move, add,
rotate or sort the particles. With this tool and additional scripts a start ensemble like a
drop above a skew plate can be created easily.

4.5 Run-time optimisation

As mentioned before the large computational times needed for one calculation limits the
work in this thesis. One 3D calculation [16–18] with adequate time steps would have
last 400 days. Therefore, 2D calculations are used with a final run-time of 25 hours
for each case. To shorten the run-time the maximum time step still giving acceptable
numerical and physical results (as discussed before) has to be chosen. Also, the total
simulated time for each case is taken as small as possible and the dominant subroutine,
namely the calculation of the force, is optimised. The different optimisation measures
are discussed in the following.
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Figure 4.2: Agglomeration of graphite particles in the centre of same layers of predefined

static particles

4.5.1 Maximum distance of interaction

A simple optimisation is possible based on the fact that potential Eq. (3.13) and the
force Eq. (3.25) approaches zero, if the distance between two particles is getting large:

r→∞⇒
Φ(r)→ 0

F(r)→ 0
. (4.12)

Assuming that the total force acting on one particle can be approximated by the sum
of forces up to a certain distance particle interactions are considered only within this
cut-off distance neglecting all interactions with more distant particles. As will be shown
later, results varies strongly with changes in this cut-off distance.

4.5.2 Link-list

A further optimisation step is to introduce a link list as known from Molecular Dynam-
ics, because for the calculation of the interaction forces the actual distance has to be
compared with the cut-off distance, which is computationally expensive. In the link list
the neighbours within this cut-off distance of one particle are listed and it is no longer
necessary to check every force calculation if two particles are close enough to interact.
The link list is updated every tenth step accepting a small error if a particle left or
entered the sphere of interaction between two list calculations.

Due to different interaction of a water particle with graphite or another water particle,
the link list is split up into a water-water and water-graphite interaction part. By this, a
check of the interaction type can be avoided. Also, the arrays of positions, velocities and
forces are sorted before this to avoid checks for static particles. The sorting of particles
with respect to their horizontal positions was tested to allow for faster determination of
neighbours. However, at the end, this procedure is not used, because the sorting needs a

13
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lot of computing time and an algorithm to map an array position to the particle position
was not available.

4.5.3 Dynamic adaption of base plate

To save computing time it is also necessary to adapt the graphite plate size dynamically.
This was needed to avoid artifacts of a too small plate resulting in possible too small
drops or even worse a loss of particles over the plate edges. On the other hand, a
too large plate requires many particles, resulting in a longer computing time. As the
maximum distance of interaction is given through Subsection 4.5.1 the plate is adapted
dynamically after a certain time with an edge length larger than the diameter of the
water drop extended to the double length of the interaction distance.
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Figure 4.3: Expansion of the graphite plate due to extension of the water drop
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5 Model validation and results

In the following results of the code implementing the hybrid concept will be presented
and a validation of the hybrid concept will be done. Each run is started with an equi-
librated drop as described in Section 4 (see Fig. 5.1). The cases differ by their initial
velocity, the number of particles and mainly their different distances of interaction.
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water drop ground plate

Figure 5.1: A typical start with a water drop of 168 particles, 324 graphite surface par-

ticles and a distance of interaction rc = 10 · req w-w - all axes in this and

following figures are in mm unless explicit remarked

5.1 Distance of interaction

The interaction distance rc is the main variation parameter as the parameters for the
potential and the force were taken constant. Increasing this distance the particles are
pushed closer to each other as more and more particles act attractive. As a consequence
the diameter of the start drop and the surface of a drop on the base surface was reduced
seen as in Fig. 5.2. A larger interaction distance results unfortunately in much higher
computational costs.

In Fig. 5.3 the pair-distribution function of the distance between two water particles in
the equilibrium state before and after the drop on the surface is analysed. The cut-off
distance rc = 10req w-w = 3.059 cm is so big, that nearly all particles interact with each

15
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Figure 5.2: Comparison of drops with the same number of particles but different inter-

action distances

other, especially in the situation before the drop as the furthest distance are smaller
then rc. Moreover an internal structure of the drop is visible as the distribution is in
some kind discrete as also seen in Fig. 4.3. Furthermore in the distribution after the
drop the influence of the graphite surface is quiet viable, as on the one hand due to the
not longer perfectly spherical shape there are more further connections and on the other
hand due to the attractive force of the plate all particles are closer together causing a
shift of the distribution peaks in contrast to the distribution before the drop.

