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Chapter 1
Introduction

Plasma, the fourth state of matter, is the most prevalent form of matter in the universe.
It is widely studied to understand the mysteries of the universe |1, 2|, to achieve a clean,
long term source of energy for mankind [3] and also for common industrial processes [4]
that go under the collective name of plasma processing. Matter gets into a plasma state
when enough energy is supplied to ionize its constituents. Once the constituents are
ionized, their interactions amongst themselves are governed by electromagnetic forces.
This gives rise to a wide range of properties like long range interactions, high energy
density, anisotropic behavior in the presence of magnetic fields, ambipolar diffusion,

waves, etc.. which gives rise to a wide spectrum for study [5, 6, 7.

One common thread among the wide variety of plasmas created in laboratories to
study the various plasma phenomena is that all these plasmas are in contact with sur-
faces. The high energy density in a plasma means that these interactions with surfaces
usually change the surface characteristics. This property of the plasma to interact with
surfaces is used by industry to modify surfaces to their needs (plasma nitriding, plasma
assisted sputter deposition, etc). In fusion devices, plasmas have a very high energy
density and the plasma surface interaction (PSI) is a cause for concern. These plasmas
erode or alter the plasma facing material (PFM) leading to a decreased lifetime or
performance. The eroded impurity atoms can also get into the plasma and radiate
energy thereby reducing the energy density of the plasma, making it unfavorable for
satisfying the necessary criteria [8] for fusion to occur. Therefore it is important to
understand the various PSI phenomena and the parameters they depend upon so as to

optimize the experimental conditions for favorable results.



2 Introduction

1.1 Basics of plasma—wall interaction

A plasma consists of electrons and ions kept apart by the high average energies they
have. The electrons are highly mobile compared to the ions because of their smaller
mass and they diffuse away faster than the ions. This results in a polarized electric field
due to charge separation. When the electric potential due to charge separation becomes
of the same order as the average energy of the electrons, the diffusing electrons are held
back by the polarized electric field. The electron diffusion is therefore limited by the
ion diffusion. This type of diffusion is called ambipolar diffusion [6]. Such a diffusion
ensures that electrons are the first species to reach any surface that is exposed to the
plasma. This results in the electric potential at the surface becoming lower than the
plasma potential. Electrons are repelled from the surface and the positively charged
ions are attracted to the surface. There is a finite region over which the potential drops
from the plasma potential to the “floating potential” at the surface and this is called
the sheath. Fig.1.1 [9] shows a schematic of the sheath potential in front of a wall.
This sheath depends on parameters like plasma density and plasma temperature, and

applied voltage to the plasma facing surface [10].

In presence of a magnetic field the ions and electrons gyrate around the magnetic
field. In this case too the electrons are more mobile than the ions in a direction along
the magnetic field and a sheath forms. The sheath affects the energy and angular dis-
tributions of ions incident on the plasma facing surface [10, 11, 12, 13|. Fig.1.2 shows a
schematic of a sheath in the presence of a magnetic field. Note that there now appears
a magnetic sheath thickness and a electrostatic sheath thickness. The magnetic sheath
is determined by the bending of the ion trajectories towards the surface. For a review
of plasma sheaths see [9, 10, 14].

When a flux of ions which are accelerated in the sheath is incident on a surface, a
wide variety of interactions can occur. These interactions can be classified based on

the underlying physical mechanism (Fig. 1.3) into

e Momentum transfer processes,

e Diffusive processes, and
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Figure 1.1: Schematics of the sheath potential in front of the wall without magnetic field (top). The
relevant length scales are shown: Debye-length Ap, sheath edge position xg and ionization length for
neutrals \;on,. In the bottom, the velocity distribution functions for ions f; and electrons f. are shown
at the sheath edge, in the sheath and at the wall. The electrons have a cut-off Maxwellian (with a cut-
off velocity v.s at the sheath edge). At the wall no electrons are going back (half -Maxwellian). The
ions have already at the sheath edge a Non-Maxwellian distribution function as they are accelerated to
¢s or larger because of the Bohm criterion. (Figure from R. Chodura, descriptive caption reproduced
from [9])

e Reactive-diffusive processes.

1.1.1 Momentum transfer processes

When an energetic ion is incident on a surface, it initially transfers its momentum to
a target atom called the primary knock-on atom (PKA) [15] (Fig. 1.4). The incident
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Figure 1.2: Schematics of the sheath with inclined magnetic field. Note that the simple sheath in
Fig.1.1 is now replaced by a magnetic sheath and a electrostatic sheath. Note also that the electrons
and ions gyrate around the magnetic field and if the angle made by the magnetic field B with the wall
is small the ions can reach the wall before the electrons. (Figure from R. Chodura reproduced from

[91)

atom can either lose momentum in subsequent collisions and finally come to rest in
thermal equilibrium with the target (implantation) or get reflected from the target
(backscattering). The PKA creates a collision cascade within the target and some of
the cascading atoms can reach the surface of the target. If the atoms that reach the
surface have more energy than the surface binding energy of the target material, they
escape from the surface (physical sputtering). The cascading atoms also cause damage

to the target and create interstitial target atoms.

The momentum transfer processes (physical sputtering and backscattering) depend

on:
(i) Atomic masses of the projectile and target,
(ii) Energy of incidence of the projectile,

(iii) Angle of incidence of the projectile,
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Figure 1.3: Classification of plasma surface interactions based on the underlying physical mechanism

(iv) Surface roughness of the target.

1.1.2 Diffusive and reactive—diffusive processes

The momentum transfer processes discussed above create damage sites and interstitials
within their range of penetration on the target. In the case of a graphite target, at
high temperatures (> 1200 K) interstitial carbon atoms created by energetic incident
ions/atoms diffuse along the damage sites or voids in the graphite, reach the graphite
surface and get desorbed thermally (radiation enhanced sublimation — RES) [16] (Fig.
1.5). The incident atoms which have equilibrated with the surface diffuse within the
target and can undergo chemical reactions with the target atoms to form new molecules.
Some of these molecules diffuse to the target surface and can either be desorbed by
incident atoms or be released thermally from the surface depending on the surface
temperature (chemical erosion) [17, 18] Fig.1.5. In some cases an incoming energetic
hydrogen atom or ion breaks a covalent C-C bond on the graphite surface by pushing
apart the carbon atoms due to its short range repulsive potential. This can result
in the ejection of either a carbon atom or a hydrocarbon and is called swift chemical
sputtering [19] (Fig.1.6). Chemical sputtering of hydrocarbons is also observed at
graphite temperatures lower than 500/". This is not encompassed by Kiippers model

[18]. Enhanced sputtering of hydrocarbons from within the range of penetration of ions
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Figure 1.4: Illustration of momentum transfer processes

is also seen at these temperatures [20]. The model in [20] suggests creation of open
bonds within the range of penetration of ions. These can then react with hydrogen
to form hydrocarbons which can then be ejected by the swift chemical sputtering
mechanism [19] (Fig.1.6).

The diffusive processes (RES) and the reactive diffusive process (chemical erosion)

depend on:
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Figure 1.5: Illustration of reactive-diffusive processes
(i) The projectile mass,

(ii) The energy of the incident particle,

(iii) The target temperature,

(iv) Incident flux of particles.
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Figure 1.6: Tllustration of Swift-chemical-sputtering processes. Note how the energetic hydrogen
atom (encircled) breaks the C-C bond by which a hydrocarbon molecule is bounded on the hydro-
genated graphite surface (Thanks to Emppu Salonen for this figure)

All the above erosion processes (physical sputtering, chemical erosion and RES) are
quantified in terms of the ratio of the flux of target atoms leaving the surface to the flux
of incident atoms (yield). Backscattering is quantified by the number backscattering
coefficient, Ry, defined as the ratio of reflected particle flux to incident particle flux,
and the energy backscattering coefficient Rg, defined as the ratio of reflected energy
flux to the incident energy flux. The energy deposited by the plasma on the surface
determines the surface temperature which is an important parameter in determining
the diffusion of various species and also molecular formation on the surface. If a high
energy flux is incident on a surface, the surface temperature increases and this can

cause thermal evaporation of the surface atoms.

Therefore the important aspects of modeling PSI are:

e A model for the sheath (which describes the energy and particle flux distributions

incident on the surface),
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e A heat transport model in the target (which gives information of the temperature
of the target),

e Models which specify the physical sputtering, chemical erosion and RES yields,

models for backscattering coefficients, and models to evaluate thermal erosion.

Furthermore, the sputtered, recycled and evaporated atoms enter the plasma and affect
the plasma parameters and therefore the particle and energy fluxes onto the target.
Therefore the interaction of the edge plasma with a surface is a nonlinear feedback
mechanism with the plasma parameters and the PSI coefficients depending on each
other.

We have coupled models for a sheath with a simple PSI model which includes the
latest empirical formulas for the above discussed PSIs and a model for heat diffusion
in graphite to show the effect of such a coupling [21]. This was then incorporated
into the edge transport code B2.5-SOLPS [22, 23] to study the feedback mechanisms.
Appendix.A describes the simple model and the results of the coupling to SOLPS-B2.5.
Appendix.B lists the empirical formulas for physical sputtering, chemical sputtering,

RES, backscattering and thermal evaporation used in this study.

1.1.3 Additional processes

In addition to the above PSIs there exists

e Arcing |24], wherein the electric field between the plasma and the surface becomes
so high that field emission of the electrons occurs and an arc is ignited which
creates a melt layer on the surface (in case of metals) or craters (on graphite

which sublimates),

e Blistering [25], wherein the implanted gas atoms in a target collect together at
defects inside the material. When there is a continuous heat flux on the material

the gas can become hot and expand causing blisters on the material surface.

e Flaking [26], wherein the surface changes cause microscopic parts of the surface
to break off (flake).

e Secondary electron emission [27], due to ion and electron impact.
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These effects are not addressed by the above classification and are beyond the scope of
this thesis.

1.2 Motivation and main focus of this thesis

1.2.1 Advantages of graphite as a plasma facing material

Magnetic fusion devices are a promising energy source for the future due to the avail-
ability of abundant fuel - hydrogen isotopes and also because of the fact that they are
more environmentally tolerable. A figure of merit of a magnetic fusion device is the
fusion triple product [28] which is defined as the product of the plasma density (m—2),
the plasma temperature (keV’) and the plasma confinement time (s). Figure Fig.1.7

shows the progress of tokamaks towards achieving fusion reactor conditions. Typical
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Figure 1.7: Progress towards Fusion Reactor conditions (published with kind permission of ITER)
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plasma parameters in the current devices are temperatures of 10® K and densities of
around a few times 10" (m~3) confined for a second. This results in typical heat fluxes
of a few MWm~2 and particle fluxes of a few times 10%* m~2s~! on the plasma facing
surfaces. Therefore the plasma facing surfaces in these devices must have a very good
thermal conductivity and high melting points from a heat handling point of view. Fur-
thermore the erosion of the plasma facing surfaces leads to contamination of the plasma
and therefore energy loss from the plasma by radiation. This loss is proportional to
the atomic number Z raised to the fourth power [29] which makes low Z materials a
better choice as plasma facing material (PFM). Graphite is the material of choice due
to its high thermal conductivity, high sublimation energy and low Z for these devices.
However as the stage sets for the construction of a fusion reactor prototype ITER [30]
where long PFM lifetimes and recovery of tritium (which is radioactive and must be

recycled) is necessary, some shortcomings of graphite come to the fore.

1.2.2 Shortcomings of graphite as a plasma facing material

(i) There is uncertainty about the extrapolation of the chemical sputtering yield to
high reactor relevant fluxes and in accounting for higher hydrocarbon formation
[31, 32, 33]. Currently there exist good semi-empirical models for chemical erosion
[17, 34] based on Kiippers model [18] which fit a large number of experimental

results.

(ii) The mechanisms leading to chemical sputtering at graphite temperatures lower
than 500K, called surface sputtering, which are not encompassed by Kiippers
model are not fully understood [20].

(iii) There is also a great disparity in the diffusion data of hydrogen isotopes in
graphite [35].

(iv) Moreover the sputtered carbon/hydrocarbons can react with the tritium in the
plasma and form co—deposited layers from which tritium recovery is impossi-
ble [36]. When making the transition to reactor relevant fusion machines with
long pulse times, tritium co-deposition and recovery is so serious an issue that
other plasma facing materials are considered instead of graphite or Carbon Fiber
Composites (CFCs) [36, 37|.
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1.2.3 Focus of this thesis

The main reason for the various uncertainties listed above is the complex structure of
graphite. It is highly chemically reactive and porous. An illustration of the porous
structure of graphite, with typical length scales is shown in Fig.1.8. It consists of gran-
ules of size around a few microns separated by voids which are typically of the order of
0.1 p. The granules themselves are made up of crystallites (regions of crystal graphite)
which are a few nanometers wide. The crystallites are separated by micro—voids which
are a few A wide [38, 39, 40]. This results in large chemically reacting internal surfaces
which the hydrogen isotopes can diffuse into, recombine or form hydrocarbons and get
trapped in the bulk of the graphite.

It is essential to understand the effects of porosity, trapping at internal surfaces, the
chemical interactions that can occur within graphite, and the transport of hydrogen
and the molecules formed, to interpret existing experimental results and to design
new types of graphite based PFMs which are better suited as fusion reactor first wall
materials. In order to study these processes a hierarchy of models is necessary at vastly

differing length and time scales:
e Hydrogen isotope migration in crystallites which are a few nanometers in size

e Hydrogen interaction at crystallite-microvoid interfaces and trans—granular—diffusion

(TGD), which is a few microns in size

e Hydrogen isotope molecule formation and transport in the voids and granule
surfaces, which is typically over the size of the graphite target in fusion devices

(a few cms)

Note that the time scale for these processes depends on the local microscopic graphite
qualities and may change widely depending on the available number of traps, the local
graphite temperature, the hydrogen concentration, etc. This sets the main focus of
this thesis, which is, to create a framework to study multi-scale transport
of hydrogen isotope in a porous graphite—like structure as a test—bed for

addressing other problems concerning the use of graphite in fusion devices, such as:
e the full chemical sputtering problem,

e the hydrogen isotope inventory (tritium and isotope exchange studies),
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Figure 1.8: The porous structure of graphite

1.3 Multi—scale strategy

Many models have been proposed for hydrogen isotope recycling in porous graphite
and in other candidate PFMs [38, 39, 40, 41]. Others have studied hydrocarbon for-
mation and transport in graphite [34]. These models are macroscopic models and use
rate constants obtained from experiments [18, 42, 43, 44, 45, 46| some of which are

still in need of theoretical explanation. They also make use of simplifying assump-
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tions of the porous structure to make the problem tractable. On the other hand there
are microscopic models [19, 47, 48] which use molecular dynamics (MD) which deals
with the interaction amongst individual atoms with either empirical potentials or den-

sity functional theory and give a good insight into the microscopic mechanisms studied.

