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Chapter 1

Introduction

1.1 Why fusion?

Energy is needed and used everywhere. It is key to economy and human
development. The massive consumption of fossil fuels led to global warming,
and therefore, must be strongly reduced. The surface temperature warming is
related to the cumulative total of carbon dioxide emitted to the atmosphere,
therefore, it may be necessary to go even beyond net-zero emission and extract
actually carbon dioxide from the atmosphere. As several billion people are still
pursuing a better life, whatever economy savings will be achieved, the global
energy demand will increase. This is a global problem and it needs a global
solution.

The technologies of renewable energy sources have significantly improved
in the last years. Power supply from wind and solar sources is non-carbon
emitting and legitimately part of the favored solution. However, the intermit-
tency of power supply from wind and solar sources remains a problem. Strong
additional back-up capacity will be too expensive and large-scale power stor-
age systems seem difficult to achieve. Energy infrastructure takes a very long
time to build, it is expensive to change. Traditional baseload power plants
will be still indispensable in the near and far future. The other component
of the non-carbon emitting energy supply is nuclear. Any reasonable scenario
analysis includes a global increase of nuclear fission power in next decades
[1, 2]. Nuclear fission comprised risks, stemming from involuntary and vol-
untary (e.g. terrorism) nuclear accidents, from long-term radioactive waste
storage and from nuclear weapons proliferation. In particular, due to the cur-
rent public opinion regarding nuclear fission, it may prove difficult for the
public to accept nuclear plants in the landscape at the scale necessary. These
risks can be strongly mitigated by nuclear fusion.

The advantages of nuclear fusion are summarized in the following: Fission
energy is ten millions of times more concentrated than the energy released by
combustion, and fusion even four times more. No greenhouse gases are emit-
ted, too. The fuel for fusion is practically inexhaustible and well distributed
on earth. There is no risk of uncontrolled power runaway providing safe oper-
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2 1. Introduction

ation. Long-term radioactive waste storage is not required, neutron activated
materials can be recycled within a century.

1.2 Why plasma turbulence?

Plasma turbulence is everywhere in space and astrophysical plasmas. It stirs
the galactic and stellar dynamo, it is important for magnetic reconnection,
scatters particles facilitating shock acceleration of cosmic rays, drives inter-
stellar medium scintillations and drives angular momentum transport in ac-
cretion disks [3]. With respect to magnetically confined fusion, plasma turbu-
lence is the main obstacle from achieving ignition so far. Turbulent transport
is the reason why the demonstration experiment for the feasibility of fusion
power, ITER, has to be build at this large size. The region just inside the
confined region, the edge of the plasma, is characterized by steep gradients,
which drive instability and turbulence. The overall plasma confinement is de-
termined by the turbulence in the plasma edge, it highly influences the overall
core performance and is directly related to the fusion gain. Instability and
turbulence in the plasma edge also influence the power load to the material
components. With respect to magnetically confined fusion, plasma turbulence
is key for understanding the plasma performance.

There is a joke about fusion, that it is the energy source of the future,
and always will be. This shows that it is quite difficult to realize. Never-
theless, research on magnetically confined fusion continuously makes progress
and breakthroughs can be just a bright idea away. Sometimes this takes time.
Flows through pipes and hydraulic networks are generally turbulent and the
friction losses encountered there are responsible for approximately 10 % of
the global electric energy consumption [4]. The problem is known since the
pioneering study of Osborne Reynolds in the late 19th century [5], but only
recently it could be demonstrated, how turbulence in pipe flow can be anni-
hilated [4]. Counterintuitively, by initially increasing turbulence intensities a
complete collapse of turbulence can be accomplished, reducing subsequently
friction losses by as much as 90 % [4]. By enhanced turbulent mixing, the mean
flow profile gets more uniform and the turbulence drive is disabled, turbulent
fluctuations disappear and the flow relaminarizes. The turbulence drive in a
fusion plasma are the gradients, which determine the fusion performance and
should not be reduced too much, but this example shows that it is not impos-
sible to significantly reduce turbulence. A pipe is a much simpler system than
a magnetically confined fusion plasma. There is no law of nature prohibiting
us from adjusting turbulence and allowing for a much smaller, easier to handle
and more economic fusion reactor.

Many physicists, including Heisenberg, von Weizsäcker, Onsager, and Feyn-
man, have attempted to tackle the problem of turbulence purely analytically
but with only limited success. Even though the equations require no more
skills than (a lot of) undergraduate mathematics, the problem is very chal-
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lenging. One reason most blamed is the nonlinearity. Due to the nonlinearity,
the equations for the resolved scales contain moments of the unresolved scales.
There are nonlinear problems that are completely integrable like the Korteveg-
de Vries and Schrödinger equations, turbulence is not, which imposes intrinsic
stochasticity and self-randomization [6]. And finally because the pressure is
defined in each space point, by the velocity in the whole flow field, turbulence
is essentially non-local [6]. All these lead to a loss of predictability, but stable
statistical properties.

The advent of large-scale computations promised huge progress. One should
be able to evaluate designs without having to do experiments or build proto-
types. With direct numerical simulations (DNS) the equations of motion are
integrated numerically without relying on any modeling of turbulence flows.
For three-dimensional turbulence the minimum number of required grid cells is
in the order of Re9/4 (with Reynolds number Re), which for flows of industrial
interest (for example a commercial airliner at Re ≈ 109) is still often unfeasible
[7]. Nevertheless, DNS provided substantial insight in the physics of turbu-
lence. Numerical methods in general accurately predict the large scales, but
the accuracy at small scales certainly remains an issue [7]. Both, the smallest
and largest scales are important in many applications of fluid turbulence, in-
cluding mixing, combustion, turbulent flows with chemical reactions, and some
special problems in blood flow related to such phenomena as hemolysis and
thrombosis [6]. It would be careless to assume plasma turbulence being an ex-
ception, and in fact it is not [8]. However, resolving all important scales (from
the electron gyroradius to the reactor size) and all relevant physics from the
core to the plasma edge and finally including the wall will not be feasible in the
near future. All present simulation codes address only parts of the problem,
their combination (called integrated modeling) cannot not be verified, because
no full solution is available. Therefore, even though huge progress has been
achieved in verification and validation of simulations codes, simulations will
not soon reach the precision to render experiments unnecessary, which was the
whole idea of simulations in the first place. In turbulence research experiments
are indispensable. Even if complete simulations would be available, without
some kind of understanding, we would be overwhelmed by the amount of data
and its apparently random behavior.

The aim of this work is to distillate the microscopic picture of plasma edge
turbulence. This is important for deriving meaning and/or a message from the
experiment, be it physical or digital. Therefore, experiments and simulations
have been carried out on different devices and simulation codes.

1.3 Structure of this thesis

This work is a German Habilitation thesis, and as such my scientific progress
from the beginning of my Post Doc time will be presented in Chaps. 8 to 12
based on Refs. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] after the theoretical



4 1. Introduction

background and methods have been explained in Chaps. 2 to 7. The basic
concept of magnetic confinement, its geometry and confinement regimes are
introduced in Chap. 2. Plasma turbulence is bound to the two-dimensional
plane perpendicular to the magnetic field lines. Chap. 3 presents the phe-
nomenology of two-dimensional turbulence. Different plasma instabilities are
studied in Chap. 4. A more detailed mathematical treatment of the instabil-
ities is provided in the appendix B. Plasma turbulence itself is introduced
in Chap. 5. Diagnostics and analysis methods suitable for studying plasma
turbulence are summarized in Chaps. 6 and 7, respectively. In the main part

• basic features of drift-wave turbulence will be studied in low-temperature
laboratory experiments. The results presented in Chap. 8 are based on
the publications [9, 10, 11]. To understand structure formation in drift-
wave turbulence the inverse energy cascade, the transition to turbulence
and the spatial nonlocality of zonal flow drive are studied in detail.

• In the low confinement regime of tokamaks the turbulence can become
quite strong. Chapter 9 concerns the nonlinear drive of plasma turbu-
lence and the possible loss of linear features. It is based on simulation
results obtained with the gyrofluid code GEMR (Sec. 5.3) and is based
on the publication [12].

• The transition to high confinement is one of the most important not
understood phenomena in magnetically confined fusion. Various experi-
ments found that turbulence suppression by turbulence flow generation
appears strong enough to trigger a transition into the high confinement
regime. Other experiments show only weak or insufficient zonal flow
activity at the transition from low to high confinement. In Chap. 10
experimental results from the tokamak EAST supporting the transition
by turbulence generated flows and from the tokamak ASDEX Upgrade
showing no sign of turbulence generated flow activity are presented. The
results are based on the publications [13],[14] and [15], respectively.

• The I-mode is another improved confinement regime, where the density
and temperature are differently well confined. Turbulence in I-mode will
be characterized in Chapter 11 based on experiments carried out in the
tokamak ASDEX Upgrade and published in Ref. [16, 17].

• Chapter 12 deals with transport in the scrape-off layer. The scrape-off
layer is the region outside the confined plasma governing the heat load
on the plasma facing components, determining the power and particle
balance and regulating the impurity dynamics. Therefore, the scrape-off
layer is of central importance for a future fusion reactor. In particular the
impact of finite ion temperatures and nonlocal transport are investigated.
Results are based on the publications [18, 19, 20].

Newcomers to the field of plasma edge turbulence may find this work use-
ful. In plasma turbulence research a lot of acronyms and concepts are used
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in a self-evident way, which are never taught in lectures or textbooks. This
work has also been designed to fill a gap between state of the art in work
on edge plasma turbulence and available treatments in textbooks. Chapter
4 provides an introduction to the most important instabilities and provides a
guide for their characterization. To guide the analysis strategy of experimen-
tal data, Chap. 7 provides an overview of different data analysis techniques
useful for plasma turbulence, many of them cannot be found in textbooks.
In the introductory chapters, particular attention has been paid to subjects
not covered in the common introductory literature, which are important for
this work. Furthermore, most phenomena important for plasma turbulence in
general, which however are not very important for my personal previous work,
are introduced. Someone new to the field will find concepts and phenomena
at least shortly introduced and additional references are provided. The index
list together with the extensive bibliography make this work a proper general
reference book on plasma turbulence. Taking into account a possible diverse
readership, a plasma physics curriculum is included (Appendix. A), in which
all basic concepts of plasma physics necessary for understanding this work are
introduced. I have tried to write this thesis as modular as possible and to
reduce the mathematics to a minimum.



6 1. Introduction



Chapter 2

Magnetic confinement

The processes able to sustain a star’s energy balance by fusion reactions are
inadequate for earth application. The main confinement mechanism by grav-
itational attraction is not reproducible. The power density and the corre-
sponding temperature and cross-section would be too low to facilitate enough
fusion reactions to get a net energy excess in a typical reactor-size device.
Furthermore, the average power density of about 0.3 MW/m3 is too low to
be economically competitive (already existing pressurized water reactors reach
about 100 MW/m3). Therefore, much higher temperatures compared to the
sun are needed to facilitate a fusion power plant on earth. Maintaining high
temperature in order to achieve thermonuclear fusion requires an appropriate
insulation of the plasma from the wall. A proper confinement can be achieved
by closed magnetic field lines to which the charged particles are bound by
the Lorentz force. Perpendicular to the magnetic field B the Lorentz force is
balanced by the pressure gradient

∇p = J×B, (2.1)

where the current J to stabilize the pressure gradient is generated by the
plasma itself. This route to thermonuclear fusion is called magnetic confine-
ment. The plasma economy, e.g. how much plasma pressure can be confined
at a given magnetic field, is provided by the plasma beta

β =
p

B2/2µ0

. (2.2)

It gives the ratio between the plasma pressure p to the magnetic pressure
B2/2µ0. Already in the 1940s it has been realized that a plasma can be pinched
and thereby confined in a linear experiments (Sec. 2.1.4) with sufficient high
currents and magnetic fields. These experiments exhibit a high plasma beta,
but they have been found to be highly unstable. Two major concepts are
currently intensively investigated, the tokamak (Sec. 2.1.1) and the stellarator
(Sec. 2.1.3). These operate at low plasma beta.

7



8 2. Magnetic confinement

2.1 Magnetic confinement devices

2.1.1 Tokamak

The basic setup of a tokamak is shown in Fig. 2.1. The generated plasma
exhibits a toroidal shape with major radius R and minor radius a. By exter-
nal coils a toroidal magnetic field Bt = B0R0/R is generated. Here B0 is the
magnetic field at the magnetic axis R0. The magnetic field is superimposed
by a poloidal magnetic field Bθ generated by an inductively driven plasma
current Ip. The plasma current heats the plasma by resistive dissipation, this
is called Ohmic heating. Additional vertical coils are needed to position the
plasma within the vacuum vessel. The superposition of a toroidal and poloidal
magnetic field results in a twisted total magnetic field. This twist is necessary
because otherwise the entire plasma would be subject to the interchange in-
stability (see Sec. 4.2). Due to the twist the bad curvature region is connected
to the good curvature region and the unfavorable effects of the bad curva-
ture region can be balanced. The twist is characterized by the safety factor
qs = m/n, which gives the ratio between n toroidal andm poloidal revolutions
of a field line before it closes. In the case of a circular plasma cross-section
the safety factor is given by qs = rB0/R0Bθ. A strong change of this twist
with radius of the magnetic field lines is beneficial for confinement, it is given
by the magnetic shear ŝ = r/qs(dqs/dr) (effects of magnetic shear will be dis-
cussed in Sec. 10.3). The resulting parallel flow and current counterbalancing
the charge separation by the interchange effect are called the Pfirsch-Schlüter
flow or current (more details can be found in Sec. 5.2.3).

Figure 2.1: Schematic set up of a tokamak. The external toroidal field coils

generate a toroidal magnetic field Bt. The transformer induces a toroidal plasma

current Ip which generates a poloidal field Bθ. Both components lead to a twisted

magnetic field necessary for magnetic confinement.
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Figure 2.2: A poloidal cross-section of the tokamak ASDEX Upgrade. The con-

fined region is indicated by the solid blue lines. The separatrix separates the region

of closed field lines from the region of open field lines (scrape-off layer).

As the tokamak is toroidally symmetric it is for most applications sufficient
to investigate the geometry in the cross-section perpendicular to the toroidal
field. This is called the poloidal cross-section. The different regions of the
tokamak are shown in the poloidal cross-section of a tokamak in Fig. 2.2.
Nowadays tokamaks are rarely circular in the cross-section. For reference,
different magnetic flux surfaces can be labeled with the normalized poloidal
flux variable ρpol =

√

(ψ − ψa)/(ψs − ψa) where ψ is the poloidal magnetic
flux in a range between the plasma axis (label a), where ρpol = 0, and the last
closed flux surface (LCFS) (label s) where ρpol = 1. In diverted configurations
the last closed flux surface is called the separatrix. Normalized fluxes are used
as radial coordinates in tokamaks. The confined region ρpol < 1 is shown by
the closed blue lines of constant poloidal flux. The edge of the confined region
is characterized by a strong radial electric field which can be approximately
given by [21]

Er
B

=
∇pi
enB0

+ qs
a

R0

u‖. (2.3)
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Here Er is the radial electric field, n is the plasma density, pi is the ion plasma
pressure, e the elementary charge and u‖ is the flow parallel to the magnetic
field. The typically strong ion pressure gradient gives a strong negative con-
tribution at the plasma edge which is important for the confinement. Without
heating by neutral beam injection (NBI) inducing external momentum into
the system the parallel velocity is usually small and the plasma is usually not
heated directly at the edge. A more advanced description of the tokamak
equilibrium can be found in Sec. C.2.3.

The region of open field lines outside the separatrix (ρpol > 1), shown by the
red dashed lines, is characterized by open field lines ending on material surfaces
and called the scrape-off layer. Scrape-off layer transport will be studied in
detail in Chap. 12.

The divertor is a setup associated with a particular magnetic configuration
used in nowadays tokamaks generated by an additional magnetic field. The
divertor field diverts the plasma outside the last closed flux surface to collector
plates. In this way most of the heat exhausts is guided to these plates and
the heat load on the vessel walls is reduced. A particular feature of diverted
magnetic fields is the X-point, which is the point where the poloidal magnetic
field vanishes and the field lines are nearly toroidal. Around the X-point the
magnetic shear is very strong.

If the X-point is placed in the lower (upper) part of the tokamak the con-
figuration is called lower (upper) single null configuration. If both regions
exhibit an X-point the configuration is called double null configuration. The
area where field lines connect the separatrix with the divertor is called the tar-
get area. The strike line is the toroidal circumferential line at the point where
the separatrix intersects with the target. It is characterized by enhanced heat
flux.

For details on tokamak physics, the interested reader is referred to the
book by Wesson [22], which gives a very comprehensive overview. For scrape-
off layer and divertor physics the book by Stangeby [23] is recommended.

2.1.2 Tokamak experiments

The currently largest tokamak experiment worldwide is JET (Joint European
Torus, Oxfordshire, UK, R0 = 2.96 m). JET is today the only experiment
allowed to do experiments with tritium-deuterium fuel and has set the current
world record for fusion output. A next generation tokamak is ITER (Inter-
national Thermonuclear Experimental Reactor, R0 = 6.2 m), currently built
next to Cadarache (France). ITER shall demonstrate the principle of pro-
ducing more thermal power from the fusion process than is used to heat the
plasma. Furthermore, ITER will enable to develop and test technologies and
processes needed for a fusion power plant as tritium breeding concepts, su-
perconducting magnets, remote handling, suitable plasma facing components,
neutron shielding and heat conversion technology.

In this work experiments performed on different tokamaks will be presented.
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In the following, a short introduction to them will be given.

• ASDEX (AxialSymmetrisches Divertor-Experiment) Upgrade is a di-
verted tokamak experiment in Garching (Germany). The major radius
is R0 = 1.65 m, the minor radius a = 0.5 m. The magnetic field in
ASDEX Upgrade (AUG) is generated by copper coils. The typical mag-
netic field strength is B = 2.5 T, discharges up to a magnetic field of
B = 3.9 T can be conducted in principle. The duration of the dis-
charges is in the range of several seconds. Special features of AUG
are the complete first wall made of tungsten and an outstanding high
heating power (in particular compared to the machine size). ASDEX
Upgrade can be heated by 20 MW of neutral beam injection (NBI), 6
MW of ion-cyclotron-resonance heating (ICRH) and 4 MW of electron-
cyclotron-resonance heating (ECRH). AUG is equipped with diagnostics
presented in Chap. 6. It is the experiment most referred to within this
work. Results presented in Secs. 9, 10.2.1 and 11 are based on measure-
ments in ASDEX Upgrade, those presented in Secs. 9, 10.3 and 12 are
based on simulations at AUG parameters.

• The DIII-D tokamak is operated in San Diego (USA) since the early
1980s. The name comes from the cross-sectional plasma shape, resem-
bling the letter D. DIII-D has led to a new class of tokamaks known
as advanced tokamaks. Through strong plasma shaping and active con-
trol of various plasma instabilities, advanced tokamaks operate at high
plasma β (Eq. 2.2) and achieve high currents and strong pressure pro-
files accompanied by high performance. DIII-D is a diverted tokamak
with a carbon wall. The major radius is R0 = 1.67 m, the minor radius
a = 0.67 m and the magnetic field strength is about B = 2.2 T. The
plasma heating capabilities are strong (about 26 MW). As DIII-D is in
operation since the eighties, it is very well diagnosed.

• TheExperimental Advanced Superconducting Tokamak (EAST)
is the first tokamak employing superconducting toroidal and poloidal
magnets. It is operated in Hefei (China). It is of similar size as AUG
or DIII-D with a major radius of R0 = 1.85 m and a minor radius of
a = 0.45 m. Magnetic fields of 3.5 T are achieved. One of the main ob-
jectives of EAST is long pulse operation. EAST continuously optimizes
the integrated operation scenario and has been succeeded in produc-
ing steady-state H-mode discharges of over 100 s (status 2017). The
results presented in Sec. 10.1 [13] have been obtained on EAST. Fur-
thermore, the author has been regularly involved in the EAST projects
[24, 25, 26, 27].

• Alcator C-Mod (at MIT, Cambridge, USA) was a rather small (R0 =
0.68 m, a = 0.22 m) diverted tokamak operated at high magnetic fields
up toB = 8 T. After more than 20 years of operation, Alcator C-Mod was
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shut down in 2016. Due to its compactness the highest volume average
plasma pressures could be obtained. Together with the high magnetic
field, Alcator C-Mod had access to unique experimental regimes. Work
on Alcator C-Mod provides a basis for the results on I-mode turbulence
presented in Chap. 11.

