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1 Introduction

Plasma is often referred to as the fourth physical state of matter. Unlike the common
states solid, fluid and gaseous, at least some atoms are ionized in a plasma. In nature,
some examples are lightnings, sparks and northern lights [1]. The Leibniz Institute for
Plasma Science and Technology (INP) in Greifswald does research on low-temperature
plasmas and their applications in renewable energies, bio economy, plasma chemistry,
process technology, health and hygiene [2].
Physicists also make use of high-temperature plasmas to trigger nuclear fusion reactions.
A popular example is the research at the Max Planck Institute for Plasma Physics (IPP)
in Greifswald with its Wendelstein 7-X experiment [3]. Since electric and magnetic fields
are used to control the plasma particles in magnetic fusion experiments, the study of their
behavior in such environments is of particular interest.
In this thesis, the transport in fully ionized plasmas containing electrons (qc,e = −e) and
one type of ions (qc,i = Ze) is considered, specifically in the so-called scrape-off layer of
fusion plasmas, which is determined by the contact with walls. This plasma is a bounded
plasma in between walls. It is characterized by strong interaction with neutrals and
by collisions with neutrals and between the plasma particles due to its high density. The
collisions define mean-free paths for the plasma particles which are shorter than the system
length. This allows a fluid description of the plasma transport, because the distribution
gets Maxwellian. The emerging coupled, non-linear transport equations of fusion edge
plasmas are solved numerically. Here, physics-informed neural networks (PINNs) come
into play. PINNs are neural networks trained by differential equations to approximate
their solution using automatic differentiation.
This thesis uses PINNs for the solution of the partial differential transport equations along
the field lines in the edge of fusion plasmas to evaluate if they can be used as a numerical
alternative for such systems. The reduction to the transport processes along field lines
is a first approximation, because the transport in this direction is much stronger than in
the other directions due to the strong magnetization of the plasma particles. This forces
them to follow the field lines gyrating around them. In chapter 2 the general plasma
transport equations are derived and reduced to the 1D formulation along magnetic field
lines. Additionally, neural networks and the Python package PyTorch are introduced and
applied to introduce the numerical method of PINNs. These PINNs are tested in chapter
3 in several simplified cases of the transport equations for which analytical solutions
exist. Then, the results for a more complex version of the coupled transport equations
are presented, where no analytical solutions exist. Finally, the thesis and in particular
the difficulties and benefits of PINNs in the given field are summarized.
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2 Basics

In this section, the basic description of plasma transport in the collision-dominated edge
region of fusion plasmas and the basic concept of PINNs are introduced.

2.1 Derivation of the transport equations

The derivation of the transport equations in a fully ionized plasma follows Braginskii [4].
The starting point of describing the plasma’s behavior is the kinetic Boltzmann equation

∂fa
∂t

+
∂

∂xβ
(vβfa) +

∂

∂vβ

(
Faβ

ma

fa

)
= Ca (1)

with distribution function fa(t, r,v) at time t, position r and velocity v, force Fa on a
particle with mass ma and collision term Ca. The index a indicates the particle type, e.g.,
electron or ion. Terms including β indices are written in Einstein notation. Therefore,
equation (1) is equivalent to

∂fa
∂t

+∇r(vfa) +∇v

(
Fa

ma

fa

)
= Ca .

The distribution function fa(t, r,v) is normalized in a way so that1

na(t, r) =

∫
fad

3v (2)

yields the density of particles na of type a in r at t. Integrating na over some volume
V would give the number of particles in V . To determine an expectation value 〈w〉 =
Wa(t, r) of some physical quantity wa in terms of the distribution function it is necessary
to calculate

〈w〉a = Wa(t, r) =

∫
wfa(t, r,v)d3v∫
fa(t, r,v)d3v

=
1

na

∫
wfa(t, r,v)d3v .

Since the plasma behavior is studied in fusion plasmas, an electric field E and magnetic
field B has to be taken into account. The Lorentz force acting on a particle is

Fa = qc,a

(
E +

v

c
×B

)
(3)

where qc,a denotes the charge of particles a and c is the speed of light.2

The term Ca in equation (1) carries the information about collisions between particles.
Since aa and ab collisions are possible in the plasma considered, the term becomes

Ca =
∑
b

Cab(fa, fb) . (4)

Elastic collisions produce sources and sinks. They satisfy particle, momentum and energy
conservation. As stated in [5, p. 3], if ψ(v) is an invariant with regard to an ab collision,
it has to fulfill, ∫

ψ(v)Cabd
3v = 0 .

1The integral is meant to be over the entire phase space. If not explicitly stated, this applies to the
rest of this thesis.

2Here, CGS units are used. If not explicitly stated, this applies to the rest of this thesis.
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Therefore, ∫
Cabd

3v = 0 (5)∫
mavCaad

3v = 0 (6)∫
mav

2

2
Caad

3v = 0 . (7)

Equation (5) holds for any general ab collision because the number of particles is conserved
even though multiple particle types are involved. That is not the case for conservation
of momentum (6) and energy (7) because those quantities can be transferred between
different particle types. Hence, it is only true for aa collisions.

2.1.1 Continuity equation

To make use of (5), it is obvious to integrate both sides of equation (1) over the entire
velocity space.∫

∂fa
∂t

d3v +

∫
∂

∂xβ
(vβfa)d

3v +

∫
∇v

(
Fa

ma

fa

)
d3v =

∫
Cad

3v

Now, the collision term can be evaluated by using equation (4) and (5) and by changing
the order of summation and integration. Additionally, the order of differentiation and
integration in the first two terms can be changed.

∂

∂t

∫
fad

3v +
∂

∂xβ

∫
vβfad

3v +

∫
∇v

(
Fa

ma

fa

)
d3v =

∑
b

∫
Cabd

3v = 0

Because of (2), the first term becomes the time derivative of na. The second term can be
interpreted as divergence of the expectation value of velocity V times na. The third term
vanishes by using Gauss’s theorem (see equation (48) in appendix A.1) and applying that
the distribution function decreases rapidly for v →∞. Additionally, the a can be omitted
for better readability.
Overall, this results in the continuity equation

∂n

∂t
+∇(nV) = 0 . (8)

2.1.2 Momentum equation

Equation (1) can be multiplied by mav and integrated again over the entire velocity space.
Already omitting the a and writing the αth component of the equation gives1∫

∂

∂t
(fmvα)d3v +

∫
∂

∂xβ
(mvαvβf)d3v +

∫
∇v (Ff) vαd

3v =

∫
mvαCd

3v .

It must be noted that C only covers collisions between different particles because the Caa

integral vanishes due to (6).
After changing the order of derivative and integration like before, the first term reduces to
∂
∂t

(mnVα) and the second one to ∂
∂xβ

(mn〈vαvβ〉). The third term can be calculated using

1Inserting the velocity into the time and spatial derivatives is allowed due to the independence of t,
r and v among each other.
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higher dimensional integration by parts (see equation (49) in appendix A.1) and applying
that f decreases rapidly. Hence,∫

∇v (Ff) vαd
3v = −

∫
Ff∇v(vα)d3v = −

∫
Ff êαd

3v

= −
∫

Fαfd
3v = −qn

(
E +

V

c
×B

)
α

is valid for a force like (3). This results in

∂

∂t
(mnVα) +

∂

∂xβ
(mn〈vαvβ〉)− qcn

(
E +

V

c
×B

)
α

=

∫
mvαCd

3v . (9)

By introducing the following quantities and abbreviations, this can be converted into a
more useful form.

T (t, r) :=
m

3

〈
(v −V)2

〉
=:

m

3

〈
η2
〉

παβ := nm

〈
ηαηβ −

η2

2
δαβ

〉
R :=

∫
mηCd3v

(10)

Here παβ is the stress tensor and R is the change in momentum due to collisions. The
temperature T is defined as an energy.1 The exact definition is justified by the ansatz
1
2
m〈η2〉 = 3

2
T , where η is the random deviation between velocity v and its expectation

value V. Thus, 〈η〉 = 〈v −V〉 = 〈v〉 − 〈V〉 = V −V = 0 and 〈vαvβ〉 in (9) can also be
written as

〈vαvβ〉 = 〈(Vα + ηα)(Vβ + ηβ)〉 = 〈VαVβ + Vαηβ + Vβηα + ηαηβ〉
= VαVβ + Vα〈ηβ〉+ Vβ〈ηα〉+ 〈ηαηβ〉
= VαVβ + 〈ηαηβ〉 .