In order to understand the physical microscopic processes contributing to the macro-
scopic transport, it is essential to use the insights gained from the microscopic models
(consisting of a few hundreds of atoms over a time scale of a few picoseconds), and
from experiments, into modeling the hydrogen isotope reactions and transport at the
meso-scale (TGD) and further into the macro-scale (typically a centimeter over a time
scale of several seconds). Therefore a multi-scale (both in length and time) approach
to modeling PSI is necessary. In addition to the multiple scales involved one must also

consider the effect of the porous structure of the PFM on particle transport.

We develop a multi-scale scheme for incorporating microscopic physical observa-
tions from modeling and experiments into modeling macroscopic transport in porous
graphite. The scheme is illustrated in Fig.1.9. Molecular dynamics (MD) is used to
study the diffusion of hydrogen isotopes in a graphite crystal. The length scale for this
process is a few nanometers and the simulation time is hundred picoseconds. Chapter.2

describes the MD simulation. We then parametrize the diffusion in terms of potential

l.h
o

Monte Carlo (KMC) code DiG, which is much faster and reproduces the MD results

can be used for scaling up. Chapter.3 describes parametrization of the MD results

wells EL jump attempt frequencies w'" and jump distances L', so that a kinetic

for use in KMC. Scaling up in length scales introduces the necessity of taking into
consideration the porous geometry of graphite. A general scheme based on [49] is used
to create the porous graphite geometry. This scheme can be used to create both, the
crystallites separated by microvoids, and the granules separated by voids. KMC is used
to simulate the transport of hydrogen isotopes in randomly oriented crystallites with a
trapping—detrapping model at the microvoid—crystallite interfaces. Chapter.4 describes
this scaled up trans—granular—diffusion. To simulate the macroscopic transport of hy-
drogen isotopes in graphite, the diffusion coefficients obtained from the simulations at
the meso—scale Drgp is used in a Monte Carlo Diffusion (MCD) anzatz to simulate
TGD, and the KMC code is used to simulate the transport in voids and desorption from
the surface. Chapter.5 describes this macroscopic simulation. Finally in Chapter.6 a

few applications of the multi—scale code are presented. Chapter.7 summarizes the work.
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Figure 1.9: The Multi-scale scheme. DiG _ TGD is the version of the multi-scale code that handles
trans-granular-diffusion and DiG _ Bulk is the version that handles Bulk diffusion. Note that various
parameters (explained in the text) are transferred from MD to DiG_TGD and from DiG_TGD
to DiG_ Bulk

1.4 Guiding principles

There are many problems that can be studied at each of the scales lengths. For ex-
ample, saturated hydrogen diffusion in crystallites, the SP3-SP2 ratio of carbon at

the edge of crystallites, etc are interesting at the nanoscales. Similarly the H isotope
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recombination studies for H and D implanted at different depths [39, 38] and hydrocar-
bon formation and transport are interesting at the micro-scales (~ 107® meters). At
the centimeter scales hydrogen isotope recycling, etc are interesting. However, in this
thesis we concentrate on developing the multi—scale toolbox using which many of these
problems can be tackled at different scales. This approach has an analogy with the
computer game kmines, wherein, the player marks out potential positions of "mines"
that can stop the game and goes ahead with playing the game (Fig. 1.10). Like in
the game, the insights gained from the larger picture can also help in resolving the

more localized problems. We have attempted to compare our models with experiments
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Figure 1.10: Computer game kmines

wherever possible. From the understanding obtained from the simulations, we have
tried to make simple models which reproduce the simulation results. The multi—scale
code is written in a modular fashion so that different modules can be chosen in order

to simulate different problems at different scales.



Chapter 2

Molecular Dynamics simulations of
hydrogen isotope diffusion in

crystalline graphite

In this chapter the hydrogen isotope transport in a graphite crystal, at nanometer

scales, is investigated using MD.

2.1 Brief introduction to molecular dynamics simula-

tions

The most intuitive method to study microscopically the motion of atoms and their

interactions amongst themselves is to solve the N body force equation,

N

i#j,j=1

where 7 is the position vector of a particle denoted by 7, m; is the mass of the i atom
and ®,; is the interatomic potential between the :"* atom and the ;™ atom. Molecular
dynamics (MD) aims to do exactly just this using a computer since even for very small
N, or for complicated forms of ®;;, the above equation is not analytically solvable.

Solving the above equations numerically on a computer has the following limitations:

e The inherent limitation of the time step being around a femtosecond to simulate

materials, so as to cater to numerical stability.
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e The number of atoms which can be simulated is limited to between 100 and
~ 10%, depending on the type of potential used and the speed of the computation

system.

2.1.1 Limitation in the time step

The limitation of the time step to a femtosecond can be understood as follows: Nu-

merical schemes to solve Eqn.2.1 use a Taylor expansion
r(t+ At) = r(t) + 7AE+ g(At)Q b (2.2)

Different schemes truncate at different orders of the time step At¢ which determines
the accuracy of the position calculation and also the time step to be used. For a
discussion which evaluates the various numerical schemes that can be used in MD, see
[50] (pages 69-84). In brief, for numerical stability it is required that the change in
potential with a change in position of the coordinate of a particle in time At must
not be large (note that the second term of the Taylor expansion in Eqn.2.2 is equal
to —V®). A simple rule of thumb frequently used is that the particle can move at
most (1/20)" the distance between two neighboring atoms |51] (lecture 2). Typical
interatomic distances in a graphene plane is ~ 1.4 A and the typical velocity of an
interstitial hydrogen atom which has equilibrated with the graphene plane at say 900
K is ~ 0.047 A /femtosecond. Therefore the time step has to be 1.5 femtoseconds in

this case and one would have to loop over ~ 10% iterations to simulate one second!!

2.1.2 Limitation in the number of atoms simulated

The second limitation depends on the choice of the interatomic potential, ®. Quantum
mechanical approximations like Hartree-Fock (HF) methods, density functional the-
ory (DFT) [52, 53|, tight binding (TB) [54]) can be used to calculate ® at each step.
However this limits the number of atoms that can be simulated. On the other hand,
analytical potentials can handle much larger numbers of atoms. There exist many
two body potentials which can be used to simulate noble gases and other spherically
symmetric structures [55, 56]. For structures which are not spherically symmetric, spe-
cial care has to be taken to incorporate the symmetry of the solid being modeled (eg.
the three body Stillinger-Weber potential [57]). There also exist standard potentials
for special classes of systems like the embedded atom method (EAM) for metals [58].
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Recently, analytical reactive bond order potentials (REBO) have become very attrac-
tive for simulating carbon based systems [59]. These are based on the ideas proposed
by Abell [60] wherein the effect of electron contribution to the potential is modu-
lated based on the local atomic coordination number (i.e. number of neighbors) by a
"bond-order" function. Tersoff proposed a potential [61] which incorporates angular
interactions and the dependence on local atomic coordination number. This models
Si, Ge and C very well and the Abel-Tersoff formalism was shown to produce correct
trends for potential barriers in chemical reactions by D. Brenner [62]. For a discussion
on interatomic potentials from quantum to empirical to REBO see [51] (lectures 7 to
11), and for a discussion on the development of REBO see [59]. Table.2.1 (reproduced
with permission of K. Nordlund), shows a rough estimate of the maximum number of

atoms, N, that can be simulated in a week or so, on a single processor machine.

Table 2.1: Rough estimate of the number of atoms that can be simulated in MD for different methods
of evaluation of interatomic forces

Potential Model | Type Scaling Noax
HF Quantum mechanical O(N*®)/O(N) | 50
DFT Quantum mechanical O(N3®)/O(N) | 200
TB Quantum mechanical O(N®)/O(N) 1000
(often semi—empirical) 10000
Many body | classical, semi—empirical | O(N) 107
and pair

As far as the carbon-hydrogen system is concerned, D. Brenner, using a highly
parametrized Tersoff bond-order expression as a fitting function for a number of small
hydrocarbon molecules, graphite and diamond, constructed an empirical potential [63]
which reproduces hydrocarbon formation and can be used to study hydrogen isotope
interaction with graphite. K. Nordlund extended the Brenner potential [64] to in-
clude long range interactions perpendicular to the the graphene planes so that crystal
graphite could also be simulated. We use the Brenner potential with Nordlund’s ex-

tension to simulate hydrogen isotope diffusion in crystalline graphite.
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2.1.3 Other important aspects of a MD simulation

Other aspects of a MD simulation involve:
e Speeding up techniques,
e Boundary conditions depending on the problem,

e Fixing the macroscopic parameters of the system of particles like temperature,

pressure and volume,

e Post-processing to check the consistency of the simulation and to analyze the

results.

These are basic to MD simulations and good introductions to all these aspects can be
found in [50, 51, 65, 66]. These aspects are briefly mentioned here only to introduce

the technical terms used to describe the simulation.

Speeding up techniques and boundary conditions

Since the computation time of a MD simulation scales with the number of atoms in the
simulation, one would want to use the minimum number of atoms as is possible without
compromising on the accuracy of the results. To this end truncation of potentials, cre-
ating neighbor lists and judicious use of boundary conditions is important. When the
interatomic potential falls off rapidly with distance, short range interactions dominate
the simulation. The contribution of atoms beyond a critical distance r. becomes small
and this error can be evaluated and corrected. This kind of simple truncation of the
potential where the potential beyond r. is neglected can lead to infinite gradients in ®
at r = r. which leads to a numerically unstable situation as discussed above. Therefore
the potential is truncated and shifted such that it becomes zero at » = r.. In this case
the potential energy and pressure on a system with a truncated and shifted ® changes
and corrections must be evaluated and applied. To further save computation time a
list of atoms, called the neighbor list, within r. is maintained. This list is updated
with a frequency depending on the rate at which atoms may move into or out of the
neighborhood.

In order to simulate homogeneous bulk systems, periodic boundary conditions

(PBCs) are used. This is illustrated in Fig.2.1 for a two dimensional system. Box
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Figure 2.1: Tllustration of periodic boundary conditions (PBCs) in a MD simulation

A having size L, and L, in the X and Y directions is replicated at its 4 edges and 4
corners to form boxes labeled B, C, D, E, F, G, H, 1. The force calculation for atoms
within a distance . of these corners or edges (note the dashed circle on the top edge of
A) involves those atoms that lie at the bottom edge of box A which due to PBCs also
lie in box D. Note that such an ansatz is valid only when evaluating physical quantities
with local correlations. Only fluctuations that have a wavelength not greater than the
single box size can be simulated. Care must also be taken to avoid spurious correlations
that can creep in due to assumed periodicity of the system and care must be taken
that r. < L, /2.

Other boundary conditions that can be used are "free" or "open" boundary condi-
tions which can be used when simulating a small collection of atoms or a long molecule
which is unbounded. In this kind of boundary condition, the force calculation is carried

out over existing atoms within r. without any replication of boxes. Such boundary con-
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ditions can also be used to simulate surfaces where no replication is carried out along
the direction normal to the surface, (say Z, with the surface lying at Z = 0). PBCs are
implemented along the plane (say X —Y') in which the surface extends. At —L,, where
L, is the dimension of the system along Z, the bottommost atoms can be held fixed
with atoms lying within r. of these atoms assigned a temperature equal to the bulk
temperature (assigning a temperature is discussed under the topic fixing macroscopic
parameters below). Note that some potentials fitted for modeling bulk phenomena
may not be suitable for modeling surfaces correctly. Furthermore in the special case of
simulating interactions of fast particles with a surface, special considerations have to be
made for the time step, and boundary conditions called "slab-boundary—conditions"
are applied. In this case, the atoms lying at the faces bounding the system in the X
and Y directions are held fixed and atoms lying within a distance r. from these faces
are assigned a temperature equal to the bulk temperature. The system size and impact
position of the fast particle must be chosen such that the collision cascade does not

extend to the temperature controlled regions.

Fixing macroscopic parameters

Statistical mechanics provides a link between the macroscopic properties of matter (like
temperature, pressure, etc.) and the microscopic properties (like positions, velocities,
individual kinetic and potential energies) of atoms and molecules that constitute it.
These macroscopic properties reflect the time average behavior of the atoms at equi-
librium (i.e in one of the many possible degenerate minimum energy states accessible
to the system). Details of this are available in any book on MD [50, 65, 66] and is not
reproduced in this thesis where MD is only the first step in a multi-scale-model. Here
only the basic technical terms in the MD simulation are addressed.

Before doing the MD simulation one is faced with the task of initializing the atomic
positions and velocities. In the case of crystalline solids the starting positions will be
defined by the crystal symmetry and positions of atoms within the unit cell of the
crystal. The unit cell is then repeated to fill up the desired dimensions of the system.
Realistic atomic displacements from crystal lattice sites can also be derived using the
Debye model [51] (Lecture 2, page 12). For amorphous solids the particles can be
randomly distributed within the desired dimensions making sure that there exists a

minimum distance between the atoms so that strong local forces do not exist in the
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system.

The initial velocities are set by assuming a Maxwell-Boltzmann distribution for
velocities along the three dimensions. This is done by using Gaussian distributed ran-
dom numbers multiplied by a mean square velocity given by \/W in each of the
three directions and making sure that the system has total momentum equal to zero.
Generally speaking, if sensible (tailored to avoid large impulsive forces) position and
velocity distributions are chosen, particle positions at equilibrium relax to oscillating
around the minimum energy locations of the potential . A Maxwellian distribution

of velocities is naturally obtained in the simulation.

Therefore the initial temperature and total energy of the system has been fixed.
The temperature is fixed by the velocity distribution. The total energy of the system
is given by

Eiot = KEto; + PEyoy (2.3)

where K FE,,; is the total kinetic energy in the system given by

N
1
KFE, = Z 5 m (vf” + U;,i + vgz) (2.4)

i=1
and PFE,, is the total potential energy of the system given by

N

PEjy =Y _ ®r) (2.5)

i=1
with v, , . being the velocities, r being the positions of atoms, and 7 being the in-
dex that sums over all the atoms N in the system. ®;(r;) is the potential energy of
the i atom due all other atoms in the system. In a optimized MD simulation, with
truncated—shifted potentials, ®;(r;) is calculated by summing over the potential energy
at r; due to the atoms in the neighbor list and adding truncation and shifting correc-

tions.

The recipe used to fix the temperature above cannot be used at every time step
since this fixes the temperature rigidly. This also destroys the purpose of solving

Eqn.2.1, since atoms are assigned velocities randomly at each time step. Normal tem-
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perature fluctuations are suppressed. There are many methods to control temperature
and pressure [67, 68, 69]. Our MD simulations implement the Berendsen temperature

and pressure control [69] and only this is described below.