• Tore Supra (in Cadarache, France) was for a long time the only toka-
mak of considerable size (R0 = 2.25 m, a = 0.7 m) with superconducting
toroidal magnets allowing magnetic fields up to 4.5 T. Tore supra was a
limited tokamak with mainly circular plasma cross-sections, which have
shown less good performance. However, as the simulation code GEMR,
mostly used in this thesis, is restricted to limited plasmas with circular
plasma cross-sections too, GEMR simulations offers a better compara-
bility with Tore Supra measurements (Sec. 10.3). Beginning 2013 Tore
Supra underwent an extensive refit including the installation of a tung-
sten divertor and was renamed to WEST. WEST is operating since 2016.

2.1.3 Stellarator experiments

In a stellarator the complete twisted magnetic field necessary for magnetic
confinement is generated by the external coil system. In contrast to the toka-
mak no transformer is needed which allows continuous operation, one of the
main advantages of the stellarator. Other advantages related to the absent
current of the transformer are that several MHD instabilities are not present
in a stellarator and the absence of disruptions. Also stellarators exhibit no
density limit like the Greenwald limit. The twisted magnetic field is generated
by twisted magnetic field coils which makes the magnetic field more compli-
cated compared to that of a tokamak. As axisymmetry is lost, for stellarators
a three-dimensional geometry has to be considered, where tokamaks exhibit a
two-dimensional geometry. In general stellarators suffer from higher neoclas-
sical transport compared to tokamaks, however, due to optimization it should
be possible to reduce the neoclassical transport levels of so-called optimized
stellarators to a tokamak-similar level. The stellarator Wendelstein 7-X [28]
in Greifswald (Germany) is an example of such an optimized stellarator. In
this thesis results based on measurements at the stellarator TJ-K are shown,
which is operated with low temperatures plasmas.

• TJ-K [29] is a torsatron-type of stellarator which confines a low tempera-
ture plasma with dimensionless parameters similar to those in fusion edge
plasmas [30]. Fundamental studies of drift waves [31, 32, 33], drift-wave
turbulence [34, 35], zonal flows [36, 35, 37, 38, 39, 40] with particular
attention to geometric effects [41, 38, 40] have been done. Sections 8.1,
5.1.4 and 5.1.3 are based on measurements at TJ-K.
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2.1.4 Linear devices

Due to the end losses linear devices are not appropriate for magnetic confined
fusion plasmas. Confinement can be improved by increasing the magnetic field
strength towards the ends of the device, though. There, the magnetic mirror
effect hampers particles from leaving the plasma. These are called mirror
devices. In this configuration, however, in particular fast particles will still
leak and the fast particles are those which matter for fusion. Nowadays mirror
machines are rarely considered as design for a fusion reactor. One exceptional
example is the Lockheed Martin Compact Fusion Reactor. However, due to
their simple configuration linear devices are often used at universities to study
basic plasma physics including plasma instabilities and turbulence. Even if the
experiments would not directly be fusion relevant, general ideas can be tested
and developed which can be transferred to larger devices after an appropriate
revision. Linear devices are also used to study space plasma related topics
as Alfvén dynamics [42, 43], magnetic field line expansion effects (i.e. double
layers [44, 45, 46]), plasma thrusters for spacecraft propulsion [47]) or magnetic
reconnection [48]. As fusion relevant applications plasma wall interaction [49,
50] and plasma detachment [51] are studied in linear devices.

• The Controlled Shear Decorrelation Experiment (CSDX) is a linear
plasma device at UCSD in San Diego (USA). CSDX is 2.8 m long and a
helicon antenna produces a plasma column of 4.5 cm radius. In helicon
plasmas the density is proportional to the magnetic field. At a magnetic
field of B = 0.1 T, CSDX argon plasmas exhibit usually central densi-
ties of 1019 m−3 and electron temperatures of 3 eV. The ion and neutral
temperatures are small (Ti = 0.7 eV, Tn = 0.5 eV) and can be neglected.
CSDX is usually operated with isolating end plates, where most other
linear devices are operating with conducting end plates. As result the
radial current in CSDX is stronger. The radial current is carried by the
polarization current, which is responsible for structure formation (inverse
energy cascade, zonal flows) enabling the study of structure formation in
drift-wave turbulence [52]. Main focus for research has been the interac-
tion between shear flows and turbulence [53, 54, 55].

2.2 Magnetic confinement regimes

2.2.1 Low confinement regime (L-mode)

A very high temperature in the confined region is required with respect to the
fusion process. On the other hand a very low temperature at the plasma wall
is needed to not overburden the materials. Directly at the edge of the plasma
strong gradients in thermodynamic quantities such as density and tempera-
ture are inevitable. These gradients lead to plasma instabilities (Chap. 4) and
turbulence (Chap. 5). Turbulence is most effective in mixing and the strong
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Figure 2.3: Schematic plasma pressure profiles in low and high confinement

regimes.

associated turbulent transport prevents gradients to steepen up with increas-
ing heating power. The operational regime dominated by turbulence is called
the low-confinement regime (L-mode). Fortunately, with sufficiently increased
heating power the plasma transitions into a regime of higher confinement (de-
scribed in the following Sec. 2.2.2). Although not interesting as a possible
confinement regime for a future fusion reactor, the L-mode is the ideal regime
to study plasma turbulence and most investigations of plasma turbulence are
done in this regime. Chap. 9 pays particular attention to plasma turbulence
in L-mode. Chap. 10 investigates the transition from L- to H-mode.

2.2.2 High confinement regime (H-mode)

The high confinement regime occurs at higher heating powers than the L-mode.
It has been discovered by Wagner in ASDEX [56]. During the transition from
L- to H-mode the turbulence is suppressed and the gradients steepen. The
region characterized by these steep gradients just inside the separatrix is called
the pedestal (see Fig. 2.3). Due to the stiff transport (Sec. 4.4) in the plasma
core the pedestal highly influences the overall core performance and is directly
related to the fusion gain. The steepening of the gradients is accompanied by a
strengthening of the radial electric field and the corresponding flow shear. Flow
shear has the capability to suppress plasma turbulence [57], and is therefore
thought to be of central importance for the L-H transition. The physical
mechanism behind this transition is not understood so far. A review on theories
of the L-H transition can be found in Ref. [58].
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In early studies of the radial electric field in the plasma edge of low collision-
ality plasmas in DIII-D a disagreement between experimental and neoclassical
poloidal rotation has been found [59]. It has been widely accepted that neo-
classical theory does not apply in the plasma edge. In the following years an
explanation has been sought for non-neoclassical generated poloidal flows. A
reasonable candidate is the turbulence generated so-called zonal flow (Sec. 3.6),
which is also a strong candidate to explain the turbulence suppression from
L-mode to H-mode. It should be noted, however, that state of the art sim-
ulations codes including all of the relevant zonal flow physics could not yet
reproduce the L-H transition.

In the pedestal (0.97 < ρpol < 1.00) of ASDEX Upgrade the radial elec-
tric field in H-mode is approximately Er ≈ (∇pi)/(en) [60]. It should be
noted that the plasma edge of ASDEX Upgrade is rather collisional. Further
inwards (0.90 < ρpol < 0.97) both radial electric field and its ion pressure
contribution differ, but the difference can be understood by the expected neo-
classical poloidal rotation [61]. Therefore, in H-mode the radial electric field
in the plasma edge of ASDEX Upgrade is neoclassical [60]. This has been
shown to be even the case around the L-H transition [62], which rules out
significant contributions from zonal flows. Collisionality hampers zonal flow
self-amplification (see section 5.1.3).

The high pedestal gradients in H-mode lead to bursty quasiperiodic expul-
sions of energy and particles called edge localized modes (ELMs) [63]. Due
to the strong particles and heat fluxes, ELMs are a serious concern for future
fusion experiments like ITER and DEMO [64, 65]. ELMs are classified into
three main types [66]:

• type-I ELMs, also defined as large ELMs, are a serious concern for
large-scale fusion experiments or future reactors. The frequency of type-
I ELMs increases with heating power. In nowadays’ experiments their
frequency is about ten to some hundred Hz. Type-I ELMs are believed to
be triggered by MHD instabilities, either the ideal peeling mode (IPM) or
the ideal ballooning mode (IBM), depending on which stability boundary
(the current or the pressure, respectively) is reached [67, 68, 69]. The
ELM is initialized by a coupled peeling-ballooning mode [70]. The ELM
crash itself is a nonlinear phenomenon [71].

• type-II ELMs, also called grassy ELMs, show good performance for a
fusion plasma. They provide helium exhaust and are accompanied by
tolerable divertor heat loads at still elevated confinement. They appear
at high densities (which is anyhow desirable) and strong plasma elonga-
tion. It has been suggested that type-II ELMs are pure ballooning modes
[70].

• type-III ELMs are also much smaller in amplitude than type-I ELMs.
Their frequency is higher (at several hundred Hz to kHz) and decreases
with increasing heating power. Their main characteristic is the appear-
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ance of a magnetic precursor mode at several tens of kHz. They ap-
pear well below the ideal ballooning limit. It is suggested that type-III
ELMs are pure peeling modes [70]. Type-III ELMs are stabilized by
high pedestal temperatures suggesting a resistive nature of these kind of
ELMs.

Intrinsically ELM-free regimes with good confinement or small-ELM regimes
would be an attractive operation regime for a fusion reactor. Such an ELM-
free operation regime is the I-mode, described in the next section. Reviews
on small-ELM regimes can be found in Refs. [72, 73]. A review on naturally
ELM-free regimes can be found in Ref. [74].

2.2.3 Improved L-mode regime (I-mode)

The I-mode typically appears in the unfavorable configuration where the ion
∇B drift is directed away from the X-point. This configuration is called un-
favorable, because the power necessary to reach H-mode conditions is higher
than in a configuration, where the ion ∇B drift is directed towards the X-point
(favorable configuration). The I-mode has been discovered in AUG [75], but
the recent extensive studies in Alcator C-Mod [76, 77, 78, 79, 80, 81] have
attracted attention on the I-mode regime as a possible operation scenario for
ITER. In the unfavorable configuration the H-mode power threshold is about
2 times higher compared to the favorable configuration. The I-mode is an im-
proved energy confinement regime exhibiting an edge energy transport barrier
but without an accompanying particle transport barrier (see Fig. 2.4). This
has several benefits [76]:

i) H-mode like energy confinement

ii) weak degradation of energy confinement with increasing heating power

iii) less accumulation of helium ash due to the lack of the particle transport
barrier

iv) absence of ELMs due to the smaller edge pressure gradient compared to
H-mode.

An harmless disadvantage is the high L-I power threshold compared to
the L-H threshold in favorable ion ∇B-drift direction [82]. Furthermore, the
I-mode often evolves slowly in an uncontrolled manner, until a transition to
H-mode with large ELMs occurs [82]. This would negate all advantages of
the I-mode. It has been observed in both AUG and Alcator C-Mod that the
power threshold from L- to I-mode scales at most weakly with the magnetic
field (PL-I ∼ B0.39 in AUG [83] and PL-I ∼ B0.25 in C-Mod [81]) whereas the
L- to H-mode power threshold scales nearly linear with B (PL-H ∼ B0.8 [84]).
This would enhance the operation window of the I-mode at higher magnetic
fields compared to the small operation window faced in the majority of present
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Figure 2.4: a) Electron density and b) electron temperature profiles at the plasma

edge for the L-mode (black at 2.5 s) and I-mode (red at 4.0 s) case. The development

of a temperature pedestal is clearly observable, whereas the density is only subject

to marginal changes. Figure taken from [16].

day tokamak experiments. At a magnetic field of 8 T no transitions to H-
mode have been observed in Alcator C-Mod [81]. This indicates that at high
magnetic fields the I-mode may be a promising operation regime for a fusion
reactor. To qualify the I-mode as an operating scenario for ITER, threshold
and accessibility studies [82] also on a multi-machine basis [80] are needed.

Furthermore, studies of turbulence in I-mode may offer a better under-
standing of the physics of the interaction of energy and particle transport
barriers in general. The mechanism which selectively reduces only one of the
transport channels is not understood. Turbulence in the I-mode regime will
studied in detail in Chap. 11.
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Chapter 3

Two-dimensional turbulence

In this chapter the phenomenology of turbulence is shortly introduced with
special focus on two-dimensional turbulence which is most relevant to magnet-
ically confined plasmas. Particular attention is paid to subjects not covered in
the common introductory literature, but important for this work such as vor-
tex physics (Sec. 3.3), three-wave interactions (Sec. 3.4), zonal flows (Sec. 3.6)
and turbulence spreading (Sec. 3.8).

3.1 Fluid equations and Reynolds number

The conservation of mass yields the continuity equation

∂

∂t
ρm +∇ · (ρmu) =

(
∂

∂t
+ u · ∇

)

ρm + ρm∇ · u = 0. (3.1)

Note that the first term on the left-hand side gives the fixed frame and the
bracket in the second equation indicates the co-moving frame. The equation is
valid independent of the viscosity. The right-hand side of the equation is zero,
because the mass is expected to be source free. The density can only change
if a net flow into or out of the fluid element exists. Often we will consider an
incompressible fluid

∇ · u = 0 (3.2)

and the incompressible continuity equation reads
(
∂

∂t
+ u · ∇

)

ρm = 0. (3.3)

Momentum conservation implies the equation of motion. In a neutral fluid
this is the Navier-Stokes-equation

ρm

(
∂

∂t
+ u · ∇

)

u = −∇p+ η∆u. (3.4)

The bracket on the left hand side gives the inertia. It can be written as a total
derivative d

dt
=
(
∂
∂t
+ u · ∇

)
. The first term on the right-hand side of (3.4) is

19
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the pressure force. This can be seen to be representative of all other possible
external forces. For example if gravitational forces have to be considered, the
gravitational force density ρmg (with g = 9.81 m/s2 on earth for example)
adds to the right-hand side of Eq.(3.4). The last term is the viscous force η∆u
with viscosity η. Most important for the turbulence will be the nonlinearity
(u · ∇)u and the viscosity.

Figure 3.1: A neutral fluid flows at the velocity U0 across an obstacle of size L.

Shown is the qualitative streaming pattern as a function of the Reynolds number.

At first, the pattern is laminar, then shows vortex streets and ends in a turbulent

state.

To estimate the impact of these two terms characteristic quantities are
considered: the characteristic size of the system is L and the characteristic
velocity is U0. Both provide a characteristic time T = L/U0. By normalization

t′ = t/T, (3.5)

u′ = uT/L, (3.6)

p′ = p(T/L)2/ρm (3.7)

the Navier-Stokes equation can be recast into

d

dt′
u′ = −∇′p′ +

1

Re
∆′u′. (3.8)

For simplicity, the prime is omitted in the following representations. The only
(dimensionless) control parameter is the Reynolds number

Re =
ρmL

2

ηT
=
ρm
η
U0L =

U0L

µ
(3.9)

with the kinematic viscosity µ = η/ρm (η is called the dynamic viscosity).
Figure 3.1 shows how the flow changes with the Reynolds number. At

low Reynolds numbers the flow is called laminar. With increasing Reynolds
number eddies (or vortices) develop. The vortices are advected by the flow, the
so-called Kármán vortex street can be observed. The vortex street consists of
pairs of vortices with different sense of rotation direction. At higher Reynolds



3.2 Energy transfer and cascades 21

numbers these eddies interact with each other and turbulence occurs. The
Reynolds number can be seen as the ratio between non-linearity and viscosity

Re =
u∇u
µ∆u

=
U2
0/L

µU0/L2
=
U0L

µ
. (3.10)

Therefore, turbulence occurs at relatively high velocities or low viscosity.

3.2 Energy transfer and cascades

By just observing turbulent motion, the most striking feature is its chaotic
behavior involving a large spectrum of different scales. Turbulence is composed
of eddies of different sizes. In the following a closer look at the interaction
between different scales of motion is given.

Figure 3.2 shows the kinetic energy as a function of the wavenumber k,
which is inverse proportional to the scales of motion. The scales of motions
can be separated in three regimes. The energy is inserted by whatever mecha-
nism (externally or by linear instabilities), in the large-scale so-called injection
range. At the small (thermal) scales the energy is dissipated. In between
the energy has to be nonlinearly transferred. In this inertial range the en-
ergy is neither injected nor dissipated. By considering the balance between
the nonlinear term ∼ U2/L and the dissipation ∼ µU/L2, the dissipation
∼ µU/L2 = (1/Re) · (U2)/L is proportional to the nonlinear term, but in-
versely proportional to the Reynolds number. It follows that at the typical
scale L, where the energy is injected, only a small fraction (1/Re) of the en-
ergy injected into the system can be dissipated. In order to balance the injected
energy smaller scales have to be generated. The energy transfer is illustrated
by a cascading process which goes back to Richardson [85]: The larger eddies
are unstable and break up into smaller ones, thereby pass their energy from
large scales of motion to smaller scales until the length scale is small enough
that the viscosity can dissipate the kinetic energy.

The energy spectrum in wavenumber space (Fig. 3.2) can be estimated by
simple dimensional arguments. A typical scale L with a typical velocity U
corresponds to a time scale T ∼ L/U . Energy transfer is given by energy per
time ǫ ∼ U2/T ∼ U3/L, which means the energy itself scales with

E ∼ U2 ∼ ǫ2/3L2/3. (3.11)

This is known as Kolmogorov’s two-third law. In wavenumber space L ∼ 1/k
and E =

∫
dkE(k) ∼ βǫ2/3k−2/3 and the energy spectrum must scale with

E(k) ∼ ǫ2/3k−5/3, (3.12)

which has been predicted by Kolmogorov in 1941 [86] and shown in Fig. 3.2a.
This is called the turbulent cascade.

Naively one could think it is possible to control dissipation by viscosity as it
should be responsible for dissipation. In a turbulent system this is not possible
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Figure 3.2: Kinetic energy spectrum of three- (a) and two-dimensional (b) fluid

turbulence as proposed by Kolmogorov and Kraichnan, respectively.

as we will see in the following. The length scale at the dissipative range Lµ can
be estimated from a balance of the nonlinear transfer of energy ǫ ∼ U3

µ/Lµ and
the energy dissipation rate ǫµ ∼ µU2

µ/L
2
µ (with the energy leaving the system

at the dissipative scale is given by U2
µ). Setting both equal gives Lµ ∼ µ/Uµ.

From the transfer of energy ǫ ∼ U3
µ/Lµ follows Uµ = (ǫLµ)

1/3. This expression
is now inserted into Lµ ∼ µ/Uµ, which yields

Lµ =

(
µ3

ǫ

)1/4

, (3.13)

which gives the so-called Kolmogorov scale. This length is typically quite
small. For example in atmospheric motions where the typical measured length
scales are in kilometers, the Kolmogorov scale is in the order of millimeters.
This illustrates one of the major challenges in turbulence research: to capture
all relevant scales of motion in atmospheric turbulence, it has to be resolved
with millimeter accuracy. Another important feature of the turbulence is that
the energy transfer to the dissipative scales is equal to the energy transfer out
of the injection scales ǫ ∼ U3

0/L0 and, therefore, the energy dissipation rate
is set by the large scales and not by the small scales or by the viscosity. The
energy enters the injection range, flows through the inertial range to the dissi-
pation range, where it left the systems (Fig. 3.2a). By increasing (decreasing)
the viscosity the inertial range is reduced (enlarged) by increasing (decreas-
ing) the Kolomogrov scale. The dissipation rate does not change significantly.
Therefore, it is not possible to increase the dissipation rate by increasing the
viscosity. Even if the viscosity goes to zero (µ→ 0) the turbulence itself gener-
ates more vorticity (Lµ → 0) to balance the energy. In this way the turbulence
ensures finite dissipation in the limit of vanishing viscosity! This is called the
dissipation anomaly.

Due to the strong background magnetic field, the dynamics of turbulence
in fusion experiments is nearly bound to the plane perpendicular to the mag-
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netic field and therefore is approximately two-dimensional. Therefore, the
two-dimensional case deserves special attention. Two dimensional turbulence
is not just a dimensionally reduced version of three-dimensional turbulence,
because new conservation laws arise, giving two-dimensional turbulence its
own phenomenology. A review of recent developments in two-dimensional tur-
bulence can be found in Ref. [87]. In two-dimensional turbulence the energy
transfer is reversed. This is called the inverse energy cascade. Due to this in-
verse energy transfer large-scale structures are generated. One example is the
hurricane, a large-scale vortex in the atmosphere. Another kind of large-scale
structures generated by turbulence are zonal flows or jet streams. Jet streams
lead to varying times for transatlantic flights. Zonal flows are responsible for
the stripes of Jupiter. The reason for this inverse energy transfer is the con-
servation of vorticity Ω = ∇ × u in two-dimensional flows. Similar to the
three-dimensional case described above, a dimensional scaling can be carried
out. The enstrophy is given by W ∼ Ω2 ∼ U2/L2. For 2D turbulence the
enstrophy flux is constant. It is given by ǫΩ ∼ W/T . As T ∼ L/U it follows

that ǫΩ ∼ (U2/L2)(U/L) ∼ U3/L3 which can be also written as U ∼ ǫ
1/3
Ω L.