(11)

and the integral in (9) as∫
mvαCd

3v =

∫
mVαCd

3v +

∫
mηαCd

3v = mVα

∫
Cd3v +Rα = Rα

because of the already used conservation of momentum (5). Using these, (9) becomes

∂

∂t
(mnVα) +

∂

∂xβ
(mnVαVβ + nTδαβ + παβ) = qcn

(
E +

V

c
×B

)
α

+Rα . (12)

This equation is already a momentum equation. Using the material derivative

D

Dt
=

∂

∂t
+ Vβ

∂

∂xβ
=

∂

∂t
+ (V · ∇r)

and rewriting the partial time derivative using the continuity equation (8), it can also be
expressed as

mn
DVα
Dt

= −∂nT
∂xα

− ∂παβ
∂xβ

+ qcn

(
E +

V

c
×B

)
α

+Rα . (13)

1In principle, the energy kBT is replaced by the symbol T .
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2.1.3 Energy equation

Multiplying equation (1) by mav
2/2 and integrating yields∫

∂fa
∂t

mav
2

2
d3v +

∫
∂

∂xβ
(vβfa)

mav
2

2
d3v +

∫
∇v

(
Fa

ma

fa

)
mav

2

2
d3v =

∫
Ca
mav

2

2
d3v .

As before, the first two terms can be transformed and then interpreted as expectation
values. Additionally, the a is dropped.

∂

∂t

(mn
2
〈v2〉

)
+

∂

∂xβ

(mn
2
〈vβv2〉

)
+

∫
∇v

(
F

m
f

)
mv2

2
d3v =

∫
mv2

2
Cd3v (14)

Again, higher dimensional integration by parts (see equation (49) in appendix A.1) and
equation (3) turns the third term into∫

∇v

(
F

m
f

)
mv2

2
d3v = −

∫
F∇v

(
v2

2

)
fd3v = −

∫
Fvfd3v

= −qc
∫

Evfd3v = −qcnEV,

because f decreases rapidly and (v ×B)v = 0. Hence, (14) becomes

∂

∂t

(mn
2
〈v2〉

)
+∇r

(mn
2
〈vv2〉

)
− qcnEV =

∫
mv2

2
Cd3v . (15)

Now, v = V + η can be used again to rewrite the first two and the last term. Reusing
(11) yields 〈

v2
〉

= V 2 +
〈
η2
〉
. (16)

The expectation value of the second term is calculated similarly.〈
v2

2
vβ

〉
=

〈
1

2
(V + η)2 (Vβ + ηβ)

〉
=

〈
1

2

(
V 2Vβ + 2VηVβ + η2Vβ + V 2ηβ + 2Vηηβ + η2ηβ

)〉
=

1

2

(
V 2Vβ +

〈
η2
〉
Vβ + 2V〈ηηβ〉+

〈
η2ηβ

〉)
=

(
1

2
V 2 +

3

2

T

m

)
Vβ + Vα〈ηαηβ〉+

qβ
mn

(17)

Here, the heat flux density q :=
〈
nmη

2

2
η
〉

and the temperature from (10) are used. By

considering

παβVα = nm

〈
ηαηβ −

η2

3
δαβ

〉
Vα = nm〈ηαηβ〉Vα − nm

〈
η2

3
δαβ

〉
Vα

= nm〈ηαηβ〉Vα − n
〈
mη2

3

〉
Vβ = nm〈ηαηβ〉Vα − nTVβ

equation (17) becomes〈
v2

2
vβ

〉
=

(
1

2
V 2 +

5

2

T

m

)
Vβ +

1

mn
παβVα +

qβ
mn

. (18)
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Additionally, it is reasonable to rewrite the integral in (15) as∫
mv2

2
Cd3v =

∫
mV 2

2
Cd3v +

∫
mVηCd3v +

∫
mη2

2
Cd3v

=
mV 2

2

∫
Cd3v + V ·

∫
mηCd3v +

∫
mη2

2
Cd3v

= VR +Q (19)

by using (5), (10) and the heat Q :=
∫

mη2

2
Cd3v generated due to collisions with particles

of the other type. Combining all the findings from (16), (18) and (19), equation (15)
becomes the so-called energy transport equation

∂

∂t

(
nm

2
V 2 +

3

2
nT

)
+

∂

∂xβ

[(
nm

2
V 2 +

5

2
nT

)
Vβ + (παβVα) + qβ

]
= qcnEV + RV +Q .

(20)

To get the heat-balance equation, there are still some modifications to be carried out.
Writing the three equations of motion (13) as a vector equation and multiplying it by V
results in

mn
∂V

∂t
V +mn [(V · ∇r) ·V] ·V = −∇r(nT )V − ∂παβ

∂xβ
Vα + qcnEV + RV .

The first, third and fourth term can be modified by reverse chain and product rules.
According to equation (50) in appendix A.2, the second term is equal to nm

2
V∇r(V

2).
Applying the reverse product rule again and using the equation of continuity (8) yields

mn

2

∂V 2

∂t
+
mn

2
∇r(VV

2) +
m

2
V 2∂n

∂t
=−∇r(nTV) + nT∇r(V)− ∂παβVα

∂xβ

+ παβ
∂Vα
∂xβ

+ qcnEV + RV .

Using the reverse product rule one last time for the first and third term and then sub-
tracting by the equation of energy transport (20), the heat-balance equation is derived

3

2

∂nT

∂t
+∇r

(
3

2
nTV

)
+ nT∇rV + παβ

∂Vα
∂xβ

+∇rq = Q . (21)
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2.2 1D transport equations along magnetic field lines

The coupled continuity (8), motion (12) and energy transport equation (20) can be re-
written for 1D plasma movement along magnetic field lines and additional source terms
[6] as

∂n

∂t
+
∂nV

∂x
= S

∂minV

∂t
+

∂

∂x

(
minV

2 + nTi −
4

3
ηi0
∂V

∂x

)
= −eEn+ 0.71n

∂Te
∂x

∂menV

∂t
+

∂

∂x

(
menV

2 + nTe −
4

3
ηe0
∂V

∂x

)
= eEn− 0.71n

∂Te
∂x

∂

∂t

(
minV

2

2
+

3

2
nTi

)
+

∂

∂x

(
minV

3

2
+

5

2
nV Ti − κi

∂Ti
∂x

)
=

3

2
ST is +

4

3
ηi0

(
∂V

∂x

)2

+
3men

miτe
(Te − Ti) + eEnV

∂

∂t

(
menV

2

2
+

3

2
nTe

)
+

∂

∂x

(
menV

3

2
+

5

2
nV Te − κe

∂Te
∂x

)
=

3

2
ST es +

3men

miτe
(Ti − Te)− eEnV

(22)

with nuclear charge number Z, densities n := ni = ne/Z, velocities V := Vi = Ve,
temperatures Ti,e, electric field E and masses mi,e. Indices i and e indicate the ion
and electron quantities, respectively. S represents a constant particle source with tem-
peratures T i,es along the interval [−L,L]. The boundary conditions are specified as
V (±L) = ±

√
(Ti(±L) + Te(±L))/mi and qe,i(±L) = γe,in(±L)V (±L)Te,i(±L). Here,

qe,i are the thermal heat fluxes and can be calculated by qe,i = −κe,i∂Te,i/∂x. The so-
called energy transmission coefficients of the sheath as given in [7, p. 4] are γi = 3.5 and
γe = 5.0. The ion and electron viscosity coefficients ηi,e are given in [4] as

ηi0 = 0.96niTiτi and ηe0 = 0.73neTeτe .

The thermal conductivities as given in [7] are

κi = 3.9
niTiτi
mi

and κe = 3.2
neTeτe
me

.

And the collision times due to Coulomb interactions are also given in [4] as

τi =
3
√
mi

4
√
πλe4Z4ni

· T 3/2
i and τe =

3
√
me

4
√

2πλe4Z2ni
· T 3/2

e

with electron charge e and Coulomb logarithm λ. Hence, viscosities and thermal con-
ductivities are proportional to T

5/2
i,e . This leads to strong non-linearities in equations

(22).
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2.3 Neural networks

Now that the transport equations are derived, they have to be solved. Even in one
dimension, analytical solutions exist only for special cases. Therefore, numerical methods
are needed. Well-known examples are finite differences, finite elements, finite volumes
and Monte-Carlo methods (e.g., [8], [9], [10], [11]). In this thesis, physics-informed neural
networks are used. These are a special type of neural networks for solving differential
equations. They are introduced in the following.
Neural networks (NNs), often referred to as artificial neural networks (ANNs), belong to
the field of machine learning (ML). All they do is to transform a given input vector into
an output vector in a way that is either very complex to code or not even feasible as a
common algorithm.
Figure 1 shows the basic structure of a multilayer perceptron. Technically, a multilayer
perceptron is a special kind of neural network. Hereafter, both terms might be used
synonymous because it will be the only NN type considered in this thesis.

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
n

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
K

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
K

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
K

...

a
(4)
1

a
(4)
2

a
(4)
m

...

input
layer

hidden layers

output
layer

Figure 1: Structure of an exemplary neural network with three hidden layers (adapted
from Neutelings [12]).

