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1. Motivation

It was in 1906 when Sir Joseph John Thomson mentioned in his Nobel prize speech

ionized helium as propellant for space shuttles. He conceptually invented the electric

propulsion.

After a long period where mostly chemical propulsion systems were used, the capac-

ity of an alternative satellite propulsion system was recognized. Therefore, one also

began to study electric propulsion systems. Their biggest advantage is a reduction

of launching mass due to increased specific impulse compared with the widely used

chemical thrusters. The higher impulse is gained by an increased propellant velocity.

While the exhausted velocity of a chemical propellant is limited, charged particles

can be accelerated infinitely by electric fields. The created ion beam produces the

thrust of the satellite. With a higher specific impulse space missions can operate

more flexible, while a reduced propellant mass reduces costs or lead to an increased

payload.

For development and optimization of ion thrusters testing of a large number of

expensive prototypes is necessary. These numbers can be reduced by an improved

understanding of the physics of ion thrusters. This was the motivation of strong

research activities in this field, in particular in numerical simulations of ion thrusters

including their plumes.. The ultimate goal is to create a self-consistent model with

predictive quality.

In this thesis, a kinetic Particle-in-Cell (PIC) code is used to study the physics of

ion thrusters, especially the High Efficient Multistage Plasma Thruster (HEMP-T)

patented by THALES. The work is split into two parts. In the numerical part a

non-equidistant Poisson solver using the finite volume approach is developed and

validated as a pre-requisite for non-equidistant PIC codes to allow a full resolution

of thruster channel and plume. In the physical part results of PIC codes are used to

analyze and characterize basic principles and characteristics of ion thrusters’ plumes.

The outline of the thesis is as follows. In the first chapter the basics of plasma

physics, ion thrusters and numerical methods will be explained. In chapter 3, state
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1. Motivation

of the art and new task of thruster simulations are given. The development and

validation of a non-uniform Poisson Solver will be presented afterwards. As an ex-

ample of an ion thruster, the basic physics of the HEMP-T, including the plume, is

discussed using specific diagnostic modules for the PIC code. The newly developed

Poisson solver allows a study of the effects of a domain extension on the results.

Finally, the work is summarized.
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2. Theoretical Basics

At the beginning of this chapter a short introduction into propulsion physics will be

presented. It will introduce general aspects of plasma physics and the most important

fundamentals of propulsion systems including an overview of existing concepts.

2.1. Basics of Propulsion System

The rocket equation which was published by Konstantin Tsiolkovsky in 1903 describes

the change of velocity v for a rocket due to a propellant mass mp and the exhaust

velocity vex of the thruster. The derivation of this important equation [1] is given

the following. One starts with the force T on the vehicle with the total mass M

T = M
dv

dt
(2.1.1)

where v is the velocity of the vehicle. The force is generated by the thrust of a

propulsion system. The thrust is equal and opposite to the change of the momentum

of the propellant in time. The momentum is given as the exhaust velocity of the

propellant vex times the mass of the propellant mp

T = − d

dt
(mpvex) = −vex

dmp

dt
. (2.1.2)

The second equality is given since vex is constant in the spacecraft frame of reference.

Since the propellant mass is decreasing, the total mass of the vehicle M is a function

of the time

M(t) = mp +md (2.1.3)

with md as the delivered mass. Since md is constant, one gets

dM

dt
=

dmp

dt
. (2.1.4)

3



2. Theoretical Basics

Using equation (2.1.2) and (2.1.4), equating with (2.1.1), one obtains

M
dv

dt
= −vex

dM

dt
. (2.1.5)

Multiplying both sides by dt and dividing the equation by M gives

dv = −vex
dM

M
. (2.1.6)

Integration from initial velocity of the spacecraft vi to final velocity vf , respectively

from initial mass md +mp to final mass md yields

vi − vf = ∆v = vex ln
md

md +mp

. (2.1.7)

A characterizing value for thrusters is the specific impulse Isp, which is given by the

propellant exhaust velocity divided by the gravitational constant g. Therefore (2.1.7)

can be rewritten as

∆v = (Ispg) ln
md

md +mp

. (2.1.8)

The distance which can be achieved during a mission is given by the thrust T inte-

grated over the lifetime. For ion thrusters the exhaust velocity is nearly constant over

the lifetime. The exhaust velocity of a chemical thruster is limited to approximately

3000 m/s. The main goal of electric propulsion systems is to overcome this limit and

therefore, to gain higher thrusts. One specific type of electric propulsion system is

the ion thruster. Ion thrusters have a 5 to 10 times higher specific impulse than

chemical thrusters and their mass is smaller [2]. Therefore, a reduction of launch

mass by up to 1000 kg is reachable. Summarizing these advantages, a cost reduction

or an increase of payload for commercial and scientific field missions deep into space

seem to be possible. The idea of ion thrusters is to accelerate charged particles es-

pecially heavy noble gas ions using electric fields. Due to this basic plasma physics

is needed to be able to understand the mechanism of ion thrusters.

2.2. Plasma Physics

All ion thrusters have in common that they operate with plasmas. A plasma is

an ionized gas which consists of different species: electrons, neutrals and ions with

different charges. A thermal equilibrated plasma exists, if the velocity distribution
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2.2. Plasma Physics

function for each species is Maxwellian

fs(~vs) =

(
ms

2πkBTs

)3/2

exp

{
−msv

2
s

2kBTs

}
. (2.2.1)

Here kB is the Boltzmann constant, Ts,ms and vs are the temperature, the mass

and the velocity of each particle species s. With respect to the absolute value of the

velocity v = |~v| the velocity distribution function is given by

fs(vs) = 4πv2s

(
ms

2πkBTs

)3/2

exp

{
−msv

2
s

2kBTs

}
. (2.2.2)

Therefore the average speed in an equilibrated plasma is

〈vs〉 =

√
8kBTs
πms

(2.2.3)

and the root-mean-square velocity is given as

√
〈v2s〉 =

√
3
kBTs
πms

. (2.2.4)

For each species the current js onto a plane is defined by

js = qsΓs (2.2.5)

with the flux density

Γs =
1

4
ns〈vs〉 , (2.2.6)

where ns is the density and qs the charge of a species. In a plasma different charged

species shield each other on length scales smaller than the Debye length.

λD,s =

√
ε0kBTs
nsq2

, (2.2.7)

with the vacuum permittivity ε0. The potential of a plasma includes a term from

the normal Coulomb potential and an exponential term which describes the shielding

due to different charges.

φ(r) =
q

4πε0r
e−r/λD . (2.2.8)

This particular potential is named after two pioneers in plasma physics Peter Debye
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2. Theoretical Basics

and Erich Hückel, Debye-Hückel-potential. Therefore, charge separation exists only

on length scales smaller than the Debye length. On larger length scales the plasma

can be considered as ”quasi neutral” therefore in this region the densities are given

by

n0 = ne = Z · ni , (2.2.9)

with Z as the ion charge number. Charged particles react to electromagnetic forces.

In plasmas, this can lead to charge separation, particle gyration and particle drifts.

The Lorentz force of a particle s with charge qs is given by the equation of motion

~̇ps = qs( ~E + ~vs × ~B) , (2.2.10)

with the electric and magnetic field ~E and ~B. In a static magnetic field charged

particles are accelerated parallel ~E with

~as =
qs
ms

~E , (2.2.11)

which leads to a charge separation due to the dependence on the sign of the particle

charge. A static magnetic field leads to an oscillation of the particle in a plane

perpendicular to the magnetic field with a frequency called cyclotron frequency ωc

and a radius named Larmor radius rL

ωc,s =
qsB

ms

, rL,s =
v⊥,s
ωc,s

. (2.2.12)

In addition to this cyclotron movement, the particle moves along the field line with

a velocity v‖,s. v⊥ and v‖ are the perpendicular and the parallel component of the

velocity with respect to the magnetic field ~B. In ion thrusters electric and magnetic

fields are used to accelerate heavy ions and generate a directed thrust.

In the present of electric and magnetic fields, particles have a drift velocity given

by

~vD =
~E × ~B

B2
. (2.2.13)

Since the charge is not appearing in this equation no charge separation appears.

This drift is named ~E × ~B-drift or ”Hall effect”. Beside the cyclotron frequency

there is another important time scale in a plasma. It is caused by a displacement

of electrons with respect to ions. In case of such a displacement the Coulomb force
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2.2. Plasma Physics

counteracts and pulls the electrons back. This happens with the so called plasma

frequency of

wp,e =

√
nee2

ε0me

. (2.2.14)

2.2.1. Plasma Sheath

Plasmas in thrusters are also strongly influenced by their wall contacts, therefore it

is necessary to have a look at the plasma-wall physics. Close to a wall an equili-

brated plasma with modified properties compared to the bulk plasma in the volume

builds up, the plasma sheath. This sheath is characterized by a negative potential

drop. In the bulk the plasma is quasi-neutral, whereas close to the wall one gets a

charge separation, due to faster electrons reaching the wall. This potential drop has

consequences for the velocity distributions and the particle densities.

A simple model for a plasma sheath assumes an ideal reflecting wall where recom-

bination takes place only at the surface. A sketch of its characteristic is shown in

Figure 2.1. In the bulk electron and ion densities are equal, whereas the average

electron velocity is much higher than for the ions. Due to that, more electrons than

ions impinge the wall and get absorbed there. Therefore, the electron density de-

creases near the wall and a negative potential drop develops. The potential difference

between wall and bulk leads to accelerated ions in the sheath whereas electrons with

energies smaller than e∆φ are reflected. Therefore, the electron density at the wall

decreases stronger than the ion density like it is shown in Figure 2.1. This results in

a steady state, where towards the wall ion flux and electron flux are equal.

Γe = Γi . (2.2.15)

If one assumes zero net current at the wall (je = ji) and quasi-neutrality (Zni =

ne = n0), the potential drop between plasma and wall can be calculated according

to [3] as

e∆φ ≈ −kBTe ln

(√
mi

2πme

)
. (2.2.16)

The electron current density at the wall can be given as

je = −e
4
ne〈ve〉 exp

{
−e∆φ
kBTe

}
. (2.2.17)
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2. Theoretical Basics

Figure 2.1.: sketch of processes in a plasma sheath; red arrows indicate the motion
of ions, blue of electrons and orange of neutrals; potential at the middle
and particle densities close to the sheath at the bottom

The ion density is decreasing towards the wall as well, but due to negative potential

at the wall it does not get to zero. Close to the wall electrons neutralize impinging

ions. As an assumption of this model the produced neutrals are reflected from the

wall and again ionized in the bulk. In this simple model the sheath can be seen

as collisionless. In reality processes like sputtering, secondary electron emission and

radiation has to be taken into account. Between the sheath and the bulk plasma

another region can be distinguished, the presheath. It is determined by the Bohm

criterion. According to its discoverer David Bohm the following inequality is named

Bohm-sheath criterion

vi,sh ≥
√
kBTe
me

= vBohm . (2.2.18)

This can be easily shown by using energy conservation and ion current density

conservation. In addition the faster decay of electron density have to be taken into

account to obtain the inequality. If one implements secondary electron emission at

the wall, the potential drop is reduced. The additional electrons lead to an increased

flux towards the wall in order to reach zero net current. Therefore, the modified

effective potential according to [4] is given as
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2.2. Plasma Physics

e∆φeff = −kBTe ln

[
(1− γ)

√
mi

2πme

]
, (2.2.19)

where γ is the secondary electron emission coefficient. For this ansatz the electrons

are assumed to have much higher temperatures than ions. Taking into account the

secondary electrons, the most important effect is a reduction of the voltage drop

near the wall. Therefore, one gets an increased number of electrons reaching the wall

and as a consequence of the energy loss a lower electron temperature in the plasma

bulk. For thrusters the sheath physics can become more complex as in the classical

description. Two aspects have to be mentioned reasoning the disappearance of the

classical Debye layer. At first electrons are essentially non-Maxwellian distributed

and in addition the ceramics used for the inner walls of the thruster (BN , SiO2,

Al2O3) have secondary electron emission coefficients of γ ≈ 1 for the electron energies

hitting the wall. Therefore, the classical Debye sheath transforms into a double layer

structure. Close to the the wall one gets a potential well, which leads to a trapping

of a fraction of electrons. For higher electron energies the sheath begins to oscillate

in time (GHz range) and in space (region larger than the Debye length). These

oscillations are called sheath instability.