As in the three-dimensional case, the energy is given by E ∼ U2, therefore
∫
dkE(k) = E ∼ U2 ∼ ǫ

2/3
Ω L2, thus E(k) = (d/dk)ǫ

2/3
Ω k−2 = ǫ

2/3
Ω k−3. This

is the famous scaling law for two-dimensional turbulence. Both together, the
inverse energy cascade and the direct enstrophy cascade, are called the dual
cascade [88, 89, 90, 91, 92] . It is shown in Fig. 3.2b.

Figure 3.3: Enstrophy spectrum of two-dimensional turbulence.

The enstrophy spectrum W (k) = k2E(k) scales with k1/3 in the inverse en-
ergy cascade region and with k−1 in the direct cascade region, therefore most
of the vorticity can be found around the injection scale. In three-dimensional
turbulence the enstrophy spectrum also scales with k1/3. Therefore, in three-
dimensional turbulence most of the vorticity can be found around the dissipa-
tion scale as seen in Fig. 3.3.

Kinetic energy cannot be dissipated by viscosity in two dimensions; it is
rather transferred to larger scales in motion by the inverse energy cascade.
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Commonly the physical mechanism behind the inverse energy cascade is un-
derstood as a sequence of merging eddies of similar size producing larger and
larger vortices (Sec. 3.3.1). It constitutes a local inverse transfer for kinetic
energy in wavenumber k-space. Experimentally it has been found that the
cascade could rather be driven by a clustering mechanism involving same sign
vortices [93]. Another mechanism called vortex thinning (Sec. 3.3.2) has been
suggested by Chen et al. [94]. Here the interaction of structures of different
scales is responsible for the inverse energy transfer and the energy is trans-
ferred between non-continuous spectral ranges (which means also nonlocal in
k-space) [94]. How to estimate the energy transfer in wavenumber space and
determine the amount of locality is shown in Sec. 3.4.

The direction of the energy transfer towards lower wavenumbers can be
understood as follows [95, 3]: Let us assume the turbulence is initially located
around the injection scale. The averaged wavenumber

〈k〉 = 1

E

∫

dkkE(k) (3.14)

will be close to the injection scale, too. Here, E =
∫
dkE(k). The nonlinearity

leads to a broadening in wavenumber space

∆k2 =
1

E

∫

dk(k − 〈k〉)2E(k), (3.15)

as a variance this can be written as

∆k2 =
1

E
(W − 〈k〉2E) (3.16)

or

∆k2 =
W

E
− 〈k〉2. (3.17)

Due to nonlinear interactions between the different scales of motion the tur-
bulence will broaden (∂t∆k

2 > 0) as the turbulence evolves in time. As energy
E and enstrophy W are conserved, also W/E is constant. This directly means
that the mean wavenumber has to decrease in time ∂t〈k〉 < 0. Hence, the spec-
trum shifts to lower wavenumbers which reflects the inverse energy cascade.
A direct cascade (∂t〈k〉 > 0) is only possible if the enstrophy is not conserved
and in fact increasing. This is possible in three dimensions due to the vortex
stretching effect generating enough enstrophy W to allow also for an increase
of 〈k〉2.

3.3 Vortex interaction

3.3.1 Vortex merger

Figure 3.4 illustrates the merging process of two vortices. The vortex merging
process consists of three phases [96, 97]. In the first phase the vortex cores grow
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Figure 3.4: Schematic view of the vortex merger process of two co-rotating vortices

of equal size (a). As the vortices approach each other, both vortices are connected

by an exchange band and a recirculation band by which vorticity is transferred

between the two vortices. In the final stage both vortices appear as one vortex of

nearly twice the size of the original vortices. Figure adapted from [9].

by viscous diffusion where the distance between the vortices stays constant. If
the vortex cores reach a critical size the distance decreases by convection and
vortex filaments (very thin stripes of vorticity) are formed. This is the heart
of the vortex merging process. The streamline configuration [96, 97] is shown
in Fig. 3.4b. The vortex filaments are responsible for particle and momentum
exchange between both vortices. The flow consists of two inner core regions
(these are the two eddies), the exchange band and two outer recirculation
regions. Vorticity which enters the recirculation bands leads to the formation
of vorticity filaments. Vorticity from one eddy can enter the exchange band.
The exchange band constitutes a filamentary structure as well. The vorticity
within the exchange-band can then be absorbed by the other eddy. In such
a way vorticity can be transferred from one vortex to the other. In the last
phase the vorticity maxima are reduced by diffusion (Fig. 3.4c). Both vortices
are deformed in such a way, that they appear similar to the Tai Chi symbol for
yin and yang. Viewed from the outside the configuration of the two vortices
appear as one larger vortex (as indicated by the dashed line). Within this
virtual larger vortex, both vortices can theoretically be separated. At the
boundary between both vortices the flow direction is in opposite direction,
which lets the virtual vortex appear to be more smooth.

3.3.2 Vortex thinning

The vortex merger process is restricted to an interaction of vortices of similar
size. In general, however, also vortices of different sizes will interact with each
other. This case is addressed in this section.
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Figure 3.5: Schematics of the vortex thinning process. A smaller eddy in the shear

of a larger one (a) is elongated and tilted (b). Finally, the smaller eddy is subject

to a straining-out process. [9]

Figure 3.5 shows a schematic view of the vortex thinning process. Real
measurements of the interaction of vortices with different scales in a rotating
tank experiment can be found in Ref. [98]. Due to the shear induced by the
larger eddy, the smaller one will be tilted and elongated [99] (3.5b). Since the
circulation of an eddy is conserved, the velocity around the eddy is lowered
and its energy is reduced [100, 94]. At the same time, the velocity of the
eddy is mainly directed such, that it reinforces the large-scale strain [100, 94].
Thus, energy is transferred from the smaller structure into the larger one by an
elongation and tilting (and thinning) of the smaller structure. This process is
effective, if the scales of the interacting structures are clearly different resulting
in the pronounced nonlocality of this process in wavenumber space. This
behavior is reminiscent of the Howard-Krishnamurti mechanism [101] by which
series of two-dimensional convective rolls tilt, stretch, and then merge to form
a larger scale eddy.

3.3.3 Straining out

After elongation and thinning by the vortex thinning effect described above,
the smaller vortex can be seen as a vortex filament. This vortex filament can
be threaded and finally incorporated by the larger vortex [98, 102]. The tilting
of the smaller vortex by the larger vortex already leads to a conservative energy
transfer between both of them. This leads to a reduction of amplitude of the
smaller vortex and an increase of energy of the larger one. However, this effect
has additional consequences for the vortex at smaller scale. As this vortex gets
very thin in the perpendicular direction, the second derivative of the velocity
is increased. This leads to much higher viscous dissipation of the structures.
Therefore, the small-scale vortex will be dissipated much faster. As the strain
field is responsible for the elongation this effect is called straining out.

3.3.4 Vortex stripping

The vortex thinning and straining out mechanism describes the interaction of
likewise rotating vortices, or a vortex subject to a shear whose corresponding
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vorticity exhibits the same sign. In this case the vortices or the vortex and
the shear are called prograde. In the opposite case the vortices or the vortex
and the shear are called adverse. In Ref. [103] illustrative simulations can be
found, which show, that the sign of vorticity matters for their interaction. A
vortex subject to external adverse shear can survive if its vorticity exceeds the
external shearing rate. However, the outer parts of the vortex may not have
a strong vorticity and the external shear field is capable of penetrating the
outer parts of the vortex. Subsequently, vorticity filaments are expelled from
the vortex. The shear removes the outer part of the vortex (it is stripped)
and leaves the inner part intact [104]. The inner core is not interacting with
the background shear. This leads to higher vorticity gradients on the edge
of the vortex [104]. This is an important process for the formation of strong,
localized vortices as for example the red spot on Jupiter [105] and the polar
vortex on earth [106]. The generation of strong vorticity gradients leads to
deviations to the scaling of the enstrophy cascade described above. Due to
vortex stripping, infrequent, giant events can be generated. Therefore, vortex
stripping is a possible mechanism for the generation of intermittency in two-
dimensional turbulence (see Sec. 3.5.3).

3.3.5 Elliptical instability

Since in two-dimensional turbulence vorticity is conserved, structures can be
generated as pairs of counter rotating vortices. The flow configuration of two
parallel counter rotating vortices is subject to instability. As an example, such
a flow configuration is generated by an aircraft and is particularly dangerous
during take-off and landing, imposing limits on the time between aircraft de-
partures and, therefore, airport capabilities [107]. Two kinds of instabilities
are excited in such a flow configuration, the Crow and the cooperative elliptical
instability. The Crow instability exhibits a long wave-length (of about eight
vortex spacings) and the deformation is symmetric with respect to the center
plane of the pair. The vortices are periodically moving away and closer to each
other. If the vortices touch each other, the vortices may reconnect and build
a vortex ring.

Once the vortices are close to each other, the vortex cores can be ellipti-
cally deformed by each other. This leads to the so-called cooperative elliptical
instability [107, 108]. Elliptic flows can be decomposed into a solid body rota-
tion and strain. Plane wave disturbances, which are advected by the rotating
flow, can be resonantly amplified if the wave and the straining frequencies
match [107]. This is a secondary nonlinear instability driven by three-wave
interaction (see appendix D). The matching condition is only fulfilled for one
phase difference, which results in the cooperative motion of the vortex cores
[107]. The cooperative elliptical instability is a three-dimensional instability
of a two-dimensional flow, which means it generates finite parallel wavenum-
bers [107, 108]. The relevance of the cooperative elliptical instability for linear
plasma devices will be discussed in Sec. 12.2.
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3.4 Energy transfer between different scales in

2D turbulence

We have seen before that the turbulence cascade is a result of an energy re-
distribution between the different scales of motion, which can be assigned to
different wavenumbers. The result of the spectral index (-5/3 for the inverse
cascade and -3 for the direct cascade) are results of energy and enstrophy
conservation. However, this does not tell us if structures really break up in
structures of similar sizes as proposed in the Richardson cascade, neither if
merging of vortices of similar size resulting in vortices of twice the size, is
the main mechanism to generate the inverse cascade. In the following it is
described how the energy transfer between the different scales can be calcu-
lated. The idea of describing the nonlinear interaction by an energy transfer
in wavenumber space goes back to Kraichnan [109]. The formalism is based on
the work by Domaradzki [110]; for drift-wave turbulence it has been introduced
by Camargo [111]. The derivation can also be found in Ref. [112].

In three dimensions, the vorticity Ω = ∇× u equation is given by
(
∂

∂t
+ u · ∇

)

Ω = (Ω · ∇)u+ µ∆Ω. (3.18)

The first term on the right-hand side is the vorticity stretching. Vorticity
stretching is important for three-dimensional turbulence as it can generate vor-
ticity and enstrophy. This is relevant for the direct energy cascade (Sec. 3.2)
and intermittency (Sec. 3.5). In two-dimensional turbulence, where fluctu-
ations are restricted to a plane, which we can choose to be the x-y plane.
Therefore, the velocity fluctuations are ux(x, y) and uy(x, y), but uz(x, y) = 0
and the vorticity is given by

Ω = ∇× u = (∂xuy − ∂yux)ẑ = Ωẑ. (3.19)

The vorticity has only non-zero contributions perpendicular to the turbulent
flow field. It can be described by a scalar. The vorticity stretching vanishes
because the velocity cannot change in direction of the vorticity. In two dimen-
sions the vorticity evolution is given by

(
∂

∂t
+ u · ∇

)

Ω = +µ∆Ω (3.20)

and conserved in the co-moving frame of reference. In the inviscid case this is
called the two-dimensional Euler equation

∂Ω

∂t
+ u · ∇Ω = 0. (3.21)

To account for the reduced dimensionality it is possible to describe the flow
by a stream function ψ. The flow is always tangential to a curve of constant ψ

u = ∇× (ψẑ) =
∂ψ

∂y
x̂− ∂ψ

∂x
ŷ (3.22)
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therefore

ux =
∂ψ

∂y
, uy = −

∂ψ

∂x
. (3.23)

This can also be written as
u = −ẑ×∇ψ (3.24)

Note that in magnetized plasmas the potential of the E × B velocity fulfills
the conditions of a stream function. The vorticity is given by

Ω = ∇× u = −∆ψẑ. (3.25)

By means of Fourier decomposition of Eq. (3.21) the concept of three-wave
interaction will be introduced. The feature of energy and vorticity conserva-
tion is used to estimate the energy and enstrophy transfer between different
modes or waves which represent different scales in the turbulence. The Fourier
decomposition is u =

∑

k uke
ikr, and the 2D Euler Eq. (3.21) reads

∑

k′

∂Ωk′

∂t
eik

′r +
∑

k′′

uk′′eik
′′r ·
∑

k′

ik′Ωk′eik
′r = 0.

By making use of the stream function (3.24) in the second term

∑

k′

∂Ωk′

∂t
eik

′r +
∑

k′′

(−ẑ× ik′′)ψk′′eik
′′r ·
∑

k′

ik′Ωk′eik
′r = 0

is obtained. This expression is subsequently multiplied by exp(−ikr)
∑

k′

∂Ωk′

∂t
eik

′re−ikr +
∑

k′,k′′

(ẑ× k′′) · k′k′2ψk′ψk′′ei(−k+k′+k′′)r = 0.

Next, the orthogonality of the Fourier transform of eik
′r and eikr for k 6= k′

∫

exp (i(−k+ k′ + k′′)r)dr = δ(−k+ k′ + k′′) (3.26)

is used to obtain

∂Ωk

∂t
+

∑

k=k′+k′′

(ẑ× k′′) · k′k′2ψk′ψk′′ = 0,

with (ẑ× k′′) · k′ = k′ · (ẑ× k′′) = ẑ · (k′′ × k′). This is equivalent to

∂Ωk

∂t
= −

∑

k=k′+k′′

ẑ · (k′ × k′′)k′2ψk′ψk′′ .

With k = k′ + k′′ = 0 → k′′ = k− k′ and ẑ · (k′ × k′′) = ẑ · (k× k′)

∂Ωk

∂t
= −

∑

k=k′+k′′

ẑ · (k× k′)k′2ψk′ψk′′ .
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By introducing coupling coefficients Ck,k′ = ẑ · (k × k′) = (kxk
′
y − kyk′x) this

can be rewritten as
∂Ωk

∂t
=

∑

k=k′+k′′

−Ck,k′Ωk′ψk′′

and the enstrophy transfer is given by

∂

∂t
W =

1

2

∂ |Ω2
k|

∂t
=

1

2

(

Ω∗
k

∂Ωk

∂t
+ Ωk

∂Ω∗
k

∂t

)

=
1

2
2Re(Ωk

∂Ω∗
k

∂t
).

Here Re(·) denotes the real part operator and not the Reynolds number. Hence,

∂

∂t
W (k) = −

∑

k=k′+k′′

Ck,k′ Re(Ωk′ψk′′Ω∗
k),

or purely in terms of the stream function

∂

∂t
W (k) = −

∑

k=k′+k′′

ẑ · (k× k′)k′2k2 Re(ψk′ψk′′ψ∗
k). (3.27)

The direction of enstrophy transfer depends on the sign of the triple corre-
lation which is called the bispectrum 〈ψk′ψk′′ψ∗

k〉. The energy is given by
U = 1

2

∫
dxdxu2 = 1

2

∫
dxdx|∇⊥ψ|2. Hence U(k) = |kψk|2 = −ψkΩ−k with

Ωk = −k2ψk. The energy transfer can be written as

∂
∂t
U(k) =

1

2

∂

∂t
k2ψkψ

∗
k =

1

2
(ψk

∂

∂t
k2ψ−k + ψ−k

∂

∂t
(ik)2ψk)

= −1

2

(

ψk

∂

∂t
Ω∗

k + ψ∗
k

∂

∂t
Ωk

)

= −Re(ψ∗
k

∂

∂t
Ωk),

hence
∂

∂t
U(k) =

∑

k=k′+k′′

ẑ · (k× k′)k′2 Re(ψk′ψk′′ψ∗
k). (3.28)

The sign of the bispectrum 〈ψk′ψk′′ψ∗
k〉 again determines the direction of the

energy transfer. Energy and enstrophy transfer exhibit a different sign, thus
their spectral transfer is in different directions. Furthermore, the enstrophy is
weighted more strongly towards smaller scales (or higher wavenumbers) due to
the additional factor k2. This also shows that energy and enstrophy transfer
are not independent, but directly linked.

3.5 Intermittency

Intermittency is a feature of nonlinear dynamic systems, showing most of the
time regular dynamics, but including short phases of chaotic behavior charac-
terized by very strong random (non-periodically appearing) events. This way
it induces a deviation from Gaussian statistics. In fluid turbulence the term
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intermittency can describe two distinct aspects of turbulent flows [6], which are
not independent. The first one, the so-called external intermittency, is asso-
ciated with partly-turbulent flows, with the strongly irregular and convoluted
structure and random appearance of turbulent and non-turbulent fluid [6]. A
demonstrative, recent review [113] on intermittency during the transition from
laminar to turbulent flows in pipe flows is in particular recommended to the in-
terested reader. External intermittency is characterized by an on-off variation.
This on-off variation induces the strong deviation from Gaussian statistics [6].
Such kind of intermittency is a key problem for renewable energy as solar
generators only produce energy when the sun is shining or wind mills only
produce energy as the wind is blowing. Also intermittency in the context of
critical phenomena as in stock market dynamics or earth quakes is related to
this kind of intermittency and not to a particular scale as the on-off variation
affects all scales. The second aspect is the so-called internal or small-scale
intermittency, which is usually associated with the tendency to spatial and
temporal localization of the fine- or small-scale structure of flows [6]. It is a
feature of turbulent flows. This kind of intermittency is related to dissipation
at the smallest scales and possibly to a deviation from self-similarity in the
large wavenumber region.

Here, we focus on small-scale structure of flows always in the turbulent
state. Intermittency also occurs in plasma turbulence. The most studied case
are plasma blobs as studied in Chap. 12. We will also study intermittent event
in the I-mode confinement regime (see Secs. 11.4–11.5).

3.5.1 Deviation from Gaussian statistics

In plasma physics, intermittency is usually described by the deviation from
Gaussian statistics. Here, the higher moments of the distribution function
are calculated. The first moment is the mean 〈X〉, the second is the stan-
dard deviation σ =

√

〈(X − 〈X〉)2〉. The third and fourth moments are the
skewness

S =
〈(X − 〈X〉)3〉

σ3
(3.29)

and the kurtosis

K =
〈(X − 〈X〉)4〉

σ4
− 3, (3.30)

respectively. For Gaussian statistics the skewness and kurtosis are zero. The
skewness describes the skew of the distribution function, a positive skewness
indicates a stronger tail towards positive events. The kurtosis indicates how
peaked the distribution is. A positive kurtosis exhibits more events directly
at the mean value, but also more events in the tails, therefore it indicates
the presence of more rare events. For negative kurtosis more events are found
within the standard deviation compared to a Gaussian distributed signal. Rare
events with high amplitudes lead to high absolute values of skewness and
kurtosis. Usually a threshold in the standard deviation σ is defined above
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which the fluctuations are associated with intermittent events. This is usually
around σ =2–3.

3.5.2 Deviation from self-similarity

Intermittency in three dimensional turbulence is characterized by the structure
function Sp(l) = 〈(∆u)p(l)〉 with

〈(∆u)p(l)〉 = (u(x+ lx̂)− u(x))p, (3.31)

where u is the velocity in the direction of x and l is a distance, which represents
the scale. The structure function provides information about the self-similarity
of the scales. Kolmogorov’s two-third law (Eq. 3.11) states that the kinetic
energy is proportional to U2 = βǫ2/3L2/3. This can be generalized to any power
of the velocity

〈(∆u)p〉 = βp(ǫl)
p/3 (3.32)

and is called Kolmogorov’s similarity hypothesis. For p = 2 β2 ≈ 2 this is Kol-
mogorov’s two-third law and the energy spectrum E(k) ∼ ǫ2/3k−5/3 (Eq. 3.12)
is recovered. For p = 3, β3 = −4/5 and 〈(∆u)3〉 = −4/5ǫl. This relation is
called Kolmogorov’s four-fifth law. The precise factor β3 = −4/5 can be de-
rived from the Karman-Howarth equation [114]. The two-third law as well as
four-fifth law are found experimentally to be very robust, which supports the
universality of three-dimensional turbulence. If the scales would be self-similar
then Sp(l) ∼ ln, where n = p/3. However, above p > 3 this is not the case
in general. As p reaches 12 the exponent n is about 2.8 instead of 4. Since
the discrepancy occurs at small-scales it is thought to be related to small-scale
coherent turbulent structures. In the context of three-dimensional turbulence
the discrepancy from self-similarity is called (internal or small-scale) intermit-
tency.