The building blocks of a neural network are its neurons, illustrated by circles in the figure.
Each neuron carries a value a

(l)
k that often but not necessarily lies between 0 and 1. This

value is called activation of the respective neuron. Each column of neurons l is called
layer. The input layer a(0) (left) and output layer a(4) (right) consist directly of the input
vector x and output vector y values, respectively. The layers in between are known as
hidden layers, because usually only the input and output layers are accessed by users.
A neural network with more than one hidden layer is called deep neural network (DNN)
[13].
A neuron of a hidden or output layer is connected to every neuron of the previous layer.
Here, connected refers to how the activation is calculated. It is done by

a
(l)
j = f

(
K∑
k=1

w
(l)
jk · a

(l−1)
k + b

(l)
j

)
, (23)

where w
(l)
jk and b

(l)
j are the weights and biases, respectively [13]. f is called activation

function. There are many functions used as activation function. But for each, f is non-
linear and often fulfills f(x) ∈ [0, 1]. Chapter 2.3.1 will give more details on activation
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functions.
When calculating all the activations in a layer, it is useful to rewrite equation (23) in
matrix notation

a(l) = f
(
W(l)a(l−1) + b(l)

)
. (24)

Here, f acts element-wise onto the vector and W(l) and b(l) are the weight matrix and
bias vector, respectively. Thus, the forward calculation, often referred to as feed-forward,
in a neural network of L+ 1 layers is a composition of such functions

a(L) = g
(
W(L)f

(
W(L−1)... f

(
W(1)a(0) + b(1)

)
...+ b(L−1))+ b(L)

)
. (25)

Here, the last activation function g might differ from case to case. All the knowledge of
neural networks is encoded in the values of weights and biases. From that perspective,
neural networks appear to be less intelligent than claimed to be.
When initializing a neural network, the weights and biases are randomly chosen.1 Usually
after the initialization, a given input vector will most probably not result in the wanted
output vector. For this reason, a neural network has to be trained. In the training process,
the weights and biases are adjusted in a way that output vectors satisfy the expectations
better and better. An example could be the image of a leaf encoded as a vector containing
all the pixel’s normalized RGB values. When defining the output vector interpretation
by how it is done in figure 2 the wanted output for a leaf image is the unit vector ê2.

table 00.02

0.27

0.53

0.13

0.45

0.19

0.42

1

0

leaf

bike

expected
outputnormalized RGB

values per pixel

Figure 2: Exemplary feed-forward to classify an image. The input vector contains
normalized RGB values per pixel. The output vector contains probabilities for every class.
The expected output differs because the NN was not trained yet. Image recognition is
commonly done by convolutional neural networks (CNNs, see [15, 5.4 p. 90]) instead and
only serves the purpose of exemplification here (NN adapted from Neutelings [12]).

The deviation between the output y and the wanted vector ê2 is called loss and can be
written as

‖y − ê2‖ ,
where ‖·‖ is the Euclidean norm. The obvious goal is to decrease this deviation. But even
if it gets zero for this particular image, there might be deviations for different images
of leafs or other objects. That is why a vast training data set is needed. The mean of
quadratic deviations of all training examples from that set

C(θ) =
1

N

N∑
n=1

‖yn(θ)− ŷn‖2 (26)

1There are many ways to randomly initialize NN parameters. An overview for how it is done in the
Python package PyTorch can be found in [14].
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is called cost.1 In principle, different cost functions could be used. The mean squared
error function (MSE) is common. θ contains the network parameters, e.g., weights and
biases. That is why loss C and output vectors yn are functions of θ. The expected output
vectors ŷn do not depend on θ, since they are given in the data set of length N .
Now, the goal is to minimize the cost function with respect to network parameters θ.
Doing this analytically is not feasible due to the huge number of parameters and data
examples. Therefore, a method known as gradient descent is used. Chapter 2.3.3 will
cover more details on that. The only important fact right now is the need of calculating
the gradient of C with respect to θ. Knowing the gradient at a given point in parameter
space allows a good guess of where a local minimum might be. Doing this step by step and
adjusting the weights and biases accordingly will yield smaller costs and therefore satisfy
the expectations better and better. Hence, differentiation methods of calculations within
neural networks are needed to get the gradient. Chapter 2.3.2 covers more information
on that.
In general, neural networks are used in two cases. These are classification and regression
[16]. The example above is a typical classification scenario. In this case, output values
should lie between 0 and 1. Additionally, all the output values should add up to 1.
Those conditions yield reasonable probabilities. They are easily implemented by using
the softmax function in the last layer. In contrast, expressing some mathematical function
like temperature distribution with respect to position x by neural networks is referred to
as regression. In principle, normalization in the last layer is not needed for that.

2.3.1 Activation functions

As mentioned earlier, the results of matrix multiplication and vector addition are evalu-
ated by activation functions f and g in every layer. This is no unnecessary complexity
but a crucial step for the feed-forward of equation (25). Omitting f and g or choosing
them as the identity functions would result in

a(L) = W(L)
(
W(L−1)...

(
W(1)a(0) + b(1)

)
...+ b(L−1))+ b(L)

= W(L)W(L−1) ... W(1)a(0) +
(
W(L) ...

((
W(2)b(1)

)
+ b(2)

)
...
)

+ b(L)

=: W̃a(0) + b̃ .

Hence, the entire neural network collapses and only a linear problem remains. This would
look similar if f was chosen linear. The many weights and biases would combine to a
matrix W̃ and vector b̃ of fixed sizes. Changing the number of layers or neurons per
layer would not affect the model complexity at all. This phenomenon is called linear
degeneracy [17]. Therefore, the activation function and its non-linearity in particular is a
neural network’s defining element.
Many activation functions can be used, but some are more common. One example is the
sigmoid function σ already mentioned. It is defined by

σ(x) =
1

1 + e−x
.

Its derivative is

∇σ(x) :=
∂σ

∂x
=

e−x

(1 + e−x)2
=

1 + e−x − 1

(1 + e−x)2

= σ(x) · (1− σ(x)) .

1The terms loss, cost and error often are used synonymous. In any case, something like the deviation
of the expected output vector and received one is meant.
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Derivatives of activation functions are important for automatic differentiation. Both the
sigmoid function and its derivative can be seen in figure 3. Sigmoid returns values between
0 and 1. This can be shown by considering the limits x→∞ and x→ −∞.

−4 −2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0
σ
∇(σ)

Figure 3: Sigmoid activation function σ and its derivative ∇(σ).

The rectified linear unit function known as ReLU (see figure 4) is defined by

ReLU(x) = max(0, x) =

{
0 x ≤ 0

x x > 0
.

Obviously, this function is not bounded for the x → ∞ limit. Hence, ReLU maps into
[0,∞). Even though it is often used, its derivative

∇(ReLU)(x) =

{
0 x < 0

1 x > 0

is not defined in x = 0. This might cause problems when evaluating ReLU’s derivative in
automatic differentiation.

−4 −2 0 2 4
x

0

1

2

3

4 ReLU
∇(ReLU)

Figure 4: ReLU activation function and its derivative ∇(ReLU).
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The last activation function considered in this thesis is the hyperbolic tangent (tanh)
function. It is defined by

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x
ex + e−x

.

Hence, its derivative can be written as

∇(tanh)(x) =
cosh(x) cosh(x)− sinh(x) sinh(x)

cosh2(x)
= 1− tanh2(x) .

It is related to sigmoid by the following expression [18, p. 191].

tanh(x) = 2 · σ(2x)− 1

Again, both tanh and its derivative are shown in figure 5.

−4 −2 0 2 4
x

−1.0

−0.5
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0.5
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∇(tanh)

Figure 5: Tanh activation function and its derivative ∇(tanh).

Unlike the previous functions, tanh returns values between −1 and 1 antisymmetrically
around x = 0. The derivative is well-defined in (−∞,∞). It can be noted that the
gradient of tanh is much larger around 0 than the gradient of sigmoid.

2.3.2 Automatic differentiation

As mentioned earlier, calculating the gradient of the cost function with respect to network
parameters θ is needed for training the neural network. Additionally, differentiating the
NN’s output with respect to input variables like position x is needed to calculate the loss
function of a physics-informed neural network (see chapter 2.4). A differentiation method
is required in both cases.
In [19] several differentiation methods like finite differences, symbolic differentiation and
automatic differentiation (AD) are compared. It is stated that using the reverse mode of
automatic differentiation applies best for NNs. One reason is the small numerical error
in comparison with finite differences. Moreover, the large number of variables for which
the derivatives have to be calculated do not affect the computational effort too much.
The latter is an advantage over finite differences but also symbolic and forward automatic
differentiation. The following explanation follows [19, p. 12f].
For deriving a function f by reverse mode AD, at first f has to be evaluated at a specific
point. While executing all the elementary computations, that when composited lead to
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the whole function f , all the intermediate variables vi have to be stored. Additionally,
the dependencies between these vi have to be saved in a way such that a computational
graph as shown in figure 6 can be created. The actual deriving process starts at the end
of that graph. For every node, the so-called adjoint

v̄i =
∂f

∂vi

can be calculated. The last node fulfills

v̄5 =
∂f

∂v5
= 1 .