2.2.2. Interaction of Particles with Matter

After understanding how the wall influences plasma properties like potential or par-

ticle densities, the question of the following paragraph will be how plasma particles

interact with the wall.

Particles impinging onto a surface are responsible for different effects. In addition

to secondary electron emission, effects like sputtering, erosion and redeposition have

to be understood. As explained in [5] the following processes are important to un-

derstand the dynamics of particles impinging onto a surface. The particles, neutrals,

atoms or ions, are considered as projectiles that hit the surface. To penetrate the

surface the projectiles must have energies in the range from eV to keV. An entering

particle will be scattered at the atoms of the surface. These collisions lead to an

elastic energy loss and a change in direction. Since the particle also interacts with

electrons in the material an additional energy loss can be detected. Therefore, one

must distinguish between two mechanism of loosing energy that slows down the pro-

jectile. The first is connected with heavy particle collisions. Positively charged ions

are repelled due to coulomb force by the positive cores of the surface atoms. The
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2. Theoretical Basics

Coulomb repulsion is screened by the electrons around the atoms. The second mech-

anism is an electric field drag created by the movement of the ion in a background

of electrons. This slowing down can be seen as an analogon to viscous friction like a

rock falling into water. Both processes are visualized in Figure 2.2.

vion

Retarding e- eld

Dielectric Medium

Incident 

Ion

Scattered 

Ion

Target 

Recoil

Figure 2.2.: left: nuclear collision, right: electronic stopping

The stopping power S can be written as the sum of these two processes. It is defined

as energy loss per unit in length:

S = Snuclear + Selectronic =

(
dE

dx

)
nuclear

+

(
dE

dx

)
electronic

. (2.2.20)

For lighter atoms with lower atomic numbers and for lower ion velocities respectively

lower energies nuclear stopping is more important. Electron stopping is dominant

for higher atomic numbers or higher energies. After loosing its whole energy the

particle gets stuck in the surface. Another possibility is leaving the surface after

some collisions as a backscattered projectile. But not only the impinging particle is

of interest. During elastic collisions the kinetic energy of the projectile is transferred

to recoil atoms. These again can be part of a similar process of collisions. The

result is a collisional cascade. If the kinetic energy of a particle from the surface,

gets large enough, it can get out of the surface. This is called sputtering. To get

reasonable predictions for particle trajectories many particles and a large number

of collisions have to be calculated. Therefore, simulations are useful tools to study

particle-surface-interactions. Especially, for ion thrusters these processes have to be

understood due to the influence of the channel surface on the plasma.

An often used code is SD.Trim.SP (Stationary/Dynamic Transport of Ions in Mat-

ter, with the calculation mode Serial and Parallel), which was developed by Andreas

10



2.2. Plasma Physics

Mutzke et al. [6] to study different effects resulting from interaction of particles with

matter like sputtering, backscattering and transmissions effects of ion bombarded

material. It makes use of the Binary Collision Approximation (BCA), which means

that particle movement is treated as a series of inelastic binary collisions between

atoms. For using the BCA assumption on the system are necessary, like an amor-

phous (randomized) material with a infinite lattice size and a temperature of 0 K.

This is acceptable for simulation of the plasma-wall contact, since the wall is always

much colder compared to the particles of the plasma. The simulation domain of

SD.Trim.SP is one dimensional with an x-coordinate perpendicular to the surface.

In the static mode the following steps are proceeded: At the beginning, a projectile

with kinetic energy E0 and position ~r0 has to be initialized. After a distance λ one

determines a collision partner with a statistically chosen impact parameter p. The

impact parameter p is a function of the scattering cross section σ. Since SD.Trim.SP

does not use a lattice, λ and p can be calculated directly by their distribution func-

tions given as

f1(λ) dλ = δ(λ− λ0) dλ , (2.2.21)

f2(p) =
dσ

σ
= 2

p

p2max
dp . (2.2.22)

In (2.2.22) for the second equation σ is assumed as a circle with maximum impact

factor pmax. Therefore, one can use σ = πp2max and dσ = 2πp dp. The corresponding

distribution functions are calculated by inverse Monte-Carlo sampling. Choosing

a random azimuthal angle from [0; 2π] between two collisions the BCA gives the

resulting energies of the particles as well as both scattering angles θ1 and θ2 [5]. They

determine the new direction of the projectile and the target atom. As the result of

collisions with electrons the projectile atom loses energy. This loss is calculated as a

continuous friction between two collisions.

Then for every particle there are three possible cases. If the energy of the particle

is smaller than the binding energy of the material E < Eb the particle gets stuck

in the matter. If E > Eb and the particle is close to the surface, the particle gets

emitted as a sputtered atom. In both cases for this particle the simulation ends and

it is not further followed. In the third case if E > Eb an the particle is not close

to the surface, it moves through the material and follows the steps described above,

producing a collision cascade. A typical cascade is shown in Figure 2.3.
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2. Theoretical Basics

Figure 2.3.: simulated trajectory (black) and produced recoils (red) of a 2 keV He
atom in Ni matter [6]

Depending on the number of particles, calculation and occupied memory for each

collisional cascade becomes costly. With Tridyn, an other version of the code,

also changes in surface composition can be included. Additional information about

SD.Trim.SP can be found in [6].

2.3. Thruster Concepts

In the following different concepts for thrusters will be presented to give an overview

of the development up to modern ion thrusters.

2.3.1. Grid Thruster

The first ion thrusters appeared in the early 1960’s developed at the National Aero-

nautics and Space Administration NASA. This first type was a grid thruster. Its

schematic structure is shown in Figure 2.4. It uses a radio frequency field to acceler-

ate electrons to ionize the gas in a discharge chamber. As it can be seen in Figure 2.4

the chamber is terminated by two grids. The screen grid confines the plasma and

is therefore positively biased. Whereas the acceleration grid is negatively biased to

accelerate the produced ions.
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2.3. Thruster Concepts

Figure 2.4.: scheme of an electric grid thruster

The field produced in the chamber accelerates electrons. Via collisions with neutral

gas atoms the gas gets ionized. If ions come close to the grids and experience the

plasma sheath at a grid hole, they will be accelerated by the potential drop between

the two grids and produce the thrust by flowing out of the thruster. Ionization and

acceleration are independent of each other, so they can be optimized separately. The

main problem of such a grid thruster is the strong erosion of the grid produced by

impinging ions. This erosion limits the lifetime and therefore makes it less attractive

for economical applications. One way of overcoming this problem is the development

of grid-free thrusters.

2.3.2. Stationary Plasma Thruster (SPT)

One type of grid-free thrusters are Hall Effect Thrusters (HET). A member of this

family of thrusters is the Stationary Plasma Thruster. In current missions Hall

Effect Thrusters are the most used ion thrusters, tested on many space missions like

Astrium’s geo-stationary Eurostar 3000 telecommunication satellite platform and

ESA’s Smart-1 mission [2]. The principle of Hall Effect thrusters is to ionize the

propellant gas by trapped electrons using the Hall effect. To accelerate the produced

ions an electric field is installed. In Figure 2.5 a schematic view of an SPT is shown.

The SPT consists of a ring shaped plasma channel with an inner radius Rin ≈ 30 mm

13
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Figure 2.5.: scheme of a Stationary Plasma Thruster (SPT)

and an outer radius Rout ≈ 50 mm and a channel depth of L ≈ 25 mm. A radial

magnetic field towards the inner walls is produced by permanent magnets (P). A

static electric field (E) is produced by an anode (A) and points outwards the thruster.

It is perpendicular to the magnetic field. Since the electrons are magnetized, the Hall

effect traps them in a circular movement in the plasma channel. These electrons are

used to ionize the neutral Xenon gas. The generated positive ions are accelerated in

the electric field, since they are only slightly affected by the magnetic field. They

produce the thrust of the satellite.

Due to positive ions emitted by the thruster, the whole satellite gets negatively

charged. This accelerates ions towards the satellite. The impinging ions produce

damage, especially the solar panels can be strongly affected by sputtering. This re-

duces the lifetime of the satellite. Therefore, an electron gun is placed at the thruster

exit. It neutralizes the Xenon ions to avoid damage of the satellite. In addition the

neutralizer acts as a source for electrons, which get attracted by the anode and get

trapped in the channel by the Hall effect. The electron energy determines the ioniza-

tion rate and therefore the production of ions. It should be in the range of 15 . . . 20eV

for single charged Xenon ions. In this range the production of high energy ions is

reduced and the damage of the satellite can be avoided. Therefore, high energetic
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2.3. Thruster Concepts

electrons have to be removed from the channel. In the SPT, this is done via sec-

ondary electron emission (SEE) at the thruster walls. Following the physics of a

plasma sheath close to the wall ions and highly energetic electrons impinge the wall,

whereas low energy electrons are reflected. The impinging electrons are absorbed,

while the ions produce low energy secondary electrons. This leads to a cut-off in

the electron energy distribution function at higher energies and the average electron

temperature decreases. Due to the erosion at the channel wall the lifetime of SPT

is limited, although it is about 1000 . . . 2000h longer compared to grid thrusters.

Grid thrusters have a much steeper potential drop and therefore a much stronger

acceleration of ions as the SPT.

2.3.3. High Efficient Multistage Plasma Thruster (HEMP-T)

1998 the THALES group patented the High Efficient Multistage Plasma Thruster

(HEMP-T) [7]. It has the advantage of a strong potential drop as the grid thruster

and a longer lifetime than the SPT thruster. Figure 2.6 shows the thruster channel

of HEMP-T in a schematic view.

Figure 2.6.: schematic view of the High Efficient Multistage Plasma Thruster
(HEMP-T)

It consists of an axial electric field due to the anode. An electron gun is placed

at the thruster exit. In contrast to SPT the permanent magnets produce an axial

magnetic field. The magnets face each other in a repulsive way. Only in a few regions,

depending on the number of magnets, the magnetic field lines are perpendicular to

the wall. These regions are called cusps. While in the SPT the whole channel is

used to ionize the Xenon gas, in the HEMP thruster the ionization takes place more
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2. Theoretical Basics

pronounced in the cusps regions. Here, the Hall effect traps the electrons and forces

them to a radial motion. Due to the strongly reduced wall contact, erosion on the

thruster wall is reduced, which results in a much longer lifetime than the SPT. The

lifetime is about 50 00 . . . 10 000 h.

For a further look into the physics of ion thrusters like HEMP-T or SPT simulations

are used. Therefore, an introduction into numerical methods will be given in the

following. In chapter 5 a characterization of HEMP-T is presented in more details.

2.4. Particle-In-Cell Method

In this chapter the numerical method used for simulations of ion thrusters will be in-

troduced and explained. To understand the basic principles of a plasma the Particle-

In-Cell (PIC) method is a powerful tool. In the first part the idea of this method

will be introduced shortly.

PIC is a self-consistent method to simulate particles in velocity and position space.

In addition one is able to include complicated atomic and surface interactions. Due

to the very high number of particles (≥ 1012) in a system it is not possible to use

a direct particle model with full particle-particle interactions as in Molecular Dy-

namics. The well-known N2 scaling of these interactions makes it impossible for

simulations to resolve all Coulomb-interactions between all particles. Therefore, one

solves the Poisson equations on a grid with Ng cells. Here N stands for the number

of particles in a system. To compute the potential given by the Poisson equation only

charge densities within each cell have to be known. So the PIC code calculates all

macroscopic quantities at the grid points. Instead of solving the equations of motion

~̇x = ~v (2.4.1)

~̇v =
q

m

(
~E + ~v × ~B

)
(2.4.2)

for each particle, one uses so called ”super particles”, which consist of thousands

of real plasma particles. In (2.4.2) ~x denotes the position of a particle, ~v is its

velocity, m its mass and q its charge. ~E and ~B are the electric and the magnetic

field. The ansatz of super particles is possible, since all real particles within one super

particle have the same charge/mass ratio and therefore follow the same trajectory as

a solution of (2.4.2). PIC follows these trajectories, hence the methods gets its name
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Particle-In-Cell method.