The question arises, how this is related to non-Gaussian statistics? The
skewness as defined by

S =
〈(∆u)3〉
〈(∆u)2〉3/2 =

S3(l)

S
3/2
2 (l)

= β3β
−3/2
2 (3.33)

is scale invariant. Furthermore, it is finite and negative −4
5
2−3/2 ≈ −0.3.

Therefore, in the sense of deviation from self-similarity, the skewness is a bad
qualifier for intermittency. It can be shown that the skewness is directly con-
nected to vortex stretching [114]

〈Ω · (Ω · ∇)u〉 = − 7

6
√
15
S〈Ω2〉3/2, (3.34)

where 〈Ω · (Ω · ∇)u〉 is responsible for enstrophy generation. Therefore, a
negative skewness is necessary to ensure that 〈Ω · (Ω · ∇)u〉 is positive and
vorticity can be generated. Otherwise the viscous term −ν〈(∇ × Ω)2〉 would



3.6 Zonal flows 33

drive the system into viscous dissipation. Non-Gaussian statistic is an essential
part of the dynamics. Neglecting the viscosity for now

1

2

∂

∂t
〈Ω2〉 = − 7

6
√
15
S〈Ω2〉3/2 (3.35)

can be integrated with the solution

〈Ω2〉 ∼ 1

(t0 − t)2
(3.36)

which gives an explosive growth of enstrophy around t0. This can lead to a
very fast increase in enstrophy within a short time, which is one of the main
features of intermittency.

3.5.3 Coherent structures in two-dimensional turbulence

As vorticity stretching is absent in two-dimensional turbulence, the argumen-
tation above cannot be responsible for intermittency in two-dimensional tur-
bulence. Indeed, experiments show that the turbulent flows in two dimensions
are non-intermittent with respect to the velocity field [93]. However, inter-
mittency in the vorticity field is observed [115, 116, 117]. An explanation has
been given by Okubo [118] and Weiss [119]. The time evolution of the vorticity
gradient is given by [3]

∂∇Ω
∂t

=
√
S2 − Ω2 (3.37)

where S = ∂2ϕ/∂x∂y is the local flow shear and ϕ is the stream function.
Within the Okubo-Weiss framework it is also possible to define coherent struc-
tures, these will be discussed in detail in chapter 8.1. The above equation states
that if the local shear exceeds the magnitude of the local vorticity, the vorticity
gradient will steepen. Of course this leads to generation of finer structures in
the vorticity, therefore this is equivalent to a transfer of vorticity to smaller
scales. This is what happens in the enstrophy cascade. On the other hand, if
the vorticity exceeds the local shear a coherent vortex will just rotate without
distortion and the vorticity gradient will not steepen. This means that struc-
tures with sufficiently high vorticity will not be subject to decay, but rather
be long living. Simulations in two-dimensional decaying turbulence show that
the criterion (3.37) successfully predicts the position of long-living vortices [3].
Also the spatial position of the appearance of intermittent structures in two-
dimensional turbulence is correlated with the flow topology as prediced by the
the Okubo-Weiss criterion [120]. The tails of the distribution of longitudinal
velocity differences are dominated by saddle points of the stream function [120]
corresponding to strain dominated region of the flow.

3.6 Zonal flows

Zonal flows [121] are azimuthal-symmetric band-like shear flows. Those flows
are omnipresent in two-dimensional turbulence. The most famous represen-



34 3. Two-dimensional turbulence

Figure 3.6: Zonal flows as they appear in the atmosphere and in tokamak geom-

etry.

tation of zonal flows appear as the rings in the atmosphere of Jupiter [122,
123, 124], but also in the atmosphere of the earth zonal flows are present. The
topology of a zonal in atmosphere is shown on the l.h.s. in Fig. 3.6. Due to
the shear suppression mechanism zonal flows can act as transport barriers and
reduce transport. The underlying instability in the atmosphere are Rossby
waves. Due to their strong similarity to drift waves it has been postulated al-
ready at the end of the 70s that zonal flows should be present in magnetically
confined plasmas [125] and they are now recognized as the most important sat-
uration mechanism for plasma turbulence. In a tokamak the zonal flow appear
with the topology as indicated on the r.h.s. in Fig. 3.6. Experimental evidence
for zonal flows have been provided by Fujisawa in the CHS stellarator [126] and
by Hillesheim in the JET tokamak [127]. They are exclusively driven through
turbulence by the so-called Reynolds stress [128], which is explained in detail
in the following Sec. 3.6.1. The drive of the zonal flow can also be understood
as a parametric modulation instability (see Sec. D.3) [129, 130, 131, 132]. This
corresponds to nonlocal energy transfer in wavenumber space [36]. How zonal
flows appear in a toroidal geometry with twisted magnetic field lines like a
tokamak will be discussed in detail in Sec. 5.2.3. Their role in the evolution of
transport barrier formation and the high confinement regime is still an open
issue, which will be discussed in Chap. 10.

3.6.1 Reynolds stress

We study the impact of fluctuations on the stationary solution of the equation
of motion – the Navier Stokes equation. The velocity field is decomposed in a
background and a fluctuating part

u(x, t) = ū(x) + ũ(x, t). (3.38)

This is the so-called Reynolds decomposition regularly used in hydrodynamic
stability analysis. It should be noted that the kind of average taken (time,
space, filter techniques) is not important in particular, but has to be chosen
self consistent and be considered very carefully regarding the interpretation.
The background value refers to the average chosen. If time averaging is used,
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the fluctuations are changing in time and the background value is stationary.
If zonal averaging is chosen then the fluctuations are changing in the zonal
direction and the background value is zonally averaged. One can also use a low
pass filter and motions faster (higher frequency) than the low pass frequency
are considered as fluctuations and those at lower frequency as background
values. For the velocity field holds

〈u〉 = ū 〈ũ〉 = 0. (3.39)

Incompressibility and continuity apply to both components of the Reynolds
decomposition

∇ · ũ = 0 ∇ · ū = 0.

For simplicity the dissipation terms such as viscosity or friction are ne-
glected and the equation of motion is obtained

∂

∂t
(ū+ ũ) + ((ū+ ũ) · ∇) (ū+ ũ) = 0.

For each spatial component i holds

∂t (ūi + ũi) +

(
∑

j

(ūj + ũj) ∂j

)

(ūi + ũi) = 0. (3.40)

The notation ∂j = ∂/∂xj has been used. From the above equation the ensemble
average is taken. This yields

〈ũiūj〉 = 〈ũi〉ūj = 0

and also holds for derivatives of ũi and ūj not taking part in the averaging
operator. It follows

〈(
∑

j

(ūj + ũj) ∂j

)

(ūi + ũi)

〉

=
∑

j

(ūj∂jūi + 〈ũj∂jũi〉) . (3.41)

Next we will have a closer look at the convective part containing the fluctua-
tions only. In general the product rule gives

∑

j

(ũj∂j)ũi =
∑

j

∂j(ũiũj)− ũi
∑

j

∂jũj. (3.42)

Here due to ∇ · ũ = 0 (3.39) the second term on the right-hand side vanishes.
The resulting relation (3.42) is inserted into Eq. (3.41) and the average of
(3.40) is equal to

∂

∂t
ūi +

∑

j

〈∂j(ũjũi)〉+
∑

j

ūj∂jūi = 0
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which in vector notation corresponds to

∂

∂t
ū+ (ū · ∇)ū = −∇〈ũjũi〉. (3.43)

The quantity ũjũi is a tensor. It has been introduced by Reynolds in 1883
[5, 133] and is called the Reynolds stress. It contains the impact of turbulence
on the main background flow. Mathematically it is very similar to a viscosity.
However, in 2D turbulence it has exactly the opposite effect and, therefore, it
is also called negative viscosity.

Figure 3.7: The left figure shows an isotropic vortex in a shear flow. The vortex

can be divided into four regions where the contributions to the Reynolds stress

cancel each other. Isotropic flow fields exhibit no Reynolds stress. The same holds

for an elongated vortex in one direction, which is an anisotropic structure. A vortex

tilted in direction of the shear flow is shown in the figure on the right. Here the

Reynolds stress is finite and the shear flow and the Reynolds stress have the same

sign.

The Reynolds stress can be imagined as the tilt of turbulent structures.
This is illustrated in Fig. 3.7. Isotropic structures exhibit no Reynolds stress.
Only if the structures are tilted a finite Reynolds stress is observed. Suppose
an eddy is inserted into a shear flow, the tilt of the eddy by the shear flow
would result in a Reynolds stress of the same sign as this flow shear. This is
called prograde. In this case shown in Fig. 3.7 the Reynolds stress is negative.
In the case of a positive Reynolds stress the eddies are preferentially tilted into
the opposite (adverse) direction as the flow shear. In a plasma the Reynolds
stress as part of u · ∇u is equivalent to a polarization current (as seen by
Eq. (A.15)).

3.6.2 K-ǫ model

The most basic interactions between a mean shear flow and the turbulence can
decribed by a K-ǫ. A K-ǫ models describe the dynamics of turbulence by the



3.6 Zonal flows 37

total kinetic energy K and a dissipation rate ǫ [134]. The following discussion
can be found in Ref. [11]. We begin with the momentum balance which in its
simplest form for two-dimensional divergence free flows is given by

∂tuy + ux∂xuy = µ∂2xuy. (3.44)

Here the x-direction is in the radial direction and the y-direction is in the
poloidal, azimuthal or binormal direction. However, it also could be in principle
in the toroidal or parallel direction. Azimuthal, i.e. poloidal or binormal,
derivatives are omitted for simplicity. A discussion on this assumption can be
found in Ref. [11]. The velocity field can be decomposed into a mean field and
a fluctuating field u = 〈u〉+ũ in the usual Reynolds decomposition. Averaging
Eq. (3.44) provides the governing equation for the mean flow

∂t〈uy〉 = −∂x〈ũxũy〉+ µ∂2x〈uy〉. (3.45)

Mean always refers to the average; if the equation is averaged over time the
equation describes the mean flow in time, if the flux-surface (zonal) average
is implemented it is the zonal flow. In either case, the flow is driven by the
Reynolds stress 〈ũxũy〉, which is determined by the asymmetry of the veloc-
ity fluctuations, and thus can also be interpreted as an averaged tilt of the
turbulent structures. Here the damping is provided by the viscosity.

The evolution of the mean (zonal) energy can be obtained by multiplying
Eq. (3.45) by 〈uy〉

∂t
1

2
〈uy〉2 = −〈uy〉∂x〈ũxũy〉+ µ〈uy〉∂2x〈uy〉. (3.46)

Substituting the Reynolds decomposition into Eq. (3.44), recasting as an en-
ergy equation and averaging gives the evolution equation for the total kinetic
energy

∂t
1

2
(〈uy〉2 + 〈ũ2y〉) = −〈uy〉∂x〈ũxũy〉 − ∂x〈ũxũyũy〉
−〈ũxũy〉∂x〈uy〉+ µ〈uy〉∂2x〈uy〉+ µ〈ũy∂2xũy〉. (3.47)

Subtracting Eq. (3.46) from Eq. (3.47) results in the evolution of the fluctu-
ating energy

∂tK̃ = −∂xT̃ − P + ǫ̃, (3.48)

where

K̃ =
1

2
〈ũ2y〉, ǫ̃ = µ〈ũy∂2xũy〉, (3.49)

P = 〈ũxũy〉
∂〈uy〉
∂x

, T̃ = 〈ũxũ2y〉.

Using the partial derivative

∂x(〈uy〉〈ũxũy〉) = 〈ũxũy〉∂x〈uy〉+ 〈uy〉∂x〈ũxũy〉 (3.50)
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the mean (zonal) energy (3.46) satisfies

∂tK̄ = −∂rT̄ + P + ǭ, (3.51)

where

K̄ =
1

2
〈uy〉2, ǭ = µ〈uy〉∂2x〈uy〉, (3.52)

T̄ = (〈uy〉〈ũxũy〉) .

In the framework of a standard K-ǫ model, one equation for the mean
(zonal) energy (3.51) and one for the fluctuating energy (3.48) are obtained.
The physical mechanisms behind the different terms in Eqs. (3.48) and (3.51)
are discussed in detail in the following two sections. The energy transfer be-
tween mean and fluctuating kinetic energy is investigated in the Sec. 3.6.3.
This is relevant for turbulence suppression. In Sec. 3.8 the spatial transport of
kinetic energy, called turbulence spreading, is studied. It is relevant for sub-
critical excitation of turbulence [135]. A recent review of nonlocal turbulent
transport in magnetized plasmas can be found in Ref. [136].

3.6.3 Energy transfer and limit-cycle oscillations

Turbulence production P is the product of shear and Reynolds stress. It ap-
pears in both equations, the one of the turbulent and the one of the mean
kinetic energy. If both factors are positively correlated the mean flow can
amplify itself, if they are negatively correlated the mean flow is damped. In
three-dimensional turbulence this term is responsible for the drive of the tur-
bulence and it is negatively correlated. Therefore, it is called production. In
the case of two-dimensional turbulence the production term acts like an energy
source of the shear flow. This mechanism produces flow only if the Reynolds
stress is in the same direction as the shear 〈ũxũy〉 ∝ ∂x〈uy〉. The vortex has
to be prograde with respect to the flow shear. However, a vortex tilted by
the shear flow will be naturally in this direction (see Fig. 3.7). In the other
case 〈ũxũy〉 ∝ −∂x〈uy〉 the flow drives the turbulence and in turn the flow
is reduced. Therefore, the resulting momentum drive by the radial gradient
in the Reynolds stress ∂t〈uy〉 ∝ −∂x〈ũxũy〉 ∝ −∂2x〈uy〉 acts like a negative
viscosity, which is also called turbulent viscosity. P is a transfer channel be-
tween the turbulent energy and the energy of the background flow and appears
with different signs in the equations of the energies of the mean flow (3.51)
and the turbulence (3.48). Therefore the generation process of zonal flows di-
rectly includes a suppression mechanism of the turbulence. As this part of the
mean flow is exclusively generated by the turbulence this is the zonal flow by
definition.

Turbulence suppression and zonal flow generation are directly linked to each
other, which leads to a very interesting phenomenon; the so-called limit-cycle
oscillation known from population dynamics in biology. These are described
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Figure 3.8: Principle of limit cycle oscillations by a predator-prey relationship.

by the Lotka-Volterra equations [137] for a prey x

dx

dt
= x(a− by) (3.53)

and predator y
dy

dt
= y(cx− d). (3.54)

The prey population grows by birthrate a, the predator population is damped
by mortality d. A high prey population leads to an increase of the predator
population by the rate cxy but also to damping of the prey population by
the rate −bxy. Such systems can oscillate as shown in Fig. 3.8. In the case
of zonal flows and drift-wave turbulence, the turbulence takes the role of the
prey and the zonal flow the role of the predator. In the absence of shear flow
the turbulence can grow. With increasing turbulence amplitude the zonal flow
grows at the expense of the turbulence level. This leads to saturation and
finally a suppression of the turbulence level. With decreasing turbulence level
also the zonal flow amplitude decreases due to the reduction of the zonal flow
drive. The turbulence can recover and the cycle starts over. The frequency at
which the zonal flow is measured is this frequency [37].

3.7 Shear Suppression

The interaction of vortices at different spatial scales is important for mag-
netically confined fusion plasmas, as large-scale shear flows are thought to
be responsible for turbulence suppression due to their interaction with the
small-scale micro-turbulence. In the common heuristic explanation, the so-
called shear decorrelation mechanism illustrated in Fig. 3.9, the large-scale
shear tears small-scale turbulent structures apart. Thereby, the vortices are
getting smaller in size. Due to their smaller size, the typical step size in a
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Figure 3.9: An isotropic vortex in a shear flow (a). In the common shear decor-

relation mechanism the eddies are tilted (b) and finally teared apart by the shear

(c). Thereby the correlation length lc is reduced, which reduces the turbulent trans-

port. Actually, tearing apart the structures is not necessary, the turbulence will be

suppressed already by tilting (due to energy transfer by the Reynolds stress) and

thinning, which leads to enhanced dissipation by the straining-out process (b).

diffusion based model is reduced. Thus, the turbulent diffusion coefficient and
the turbulent transport are reduced. Direct experimental evidence for vortices
breaking apart in a strong flow shear is rare. So far, this phenomenon has been
only reported from the TEXTOR tokamak [138].

Even though turbulence suppression by the shear decorrelation mechanism
is widely accepted in the fusion community, there are some drawbacks. Under
high flow shear turbulent structures get tilted (Fig. 3.9b). If the radial corre-
lation length is measured by a radially aligned diagnostic, as usually done, the
measured radial correlation length will appear to be reduced compared to the
turbulent structure not being tilted (Fig. 3.9a), even though the actual radial
correlation length (the radial distance which is connected by the structure) is
not reduced at all (Fig. 3.9b).

Good confinement is correlated with a low turbulence level. As in the
plasma edge the radial electric field is proportional to the ion pressure gra-
dient Er ≈ (∇pi)/(en) and improved confinement is intrinsically correlated
to a deep radial electric field. As the radial electric field exhibits a finite ra-
dial extent, the deep radial electric field is also correlated to high flow shear.
Therefore, confinement and flow shear are collinear and just the correlation
of improved confinement and a high flow shear does not provide any insight
into the reason behind improved confinement. To investigate the principle of
shear suppression of plasma turbulence, the collinearity between radial elec-
tric field and ion pressure gradient has to be avoided, which can be done in
low-temperature plasmas. In such experiments, where strong E × B shear is
externally excited by plasma biasing, the turbulence can be indeed suppressed
[139, 140, 141]. However, no reduction of the radial correlation length has
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been observed in a linear device [140], no relation between the flow shear and
the turbulence level have been found in a simple magnetized torus [141] or
the large-scale coherent structures even become dominant at not reduced but
instead increased correlation lengths as observed in a stellarator [139]. The
simplified picture of the heuristic shear decorrelation mechanism seems to be
untenable.

Furthermore, as we will see in Chap. 9, in the plasma edge the small-scale
vorticity suppresses linear wave-like features, in particular the growth rate be-
comes irrelevant. That means the often used quenching rule, that the flow
shear has to exceed the linear growth rate of the dominant instability S > γ
does not apply. If the background shear exceeds the local vorticity, the turbu-
lence will be not suppressed, instead the local vorticity gradient will steepen
up (Sec. 3.5.3), which leads to a transfer of vorticity to smaller scales and
intermittent behavior. As enstrophy and energy transfer are directly coupled
(Sec. 3.4) and in opposite direction, this also leads to a transfer of kinetic
energy from small to large scales.

There are two mechanisms, which allow turbulence suppression by flow
shear and the reason for shear suppression is likely a combination of both. One
is due to the direct energy transfer from the turbulence to the shear flow by the
turbulence production term P . This energy transfer leads to a reduction of the
turbulence amplitude. The other is due to the enhanced dissipation. Small-
scale structures are elongated and thinned by the larger scale flows. The
structures at larger scales absorb the smaller ones by coiling them up [142]
or they are finally destroyed by a straining-out process (Sec. 3.3.3) though
enhanced dissipation due to their thinness. The enhanced dissipation can lead
to a significantly reduced lifetime of the turbulent structures.