As stated in [20, p. 4], all the nodes in front can now be determined using the following
chain rule where Pa(j) denotes the set of parent nodes of child node j. When using
forward computation, the intermediate value of the parent is directly used to calculate
the child’s one.

v̄i =
∂f

∂vi
=

∑
j: i∈Pa(j)

∂f

∂vj

∂vj
∂vi

=
∑

j: i∈Pa(j)
v̄j
∂vj
∂vi

(27)

Hence, the name reverse mode refers to the step-by-step calculation of the adjoints from
the end to the beginning of the computational graph. Since the partial derivatives at the
end of (27) may depend on the vi, it is necessary to store them in the forward calcula-
tion process. Obviously, the partial derivatives of any intermediate variable with respect
to its parents have to be known and implemented. This is viable since only elementary
computations have to be considered.

x

f(x,y)

v-1 v1 v3

v2 v5

y v0 v4

Figure 6: Computational graph, referring to the exemplary function f(x, y) = sin2(x) +
y · ex and intermediate variables of equation (28) (adapted from [19, figure 4]).

The computational graph in figure 6 refers to the exemplary function f(x, y) = sin2(x) +
y · ex. The vi are calculated by

v−1 = x , v0 = y

v1 = sin(v−1)

v2 = ev−1

v3 = v21
v4 = v2 · v0
v5 = v3 + v4 .

(28)
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Now the adjoints can be calculated by

v̄5 = 1

v̄4 = v̄5
∂v5
∂v4

= v̄5 · 1

v̄3 = v̄5
∂v5
∂v3

= v̄5 · 1

v̄2 = v̄4
∂v4
∂v2

= v̄4 · v0

v̄1 = v̄3
∂v3
∂v1

= v̄3 · 2v1

v̄0 = v̄4
∂v4
∂v0

= v̄4 · v̄2 =
∂f

∂y

v̄−1 = v̄2
∂v2
∂v−1

+ v̄1
∂v1
∂v−1

= v̄2 · ev−1 + v̄1 · cos(v−1) =
∂f

∂x

beginning at the end of the computational graph and step by step moving towards the
variable of interest. At the end of this particular recursion, the wanted derivatives of f
with respect to x and y are determined.
In the context of neural networks, the calculation of derivatives of the cost function
with respect to network parameters by slightly adjusted reverse mode AD is called back-
propagation. Here, the derivatives of the activation functions (see 2.3.1), matrix multi-
plications and vector additions are already known. In case of ReLU, the derivative at
x = 0 would have to be chosen.

2.3.3 Gradient descent and optimizers

Now that the gradient can be calculated, the cost function needs to be minimized. Since
gradients point in the direction of greatest increase of the considered function, the negative
gradient points in the direction of greatest decrease. Therefore, moving in the direction
of −∇C in parameter space should reduce the cost. Typically, a learning rate γ is used to
prevent from jumping over minima. This method is referred to as gradient descent [13].
The corresponding equation for updating network parameters θ is

θt+1 = θt − γ∇C(θt) . (29)

Figure 7 illustrates the idea behind (29) in the simplified case of only one parameter θ,
cost function C(θ) = θ3 − θ2 + 0.2 and learning rate γ = 0.2. Starting at θ0 = 1, the
gradient is negative and relatively large. Therefore, the gradient descent step is relatively
large, too. At θ1, the gradient is much smaller. Hence, θ2 lies close to it.
Overall, the training process consists of the following steps. Firstly, all the training data
inputs feed-forward through the neural network and yield some resulting outputs. These
outputs are compared with the expected ones to calculate the cost. The cost is derived
with respect to all network parameters to get the gradient. Then the gradient is used in
equation (29) to calculate the improved parameters. This procedure repeats until the loss
converges. Every such iteration through the entire training data set is called an epoch.
There are several advanced variations of this procedure. For example, splitting the train-
ing data set in random subsets (batches) leads to smaller computational effort of cal-
culating the cost. The downside is the inaccuracy of the received gradients. Stochastic
gradient descent (SGD) is a special case in which every mini batch only contains one
training example [21].
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Figure 7: Two gradient descent iterations in case of only one parameter θ, cost function
C(θ) = θ3 − θ2 + 0.2 and learning rate γ = 0.2. Initially, the parameter is set to θ0 = 1.

There are also improvements of equation (29). As described in [22], another hyperpara-
meter µ ∈ [0, 1] can be added to calculate the exponentially weighted average bt by

bt = µ · bt−1 +∇C(θt) , b0 = 0

and then using it to update the parameters by

θt+1 = θt − γbt .

This is called momentum method. Because the bt contain gradients of previous iterations,
the optimization path is smoothed in parameter space. Therefore, fewer oscillations in
parameter space are expected for arriving at the minimum. Additionally, when reaching
a local minimum (∇C(θt) ≈ 0) there is still momentum to pass it and eventually find a
better one. Standard gradient descent is the special case µ = 0.
Another optimization algorithm is the so-called RMSprop (root-mean-square propaga-
tion). According to [23], the moving average of the element-wise squared gradient st is
calculated by

st = β · st−1 + (1− β) · (∇C(θt))
2 , s0 = 0

and then adjusts the parameters by

θt+1 = θt −
γ√
st
· ∇C(θt) .

The square root acts element-wise on st. The main idea of the resulting learning rate γ√
st

is that oscillations of a parameter result in large moving averages due to the squaring,
and therefore lead to less movement in this direction. This dampens the oscillations. The
element-wise operations ensure the consideration for each individual parameter.
The adaptive moment estimation optimizer, also known as Adam optimizer, was intro-
duced in [24]. Adam combines momentum and RMSprop algorithms. At first, the moving
averages mt and vt are calculated by

mt = β1 ·mt−1 + (1− β1) · ∇C(θt) , m0 = 0

vt = β2 · vt−1 + (1− β2) · (∇C(θt))
2 , v0 = 0
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where β1 and β2 are the decay rates. Additionally, these averages are corrected by

m̂t =
mt

1− βt1
v̂t =

vt

1− βt2
to ensure reasonable averages in the first few iterations. The effect of this correction
reduces by increasing number of iterations t. At the end, the parameters are updated by

θt+1 = θt − γ ·
m̂t√
v̂t + ε

where ε is a small number to avoid division by zero.
There are several more optimizers. Some examples are Adadelta, Adagrad, AdamW,
SparseAdam, Adamax, ASGD, LBFGS, NAdam, RAdam, RMSprop, Rprop. In [25] they
are listed and their underlying algorithms are explained. Often there are only minor
modifications between them. There does not exist a general best optimizer, it depends
on the case.

2.3.4 Overfitting and regularization

When training a neural network with more parameters than training examples, overfitting
might occur. That is the case when the model predicts the training outputs very well,
but fails at validation data which was separated from the training data set before. Figure
8 shows an exemplary training curve with overfitting. The training loss decreases rapidly,
while the validation loss remains constant or even increases. Hence, the neural network
does not generalize the problem well.

0 2000 4000 6000 8000 10000

epoch
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10−1

101
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Figure 8: Loss versus epochs in case of overfitting in logarithmic scale. The training
curve decreases while the validation loss stays constant.

To avoid such learning behavior, it is best to use more training data or reduce the number
of parameters. If more data is not available, the method of regularization can be used.
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For this, the regularization loss

Lreg = λreg
∑
w∈θ

w2

as sum over the weights w is added to the previous loss.1 This leads to smaller weights.
Therefore, only fewer weights influence the network output and the risk of overfitting is
reduced.
Another possibility is weight decay, as explained in [26]. Here, the update rule for the
weights w is given by

wt+1 = (1− λwd)wt − γ∇C(wt)

with weight decay parameter λwd, which reduces the weights in every iteration. For the
SGD optimizer, both methods are equivalent.

2.4 Physics-informed neural networks

Most of the work is already done to approximate a function u : U → R with U ⊂ Rn by
the function uθ : U → R corresponding to the neural network with network parameters
θ such that

uθ(x) ≈ u(x)

for every x ∈ Rn. In principle, the neural network could be trained by data of measure-
ments or analytical solutions and the common loss function given in equation (26). But if
there is no experimental data and the underlying differential equation is not analytically
solvable, physics-informed neural networks (PINNs) might be useful. The given explana-
tion follows [27].
A partial differential equation of the form

D[u](x) = f(x) ∀x ∈ U, B[u](x) = g(x) ∀x ∈ V ⊂ ∂U (30)

is considered, where D is a partial differential operator acting on u, and f : U → R
and g : V → R are not dependent on u. The second equation describes the boundary
condition (BC) using an operator B on the boundary ∂U of U . The goal is to approximate
the solution u(x) by a NN. For this purpose the so-called residual r is introduced as

r(x) = D[u](x)− f(x).