To get a correct simulation of the plasma, effects on the smallest length scale have

to be taken into account, which is mostly the Debye length λD,e. This requests a

grid with cell sizes of ∆x = 0.5λD,e. The smallest time step of interest in a plasma is

connected with the electron plasma frequency ωp,e. So the time step of the simulation

is restricted by ∆t ≤ 2π
ωp,e

. Due to stability aspects while integrating the equations

of motion ∆t = 0.2 2π
ωp,e

is used. In Figure 2.7 one cycle of the PIC algorithm is

presented.

Figure 2.7.: Particle-In-Cell method: one cycle

To start, charge densities ρ are interpolated from the particle position ~x to the grid

points Xi with i = 1, . . . , Ng using a weighting function. Then the Poisson equation

∆φi = −ρi
ε

(2.4.3)

is used to calculate the electric potential φi on each grid point i, out of this the

electric field is calculated at the grid. Afterwards, the same weighting function as

before is used to interpolate the electric field back to the particle positions ~x. If

another weighting scheme is used self forces might be created. Now the equations of

motion can be solved for each particle at its exact position. This subroutine is called

particle mover or pusher. Afterwards the algorithm allows to calculate particle loss

and gain at the boundaries and in the next step different types of collisions concerning

all particle species are implemented in a Monte Carlo Collision method. The next

time step follows and again the particles were interpolated to the grid. So the PIC

cycle is repeated The PIC code delivers a complete microscopic description of the
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plasma with the possibility to diagnose all quantities like potential, particle densities,

velocities and temperatures. several times. Further details about PIC are given in [8].

In this thesis a 2 dimensional axially symmetric PIC code with 3 dimensions in

velocity space is used. The code only uses non-dimensional variables. Lengths are

scaled to the Debye length as the smallest length scale. Times are scaled by the

inverse electron plasma frequency as the smallest time scale of interest. This way

one gets the following scaling:

∆̃t = ωp,e∆t = 0.2 (2.4.4)

∆̃z =
∆z

λD,b
= 0.5 (2.4.5)

Consequently, the velocities scale by:

∆̃vs = vs
∆ts
∆z

= vs
0, 5∆̃tsλD,b

ωp,e
(2.4.6)

The subscripted s stands for each particle species. Ions and neutrals are often not

calculated in every timestep. The so called subcycling allows to update these particles

after n steps of electrons. The code used for this work has a subcycling factor of 400

for ions and 2000 for neutrals. Additionally, one applies a self-similarity scaling

to reduce numerical costs. The length and all connected quantities like potential,

magnetic field, mass flow rate and temperature can be scaled by a scaling factor. This

reduces the computational costs, but keeps the relevant non-dimensional parameters

of the system constant. These constant parameters are the Knudsen number for

ionization and the Hall parameters for the confinement. The Knudsen number is

defined as the ratio of the molecular mean free path length divided by a representative

physical length scale of the system. The Hall parameter is the ratio between the

electron gyrofrequency and the electron-heavy particle collision frequency. In the

current code a self-similarity scaling factor of ζ = 0.1 was implemented. Therefore

the size of the system is 10 times larger in reality than in the simulation.

2.4.1. The Poisson Solver

This thesis puts particular emphasis on one element of the PIC cycle, the calculation

of the potential using the Poisson equation (2.4.3). This element is often called solver.

There are different methods available to do this task, for example the finite volume
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method. In the following this method will be described in detail.

The finite volume method (FVM) describes an algorithm which allows to evaluate

the solution of partial differential equations. It is therefore well suited for the problem

of solving the Poisson equation. In many other PIC codes the finite difference method

is used, but as it will be presented in this work, there are several advantages to use

the FVM. The idea behind the FVM is to calculate fluxes instead of derivatives as

in the finite difference method. This is done by applying Gauss’ law.

In the following the FVM will be described by following some trivial analytic ex-

amples regarding to the derivation of numerical heat transfer of Patankar [9]. The

conservation of flux for a one dimensional grid is

d

dx

(
k
dT

dx

)
+ S = 0 , (2.4.7)

with S as a source and k as a transport coefficient for the temperature T . The

temperature can be identified by any other physical entity which is transported via

diffusion. This describes the flux through the grid shown in Figure 2.8

Figure 2.8.: scheme of a uniform 1-dimensional grid

where the faces of the control volume are represented by dashed lines. Integrating

over the control volume leads to(
k
dT

dx

)
e

−
(
k
dT

dx

)
w

+

∫ e

w

Sdx = 0 . (2.4.8)

To solve this equation the values for dT
dx

are needed at the boundaries. Therefore,

one has to make an assumption about a profile in one cell. The simplest choice is to

take a constant profile of T in the cell. In this case the derivatives at the boundaries

would not be defined. Therefore one has to take at least a piecewise-linear profile

achieved by interpolation between two neighboring points. By assuming this profile

the discrete equation is given as

ke (TE − TP )

(dx)e
− kw (TP − TW )

(dx)w
+ S̄∆x = 0 , (2.4.9)
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where S̄ is the averaged value of S over the control volume. Rearranging the terms

and introducing new coefficients one gets:

aPTP = aETE + aWTW + b =
∑

all neighbors

anbTnb + b (2.4.10)

with aE = ke
(dx)e

,aW = kw
(dx)w

, aP = aE + aW and b = S̄∆x.

In radial geometries the creation of a singularity at the axis due to the discrete

calculation scheme is a large problem of the finite difference method. This singularity

is not appearing in the FVM, since a boundary condition of zero flux at the axis can

be directly applied. In similar ways other boundary conditions can be implemented

very simple, including the implementation of dielectrics.

Especially for this work an other advantage of FVM is very important. For non-

equidistant grids, which will be described later as one of the goals of this work, a

finite volume method is much easier to implement. This results from the fact that

gradients, perpendicular components and boundary integrals are directly given by

geometrical information of the grid.

Figure 2.9.: scheme of a nonuniform 1-dimensional grid

There is only one aspect one must take into account, when using a grid as in

Figure 2.9. The transport coefficient of the general equation can not be calculated

using the arithmetic mean. One can show that the arithmetic mean gives wrong

results within some limits, for example if kE → 0 or kP � kE. Following Patankar [9]

one has to use the harmonic average, which is given in one dimension by:

ke =

(
1− fe
kP

+
fe
kE

)−1
(2.4.11)

with fe =
(dx)e+
(dx)e

.
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The Poisson equation used for PIC can be seen as a pure diffusion equation like.

One can identify ε as the transport coefficient and the potential φ analogous to

the temperature T . Therefore, the discretization for the one dimensional Poisson

equation using the FVM is given by:

εe (φE − φP )

(dx)e
− εw (φP − φW )

(dx)w
+ ρ̄∆x = 0 . (2.4.12)

In chapter 3 an additional motivation and physical explanation why the coarsening

of the grid is necessary to do further studies of ion thruster physics is given.
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In the past many physicists used the Particle-In-Cell method to analyze the behavior

and the characteristics of ion thrusters. After numerous works using fluid or hybrid

codes with the assumption of a Maxwellian distribution for electrons and kinetic ions,

with the improvement of computing resources over the past decade self-consistent PIC

codes are developed to study ion thrusters in full detail. In 2009 Konstantin Matyash

published his work about HEMP and SPT thrusters [10]. Figure 3.1 shows his results

of a self-consistent PIC simulation for the HEMP DM3a thruster. He implemented

890 × 240 grid points to simulate a radial length of 24 mm and an axial length of

89 mm. At z = 0 an anode with 500 V was used.

Figure 3.1.: potential (left) and electron density on a logarithmic scale (right) of a
HEMP thruster including near-field plume [10]

In the potential plot one can see that in the whole channel the potential is nearly

constant. It has a strong drop at the thruster exit, which leads to high accelerations

of ions in this region. This potential profile is similar to one of a grid thruster. It is

known as one of the advantages of HEMP-T. At the plot right hand side one can see

that the electron density is concentrated at the inner part of the channel. The contact

to the channel walls is limited to the cusp region at z ≈ 19 mm. Therefore HEMP-T
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has the advantage of very small erosion in the channel and is often summarized with

the slogan of a ”grid-free grid thruster with minimized erosion”.

To be able to address the problem of interaction of ion thrusters’ plume with the

satellite some short-comings of the existing simulations have to be overcome. The

most prominent disagreement of simulations and experiments in the past was the

large difference in the angular distribution of ions, which can be seen in Figure 3.2

Figure 3.2.: angular distribution of ion current contribution scaled to total ion cur-
rent [11]

The most promising ansatz to improve the simulation quality in the plume region

is to extend the size of the domain. In smaller domains the boundary conditions

have a strong impact on the potential, which can cause numerical artifacts in [11].

However, a larger domain size leads automatically to much longer computational

times. As it was explained in chapter 2, PIC codes require cell sizes that resolve

the Debye scale. Since for PIC the solver is the most costly part, a coarser grid can

significantly reduce computational time. For plume simulations a non-equidistant

grid is possible, because the Debye scales of the channel and the plume are quite

different. According to equation (2.2.7) the Debye length can be estimated for the

electrons in the thruster channel by λD,e ≈ 14.8 µm, whereas in the far-plume region

it is about λD,e ≈ 1.3 mm. The Debye length of the ions is even larger. Therefore,

one can use much larger cells in the plume and try to extend the domain to a size,
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where one gets independent of the boundary conditions.

If one is able to extend the size of the domain, one can study the plume physics

in detail, which is up to now one of the most important open questions in thruster

physics. To extend the PIC code into a non-equidistant PIC code one has to make

changes in each part of the PIC cycle. In this thesis the main focus is on the Poisson

solver. The finite volume method will be used to develop a non-equidistant Poisson

solver. Additional adaptions, not discussed here, are needed also in the pusher part

to avoid the appearance of artificial self-forces producing errors in the momentum

balance.
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4. Development and Testing of a

Poisson Solver

4.1. Numerical Development of the Algorithm

One of the goals of this work is to implement a nonuniform two-dimensional grid

for the solution of the Poisson equation using the finite volume method (FVM). The

Poisson equation is given by

∆φ = −ρ
ε

. (4.1.1)

It is pure diffusion equation analogous to the heat flux transport. The electric field

can be calculated as the flux. Let us start with the simple example of a uniform two

dimensional grid like in Figure 4.1:

0 1 2

3 4 5

6 7 8

Figure 4.1.: uniform two dimensional grid

The idea of the FVM is to loop over each cell and to calculate the flux between

the cell and its neighbors. The matrix entry Ai,j describes the coefficient for the flux

between cell i and cell j and is calculated as:

Ai,j = εi,j
dAi,j
dxi

. (4.1.2)
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With the assumption that all cells have the same properties with grid sizes dx =

dy = 1, surface boundaries dA = 1, volumes dV = 1 and permittivity εr = 1 one gets

the following system of equations written in matrix notation:



−2 1 1

1 −3 1 1

1 −2 1

1 −3 1 1

1 1 −4 1 1

1 1 −3 1

1 −2 1

1 1 −3 1

1 1 −2


︸ ︷︷ ︸

A



φ0

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8


=



ρ0
ε0
ρ1
ε0
ρ2
ε0
ρ3
ε0
ρ4
ε0
ρ5
ε0
ρ6
ε0
ρ7
ε0
ρ8
ε0


(4.1.3)

The next step is to implement a coarsening in the grid. The algorithm itself will

be still the same, only some geometrical information are changed. Therefore, the

scheme of a non-equidistant grid shown in Figure 4.2 is used.