Form Fig. 5.3 also the shrinking of the drop diameter can be qualified, as the smallest
distance is the real equilibrium distances r ik. In contrast to the assumed equilibrium
distance from Eq. (3.6) in the model, one gets

r ik ≈
2
3
req w-w ≈σw ≈ 0.21 cm. (5.1)

If the radius of a sphere shrinks by this factor ν= 2
3 its volume is also at least reduced

to one half, if it is a two dimensional object, or in case of three dimensional object to
one third, which leads to a density different from Eq. (2.1). This has a serious impact,
because the forces (3.31), (3.32) and (3.33) are standardised in Eq. (3.29) with the from
the start volume derived masses. And as only the drop is contracting and not the static
surface the force equilibrium of surface tensions in Eq. (2.3) is disturbed, which will
result in a modified contact angle.
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Figure 5.3: Pair -Distribution function of distance between two particles

5.2 Contact angle

The area of the surface decreases as the distance of interaction is increased. Therefore,
the contact angle between the drop and the surface must also raise. From Subsection
2.2 a contact angle of ϑ = 60◦ is excepted and can be achieved with a large distance of
interaction as shown in Fig. 5.4. Because the number of particles used for the calcu-
lation is rather small, one particle more or less at the periphery of the drop can make
a difference of 20◦. A quantitative validation of the results is not possible due to these
large statistical variations.

The contact angle is also tested with a flow of a drop over a skew surface, where the drop
follows the gravitational force and finally drops off the plate. The results are shown in
Fig. 5.5, where an ellipsoidal drop hits a skew surface. At the time τ= 1.0 the contact
angles at the front and the back are nearly the same and the drop has not the expected
shape of a downhill moving drop with a greater contact angle at the front compared to
the one at the back.

Both results demonstrates that the surface tension is not reproduced correctly within

17
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Figure 5.4: An equilibrated drop on a surface

the model.

5.3 Separation from a top plate

A test for the force between drop and surface is done in the following way: If the en-
semble of an equilibrated drop on the surface is turned upside down, the separation
from a top plate through the gravitational force like in [19] is simulated. In Fig. 5.6
the strength of the gravitational force had to be increased by two and a half times. This
result indicates a far too strong force between the surface of the plate and the water
drop.

5.4 Diffusion of particles into the surface

A too large time step (see Subsection 4.2) can cause artificial results like diffusion of
particles into the plate. For too high initial velocities and weak damping the particles
are oscillating heavily and the particles do not experience the full repulsive potential of
the surface particles due to time step limits. In cases of too large distances of interac-
tion the particles get too close, while the surface particles are static as seen in Section
5.1. The diffusion now occurs because the large number of particles on top of the drop
are also attracted by the surface particles and push the fewer particles in the direct

18
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Figure 5.5: A drop moving over a around 45◦ skewed plate due to the gravitational force.

The plate is not big enough for the whole drop which causes floating over the

edges

neighbourhood of the graphite into the surface. Following this a shorter distance of in-
teraction would be recommended, but as shown in Subsection 5.2 this does not result in
a correct contact angle leading to a contradiction in the model parameters.

5.5 Validation of the surface tension

Because surface tensions are macroscopic effects, the direct validation in the model is
difficult. As already mentioned in Subsection 2.1 a pressure gradient is not existing
in this model, therefore the surface tension between water and air can not be calcu-
lated directly. Also, the temperature dependence can not be checked as in the model
a temperature is not defined. Additionally, as shown later in Subsection 5.6, the force
is normalised to the total mass of the particles, but effects of the surface tension like
the contact angle to other materials are mass-independent. Due to this normalisation
to the particle mass the strength of the interaction force between water particles and
between water and graphite particles are nearly the same. If the results from the pre-
vious Subsections are considered, the surface tension between the solid graphite plate
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Figure 5.6: Sequence of a separating water drop

and the water drop seems to be too strong. Using Eqs. (2.2),(2.3) and (2.4) the expected
surface tension for the graphite-water interaction is