Therefore, if u is a solution of (30), the residual will be equal to 0. Thus, it is reasonable
to minimize the residual loss

Lr =
1

R

R∑
i=1

r2θ(xi) =
1

R

R∑
i=1

(D[uθ](xi)− f(xi))
2 (31)

for chosen xi ∈ U . To take the boundary condition into account, the boundary loss

Lbc =
1

B

B∑
j=1

(B[uθ](xj)− g(xj))
2

1Similarly, the sum over the absolute values of the weights can be used.
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for chosen xj ∈ V can be defined. When using Dirichlet BC the loss

Lbc =
1

B

B∑
j=1

(uθ(xj)− u(xj))
2

is used. Here, the values of u are given at the respective points. It works analogous for
other types of boundary conditions. If uθ outputs the same values at these points as u,
Lbc would be equal to 0. Hence, the boundary loss as well as the residual loss needs to be
minimized. This can be realized by considering the overall loss function

L = λrLr + λbcLbc (32)

with scaling parameters λr and λbc. If needed, regularization terms can be added as well.

Figure 9: Structure of a physics-informed neural network to approximate the function
u that fulfills problem (30). The network computes uθ for chosen points x and then uses
automatic differentiation to calculate the residual and boundary loss. At the end, the
network parameters θ are updated to θ∗. (adapted from [27, fig. 1])

Figure 9 illustrates the structure of a physics-informed neural network. To calculate the
derivatives in the residual loss, the neural network function uθ has to be derived with
respect to input variables and not to weights or biases. Since automatic differentiation
can proceed in front of the first NN layer as well, this does not lead to any new problems.
When keeping track of the calculations needed to get the derivative, even the computation
of higher order derivatives in the loss function can be done without problems. However,
the computational graph becomes even more complex and therefore more memory is
needed to store the intermediate variables and their dependencies. Since the network
generates its own loss with no need of prepared training data physics-informed neural
networks learn unsupervised.
As explained in [28, remark 2.5], the PINN function uθ has to be differentiable depending
on the differential operator D. The used activation functions have to be sufficiently
smooth. They state that the sigmoid and tanh functions should be preferred over ReLU
in PINNs for this reason. As stated in [29, p. 8], since ReLU is a combination of two
linear functions, its second derivative (and higher) is always zero. This prevents the PINN
from learning, even if one completes the gradient of ReLU to ensure differentiability.
The given PINN model can be extended to C coupled PDEs by introducing one residual
loss L

(k)
r for every equation, respectively. The overall loss is the sum of all these residual

losses and the boundary loss.

Lcoupled =
C∑
k=1

λ(k)r L(k)
r + λbcLbc
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Vector-valued functions u can also be realized by summing individual losses of the re-
spective components. If the scaling parameters λ

(k)
r of these terms are equal, it would be

equivalent to taking the square of the Euclidean norm of the vector-valued functions in
equation (31).

2.5 PyTorch

Implementing all the parts of physics-informed neural networks, the network structure, ac-
tivation functions, automatic differentiation and gradient based optimization algorithms,
by oneself would be a big effort. Fortunately, software packages like PyTorch for Python
were developed to simplify this process.
As explained in its repository [30], PyTorch makes calculations with tensors on the CPU
and also on the GPU possible. This speeds up the calculations considerably. In this re-
gard, it is a competitor to the popular Numpy package. But PyTorch also provides reverse
mode automatic differentiation by creating computational graphs if desired to calculate
gradients for the calculations done in the PyTorch environment. PyTorch is a great help
to implement neural networks and especially PINNs simply but effectively.

Figure 10: Fraction of papers in eight research journals using PyTorch vs. TensorFlow
until 2021 (taken from [31]).

A similar and also popular python package for creating neural networks is TensorFlow.
But as shown in figure 10, most of the authors of papers in research journals until 2021
were using PyTorch.
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3 Numerical results for 1D problems

After introducing the basics of the transport equations and the PINNs, in this chapter
different validation problems are formulated to test the PINNs. The first five test cases are
taken from [11]. Here, analytical solutions are derived to compare the PINN’s results with.
Finally, an attempt is made to solve a simplified version of the full transport equations
(22). The implementation is done using PyTorch. The codes can be accessed in [32].

3.1 Pure heat conduction problem

The first considered problem is the simplified heat-balance equation from (21) for the
temperature T

∂

∂t

(
3

2
nT

)
+

∂

∂x

(
−κ∂T

∂x

)
= 0 , n = n0 , κ = κ0

with constant density n, linear thermal conductivity κ and boundary conditions T (0) =
T0, T (L) = TL. Since only the steady state is of interest, it is reasonable to neglect the
derivative with respect to time by ∂

∂t

(
3
2
nT
)
→ 0. Hence,

∂2T

∂x2
= 0

remains. Integrating two times with respect to x yields

T (x) = c1x+ c2 ,

where the constants c1 and c2 can be identified by the boundary conditions

c2 = T0 , c1 =
TL − T0

L

and therefore the temperature distribution in the steady state becomes

T (x) =
TL − T0

L
· x+ T0 .

By replacing the variables using x̃ = x
L

, T̃ = T
T0

and T̃L = TL
T0

the differential equation and
its solution become

∂2T̃

∂x̃2
= 0 , T̃ (x̃) =

(
T̃L − 1

)
· x̃+ 1 . (33)

The PINN was trained by this equation to approximate the temperature distribution. By
definition of the new variables, the boundary condition on the left is T̃ (0) = 1. On the

right, T̃ (1) = T̃L = 3 was chosen. The grid for computing the residual loss is given by
500 equidistant points in [0, 1]. To compute a validation loss, a uniformly distributed
random grid of 500 points is used. This grid is regenerated after every epoch. These
grid structures are reused in the following test cases, since increasing the number of grid
points (e.g., 5000) never lead to better results. The used NN consists of five hidden
layers, each with five neurons, to handle the complexity of the problem but also to not
require an unnecessary amount of resources. The input and output layer only have one
neuron, respectively (position x̃, temperature T̃ ). Hence, the overall number of network
parameters is 136. By comparing the number of parameters and of grid points, overfitting
is not expected. The intermediate values in every layer except for the last are evaluated by
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the sigmoid activation function. The last one is not evaluated by any activation function1,
since the output should be the non-normalized, dimensionless temperature. Boundary and
residual loss are added without additional scaling (λbc = λr = 1) to build the overall loss.
No regularization terms are used. Figure 11 shows the results for these conditions after
40000 epochs when using the Adam optimizer.
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Figure 11: Numerical results of problem (33) solved by the PINN. (a) analytical solution

and approximation by PINN of the temperature distribution T̃ (x̃). (b) training and
validation loss curves.

The PINN’s and the analytical solution fit perfectly. The loss converges, even though
some local peaks can be seen. The training and validation loss curves are mainly the
same. Hence, there is no suspicion of overfitting.
To compare the different optimizers the training process was done by SGD (lr=0.001),
SGD (lr=0.001 and µ=0.9), Adam, AdamW, Adagrad, Adadelta and RMSprop as well.
The respective loss training curves are given in figure 12.
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Figure 12: Comparison of training curves for the shown optimizers.

With and without momentum, the SGD optimizer does not converge at all or both found
the same unsatisfactory local minimum. Adadelta and RMSprop seem to stuck in a

1In principle, it is the identity activation function.
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different local minimum since both oscillate around the same loss. Adagrad reduces the
loss very slowly but continuously. Adam and AdamW show the best performance. Both
reduce the loss quickly, but after about 25000 epochs AdamW increases again. Despite
some peaks mentioned, Adam continues to converge.
Some of these results could have been expected because all the optimizers besides SGD
adapt their learning rates automatically and therefore find better minima. But Adagrad’s
monotonic decreasing learning rate drops too rapidly with epochs to reach the minimum
found by Adam. Adam and AdamW probably do better because they combine the two
advanced methods momentum and RMSprop. The increasing training curve of AdamW
might be caused by the additional weight decay in comparison with the basic Adam
algorithm. [25]
Using these results as benchmark, Adam seems to be the best optimizer here and is used
in the next cases.

3.2 Convection-conduction coupling

Now a convection term with constant velocity V = V0 is added to the previous test
problem. The equation modifies to

∂

∂t

(
3

2
nT

)
+

∂

∂x

(
3

2
nV T − κ∂T

∂x

)
= 0 , n = n0 , κ = κ0 , V = V0

with boundary conditions T (0) = T0, T (L) = TL. In the presence of a steady state, the
time derivative can be neglected. The remaining equation is

∂

∂x

(
3

2
n0V0T − κ0

∂T

∂x

)
= 0 .