In the Berendsen temperature control scheme, all velocities are scaled at each time

v 2 (%) 20

where, At is the time step of the simulation, 71 is the time constant for temperature

step by a factor \ given by

control and has to be greater than 100At, T}, is the desired temperature and 7' is the
current temperature. The Berendsen pressure control is implemented by changing all

atom positions, and the system size is scaled at each time step by a factor u given by:

p=|1-—(F - P (2.7)
where 7p is the time constant for pressure control which should be typically greater
than 100At, P, is the desired pressure and P is the current pressure. (3 is the isothermal
compressibility of the system. This type of temperature and pressure scaling gives real-

istic fluctuations in temperature and pressure when large values of 77 and 7p are chosen.

Post processing of results

Solving Eqn.2.1 gives the particle positions and velocities at each time step. The total
kinetic energy, potential energy and total energy can also be output using Eqns.2.4,2.5,
2.3, averaged over a certain number of fixed time steps. Depending on the type of en-
semble simulated, various macroscopic parameters of the simulation like temperature,
pressure, specific heat at constant pressure or at constant volume, etc can be output.
Various transport coefficients are related to time correlation functions of various mea-
surable quantities in a MD simulation as given by the Green-Kurbo relations. See [50]
(Section 4.4.1 and Appendix C) for details. We carry out MD to study the diffusion of

hydrogen isotope in crystalline graphite and therefore we discuss only this aspect here.
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We obtain the diffusion coefficient using the Einstein relation:

o1 5
D = lim o= [r(t) —r(0)] (2.8)

where D is the diffusion coefficient, d is the dimensionality of the system and < r(¢) >
is the position of the atom at time ¢. This is proportional to the slope of the mean
square displacement of a single particle undergoing Brownian motion at the long time

limit and is also known as the "tracer diffusion coefficient" [70].

2.2 Molecular dynamics study of hydrogen diffusion
in graphite

We use the HCParcas code to study hydrogen isotope diffusion in crystalline graphite.
The code, which is written and maintained by Kai Nordlund, uses the Brenner potential
[63] with the Nordlund long range interaction term [64] to simulate a graphite crystal.
The simulations consist of a single H isotope diffusing in a graphite crystal consisting of
960 atoms. A Berendsen’s thermostat [69] was used to maintain the temperature of the
crystallites. Simulations were carried out at 150 K, 300 K, 450 K, 600 K, 750 K and 900
K. Periodic boundary conditions are applied along X, Y and Z in all the simulations
described below. X-Y is the plane of the graphene layer, and Z is perpendicular to
the graphene layers. The simulations were carried out for 100 picoseconds with a time

step of less than a femtosecond.

2.2.1 Setting up the simulation

The graphite crystal samples are prepared by starting with 960 carbon atoms at the
graphite crystal locations. The crystal consisted of 10 unit cells along the X direction,
12 unit cells along the Y direction and 2 unit cells in the Z direction. This results in
4 graphene layers as shown in Fig 2.2. In the figure, all carbon atoms belonging to
a graphene layer are assigned the same color with each graphene layer being assigned
a different color. The interstitial hydrogen isotope is created by randomly picking a
position between the two graphene layers in the center of the graphite crystal and
making sure that it is more than 1.5 A from any of the carbon atoms constituting
the graphite lattice. It is given zero initial velocity. The interstitial trajectory is also

visible in Fig.2.2 as a yellow wriggling line. The atoms are then allowed to equilibrate
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Figure 2.2: A typical graphite crystal chosen for doing the MD simulation

using Berendsen’s pressure control along X and Y until they reach a lowest potential

energy state and the pressure oscillates around zero.

2.2.2 Results and analysis
Observations

We observe that the interstitial does not show any cross graphene layer diffusion at
any of the graphite temperatures simulated. The position of the interstitial is output
at every time step of the MD code and the trajectory is analyzed to verify the diffusive
nature of the hydrogen isotope transport. Fig.2.3 shows hydrogen interstitial trajec-
tories (in yellow) at different temperatures of the graphite crystal. The view is along
the Z axis and all atoms having the same color are carbon atoms belonging to the
same graphene layer. One can easily identify the hexagonal structures typical of the
graphene layer. Diffusion with a short step-size is seen at all target temperatures, with
a long step-size diffusion making its appearance at higher temperatures (> 450K). The
H isotope equilibrates with the graphite crystal in a couple of picoseconds. It moves
around in the potential well of the vibrating carbon atoms and makes a jump from one
potential well to another depending on the migration energy barrier and the graphite
temperature. It is seen that typically 100 such jump events occur during the course of
a 100 picosecond simulation at 150K and more than 400 jumps occur at 900K . This
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Figure 2.3: Interstitial trajectory at (a) 150 K, (b) 300 K, (c) 450 K, (d) 600 K, (e) 750 K and (f)
900 K. from MD
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is sufficient to provide equilibration and statistics to analyze the interstitial diffusion

in the graphite crystal.

Analysis

Specifically what is needed for scaling up is to characterize the diffusion in terms of

the jump attempt frequency w,, the migration energy FE,,, and the jump distance L;.

—Em
W o= w, ek’ (2.9)

where, w is the jump frequency (the frequency with which the interstitial jumps a
distance L, in a specified direction), and kp is the Boltzmann’s constant. Such a char-
acterization assumes that the diffusion is Arrhenius like. With such a characterization
one can use Kinetic Monte Carlo (KMC) [71] to simulate diffusion of many atoms over
much larger length scales with the same computing resources. A brief introduction to
KMC and how we scale up to the next level is described in the next chapter of this

thesis.

It is essential to keep in mind that the MD time step is short enough so that the
interstitial experiences only a fractional change in potential energy for numerical sta-
bility when solving for the force equation. Therefore one can expect the direction of
the interstitial to be randomized only after several MD time steps, or equivalently after
only a certain length dr. For a random walk with equal probability of jumping in any
direction the expectation value of the mean square displacement is N x dr?, where N
is the number of jumps. In the simulation, the simulation time is fixed at 100 picosec-
onds. Therefore, as dr is increased, the number of jumps N (defined as the number of

times the interstitial displaces by a distance dr) decreases.

Therefore to determine at what value of dr the trajectory is randomized, we plot
N x dr? as a function of dr for hydrogen, deuterium and tritium (Fig.2.4). The value of
dr for which N x dr? gets saturated is taken as L; and the corresponding value of N is
used to calculate w. This analysis is carried out for interstitial trajectories at different
temperatures and Eqn.2.9 is used to fit the data to obtain w, and FE,,. We see that at
lower temperatures (< 450K) a saturation of N x dr? is seen at dr = 2.5 A. At higher

temperatures, the saturation occurs at larger values of dr. Note that the saturation
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Figure 2.4: Variation of N dr? with dr for (i) hydrogen, (ii) deuterium and (iii) tritium

threshold is lower for the 750 K case as compared to the 600 K case. The 900 K case
does not saturate at all. This indicates that there are probably two different length
scales for the jumps.

The various possible jump paths of an interstitial hydrogen in a graphite crystal is



Molecular Dynamics simulations of hydrogen isotope diffusion in
30 crystalline graphite

illustrated in Fig.2.5. The squares and circles represent carbon atoms lying on separate
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Figure 2.5: Various possibilities for interstitial jumps in a graphite crystal

graphene layers which sandwich the interstitial hydrogen atom. The hydrogen atom
occupies the large gap between the graphene layers and cannot squeeze through the
graphene layer. The lowest energy state for the inter-crystallite seems to lie below
the center of the hexagons that constitute the graphene layer. The easiest pathway for
diffusion is from below the center of one hexagon to above the center of the neighboring
hexagon lying on the opposite graphene layer (denoted by HB in Fig.2.5). Another

possibility is the jump from below the center of one hexagon to the center of the
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neighboring hexagon on the graphene layer (denoted by HA in Fig. 2.5). Note that
one HA jump is achieved with to two consecutive HB jumps. Other possibilities for
diffusion pathways which have longer step lengths are HAB and combinations of the
HB-+HAB types. From our simulations we find that HB and HA jumps are the
main diffusion pathways at low temperatures (Fig. 2.3) below 450 K and that jumps of
the type HAB and HB+HAB start contributing to the diffusion coefficient at tem-
peratures above 450 K (Fig.2.3). These however do not explain the long jumps of 10 A.

Parameter fitting

From the analysis above we have obtained the jump frequency, w, and typical values
of jump sizes, L. We note the existence of two different jump lengths, one around 2.5
~ 3.5 A and the other around 10 A. We also note that hydrogen has enhanced diffu-
sion at 600K (Fig.2.4-(i)) and deuterium and tritium have enhanced diffusion at 750 K
(Figs.2.4-(ii) and 2.4-(iii)). These observations have to be made consistent with our
need to scale up based on Eqn.2.9. It is seen that a simple Arrhenius fit does not match
our MD simulations at different temperatures. Note also the existence of two different
slopes in Fig.2.6. Two slopes may not be immediately obvious from the data, but
when one takes into account that the data at 600K has enhanced diffusion for hydro-
gen and the data at 750K has enhanced diffusion for deuterium and tritium, the effect

becomes clear. We therefore conclude that there exists two different migration energies.

Therefore for the numerical fitting we assume a sum of two diffusive processes, with
different jump attempt frequencies w,, different migration energies F,, and different
jump sizes L. Therefore four parameters, w! ", E! and E"  have to be fit with 6 data
points of jumps per second of w observed from our simulations at 150K, 300K, 450K,
600K, 750K and 900K. Fig. 2.6 shows the fits with the values for the fit parameters
given in Table.2.2.

Note that w! varies as a function of \/m, where m is the mass of the interstitial.

w" is independent of the mass and becomes significant only at temperatures greater

than 450K. When movies of the simulation are made we also observe that phonon
vibrations of the graphene layers show a large amplitude at temperatures greater than

450K (Fig.2.7). This allows the interstitials to sneak through the larger openings
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Figure 2.6: Sum of two Arrhenius like curves fit to the number of hydrogen isotope interstitial jumps
per second as observed from HCParcas simulations

between the graphene layers and at times also surf on the phonon, thereby allowing
long jumps L". We therefore speculate that this branch of diffusion (w”, E, L") is
due to phonon vibrations in graphite wherein the randomly moving particle can pass
through potential well gaps created by the large amplitude phonon vibrations. The
enhanced diffusion of hydrogen at 600K and of deuterium and tritium at 750K could
be due to synergistic interactions of the interstitials with phonons. However, this is

speculation and further analysis is required.

2.3 Summary

We have studied the diffusion of hydrogen isotopes in crystalline graphite. We see that
there exist two channels for diffusion and represented these as trapping-detrapping

processes with characteristic jump attempt frequencies, migration energies and jump
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Table 2.2: Fitting parameters to parametraze hydrogen isotope diffusion

Isotope | E!, w! Eh wh
(eV) | (10"2s7Y) | (eV) | (10%3s71)

hydrogen | 0.0147 | 6.8 0.269 | 2.7

deuterium | 0.0147 | 4.7 0.269 | 2.7

tritium | 0.0147 | 2.8 0.269 | 2.7

lengths. We see that the isotopes do not diffuse across the graphene layers and that

the diffusion is isotropic in the plane of the graphene layer.

Other interesting studies beyond the scope of this thesis are:

Saturated hydrogen isotope diffusion in crystal graphite,

Trace and saturated hydrogen isotope diffusion in damaged crystal graphite,

e The above two kinds of diffusion in crystal graphite with open boundary condi-

tions,

In reality the edges of the crystallites may contain open bonds or SP2-SP3 mix-
tures of bonds. This can be investigated and hydrogen isotope transport and

trapping probabilities at the edges of such crystallites can be studied.

These studies require major modeling effort and will bog us down at length scales of
nanometers and time scales of a few hundred picoseconds. The main aim of this study
is to develop a general multi-scale code by identifying parameters at lower scales that
can be used to model the problem at higher scales. This will be demonstrated in the
next chapter for hydrogen isotope diffusion in crystalline graphite, and is a continuous

process that gets repeated for different parameters at the different scales.
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Figure 2.7: Figure showing typical phonon vibrations at (a) 450 K and at (b) 900 K



Chapter 3

Kinetic Monte-Carlo simulation:

Parametrization of MD

There exist various methods to overcome the limitations of MD (see [72] for a review
of these methods). Molecular dynamics gives a microscopic insight into the physical
process of diffusion of a hydrogen isotope in crystalline graphite as we have seen in
the previous chapter. The hydrogen isotope vibrates in a potential well formed by the
vibrating carbon atoms and wanders in the XY plane which is the plane parallel to the
graphene layers (Fig.2.3). During the vibrations it exchanges energy with the vibrating
carbon atoms around it. At some point in the simulation, due to interaction with its
neighboring atoms, it gains enough energy to exit the potential well it is trapped in and
enters a new potential well at a new location within the graphite crystal. Most of the
simulation time is spent in these vibrations in a potential well. Note that the hydrogen
isotope also loses information about its entry pathway into the potential well within a
few vibrations. Its exit route from the potential well is independent of its entry path.
This implies that each consecutive jump is independent of its past history. Therefore if
we can reformulate the above diffusion phenomena as probabilities for jumping out of
the potential traps, with probable lengths and directions for the jumps, we can scale up
a lot in the time and in the number of particles simulated using Kinetic Monte—Carlo
(KMC) [71].

In the next section the ideas behind KMC are presented along with the algorithm
we use [73]. KMC uses the insights gained from MD and does not have the limi-

tations on the number of particles or on the time that can be simulated as in MD.
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The parametrization of the MD results within the KMC model is described and the
results are compared. Finally a simple model for the diffusion of hydrogen isotope in

crystalline graphite is presented which matches the KMC and the MD results.

3.1 Brief introduction to Kinetic Monte—Carlo simu-

lations

Dynamics of a N body problem can be simulated by transiting through the various
successive states of the system, denoted by o. ¢ is characterized by the positions and
velocities of the individual particles that constitute the system. This transition can be
represented by the equation (widely known as the Master equation)

9P(a,1) = Z W(o' — o) P(o',t) — Z W(o — o') P(o,t) (3.1)

ot

O./

where ¢ and ¢’ are successive states of the system, P(o,t) is the probability that the
system is in state ¢ at time t, and W (¢’ — o) is the probability per unit time that
the system will undergo a transition from state ¢’ to state o. Usually, Monte—Carlo
methods are employed to explore the various states of such a system in order to find
the most probable minimum energy state at equilibrium. This can be done by setting
the LHS of Eqn.3.1 to zero and exploring various states of the system without really
bothering about the dynamical transition from one state to another. However, in order
to give a dynamical interpretation for the transitions, criteria for the transition prob-

abilities are necessary.