γg−w = γg−a−γw−a cosϑ (5.2)

= 408.5
dyn
cm

(5.3)

In the following an estimate is presented, if the model attraction forces between parti-
cles are used to calculate the surface tension between water and air. From the simula-
tion (as seen in Fig. 5.3) the distance of nearest neighbours is approximately given by
Eq. (5.1). If the particle i is a particle at the surface and particle k its direct neighbour,
that in equilibrium state without gravity

Fi,ges =
∑

j 6=i

F(r i j)= 0. (5.4)
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Figure 5.7: Result of an impact of an unstable drop with large time-step ∆t = 5 ·10−5
and a large distance of interaction rc = 10req w-w

As F(r ik) is the only repulsive force, this leads to

F(r ik)=
∑

j 6=i,k
F(r i j) (5.5)

=−
1.579

r3
ik

·10−5+
1.477

r5
ik

·10−7. (5.6)

The surface tension is approximated by

γwa
=

∂Fi,ges

∂r
. (5.7)

∂F(r i,k)
∂r

is in γwa
the dominating part as

(

∂F(r i,k)
∂r

≈ 2.5 ·102 · ∂F(2·r i,k)
∂r

)

. This leads to

γwa
≈α1

(

3 ·1.579
r4
ik

·10−5−
5 ·1.477

r6
ik

·10−7
)

(5.8)

which leads finally to a surface tension of

γwa
= 0.151

dyn
cm

(5.9)

which is a factor of ν = 5 ·102 too small. As a summary, one gets rather contradicting
results for surface tension: the surface tension between graphite and the water drop is
too large, whereas the surface tension between water and air is far too small.
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5.6 Energy

The total potential energy of the system is needed to calculate the Mie-potentials for
the interaction of particles. As shown in Section 3 this energy is derived from the po-
tential energy of an ensemble of water molecules ordered in a thin layer with the classic
Lennard-Jones potential. This calculation suffers from three shortcomings

• as a polar fluid the calculation with a Stockmayer Potential would be more accu-
rate

• only the potential energy between direct neighbours was considered

• there exists better potential data [20]

The restriction to only nearest-neighbour interactions is also posing problems for the
construction of the energy for the particle interaction. In case of considering only near-
est neighbour interactions for the water molecules calculated with the Lennard-Jones-
potential the energy

E = 110.63 erg (5.10)

is only ≈ 7% larger than the value calculated in Eq. (3.9). On the other hand for the
particle interaction Eq. (3.15) considering 2 equilibrium distances one gets:

Φmin = 3 ·4ǫw
[

−
(

σw

req w-w

)2

+
(

σw

req w-w

)4]

+6 ·4ǫw
[

−
(

σw

2 · req w-w

)2

+
(

σw

2 · req w-w

)4]

. (5.11)

With Eq. (3.14) follows

Φmin = 3 ·ǫw
[

−1+8
(

−
1
8
+

1
64

)]

≈−6ǫw (5.12)

≈−0.258 erg (5.13)

which is nearly twice as much as in Eq. (3.17). This error introduced by the initial
assumption is after all quite big. In addition, the results of Subsection 5.1 showed also
that the ensemble of particles is not in its potential minimum introducing an additional
error for all energy calculations. If in Eq. (3.9) the energy minimum is not used in the
model all parameters get rather arbitrary and the link to the microscopic model is lost.

This energy normalisation seems also unnecessary, as the potential is defined com-
pletely by the determination of the equilibrium distance req w-w between two particles.
Using this distance between particles the number of particles per volume can be esti-
mated and with the constant density (2.1) the mass of each particle Mw follows. The po-
tential is independent from a specific system and its specific volume and mass, because
the normalisation of energy done in Eq. (3.11) can also be derived without knowing the
exact number of molecules Nmol in the observed system from Eq. (3.9):

E = 3 ·Nmol ·Epot.min.mol (5.14)

= 3 ·
Mges

Mmol

·Epot.min.mol ≈Mges ·−4.8904 ·109
erg
g

(5.15)
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where Epot.min.mol is the potential minimum, when two molecules are at equilibrium
distance and Mmol is the mass of a molecule. If the particles are predefined with a
certain mass like Mw = 2.586 ·10−11 , from Eq. (5.14) the whole potential can be derived
using the number of particles Eq. (3.7)

ǫw =
E

3 ·N
≈

E

3 · Mges
Mw

(5.15)=
mw ·4.8904 ·109 erg

g

3
(5.16)

≈ 0.4215 erg (5.17)

which differs only slightly from Eq. (3.14), but is completely independent from the size
of the drop. Also, ǫw is only an additional multiplicative factor and is nullified by αi in
Eq. (3.29) normalised to the gravitational force of the particle mass, and due to this also
defined by the equilibrium distance.