Hence, the constant c3 can be introduced to get the ordinary differential equation

3

2
n0V0T − κ0

∂T

∂x
= c3 .

The homogeneous equation can be solved by an exponential ansatz leading to

Thom(x) = c4 · e
3
2
n0V0
κ0
·x
.

A particular solution of the inhomogeneous equation is

Tpart(x) =
2

3

c3
n0V0

.

The general solution as sum of homogeneous and particular solution is

T (x) = c4 · e
3
2
n0V0
κ0
·x

+
2

3

c3
n0V0

.

Hence, the constants c3 and c4 can be determined by using the boundary conditions.

c4 =
T0 − TL

1− e
3
2
n0V0
κ0
·L
, c3 =

3

2
n0V0 ·

(
T0 −

T0 − TL
1− e

3
2
n0V0
κ0
·L

)
Therefore, the overall solution becomes

T (x) = T0 +
TL − T0

e
3
2
n0V0
κ0
·L − 1

·
(
e

3
2
n0V0
κ0
·x − 1

)
.

22



Introducing x̃ = x
L

, T̃ = T
T0

and T̃L = TL
T0

again, and choosing the dimensionless constant
n0V0
κ0

= 1 yields the following differential equation and its solution.

∂

∂x̃

(
3

2
T̃ − ∂T̃

∂x̃

)
= 0 , T̃ (x̃) = 1 +

T̃L − 1

e
3
2 − 1

·
(
e

3
2
(x̃−1) − 1

)
(34)

A PINN with the same structure as in 3.1 is used to approximate the temperature distri-
bution by this equation. The boundary conditions are again chosen to be T̃ (0) = 1 and

T̃ (1) = T̃L = 3. The Adam optimizer is used. Again the loss factors are chosen to be
λbc = λr = 1. The results after 20000 epochs can be seen in figure 13.
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Figure 13: Numerical results of problem (34) solved by the PINN. (a) analytical solution

and approximation by PINN of the temperature distribution T̃ (x̃). (b) training and
validation loss curves.

Again, the analytical and PINN’s solution match perfectly. The loss decreases rapidly
during the first 5000 epochs. Thereafter, it seems to converge, nevertheless there are
small peaks. Training and validation loss curves are the same, even at these peaks.
Hence, overfitting is not a problem here.

3.3 Conduction with non-linearity

The third problem extends the pure-conduction problem of chapter 3.1 by introducing
the non-linearity κ = κ0 · T

5
2 . The equation becomes

∂

∂t

(
3

2
nT

)
+

∂

∂x

(
−κ0 · T

5
2
∂T

∂x

)
= 0 , n = n0

with boundary conditions T (0) = T0, T (L) = TL. Neglecting the time derivative and
introducing the constant c5 leads to

−κ0T
5
2
∂T

∂x
= c5 .

Integrating both sides of the equation from the left boundary x′ = 0 to a general x yields∫ T (x)

T0

−κ0T ′
5
2dT ′ =

∫ x

0

c5dx
′

⇒ −2κ0
7

(
T

7
2 − T

7
2
0

)
= c5 · x .
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The constant c5 can be determined by considering the right boundary x = L.

c5 = −2κ0
7L

(
T

7
2
L − T

7
2
0

)
Therefore, the overall solution becomes

T (x) =
[(
T

7
2
L − T

7
2
0

)
· x
L

+ T
7
2
0

] 2
7

.

Introducing x̃ = x
L

, T̃ = T
T0

and T̃L = TL
T0

again, leads to

∂

∂x̃

(
T̃

5
2
∂T̃

∂x̃

)
= 0 , T̃ (x) =

[(
T̃L − 1

)
· x̃+ 1

] 2
7
. (35)

A PINN of the same structure as in 3.1 is used to approximate the temperature distri-
bution by this equation. Again, the boundary conditions are chosen to be T̃ (0) = 1 and

T̃ (1) = T̃L = 3, and the Adam optimizer is used. Since the previously used loss factors
λbc = λr = 1 yield deviations from the boundary conditions, the boundary loss is scaled
by λbc = 1000. The residual loss factor is kept at λr = 1. When not using an activa-
tion function at the end which maps into the positive real numbers, there might occur
numerical errors when calculating the residual loss due to T̃ 5/2 depending on the random
chosen initial weights and biases. Initializing the NN until it works with the respective
parameters is an acceptable method for small problems like this. Even if it is not the case
here, it should be noted that derivatives which are contained in roots, e.g., (∂T/∂x)5/2,
would lead to further problems. That is because changing the initial monotonic behavior
of the PINN’s function is not trivial. The results without additional activation function
are shown in figure 14.
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Figure 14: Numerical results of problem (35) solved by the PINN. (a) analytical solution

and approximation by PINN of the temperature distribution T̃ (x̃). (b) training and
validation loss curves.

By changing the boundary loss factor, the analytical and PINN’s curve fit perfectly again.
An unexpected behavior can be seen in the loss curves. The training curve decreases and
seems to converge while the validation curve does the same, but is even smaller from the
8000th epoch onwards.
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3.4 Coupled convection dominant problem

In this chapter, coupled transport equations are considered. But here, only the continuity
and momentum equations are used. The problem is formulated as

∂n

∂t
+

∂

∂x
(nV ) = 0

∂mnV

∂t
+

∂

∂x

(
mnV 2

)
+
∂nT

∂x
= 0 (36)

with boundary conditions n(0) = n0 and V (0) = V0. The temperature distribution T (x)
is given. The two test cases

T1(x) =
TL − T0

L
· x+ T0 and T2(x) =

[(
T

7
2
L − T

7
2
0

)
· x
L

+ T
7
2
0

] 2
7

are distinguished.
Both time derivative terms can be neglected again due to the wanted steady state. Hence,
the continuity equation leads to a constant which can be described by n0 and V0. There-
fore, n and V can be expressed by

n =
n0V0
V

, V =
n0V0
n

. (37)

The second equation in (36) leads to a constant as well. This constant can be described
by n0, V0 and T0 = T (0). n and V from (37) can be inserted into the received equation.
Doing it with n yields

m
n0V0
V

V 2 +
n0V0
V

T = mn0V
2
0 + n0T0

⇒ V 2 −
(
V0 +

T0
mV0

)
· V +

T

m
= 0 .

This is a reduced quadratic equation with respect to V . Thus, V can be written as

V (x) =
V0
2

+
T0

2mV0
±
√(

V0
2

+
T0

2mV0

)2

− T

m
,

but only the case with positive sign fulfills the boundary condition V (0) = V0. The same
procedure can be repeated by inserting V from (37). This yields

mn
n2
0V

2
0

n2
+ nT = mn0V

2
0 + n0T0

⇒ n2 − mn0V
2
0 + n0T0
T

· n+
mn2

0V
2
0

T
= 0 .

Analogously, n can be written as

n(x) =
mn0V

2
0 + n0T0
2T

±
√(

mn0V 2
0 + n0T0
2T

)2

− mn2
0V

2
0

T
.

Now, only the solution with negative sign fulfills n(0) = n0.
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Figure 15: Numerical results of problem (36) with linear temperature distribution T1(x)
(left, (a), (c), (e)) and non-linear temperature distribution T2(x) (right, (b), (d), (f))
solved by the PINN. (a), (b), (c), (d) analytical solutions and approximations by PINN
of the normalized density n(x)/n0 and normalized velocity V (x)/V0, respectively. (e), (f)
training and validation loss curves.

To train a PINN by the coupled equations (36) the NN structure of chapter 3.1 can not be
used again, since not one function should be approximated but two, namely the density
n(x) and the velocity V (x). Hence, the last layer has to be changed. Now, the last layer
reduces the number of nodes from 5 to only 2. In this way, the PINN approximates not
only one function but two at the same time. Additionally, the loss gets a second residual
term due to the two coupled equations considered in this problem. The loss factors are
chosen to be λbc = λ

(1)
r = λ

(2)
r = 1, and the boundary conditions to be n0 = 1, V0 = 1.5,
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m = 1, T0 = 1 and TL = 0.5. The Adam optimizer is used again. Figure 15 shows the
results after 20000 epochs. The left column corresponds to the temperature distribution
T1(x) and the right column to T2(x).
In both temperature cases, the analytical and PINN’s solution for the densities n(x) and
velocities V (x) match perfectly. Even though the training curve for T1 includes some
peaks, the losses converge and no sign of overfitting can be seen.