0 1

2 3

4 5

6 7

8

0 1

2 3

4 5

6 7

9 10

11 12

13 14

Figure 4.2.: non-equidistant 2 dimensional grid

The small cells in the left lower corner are the same as in the equidistant case with

dx = 1, dA = 1 and dV = 1. Cell 8. . . 12 are doubled in length and so dx = 2,dA = 2

and dV = 4. If one follows the same algorithm as in the equidistant case, one will

get the following discretization matrix.
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A =



−2 1 1

1 −22
3

1 2
3

1 −3 1 1

1 1 −32
3

1 1
2

1
6

1 −3 1 1

1 1 −32
3

1 1
6

1
2

1 −22
3

1 2
3

1 1 −31
3

1
2

1
2

1
3

2
3

2
3
−21

6
5
6

2
3

2
3

−31
6

1 5
6

1 −2 1
2
3

2
3

5
6

−4 1 5
6

1 1 −3 1

1 1 −3 1

1 1 −2


(4.1.4)

In both cases at the boundaries zero flux is used. Another possibility is to set the

boundary cells to a fixed potential value, this is even simpler. In this case one only

has to set the value at the main diagonal to 1 and all other matrix values for this

cell to 0. With the algorithm described here, one is able to discretize non-equidistant

grids. The only missing part to solve the system of equations is the right-hand side,

but this is trivially the vector of charge densities in every cell.

The solution of the matrix equation is done by decomposing the matrix into a lower

triangular matrix and an upper triangular matrix. This needs to be done only once

in the PIC code, after initializing the grid with its geometrical information. During

the PIC cycle only the very fast backsolve with the updated right hand side has to be

done at every time step. The LU decomposition and the backsolve use the SuperLU

package [12].

In the following different benchmark tests will be done. The goal is to find the best

method to solve the Poisson equation in the PIC code, which will be used to study

the plume of ion thrusters.
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4.2. Numerical Tests

In the first part of the following section two methods of treating the simulation do-

main for the solver including non-equidistant meshes will be discussed. The major

work is to derive the discretization matrix of the Poisson equation as shown in chap-

ter 2. The inversion of this matrix and the solution of the Poisson equation for the

potential is done using the SuperLU package [12].

There are different ways of combining domains and treating them in the matrix as

one will see. The first idea is to put the complete discretization of the whole system

into one big matrix and solve it. This has the advantage that all interpolations are

done in the step of calculating the matrix elements, but the matrix to be inverted

gets rather large. Another concept is to create two different domains nested into

each other. One uses the large domain over the whole simulation area with a coarse

grid. This mesh is solved and defines then boundary conditions for a finer mesh in

sub-parts of the domain.

Figure 4.3.: test domain for analyzing different methods

To be able to compare the different approaches one creates a test case presented in

Figure 4.3. This test mesh is smaller than the mesh that will be used for the PIC

code later. The reduced size is necessary to be able to solve on the fine mesh as a

reference solution for the complete domain within acceptable limits of memory and

computing time. The test domain consists of a 102 times 102 grid cells. The left

border, drawn with yellow, indicates an anode that is set to the fixed value of 4. Due
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to the scaling of variables in the PIC code as mentioned in chapter 2 this represents

400 V. For 0 < z < 40 and 50 < r < 100 (upper left corner of Figure 4.3) there is

a dielectrics with (ε = 4). At the axis (at r = 0) a zero flux boundary condition is

used. The outer boundary at z = 60 is set to φ = 0. For the outer boundary at

r = 100 and z = 100 one can decide between zero potential or zero flux (zero electric

field) boundary conditions. A typical solution is shown in Figure 4.4.
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Figure 4.4.: potential φ color encoded for the test domain with a fine grid of 1 × 1
cells including an anode (yellow), a dielectrics (red) and φ = 0 boundary
conditions (violet)

In the following this test system will be solved with different approaches to study

their advantages and disadvantages. A further description and a comparison of these

methods will be given.

4.2.1. One-Grid Approach

The first idea is to treat the whole simulation domain within one matrix using the

finite volume method. The disadvantage of this idea is that one creates matrices of

NG × NG size. This gives very huge matrices with rather long computing times to

solve. One applies the rules of the finite volume method that were already discussed

in the basics part of this thesis in chapter 2.

The first test case will include only one jump in cell sizes from 1× 1 cells to 2× 2
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cells. Within the dielectrics and the channel cells with size 1 × 1 are used, in the

plume the 2 × 2 cells have twice the size of the ones in the channel. The matrix

is filled up according to the finite volume method. After filling up the matrix and

solving the system of equations, one gets the solution for the potential in vacuum.

In the first calculation the borders at r = 100 and at z = 100 are set to a fixed

value of 0. Changing these boundary conditions to zero flux (zero electric field), one

gets a similar result. To get a better understanding of differences of both solutions,

Figure 4.5 shows profiles from the potential at two different positions r = 11 and

r = 65.
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φ
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Figure 4.5.: cuts at different positions with different boundary conditions:
r=11 with no flux boundary condition (b.c.) in red, r=11 with fixed
value b.c. in green, r=65 with no flux b.c. in violet, r=65 with fixed
value b.c. in blue

As one would expect the solutions with zero flux at the boundary has larger values

in the plume than the solution with fixed values at the borders. This results from the

strong impact of the boundaries in such a small domain. Later in the PIC simulation

the domain has to be so large that there will be at most negligible differences in the

outer part of the plume. One can compare the result of the run with a coarsening

with the fine grid solution. Plotting the difference between the run with coarsening

and the run with the fine grid for the whole domain one can diagnose the differences.

This is done in Figure 4.6.

The largest differences occur in the region of the coarsening jump at z = 40. After-

wards with increasing z the difference decreases again. In the channel the difference
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Figure 4.6.: absolute difference ∆φ between the fine solution and the solution with
one coarsening level

is very small. The coarsening has obviously no large impact on the fine grid.

Runtime Analysis for the One-Grid Approach

The goal of this chapter will be to study the runtime of this algorithm and to find a

limit, how large the domain can become. Different sizes of grids are used to test how

long this algorithm needs to calculate the vacuum potential. Each time the matrix

is filled, decomposed and one backsolve is done. One has to take into account that

all these things, except the backsolve, are done only once before the PIC cycle. The

backsolve is repeated every timestep, so its time is extraordinarily important. For

the backsolve the practical limit is to stay below 1 s.

To study the real physical behavior of an ion thruster it is necessary to enlarge the

simulation domain of the runs, that have been performed up to now [10]. To find

out how large the domain with the presented algorithm can be before one reaches

the runtime limit, the following tests are done. The grid shown in Figure 4.7 is

implemented to have a flexible domain size and be able to measure the runtime.

The domain includes the thruster as already used in the first test grid with an anode

at z=0 (red), a dielectrics (brown) and the channel (dark blue). The above border

colored in red is coded as fixed potential φ = 0 to act as metal boundary. This whole

region and the near-field (darkest part outside the thruster) are implemented with

cells of size 1 × 1. Then up to r = 1000 and z = 1000 cells with size 2 × 2 are
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Figure 4.7.: domain to test different positions of splitting

used. The outer part of the plume (lightest region) consists of 4× 4 cells and ended

at variable distances rend and zend. In dependency to rend and zend the number of

cells in the grid NG will change. The thruster, the near field and the first part up

to r = 1000 and z = 1000 consists already of 460000 cells and is larger than older

runs [10].

Important variables to quantify the discretization matrix of the grid are the number

of non-zero elements nnz(A) and the sparsity of this matrix sparse(A). The sparsity

is defined as the ratio of non-zeros elements to the total number of elements. Both

are shown in Figure 4.8 for different grid sizes.
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Figure 4.8.: number of non-zero elements (left) and sparsity (right) of the matrix A
for different number of grid points NG

The left part shows the linear scaling of the non-zeros over NG. The right shows
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that with increased NG the sparsity of matrix decreases. The sparsity is calculated

as follows:

sparse(A) =
nnz(A)

N2
G

∝ 1

NG

. (4.2.1)

As shown the number of non-zero elements scales linear with the number of grid

cells. Therefore, the sparsity scales with 1
NG

, which is consistent with the right part

of Figure 4.8. After decomposing the matrix A into L and U one can make similar

analysis for both. One detects the same scaling for both matrices like for A, only the

values for nnz() and sparse() are a bit higher. Even these matrices are quite sparse,

which makes the backsolve fast.

The times for initialization of the grid and the filling of the matrix scale quadratic

with the number of grid cells. As explained before, more important for the PIC appli-

cation is the backsolve time. The result of its measurements is shown in Figure 4.9.
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Figure 4.9.: backsolve time as a function of number of grid points NG

For the PIC cycle from experience one needs a backsolve time below one second. It

seems to be uncritical for this two-dimensional code to reach grid sizes near 2× 106

cells. The main part of the work for the code is the initialization of the grid, including

the search for neighbors and the filling of the matrix. This process can take quite long,

but since it will be performed only once in PIC this is no problem. An extension of the

PIC code to a third dimension the solver defines a critical runtime limit. Therefore,

one has to search for alternatives.
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4.2.2. Hierarchical Multi-Grid Approach

A second method treating non-equidistant meshes will be presented in the following.

With this ansatz it is not necessary to use one huge matrix. So it will be possible to

save computation time and memory. In addition a decomposition of the domain and

parallelization of the code become easier possible.

At first a coarse grid on the whole domain is used. The values from that solution

are used as boundary conditions for the finer mesh, where only subdomains of the

domain are solved. Afterwards the fine solution is interpolated back to the coarse

grid. This procedure can be redone arbitrarily often. So a specific solution can be

iterated. For a first test a grid with cell size 2× 2 were implemented over the whole

domain as the coarse mesh. The channel r < 50 and z < 40 is the region of the finer

grid with 1× 1 cells.
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Figure 4.10.: mean difference ∆φ after each iteration: plume (red), channel (green),
whole domain (blue)

It is possible to iterate a specific solution with this method, so at first the iterative

character has to be studied. Therefore, one compares the solution after each iteration

with the solution of the fine mesh and calculates the difference ∆φ averaged over the

whole domain. The result is shown in Figure 4.10. After about 20 iterations there are

no changes anymore. Since in the PIC simulation includes almost about 107 timesteps

in which the solver works, one must not care about these numbers of iterations. They

are automatically done in PIC. The larger problem is that the potential converge into

a solution that is different to that from the fine grid. The mean difference over the

whole domain for the converged solution is ∆φ = 0.043, which equals about 1% of
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the largest value at the anode. The error over the simulated domain is shown in

Figure 4.11.
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Figure 4.11.: mean error of the converged solution in the channel (left) and in the
plume (right) color encoded

In the left part of Figure 4.11 one sees that the largest error in this part of the domain

occurs at the upper right border. Since the potential there is mostly driven by the

boundary condition of the grounded metal cells at the right end of the dielectrics,

this is not surprising. From there on the cells with larger error seem to be orientated

towards the dielectrics. The plume region shows a similar behavior with the largest

error again at the grounded cells right-side of the dielectrics. With the iterative

splitting method one converges during the iterations into a different solution as with

the fine mesh, whereas the method with one matrix gives a similar one. Physically the

differences of both solutions are very small (< 1%) and can therefore be neglected.

4.2.3. Successive Over-Relaxation

Until now different algorithms to calculate the discretization matrix have been pre-

sented. In the following alternatives for the LU decomposition to solve the system

of equations will be shown, since for large 3D systems a LU decomposition including

the backsolve will be too costly in terms of numerics [13]. One hopefully finds possi-

bilities, which are easier to parallelize than the backsolve of SuperLU. The iterative

character of the method is described by its name Successive Over-Relaxation (SOR).