There are some experimental results supporting this mechanism. The shear
decorrelation process corresponds to the reverse of the vortex merging process.
It is local in wavenumber space. The vortex-tilting-straining-out mechanism
appears nonlocal in wavenumber space. Experimental measurements of drift-
wave turbulence at the TJ-K stellarator [35, 142, 143, 21] have shown that due
to the strongly pronounced nonlocality in the energy transfer in wavenumber
space between the turbulence and the zonal flow [142], but also within the
turbulence itself [35]. The vortex thinning process has been directly observed
in configuration space (not in wavenumber space) with fast imaging in CSDX
[144]. In Ref. [142] scales at kρs ∼ 1–2 are found to be preferentially suppressed
by the shear flow. A preferential reduction of these intermediate scales kρs ∼
1–2 has been found in H-mode plasmas in the TJ-II stellarator [145]. Recently
it has been shown that vortex thinning is strongly enhanced by finite Larmor
radius effects in a gyrofluid [146]. The effects are stronger in the ideal 2D
case. In 3D gyrofluid simulations with finite ion temperatures, vorticity sheets
are less pronounced due to geodesic curvature (Sec. 5.2.3) and magnetic shear
[146]. Based on the vortex-tilting mechanism an alternative shear suppression
criterion to the standard one has been suggested, which will be discussed in
detail in Sec. 10.1.
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3.8 Turbulence spreading

Figure 3.10: Illustration of turbulence spreading by nonlinear interaction.

The term ∂xT̃ in Eq. (3.48) does not lead to a change of energy in the total
domain. It fulfills energy conservation. It contains a quantity related to a
velocity to the power of three and describes the three-wave coupling introduced
before (Sec. 3.4). Therefore, the inverse energy cascade is accomplished by this
term. Because it redistributes the energy between the different scales and all
scales are included in K̃, this effect is not obvious in the K-ǫ model. Besides
a redistribution in wavenumber space, this term can spatially lead to a radial
redistribution of kinetic energy. Indeed, if the energy is locally injected in a
certain spatial region, larger structures are formed which will penetrate also
into the stable region. Keep in mind that the cascade is a statistical process.
Just as larger structures emerge from smaller ones, some decay into smaller
ones, too. Therefore, once larger structures penetrate the stable region, those
structures will decay into smaller structures (Fig. 3.10), thus, the turbulence
is able to spread into the stable region.

Turbulence spreading can be modeled by the Fisher-Kolmogorov-Petrovsky-
Piscounov equation [147]

∂I

∂t
= ∇ · (Dturb∇I) + γLI − γNLI2 (3.55)

describing a diffusion of turbulence intensity I with a diffusion coefficientDturb.
Here, γL describes the linear growth of the fluctuations and γNL provides non-
linear saturation of the turbulence level. Such an equation is fundamentally
local. However, the one-to-one correspondence between turbulence intensity
and global parameters (density, temperature and their gradients) does not
hold. This can lead to propagation of turbulence intensity fronts. The Fisher-
Kolomogorov-Petrovski-Piskounov equation is usually applied in a heuristic
way and used to model non-local heat transport and the propagation of cold
pulses [148, 149, 150], which is the most frequently studied case related to non-
local transport in magnetically confined fusion plasmas. However, in principle
this equation can also be derived from gyro-kinetic theory [151].
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From the K-ǫ model described above in Sec. 3.6.2 it is possible to esti-
mate the coefficients of the Fisher-Kolmogorov-Petrovsky-Piscounov equation
in the case of turbulence spreading of turbulent kinetic energy. By compar-
ing Eq. (3.55) to (3.48) we identify I = K̃, γL = P/K̃, γNL = −ǫ̃/K̃2 and
Dturb = −T̃ /(∂xK̃). Therefore, T̃ is the responsible term for turbulence spread-
ing also in the framework of the Fisher-Kolmogorov-Petrovsky-Piscounov equa-
tion. Note, these coefficients have to be estimated from the stationary solution
and not from the time-varying quantities. Turbulence spreading of turbulent
kinetic energy is examined in detail in Sec. 8.3. However, such a deviation
based on a K-ǫ model is also possible for other fluctuating quantities like den-
sity or temperature fluctuations. In Sec. 12.2.3 such a turbulence spreading
model has been applied to the scape-off layer, derived from density fluctua-
tions.

Further reading on turbulence in general
For further reading, the introductions on fluid, flows and fluid instabilities
by Oertel [152] can be recommended. A very detailed introduction on vortex
physics – also in three dimensions – is given by Wu, Ma and Zhou [153]. The
general introductions to turbulence by Pope [134], Frisch [154] and Davidson
[114] are recommended, too. A recent short introduction with particular at-
tention to modern topics can be found in Ref. [7]. Once familiar with the
basic concepts, it is worthwhile to have a look in the book by Tsinober [6].
This book offers a very critical discussion on the basic concepts found in most
literature.
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Chapter 4

Plasma micro-instabilities

Turbulence in the edge of magnetized confined plasmas offers a wide num-
ber of different modes resulting from various linear instabilities and diverse
nonlinear self-organized phenomena. Before the nonlinear phenomena are in-
vestigated in detail in Chap. 5, in the present chapter the linear instabilities
are presented. In tokamaks the most prominent micro-instabilities are the ion-
temperature-gradient (ITG) mode (Sec. 4.4) and the trapped electron mode
(TEM) (Sec. 4.5), which are distinguished by their drive. Most relevant for
plasma turbulence in the very edge of the confined region are the drift wave
(Sec. 4.3), the ITG mode and maybe TEM mode. Turbulence in the scrape-
off layer (SOL) is interchange (Sec. 4.2) (also called resistive ballooning mode
(RBM)) dominated. In the near SOL the conducting wall instability may be
important (Sec. 4.6). As electromagnetic effects become important (Sec. B.2.4)
the turbulence changes its nature and micro-tearing modes (MTMs) (Sec. 4.7)
and kinetic ballooning modes (KBMs) (Sec. 4.8) can become important. Both,
the interchange (Sec. 4.2) and the drift-wave mechanism (Sec. 4.3), underlie
the other instabilities. They are always present and in competition (Sec. 5.2.1).

4.1 Instability characterization

To interpret the measured data, a characterization of the different instabilities
is carried out (see Tab. 4.1) as published in Ref. [161]. Instabilities can be dis-
tinguished by their characteristic size scale, frequency, propagation direction,
parity, cross-phases and drive. Most micro-instabilities such as the electro-
static drift-wave, or ITG, TEM, MTM, KBM occur close to the ion scale.
Usually the size is compared to the hybrid Larmor radius ρs =

√
Temi/eB.

Drift waves, TEM and ITG are a bit smaller, kyρs ∼ 0.1–1, than RBM, MTM
and KBM which occur at kyρs ∼ 0.01–0.1. The electron temperature gradient
mode (ETG) is the electron counterpart of the ITG and appears on the electron
scale. Long wavelength macro-MHD instabilities as ideal peeling ballooning
modes (IPM) and ideal ballooning modes (IBM) appear at much smaller wave
numbers. The size of global instabilities is not given in kρs, but rather in
terms of poloidal and toroidal mode numbers. They occur also at much lower

45
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Instability drive prop. scale αφ,p̃ ω(L⊥/cs) parity Ref.

IPM J‖ n.p. kθρs ≪ 0.1 global

(I-R)BM ∇p n.p. kθρs < 0.1 π/2 ball.

KBM ∇Te,i i dia. kθρs ∼ 0.1 π/2 ball. [155]

MTM ∇Te e dia. kθρs ∼ 0.1 0 0.1-1 tear. [156, 157, 158]

DW ∇n e dia. 0.1 < kθρs ≤ 1 0 0.1-1 ball.

ITG ∇Ti i dia. 0.1 < kθρs ≤ 1 > 0 0.1-1 ball. [159, 158]

TEM ∇Te,∇n e dia. 0.1 < kθρs 0 ball. [160]

ETG ∇Te e dia. kθρs > 1 π/2 0.5-100 ball. [160, 158]

Table 4.1: Properties of linear instabilities: ideal peeling mode (IPM), ideal and

resistive ballooning mode ((I-R)BM), kinetic ballooning mode (KBM), micro tearing

mode (MTM), electrostatic drift wave (DW), ion temperature gradient mode (ITG),

trapped electron mode (TEM) and electron temperature gradient mode (ETG).

The structures propagate either in electron (e dia.) or ion diamagnetic direction

(i dia.) or do not have any preferential direction (n.p.). They have ballooning (ball.)

or tearing (tear.) parity. Times are normalized to L⊥/cs, perpendicular spatial

scales to ρs, where L⊥ is the mean profile scale length, cs is the sound speed,

ρs =
√
Temi/eB with electron temperature Te, ion mass mi, elementary charge e

and magnetic field strength B. Adapted from Ref. [161].

frequencies compared to micro-instabilities. In Chapter 9 we will see that for
broadband turbulence with high fluctuation levels a characterization by linear
features may not work out. How to characterize different turbulence regimes
will be discussed in Chap. 5.2.

4.2 Interchange instability

The interchange instability in principle is the MHD analogon of the Rayleigh-
Taylor instability. It is sketched in Fig. 4.1. Most important for the interchange
instability to occur is the magnetic curvature. On the right hand side the
curvature is in the opposite direction to the density gradient. This is the
situation on the low field side of the tokamak. Due to the curvature drift, ions
tend to move upwards out of the high density region and electrons tend to
move downwards. This leads to a charge separation. As a result an electric
field is generated. The E × B drift due to the electric field will accelerate
the density perturbation which propagates outwards. A negative perturbation
is moving inwards. The configuration is unstable. On the high field side the
perturbations are stable against this mechanism. That is why the region on the
low-field side is called the bad curvature region and the region on the high-field
side the good curvature region.

The same result is obtained using the diamagnetic current instead of the
curvature drift [162]. Consider the isobar of the pressure perturbations. Due
to the pressure gradient dependence, the diamagnetic current flows along the
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Figure 4.1: Interchange instability. Explanation in the main text. Figure adapted

from Ref. [162].

curved isobars, but mainly downwards in the good curvature region and up-
wards in the bad curvature region. More inside the plasma the diamagnetic
current is weaker due to the magnetic field dependence of the diamagnetic
current. The continuity equation gives dρ/dt = −∇ · J. An increase in the
current leads to negative charge accumulation, a decrease in positive charge
accumulation. The resulting electric fields lead to E×B velocities in a similar
way as described above. The interchange instability is unstable in the bad
curvature region and stable in the good curvature region. A mathematical
description of the interchange instability is given in the appendix B.1.

Overall stability is gained if the turbulent structures stay longer in the good
curvature region than in the bad curvature region. This is also the reason why
D-shaped plasmas are favorable. The magnetic field lines favor the high-field
side, where the curvature is stabilizing and, therefore, the unstable region on
the low-field can be avoided for a large fraction of the trajectories.
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4.3 Drift wave

Figure 4.2: Mechanism of the drift wave. Explanation is given in the main text.

Figure adapted from Ref. [162].

Here the simplest case of the drift wave without any curvature effects will
be introduced. This is illustrated in Fig. 4.2. The main requirement for the
drift wave to occur is a perturbation along the magnetic field line k‖ 6= 0.
Similar to the interchange case described above, we consider a density per-
turbation perpendicular to the radial and the magnetic field direction (called
binormal in the following) which is embedded in a background density gra-
dient in negative radial direction. As the density perturbation is also along
the field line, it is accompanied by a parallel pressure gradient. Due to their
small inertia, electrons will react with their thermal velocity to the parallel
pressure gradient and try to compensate it. This induces the indicated charge
densities in Fig. 4.2. The resulting electric fields and E × B drifts lead to a
shift of the perturbation in the binormal direction, which can be interpreted as
a propagation. This is the reason why it is called drift wave. The propagation
will be studied in more detail in the appendix B.2.2. In the case illustrated
in Fig. 4.2 the perturbation is neither growing nor damped, it is stable. The
particle transport is given by Γ = 〈ũxñ〉y = 〈Re(ikyφ̃ñ)〉y with Re(·) being
the real part and harmonic perturbations assumed ñ,φ̃ ∼ eiϕ. As φ̃ and ñ are
in phase, ikyφ̃ñ is purely imaginary and therefore no transport is associated
with a stable drift wave. However, if the parallel motion of the electrons is
hampered a small phase difference between density and potential is initialized.
This leads to transport and to a finite growth rate of the drift wave. Drift-
wave instability will be investigated in detail in the appendix B.2.3. Drift-wave
turbulence will be discussed in detail in the appendix 5.1.
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4.4 Ion temperature gradient mode (ITG)

The ion temperature gradient mode is an instability driven by the ion temper-
ature gradient ∇Ti. By replacing the density gradient by the ion temperature
gradient in the explanation of the interchange instability using the diamagnetic
current (see Chap. 4.2) one can realize that a high ion temperature gradient
is subject to the interchange instability (compare Figs. 4.3 and 4.1). In this
sense the ITG is an interchange instability.

Figure 4.3: ITG instability. The ITG is driven by the ion temperature gradient due

to the curvature. The color indicates the ion temperature, warm is red, cold is blue.

With respect to the ion temperature the potential shows interchange characteristics.

Due to the Boltzmann response φ̃ ∼ ñ, the density follows the induced potential

perturbations and with respect to the density the potential is drift-wave-like.

In general a density gradient has stabilizing influence on the ITG mode. A
finite density gradient reduces the growth rate of the ITG mode. As a result the
ion temperature gradient has to overcome a certain threshold in the density
gradient to induce instability. The ratio of the ion temperature to density
gradient scale length is given by ηi = (Ti/n)(∇n/∇Ti) = ∇(lnn)/∇ ln(Ti).
Therefore, the ITG mode is also called the ηi mode. Critical gradients are
connected to an interesting phenomenon called stiff transport. Transport is
considered to be non-stiff if it is proportional to the gradient length scale as
assumed for an usual diffusion process. Stiff transport is low below a critical
gradient and than explodes once the critical gradient is exceeded. Relevant
for the ITG is the heat flux qi = −nχi∇Ti with density n and ion thermal
conductivity χi. In the case of a critical gradient, the ion thermal conductivity
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is given by

χi =
ρi
a

Ti
eB

(
R

LT i
− R

LT i,crit

)

∝
(
R

LT i
− R

LT i,crit

)

, (4.1)

where the critical gradient scale length depends on the density gradient for the
ITG. We assumed gyro-Bohm diffusivity χi ∼ ρi

a
Ti
eB
. As dTi/dr ∼ TiR/LT i and

ρi =
√
Timi/eB the heat flux is proportional to qi ∼ T

5/2
i

R
LTi

(
R
LTi
− R

LTi,crit

)

.

This means once the critical gradient is exceeded the heat flux increases dra-
matically. This increase is particularly strong at high temperatures due to
the T

5/2
i dependence. Therefore, this phenomenon is highly relevant for the

plasma core. Due to the high heat flux, the gradient flattens and as a result the
ion temperature gradient is more or less pinned to the critical gradient level.
The critical gradient is not the same for linear and nonlinear calculations. The
corresponding nonlinear threshold in R/LT i is larger than in linear calculation,
which is called the Dimits shift [163].

The ITG can also appear in a homogenous plasma without curvature as a
pure drift wave [164, 165]. Interestingly, this also needs a critical gradient in
the ion temperature to be overcome (ηi & 2/3). In a real tokamak the ITG
instability is subject to a competition between the drift-wave and the inter-
change mechanism. The curvature induced potential perturbations by the ion
temperature fluctuations can be partially compensated by the parallel electron
motion, which gives rise to the drift wave (compare Figs. 4.3 and 4.2). The
ion temperature is the only state variable which does not participate in the
adiabatic response. Therefore, ion temperature fluctuations always exhibit in-
terchange dynamics to some degree. The charge separation by the interchange
mechanism cannot be fully compensated by the parallel electron dynamics.
This does not mean that the density fluctuations exhibit interchange dynam-
ics, too. The density perturbations appear very similar to the drift wave and
measurements based only on density fluctuations will hardly be able to clearly
identify ITGs. In DALF3 simulations [166] the electron part of the system
follows drift-wave dynamics even though the dynamics of the ion tempera-
ture fluctuations is fundamentally different. These modes are called ITG drift
waves.

The ITG is in competition with the TEM instability discussed in the next
section. Both instabilities exhibit very similar characteristic sizes. Whether
the turbulence is ITG or TEM dominated can have severe consequences for
the entire discharge concerning confinement, density peaking and impurity
accumulation. These are discussed after introducing the TEM in the next
section. Which instability is dominant depends highly on the gradient scale
lengths ratio. This is illustrated in Fig. 4.4. However, there are some regions
in the phase diagram where both instabilities can coexist. In competition
with electron temperature gradient modes (ETGs), turbulence at ion scales
eliminates electron-scale streamers and dominates heat transport, not only of
ions but also of electrons [167]. Ion temperature gradient mode turbulence is
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stabilized by electromagnetic effects [168, 169]. Furthermore, ITG turbulence
is stabilized by fast ions [170, 171].

4.5 Trapped electron mode (TEM)

The basic mechanism of trapped particle driven instabilities can be described
as follows. Due to the magnetic mirror effect, particles can be trapped in
the magnetic field. Trapped particles are localized on the low-field side of the
torus. As trapped particles cannot move freely along the magnetic field lines
they respond differently to a perturbed potential compared to passing (i.e.
non-trapped) particles. The vertical ∇B × Bϕ drift (with toroidal magnetic
field Bϕ) is responsible for the characteristic banana orbits in the poloidal plane
[162]. The ∇B×Bθ leads to a toroidal precession [162]. As electrons and ions
drift in opposite directions, this leads to a toroidal current called the Bootstrap
current. Perturbations of the trapped particle density of electrons and ions
drift in opposite directions. Because trapped particles are localized in the bad
curvature region, the resulting charge separation have the same consequences
as the interchange instability. At low frequencies ω ≪ k‖vthi where the passing
electrons and ions follow approximately the Boltzmann response (see Sec. A.3),
both species contribute to the charge separation. The passing electrons cannot
compensate the charge separation. This is called the trapped ion mode (TIM).
It can be seen as an interchange mode. At higher frequencies ω > k‖vthi the
response of the ions will deviate from a Boltzmann response and the passing
electrons move along the field lines and can compensate the charge separation
of the trapped particles. The interchange-like drive of the trapped particles
induces the drift-wave-like parallel response. The mode is a drift wave and
as additionally the fraction of trapped particles retards the electron response,
this is called the (dissipative) trapped electron mode (TEM). As the particles
are trapped on the low field side the TEM is ballooned.

Like the ITG also the TEM is a critical gradient mode, this means the elec-
tron temperature gradient needs to exceed the density gradient by a certain
fraction. Like in the ITG case, this leads to stiff transport. The critical gradi-
ent can be experimentally investigated by heat modulation in power balance
studies as done in Refs. [172, 173].

The transition from TEM to ITG dominated turbulence seems to play a
role in the transition from the linear Ohmic confinement (LOC) regime to the
saturated Ohmic confinement (SOC) regime. The two regimes are character-
ized by the energy confinement time, which increases linearly with the density
in the LOC regime and saturates in the SOC regime. In the Alcator C-mod
tokamak the LOC-SOC transition is accompanied by a reversal of toroidal ro-
tation and the disappearance of modes propagating in the electron diamagnetic
direction [174]. These modes are thought to be TEMs [174].

One important difference between TEM and ITG is the higher eigenfre-
quency of the TEM. This is important as in a tokamak a perturbed distri-
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bution function can have excess of particles at a given energy range as the
gyro-center drift depends on energy. This is called thermo-diffusion [175]. If
the resonance is at low energies, a net inward flux is produced, at high ener-
gies an outward flux can be produced. Therefore, for electrons a low resonance
appears, if the eigenfrequency is low, as in the case of ITG. This results in
thermo-diffusive inward flux. If the frequency becomes large, as in the case of
TEMs, the thermo-diffusive flux is outwards. For impurity ions the direction
of thermo-diffusion changes sign [175]. Therefore, ITG turbulence leads to
impurity ejection and TEM turbulence to impurity accumulation. In a tung-
sten experiment as ASDEX Upgrade impurity control is very important as
tungsten is a high Z material leading to high radiation losses in the plasma.
If the plasma turbulence in the core is ITG dominated, which is the case in
medium to high density L-modes (SOC regime) and H-modes, by applying cen-
tral ECRH, the main plasma particles move inwards leading to central density
peaking and the impurity particles moves outwards avoiding impurity accu-
mulation. In the case of TEM dominated turbulence at low densities (LOC
regime) the electrons are transported outwards leading to the so-called density
pump out. If the edge turbulence would be TEM dominated, impurities from
the SOL would be transported into the core. At lower collisionality also the
plasma core will most likely be TEM dominated. In such a case the impurities
will be further transported into the center, leading to impurity accumulation
and radiation death.

Trapped particle modes are frequently discussed also in the context of
plasma edge turbulence. However, due to the high collisionality in the plasma
edge trapped electrons as a destabilizing mechanism are basically unavail-
able. The ratio of the collisional detrapping rate to the bounce time ν∗ =
ǫ−3/2νeqR/Ve is about 40 for typical L-mode plasma edge parameters [166].
In H-mode the plasma beta is higher and electromagentic modes like MTMs
and KBMs (see Secs. 4.7 and 4.8) get more important. Therefore, for the
present investigations in the plasma edge, trapped particle modes are most
likely negligible.