3.5 Coupled problem with energy equation

Now the energy equation is added as well. Thus, the three coupled equations are

∂n

∂t
+

∂

∂x
(nV ) = 0

∂mnV

∂t
+

∂

∂x

(
mnV 2

)
+
∂nT

∂x
= 0

∂

∂t

(
3

2
nT

)
+

∂

∂x

(
3

2
nV T

)
+ nT

∂V

∂x
= 0

(38)

with boundary conditions n(0) = n0, V (0) = V0, T (0) = T0. Like before, all the time
derivatives can be neglected due to the considered steady state. Hence, the continuity
equation yields the constant

nV = n0V0 . (39)

The momentum equation leads to

mnV 2 + nT = c5 = mn0V
2
0 + n0T0 (40)

⇒ 3

2
nV T =

3

2

(
c5 −mnV 3

)
. (41)

The energy equation becomes

∂

∂x

(
3

2
nV T

)
+ nT

∂V

∂x
= 0 ,

where the term in the first derivative can be expressed by (41). Thus,

−3

2
m
∂

∂x

(
nV 3

)
+ nT

∂V

∂x
= 0 .

The first term can be rewritten using (39) to

−3

2
m
∂

∂x

(
nV 3

)
= −3

2
m
∂

∂x

(
nV · V 2

)
= −3

2
m

∂nV
∂x︸ ︷︷ ︸
=0

·V 2 + nV︸︷︷︸
=n0V0

·2V · ∂V
∂x


= −3m

(
n0V0V

∂V

∂x

)
.

This yields

∂V

∂x
· (nT − 3mn0V0V ) = 0 .
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The bracket term can not be equal to zero for arbitrarily chosen boundary conditions.
Therefore, the derivative of V has to be equal to zero. Hence, V is constant with respect
to x. Finally, using the boundary conditions, (39) and (40) the solutions are the constants

n(x) = n0 , V (x) = V0 , T (x) = T0 .

The NN from chapter 3.1 has to be adjusted again to solve the system of coupled equations
(38) since now the three functions should be approximated, namely the density n(x),
velocity V (x) and temperature T (x). Thus, it is reasonable to raise the number of overall
nodes by changing the number of nodes per hidden layer from 5 to 10, and reduce the
number of nodes from 5 to only 3 in the last layer.1 Additionally, a third loss term for the
third equation has to be added. The loss factors are chosen to be λbc = λ

(1)
r = λ

(2)
r = λ

(3)
r =

1, and the boundary conditions to be n0 = m = 1, V0 = 1.5 and T0 = 0.5. The analytical
solutions and PINN’s approximations can be seen in figure 16. The corresponding training
and validation curves can be seen in figure 17.
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Figure 16: Analytical solutions of coupled equations (38) and approximations by PINN
of the velocity V (x), density n(x) and temperature T (x), respectively.
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Figure 17: Training and validation curves corresponding to the PINN of figure 16.

1Each output node for every function n(x), V (x) and T (x), respectively.
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All the approximated functions fit the analytical solutions of constants perfectly, and
overfitting is not an issue. The training curve is special since the main loss reduction is
already done after 1000 epochs. This is much quicker than the previous test cases. This
is certainly the case due to the simple structure of the analytical solutions. Even though,
two major peaks can be seen around 104 epochs. But the Adam optimizer finds its way
back to the previous minimum.

3.6 Full coupled equations

Now, a more complete version of equations (22) should be solved. To generate another
comparative test case with analytical solutions, the following steady state problem from
[6, p. 1] for all x ∈ [−L,L] is considered.

∂nV

∂x
= S

∂

∂x

(
minV

2 + nTi
)

= 0

∂

∂x

(
minV

3

2
+

5

2
nV Ti

)
=

3

2
ST is

(42)

The boundary conditions are reduced to V (±L) = ±
√

2Ti(±L)/mi. As given in [6],
simple integration and application of the boundary conditions yield the analytical solu-
tions of velocity V and density n dependent on the temperature Ti.

n(x) = Sx ·
√

mi

3Ts − 5Ti(x)

V (x) =

√
3Ts − 5Ti(x)

mi

(43)

The temperature distribution is the solution of the reduced quadratic equation

T 2
i −

(
3

2
Ts +

5

16

(
P0

Sx

)2
)
· Ti +

9

16
T 2
s −

3

16

(
P0

Sx

)2
Ts
mi

= 0 (44)

with constants

P0 = miSL

√
3Ts − 5Ti(L)

mi

+ SLTi(L)

√
mi

3Ts − 5Ti(L)
and Ti(±L) =

3

2

Ts
c20 + 5

2

.

To solve (42) with a PINN it is reasonable to make it dimensionless. For this, the previous
variables are replaced by the following.

x→ ξ · L , t→ τ · ts , Ti,e → Ti,e · T is , V → V · vs , n→ n · ns (45)

The used characteristic quantities are defined as

vs :=

√
2T is
mi

, ts :=
L

vs
, ns := Sts .
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Thus, equations (42) apply for all ξ ∈ [−1, 1] and become

∂nV

∂ξ
= 1

∂

∂ξ

(
2nV 2 + nTi

)
= 0

∂

∂ξ

(
nV 3 +

5

2
nTiV

)
=

3

2

(46)

with boundary conditions V (±1) = ±
√
Ti(±1).

Due to the high complexity of this problem with three coupled equations, three functions
to approximate and two boundary conditions, the number of neurons per hidden layer
must be increased. Five hidden layers of 50 neurons each are used here. For the cal-
culations, deuterium (Z = 1 and mi ≈ 2 · mp) is assumed. The particle source and its
temperature are chosen S = 3 ·10−17s−1cm−1 and Ts = T is = 30eV. All the loss factors are
chosen to be λkr = λbc = 1, k = 1, 2, 3. To ensure positive valued densities and temper-
atures, both are evaluated by the exponential function in the last layer. Figure 18 shows
the numerical results achieved with sigmoid activation function after 105 epochs.
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Figure 18: Numerical results of problem (46) solved by the PINN with sigmoid activation
function, and analytical solutions (43) and (44). (a) density n(x), (b) velocity V (x), (c)
ion temperature Ti(x), (d) training and validation losses.
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Obviously, these results do not satisfy the expectations at all. Additionally, the loss curve
is very noisy. Changing the number of neurons or layers slightly does not have an impact
on this outcome. Significant improvement can be made by using the tanh activation
function. The results for that can be seen in figure 19.
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Figure 19: Numerical results of problem (46) solved by the PINN with tanh activation
function, and analytical solutions (43) and (44). (a) density n(x), (b) velocity V (x), (c)
ion temperature Ti(x), (d) training and validation losses.

Even though, the temperature distribution does not fit the analytical curve perfectly, the
density and velocity functions are approximated very well by the PINN. Furthermore, the
loss does not fluctuate that strongly.
It is well known that tanh often performs better than sigmoid [33, p. 3]. But the reason
seems not to be as clear. One reason might be that tanh is more similar to the identity
function around 0 and therefore reduces the complexity for training [18, p. 191]. Addi-
tionally, as shown in chapter 2.3.1 the gradient of tanh is larger around 0 than the gradient
of sigmoid. This might lead to greater optimizer steps and thus faster convergence [34].
But this argument should be viewed with skepticism since larger optimizer steps can also
cause missing a minimum.
Now, the full problem (22) in dimensionless form by the use of (45) is studied. Addi-
tionally, me/mi � 1 and source Knudsen number Ki

s � 1 are assumed so that terms
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proportional to these factors can be neglected. The remaining steady state equations are

∂nV
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∂ξ

(
nV 2 +

n(Ti + Te)

2

)
= 0

∂

∂ξ

(
nV 3 +

5

2
nV Ti

)
=

3

2
+

√
2me

mi

3n2

Ki
sT

3
2
e

(Te − Ti) + 2FEnV

∂

∂ξ

(
5

2
nV Te −

3.2

2

√
mi

2me

Ki
sT

5
2
e
∂Te
∂ξ

)
=

3T es
2T is

+

√
2me

mi

3n2

Ki
sT

3
2
e

(Ti − Te)− 2FEnV

(47)

like in [6, eq. (16)] with electric force and source Knudsen number

FE =
1

2n

∂nTe
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+
0.71

2

∂Te
∂ξ
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2
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,

and boundary conditions
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2
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2
i

∂Ti
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= γi · nV Ti|ξ=±1
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e
∂Te
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∣∣∣∣
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V (±1) = ±
√
Ti(±1) + Te(±1)

2
.

Since the number of functions to approximate by the PINN is increased by the electron
temperature the number of neurons is raised to 100. Both temperatures and the density
are evaluated by the exponential function in the last layer again. This is of particular im-
portance here because of the non-linear thermal conductivities and boundary conditions.
In addition to the previous model, the electron source temperature is set to T es = 30eV
and the source Knudsen number to Ki

s = 0.15. As before, using the sigmoid activation
function leads to insufficient results, as can be seen in figure 21 in chapter A.3.
Figure 20 shows the results for the tanh activation function. Interestingly, the loss curve
suggests even worse results. But at least the shapes of the approximated n, V and Ti
correspond to their analytical counterpart. Since the analytical solution applies for (46)
and not (47) perfect agreement of these curves is not expected anyway. But PINN’s
approximations differ from the finite volume results in [6, p. 6] as well. Increasing the
number of grid points to 5000, or multiplying the strongly non-linear thermal heat flux
BCs by 100 or 1000 to make them more relevant does not change the outcome. Even
the advanced method of gPINNs1 and the self-scalable tanh activation function2 do not
yield better results. The main reason seems to be the sheath boundary conditions, which
do not contain any fixed numerical values but only dependencies between the functions
n, V , Ti and Te at the boundary. This is also the essential difference to the test cases
of the previous chapters. Apparently, this leads to even more local minima the PINNs
can be trapped in. This also makes good results less reproducible. Additionally, it is

1More information on gPINNs can be found in [35]. In short, gPINNs consider not only the PDE
residual but also its derivative, which has to be equal to 0 as well.