According to [14] the principle of SOR is given by

φn+1 = ωφ∗ + (1− ω)φn = φn + ω(φ∗ − φn) . (4.2.2)
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4. Development and Testing of a Poisson Solver

The super-scripted variables define the timestep the potential value is taken from. ω

is the relaxation parameter. In general ω > 1 (over-relaxation) speeds-up the process

of converging, whereas ω < 1 (under-relaxation) is used to stabilize the algorithm.

φ∗ is the result of a certain numerical method. Two of them will be presented and

tested in the following.

Jacobi Method

The Jacobi method is an explicit iterative scheme. In a two-dimensional grid it is

defined by

φ∗i,j =
1

ai,j
(ai−1,jφi−1,j + ai+1,jφi+1,j + ai,j−1φi,j−1 + ai,j+1φi,j+1) . (4.2.3)

So φ∗i,j is calculated only by values from the timestep before. Due to that this

method is perfectly suited for parallelization, every line of the discretization matrix

can be distributed to a single processor. The disadvantage is, that many iterations

are needed until a solution is converged. This behavior is shown in the left part of

Figure 4.12 and is tested for different ω.

One can see, that in accordance to the theoretical prediction a larger ω speeds up

the iterative process. Values ω > 1 are not reasonable, since they lead to a divergent

solution. This test was done with a domain of 10500 cells without any particles.

To study the scaling with different domain sizes different tests were done. They are

visualized in the lower right part of Figure 4.12. The difference between iterations

needed with higher ω is increased with higher number of cells. For this method ω = 1

is the best choice for this particular case.

Gauss-Seidel Method

In contrast to the Jacobi method the Gauss-Seidel method is implicit. The iterative

character is kept. The difference to the Jacobi method is that one uses not only

values from the previous timestep, but also values that are already calculated for the

current timestep. The underlying equation of the Gauss-Seidel algorithm is given

in (4.2.4).

φ∗i,j =
1

ai,j

(
ai−1,jφ

n+1
i−1,j + ai+1,jφ

n
i+1,j + ai,j−1φ

n+1
i,j−1 + ai,j+1φ

n
i,j+1

)
. (4.2.4)
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Figure 4.12.: convergence characteristics of the Jacobi method with different SOR
parameter for NG = 10500 (upper plot);
iterations (bottom left) and time (bottom right) needed to reach a con-
vergence of ∆φ < 10−7 over number of grid cells NG with the Jacobi
method and different SOR parameter
red ω = 0.5; green ω = 0.75 and blue ω = 1

With the obtained φ∗ one is again able to calculate φn+1 using the SOR equa-

tion (4.2.2). Analog to Figure 4.12 one can make the same tests for the Gauss-Seidel

method and gets Figure 4.13.

Even with the same parameter ω = 0.5 one needs about 40000 iterations less to

reach the convergence criteria max(∆φ) < 10−7. For ω = 1 the difference between

both methods is still larger. One gets a max(∆φ) < 10−7 about 80000 iterations

earlier with the Gauss-Seidel method. Another point of interest is that with the

Jacobi method it is possible to use relaxation parameters ω > 1 which would speeds

up the convergence. With ω = 1.75 the solution is converged after less than 20000

iterations whereas with Jacobi’s method one needs a minimum of 100000 iterations

even at the largest ω.

Both methods scale linearly with number of iterations needed to reach a specific

∆φ. The quadratic behavior of the required time shown in the lower right plot in

each figure is trivial to understand, because the entries of the matrix are proportional

to the square of the number of grid cells NG. therefore, it is necessary to think about

other strategies of minimizing the computational time for large cell numbers.
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Strategies for Parallelization

Parallelization is one possible approach to speed up the calculation. Although the

Gauss-Seidel method seems very promising in the numerical comparisons until now,

it is very difficult to parallelize. Due to the implicit character it is not so trivial as

for the Jacobi method.

One possible idea for PIC’s Poisson solver will be to divide the computational do-

main into several sub-domains, calculate each sub-domain with Gauss-Seidel method

on a single core and only do the matching at the interface between the sub-domains

with Jacobi. To validate this idea, one makes tests with two domains, where different

solver are introduced. Close to the channel one uses the accurate and fast Gauss-

Seidel method, in the plume one implements the Jacobi method. The Gauss-Seidel

method was modified with SOR using the highest possible SOR factor ω = 1.75.

Beginning from a run without the Jacobi method one introduces more and more cells

where Jacobi’s method is applied to up to a run where one uses the Jacobi method for

every cell. Figure 4.14 shows how many iterations are needed to reach convergence

as a function of the number of cells with the Jacobi method. For this test a grid with
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33000 cells and one with 50500 cells are used.
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Figure 4.14.: number of iterations to reach numerical convergence as a function of
percentage of Jacobi cells for NG = 33000 (left) and NG = 50500 (right)

Even with a small Jacobi region one needs much more iterations than with pure

Gauss-Seidel method. Therefore, one has to carefully check, whether this option is

good to use for parallelizing the PIC solver. The convergence seems to be strongly

coupled to the slowest method which was used and therefore is orientated on the

Jacobi method with its slow convergence. Even with a few cells where the Jacobi

method is used the convergence is much slower than with a pure Gauss-Seidel domain.

Interesting is the different behavior for the two grids. While with NG = 33000

cells one has a continuous increase of needed iterations, for NG = 50500 cells has

a maximum between 40% and 60% and decreases then to the pure Jacobi solution.

Even for a few cells using the Jacobi method, the convergence is slowed down.

Reconverging after a small Perturbation

More important than finding an initial solution is the reaction to a small perturbation.

In other words one will check, how fast a solution reconverges in both methods if one

takes a converged solution and adds a small oscillation of only few Volts. For these

tests, that are closely connected to the PIC application one distinguishes between

numerical and physical convergence. In the following numerical convergence means

∆φ < 10−7. Important is to analyze the reaction to different amplitudes of the added

signals.

At first the goal should be to reach numerical convergence with both methods. The

result is shown in Figure 4.15.

All these test are done on a grid of 10500 cells. Obviously, the Gauss-Seidel method

is faster than the Jacobi method. The SOR factor ω = 1.75 gives an extra speed up.
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Figure 4.15.: needed number of iterations to reconverge after adding a small perturba-
tion ∆Φ to a already converged solution with the Jacobi method (left),
the Gauss-Seidel method (right with green dots) and Gauss-Seidel with
a SOR factor of ω = 1, 75 (right with red dots)

There is one more difference that is not directly clear from Figure 4.15 itself. These

tests are done with an initial solution that is already converged. To reach this

converged solution from scratch with Jacobi method one needs 117518 iterations. So

using this solution and adding an oscillation makes it much harder for the algorithm

to reconverge. For an amplitude of ∆Φ = 0.5 one needs about three times the number

of iterations, so probably it would be easier to start from scratch in every step, which

is not convenient for the PIC algorithm.

The behavior of the Gauss-Seidel method depends on the different SOR factors.

With a SOR factor of 1 one needs 68209 iterations to converge from the scratch to

the vacuum solution and with ω = 1.75 still 13491. Compared with the number of

iterations Figure 4.15 these are much lower, so with an already converged solution it

is easier to reconverge after a perturbation. This can probably be explained by the

implicit characteristics of the Gauss-Seidel method.

After this test one has to check the same behavior for physical convergence. Physical

convergence means in this context for a physical solution and with physical param-

eters not an accuracy of ∆φ < 10−7 is needed. Therefore as mentioned before one

uses ∆φ < 10−3. This results in the plot shown in Figure 4.16.

Because with 10500 cells one converges even with the Jacobi method too fast to

compare it, for the test of physical convergence the grid was enlarged to 45500 cells.

Even with this larger grid one needs much less iterations to converge. Both methods

are similar at that point. Interesting is that with Gauss-Seidel there is a range

|(∆φ)| ∈ [0; 0.4] where the Gauss-Seidel method without SOR is faster than with a
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Figure 4.16.: needed number of iterations to reconverge in a physical sense after
adding a small perturbation ∆φ to a already converged solution with
the Jacobi method (left), the Gauss-Seidel method (right with green
dots) and Gauss-Seidel with a SOR factor of ω = 1.75 (right with red
dots)

SOR factor of 1.75.

At this point one should mention again, that the Gauss-Seidel method can not be

parallelize trivially. Hence it is not well suited as an alternative for the one grid

approach for 3D PIC, although of its numerous advantages in terms of numerical

characteristics. To avoid this bottleneck one can make domain decomposition and

calculate every domain with the Gauss-Seidel method on a single core and only do the

matching between the cores with the Jacobi method, so a parallelization is possible,

but not as trivial as with the Jacobi method. The question is what will be more

promising for the application in PIC. Due to the large advantages of the one grid

approach it is chosen to make some physical tests in the next section.

4.3. Physics Validation Tests

4.3.1. Uniformly Charged Ring

After doing numerical tests to decide which method to use for the Poisson solver, as

a physicist one is interested in correct physical behavior of the solver. Therefore one

must benchmark the numerical solution with an analytic one. A first system which

is known from literature is the potential of a uniformly charged ring presented in

Figure 4.17:

Nearly every student of physics has solved this problem for some special cases like
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R

dQ

z

ρ

Figure 4.17.: system of a charged ring

the center of the ring. Finding a complete analytic solution was an open question only

recently solved. Ciftja et al. have found a way to solve this problem analytically [15].

They derived the following form of the potential Φ:

Φ(ρ, z) =
keQ√

(ρ+R)2 + z2
2

π
K

[
4ρR

(ρ+R)2 + z2

]
(4.3.1)

where ke is Coulomb’s electric constant. K is the complete elliptic integral of first

kind, which is given by:

K(m) =

∫ π

0

dθ√
1−m sin2(θ)

. (4.3.2)

The analytic solution can be calculated and will be compared with the numerical

solution of the Poisson solver. For the developed axis symmetric Poisson solver one

can easily simulate this system by initializing one cell at ρ = R = 100 m with the

charge Q = 107e where e is the elementary charge. Due to the rotational symmetry

this will be exactly the same as an uniformly charged ring. The comparison of the

analytic solution and the numerical output of the solver is shown in Figure 4.18.

One can see that the solution is very accurate and close to the analytic one. As an

addition one can also compare the electric field calculated numerically and analyti-

cally. Due to the symmetry of the system the z-component of the electric field will

vanish. Therefore, one has to calculate only the derivative with respect to ρ:

~E = −~∇Φ(ρ, z) = Eρ ~eρ =
∂Φ

∂ρ
. (4.3.3)
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Figure 4.18.: comparison of analytic (red line) and numerical (blue dots) solution of
the potential of a uniformly charged ring

Using the product rule for differentiation one gets:

−∂Φ

∂ρ
=− 2keQ

π

{
∂

∂ρ

(
1√

(ρ+R)2 + z2

)
K

[
4ρR

(ρ+R)2 + z2

]
+

1√
(ρ+R)2 + z2

∂

∂ρ

(
K

[
4ρR

(ρ+R)2 + z2

])}
.

(4.3.4)

The largest problem is to find the derivative for the elliptic integral K. According

to [16] one can use the low-order differentiation:

∂K(m)

∂m
=

E(m)

2(1−m)m
− K(m)

2m
(4.3.5)

with E(m) as an other complete elliptic integral of second kind, which is defined as:

E(m) =

∫ π/2

0

√
1−m sin2(θ) dθ . (4.3.6)

One can substitute m = 4ρR
(ρ+R)2+z2

and get the following result:
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Eρ =− keQ
2

π

[
− ρ+R

((ρ+R)2 + z2)3/2
K(m)

+
1√

(ρ+R)2 + z2

(
4R

(ρ+R)2 + z2
− 8ρR(ρ+R)

((ρ+R)2 + z2)2

)(
E(m)

2(1−m)m
− K(m)

2m

)]
.

(4.3.7)
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Figure 4.19.: comparison of the analytically (red line) and numerically (blue dots)
calculated ρ-component of the electric field for a uniformly charged
ring

Again one can compare the analytic solution for the electric field with the numer-

ical one. The result is shown in Figure 4.19. As expected from the potential also

numerical and analytic solution of the electric field are in good agreement. There are

only minor deviations due to numerical accuracy around the divergence at ρ = R.