4.6 Conducting wall instability (CWI)

The radial electric field in the SOL is needed to maintain quasi-neutrality,
where the potential limits electron end losses to the wall. The resulting poloidal
velocity gives rise to the CWI [178].

The basic mechanism of the CWI is shown in Fig. 4.5. The CWI is driven
by electron temperature gradient. Fluctuations of the parallel current are in-
duced by electron temperature fluctuations via the Bohm criterion [179]. Then
the fluctuations in the parallel current couple electron temperature and plasma
potential fluctuations. Similar to the common drift-wave instability, the ther-
modynamic fluctuations (for the CWI it is the electron temperature, for the
drift wave it is the density) are in phase with the potential fluctuations. In this
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Figure 4.4: Regions of ITG and TEM instability with respect to the gradient scale

lengths. Figure adapted from Ref. [176]. A similar figure for R/LTe
and R/LTi

can

be found in Ref. [177].

case the CWI is stable. But as for the drift wave any restriction on the parallel
electron dynamics like collisions will drive the CWI unstable. In contrast to
the drift-wave instability, the CWI exhibits no finite parallel wavenumber like
the interchange instability does. In general the linear growth rate of the CWI
is of the same order as that of the interchange instability [179]. As seen in a
previous study [180], electron temperature fluctuations are strong enough to
dominate floating potential fluctuations close to the separatrix. At ASDEX
Upgrade these fluctuations are in general non-negligible and the dominance
of the CWI for ASDEX Upgrade parameters is consistent with a combined
experimental-numerical study [180].

In general it seems that the transition from a drift-wave dominated tur-
bulence region inside the confined plasma to an interchange dominated tur-
bulence region in the SOL happens at the main generation location of blobs
[181, 182]. These results have been obtained in low temperature experiments.
With respect to transport characteristics, the CWI is a drift-wave-like insta-
bility. Both, drift wave and CWI, exhibit similarly low cross-phases and trans-
port. The presence of a CWI in the near-SOL can possibly extent the region of
drift-wave-like transport a few millimeters into the SOL in high temperature
experiments.

4.7 Micro-tearing mode (MTM)

Magnetic flux surfaces with rational values of the safety factor qs = m/n are
very sensitive to perturbations in the current parallel to the magnetic field. At
this positions a closed magnetic flux tube which is bounded by a separatrix
and isolated from the rest of space can appear. These closed magnetic flux
tubes are called magnetic islands. Low mode numbers correspond to large
instabilities which are all dangerous for the plasma confinement. Stellarators
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Figure 4.5: Dark regions indicate higher electron temperature. Electron temper-

ature fluctuations induce in-phase potential fluctuations via the floating potential

ΛTe. The resulting E ×B drift leads to a propagation in the electron diamagnetic

direction.

may have a vacuum magnetic field structure that already contains natural
islands. With finite resistivity the flux surfaces can reconnect and magnetic
islands can form. Current induced magnetic islands are called tearing modes.
Neoclassical tearing modes (NTMs) are a concern for magnetically confined
fusion devices as they significantly degrade the performance and may lead to
disruptions. NTMs are driven by a loss of the bootstrap current which can
be triggered by various MHD instabilities (e.g. sawtheeth, fishbones, edge
localized modes). As the bootstrap current is a neoclassical effect, they are
called NTMs. The magnetic field lines on the inner part of the islands are
connected over the X-point of the island and temperature and density can be
transported directly over the island size. Therefore, the island can be seen
as a flattening of the temperature profile. By means of external heating, the
current inside the island leading to the instability can be compensated and
such NTM can be externally controlled. Such localized heating is challenging,
but possible. The interaction of micro-turbulence and NTMs is an active field
of research [183, 184, 185, 186, 187, 188, 189].

The micro-tearing modes (MTMs) are the small-scale brother of the neo-
classical tearing modes. With respect to the plasma edge they are in par-
ticular relevant for the high confinement regime because of the high plasma
beta. In the plasma edge they are in competition with kinetic ballooning modes
((KBMs) see following Sec. 4.8). GEMR simulations of the ELM blowout found
that in the electrostatic regime, β ≤ 10−4, the ELM blowout is dominated by
the ion temperature gradient mode (ITG). For values of large β ≥ 8 · 10−4 a
micro-tearing mode grows and saturates by transferring its energy into more
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violent ITG MHD turbulence [190]. Gyrokinetic simulations of inter-ELM tur-
bulence in spherical tokamaks found MTMs close to the pedestal top where
KBMs are found at the pedestal foot [191, 192]. Gyrokinetic simulations of
ASDEX Upgrade and JET inter-ELM plasmas are unstable against MTMs in
the pedestal [193, 194]. In the ASDEX Upgrade case the plasma is just a bit
below the KBM threshold [193].

The dispersion relation can be solved given a real frequency of [195]

ω

vth,e/a
= kyρe

(
a

Lne
+

5

4

a

LTe

)

, (4.2)

with thermal electron velocity vth,e, minor radius a, binormal wavenumber ky,
electron Larmor radius ρe, density fall-off length Lne and electron temperature
fall-off length LTe. The dispersion relation is closely related to the electron
diamagnetic frequency which reflects the drift-wave nature of the mode. In
a conventional tokamak MTMs are of similar size as KBMs [158] but larger
than ITG modes. In a spherical tokamak the MTM is closer to the ITG scale
[196, 157]. The growth rate can be found in Ref. [195, 197]. The MTM is
driven by the electron temperature gradient and stabilized by magnetic field
line bending. Also MTMs are like ITGs and TEMs critical gradient modes.

The radial extent of the perturbation in the vector potential Ã‖ is much

wider as in the electrostatic potential φ̃ [198]. The collisionality is critical
for MTM as the corresponding resistivity is indispensable to the reconnection
process. On the other hand, a high collisionality leads to resistive damping of
the mode. The dependence of the growth rate on the collisionality is moderate
and the maximum growth rate can be found at collision frequencies around
νei/ω = 1–10 [198]. MTMs are suppressed by ETG turbulence. Fine-scale
E×B flows driven by the ETG turbulence strongly distort the radially localized
current-sheet structures of MTMs [199].

4.8 Kinetic ballooning mode (KBM)

MHD ballooning modes get unstable when a critical value in plasma beta
βMHD
crit is exceeded. Similarly also KBMs become unstable after reaching a

critical β threshold. These thresholds do not need to coincide. The critical
threshold is found analytically [200] to be reduced compared to the MHD
prediction:

βKBMcrit =
βMHD
crit

1 + a
R

. (4.3)

Further literature on the KBM threshold can be found in Refs. [201, 202,
203, 204]. This threshold makes KBMs important within the ELM cycle. The
ELM is induced by the MHD ballooning threshold. Before this happens the
KBM threshold will be reached and KBM turbulence can clamp the gradient
below the critical MHD threshold preventing the ELM from occurring. This
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is one of the main central elements of the famous EPED model predicting the
H-mode pedestal height and width of the ELM cycle [205, 206].

The KBM occurs at high plasma beta and has been called drift-Alfvénic
mode in ballooning approximation in the early times where most of the analytic
work has been done. The main elements of this instability are:

i) the ion temperature gradient as a source of free energy providing a rel-
ative strong ballooning envelope as fluctuations in the ion temperature
cannot be compensated well by the electron dynamics (c.f. Sec. 4.4) and

ii) Alfvénic coupling of the drift mode (c.f. Sec. B.2.4).

The nomenclature kinetic ballooning mode is misleading and fluid [207] or
gyrofluid simulations can be used to study KBM turbulence [208]. The reason
why kinetic effects are very important in particular for the KBM is the closeness
of the KBM and MHD ballooning threshold. As both are very close, the
threshold prediction of the KBM has to be very precise which makes a kinetic
treatment necessary. The dispersion relation can be found in Ref. [209], recent
analytical work on the KBM can be found in Ref. [210].

The instability can be understood as follows. Let us assume the ion tem-
perature gradient to be the strongest gradient and responsible for the energetic
drive of the instability. For this reason the KBM propagates in the ion dia-
magnetic direction. Due to the curvature potential fluctuations are induced
by the interchange effect. However, flute modes like the interchange instabil-
ity are only allowed for rational surfaces. In the presence of a finite parallel
wavelength the drift-wave mechanism as explained above will be present. The
KBM is a drift-wave mode. The curvature is still active and will result in
stronger turbulence on the low-field side of the torus. Therefore it is called
a ballooning mode. As seen in Sec. B.2.4, the drift waves have two limits in
the case of magnetic fluctuations. For small or large β the electrostatic ITG
drift wave and the electromagnetic Alfvénic wave can be well separated. In
the case of the KBM finite beta effects have to be considered, however the
plasma beta is still not strong enough to neglect the electrostatic branch. For
intermediate values in beta, both the electrostatic and the magnetic potential
take equivalently part in the polarization at a given frequency, the roots are
strongly interacting and the dispersion cannot be idealized [209]. Furthermore,
the dispersion of the branch propagating in ion-diamagnetic direction is also
very sensitive to the plasma β [209] making it impossible to characterize the
KBM by dispersion. Therefore the KBM is identified by its main features:
the propagation in the ion diamagnetic direction and the β threshold beyond
which strong growth takes place.
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Plasma turbulence models

In the following we turn to plasma edge turbulence models. The complex-
ity of the description will increase from two-dimensional electrostatic drift-
wave turbulence in plane (so-called slab) geometry (Sec. 5.1), over three-
dimensional electromagnetic fluid turbulence in a curvilinear toroidal geom-
etry with sheared magnetic field lines (Sec. 5.2) to three-dimensional elec-
tromagnetic gyrofluid turbulence with self-consistent equilibrium (Sec. 5.3).
Reviews on theory and experiment of drift-wave turbulence can be found in
Refs. [211, 212], respectively.

5.1 Hasegawa-Wakatani

The most basic model for plasma turbulence is the so-called Hasegawa-Wakatani
model [125, 213] for drift-wave turbulence in a homogenous magnetic field at
finite collisionality. It describes the stationary model for potential (hence ve-
locity) and density fluctuations. To simplify the system as much as possible,
also the electron temperature is assumed to be constant and much higher
than the ion temperature, which is assumed to be small. Even though the
Hasegawa-Wakatani system is very simplified, it can describe the nonlinear
dynamics quite well.

The Hasegawa-Wakatani equations in 3D are two coupled equations, one
for the evolution of density perturbations

∂tñ+ {φ̃, ñ}+ κn∂yφ̃ =
1

ν
∇2

‖(ñ− φ̃) (5.1)

and one equation for the vorticity fluctuations Ω̃ = ∇⊥φ̃

∂tΩ̃ + {φ̃, Ω̃} = 1

ν
∇2

‖(ñ− φ̃). (5.2)

Their derivation can be found in the appendix C.1. Density and potential fluc-
tuations are coupled via the collisionality with each other. The nonlinearity
is represented by the Poisson brackets {A,B} = ∂xA∂yB − ∂xB∂yA. {ñ, φ̃}
is the nonlinearity due to the E×B -drift in the continuity equation, {Ω̃, φ̃}
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is the nonlinearity equivalent to ũ · ∇ũ in the Navier-Stokes equation. As
seen by Eq. (A.15) this nonlinearity corresponds to a polarization drift and
current and, therefore, is called polarization nonlinearity. One important
aspect of magnetized plasmas is that the dominant nonlinearities and turbu-
lence are restricted to the plane perpendicular to the magnetic field. This is
similar to two-dimensional fluid turbulence. In contrast to fluid turbulence,
two nonlinearities are coupled in a magnetized plasma.

The finite conductivity related to ν results in a delayed electron response
in parallel direction. This leads to a deviation from the Boltzmann response
(normalized ñ ∼ φ̃). Without such a deviation, the fluctuations do not have
any access to the free energy reservoir provided by the background gradient
which are converted by the E×B-velocity field in density fluctuations. These
fluctuations lead to transport and flatten the density gradient. At high colli-
sionality the coupling between potential and density fluctuations is weak and
the equations can develop more or less independent of each other. The system
behaves as a nearly neutral fluid in two dimensions. This is called the hydrody-
namic limit. In the case of a small collisonality, the coupling between density
and potential fluctuations is strong. The amplitude and phase of density and
potential perturbations are nearly the same which is called the adiabatic limit.

The parallel dynamics can be incorporated with a characteristic scaling
quantity defined as

C = 1/(L2
‖ν) (5.3)

with a typical parallel wavelength ∇2
‖ ≈ −(1/L‖)

2. It follows

∂tñ+ {φ̃, ñ}+ κn∂yφ̃ = C(φ̃− ñ) (5.4)

∂tΩ̃ + {φ̃, Ω̃} = C(φ̃− ñ). (5.5)

These are the Hasegawa-Wakatani equations in 2D.

5.1.1 Hasegawa-Mima turbulence

The Hasegawa-Mima model is a simplification of the Hasegawa-Wakatani model.
The Hasegawa-Mima equation [214] offers the possibility to study the impact
of the nonlinearity without any linear growth. This can be realized with the
assumption of an ideal Boltzmann response ñ ∼ φ̃ for adiabatic electrons
C →∞. Subtracting (5.5) from (5.4) yields

∂t(φ̃− Ω̃) + κn∂yφ̃ = {φ̃, Ω̃}. (5.6)

This model is identical to the Charney model [215] describing Rossby waves
in geophysical fluids (in the atmosphere). For this reason, the equation is
called Charney-Hasegawa-Mima equation. Hence drift waves and Rossby waves
exhibit a very similar dispersion relation [125].
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5.1.2 Cascades in drift-wave turbulence – self-sustainment

The direction of the energy and enstrophy transfer of the Hasegawa-Wakatani
turbulence has been shown analytically by Gang et al. [216] to be in the same
direction as in two-dimensional fluid turbulence. Therefore, as in quasi two-
dimensional turbulence kinetic energy is transferred to larger scales. With

Figure 5.1: Energy injected into the system by the density background gradient

induces fluctuations in the density. Via adiabatic coupling potential fluctuations are

driven. Due to the inverse energy cascade larger scales are excited. Once potential

fluctuations are excited at larger scales, at these scales transport is driven and

fluctuations can tap energy from the background gradient even if they would have a

negative growth rate. At larger scales the energy can be recycled and only a small

amount has to be transferred to small scales, where it is dissipated.

regard to the inverse energy transfer in 2D turbulence, the question arises
what happens to the energy at the large scales, where it cannot be dissipated
by viscosity. At large scales friction and dissipation are fairly irrelevant and the
energy could indefinitely accumulate. This is called the infrared catastrophe.
For the Hasegawa-Wakatani turbulence this is solved by the interplay of the two
nonlinearities. The one due to the polarization nonlinearity acts like an inverse
energy cascade and transfers kinetic energy to larger scales. The nonlinearity
due to the E × B-drift acts in the different direction: it transfers free energy
from large to small scales. This prevents the infrared catastrophe. For drift-
wave turbulence both cascades are present. These are shown in Fig. 5.1.
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One main consequence of the nonlinear energy transfer with a direct and
an inverse energy cascade in drift-wave turbulence is the mechanism of self-
sustainment of organized states of turbulence [217, 218, 10]. For simplicity we
will consider only three scales: mid-scale fluctuations in the spectral region of
maximum energy fed by the gradients, large-scale (low wavenumber) fluctu-
ations and small-scale fluctuations. The mid-scale fluctuations are unstable,
they tap energy from the background gradient. The large-scale and small-
scale fluctuations may have a negative growth rate. Due to adiabatic coupling
potential fluctuations at the mid-scale are induced. The inverse energy cas-
cade generates fluctuations in the potential at large scale. Due to adiabatic
coupling also density fluctuations at large scales are excited. These will in-
duce transport, which leads to energy transfer from the background gradient
to fluctuations at the larger scales. The energy transfer by adiabatic coupling
together with this additional energy transfer from the gradient can compensate
the negative growth rate. Furthermore, by this mechanism the energy can be
recycled at mid to large scales without significant losses at small scales.

5.1.3 Zonal flow self-amplification in drift-wave turbu-
lence

From the discussion on the Reynolds stress in Sec. 3.6.1 it can be implied that
an initial tilt of turbulent structures or an initial shear flow will indefinitely
self-amplify. This is not the case as the zonal flow does not tilt the vortices
directly. Including a background shear in Eq. (5.5) yields

∂tΩ̃ + {φ̃, Ω̃}+ {〈φ〉, Ω̃}+ {φ̃, 〈Ω〉} = C(φ̃− ñ). (5.7)

The third term {〈φ〉, Ω̃} = ∂x〈φ〉∂yΩ̃ = 〈uy〉∂yΩ̃ as ∂y〈φ〉 = 0 vanishes since
zonal components do not vary in y-direction. Similar, the fourth term is
−∂yφ̃∂x〈Ω〉. This term can be also written as

−∂yφ̃∂x〈Ω〉 = −∂x(〈Ω〉∂yφ̃) + (∂x〈uy〉)∂xyφ̃.

As (∂x〈uy〉)∂xyφ̃ = ∂x(〈uy〉∂xyφ̃)− 〈uy〉∂y∂2xφ̃ and together with Ω = ∂2xφ

−∂yφ̃∂x〈Ω〉 = ∂x(〈uy〉∂xyφ̃− 〈Ω〉∂yφ̃)− 〈uy〉∂yΩ̃.

The last term balances the third term of (5.7). The remaining term is under the
∂x operator which is equivalent to a divergence. This means that the vorticity
is globally neither generated nor dissipated as expected for two-dimensional
turbulence. Therefore, in the hydrodynamic limit the zonal flow cannot result
in indefinite self-amplification. The vorticity is radially redistributed, which
will be discussed in detail in Sec. 8.3. However, for high adiabaticity the
coupling to the density fluctuation can lead to self-amplification of the zonal
flow. We include the zonal flow in the density equation (5.4)

∂tñ+ {φ̃, ñ}+ 〈uy〉∂yñ+ κn∂yφ̃ = C(φ̃− ñ). (5.8)
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By the third term, the zonal flow can tilt turbulent structures in the density.
This tilt can be transmitted to the vorticity field by adiabatic coupling C(φ̃−ñ)
(terms on the r.h.s. of Eqs. (5.7) and (5.8)). Therefore, in the adiabatic limit
strong self-amplification can be expected.

The collisional dependence of the energy transfer from drift-wave turbu-
lence into the zonal flow has been investigated in the stellarator TJ-K. It has
been found [39] that the coupling of the tilt of density and potential struc-
tures measured by the pseudo Reynolds stress −〈∂xñ∂yñ〉 and Reynolds stress
−〈∂xφ̃∂yφ̃〉 decreases with collisonality. As a consequence, the nonlinear en-
ergy transfer into the zonal flow decreases. Therefore, zonal flows favor the
adiabatic regime and a high collisionality hampers self-amplification.

5.1.4 Intermittency in drift-wave turbulence

Drift-wave turbulence is close to quasi-two-dimensional turbulence which is
discussed in Sec. 3.5.3. Two-dimensional turbulence is non-intermittent with
respect to the flow, but shows intermittency in the vorticity. This has been
shown by simulations of Hasegawa-Wakatani turbulence [219, 220] and ex-
periments in the stellarator TJ-K [220]. Potential fluctuations are in general
self-similar. In contrast to fluid turbulence, in drift-wave turbulence, addition-
ally to the potential and/or vorticity also the density is an active quantity. By
increasing the collisionality the density shows no intermittency in the adiabatic
regime, whereas in the hydrodynamic regime, where density and potential de-
couple and the density behaves like a passive scalar, the intermittency level of
the density is similar to that of the vorticity [219, 220].

5.2 Drift-Alfvén (DALF) model

The DALF model [221, 222, 223] describes drift-Alfvén turbulence in toroidal
geometry and, therefore, also includes interchange and MHD instabilities.
Most basic mechanisms of plasma turbulence in toroidal geometry relevant
for the plasma edge can be understood by the DALF model. The DALF
model will be used later to study analytically the sideband balance during
the L-H transition (see Sec. 10.2.2) and different regimes of plasma filament
propagation (Sec. 12.1).