2The self-scalable tanh activation function is introduced in [33] as Stan(x) = tanh(x) + βx · tanh(x).
Here, the scalar β is a new trainable NN parameter. Inter alia, Stan can be unbounded depending on β.
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unfortunate that one can not tell from the loss curves themselves which of the PINNs
solves the problem best in terms of similarity to the shapes of the analytical solutions.
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Figure 20: Numerical results of problem (47) solved by the PINN with tanh activation
function, finite volumes results from [6, p. 6], and analytical solutions (43) and (44). (a)
density n(x), (b) velocity V (x), (c) ion temperature Ti(x), (d) training and validation
losses.

3.7 Numerical efficiency

Finally, to consider PINNs in terms of numerical efficiency, table 1 shows all the previous
cases with their corresponding times per 104 epochs and their resulting total time until
convergence can be seen. As expected, t104 increases with cases since they become more
complex. The complexity refers to the network structure (i.e., more neurons per hidden
layer) but also the number of computations needed to get the residual losses (i.e., more
terms per equation and more equations). For the same reason, an increase in RAM usage
could be presumed. But interestingly, it remained constant at ≈ 2.6GB.
The pattern in the change of the total running time ttot is not as clear. At least the
cases 3.4 T1 and 3.5 prevent monotonic increasing due to their particular small Nconv.
Additionally, since the last problem does not show convergence at all, no statement can
be made. In general, only the orders of magnitude of Nconv and ttot should be considered
because of the ambiguity of the occurrence of convergence.
In general, numerical methods using finite differences, elements or volumes require only a
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few seconds of computation time and therefore are significantly quicker than the PINNs
used here. [8] [36]

Case t104 [s] Nconv [103] ttot [min]

3.1 70 20 2.33
3.2 75 20 2.50
3.3 80 20 2.67

3.4 T1 85 10 1.42
3.4 T2 90 20 3.00

3.5 110 1 0.18
3.6 test 150 20 5.00
3.6 full 350 - -

Table 1: For every case the time per 104 epochs t104 (rounded to nearest 5s), the ap-
proximate number of epochs Nconv until convergence can be seen, and the resulting total
time for these epochs ttot are shown. The training was done on a Nvidia GeForce RTX
3090. In each case, an equal amount of ≈ 2.6GB of RAM was required.
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4 Conclusions and outlook

This thesis studied the use of PINNs for the solution of 1D plasma edge transport equa-
tions in fusion devices. Firstly, the coupled plasma transport equations namely the con-
tinuity, momentum and energy equation were derived. These equations were reduced to
the 1D case along magnetic field lines. Non-linearities in the heat conduction and viscos-
ity terms occurred.
Afterward, general neural networks were introduced. The basic structure and function-
ality of a multilayer perceptron, including the feedforward algorithm and the concept of
loss, were described. The different activation functions sigmoid, ReLU and tanh were
compared and their particular importance by evaluating every layer’s output non-linearly
was stated. The reverse mode of AD was explained. Gradient descent and the improved
optimization algorithms momentum, RMSprop and Adam were discussed. NNs were ap-
plied to receive PINNs. The loss function was build using the residuals of the coupled
differential equations and its boundary conditions. At the end, the python package PyT-
orch and its benefits in NN training due to GPU usage and flexible AD implementation
were pointed out.
This was then used to discuss the numerical results for 1D test cases based on the full
system of coupled transport equations along magnetic field lines. The first three cases
only considered the heat-balance equation but with increasing complexity. The first one
assumed linear thermal conductivity and no convection. A convection term with constant
velocity was added in the second problem. The third case contained the known non-linear
heat conduction. For each of these problems, the PINNs, consisting of five layers of five
respective neurons and the sigmoid activation function, approximated the derived analyt-
ical solutions perfectly. The performance of the Adam optimizer stood out. The losses
converged noticeably, and overfitting never was seen. Nevertheless, a difficulty occurred
when trying to ensure the boundary condition in the third problem. It was needed to in-
crease the loss factor of the corresponding loss term to 103. Additionally, multiple network
initializations were necessary to guarantee positive temperatures, which were needed due
to the non-linear evaluation in the heat conduction. These problems would get harder to
solve when derivatives of the PINN’s functions would be evaluated non-linearly. Ensuring
monotonic increasing is not done in practice by adding an activation function or initial-
izing several times.
The coupled convection dominant problem consisting of continuity and simplified mo-
mentum equation, and the problem with additional energy equation yielded perfect agree-
ment with the derived analytical solutions without any difficulties. Both problems were
formulated using fixed boundary values. The second case even clearly converged after less
than 1000 epochs. However, the constant solutions were particularly simple to approxim-
ate.
The last two coupled problems of this thesis studied the transport equations with constant
particle source and sheath boundary condition, which lead to greater difficulties. At first,
only three equations were considered. Heat conductivity and the electron temperature
were neglected. To ensure positive temperatures and densities, these outputs were addi-
tionally evaluated by the exponential function in the last layer. However, the PINN of
five hidden layers with 50 respective neurons and sigmoid activation function could not
approximate the analytical solutions satisfactorily. Replacing sigmoid by tanh lead to
significantly better results. But still the ion temperature did not match completely, while
density and velocity did. The last coupled problem including non-linear conduction term
lead to similar results. The sigmoid function failed and tanh did better, but far from
perfect. Only the expected shapes were recognizable. Interestingly, the loss curve of tanh
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did not look more promising than the one of sigmoid. Additionally, the results were not
as reproducible as before. Many local minima were entered, which would be hard to spot
when not having access to analytical solutions. The main problem seems to be the sheath
boundary condition, since no fixed values are given but only dependencies between the
functions at the boundary. Increasing the number of grid points to 5000, or multiplying
the strongly non-linear thermal heat flux BCs by 100 or 1000 did not change the outcome.
Even the advanced method of gPINNs and the self-scalable tanh activation function did
not yield better results.
In conclusion, PINNs for solving the plasma transport equations can be implemented eas-
ily due to flexible packages like PyTorch. However, there is still the need of further tests
and new strategies to overcome the remaining problems like the running time compared to
finite differences, elements and volumes. Additionally, the cases of strongly coupled equa-
tions with non-linearities and particularly the problem of the strongly non-linear sheath
boundary conditions has to be addressed in the future. A possible approach might be fur-
ther linearization by using one NN for the density, velocity and temperature, respectively.
These individual NNs would then be optimized one after the other iteratively.
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A Appendix

A.1 Higher dimensional integration by parts

As explained by Griffiths in [37, p. 37], the product rule for the divergence of the product
of a scalar field f and vector field A

∇(f ·A) = f · (∇A) + A · (∇f) ,

can be used to receive higher dimensional integration by parts. Integrating the identity
over a volume V leads to∫

V

∇(f ·A) d3r =

∫
V

f · (∇A) d3r +

∫
V

A · (∇f) d3r .

The integral on the left can be expressed as an integral over the boundary ∂V by Gauss’s
theorem ∫

V

∇(f ·A) d3r =

∮
∂V

f ·A d3r . (48)

Inserting this and rearranging the equation yields∫
V

f · (∇A) d3r =

∮
∂V

f ·A d3r −
∫
V

A · (∇f) d3r . (49)

A.2 Dot product rule for divergence

In [37, p. 21] Griffiths stated that the divergence of a dot product of two vector fields A
and B can be written as

∇(A ·B) = (A · ∇) ·B + (B · ∇) ·A + A× (∇×B) + B× (∇×A) .

Therefore B = A yields

∇
(
A2
)

= 2 · (A · ∇) ·A + 2 ·A× (∇×A) .

Hence,

(A · ∇) ·A =
1

2
· ∇
(
A2
)
−A× (∇×A)

and multiplying both sides by A leads to the scalar equation

[(A · ∇) ·A] ·A =
1

2
A · ∇

(
A2
)

(50)

because [A× (∇×A)] ·A = 0 .
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A.3 Auxiliary sigmoid results
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Figure 21: Numerical results of problem (47) solved by the PINN with sigmoid activation
function, and analytical solutions (43) and (44). (a) density n(x), (b) velocity V (x), (c)
ion temperature Ti(x), (d) training and validation losses.
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