4.3.2. Uniformly Charged Infinite Cylinder

Another system with known analytic solution is a uniformly charged infinite cylinder.

This is used as benchmark for the axis-symmetric Poisson solver. The setup is shown

in Figure 4.20.

The analytic solution of such a system is well-known. One can derive it easily

applying Gauss’s law:
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Figure 4.20.: scheme of a charged cylinder

∫
∇ ~EdV =

∮
~EdA =

∫
ρ

ε0
dV =

Q

ε0
(4.3.8)

where ρ is the charge density and ε0 the vacuum permittivity. The integration can

be done trivially:

E · A =E · 2πrL =
Q

ε0
=
ρπr2L

ε0
for r < R , (4.3.9)

E · A =E · 2πrL =
Q

ε0
=
ρπR2L

ε0
for r ≥ R , (4.3.10)

with L as the length, which is defined to express the surface A, and R the radius of

the cylinder. Finally the electric field is given as

E(r) =
ρr

2ε0
for r < R , (4.3.11)

E(r) =
ρR2

2ε0r
for r ≥ R . (4.3.12)

Inside the cylinder one gets a linear increase of the absolute value of the electric

field with radius and outside the cylinder the strength of the electric field decreases

with 1
r
. This behavior is visualized in Figure 4.21 for Q = 107e. The radius is set to

R = 100 m.

Obviously the analytic and the numerical solution are in very good agreement.
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Figure 4.21.: comparison of the analytically (red line) and numerically (blue dots)
calculated ρ-component of the electric field for a uniformly charged
cylinder

Summarizing the results from the physical and the numerical tests the one grid

approach is the best choice for the Poisson solver in two axial-symmetric dimensions.
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5. Analysis of Thruster Physics

5.1. General Characterization of HEMP-T

In the following chapter a description of the basic physics of an ion thruster will be

given for the example of the HEMP thruster. In Figure 5.1 a schematic view of the

actual HEMP thruster analyzed in this work is shown. In difference to Figure 2.6 a

thruster with only one inner cusp is used. There are several models of the HEMP

thruster existing, details can be found in [17].
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Figure 5.1.: schematic view of the HEMP-T concept

The HEMP thruster has a dielectric, rotationally symmetric discharge channel with

an anode, located at the upstream end. In the discharge channel the electrons accel-

erated by the anode create ions by ionization of neutrals used as propellant. At the

downstream end of the discharge channel the thruster exit is located. Outside the

thruster, behind the thruster exit, a hollow cathode neutralizer provides electrons to
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avoid charging of the satellite by compensating the outstreaming ions. This electron

source also acts as primary source of electrons for the thruster plasma.

Radially, the channel is limited by a dielectric ring followed by a system of axially

magnetized permanent magnet rings. The magnets are positioned with alternating

magnetization, which means that identical poles of the magnets face each other.

In these regions between the magnets so-called cusps are created. They can be

characterized as regions with perpendicular magnetic field lines towards the wall.

The magnetic field topology changes between areas with dominant axial or radial

magnetic field. The strength of the magnetic field is chosen such that electrons

are magnetized and follow magnetic field lines. That means that the Larmor radii

of electrons are much smaller than the system length. The typical length of the

discharge channel is about 5 cm, the radius is about 1 cm. Electrons are guided into

the magnetic cusps, where they are trapped.

To understand such trapping of electrons, one has to understand the principle of

a magnetic mirror. Magnetic field lines are getting closer within the cusps. The

velocity of the electrons decreases with the density of the field lines so that they even

can get reflected [18]. In general a magnetic mirror reflected charged particles from a

magnetic field region with denser magnetic field lines. As an electron gyrates along

a magnetic field line and enters a region of denser field lines, the azimuthal motion

of the electron and the radial component of the magnetic field, results in a Lorentz

force pointed away from the strong field region. This force can reflect the electron. In

thrusters magnetic field lines are squeezed close to the cusps and generate a magnetic

mirror. This magnetic mirror acts only on electrons, because ions have a much higher

mass and their Larmor radius exceeds the system length of the thruster. Ions are

non-magnetized, but are coupled within the plasma to the movements of electrons

by the request of quasi-neutrality on the length scale of the Debye length.

The transport of electrons perpendicular to the magnetic field lines, towards the

anode cusp is caused by anomalous diffusion. Electrons, which are emitted by the

neutralizer, are trapped in the magnetic cusp close to the exit of the discharge chan-

nel. The confined electrons in the exit cusp pull down the potential at the exit. Due

to this potential drop the ions are accelerated as there is a virtual grid. Since the

radial magnetic field is very strong at the exit away from the axis, most of the elec-

trons are not able to enter the channel. Only some of them will overcome this barrier

due to collisions or anomalous transport. In addition, electrons close to the channel

axis are able to enter due to the dominant axial field in this region. Electrons getting
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into the channel have very large kinetic energies when they are accelerated in the

potential drop at the exit cusp. High energy electrons lead to a stronger ionization

of the neutral propellant gas, especially in the next upstream cusp, where most of

these electrons are trapped. Electrons in the cusps region have a long residence time

there due to the mirror trapping and increase by this the ionization probabilities.

Between the cusps the dominant axial field will lead to a rather homogeneous fill-

ing. The competition of radial transport including classical collisions and anomalous

transport, specifically important to allow electrons to overcome the cusps, and axial

transport in particular close to the axis determines the plasma potential. Their rela-

tive strength decides if the cusps get strongly visible as steep steps (in the case of very

strong radial transport) or as only weak perturbations (in the case of dominant axial

transport) with an additional steep gradient at the exit, where ions are accelerated.

Numerical analysis [11] using a 2-dimensional axis-symmetric PIC code demonstrated

that a rather smooth potential profile with only weak signatures of the cusps estab-

lishes very similar to potentials of grid thrusters. 3D studies demonstrated that for

HEMP-T anomalous electron transport via electrostatic turbulence is limited mostly

to the cusp region due to the strong radial magnetic field. In contrast to this com-

mon Hall thruster where the radial magnetic field is much stronger are much more

dominated by turbulence. Therefore, HEMP-T classical collision processes are quite

important allowing a more robust prediction by modeling as turbulence-dominated

Hall thrusters.

For the potential, the following boundary conditions are used: an anode voltage of

500 V, E = 0 at the end of the domain in z-direction and Φ = 0 at the end of the

domain in r. In contrast to many other simulations the dielectric is not implemented

as a local boundary condition [19]. The formulation of finite volumes guarantees

the correct physical implementation, that the normal component of the electric field

perpendicular to the dielectric surface (namely in radial direction) has to be identical

at the interface. This treatment guarantees a fully self-consistent of the potential in

the whole domain and to resolve the floating potential at the dielectric surfaces

including non-local effects neglected in the standard cloaca implementation of local

boundary conditions at the dielectric surface. A converged PIC-run in quasi steady

state is used to calculate it after 6× 106 timesteps.

For the HEMP thruster the potential is shown in Figure 5.2 In the plasma bulk it

is nearly constant with a steep drop at the thruster exit producing a high thrust.

Close to the axis the mainly axial magnetic field allows the electrons to flow parallel
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Figure 5.2.: potential of a HEMP thruster

to the electric field. A small perturbation of the electric potential is therefore quickly

compensated by fast electrons. The potential in the plasma bulk is nearly constant

and equal to the anode voltage over the whole channel. It results in a steep drop

at the thruster exit, producing a high thrust. Here the mainly axial magnetic field

allows the electrons to flow in parallel to the electric field. A small perturbation of

the electric potential is therefore quickly compensated by fast electrons. The radial

and axial strength of the drop at the exit is the reason for the acceleration of ions

and defines their angular distributions. High energy ions are only generated close

to the exit cusp of the thruster. Close to the thruster walls, the potential decreases

due to the boundary condition of zero net current at the wall. In the cusp region at

about z = 19mm, the potential is dropping smoothly due to the radial ~B field.

5.2. Velocity Distribution Function Characteristics

To characterize the basic physics of HEMP-T a diagnostic tool is implemented in the

PIC code to calculate the velocity distribution functions with spatial resolution over

the whole domain for all species. All velocity distribution functions (Figure 5.4, 5.7

and 5.10) are temporally averaged over 106 timesteps of a quasi steady-state run.

All particles with r < Rthruster = 9 mm are taken into account, that means velocity

distribution functions spatially averaged over the acceleration channel are calculated.

Plots 5.3 and 5.6 show the density for electrons and ions after 6 ·106 timesteps of the
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5.2. Velocity Distribution Function Characteristics

same run. They can be seen as snap-shots at this time.

5.2.1. Electrons

The electron density distribution is shown in Figure 5.3.
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Figure 5.3.: density profile for electrons for a HEMP thruster, the light blue marked
region in the plume represents the cathode neutralizer

The influence of the plasma sheath can also be seen in the electron density presented

in Figure 5.3. The electron density is uniformly decreasing towards the channel walls

and the cusp region is clearly visible. The higher electron density in this region due

to magnetic mirroring at the denser magnetic field lines is visible.

It is also visible that the density is strongly decreasing after the exit in the plume

region with the exception in the direction of the primary source of electrons at the

neutralizer. At z = 70 mm the density is decreased by at least 4 orders of magnitude

compared to the channel. The region between the inner cusp and the exit cusp has

a higher electron density than the region between anode and the inner cusp. This

means that the transport of electrons from the neutralizer entering the channel after

passing the exit cusp is larger than through the second cusp. The wall contact of the

electrons is limited to the cusp regions. Only electrons from the neutralizer are in the

plume with velocities directed towards the channel, because the source electrons are

accelerated by the potential in this direction. In Figure 5.4 the velocity distribution

function is plotted.
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Figure 5.4.: electron axial velocity distribution function for r < Rthruster as a function
of the axial position z

For all z the distributions look rather symmetric in velocity space on this scale. This

can be understood by the relative small average energies of the electrons of about

several eVs. Analyzing the distribution functions further in detail cuts through the

profile are shown in Figure 5.5.
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Figure 5.5.: electron energy distribution function at different axial positions 10 mm
(red), 35 mm (green) and 51 mm (blue)

In this logarithmic scale a Maxwellian distribution function would show a linear

dependency. Obviously this is not the case here, since especially at high energies there

are particles that would not be represented in a Maxwellian distribution function.

So in the channel they are essentially non-Maxwellian, which means that the mean

free paths of electrons are too long to be able to maxwellize the electron distribution
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5.2. Velocity Distribution Function Characteristics

function. This can be proven by simple estimates of mean free path length scales in

the channel of the thruster. The smallest mean free path length exists for charge-

exchange collisions. All other mean free path lengths are much longer especially the

mean free path length for elastic collisions or for excitation.

λmfp,CX =
vn

〈σCXvion〉nn
. (5.2.1)

With vn and vion as the velocities of neutrals and ions, which can be evaluated

with the assumption of a Maxwell distribution of the temperatures in the channel.

Although this is not correct, it will be sufficient for an estimate. Due to very strong

coupling of ions and neutrals by charge-exchange collisions both have the similar

temperatures in the channel. Therefore, the velocities of neutrals and ions cancel out

each other. The neutral density is about 5 · 1019m−3. The cross section for charge-

exchange reactions for a Xenon gas is can be calculated according to [20]. Therefore

one gets gure

λmfp,CX ≈
1

1.57 · 10−14cm2 · 5 · 1013cm−3
≈ 1.2 cm . (5.2.2)

This is the smallest collision length scale in this plasma. Because it is larger than the

domain size, the plasma in the thruster is nearly collisionless. Therefore, the plasma

has no chance to equilibrate and one should avoid the assumption of a Maxwellian

energy distribution. As a consequence, one is not allowed to use fluid equations to

describe the physics in the plume correctly. The axial velocity distribution function

is much broader in the region about z = 20 mm and z = 51 mm, since electrons are

strongly heated in the cusps, so in this regions there are more fast particles than in

all other regions. Comparing both cusps with each other, the inner cusp is much

stronger so that the increase is velocity is very strong at z = 19 mm. Outside the

cusps the velocity distributions are nearly identical within the channel.