3.1.1 Ciriteria for dynamic Monte—Carlo simulation

Fichthorn and Weinberg [71] established that Monte—Carlo simulations can be used to
simulate the dynamics of a Poisson like process if

e Transition probabilities are created such that a dynamical hierarchy of transition

rates to correctly model the microscopic barrier crossings (events) is established;

e Detailed balance is satisfied at equilibrium, which means that all the equally
probable eigen states of a system at equilibrium can be accessed with the same

probability;
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e The various events are independent, and

e Time increments are calculated appropriately as defined by [71].

~ In(U)
DS

where, n; is the number of atoms capable of undergoing a transition labeled i, U is a

At = (3.2)

uniform random number between zero and one, and r; the transition rate.

The above criteria becomes clear when applied to our problem. Suppose we have
N hydrogen interstitials distributed inside various crystallites of a graphite sample.
We know from our MD simulations that these can diffuse in the crystallites with two
different kinds of jumps described by their jump frequencies, migration energies and
jump distances (wh? ELR Lh). Therefore there are 2NV transitions possible and the
transition rates have to occur such that the microscopic barrier crossings are correctly
implemented consistent with the probabilities of various jump events. This is done
using the BKL algorithm |73] described in the next paragraph. Detailed balance would
mean that if we initially assign a Gaussian distribution for the atoms, at equilibrium the
interstitials will be uniformly distributed if periodic boundary conditions are specified.
We have seen from our MD simulations that a particle jumping out of a potential
well has lost all knowledge of where it entered the potential well. This implies that the
jumps are independent. Finally the time step after each transition must be incremented
as per Eqn.3.2. In this case there are two transitions possible for each of the N atoms,
either a low frequency jump or a high frequency jump with the transition rates given
by Eqn.2.9. Therefore At in this case will be )

2N (wh4wh) -

3.1.2 The Bortz—Kalos—Lebowitz algorithm

This subsection is based on Kai Nordlund’s notes on the BKL Algorithm, and explained

briefly using the above example of N interstitials in crystalline graphite.

(i) Initialize the system at time ¢ = 0. i.e set up distributions of the

interstitials at ¢t = 0.

(ii) Loop depending on time to be simulated or number of KMC steps to

be simulated.

(iii) Form a list of all rates r; in the system. i.e calculate r;, and 7.
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(iv) Calculate the cumulative function
R=> Ri=} n;
@ J
j is the number of different jumps possible (= 2 in our example) and
is the total number of possible transitions of the system (= 2N in our
example)
(v) Get a uniform random number U € [0, 1].
(vi) Find the event to carry out, i by finding the i for which
R, < UR < R;
(vii) Carry out event i.
(viii) Get a new uniform random number U € [0, 1]
(ix) Update the time with
t =1t + At
where (1)
n
At = —
R
and update the KMC step count.
(x) Check for end of loop and either go to step (ii) or end.
3.2 Hydrogen isotope diffusion in crystalline graphite

A KMC code (DiG for Diffusion in Graphite) was developed to study the diffusion of

interstitials in graphite. It is written in a modular fashion to make addition of new

species, new interactions, etc., easy. The values of w!, E! | L', w", E" and L" obtained

from the MD simulations were used to study the diffusion of hydrogen isotopes in pure,

crystalline graphite.
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3.2.1 Inputs and setting up the simulation

A graphite crystal of size 500 x 500 x 500 A3 was used with periodic boundary con-
ditions. 1000 atoms of the interstitial species were uniformly distributed within this
volume. The simulation was carried out for 100000 KMC steps which implies that
each particle has on average undergone 100 jumps. The diffusion coefficient in these
cases is again calculated using Eqn.2.8 averaged over the mean square displacements
of the 1000 particles. The simulation is repeated 100 times to see the variance of the

calculated result which was always less than 0.01.

The inputs to the code are obtained from fits to our MD simulations (Table.2.2).
Two types of simulation were carried out, one with a constant jump size L' and L",
and the other with a varying jump size to model the enhanced diffusion seen at 600
K (1/T = 0.0017 K~!) in the case of hydrogen (Fig.2.4-(i)) and 750 K (1/T = 0.0013
K™') in the case of deuterium and tritium (Fig.2.4-(ii), Fig.2.4-(iii)). The directions
of the jumps were chosen assuming equal probability in the 2D plane parallel to the

graphene layers.

3.2.2 Results

In Fig. 3.1 we compare the values for the diffusion coefficient obtained from our KMC
simulations (using DiG) with the values obtained from the MD simulations (using
HCParcas) for hydrogen diffusion in pure crystalline graphite. For the constant jump
size simulations we find that 3.8 A for L' and 10 A for L" gives the best results. In
the varying jump size simulations, the jump sizes were also adjusted at other graphite
temperatures to match the MD results better in accordance with the MD analysis in

Chapter.2. This gives us a good parameter set in (w)" Ebh L") when we scale up.

Fig.3.2 plots the diffusion coefficients of hydrogen (Dpy), deuterium (Dp) and tri-
tium (Dr) as obtained from the KMC simulations as a function of inverse temperature
(1/T). These simulations belong to the varying jump size category and therefore the
enhanced diffusion at 600 K for hydrogen and 750 K for deuterium and tritium shows
up in the figure.
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Figure 3.1: Diffusion coefficient of hydrogen interstitial in pure crystalline graphite: Comparison of
KMC with MD

3.3 Simple model for H isotope diffusion in crystalline

graphite

From the above results it is clear that our parametrization of the MD is quiet good and
our assumption of isotropic jumps in the 2D graphene plane also holds. Therefore we
have a 2D random walk with known probabilities for two different kinds of jumps. We
can also assign a probable time for each jump. We are therefore encouraged to create

the following analytical model based on the above assumptions and parameters.

A particle gets trapped with two possible trap energies EY, and E%,. The particle
attempts to jump out of the traps with frequencies w! and w”. Assuming that the
jumps are a Poisson like process, the two types of jumps occur with a typical frequency
of

N

7Em
wht = Wb e®p T (3.3)

The probability of a jump of type (!,") occurring is given by

b

Pl,h Ll,h —
By = 2

(3.4)
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Figure 3.2: Comparison of diffusion coefficients of hydrogen isotopes in pure crystalline graphite,
obtained from the KMC simulations

where L'" is the length of a jump for a !,” type of jump. Assuming a simple random
walk in 2D (in-between the graphene planes), the mean square displacement after N
steps is

< (R(t) = R(0))> > = N [P' (L")* + P" (L")?] (3.5)

The time increment for each jump event is given by [71]

In(U)
At = — MY .
t wh 4 wh (36)

where U is a uniform random number between 0 and 1.

Using Eqns.3.5 and 3.6 and Einstein’s relation (Eqn.2.8), we get the diffusion coef-

ficient of hydrogen isotope in crystalline graphite as

D = (3.7)

>0 (= n(Uy)
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3.4 Discussion of results

Ih

A simple program was written to implement Eqn.3.7. The input parameters for w;

and E4" were the same as those used in the KMC simulations. A value of 10 A was

used for L", and a value of 3.8 A was used for L! except for
e 600 K for hydrogen where L' = 4.8 A,
e 600 K and 750 K for deuterium where L! = 5.0 A,
e 600 K where ! = 4.5 A and 750 K where L! = 5.0 A for tritium.

The diffusion coefficients obtained from HCParcas, DiG and the simple model are
shown in Fig.3.3 for hydrogen, deuterium and tritium. It is seen that the simple model
reproduces the results for hydrogen isotope diffusion qualitatively and quantitatively
(up to a factor of 2) in the temperature range studied, demonstrating that the key

elements for this process is understood.

3.5 Characterization of the jump trajectories

In the analysis of the MD trajectories in the previous chapter we see that the product
N x dr? does not saturate for the 900 K case for hydrogen interstitial (Fig.2.4-(i)), for
the 750 K and 900 K cases for deuterium interstitial (Fig.2.4-(ii)), and for temperatures
above 450K for the tritium interstitial (Fig.2.4-(iii)) diffusion. This means that the

trajectory represented as a random walk is not exactly diffusive.

In a paper titled, "Beyond Brownian motion" |74], J. Klafter et. al. talk about
random walk processes that are sub—diffusive (wherein the trajectory results in a mean
squared displacement that shows slower-than-linear growth with time), and super—
diffusive (wherein the trajectory shows faster—than—linear growth of the mean squared
displacement with time). They give the example of a 2-D random walk where step
lengths of size 1, b, b%, .... and so on are allowed with the longer jumps having an
order of magnitude (in \) less probability of occurring, with b > A > 1. Such random
walks are called Lévy flights and can show super—diffusive behavior with infinite vari-
ance (read mean square displacement) and their trajectories show self similar patterns
characteristic of fractals (for example, figure 1 of [74]) and such phenomena have been

noticed in simulations of adsorbed gold nanoclusters on the basal plane of graphite [75]
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(iii) Tritium diffusion in crystalline graphite.

3.5e-07
3e-07 [
2.5e-07
2e-07 [
1.5e-07

D (m%s)

1e-07
5e-08 [

HCParcas (MD) --8--
DiG (KMC) --e-

Simple model —&—

0
0.001 0.002 0.003 0.004 0.005 0.006 0.007

UT (K

Figure 3.3: Comparison of hydrogen isotope diffusion in crystalline graphite using MD, KMC and a

Simple model

and in a wide range of physics issues ([74] and references therein). In physical systems

there do not exist infinite number of length scales for jumps and a class of stochastic

processes called truncated Lévy flights (TLF) are defined, wherein the arbitrary large

steps of a Lévy flight are eliminated [76].
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In our random walk problem above we see two different scale lengths for the jumps
L' and L", occurring with probabilities P"" given by Eqn.3.4 and plotted in Fig.3.4.

However in our MD simulations there exist three length scales for the interstitial tra-
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Figure 3.4: The jump probabilities corresponding to a short jump P' and a long jump P" for
hydrogen isotopes in crystalline graphite

jectory:

e The smallest length scale being the amplitude of the random vibrations in a

potential well which is ~ A.
e The next higher length scale being the short jumps defined by L'.

e The largest length scales are the long jumps > L" observed at temperatures
greater than 450K.

The equivalent KMC simulation, and our simple model, do not have the smallest
length scales. We also see super—diffusion like characteristics (Fig.2.4-(i), Fig.2.4-(ii)
and Fig.2.4-(iii)) at some higher temperatures where it is possible to have a few large
scale jumps within the simulation time. From the above considerations and from Fig.3.4

it is possible that the hydrogen isotope trajectories have Lévy flight characteristics.
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A program implementing the box counting method [77] is used to calculate the
dimension of the diffusing isotope trajectory as obtained from (i) MD simulation, and
(ii) from the simple model. A plot of the factorial dimension is shown as a function
of the graphite crystal temperature in Fig.3.5 for the MD runs and the simple model.
p is the ratio of L! to L" used in the the simple model. Note that the value of the

dimension lies between 1.3-1.6 in all cases.
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Figure 3.5: The box-counting-dimension of hydrogen isotope trajectories in crystalline graphite

3.6 Summary and outlook

We have modeled the MD results for hydrogen isotope diffusion in crystalline graphite
using KMC and as a simple 2-D random walk using the information (w)?, ELR, L1h)
obtained from MD. This is already a scaling up since our KMC model treats the diffu-
sion of thousands of particles (within the trace particle diffusion approximation) over
any realistic size of crystalline graphite containing millions of carbon atoms. We show
that the isotope trajectories in crystalline graphite have a fractional dimension lying
between 1.3 and 1.6.

The model developed in this chapter is scalable to macroscopic system sizes. How-

ever, in reality graphite micro—crystals have a typical size of 50 — 100 A in PFMs.
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Additional physics mechanisms like trapping/detrapping at traps, recombination, dis-
sociation, etc of the hydrogen isotopes must be added. In order to scale up, we must
now include the realistic structure of porous graphite. In the next chapter we describe
an algorithm to generate a porous graphite structure with granules, voids, crystallites
and microvoids and extend the model to simulate trans—granular —diffusion of hydrogen
isotopes.



Chapter 4

Trans—Granular—Diffusion: Scaling up

to microns

In this section we first describe how we scale up to study hydrogen isotope diffusion
across a granule of graphite which is a few microns in size. As described in the in-
troduction of the thesis, graphite consists of micron sized granules separated by voids
which are a fraction of a micron. A granule consists of graphite crystallites which are
a few nanometers in size oriented randomly, separated by microvoids which are a frac-
tion of a nanometer in size. Therefore, except for the orientation of the crystallites, the
general structure is the same at different scales. In this chapter an algorithm for setting
up a general, porous geometry in 3D is described. A model for hydrogen transport in
a granule is proposed and the KMC code DiG is extended to model trans—granular—
diffusion (TGD). The results for hydrogen isotope diffusion in a typical granule of
graphite are presented and compared with the results from experiments [35]. Finally,
a simple model is presented which incorporates the essential physics and reproduces

the results.

4.1 General algorithm for producing a 3D porous struc-

ture

An algorithm to generate a 3-D rectilinear parallelepiped with a specified void frac-
tion and sub-structures having random shapes separated by gaps (voids/microvoids)

is presented. It also allows for random orientation of the sub—structures (to model
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crystallites). The average size of the sub—structures and their smoothness can also be

varied.

4.1.1 Underlying philosophy

The idea behind the algorithm is the one presented by Graziani [49] for creating mix-
tures of alloys. For a given volume, a Poisson distribution is used to specify a sub—
structure element that has a random shape and a mean width denoted by element-size.
Elements are created by populating basic blocks called cells. The smoothness of the
element depends on the cell-size. If the sub—structures are crystallites, random orien-
tations are also specified. After each such populating event the remaining void fraction

is checked. The process is repeated if the void fraction is greater than required.

4.1.2 Algorithm used
The algorithm used is described below:

(i) Reading in inputs. The Void fraction (VoidFrac), length of the system along
X,Y,Z, (Lx,Ly,Lz), mean dimensions of the sub-structure (ELx, ELy, ELz), basic
cell size (CellSizex, CellSizey, CellSizez) and the smoothness of the sub-structure
(SmoothY, SmoothZ), Typical crystallite orientations (Euler angles [78] (Theta,
Phi, Psi)) and variation within this typical orientation (dTheta, dPhi, dPsi) are

input.

(ii) Initializing various parameters in the simulation. The number of cells
along X (nx), Y (ny) and Z (nz), the total number of cells (TotalCells), the num-
ber of cells occupied (NumOccupied=0), and the Occupied fraction (OccFrac=0)
and flag indicating whether a cell is occupied or not (OccFlag=1 or 0) are ini-

tialized. Memory allocation is carried out.

(iii) Picking up a random point within the system to populate. Uniformly
distributed random numbers are used to pick up a random point (Px, Py, Pz)

within the rectilinear parallelepiped.