Instead of applying a normalisation to particle mass, a normalisation to the inner en-
ergy could be done. One possible way, using a physics-based procedure, could be to
determine the potential minimum with the energy needed to evaporate all water of the
drop with a mass

Mges = 823 ·Mw = 823 ·2.586 ·10−11= 2.128 ·10−8 g. (5.18)

Zero kinetic energy is used in the model, even water is considered at a pressure of
1 atm. For T0 = 273K , the melting temperature for water, the enthalpy of vaporisation is
∆Hv(T0 → 373K )= 45,054 kJ

mol
[21]. It follows with a molar mass of water M = 18.02 g

mol

an energy

Eenthal. =
∆Hv

M
·Mges = 532.116 erg (5.19)

is needed to vaporise a mass Mges of water with T0. Comparing with Eq. (3.9), this
energy is higher and so a water drop in the hybrid model vaporise much earlier than in
reality.

Although this procedure seems rather viable, certain problems prevent its direct appli-
cation. During the phase transition the correlation between inner energy and tempera-
ture is really nonlinear and also a link between temperature and kinetic energy of the
particles was not established through normalisation. Also, in the hybrid scheme due
to damping and the scaling of the gravitational force energy conservation is not given.
If the model could be reformulated guaranteeing energy conservation, the problem still
remain that, if a particle would vaporise and leave the ensemble, the mass loss would
not appear in a continuous form but as statistical events, which could cause numerical
instability problems.
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5.7 Additional results

An additional scenario was investigated with this model, namely the flow of a water
drop through a capillary. To achieve this, after equilibrating a drop on the surface a
channel of base plate particles was removed, so that the drop could move due the gravi-
tational force in this channel as seen in Fig. 5.8. As discussed before in Subsection 5.2,
the contact angle in this case between drop an capillary is also rather uncertain, be-
cause the movement or displacement of one particle changes it by a large amount. Not
surprising is the velocity in the centre higher as at the boundaries.
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Figure 5.8: Movement of water particles through a graphite capillary
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6 Conclusions

In this work quasi-molecular modelling of a water drop on a graphite surface was done
following the model of D. Greenspan [15]. The model tries to preserve as much as pos-
sible microscopic characteristics without the massive amount of computation power
needed for full Molecular Dynamics due to the great number of molecules. Pseudo-
particles are introduced, which contain a large number of water particles. To describe
the behaviour of these pseudo-particles on a macroscopic scale their interactions are cal-
culated from Mie-potentials, which need to be determined for the system studied. Extra
terms for surface tension can be avoided unlike in Navier-Stokes-fluid models, because
this is already represented in the effective interaction potentials.

The derivation of the model was checked and compared with other references. The
main problem of the implementation was the run-time problem as the calculations were
computational costly. Therefore, efforts were invested to optimise the code to allow for
shorter run-times. The results of the application of the model show that with certain
parameter combinations some of the physical properties of water could be qualitatively
fulfilled, like a correct contact angle with the surface. However, other physics properties
were then incorrect, like the force holding the drop on the surface. This was then too
strong compared with the gravitational force, preventing a realistic separation of the
drop. The analytical analysis of the model showed that the equilibrium distance in the
potential and the chosen cut-off distance are the only free parameters to be chosen.
Therefore, the connection to additional microscopic properties like total internal energy
as stated by the D. Greenspan is not really existing, limiting the physics model to rather
qualitative effects.

In summary, the hybrid model delivers only qualitative results. It is not capable to be
used for predictive, quantitative studies. Therefore, the challenge of building a realistic
multi-scale model of water drops interacting with surfaces still remains.
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