5.2.2. Ions

Due to quasi-neutrality the ions have a similar density distribution in the channel

as the electrons. In the first half of the thruster before the inner cusp only near the

cusp itself high densities are detectable, whereas the region between inner cusp and

exit cusp has a higher density.

As one of the most important features of HEMP-T the wall contact of energetic ions

is limited to the cusp region being coupled to the flows of electrons. This can be seen
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Figure 5.6.: density profile for ions for a HEMP thruster

in Figure 5.6. In the plume the largest disagreement of simulation and experiment

appears clearly. As already mentioned in the beginning of this chapter the angular

distribution is not in good agreement with experimental results. The reason for more

ions in the larger angles as observed in the simulation is that most of the ions leave

the thruster with very large radial velocities. One possibility to reduce this effect is

to reduce the impact of the boundary conditions affecting this strongly, especially in

r-direction. The ion distribution function of the axial velocity is shown in Figure 5.7.
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Figure 5.7.: ion axial velocity distribution function with r < Rthruster as a function
of the axial position z

Within the channel all ions have rather low velocities. They are not accelerated
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strongly due to the nearly constant potential profile. Only at the exit they are

accelerated by the strong potential drop. Near the exit cusp and in the plume ions

with high energies exist.

The first peak in the distribution at z = 48 mm with velocities up to 20 000 m/s

can be explained by the grounded wall after the dielectrics. The grounded metal

fixes the potential at Φ = 0 V and ions are accelerated very strong in this direction.

The right side of the peak is very steep and leads to a region with large positive

velocities. Therefore, these particles loose energy flying in z-direction. This is a

direct consequence of the potential structure in this region as shown in Figure 5.2,

because after the grounded wall the potential rises again and ions are slowed down

by the counter-acting electric field. There is one part of the ion distribution with

large negative velocities at z = 51 mm. Here, ions are accelerated by the potential

structure close to the grounded plate in negative direction.

Close to the exit cusp inside the channel there are many ions with low velocities.

At the exit cusp and afterwards they are accelerated, seen by the shift of the orange

color to higher velocities. This acceleration is a consequence of the steep potential

drop at the exit. In this acceleration region the ion density decreases. Most of them

fly out of the region used for spatially averaging (namely the channel width) due to

their high velocity in radial direction.

Some ions reach the end of the domain with a maximal velocity of about 18 000 m/s.

The velocity of these particles increases up to the end of the domain, since the

boundary condition of the potential forces it to decrease up to there. Due to the

small plume domain in this run there is no region where both E and Φ are equal to

zero and the particles are accelerated in the whole plume region. This explains the

trend to higher velocities in Figure 5.7 beginning at the exit cusp at 51 mm up to

the end of the domain. This structure looks like a quarter of a circle in the velocity

distribution function. This is analogue to a motion with constant acceleration, where

the velocity is proportional to the square-root of the displacement.

As mentioned the exit cusp with its strong potential drop is responsible for the

angular distribution of the accelerated ions. In addition, ions are also scattered into

the side part of the plume by charge-exchange collisions, where so called wings can

build up. These wings are also visible in the ion density profile. This was already

measured in the early 1980s by M.R. Carruth Jr. and M.E. Brady [21]. They

determined that these wings are part of the charge-exchange plasma flow and may

flow back to the spacecraft.
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The slow source neutrals, that are injected and not ionized in the channel, can

exchange their charge with fast ions during collisions and by this produce slow ions

and fast neutrals:

Xe + Xe+ → Xe+ + Xe . (5.2.3)

These fast neutrals and fast ions at large angles flowing towards the spacecraft can

create damage from sputtering. In the past the region of the plume was mostly

studied with hybrid models. These hybrid codes are used to describe the behavior of

plasma particles in the plume. Such simulations show the creation of distinguished

side wings.

Figure 5.8.: equipotential lines of an SPT-100 in the outer plume [22]

They can be seen as regions beside the actual beam region in Figure 5.8. This plot

was calculated from Taccogna et al. [22] using a two-dimensional axis-symmetric

hybrid code. In their simulation a particle method for ions and a fluid model for the

electrons were applied. The simulated domain has a size of 1.5 m in axial direction

and 1.2 m in radial direction. The thruster, which is placed in the left upper corner,

is an SPT-100.
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5.2.3. Neutrals

The neutrals density distribution is influenced by ionization. The consumption of

neutrals in ionization reactions can be seen in Figure 5.9. It shows a neutral profile

and the calculated ionization reaction rates for HEMP-T including its near field

region. The positions of maximum reaction rates for ionization reactions are identical

with the positions of holes in the profile of the neutral density and are at the positions

of the cusps, where the electrons are heated increasing ionization.

This profile can be understood using an estimate for the ionization mean free path

length in the channel and the plume. One expects a length, which is of the order

of the system size or smaller for the channel and much larger in the plume, because

there are no reactions detected.

Figure 5.9.: electron impact ionization rate (left) and neutral density (right) of a
HEMP thruster including near-field plume [23]

The estimate is done via an integration over the energy distribution. Like in the

calculation before, one uses a Maxwell distribution. Although it is not correct, it gives

a simple order of magnitude estimate. For calculating the velocity of the neutrals

one uses a temperature of 800 K which corresponds to 0.069 eV. One gets:

λmfp,ion =
vn

〈σionve〉ne
=

√
2kBTn
mn

1

〈σionve〉ne

=

√
2 kB 0.069 eV · 11 605 K/eV

131.293 u · 1.661 · 10−27kg/u
· 1

3.4655 · 10−9cm3/s · 5 · 1012cm−3

≈ 1.84 cm . (5.2.4)
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As expected, this value has the same order as the channel radius and is smaller than

the length of the channel. In agreement with the results of the simulation, ionization

plays a very important role in the channel. A different result is expected in the

plume. There, the density of the electrons is much lower. Velocity of neutrals, the

cross section and therefore also the integral over the electron velocity stays the same.

Since the electron density is at least four orders of magnitude smaller than the density

in the channel, compare Figure 5.3, the mean free path is about this magnitude larger.

So it is much larger than the size of the plume itself. As a consequence in the plume

ionization has no impact. That was already stated in the left part of Figure 5.9 as

there are no ionization reactions in the plume.

The mean free path length for charge-exchange reactions outside the channel can be

estimated. It should be smaller than the plume itself to have an impact. Analogous

to (5.2.1) one can do this very easy. There are only two differences, the higher ion

temperature, which is now approximately 400 eV and the cross section of charge-

exchange collisions of Xenon has changed due to the higher energy of ions.

λmfp,CX =
vn

〈σCXvi〉nn
≈
√
Tn
Ti

1

σCXnn

=

√
0.069 eV

400 eV

1

3.7271 · 10−15cm2 · 1019m−3

≈ 0.35 cm (5.2.5)

with Tn and Ti for the temperatures of ions and neutrals. The temperature of the

neutrals is used similar to (5.2.4). Due to the small lengths and in agreement with

the expectations charge-exchange reactions have a strong impact in the plume. It

is interesting to study the effects connected with charge-exchange reactions in the

wings of the plume, if one can extend the domain and therefore simulate also the

outer part. These reactions are especially problematic at the side regions of the plume

where ions can flow back to the satellite. They can affect the payload of the satellite

since they build up electric fields and disturb diagnostics or communication systems

of the satellite. Therefore contamination, sputtering and degradation on components

of the spacecraft have to be studied. This will be done later.

In Figure 5.10 the axial velocity distribution function for neutrals is presented. One

can see that charge-exchange collisions have a strong impact on the velocity profile

of neutrals. It couples the neutrals to the ions and is responsible for similarities in
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both distribution functions. All regions of high-velocity particles with positive and

negative values in 5.10 can be explained by this.
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Figure 5.10.: distribution of velocity in axial direction for neutrals for r < Rthruster

Apart from the high-velocity wings the distribution looks quite more regular, since

the neutrals are not affected by the magnetic or electric field. Most of the neutrals

have velocities in the range of −2000 m/s . . . 2000 m/s and so in the order the ions.

The values are equally distributed in positive and in negative direction. This is again

a result of the large density in the channel and their relative low temperature. In

the plume the situation for neutrals is different. Neutrals are only flying out of the

thruster and negative velocities are not detected. If one considers a chamber with

uniformly distributed velocities and a hole at one side, particles can flow out only

with a positive velocity. This situation is similar to the one in HEMP-T.

Not only time averaged phenomena as discussed before are important to charac-

terize the thruster. There are also dynamic effects, that will be discussed in the

following section producing additional instabilities. This is not observed for HEMP-

T, therefore Hall thrusters are used for this.

5.2.4. Breathing Mode and Rotating Spoke Instability

In the plasma of a Hall thruster there are several different oscillations in a wide band

ranging from 1 kHz to 20 GHz. One of the slowest and therefore lowest frequency

modes is the Hall thruster breathing mode. Although its frequency is very low, it is

one of the largest oscillations in Hall effect thrusters. The origin of this oscillation

is a ”predator-prey” behavior between the ionization-zone and the neutrals in the
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thruster channel. It begins with the filling of the channel with neutrals. The Hall

current, which has its maximum current density near the peak of the radial magnetic

field, starts to ionize these neutrals. If the neutrals are ionized, they will leave back

electrons that can contribute to the Hall current. Additional electrons stay in the

closed-drift orbits and therefore lead to an increase of the electric field between the

anode and the hall current. This increases the E × B-drift and the ionization rate.

Enhanced ionization fastly exhausts all neutrals. Afterwards the channel again begins

to fill with neutrals and the cycle will be repeated.

If one looks again at Figure 5.9 one can easily explain the breathing mode of such

a thruster. At the same time the neutral profile has holes via ionization the neutrals

itself are forced to balance these holes with an increased diffusion to these regions.

Therefore one gets a continuous periodic behavior of filling up the neutral reservoir

in the cusp and again exhaust it due to ionization. The typical time t for this refilling

of the holes can be estimated. Therefore one uses a typical velocity of neutrals vn in

the channel and the size of the channel L, because neutrals were not affected by the

electric or magnetic field.

t =
L

vn
≈ 50 mm

100 m/s
= 50 ms . (5.2.6)

Within this time the neutrals are able to refill the areas of strong ionization and

keep the process running. The neutral dynamics is connected to the dynamics of the

electrons, because they are responsible for the ionization. A phenomenon which is

strongly coupled with the neutral gas depletion is the rotating spoke instability. Its

connection to neutral gas depletion due to ionization is well described in [24]. There

a fully three-dimensional Particle-in-Cell Monte Carlo Collision model was used to

analyze a cylindrical Hall thruster. It was found, that within about 1.2 µs the spoke

rotates about 90◦ in the direction of the E × B-drift. The average velocity of the

spoke was calculated to 0.8 cm/µs, which is about four times higher than laboratory

observations. The time how long the neutrals need to refill areas of complete neutral

depletion is estimated as 2.2871 µs. A still open task is the mechanism of spoke

formation and its dynamics including the anomalous transport inside the spoke. One

was able to show that the asymmetry caused by the cathode has a huge impact on

the spoke. The electron current through the spoke was about Ie ≈ 0.55 A, which is

two orders of magnitude higher than the current from classical diffusion processes.

The spoke instability was also of interest for several experimentalists over years. It

was firstly observed experimentally in the late 1960s by Janes [25]. They measured
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an anomalous electron diffusion, which can not be explained by collisions. In addi-

tion they demonstrated that the electron density and plasma potential fluctuations

slowly rotate in the E×B direction. They explained the anomalous transport in the

context of rotating density nonuniformities, that become polarized by the electron

Hall current. Their experimental data was in reasonable agreement with the theo-

retical description of Yoshikawa and Rose [26] for anomalous diffusion in a plasma

across a magnetic field.