(iv) Constructing the sub-structures. A Poisson random number distribution
with a mean corresponding to the sub-structure dimensions along with a selection
process to maintain the required smoothness is employed around the point P (Px,
Py, Pz). The algorithm for doing this is:
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e Scanning substructure along X (i). Generate a random number follow-
ing the Poisson probability distribution with a mean corresponding to the

sub-structure size along X (iel).

e Scanning substructure along Y (j) while traversing cells along X.
Loop over Px-0.5%iel to Px+0.5%iel generate a random number following
the Poisson probability distribution with a mean corresponding to the sub-
structure size along Y (jel), at each increment along X. If the value of jel
is within the smoothness percentage specified (SmoothY) accept it, else

regenerate jel.

e Scanning substructure along Z (k) while traversing cells along Y.
Loop over Py-0.5*jel to Py+0.5%jel generate a random number following
the Poisson probability distribution with a mean corresponding to the sub-
structure size along Z (kel), at each increment along Y. If the value of
kel is within the smoothness percentage specified (SmoothZ) accept it, else

regenerate kel.

e Constructing the substructure. At each cell defined by (i,j,k) check oc-
cupancy. If not it is not occupied, occupy it (OccFlag = 1) and also provide
an orientation (if input flag so dictates) and keep track of the number of cells
occupied (increment NumOccupied). the deviation from the orientation is

specified again by a Poisson distribution.

(v) Checking for the void fraction and stopping the program. Check if the
fraction of voids is greater than the specified void fraction. If yes, pick a random
point within the system, check that it is unoccupied and build a substructure as

in point (iv) above. If not store the structure in arrays or in a file and exit.

Fig.4.1 shows a porous graphite structure of a micron sized cube created with the
above algorithm using an mean element-size of 10~7 meters and a mean cell-size of

10~® meters.

4.2 The trans—granular—diffusion model

We have seen in the previous chapter that the diffusion of hydrogen isotopes in crys-
talline graphite can be represented by the parameter set (W', EL" LY") within a KMC

scheme. In our TGD model (Fig.4.2), we use these parameters to model transport in
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Figure 4.1: Porous Graphite structure created using the algorithm described in Section.4.1.2

the crystallites. The transport in the microvoids is modeled by specifying a trapping
probability for the interstitial as it passes from the crystallite region to the microvoid
region. These atoms get detrapped within the KMC scheme with a detrap attempt
frequency ~ 1 x 10'® s~! which is a typical phonon frequency, and a detrapping energy
(between 2.6 and 4.3 eV) taken from literature [35]. The detrapped atoms initially take
a random 3D step. If this step takes it into a microvoid, it continues its flight until it
comes in contact with a crystallite where it again has a probability of getting trapped.
If the step takes it into a crystallite it then diffuses into the graphene plane of the
crystallite. We look only at the regime where the graphite granule is unsaturated and

the diffusion is limited by the trapping and detrapping at microvoids.
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Figure 4.2: Trans—Granular-Diffusion model schematic

4.3 Code adaptations

The main addition was inclusion of the porous trans-granule geometry using the al-
gorithm described in section 4.1.2. The above model includes a new rate (detrapping
at crystal-microvoid interface) which has to be incorporated in the KMC algorithm.
Functions to transform to and from the simulation axes to crystallite orientations us-
ing Euler transformations [78| are added so as to carry out diffusion parallel to the

graphene layers.

From the programming aspect particle positions are kept track of with respect to
the porous structure and appropriate transport models implemented depending on the
region (crystal or microvoid) the particle lie in. Transitions between regions are noted

and trapping probabilities are implemented at the interfaces.
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4.4 TGD simulations

4.4.1 Inputs and setting up the simulation

Simulations were done at 750K, 1000k, 1250K, 1500K and 1750K. The porous struc-
ture was generated for a cube of size 5 x 10~%m, with an element—size corresponding to
typical crystallite sizes in graphite of 5 x 10~?m and a minimum cell-size of 5 x 1071%m,
with two different void fractions 10% and 20%. The crystallite orientations were fixed
by the Euler angles ® = 30°, © = 45° and ¥ = 20°. A smoothness percentage of 5%
is specified for the structure. The orientations were allowed to vary by a mean value
of 2°. Note that these parameter choices allow for resolution of details of the granule
micro-structure like micro-voids and crystallites and results in a sample of the granule
consisting of 1000 crystallites. Periodic boundary conditions are applied in all three

directions, thereby effectively simulating an infinite solid.

For interstitial transport in crystallites, the parameter set obtained from the MD
simulations (w!", ELR LR) for hydrogen and deuterium is used. Trapping probabilities
at the crystallite—microvoid interfaces is taken to be 1. The trapping energies Fj
were taken from literature [35] to lie between 2.6eV to 4.3V and the detrap attempt

frequency was taken as w! = 1 x 101 s7!

, which corresponds to a typical phonon
frequency in graphite [39]. The simulation was carried out for 100 particles uniformly
distributed in the sample, for 100000 BKL steps and repeated for 100 trials. Simulations
with a larger number of BKL steps (10°) were carried out for a few cases to check if

there is any change in the results for the diffusion coefficient.

4.4.2 Results at the mesoscopic length range

We observe that the diffusion in the crystallite is fast compared to the diffusion in the
granule as a whole. This is mainly because of the low values of E" and E! for crystallite
diffusion compared to the detrapping energies (~ 2.6 — 4.3 eV) of the interstitials
trapped at the crystallite—microvoid interfaces. This, coupled with the fact that the
interstitials get trapped every time they cross over the crystallite-microvoid interface,
make the simulations fall in the trapping/detrapping limited regime of diffusion. In
this limit the diffusion coefficients of the different hydrogen isotopes are similar. This is
because the detrapping energy and the phonon frequencies of graphite are unchanged.

The diffusion coefficients we obtained lie in the experimental range (Fig. 13 of [35])
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Figure 4.3: Comparison of TGD coefficients from the the KMC simulations with experimental values
for the diffusion coefficient

We also see that by increasing the void fraction the diffusion coefficient decreases.
This is because we kept the element size constant when creating the porous granule
structure. Therefore we have similar sized crystallites and microvoids, but the parti-
cle covers shorter distances before it gets trapped in the granules with a higher void
fraction. This is easily understood from Fig.4.4. where A illustrates an object with
~ 10% voids and B and C illustrates an object with ~ 20% voids. In case B a par-
ticle would travel shorter distances before getting trapped at the microvoid—crystallite
interfaces as compared to case A. In Case C the particle would travel larger distances
before getting trapped at a microvoid—crystallite interface. If the travel time is negli-
gible compared to the time spent in the trap, it is seen that the diffusion coefficient
of A and of C is higher than that of B. Therefore the inner porous structure of the
graphite is important and not just the void—fraction. A main cause for the scatter in

the diffusion coeflicient data could be due to the differences in graphite porosity and
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Figure 4.4: Illustration to explain the dependence of diffusion coefficient on the void—fraction

void sizes. This statement becomes more apparent in the following paragraphs where

a interpretive mode of running the simulation is explained.

Diffusion coefficients are usually published [79, 35] in the form

—Em

D = D,ews T (4.1)

with units of length?/second, D is the diffusion coefficient and D, is called the the
pre-factor of the diffusion coefficient. Within the trapping-detrapping limited diffusion

regime, this can be interpreted as

_E7YL

D = w,[*eFs T, (4.2)

The physical meaning of D, is obvious from Eqn.4.1 and Eqn.4.2. It is the product of
the number of jump attempts to detrap, w,, and the square of the length jumped, L2,
after a detrapping event. Since our KMC code (and the simple model described later
in the chapter) uses the two parameters w, and L? as inputs, these can be run in an
interpretive mode (which means doing a parameter scan in L) to see at what values
of L does the simulation match the experimental results. The assumption here is that
w, is similar in the various experiments and corresponds to the vibration frequency of

phonons in the graphite crystallites and is of the order ~ 103sec™! [39].

We use the KMC code DiG in an interpretive mode to match the two experimental
results that lie farthest from our simulations results, namely the experimental results

of Causey and the saturated hydrogen diffusion experiments of Tanabe, et. al. [35].
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We note that by artificially increasing the step size corresponding to transport in voids
(as opposed to transport in the microvoids), we can match the various experimental
results for bulk diffusion in graphite (for example L = 1.0e — Tm,w, = 1.0e13s~! was
used for DiG-Causey in Fig. 4.3). This is despite the fact that we are modeling only
the mesoscopic length scales. A possible explanation is that at both macroscopic and
mesoscopic length scales, the trapping and detrapping mechanisms are the same and
the detrapping energies determine the time scale of transport. This, coupled with the
jump length at each detrap event determines the diffusion coefficient. Therefore by
introducing isotropic diffusion within the granules, and jump sizes corresponding to

voids, a first macroscopic model for diffusion can be set up.

It is also observed that there is a large difference in diffusion coefficients for the
hydrogen saturated graphite experiments of Tanabe, where the pre-factor D, = 2.1 x
107 2em?2s™! suggests that the jump attempt frequency for detrapping must be of the
order of 10°s™! assuming a low jump step size of 1 A. We match these results (DiG-
Tanabe in Fig. 4.3) using w7 = 1 x 10°s~' and a step size 1 A. The reported
migration energy (0.45 eV) is also much lower than expected for covalent bonds and
seems to be closer to the values seen in hydrogen bonds. Such low values of w, are
observed in activated quantum tunneling studies of hydrogen on metal surfaces at very
low temperatures (< 100K) [80].

4.5 Simple model for trans-granular-diffusion

To understand better the physics we again develop a simplified model based on the

above results of the simulations with the following elements:

(i) the crystallite diffusion times and void transition times are negligible compared

to the time spent in being trapped at microvoid—crystallite interfaces,

(ii) isotropic 3d diffusion, since as the particle traverses the granule it encounters
crystallites having a random orientation and also the microvoid diffusion paths

or the grain diffusion in-between the crystallites allows 3d random motion.

Using these assumptions we get the TGD coefficient to be

(4.3)

6

DTGD _ E onid(Lvoid)Q + Pcryst(Lcryst)Q wdetrap
S (=in(U)) ’
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where N is the number of steps in the random walk, and L% and L¥** are the step
sizes of the random walk in a void and in the crystallite respectively. P" and P<¥s!

are the probabilities of the detrapped particle getting into a void or into a crystallite.
7Edet7‘ap

wietrar is the detrapping frequency given by wi®Pe™ #5T | where wir® is the detrap

attempt frequency, F%% is the detrapping energy and T is the target temperature.

With this simple model we are able to reproduce the above results from our TGD
modeling (Fig.4.5) [81], which matches the experimental results [35]. For comparison
with the simulation of experiments (DiG_Tanabe and DiG_Causey), values of
Edtrar from the experiments were used. The graphite structure properties used in the
KMC simulations were used in the simple model. Therefore the simple model can be
used to vary the graphite structure properties like void sizes and crystallite (or granule)
sizes to match experimental results on diffusion coefficient in order to get a quick idea

of these structural properties.

18—08 T T T T : T T T T
N Simple Model (SM) ——
le-10 0 DIiG —®— 1
T‘A 1e-12 + SM-Tanabe ----- -
S DiG-Tanabe --®--
o le-14 t -
S BRREEEE
L
A 1le-16 SM-Causey -~~~ .
DiG—-Causey -4 --
le-18 > y
le_zo 1 1 1 1 1 1 1 1
05 06 07 08 09 1 11 12 13 14
1000/ T (K )

Figure 4.5: Comparison of Drgp from the simple model with simulation results (DiG)
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4.6 Summary and outlook

The model has been extended from nanoscales to meso—scales. A wide range of experi-
mental results for hydrogen diffusion in porous graphite has been matched by including
detailed structural effects in our model. A simple model has been developed which
takes into consideration the structural effects to describe hydrogen diffusion in porous
graphite. The simple model matches the simulation results. It is seen that the isotope
mass has almost no effect on the trans—granular—diffusion coefficient. The code has
been extended with the addition of new functions to carry out hydrogen transport in
randomly oriented crystallites, and to carry out atomic interactions interactions like

recombination, dissociation, detrapping, etc in a general way to make adaptation easy.

We must now make use of the insights gained in trans-granular—diffusion to scale
up to the next level where we model hydrogen transport in granules and voids at the
centimeter scales. The effects of the granule micro—structure on hydrogen transport
in granules represented by Drgp will be used to model the transport in granules as

discussed in the next chapter.
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Chapter 5
Scaling up to centimeters

In this section we scale up to macro-scale effects in graphites which have a thickness
of a few centimeters. This is the typical width of graphites used as first wall material
in fusion devices. In the first section a brief review of the relevant processes and
parameters of interest is presented. The next section describes the model. Then the
changes needed to implement the model in DiG is presented. Finally a description of

the simulation and initial results for bulk transport of hydrogen is presented.

5.1 Relevant processes to model PSI in porous graphite

As explained in the introduction to the thesis, graphite used as first wall material is
porous and consists of granules and voids. There exists a large internal surface area
bounding the granules and also within the granules bounding the crystallites. Moreover
there exists trap sites in the graphite bulk with estimated concentrations of the order
1073 —107° per C atom [82, 79]. Graphite surfaces exposed to fusion edge plasmas also
get damaged by the incident energetic ions and neutrals from the plasma resulting in a
high density of trap sites within the range of penetration of the incident ions (|39, 82]
and references therein). Therefore the incident hydrogen ions and neutrals which are
not reflected at the surface are deposited in the graphite. There follows a wide range of
possibilities for their transport and inventory as reviewed in [18, 38, 39, 41] and briefly
described in Chapter.1. The deposited ions neutralize at the graphite target and can

either

(i) get trapped in the region with a high density of traps, or in the bulk and

e become detrapped (solute),
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e undergo chemical reactions to form hydrocarbons or hydrogen molecules,
or
(ii) be solute and

e become trapped,

e recombine to form molecules at the crystallite surfaces (or granule surfaces),

In either case, the solute atoms and molecules diffuse along the voids and micro—
voids with a probability of again being trapped, dissociated, or forming new molecules.
There also exists finite probability of them re—entering the bulk granules or crystal-
lites. Finally, when the hydrogen atom or molecule reaches the surface, it can be either

thermally desorbed or knocked out by the incident ions.

Therefore, the relevant processes to model hydrogen isotope transport at the macro—
scales are:
(i) Incident hydrogen isotope deposition profile,
(ii) Damage profile,
(iii) Trans-Granular-Diffusion,
(iv) Diffusion along voids,
(v) Trapping—detrapping,
(vi) Recombination, dissociation and molecule formation,

(vii) Desorption from graphite surface.