It consists of evolution equations for the the vorticity Ω̃

(
∂

∂t
+ ũE · ∇

)

Ω̃ = B∇‖

J̃‖
B
− (1 + τi)K(p̃e), (5.9)

the electron pressure p̃e

(
∂

∂t
+ ũE · ∇

)

p̃e + ũE∇pe = B∇‖

J̃‖ − ũ‖
B

+K(φ̃− p̃e), (5.10)
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the parallel current J̃‖

β̂

(
∂

∂t
+ ũE · ∇

)

Ã‖ + µ

(
∂

∂t
+ ũE · ∇

)

J̃‖ = ∇‖(pe + p̃e − φ̃)− CJ̃‖. (5.11)

and the ion velocity

ǫ̂

(
∂

∂t
+ ũE · ∇

)

ũ‖ = −(1 + τi)∇‖(pe + p̃e) + µ‖∇2
‖ũ‖. (5.12)

The equations are completed by Ampere’s law

−∇2
⊥Ã‖ = J̃‖ (5.13)

and polarization
1

B2
∇2

⊥W̃ = Ω̃. (5.14)

Times are normalized to L⊥/cs, perpendicular spatial scales to ρs and parallel
scales to qsR with safety factor qs and major radius R. Here L⊥ is the relevant
gradient scale length, which is in most cases L⊥ = −Te/∂xTe. The normaliza-
tion is done by the ion sound speed and ρs. The the ion sound speed is given
by cs =

√

Te/mi and it should be noted that the ion sound speed used for
normalization does not include the contribution of the ions (their contribution
is accounted for by τi as explained later). The ratio between ion and electron
temperature is given by τi = Ti/Te. The hybrid Larmor radius is given by
ρs =

√
Temi/eB with electron temperature Te, ion mass mi, magnetic field

strength B and elementary charge e. d/dt = ∂/∂t + uE · ∇ is the advective
derivative with E × B velocity uE. The main fluctuating quantities are the
electrostatic potential φ̃ = eφ/Te0 normalized to the background mean electron
temperature Te0 and the electron pressure fluctuations normalized to a charac-
teristic mean background pressure value pe0. The fluctuations are additionally
normalized and given in units of ρs/L⊥ which is the smallness parameter (see
Sec. B.2.1). This is also the reason why times are normalized by L⊥/cs and
not by ρs/cs. Due to finite ion temperatures, the stream function is not the
plasma potential as in the Hasegawa-Wakatani model (see Sec. 5.1) and the
total ion flow stream function given by W̃ = φ̃+ τip̃e determines the vorticity
Ω̃ = (1/B2)∇2

⊥W̃ . The difference between parallel ion flow ũ‖ and current J̃‖
defines the parallel electron flow ṽ‖ = ũ‖ − J̃‖. For the pressure we consider
the background together with the disturbance and drop the tilde symbol. In
some cases we will investigate the total pressure p = pe + pi.

The DALF model includes the Hasegawa-Wakatani model (Eqs. (5.1) and
(5.2)) as a subset. The nonlinearities {Ω̃, φ̃} and {ñ, φ̃} are included in the
operator d/dt of Eqs. (5.9) and (5.10). As p denotes the total pressure in
DALF also κn∂yφ̃ is included in the d/dt operator in Eq. (5.9). The adiabatic
coupling of pressure (5.10) and potential (5.9) is done by a coupling of both
of these equations to Eq. (5.11). These parts of the DALF model describe
drift-wave turbulence with all features described in Sec. 5.1. Also MHD is
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included as a subset of the DALF equations. For this reason also interchange
and Alfvén wave dynamics are included in the DALF framework.

The coordinates used here are (x, y, s), where s is in direction of the unper-
turbed magnetic field line and x and y are radial and binormal, respectively,
locally perpendicular to the unperturbed magnetic field line. A shifted metric
coordinate system is used with a different y coordinate at each location in s. It
is important to note that in a tokamak, the direction parallel to the magnetic
field is not toroidal and perpendicular is not poloidal. In a flux tube coordinate
system as in DALF and later in GEM (see Sec. 5.3) the parallel coordinate s
is represented by the poloidal angle θ defined in [−π, π] with its origin at the
outer midplane. This is called a ballooning angle. The parallel wavenumber is
given by k‖ =

m−nqs
qsR

with poloidal mode number m and toroidal mode number
n. The local perpendicular or binormal wavenumber in drift direction is given
by the toroidal wavenumber ky =

nqs
r

with the radius of the flux tube r. The
local shift, which is different at each radial position, allows to take the effect
of magnetic shear into account. The curvature operator is given by

K = ωB(sin s∂x + cos s∂y) (5.15)

with ωB = 2L⊥/R and the curvature radius R, which is set to the major
radius. The first contribution to the curvature is the geodesic curvature, the
second the normal curvature. The flux surface (zonal) average is given by
〈f〉 =

∮ ∮
dsdyf . The normalized magnetic field strength is B = 1 with the

component parallel to the field line bs = 1. The parallel derivative includes
magnetic fluctuations of the flux-surface

∇‖ = bs
∂

∂s
+ b̃x

∂

∂x
+ b̃y

∂

∂y
. (5.16)

They are calculated as b̃x = β̂
∂Ã‖

∂y
and b̃y = −β̂ ∂Ã‖

∂x
. These magnetic fluctua-

tions can lead to additional electromagnetic transport. Terms including these
magnetic fluctuations are called magnetic flutter terms.

Different regimes are set by the square of the parallel/perpendicular scale
ratio ǫ̂ = (qsR/L⊥)

2, the normalized plasma beta given by β̂ = (4πnTe/B
2)ǫ̂

and the normalized mass ratio µ̂ = (me/mi)ǫ̂, which determine the relative
transit Alfvén and electron thermal frequencies, respectively. The parallel
current is dissipated by collisions represented by C = µ̂(0.51νe/csL⊥) with
collision frequency (given in SI units)

νe =
Zeffe

4ne ln Λ

6
√
2π3/2ǫ20

√
me(kBTe)3/2

,

with Coulomb logarithm lnΛ. Details on the collision frequencies can be found
in Ref. [224]. Flow damping is controlled by an artificial neoclassical viscosity
parameter µ‖.
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Figure 5.2: Flow of energy flow between the different fields in the DALF model.

5.2.1 Energetics in DALF

A main difference between fluid and plasma turbulence is the appearance of
different fields for a magnetized plasma, where fluid turbulence can be un-
derstood by only the velocity field. All fields exhibit a nonlinearity by the
advective term d/dt = ∂/∂t + u · ∇ but the fields can also interact with each
other. We have already seen for the case of Hasegawa-Wakatani turbulence
that the coupling between density and vorticity field provides an additional
physical mechanism. Here this is discussed for the more complete electromag-
netic DALF model.

The evolution of the different energies is given in Ref. [223]. The ion drift
energy (or E ×B turbulent energy) is determined by

∂

∂t

1

2

1

B2
〈∇⊥φ̃

2〉 = 〈J̃‖∇‖φ̃〉 − (1 + τi)〈p̃eKφ̃〉, (5.17)

the thermal and free energy by

∂

∂t

1

2
〈p̃2e〉 = −〈J̃‖∇‖p̃e〉+ 〈ũ‖∇‖p̃e〉+ 〈p̃eKφ̃〉+ ωp〈p̃e

∂φ̃

∂y
〉 (5.18)
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with ωp = L⊥/Lp the magnetic and electron kinetic energy follows

∂

∂t

1

2
〈J̃‖(β̂Ã‖ + J̃‖)〉 = +〈J̃‖∇‖p̃e〉 − 〈J̃‖∇‖φ̃〉 − C〈J̃2

‖ 〉. (5.19)

The sound wave energy (or parallel ion kinetic energy) reads

∂

∂t

1

2
ǫ̂〈ũ2‖〉 = −(1 + τi)〈ũ‖∇‖p̃e〉+ ωpβ̂〈ũ‖

∂Ã

∂y
〉 − µ‖〈ũ2‖〉. (5.20)

The energy flow across the different fields is illustrated in Fig. 5.2 The
energy is injected by the pressure gradient into the system by the last term of
(5.18). There are two pathways how the energy can be passed to the E × B
turbulence. There is a direct transfer of energy by 〈p̃eKφ̃〉. This term appears
in both equations (5.17) and (5.18) but with a different sign. This effect can
be attributed to the curvature. To make a significant contribution the cross-
phase between potential and pressure fluctuations has to be close to π/4. The
term is called interchange forcing. The other possibility to couple the free
energy of the background gradient into the ion drift energy is by coupling
through the parallel dynamics p̃e ←→ J̃‖ ←→ φ̃. The relevant transfer terms

are 〈J̃‖∇‖p̃e〉 and 〈J̃‖∇‖φ̃〉. This coupling resembles the drift-wave mechanism.

The coupling between pressure and parallel current perturbations 〈J̃‖∇‖p̃e〉 is
called adiabatic coupling. The coupling between potential and parallel current
perturbations 〈J̃‖∇‖φ̃〉 is called Alfvénic coupling.

5.2.2 Regimes of edge turbulence

Edge turbulence can be classified following Scott [166, 207]. Turbulence is ITG
dominated, if the ion temperature fluctuations are the strongest state variable
which is also the most strongly ballooned one, hence p̃i > p̃e. ITG turbulence
exhibits a higher ion than electron heat flux. Turbulence is drift-wave-like if all
state variables are similar φ̃ ∼ p̃e ∼ p̃i with similar spectrum and similar degree
of ballooning. In the case of ballooning-like turbulence, potential fluctuations
φ̃ are the largest ones and also the most strongly ballooned. The change
around the poloidal direction is also part of the parallel derivative, hence strong
ballooning needs strong parallel gradients. This becomes a MHD regime with
∇‖φ̃≫ ∇‖p̃e, ∇⊥φ̃≫ ∇⊥p̃e. In MHD often E‖ = ∇‖φ− ∂tA‖ = 0 is assumed,
where ∇‖φ balances ∂tA‖. Hence, ∇‖φ≫ 1 is not in contradiction to E‖ = 0.
The transition from drift-wave turbulence to resistive ballooning takes place
at CωB ≈ 1. Note that including finite ion temperature effects, this threshold
reduces to CωB ≈ 1/(1+τi) [159]. There is another parameter determining the
transition from resistive ballooning turbulence to drift-wave turbulence given
by the ratio of the typical scales of drift waves and the resistive ballooning
mode called αd [225, 226, 227], which can be related to the L-H transition
[226, 228] and the density limit [226, 229]. The transition to ideal ballooning
happens at αMHD = β̂ωBωp ∼ 1 . Here ωp = Lpe/L⊥ is the normalized electron
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pressure gradient, where L⊥ = min(Ln, LTe, LTi). Where the transition to
ideal ballooning is rather sharp, the transition to resistive ballooning is rather
gradual.

Electromagnetic turbulence changes with plasma beta. At low plasma beta
the plasma edge turbulence is electrostatic and ITG dominated. At high
plasma beta ITG turbulence is suppressed and the plasma edge turbulence
is KBM dominated [207]. In between a region of suppressed ion heat trans-
port and enhanced electromagnetic (induced by magnetic flutter) electron heat
transport can be observed which can be related to MTM dominated edge tur-
bulence [207]. The region where the particle transport, the ion heat transport
and electrostatic electron heat transport strongly decrease with plasma beta
and the electromagnetic heat transport strongly increases can be attributed to
MTM turbulence [207].

5.2.3 Dynamics of zonal flows, geodesic acoustic modes
and Pfirsch-Schlüter currents

Zonal flows have been introduced in Sec. 3.6. Now we will take a closer look
at zonal flows in a toroidal geometry with twisted magnetic field lines like in a
tokamak. How different modes are connected in toroidal geometry is illustrated
in Fig. 5.3. The zonal flow is a potential perturbation which is homogenous
on a flux surface exhibiting a poloidal mode number m = 0 and toroidal mode
number n = 0. It is generated by the Reynolds stress (see Sec. 3.6.1 for de-
tails). The E × B flow excited by such a perturbation is not homogenous on
a flux surface as uE×B ∼ 1/B and therefore the flow is faster on the low-field
side radially outwards and slower on the high-field side closer to the center of
the tokamak. Such a flow results in a compression or expansion of a passively
advected quantity as the density, temperature or pressure, on the top and vise
versa on the bottom of the tokamak. An up-down asymmetric pressure per-
turbation is the result. This up-down asymmetric pressure perturbation would
like to relax, which leads to a characteristic oscillation between the zonal po-
tential perturbation and the up-down asymmetric pressure perturbation which
is called the geodesic acoustic mode (GAM).

As the bottom and the top are connected by the twisted magnetic field lines,
the plasma can flow along the parallel direction to compensate the establishing
parallel gradients. As the electrons react faster on these parallel gradients, they
precede the parallel ion flow, which leads to a current. This current is called
the Pfirsch-Schlüter current and it also appears in equilibrium without any
zonal flow to compensate the electric field generated by interchange forcing.
The Pfirsch-Schlüter current is in-out asymmetric. As a current, the Pfirsch-
Schlüter current induces magnetic field perturbations.

A detailed analysis of the energy transfer system between turbulence, zonal
modes and further sidebands in an axisymmetrical configuration is presented
in Ref. [223] and will be summarized in the following. The description is based
on the DALF model explained above. s is the ballooning angle [223]. As s is
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Figure 5.3: Artist view of the Pfirsch-Schlüter current sideband balance.

defined to be zero at the outer midplane 〈sin s〉 gives the up-down asymmet-
ric components to the flux surface average and 〈cos s〉 the in-out asymmetric
component. Sidebands are modes with finite parallel wavevector k‖ 6= 0 but
vanishing binormal wavevector ky = 0 (corresponding to n = 0, m 6= 0). The
sidebands are obtained by multiplying the evolution equations for current,
flow, pressure and vorticity by the asymmetry function sin s or cos s first and
by taking the zonal average 〈·〉, subsequently. In this way the resulting modes
exhibit a parallel wavenumber of k‖ = ± 1

qR
with poloidal and toroidal mode

numbers of one and zero, respectively.
The zonal pressure evolution is

∂

∂t
〈pe〉 = −

∂

∂x
〈ṽExpe + b̃xṽ‖〉 − ωB〈(p− W̃ ) sin s〉. (5.21)

Through the gradient drive, energy is transferred from the background pressure
p0 to the turbulence p̃. This is done by the coupling between the second term
on the left hand side of Eq. (5.10) with the first term on the right hand side
of Eq. (5.21). Due to adiabatic coupling (first terms on the right hand side of
Eqs. (5.9) and (5.10)) fluctuating energy is transferred to vorticity fluctuations
Ω̃. The zonal vorticity is obtained by taking the zonal average of Eq. (5.9)

∂

∂t
〈Ω〉 = − ∂2

∂x2
〈ṽExũy〉+

1

β̂

∂2

∂x2
〈b̃xb̃y〉 − ωB

∂

∂x
〈p sin s〉 (5.22)

giving the zonal flow 〈ũy〉 = 〈∂W̃∂x 〉
∂

∂t
〈ũy〉 = −

∂

∂x
〈ṽExũy〉+

1

β̂

∂

∂x
〈b̃xb̃y〉 − ωB〈p sin s〉. (5.23)

Note that, the zonal flow includes the ion diamagnetic contribution and 〈∂ũy
∂x
〉 =

〈Ω̃〉. The turbulent Ω̃ drives the zonal vorticity 〈Ω〉 = 〈Ω̃〉 via the Reynolds
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stress ∂
∂x
〈ṽExũy〉 (Eq. (5.23)). The zonal vorticity determines the zonal flow.

The second term is the Maxwell stress. The zonal flow is saturated by driving
an up-down asymmetric pressure sideband 〈p̃ sin s〉. This results from the
geodesic curvature ωB sin s and is called the geodesic transfer effect [223, 230,
231]. The evolution of this pressure sideband is

∂
∂t
〈pe sin s〉 = − ∂

∂x
〈(ṽExpe + b̃xṽ‖) sin s〉+ 〈v‖ cos s〉

−ωB
2

〈(
∂p

∂x
− ũy

)

(1− cos 2s)

〉

. (5.24)

The coupling to the zonal flow is accomplished by the last term. The oscillation
between the zonal flow 〈ũy〉 and this pressure sideband 〈pe sin s〉 is the geodesic
acoustic mode. Neglecting all other contributions except ∂

∂t
〈pe sin s〉 = 1

2
ωB〈ũy〉

and also just considering the coupling to this pressure sideband for the zonal
flow equation (5.23) ∂

∂t
〈ũy〉 = −(1 + τi)ωB〈pe sin s〉 a natural frequency of

ωB
√

(1 + τi)/2 or in physical units fGAM =
√
2csi/2πR with c2si = (1+τi)Te/mi

can be derived which is the GAM frequency. This pressure sideband can also
be driven by an up-down asymmetric transport as seen in the first term on
the right hand side of Eq. (5.24). Most damping occurs due to 〈ṽ‖ cos s〉 which
is connected to the flow and current by 〈ṽ‖ cos s〉 = 〈ũ‖ cos s〉 − 〈J̃‖ cos s〉.
Via adiabatic coupling the energy is transferred from the pressure sideband
to perturbations in the Pfirsch-Schlüter current 〈J̃‖ cos s〉 where the energy is
dissipated by the collisionality

∂
∂t
〈(β̂Ã‖ + µ̂J̃‖) cos s〉 = − ∂

∂x
〈ṽExµ̂J̃‖ cos s〉

+〈b̃x(
∂p

∂x
− ∂φ̃

∂x
) cos s〉

+〈(p− W̃ ) sin s〉
−C〈J̃‖ cos s〉. (5.25)

As shown in a previous numerical investigation [223] the most important side-
bands related to zonal flow physics are the up-down asymmetric pressure side-
band 〈p sin s〉 taking part in the geodesic acoustic oscillation (GAM), the vor-
ticity sideband 〈Ω̃ sin s〉 (directly linked to the sidebands of the ion stream
function 〈W̃ sin s〉 and flow 〈ũy sin s〉) as well as the Pfirsch-Schlüter current
〈J̃‖ cos s〉. The Pfirsch-Schlüter sound sideband 〈ũ‖ cos s〉 plays a minor role.

5.3 Gyrofluid Electro Magnetic (GEM) model

The results presented in the Chap. 9 and Sec. 12.2.3 are based on simulations
carried out with the code GEMR. The GEMR code is based on the GEM
model described in this section. As the scales of the perpendicular dynamics
of tokamak edge turbulence are of the order of the ion gyroradius, the turbu-
lence model should take the effects of a finite ion Larmor radius (FLR) into
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account. The gyrofluid electromagnetic model (GEM) is a six field model in-
cluding the density nz, the parallel velocity uz‖, the parallel and perpendicular
temperatures Tz‖ and Tz⊥ and the parallel and perpendicular heat fluxes qz‖
and qz⊥, where z ∈ {i, e} denotes the species. It is derived by taking the mo-
ments over the gyrokinetic equations. This kind of model is called gyrofluid
model. Electrostatic gyrofluid equations have been derived by Dorland [232]
and extended to toroidal geometry by Beer [233]. Nonadiabatic electrons and
electromagnetic effects have been added by Scott [234] and Snyder [208]. En-
ergy conserving toroidal electrostatic gyrofluid equations have been derived
from Lagrangian theory by Strintzi [235, 236], Scott included electromagnetic
effects [237].

Basics of gyroaveraging and finite Larmor radius effects can be found in the
appendix C.2.1, the moments are defined in Sec. C.2.2. The model equations
of the six-field GEM model used in the code GEMR are discussed next.

Even though the normalization of GEM is similar to DALF, it is different
in detail. The radial spatial scale is normalized by the minor radius x← x/a,
time scales are normalized by t← t/(a/cs0) with sound speed cs0 =

√

Te0/mi.
The general normalization is done by nz ← nz/nz0, Tz ← Tz/Tz0, uz ← uz‖/cs0,
qz‖ ← qz‖/(nz0Tz0cs0), φ ← eφ/Te0 and A‖ ← A‖/ρs0βe0B0. Here βe0 =
4πne0Te0/B

2
0 . Note that the GEM model uses CGS units.