After a phase without any significant investigations, the rotating spoke was again

of interest in the Soviet Hall thruster development program Esipchuk in the early

1970s. One of the results was to link the spoke mode to incomplete ionization and

to describe its decrease at higher power levels. It was found that rotating spokes

appear more often in low voltage discharges. At the end of this century Lomas

studied the spoke phenomena in the United States. He linked the electron current

in a high-current-density hydrogen Hall accelerator to a rotating spoke [27]. It was

also shown that an azimuthal electric field fluctuation was in phase with a density

fluctuation. Calculations showed that 20-70% of the 100 A current was carried via

this mechanism.

In the 2000s Chesta observed spoke-like instabilities in low-voltage Hall thruster

discharges of approximately 80 . . . 200V [28]. He also used numerical models to solve

the complicated dispersion relation and did stability analysis. Like previous physicists

he linked the rotating spoke to electronic processes like ionization. Parker 2010

detected a spoke instability with a high-speed camera and connected it to a large

decrease in thruster efficiency due to an increase of backstreaming electrons [29]. In

the last years McDonald et al. did parameter studies to do further characterization of

the spoke instability [30]. They worked out four statements to classify spoke modes.

In the following they will be summarized. Testing several different thrusters with

respect to spokes allowed to see that physically larger thrusters lead to higher spoke

modes. Mode numbers from m = 1 up to m = 6 are detectable. All spokes rotate

in the direction of the E × B-drift. Parameter studies showed that higher spokes

modes travel faster under the same conditions. Using higher magnetic field strengths

lead to a stronger and more stable appearance of spokes. At higher magnetic field

settings, which means an increase in magnetic field strengths due to higher voltage

or optimized operating conditions, higher spoke modes become more dominant. The

spoke velocity seems to decrease slightly at a higher magnetic field. Especially the

spoke velocity is much smaller than the E ×B-drift velocity.
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A strong azimuthal asymmetry in radiation from the thruster channel was observed

with fast camera imaging of the cylindrical Hall thruster ignition during the first

10 µs. This indicates a spoke-like structure inside the channel during ignition.

5.3. Particle Fluxes to the Walls

Introducing diagnostic modules for particle fluxes to the walls into the PIC code

allows to evaluate possible damage of the satellite by the thruster. The used domain

includes 240 cells in r-direction and 890 in z. One cell has a length of ∆z = 0, 5λDb =

3.715 10−4cm and ∆r = 10−3cm. The timestep for the electrons is chosen as ∆t =

0, 2/ωpe ≈ 1.12 10−12s. Subcycling for ions and neutrals is used. The ions are updated

every 400th step. The timestep for the neutrals is 2000 times larger than the one for

the electrons.

The first analysis is the backflow to the thruster. This is analyzed in the cells,

which are located at the thruster exit z = 51.2 mm outside the thruster in r-direction

r > RThruster = 9 mm. The region is split into three parts in r-direction. The first

part is for 9 mm < r < 14 mm, the second from 14 mm to 19 mm and the third region

covers the rest of the domain up to r = 24 mm.
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Figure 5.11.: energy distribution for each region of backflowing particles, left ions
and right neutrals, red - region 1, green - region 2, blue - region 3

Figure 5.11 shows the number of particles hitting the three regions as a function

of their kinetic energy. All regions have a pronounced peak around 80 eV. In region

3 there are about ten times more particles than in the other regions. The fastest

particles have energies of up to 150 eV in region 3. Ions hitting theses surfaces

have to make a nearly 180 degree turn from flying outward of the thruster to flying
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backwards to the wall. The radius of this half-circle movement is determined by the

radial velocity. Higher radial velocities lead to a larger radius and impingement on

the wall at larger r.

For the neutrals on the right hand side of Figure 5.11 a significant number of particles

is detected in every region, too. Most of them have very small kinetic energies of

about only a few eV originating from the thermal source at the anode. The profile of

the energy distribution is even more similar in all three regions than for the ions. The

higher energies result from charge-exchange with ions. Because the size of the domain

is not large enough to cover the whole satellite it is also interesting to detect particles

that arrive at the r boundary of the system, which is implemented at grounded

metal. The simulation shows that only ions arrive here. The velocity distribution is

presented in Figure 5.12
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Figure 5.12.: velocity distribution for each region of outflowing ions in r-direction

One can see that ions with velocities between 4700 m/s and 2000 m/s leave the do-

main. Most of them are in the high-velocity part of the distribution. These particles

are possibly dangerous for the satellite and one should try to extend the domain to

understand what happens with them outside the current domain for reliable sputter

and lifetime analysis of the satellite. During the simulation the particles hitting each

surface region was counted. With these numbers one can derive the particle flux

densities. One distinguishes again three regions beginning from the inner part of the

domain. Due to rotational symmetry the surface must be calculated as a circular

ring with small radius r and larger radius R:
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A1 = 2π
(
(0.014 m)2 − (0.009 m)2

)
= 3.6128 10−4m2 (5.3.1)

A2 = 2π
(
(0.019 m)2 − (0.014 m)2

)
= 5.1836 10−4m2 (5.3.2)

A3 = 2π
(
(0.024 m)2 − (0.019 m)2

)
= 6.7544 10−4m2 (5.3.3)

where the i in Ai denotes the region. 106 steps with each timestep of 1.1213 10−12s

were simulated. The particle flux density is given as:

j1 = 5.5162 1018m−2s−1 (5.3.4)

j2 = 6.8989 1018m−2s−1 (5.3.5)

j3 = 6.5868 1018m−2s−1 (5.3.6)

The same calculation is done for the outflow region. One has to recognize that the

surface in this case is a lateral surface area of a cylinder with length 37.8 mm and

radius 24 mm. With this the surface is given as 5.7 10−3m2 and the particle flux

density can be calculated as

jout = 1.252 1018 m−2s−1 (5.3.7)

This is four times smaller than the backflow. Now the goal will be to estimate the

sputtering as a function of time to be able to derive a limit for the lifetime of solar

panels due to sputtering from ion thruster plumes. Using the SD.Trim.SP code in

its dynamical version it is possible to calculate the sputter depth as a function of

the fluence. The input for the simulation are the energy distribution functions for

the three regions and material constants of the considered material. Solar cells for

spacecraft are mainly built from Silicon Dioxide and Gallium Arsenide. Nowadays

the industry uses multi-junction cells. Since this work needs only a rough estimate,

Silicon Dioxide and Gallium Arsenide are used. The results of the sputter simulation

show a linear dependence between sputtering depth and fluence. This can be seen

in Figure 5.13. It shows that the sputter coefficient is nearly constant for increasing

fluence. Consequently the surface depth resulting from sputtering shows a linear

dependency to the fluence.

Therefore, one can easily extrapolate it to longer times. The following depths d in

every region are determined for a time of 1000 h using SiO2 :
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Figure 5.13.: surface depth (left) and sputter coefficients of Ga (right red dots) and
As (left green dots) as a function of fluence

d1 = 5.6185 µm (5.3.8)

d2 = 7.8778 µm (5.3.9)

d3 = 6.8766 µm (5.3.10)

For Gallium Arsenide the resulting depths are much larger.

d1 = 54.16 µm (5.3.11)

d2 = 78.11 µm (5.3.12)

d3 = 69.43 µm (5.3.13)

This can be explained by the different characteristics of both materials. GaAs has

a much higher atomic mass and larger atomic radii compared to SiO2. One can

imagine that the arriving Xenon atoms are able to penetrate the surface deeper, if

the surface consists of light and small particles. This can be seen in the Figure 5.14.

In 5.14 an incoming Xenon beam impinges on a surface, which is built of SiO2 or

GaAs. As expected the penetration depth is larger for SiO2. For GaAs most the

energy of incoming Xenon atoms is assimilated near the surface and particles in this

region have a much higher chance to leave the surface as sputtered atoms. This leads

to higher sputter rates for GaAs than in SiO2 where the energy is deposited deeper

and only a few atoms leave the material.

Solar panels produced for space have thicknesses about 140 µm. As first the sputter
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Figure 5.14.: interaction of Xenon particles with a SiO2 surface (left) and with a
GaAs surface (right)

depths for SiO2 seem very worrying. But the solar panels are far away from the

point where the backflowing particles were analyzed in the simulation. According

to [31] the ion density is decreasing by at least three orders of magnitude radially

between the center and r = 1 m. Therefore the calculated particle flux densities must

be corrected by a factor of 1000. This finally results in sputter depths that are far

beyond a critical limit after 1000 h. One can possibly get into critical regions for

longer times like 100 000 h.

5.4. Domain Extension

In this section the extension of the domain using the newly developed solver is pre-

sented. In the upper part of Figure 5.16 the potential calculated with a smaller

domain be seen. The size of the domain is 89 mm × 24 mm. In the lower part of

Figure 5.16 the domain is enlarged. Its size is now 127 mm × 48 mm. Especially in

the plume region there are large differences observable between both solutions.

Whereas in the small domain the decrease in potential takes place very fast driven

by the boundary condition, the larger domain shows a much smoother decrease.

At the borders of the smaller domain, where φ = 0 V is fixed, the large domain still

shows potential values of several Volts. This difference results in stronger electric

fields in the smaller domain compared to the larger one. The potential in the larger

domain is less influenced by the boundary condition. An even larger domain is

expected to resolve the discrepancy of angular ion distributions between modeling

and experiment.
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Figure 5.15.: ion angular current distribution function of old [11] (red) and new sim-
ulation (blue)

How the domain size affects the angular distribution one can see in Figure 5.15.

The experimental result was compared to the older simulation in Figure 3.2 with

the smaller domain. The result of the larger domain gets closer to the experimental

studies, but it is still far away. One can hope, that with an additional enlargement

of the domain this effect increases and one gets even closer to the experiment.
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Figure 5.16.: PIC potential solution for different domain sizes
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6. Conclusions and Outlook

The goal of the work was to study the physics of the plume of ion thrusters. This

was done for the example of the HEMP-T, where its basic operational principles

were introduced. To study the plume region, the numerical development of a non-

equidistant Poisson solver for PIC applications is needed. Different solver methods

were tested with the result that the most promising one is the explicit and exact LU

decomposition method with its fast backsolve. This particularly developed Poisson

solver was validated with some analytic results for test problems to check the physical

correctness of the solver. With the One-Grid Approach it is possible to simulate large

two dimensional grids within reasonable times. These grids allow to resolve the whole

plume, if one uses a coarsening of grid cells in the plume. The coarsening is physically

motivated due to an immense increase of the Debye scale in the plume due to a strong

density reduction.

A characterization of the basic physics elements acting in the plume region was

done for HEMP-T. For this, diagnostics tools for the PIC code were implemented

for velocity distribution functions and domain boundary fluxes. This helped to get a

better understanding of the underlying physics in the plume, like the importance of

charge-exchange collisions for coupling the ion and neutral dynamics. A sputtering

calculation was made to be able to discuss lifetime limits of ion thrusters and their

interaction with the satellite.

For future work, it will be interesting to extend the simulated domain even further

to reach a fully kinetic model of the interaction of different ion thrusters with the

satellite components.
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A.1. Additional Results of the HEMP-T Simulation
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Figure A.1.: absolute value of the electric field in axial (left) and radial (right) direc-
tion over the whole domain
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Figure A.2.: number of ions reaching the grounded wall above the thruster exit at
z = 51.2 mm as a function of the kinetic energy E and the radial position
r
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Figure A.3.: number of ions flying outwards the domain in radial direction as a func-
tion of the kinetic energy E and axial position z
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Figure A.4.: distribution of the radial component of the velocity of ions (upper left
side), neutrals (upper right side) and electrons (bottom), summed over
all particles with r < Rthruster, ions have a strong peak according to the
potential drop to the grounded wall at the exit cusp, neutrals the same
due to charge-exchange collisions, electron heating in the cusps is visible
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Figure A.5.: scatter plot of the position of every calculated electron (upper plot),
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