5.2 Model for hydrogen transport at the centimeter

scales

A schematic for bulk diffusion in porous graphite is shown in Fig.5.1. Using the algo-
rithm described in Section.4.1.2, a typical bulk graphite structure consisting of gran-
ules and voids is generated. The orientations of the elements (Theta, Phi and Psi) are

switched off to generate this structure since our trans—granular—simulations (Chapter.4)
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granules

y T4~

Y >3$R

voids

Figure 5.1: The Bulk simulation model schematic

show that the diffusion in granules is isotropic. The incident hydrogen deposition pro-
file, damage profile, etc., can be obtained from TRIM, TRIDYN (83, 84| simulations
which simulate the momentum transfer processes in a isotropic solid. At the end of the
TRIM and TRIDYN simulations, the incident atoms lose their energy and thermalize
with the target. Our simulations start from the point where the TRIM, TRIDYN
simulations end. The thermalized hydrogen atom positions are initialized to have a
uniform distribution along X and Y. Along Z, a Gaussian distribution with a specified
standard deviation, centered at a depth R is used to distribute the hydrogen atoms.
This is a pretty good representation of the H atom deposition profile. The particles are
then classified as belonging either to a void-granule surface or belonging to the bulk

of the granule, depending on their locations within the graphite structure.

The algorithm for hydrogen transport is shown in Fig.5.2. The atoms at the void—
granule interface and within the voids are transported using KMC, which also provides
the time step A t for the simulation. Particles reaching the surface have a probability of
being desorbed. This is also handled within the KMC algorithm. A Monte Carlo diffu-
sion algorithm [85] (briefly described in Section.5.2.1) is implemented for treating the



62 Scaling up to centimeters

trans—granular—diffusion (TGD). The diffusion coefficient for TGD, Drgp, obtained

—Initialise porous geometry
—Initialise particles
—Loop over time

*Segregate particles (voids/granules)
*KMC in voids (get At)
*MCD in granules

—Postprocessing

Figure 5.2: The Bulk simulation model algorithm

from the simulations of TGD at the meso—scales is used as input to the MCD algo-
rithm. This is another example of how results from microscopic studies at the smaller

scales is used to model transport at the larger scales.

As the hydrogen atoms diffuse along the void surfaces, if they come closer than a
specified minimum distance to each other, they recombine to form a hydrogen molecule.
Similarly, if the atoms come closer than a given distance to a trap, they are trapped.
These minimum distances can be calculated from atomistic simulations or experiments.
Dissociation and transport of hydrogen molecules within voids and on void—granule
surfaces are included in the KMC algorithm. Recombination, dissociation, etc., in the
granule bulk can also be easily included within a MCD algorithm. Therefore hydrogen
transport, recombination, dissociation and desorption can all be studied in a porous

3D geometry within the above model.

5.2.1 Brief introduction to Monte—Carlo—Diffusion simulation

Any physical situation that can be viewed as a statistical outcome of some basic sub—
processes, can be simulated using pseudo random numbers and is characterized as
a Monte Carlo (MC) method. MC methods are efficient when a large number of

dimensions or complex geometries are involved. They are especially suitable to solve
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diffusion of a large number of particles in a complex geometry with independent jumps
classified as a standard Wiener process in literature [85]. The TGD (Chapter.4) is a
good example of such a process.

The N body, diffusion equation is given by

aa—:: =V(DVn)+ S (5.1)
where n is the density, D is the diffusion coefficient of the particles, ¢ is the time
variable, S is the sources or sinks in the system during the diffusion, and V stands for
the gradient in 3 dimensions. n is determined by the distribution of the N atoms in the
simulation volume. The diffusion can represented as a random walk of the N particles

with the jump size given by

Ar=+v2D At ¢ (5.2)

where At is the time step and ( is sampled from a random number distribution satis-
fying < ¢ > = 0 and < ¢%2 > = 1. This representation is valid for V—DD >> /2 D At.
Interactions can be easily included in the simulation by increasing or decreasing (de-
pending on whether the interactions are sources or sinks) the number of particles dif-
fusing at each time step by e~ where 7 is the characteristic time for the interaction to
occur. Note that Eqn.5.2 at first glance looks like a rewritten form of Eqn.2.8. In fact
it is derived using the differential calculus of stochastic processes called Ito calculus
[85]. Such a treatment is necessary because the position variable r(t) in Eqn.2.8 is

obtained by a stochastic process (random walk).

To simulate TGD of hydrogen atoms in granules, Eqn.5.2 is used. The time step At
is decided within the KMC scheme and Dr¢gp is obtained from the TGD simulations
described in Chapter.4. A Gaussian pseudo-random number generator is used to set

¢ in our simulations.

5.3 Code adaptations

The main addition to DiG is the Monte-Carlo-Diffusion module. Along with this it
is necessary to segregate the particles depending on whether they are in voids (trans-
ported by the KMC module) or within the granule (transported by the MCD mod-

ule). A surface from which desorption occurs had to be introduced. Functions for
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trapping, detrapping, recombination, desorption, dissociation and for various types of
jump events have been introduced. As was the case with earlier upgrades, care is taken

to facilitate easy addition of new species and interactions.

5.4 Hydrogen transport simulation at macro—scales

5.4.1 Inputs and setting up the simulation

A cubic granular structure of length 5 x 10™°m is created (Fig.5.3). This typically

Graphite

Si mul ati on region

Z>0 —L ¢
A ;s 5
c e e e e e e - o 4 // : _____________
° 2 T |
%- / \L /% Y
° P(0,0,0)
periodic Plasma on this side

Figure 5.3: The Bulk simulation model geometry

accommodates 8000 granules using a element—length of 2.5 x 107%m. The cell-length
chosen is 5 x 10~"“m. These values for element-length and cell-length correspond to
realistic granule and microvoid sizes. Periodic boundary conditions are applied along
the X and Y directions, which are the directions parallel to the graphite surface. Along

the Z direction, which lies perpendicular to the graphite surface, the structure is repli-
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cated for Z > 0. The graphite surface lies at Z = 0 and faces the plasma located in

the negative Z direction.

1000 H atoms are uniformly distributed in the X-Y plane. The atoms have a Gaus-
sian distribution along the 7 axis, centered at a depth of 100 A from the surface with a
width 10 A. The void fraction was chosen to be 0.1 and therefore most of the particles
end up inside granules. The rest of the particles are assumed to be solute H on the
void—granule interface. Due to the low concentration of H atoms, hydrogen molecules
are not formed. The results are applicable to a very low concentration case. However
this calculation gives an idea of possible transport preferences within the various re-

gions, i.e. voids, granules and out of the surface (recycling).

The inputs to the code are from a mixture of experimental results and MD sim-
ulations. The activation energy for trapping-detrapping within the granule is taken
to be 2.7 eV since the TGD diffusion coefficient obtained from our simulations using
this value lies nicely in the middle of the range reported in experiments [35]. Within
the KMC algorithm, the activation energy for desorption is taken to be 1.91 eV [86].
The activation energy for surface diffusion is taken to be 0.9 eV, with a jump attempt
frequency of 10" s~! and a jump step length of 34.64 A to match the surface diffusion
coefficient reported in [79]|. Activation energy for entering the surface for a solute H
atom is same as the activation energy for TGD. The simulations are carried out at
target temperatures between 300 K and 1500 K in intervals of 300 K. The particles

were followed for 10° steps.

5.4.2 First results of macro—scale simulations

The final number of particles in different regions are plotted as a function of target
temperature (Fig.5.4). In this plot N stands for the number of particles in a region,
and the region is given as a subscript. We see that there is almost no transfer of
particles from one region to another below 900K because the activation energies for
bulk diffusion and desorption are too high. Most of the transport is by surface diffusion
of the solute atoms. Particles start getting into the bulk and from the bulk to the voids
in our simulations at 1200 K and this is more pronounced at 1500 K. It is also seen
that desorption of hydrogen atoms from the surface (denoted by Nyecyce in Fig.5.4)
starts off somewhere between 900 K and 1200 K. Such behavior for hydrogen atom
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desorption is observed in experiments [79, 87].
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Figure 5.4: Number of particles in different regions at the end of a million KMC steps

Note that 10° time steps correspond to different times of simulation at different

graphite temperatures since the time step is determined by the KMC algorithm (see

Eqn.3.2). A plot of the final hydrogen atom positions are shown in Fig.5.5 for

(i) 300 K where 10° steps correspond to 1.38 x 10%s,

(i) 900 K where 10° steps correspond to 1.15 x 10~*s, and

(iii) 1500 K where 10° steps correspond to 9.25 x 107 7s.

The plot is a projection of the atomic positions on the Z-X plane, with the Z axis

stretched. This stretching creates the effect of atoms moving preferentially along Z,

which is not the case. The brown color is used for atoms which are situated in voids

and cyan color is used for atoms situated in granules. It is seen that particles in the

voids and void-granule surface diffuse much faster due to the low migration energy of
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surface diffusion and get deep into the surface in the absence of open trap sites at
all temperatures. It is seen that there is almost no diffusion within the granule (cyan
colored atoms) at temperatures < 900 K where the migration energy for diffusion is
too high ~ 2.7¢V. Therefore it can be expected that in the presence of open traps
(which typically have a binding energy of ~ 2.7¢V), the atoms will not penetrate to
such depths at these temperatures. However, at temperatures > 1200 K, the atoms
in the granules too (cyan colored Fig.5.5-iii) show a visible diffusion broadening and

penetrate into the porous graphite.

5.5 Summary and outlook

A model for bulk diffusion in porous graphite is developed. It consists of trans—
granular—diffusion, diffusion in voids and along void-granule surfaces. Initial results
from the model are in line with experimental observations of desorption and transport
into bulk graphite. The model allows molecule formation and transport and can handle
recombination, dissociation and trapping. The main aim of this thesis, which was to
create a framework to study multi—scale transport of hydrogen isotopes in

a porous graphite like structure has been achieved.

Using this macroscopic model we are now able to simulate correctly the atomic
hydrogen desorption from graphite at temperatures above 900 K, the diffusion of hy-
drogen along void surfaces into depths of a few microns, and the different regimes of
hydrogen diffusion in graphite. The code implementing the multi-scale model DiG has
a modular structure and new species and interactions can be easily added. Application

of the code to a couple of problems of interest are described in the next chapter.
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Figure 5.5: Atomic diffusion range (Cyan for atoms in granules and brown for atoms in voids



Chapter 6
Applications of the simulation

The multi—scale model developed in the previous chapters of this thesis is applied to

study:
e Hydrogen transport in graphites with closed pores.
e Diffusion coefficient of hydrogen in porous graphite.

Applications of the model will give us improved insight into these problems and will

prove the variousa possibilities for applications of the developed model.

6.1 Hydrogen transport in graphites with closed pores

Transport and retention in graphite with closed pores is of interest as part of optimizing
the graphites to make them suitable as first materials in fusion devices. Closed pore
graphites are created by increasing the graphitization temperature of doped graphite
during the production process of graphite [88, 89]. Closed pores can reduce the accessi-
bility of internal surface areas within the graphite, thereby reducing the area available
for hydrocarbon formation and hydrogen isotope retention. This can have implications
for chemical erosion and hydrogen isotope inventory in graphites. We study the effect
of closed pores by artificially keeping the surface cells (cubes of size 5 x 107"m) occu-
pied. This implies that there are no open voids leading out from a depth of 5 x 10~"m
inside the graphite sample to the surface, though voids may exist as usual along all
other directions. The hydrogen atoms are initialized around 6 x 10~"m with a spread
of 1 x 107%m, and are allowed to diffuse in the sample kept at temperatures of 300
K, 600 K, 900 K, 1200 K and 1500 K. The simulation is repeated without closing the
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pores for comparison and the results are presented below.

The particle positions at the end of 10¢ steps is at 300 K, 900 K and 1500 K, for

both, closed pores and open pores is shown in Fig.6.1. This plot is a projection of the
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Figure 6.1: H atom positions at the end of 10° steps for different graphite temperatures for open

and closed pore cases

atomic positions on the Z-X plane, with the Z axis stretched (like in Fig.5.5). The
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brown color is used for atoms which are situated in voids and cyan color is used for
atoms situated in granules. The graphite surface is situated at Z = 0. It is seen that
most of the diffusion broadening is due to surface diffusion of atoms in the voids. At
1500 K the atoms in the granules too show some diffusion broadening in both cases.
Note that there is no diffusion into closed pore region (Z< 5 x 10~"m) for the 900 K
and 300K closed pores cases. In the 1500 K closed pores case there is some diffusion
into the closed pores region. This is in contrast to the open pores cases where there is

a normal diffusion in all directions.

The above idealized example suggests that when closed pore graphites are used as
plasma facing materials, the diffusion into the bulk of the graphite will be hindered and

the hydrogen isotope inventory within the graphite bulk in such cases will be reduced.

6.2 Diffusion coefficient of hydrogen in porous graphite

There exist many channels for hydrogen diffusion in porous graphite:

e Diffusion in crystallites, with two channels of diffusion, considered in Chapters.2
and 3.

e Trans—granular—diffusion (TGD), which consists of the diffusion in crystallites
plus the possibility of trapping-detrapping at the crystallite-microvoid interfaces

as discussed in Chapter.4.

e Diffusion in voids, consisting of surface diffusion, a adsorption-desorption based
mechanism and a trapping-detrapping mechanism on the void-granule surface
as described in Chapter.5.

Within our bulk transport model presented in Chapter.5, the diffusion in the crystal-
lites and TGD enter the simulation as a trans-granular—diffusion coefficient, Drqp.
We have seen that the transport due to Drgp (i-e. the transport in granules) is much
smaller than the transport in the voids and void—granule surfaces. It is only at high
graphite temperatures (~ 1500 K) that TGD shows up (Fig.6.1-¢,f). In Chapter.4 we
discuss how by artificially increasing the step size corresponding to transport in voids,
a good match with the experimental results [35] of diffusion coefficient in bulk graphite
is obtained. It is desirable to apply the bulk diffusion model to study the diffusion

coefficient variations with graphite temperature and to compare the simulation results
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with experiments.

Using the inputs as described in Section.5.4.1, bulk simulations at 300 K, 600 K,
900 K, 1200 K, 1500 K and 1800 K are carried out. The diffusion coefficients are calcu-

lated using Eqn.2.8. The diffusion coefficients obtained are plotted on a log—scale as a
function of 1000/7" K~! in Fig.6.2 (labeled DiG). We see that the diffusion coefficients
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Figure 6.2: Diffusion coefficient for hydrogen in porous graphite compared with a simple estimate
similar to the two kinds of jumps model presented in Section.3.3 and Causey’s result for surface
diffusion in graphite [79]

are much larger than the reported values [35] for bulk diffusion in graphite. We also
see that there exists two different channels for diffusion by the two different slopes that
are seen in Fig.6.2. This is because the diffusion is dominated by surface diffusion on
the void—granule surface and the adsorption—desorption diffusion mechanisms in voids.
These mechanisms have much smaller migration energies (0.9¢V and 1.91eV) respec-
tively, compared to the trapping—detrapping mechanisms at trap sites (between 2.65¢V
to 4.3eV [35]). We also plot a simple estimate of the diffusion coefficient by using the

two kinds of jumps model presented in Section.3.3 for jump parameters corresponding
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to surface diffusion and adsorption—desorption in voids. Reported [79] values of diffu-
—0.9

sion coefficient for surface diffusion (1.2 e*s7) is also plotted in Fig.6.2 for comparison.

It is seen that at temperatures < 1200 K the surface diffusion dominates, with the

adsorption—desorption channel dominating at temperatures > 1200 K.

There is a difference of almost an order of magnitude in the values of the surface
diffusion coefficient obtained from our simulation and [79]. This is inspite of the choice
of step size of surface diffusion being based on this experimental result. This could be
due to the fact that the diffusion is occurring in a complex geometry, and our method
of evaluating the diffusion coefficient (D = lim;_.o 55 [r(t) — 7(0)]?), assuming a di-
mensionality of 3 is naive. Special techniques must be used to evaluate the diffusion
coefficients in a porous disordered geometry [90]. One can understand this looking at
figure Fig.6.3 which is a schematic (not to scale) of the projection of a granule surface

on a 2-D plane. It is clear that the mean square deviation calculated using r(t) — r(o)

i
- === \

Vs (r®-r(0)y

Figure 6.3: Illustration of the complex diffusion surface as opposed to the a smooth surface

of a particle undergoing a random walk with a uniform step size on the rough surface
(dashed line) is lesser than that if it were undergoing the random walk on the smooth
surface. This should be considered when setting the step size in the simulation based

on reported experimental results.

We then carry out simulations by switching off the surface diffusion and the adsorption—
desorption mechanisms, keeping only the trapping-detrapping mechanism with 4.3eV’

trap energies. The simulation was on a highly resolved structure using a cell size
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1 x 107®m which required around 1/2 GB of RAM. The RAM requirement scales as
(L/CellSize)® since the geometry details have to be stored for quick access in the
RAM, where L is the length scale of the simulation volume and CellSize is the size
of a cell. Note that L must be large enough to at least contain a few granules (of size
~ lmicron) to realistically simulate bulk diffusion. We chose L to be 5 microns so as
to be able to accommodate at least 5 granules, which would mean around 125 granules
in the whole simulation volume. The simulations were carried out at 1200 K, 1500 K
and 1800 K to compare with the results for bulk diffusion by Causey et. al. reported
in [35]. The results of these simulations are presented in Fig.6.4. The diffusion coef-

- 7 n T T T T - T
1e-07 DIG —+—
1e-08 F Simple estimate -

1e-09 |
le-10 P&
le-11 |
le-12 |
le-13 |
le-14 |
le-15 | Sl

1e_16 [ 1 1 1 1 1 \\§§
0.55 0.6 0.65 0.7 0.75 0.8 0.85

1000/T (k'Y

Figure 6.4: Diffusion coefficient for hydrogen in porous graphite with surface diffusion and
adsorption—desorption mechanisms on void surfaces switched off. This is compared with with a simple
estimate based on a 3-D random walk and Causey’s result for bulk diffusion in graphite [79]

D (cmzls)

ficient obtained lies in the range of reported experimental results for bulk diffusion in
graphite. It differs by almost two orders of magnitude as compared with the results
by Causey et. al. The main reason is the granule size (and therefore the void size) we
choose is 1/10%" the value reported in Causey’s experiment due to RAM limitations in

our simulation. Simulation of a realistic bulk structure will require around 500 GB of
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RAM. However, using the results of this simulation in a simple estimate including a
modified void size which is typically 10 times greater than in the simulation, we are
able to reproduce the experimental result within a factor of 2. The results from the

simple estimate are also included in Fig.6.4.

6.3 Summary and outlook

In this chapter we applied the multi-scale model to various problems gained some

insights and directions for future work like,

e Closed pore graphites can prevent diffusion along internal surfaces deep into the
graphite bulk and will minimize the effective surface available for hydrocarbon

formation and hydrogen retention.

e Surface diffusion dominates H transport in bulk graphite at temperatures < 1200
K beyond which adsorption—desorption diffusion begins to dominate inspite of its
larger migration energies. This is due to larger possible step sizes depending on

the void sizes.

e Diffusion coefficients have to be interpreted taking into account the disordered
internal surfaces, not only in simulations, but also when reporting experimental

results.
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Chapter 7
Summary and Conclusions

Plasma surface interactions (PSI) are an important aspect of modeling the edge plasma
and designing plasma facing materials (PFM) for fusion devices. Graphite is the most
widely used PFM in the various experimental devices used to study fusion plasmas,
due to its good thermal conductivity, low atomic number, etc. However as the stage
sets for ITER, a experimental fusion reactor, some aspects of hydrogen isotope inter-
actions with graphite like tritium inventory, flux dependence of chemical sputtering,
higher hydrocarbon formation and release, etc., need to be understood. This will help
in understanding the limitations of graphite as a PFM and also probably in designing
new types of graphite which can be used as PFMs.

The graphites used as PFMs in fusion devices are porous and consist of granules
(few microns in size) separated by voids (fraction of a micron in size). These granules
further consist of randomly oriented crystallites (a few nanometers in size) separated by
micro—voids (a few Ain size). The incident hydrogen isotopes from the plasma cause
damage within their range of penetration and the atoms that do not get backscattered,
thermalize with the carbon atoms within the graphite. Due to the porous structure
there exist large internal surface areas within the graphite. An algorithm to create a
porous medium of specified void—fraction, consisting of elements, the sizes of which are

assigned by a Poisson distribution, is developed.

The hydrogen isotopes can diffuse along the voids and micro—voids, get trapped at
trap sites in the graphite bulk or at the surface where there exists a high density of

traps due to incident ions. They can also recombine to form molecules and react chem-
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ically with the carbon atoms in graphite to form hydrocarbons. In order to understand
how the microscopic processes at the atomistic level affect the macroscopic transport
and inventory of hydrogen isotopes and hydrocarbons, models of atomic interactions
and transport at the different scales are required. Parameters that get transferred be-
tween the models at different scales have to be identified and can be used either from
ab—initio theory or from experiments. The main aim of this thesis is to develop such
a multi-scale model for hydrogen transport in porous graphite which serves as a test

bed for addressing other problems concerning using graphite in fusion devices.

At the microscopic scales, molecular dynamics (MD) is used to simulate the diffusion
of hydrogen isotopes in crystalline graphite. It is seen that hydrogen isotope diffusion
has two channels for diffusion. These channels can be represented as a trapping-
detrapping process, with characteristic jump attempt frequencies, migration energies
and jump lengths. It is seen that the channel with a low migration energy dominates
the diffusion and varies as the inverse square root of the isotope mass. The channel
with the high migration energy starts contributing to the diffusion above 450 K and
is independent of the isotope mass. A Kinetic Monte-Carlo (KMC) simulation, and a
simple analytical model, reproduce the MD results using the two channel, trapping—

detrapping description.

At the mesoscopic scales, hydrogen transport in randomly oriented crystallites sep-
arated by microvoids are modelled using KMC. The hydrogen atoms diffuse within
the crystallites as parametrized from the MD simulations and get trapped at the
crystallite-microvoid interface with a specified trapping-detrapping probability. The
trans—granular—diffusion (TGD) coefficients, Drgp, match a wide range of experimen-
tal results for hydrogen diffusion in porous graphite by changing the structure param-
eters (void sizes). It is seen that the random orientations of the crystallites make the
diffusion isotropic and that the isotope mass has almost no effect on Drqgp within our

model. A simple analytical model is developed, which is consistent with these results.

Extending the model to centimeters, the diffusion of hydrogen within granules and
voids is studied. Values of Drgp from our meso—scale simulations are used to imple-
ment diffusion in the granules using a Monte-Carlo diffusion (MCD) ansatz. KMC is
used to model the transport in voids and on the granule-void interfaces. Dissocia-

tion, desorption from the granule-void interface, etc., are all included within the KMC
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ansatz using appropriate activation energies as reported in experiments. The hydrogen
atoms recombine if they come closer than a specified minimum distance. New species

and interactions can be added depending on the problem of interest.

This multi-scale model is used to study hydrogen desorption, transport in gaphites
with closed pores, and the various diffusion regimes in porous graphite. The model
correctly matches experimental results for the temperature dependence of desorption,
shows that diffusion along internal surfaces is hindered in closed pore graphites and

lends insight into the different channels of diffusion in porous graphite.

The new multi-scale code developed in this thesis, DiG, provides new insights
into the transport in porous graphite and improves the physics understanding. This
should stimulate also the experimental validation of these predictions. This will only be
possible by close interaction with experimental groups and will need a flexible adaption

to thier needs. This is easily possible due to the modular structure of the code.
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Appendix A

Simple model for PSI and coupling
with SOLPS-B2.5

The multi—scale model developed in this thesis aims to provide finally a better de-
scription of the bulk processes in the target during plasma surface interactions (PSI).
This is done by the modeling the underlying physical processes at different scales. The
better description obtained, should then be used in a self consistent model for PSIs. In
this appendix a simple model for PSI is described which identifies the various modules

that are necessary to model plasma surface interactions.

This simple model can be used as the PSI part of edge plasma codes or for making
erosion, implantation, and reflection estimates for plasma facing surfaces. Published
semi-empirical formulas for physical sputtering [91], chemical erosion [17], radiation en-
hanced sublimation (RES) [92], and backscattering [93, 94| have been implemented as
FORTRAN subroutines [21]. see Appendix.B for details of the formulas. A subroutine
to calculate the thermal evaporation of graphite which is important at high heat loads
is also implemented. Finally, the effect of self consistently including the target temper-
ature calculation in case of a graphite target is studied by including these subroutines
in the scrape off layer plasma simulation code, SOLPS-B2.5 [22, 23].

A.1 Plasma-surface interaction model

Any material surface facing a plasma is connected to the plasma by means of a sheath.

The sheath depends on the plasma parameters like density and temperature, ambient
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magnetic field and applied voltage to the plasma facing surface [10, 11, 13]. The
sheath affects the energy and angular distributions of ions incident on the plasma facing
surface. The energy deposited by the plasma on the surface determines the surface
temperature which is an important parameter in quantifying the chemical erosion yield,
RES and thermal evaporation contributions to graphite erosion. Therefore a model for
the sheath, the incident heat and particle flux, and a heat transport model in the target
are important parts of modeling PSI. A zero-dimensional steady-state particle balance
model at the target using sputtering yields, backscattering coefficients and evaporation

rates, is used to calculate the erosion rate of a plasma-facing surface.

A.1.1 Sheath

A collision—less 1-D sheath model is used, based on the results of various studies on
the plasma sheath which have been compiled by Stangeby [10]. The incident energy
of ions on the surface is equal to the sum of the energy with which ions enter the
pre-sheath, the energy gained in the pre-sheath and the energy gained in the assumed
collision—less sheath. For a plasma temperature T; (for ions) and T, (for electrons) at

the plasma-sheath interface, the average ion energy will be a sum of:
(i) the average energy per ion leaving a Maxwellian plasma (= 27T;)

(ii) energy gained by acceleration in the pre—sheath, given by the general non-zero
T; Bohm sheath criterion [12] (= T, ++T;)

(iii) energy gained by acceleration in the sheath (= Z;®).

Note that 7. and T; are all in units of eV, ~ is 1 for isothermal flow, 5/3 for adiabatic
flow with isotropic pressure and 3 for adiabatic flow [10] in the pre—sheath. The sheath
potential ¢ is in V and Z; is the charge of incident ions.

For a floating surface, ® is given by [10]

1 me T;
b = (Dfloat = 5 Te n [(271’&) (]_ + i):| (Al)

and for a biased surface, the plasma is shielded from the applied voltage ®,,, by the
sheath potentials at the anode ®, and at the cathode &, such that ®,,, = ¢, — @,
with ®, given by

(A.2)

2 <1>float/Te
o, = T, ln{ ‘ }

1+ ePapp/Te
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Note that when ®,,, =0, &, = ®. = Pyy,:. Therefore the bombarding ion energy is
3
E; =T, + (5 + T + Z;®... (A.3)

The incident ion flux on the surface is the same as the ion flux entering the sheath
from the pre—sheath
Iy = n,C, (A.4)

where ny(= n. = Z;n; is the plasma density at the plasma-sheath interface, and Cj is
the sound speed given by ((T, +~T;)/m;)"/? where m; is the mass of the ion.
The heat flux deposited by ions is given by

The heat flux deposited by electrons on the surface is given by
Lapp
Qe = 27—‘6615’”56T—e (AG)

Therefore, given the plasma parameters of density n,, ion temperature 7; and elec-
tron temperature 7, at the plasma-sheath interface, and the applied voltage ®,,,, useful
information for PSI like average energy of incidence (Eqn.A.3), the incident ion flux
(Eqn.A.4) and the heat flux on the surface (Eqns.A.5,A.6) can be found. Note that we
do not have any information of the angular distribution of the bombarding ions, which
can affect physical sputtering yields and backscattering coefficients. We assume that
in the absence of collisions in the sheath, all ions are accelerated to velocities much
greater than their thermal velocities (typically \/W) and therefore are more or
less normally incident on the surface if it is assumed that there are no magnetic fields

present.

A.1.2 Heat diffusion

The 3-d heat diffusion equation is given by [95]:

o ( 9T\ & (, oT\ 0 [ T T
YV L () + L () 5= 0, A.
oz <kx8x)+8y <ky8y)+6z (kzaz)+5 o (A7)

where 7' is the temperature, (x,y, z) are the 3 Cartesian coordinates, k stands for heat

conductivity, S is the volumetric sources or sinks of heat per unit time, p is the density
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of the surface material, C), is the specific heat of the material at constant pressure and
t is the time variable.

A uniform, steady state plasma is assumed to be in contact with a surface. The
heat diffusion into the plasma-facing surface is assumed to be 1-dimensional. The
thermal conductivity dependence on temperature can be described by ﬁ in most
cases [96]. It is also assumed that there are no bulk sources or sinks of heat. With

these assumptions the 3-d, time dependent heat diffusion equation reduces to

2 () g "

the steady state 1-d heat diffusion equation (without bulk volumetric sources or sinks)
[95].

The heat flux incident on the surface is used to implement a Neumann—type bound-

ary condition at the plasma-facing end (z = 0)

oT
_k(T)% =i T Qe (A.9)

where ¢; and ¢. are given by Eqns.A.5, A.6. Therefore, the incident heat flux on the
surface enters the equations as a boundary condition which is an effective heat flux
source at the boundary surface. Note that cooling of the surface due to radiation and
evaporation or sublimation is neglected. The additional contribution to the deposited

heat by ion recombination on the target is also neglected.

The temperature at the cool end (z = L) is specified to implement a Dirichlet-type
boundary condition.
T(L)=T; (A.10)

With the assumed ﬁ variation of k£, and solving Eqn.A.8 with the boundary
conditions specified by Eqn.A.9 and Eqn.A.10 results in the temperature 7, at the

surface (as in [96]) given by:

b b
T, = <TL + 5) elaita)l p (A.11)



A.1 Plasma-surface interaction model 85

A.1.3 Surface interaction

We present a 0-d steady state particle flux balance equations for surface interactions
with hydrogen as the plasma species and graphite as the target. It is similar to [97],
but with backscattering of the returning carbon flux considered and is also extended
to calculate net erosion. The addition of backscattering of the incident carbon ions
is necessary only when one can differentiate between the backscattered carbon atoms
and sputtered carbon atoms. The semi-empirical formulas for sputtering yield [91] and
backscattering [93, 94| implies differentiation between the carbon sputtered and the
carbon backscattered.

Consider an incident flux of hydrogen ions I'y;. This results in a sputtered flux
of carbon atoms. Some of this flux of carbon atoms gets ionized and returns to the
target. The returning flux of carbon also causes self sputtering of graphite. A fraction
Ry of the returning flux of carbon atoms also backscatters from the surface, with the
remaining fraction (1 — Ry) getting redeposited on the target. In addition to these

processes there is also a steady flux of carbon atoms evaporated from the surface. A

out
(1-H,) M

out_ ret C
rc - YH rH+YC rc + RN rc:

1R, (1-R T

Figure A.1: 0-d steady state surface erosion model

steady state picture of all the processes involved is shown in Fig.A.1. We see from the
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figure that in steady state the total flux of carbon atoms going away from the target is
% = YyuTy + YelF + RGTE + T8 (A.12)

where Yy is the total sputtered flux of carbon atoms due to hydrogen incidence and
Yy is a sum of the physical, chemical and RES yield contributions of H incident on
graphite:

Yy = YEMW pyghem 4y RES (A.13)

and YoI'7¥ is the total self-sputtering flux with Y given by
Yo = YEW 4 yEES (A.14)

R§ ¢! is the backscattered carbon flux and I'g;™” is the evaporated flux of carbon. I'f¢!

is the fraction f, of %" that returns to the target after ionization in the plasma.
Iyt = f,0o (A.15)

fr is an external parameter which is an input to the model and should come from

impurity transport calculations.

The flux of carbon atoms lost from the surface is

loss _ out C 1ret
FC - 1—‘C' _RNFC

= Yyly+ Y TE +T87 (A.16)
and the flux of carbon atoms redeposited by the returning carbon flux is

Il — (1 — R (A.17)

From Eqns.A.12,A.15 we get

fr(YHFH + Fg)ap)
1—f.(Yo+ R%)

et — (A.18)

The gross effective sputtering yield, defined as I''e** /Ty, using Eqns.A.16 and A.18 is

yeif (Yu +T¢"/Tu)(1 - fRY)

pu— A.19
gross 1 o fr(YC _'_R]C\'[) ( )
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The net effective sputtering yield, defined as (T2% — F’gdep )/Tw, using Eqns.A.16,A.17
and A.18 is

verf _ Ya +T8"/Tu)(1 = f)
net 1 _fT(YC+RJC\‘7)

Given a target density ny.,(gm/cm?) the gross or net thickness eroded per second

(A.20)

i.e. the gross or net erosion rate of the target) is given by
g

yell o Ty M

gross,net

" Ny 6.0221 x 10%

(cm/sec) (A.21)

where M is the molecular weight of the target in amu and 'y is given in particles/cm?/s.

This model is readily extensible to an arbitrary charge state distribution of the
incoming ions and energetic neutrals, provided one accounts for all the charge states

and their respective incident energies and yields separately.

A.2 Results

Using the simple model for PSI, assuming 7; = T,, the target temperature (Fog.A.2)
and the gross erosion rate (Fig.A.3) are plotted for a low density (2.0x 10'3/cm3/s) and
for a high density (8.0 x 10'3/ecm3/s) case. Note that there is a range of T; wherein the
gross erosion rate has a local maximum. The flattening off of the target temperature
(and therefore gross erosion rate) in the high density case is artificial because the target
surface temperature is not allowed to raise above 3000 K. From Fig.A.2 and Fig.A.4
we see that this is the range where the surface temperature of the target is ideal for
maximum chemical erosion.

The local maximum suggests that there could be a plasma parameter range wherein
one can see a radiative instability [98] like mechanism in the region where the gross
erosion yield has a negative slope (Region I in Fig.A.5). In this region (Region-I), as
the plasma temperature decreases, the gross erosion rate would increase thereby in-
troducing more impurity into the plasma which can decrease the plasma temperature
further. When the plasma temperature falls below the local maximum (Region-IT of
Fig.A.5) for gross erosion, a stabilizing mechanism exists wherein the gross erosion rate
decreases at lower plasma temperatures and this decreases the impurities in the plasma
which could lead to higher plasma temperatures. This could lead to the possibility of

oscillations in plasma parameters about the local maximum [99].
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Figure A.2: Surface temperature as a function of T;
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Figure A.4: Chemical sputtering yield a function of T;

Therefore, using this model self consistently with a edge plasma code can clearly
bring out the importance of self-consistently including the target temperature calcula-

tion in any PSI model.
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Figure A.5: Effective gross erosion yield Vs. Plasma temperature. The unstable region (Region I)

and the stablizing region (Region II) are shown below the graph.

A.3 SOLPS5.0-B2.5 results

The above model was included in the SOLPS5.0-B2.5 code [22, 23]. The results of a
edge density scan for ASDEX-U geometry was carried out. We see a the possibility

for the existence of oscillatory solutions as discussed above. Oscillatory solutions were

observed experimentally [99] and predicted in earlier theoretical models [100]. These
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solutions appear in the transition between low-recycling and high-recycling / detached
operation. They show up as a hysteresis in the diagram of upstream densities vs. target
plate plasma temperatures Fig.A.6. This is driven by the impurity production process
itself and not by the negative slope of the carbon radiation characteristics. In simplified
1-D models the negative slope for the carbon radiation characteristics is sufficient to
give oscillatory solutions [101]. In 2-D models this possibility seems to be removed due

to reorganization of the solution avoiding such scenarios.

80
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Figure A.6: The presence of a local maxima in chemical erosion yields manifesting as a hysteresis in
the density scans of SOLPS-B2.5



Appendix B

Empirical formulas used for PSI

A large amount of work is dedicated to determining various PSI data by experiments
and Monte-Carlo codes. These data are then made available as data sets [102, 103, 84]
which can be used as inputs for plasma codes or semi-empirical formulas are developed
to fit the available data (|17, 91, 92, 93, 94, 104, 105] and references therein). The
data sets are available for a large number of projectile-target combinations. They are
accurate and are used in existing transport codes |22, 23, 106, 107, 108| with a suitable
interpolation to parameters of interest. However they cannot be extended to projectile-
target combinations for which data are not available. The semi-empirical formulas on
the other hand are not as accurate, but they have been developed by identifying the
physical parameters on which the PSI processes depend and are fitted to the experi-
mental and code-generated data, and therefore can be extrapolated to projectile-target
combinations for which such data sets are not available. Using an empirical formula
might also be computationally faster compared to doing a multidimensional sorting
and interpolation on a large data set, especially for code packages which use PSIs as
boundary conditions at each iteration. Some of these formulas are usually included in
the existing transport codes [22, 23, 106, 107, 108].

In this appendix we present the semi—empirical formulas we have implemented as
part of the simple model for PSI (Appendix.A) [21] and incorporated into SOLPS-B2.5.
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B.1 Physical sputtering

The physical sputtering yield Y?* calculation is based on the empirical formulas com-
piled in [91]. The Bohdansky formula [109] is used to determine the sputtering yield for
normal incidence of a projectile on a target and the procedure specified by Yamamura

[110] is used to specify the angular dependence:

YPW(E)) = QS,(e) [1 - (%)2/3] (1 - %‘)2 (B.1)

(cosa)_fe:cp ( f [1 — (cosa)_l} COSQ oyt )

where () and the threshold energy Fy;, are fitting parameters, Fj is the incident particle
energy (eV), ¢ = FEy/Erp is the reduced energy.
Erp is the Thomas-Fermi energy (eV):
M M. 1/2
Erp = 304 = 22 g 0 (27 + z7) (B.2)
My

where 7y, Zy, M, M, are the nuclear charge and atomic mass of the projectile and
target respectively.

Sy is the nuclear stopping cross section based on the Kr-C potential, which is approx-

imated by:
0.5 In (1 + 1.2288¢)
() = -5 01728212 1 0.008000 (B-3)
@ and FEy, are are given by:
3 MY M8 015 + 0.05Ms/M
B2 = 1633210 75 (21 4 7)) T S 2L (B4
Q S 3 1 2 1 + 2 M1+M2 1 4 005(M2/M1)16 ( )
E B
E“l = 7.0 (My/M;) ™" + 0.15 (My/ M) (B.5)

where FEj is the surface binding energy (heat of sublimation). « is the angle made by
the incident projectile with the normal to the target surface. Yamamura’s analytical

fit formulas for f and o, are:
f=+VE;(094—1.33 x 107°M,/M,) (B.6)

Qopt = /2 — amn ™3 (2e\/E, JyE,)'/? (B.7)
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where, q; is the Lindhard screening length (= 0.4685\/212/3 + 222/3), n is the target
density given in units of atoms / ® and ~ is the maximum energy transfer factor given

by 4M1M2/(M1 + MQ)Q.

B.2 Radiation enhanced sublimation

RES is observed only in graphite targets and the empirical formula is implemented
only for a graphite target. The formula for the RES yield was obtained from [92] which
states that the energy dependence of physical sputtering could also be applied to RES,
with a modified value of () given by:

o P —0.1
Qres = Q-+ 5AMMS 717 <W) (B.8)

where M; = mass of incident ion (a.m.u.), 7" is the plate temperature (eV) and I is the
incident ion flux (em™2s7!). M; = 1 for H". Then the RES yield is given by Eqn.B.1,
with the value of Q replaced by Eqn.B.8 for Qrgs.

B.3 Chemical erosion:

The chemical erosion yields formulas are described clearly by Roth in the Appendix
A of [17]. Chemical erosion consists of two contributions, one the thermal part Y™
and the other the surface part Y%/,

Ychem — Ytherm (1 + Dydam) + Ysurf (Bg)

The thermal erosion is enhanced by the damage production due to incident ions Y %™,
D is given by 250/M; where M is the mass of the incident hydrogen isotope. The

thermal erosion is obtained by the formula

~Etherm
ytherm _ sp® 0.033 e kT (B.10)

2 x 10732¢ + [1 + —QX;()%%]@L%;W
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where KT is the target surface temperature in eV and C*’ is given by:

oot CR2X 1072 4 o= W] (B.11)
2% 10732 + [1 + 2><<11>029€:£§1€l]€7E?76fm :
We equate the value of C
1
C (B.12)

C 1+3x 107w
with its value for high ion fluxes where a possible influence of hydrogenation time is

taken into account .

C =
14+3x10-230

in order to make a transition from low incident ion fluxes to high incident ion fluxes

(B.13)

smoothly.

The term Y%™ due to damage caused by incident ions is given by:

2/3 2
Y (By) = QS, [1 - (Egom) ] (1 - Eg;’”) (B.14)

The surface erosion term is given by

Ydes E
Y /(E,T) = Cp+)v (B.15)
[L+e o]
where 03 ,
Edes Edes
Y% (Ey)) = QS, |1— 1— B.16
() Q[ () | (- %) (5.16)

The values recommended in Table 1 of [17] is used for @, E4s and Egup. For E.
the value for pure carbon (= 1.8¢V) is used. Ey,, Erp and S, are calculated from
Eqns.B.5,B.2, B.3. Eijerm is taken as 1.7¢V.

B.4 Backscattering coeflicients:

The empirical formula for values of M;/M; < 0.5 are taken from [93] and that for
values of M; /M up to 4.8 are taken from [94]. For a more detailed description of the
variables and the expressions used, please check these original references. The formulas

for the number backscattering coefficient Ry and the energy backscattering coefficient
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Ry are related as follows:
Ry = Rg/rE (B.17)

where 7 is given in terms of the reduced energy ¢ = E,/Erp (see Eqn.B.2):

1 0.530

e = c 10285 - \—1.46 (B.18)
L+ (5im) 1+ ()
For the M;/M, < 0.5 case, Ry is given by:
0.705/ f
Rp = 1 . \0.597 . \15 (B.19)
+(5w) + (55w)
where,
f=2PM V2R (B.20)
Pt
where v = 1 + - with 4 defined as p = %72, and
2 1 L ]!
&:”_”JF[EJFE] (B.21)
Pt Sa .
with T[0, (C — 1)in(Be)] — T[0, —2In(Be)]
— 1)in(Be)] — —2In(Be
R ’ B.22
p N (B.22)

where A = 0.56258, B = 1.1776, C' = 0.62680, and I' is the upper incomplete gamma
function given by:
(v, 7) = / et (B.23)

Sp, Sp and S, are given by:

Nlw

Sp = D% S, (B.24)

_2 ln[li%2+1+% -
Sp = 61AT 2 apuC 7,

B.2
T o (B.25)

S, = 0.0793 Z; u 1/Mi (B.26)
1
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where
2
D=02617 (1 + Z&)? Z;' A (B.27)
Aj is the co-efficient for electronic stopping cross section in the semi-empirical formula

of Andersen and Ziegler [111].

2m, 2 3?
= 7 B.28
B 7 1, ( )
1247251 (for Z2<13)
L {9.76+528.5Z;1'19 (for Z3>13) (B.29)
10021 /2 or Z1<3
G = {07 U e (B.30)

For the 0.5 < M; /M, < 4.8 case, the formulas from [94] are used and Eqn.B.17 is

used to determine Rp. Ry is given by:

G(e)

Ry = —2 (B.31)
In
where .
G(e) = 0577 5 (B.32)
L+ (7im) (o)
2
ZP pa W
fv="52 (B.33)
Mz o (L4 p)? o
and
1 + 2.1 M—3.995
L — (77 (B34
A+ (5 +D) H3(1*ﬂ+ﬁ+ﬁ)(€+13~3)

For a compound target consisting of atoms with concentrations c?, ¢, .... etc,
atomic charge Z?, Z° ... etc and atomic masses M?, M?, ... etc, Zy, and M, are
replaced with Z. and M, to evaluate the value of ¢, where

G740zl
7, = 212 F (B.35)
cr+c+ ...
baga o bagb
M+ cM? + ...
M, = . (B.36)
4+ + ...

Values of 2¢/p, Sp, Sy and S, for the compound target are calculated using the Bragg

rule.
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