GEM uses Padé approximated (a particular kind of approximation for the
Bessel function) gyroaveraging and gyroscreening operators

Γ0 =
1

1− bz
(5.26)

Γ1 = Γ
1/2
0 =

1

(1− bz)1/2
(5.27)

Γ2 = bz
∂Γ1

∂bz
=

bz
(1− bz)3/2

(5.28)

with

bz = k2⊥ρ
2
z0 (5.29)

and

ρz0 = c

√
MzTz0
ZeB0

. (5.30)

The finite Larmor radius (FLR) corrected potentials are φG = Γ1(φ), ΩG =
Γ2(φ), AG = Γ1(A‖) and χG = Γ2(A‖). FLR correction terms result from the
gyroaveraging operator (see Sec. C.2.1). The E×B velocity is uE = δ0b×∇φG
and its FLR corrected part is wE = δ0b ×∇ΩG. The E × B velocity is part
of the advective derivative

d

dt
=

∂

∂t
+ uE · ∇ =

∂

∂t
+ {φG, ·} . (5.31)
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Here {·, ·} denotes the Poisson bracket. The magnetic fluctuations are mainly
part of the parallel derivative

∇‖ =
1

B
B · ∇+ b⊥ · ∇ = b · ∇ − βe {AG, ·} . (5.32)

The potential φ is the most important quantity for the turbulence. In the
gyrofluid model it is determined by the polarization equation resulting from
quasi-neutrality

∑

z

az

(

Γ1nz + Γ2Tz⊥ +
Γ0 − 1

τz
φ

)

= 0. (5.33)

The equation determines the potential which determines the vorticity and
therefore this equation takes the role of the vorticity equation ((Eq. (5.2)
in the Hasegawa-Wakatani model and Eq. (5.9) in DALF). As GEM is an
electromagnetic model the induction equation is of central importance

∑

z

azuz‖ = −∇2
⊥A‖ = J‖. (5.34)

Electromagnetic effects are important for the Alfvén dynamics and all elec-
tromagentic modes like MTMs or KBMs. We have defined some constants
τz = Tz0/ZTe0 and az = Znz0/nze.

The curvature operator is given by

K = −δ0∇ ·
1

B2
B× B. (5.35)

The normal curvature allows for the interchange forcing effect (described in
detail in Sec. 5.2.1), whereas the geodesic curvature is important for zonal flow
saturation by the the geodesic transfer effect (described in detail in Sec. 5.2.3).

The governing equations for each species will be given in the following. The
first moment gives the density evolution

∂

∂t
nz = −uE ·∇nz−wE ·∇Tz⊥−∇‖uz‖−K

(

φG +
ΩG

2
+ τz

pz‖ + pz⊥
2

)

. (5.36)

The first term on the r.h.s is the usual advection, corresponding to {n, φ} in
the Hasegawa-Wakatani model (5.1) or in (5.10) in the DALF model. The
second term is the FLR correction of the advection. The third term couples
the density to the parallel velocity, which is part of the induction equation
(5.34). Therefore, the two density equations (5.36) are coupled by the induc-
tion equation (5.34). This is part of the adiabatic coupling. This is important
for effects like the sound wave, parallel currents and the drift-wave dynamics.
It corresponds to a part of the first term on the r.h.s. of (5.10) in the DALF
model. The fourth term describes compressional effects induced by the curva-
ture and part of the interchange forcing. The corresponding part in DALF is
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the last term on the r.h.s. in (5.10). The three parts are the usual potential,
the FLR correction and finite temperature effects. Potential fluctuations lead-
ing to advection uE are provided through the difference of ions and electrons
by the polarization Eq. (5.33).

Magnetic fluctuations and parallel velocities are determined by

∂
∂t
(βe0A‖ + µzuz‖) = −µzuE · ∇uz‖ − µzwE · qz⊥ −∇‖(φG + τzpz‖)

+µzτzK
(
4uz‖ + 2qz‖ + qz⊥

2

)

−νe0|µe|
(

ηJ‖ +
αe
κe

(
qe‖ + qe⊥ + αeJ‖

)
)

. (5.37)

Again, the first term on the r.h.s is the usual advection, the second term the
FLR correction of it. The third term is important for the sound wave and
Alfvénic dynamics. Its analogon within the Hasegawa-Wakatani framework
can be found in the generalized Ohm’s law (C.5). Currents as well as pertur-
bations in the vector potential result from the difference of ions and electrons
of this equation and the induction Eq. (5.34). Magnetic field fluctuations are
induced by the parallel derivative (5.32) from vector potential fluctuations.
These so-called magnetic flutter terms are important for electromagnetic in-
stabilities as the MTM (see Sec. 4.8) or the KBM (see Sec. 4.8). The last term
does not result form the gyroaveraging and, therefore, it is not part of the basic
gyrofluid equations. It describes the collisional dissipation. It appears for both
species, since the resistivity adds to ∂AG/∂t. µe = −me/mi is the mass ratio
(µi = 1), thermoelectric coupling αe = 0.71, thermal conduction κe = 3.2 and
resistivity η = 0.51 are constants delivered by the Braginskii model [238].

The temperature evolutions follow

1
2
∂
∂t
Tz‖ = −1

2
uE · ∇Tz‖ −∇‖(uz‖ + qz‖)−K

(
φG
2

+ τz
pz‖ + 2Tz‖

2

)

− νz0
3πz

(|τz|(Tz‖ − Tz⊥)− ΩG) + 3azνe0|µe|(Te‖ − τiTi‖). (5.38)

The perpendicular advection by the E × B velocity is provided by the first
term on the r.h.s. If a strong ion temperature gradient exists, this term allows
for the drive of the ITG instability (see Sec. 4.4). The second term describes
the parallel advection. Similar to the density compressional effects due to
the curvature are given by the third term. The last terms describe collisional
dissipation important for temperature equipartition. Anisotropy dissipation of
perpendicular and parallel temperatures is provided by the fourth term, the
one of ion and electron temperatures by the last term. More on temperature
equipartition, relevant to the scrape-off layer and separatrix region, can be
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found in Ref. [23].

∂
∂t
Tz⊥ = −uE · ∇Tz‖ −wE · ∇(nz + 2Tz)−∇‖qz⊥

−K
(
φG
2

+ 2ΩG + τz
pz⊥ + 3Tz⊥

2

)

− νz0
3πz
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The terms are similar as for the parallel temperature. The parallel heat fluxes
follow
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. (5.40)

The first and second term provide perpendicular and parallel advection, respec-
tively, the third term the compression by the magnetic curvature. The forth
term describes the collisionless Landau damping. aL = νz

qR0
(1− 0.125q2R2

0∇2
‖)

is a Landau damping operator. The last terms are collisional dissipation. Sim-
ilarly the perpendicular parallel heat fluxes are given by
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. (5.41)

Details on the time dependent equilibrium as well as a discussion on limi-
tations of GEMR can be found in the appendix C.2.3 and C.2.4.



Chapter 6

Measurement techniques to
study plasma edge turbulence

Measurements in such a harsh environment as fusion plasmas call for special
methods for investigating its properties as for example temperature, density or
current. Passive and active diagnostics are distinguished. Passive diagnostics
do not perturb the plasma and are favorable. The plasma emits electromag-
netic waves in a wide range of frequencies, which can be detected. One example
is electron cyclotron emission (ECE) [239, 240, 241]. Also the magnetic field
outside of the plasma can be measured without perturbing the plasma. Ac-
tive methods disturb the plasma. However, in most cases the disturbance is
marginal as for reflectometry (using microwaves) or laser diagnostics as Thom-
son scattering. Particle beams can also be used for diagnostics. Here, one also
has to take care that the beam does not significantly disturb the plasma or
beams, which are already present for other purpose as a heating beam from
the neutral beam injection, are used. This technique is called beam emission
spectroscopy (BES) (Sec. 6.3).

In this chapter, a short overview of the different diagnostics suitable to
study plasma turbulence is given. Selected diagnostics will be introduced in
more detail in the following sections. Most of the diagnostics measure density
fluctuations; these are Langmuir probes (Sec. 6.1), Li- (Sec. 6.3) and He-BES
[242] and all different kinds of reflectometry (Secs. 6.2.1 and 6.2.2). Elec-
tron temperature fluctuations can be obtained by Langmuir probes (Sec. 6.1),
ECE, He-BES and correlation-ECE [243]. Ion temperature measurements can
be done by charge exchange recombination spectroscopy [244, 245, 246], re-
tarding field analyzers [247], and laser induced fluorescence [248, 249]. Those
are usually too slow to measure fluctuations directly, but important for the
background values and with conditional sampling (Sec. 7.1.2) these diagnos-
tics can provide valuable information on the fluctuation as well. Velocity mea-
surements can be done by Doppler reflectometry (Sec. 6.2.2) directly or by
measurements of multiple spatial points of thermodynamic quantities such as
density, temperature or a combination of both like gas-puff-imaging (Sec. 6.4)
or bolometry and using a time delay estimation (TDE) or velocimetry tech-
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niques (Sec. 7.1.1). The difference between the direct approach and the one
by TDE-based methods is discussed in detail in Chap. 9. Parallel flows can be
measured by Mach probes. Electrostatic potential fluctuations can be obtained
only by Langmuir probes (Sec. 6.1) and heavy ion beam probes. Magnetic field
and current fluctuations can be measured with magnetic probes (Sec. 6.5).

6.1 Langmuir probes

Technically the easiest diagnostics to build to study plasmas are Langmuir
probes. A Langmuir probe is an electrically conducting, usually rod-shaped
solid inserted into the plasma. From the current-voltage characteristics infor-
mation on the surrounding plasma can be deduced. The region effected by
the probe is called the sheath. First let us consider the probe not being bi-
ased. As electrons are usually much faster than ions, the probe is negatively
charged. This electric field repels the electrons and attract the ions. The re-
sulting electric potential at which no current is flowing through the Langmuir
probe is the floating potential (Eq. (A.41)). The floating potential is regularly
used to determine plasma potential fluctuations, which is valid if temperature
fluctuations can be neglected. This is the case in low temperature plasma
experiments like TJ-K [250] or CSDX. The results presented in Chap. 8 are
based on floating potential measurements in low-temperature plasmas. For
high temperature plasmas like in ASDEX Upgrade this assumption is not rea-
sonable as the electron temperature fluctuations are dominantly contributing
to the floating potential [251, 180, 252]. Also the Reynolds stress suffers from
this contribution [253]. The results presented in Sec. 10.1 are based on floating
potential measurements in the edge of the tokamak EAST which confines high
temperature plasmas. Therefore, absolute values given in Chap. 10.1 have to
be regarded with caution.

The probe can be biased negatively against the plasma potential. At suf-
ficient high biasing ideally all ions would arrive at the probe and the current
saturates at the ion-saturation current (Eq. (A.40)) which depends on the
effective probe area and the plasma temperatures and the plasma density.
The ion-saturation current is regularly used to estimate the density of the
background and fluctuations as well. As the temperature dependence of the
ion-saturation current is weaker compared to that of the floating potential, its
interpretation can be regarded to be more robust.

Two modifications of the Langmuir probe technique can provide direct
measurements of plasma potential fluctuations in the presence of high electron
temperature fluctuation levels. These are emissive probes or ball-pen probes.
Emissive probes can be realized by heating the probe tip externally or by the
heat flux from the plasma onto the probe. At a critical temperature due to
the heat flux from the plasma onto the probe, the probe tips can start emit-
ting electrons [180]. Once emissive the influence of the electron temperature
is reduced by a factor of five to six [180] allowing direct measurements of the
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plasma potential. The ball-pen probe [254, 251, 255] is a simple modification
of a Langmuir probe, where the conducting collector is within a hole providing
a magnetic shadow. This leads to a strong suppression of the electron current
reducing the influence of the electron temperature on the potential measure-
ments accordingly. If the ball-pen probe provides a direct measurement of the
plasma potential as claimed it also allows to measure the electron temperature
in combination with a standard Langmuir probe measuring floating potential
[254, 251, 255].

6.2 Reflectometry

6.2.1 Normal incidence reflectometry

A microwave beam is launched perpendicularly to the magnetic field into the
plasma as indicated in Fig. 6.1. The microwave propagates until it reaches its
cut-off position and is reflected. In O-mode the cut-off position corresponds
to the plasma frequency ωp =

√

e2ne/ǫ0me and therefore depends only on the
density. The reflected beam can be measured either by the same antenna or
by another one at a different position. From the phase difference between the
transmitted and reflected waves the distance of the cut-off layer can be calcu-
lated. By changing the probing frequency the distance of different densities
can be measured, from which the density profile can be reconstructed.

Figure 6.1: Principle of reflectometry.

By simultaneously measuring different probing frequencies at the same
time, it is possible to measure density fluctuations at different radial locations.
By correlation the radial correlation length can be estimated. By simultane-
ously measuring with poloidally and toroidally separated receiving antennas
probing the same reflection layer, density fluctuations at different poloidal and
toroidal positions can be measured. Such a configuration is called Poloidal cor-
relation reflectometry (PCR). From correlation analysis, poloidal and toroidal
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correlation lengths and velocities can be calculated and quantities like par-
allel and perpendicular velocity, inclination angle and life time of turbulent
structures can be estimated. More details can be found in Ref. [256].

6.2.2 Doppler reflectometry (DR)

The principle of Doppler reflectometry is shown in Fig. 6.2. Similar to the
conventional reflectometry a transmitted microwave beam is reflected at the
cut-off. For Doppler reflectometry the beam is launched with a given incident
wavevector ki and a specific angle α with respect to the flux surface. At the
cut-off layer the beam is scattered by density fluctuations modulating the cut-
off layer. Density fluctuations at a given wave vector k⊥ act like a diffraction
grating and the reflected radiation exhibits diffraction maxima. The scattered
wave vector is given by the Bragg condition ks = ki + k⊥. At the position of
the first order the measured intensity is directly proportional to the density
fluctuation level with k⊥ = 2ki sinα. By changing this angle different wave
vectors can be probed and a wavenumber spectrum of the density fluctuations
can be obtained. However, the interpretation of these spectra is not straight
forward. For quantitative comparisons with simulations synthetic diagnostics
with the help of full-wave simulations are often necessary. Depending on the
polarization (O- or X-mode) strongly different wavenumber spectra can be
found even at the same location [257]. In particular Doppler reflectometry in
X-mode polarization suffers more likely from nonlinearities [257].

Figure 6.2: Principle of Doppler reflectometry.

As density fluctuations are advected by the flow, the frequency of the
backscattered signal is Doppler shifted by 2πfD = v⊥k⊥ which provides a
measurement of the perpendicular velocity.
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6.3 Beam emission spectroscopy (BES)

A beam of particles is injected into the plasma. One can use the beam of the
neutral beam injection (NBI) or a particular impurity beam. This beam inter-
acts with the plasma and emits light which is investigated at different spectral
lines to determine the plasma quantities. A beam emission spectroscopy (BES)
system can be used to estimate profiles and for fluctuation studies [258], too.
At ASDEX Upgrade a lithium beam emission spectroscopy (Li-BES) system
[259] is the standard diagnostic providing density profiles in the plasma edge.
Details on the current Li-BES system at ASDEX Upgrade can be found in
Ref. [260]. By collisions of the neutral lithium atoms with mainly the electrons
of the plasma bulk, the lithium atoms get excited and ionized. De-excitation
by collisions are also possible. The excited state decays by emitting photons at
a characteristic frequency which is detected by an optical observation system.
A collisional radiative model [261] can be used to deduce the density from the
measured, background corrected line radiation. At ASDEX Upgrade a prob-
abilistic data analysis approach [262] based on Bayesian probability theory is
used to determine the density profile. Fluctuation measurements are also pos-
sible, but, due to the large contribution of photon noise at high frequencies
[260], effectively restricted to frequencies less than 20 kHz [263].

6.4 Gas-puff imaging (GPI)

Gas-puff imaging (GPI) is now a well established technique in many fusion
experiments to study edge turbulence [264, 265, 266, 138, 267, 268, 79, 269,
270, 271, 272]. A review can be found in Ref. [273]. The main advantage of
the GPI is the good spatial temporal resolution of the fluctuations. The main
disadvantage is that the light analyzed is usually a result from both, density
and temperature fluctuations, making it difficult to assign the measured fluc-
tuations to one individual physical quantity like density or temperature. To
locally increase the neutral background pressure a gas puff of typically deu-
terium or helium is used. Due to collisions of the neutrals of the gas cloud
with mainly bulk plasma electrons, the gas cloud emits radiation and is ob-
served by a high speed camera. The GPI set up for ASDEX Upgrade can be
found in Ref. [274]. For the time being GPI measurements in ASDEX have
been restricted to the far-SOL [274]. Fast imaging has been also used to study
plasma turbulence in linear devices [144, 275].

6.5 Magnetic field diagnostics

In a coil with several windings a magnetic field induces a voltage according to
Faraday’s law. By time integration of this voltage one can deduce the magnetic
field. An introduction to different coil setups to measure different quantities
can be found in Refs. [277] and [276]. As an example some coil setups are



78 6. Measurement techniques to study plasma edge turbulence

Figure 6.3: Schematic figure of a toroidal plasma, showing the basic types of

magnetic probes: Rogowski coil, diamagnetic loop, Mirnov coil. Figure has been

adapted from Ref. [276].

shown in Fig. 6.3. The plasma current can be measured with a so-called Ro-
gowski coil, which is a solenoidal coil of toroidal shape. The windings have
a uniform cross section. To compensate for the change in the toroidal flux
at the end of the coil the conductor is returning through the center of the
coil to the other end. The energy content of the plasma WMHD can be mea-
sured by diamagnetic loops. The most interesting diagnostics for fluctuation
measurements are Mirnov coils. Mirnov coils are used for measurements of
one component of magnetic field (radial, poloidal or toroidal) near the plasma
edge. As the toroidal magnetic field component strongly exceeds the poloidal
and radial one, theses coils have to be very precisely adjusted. They are also
used for equilibrium reconstruction and plasma control. With respect to tur-
bulence measurements Mirnov coils have the advantage of a high temporal
resolution and being available for all discharge conditions. The main disad-
vantage is that the radial localization of the cause of the detected fluctuations
is not straightforward.

ASDEX Upgrade is equipped with an extensive sets of inductive sensors.
The positions of the Mirnov coils are shown in Fig. 6.4. In this work mainly a
poloidal array of Mirnov coils (C09-XX) measuring the time variation in the
poloidal magnetic field components has been used to investigate the magnetic
signature of the I-phase and I-mode as discussed in detail in Secs. 11.3 and
10.2.1, respectively.
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Figure 6.4: Positions of the Mirnov coils in ASDEX Upgrade.
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Chapter 7

Turbulence data analysis

7.1 Correlation analysis

To quantify a monotone relationship of two random quantities X and Y , the
covariance of these two random variables defined by

cov(X, Y ) ≡ 〈(X − 〈X〉)(Y − 〈Y 〉)〉 (7.1)

can be calculated. The expectation value is given by 〈·〉. For a positive co-
variance, both random variables exhibit an accordant linear relationship. A
negative covariance corresponds to a reciprocal linear relationship. Although
the direction of the relationship is provided by the covariance, no statement on
the strength of this relation can be made. In general the random variables can
be time dependent. In such case the covariance is called correlation function

CXY (t1, t2) = cov(X(t1), Y (t2)). (7.2)

Under stationary conditions using t1 = t and t2 = t+τ , Eq. (7.2) depends only
on the time delay τ . The correlation function recognizes a linear relationship
also in the case, where the effect follows the cause with a time delay and both
variables are shifted with respect to each other. In the special case of Y = X
and 〈X(t)〉 = 〈X(t+ τ)〉 = 0 the auto-correlation function

CXX(τ) = cov(X(t), X(t+ τ)) = 〈X(t)X(t+ τ)〉 (7.3)

is obtained. The auto-correlation function describes the capacity of remember-
ing of the fluctuations. It also provides information on the relevant time scale
of the auto-correlation of X(t). In general the normalized auto-correlation
function reads

cXX(τ) =
CXX(τ)

CXX(0)
. (7.4)

The cross-correlation function

CXY (τ) = cov(X(t), Y (t+ τ)) = 〈X(t)Y (t+ τ)〉 (7.5)
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describes the time scale of correlation of two different variables X(t) and Y (t).
The normalization is done accordingly

cXY (τ) =
CXY (τ)

√

CXX(0)CY Y (0)
. (7.6)

A value of one means that the random variables exhibit an accordant linear
relationship and both variables follow each other one-to-one. One says both
variables are completely correlated. On the other hand a value of zero means
no relationship of both variables can be found and those are completely un-
correlated. Therefore, the correlation function provides signed strength of the
relationship.

In most cases it is useful to normalize the measured or simulated time series
of fluctuating quantities X with respect to a standard normal distribution with
zero mean and a standard deviation of unity according to X−〈X〉

σX
.

7.1.1 Time delay estimation (TDE) and velocimetry

Time-delay estimation
Time-delay estimation (TDE) techniques as well as velocimetry estimate the
flow via the displacement of small structures. The estimated flow field de-
scribes the movement of those structures and is called optical flow. For the
interpretation it is necessary to relate the optical flow to the plasma flow.

Figure 7.1: Principle of time delay estimation.
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The TDE principle is illustrated in Fig. 7.1. Structures pass two points
of measurement, which are spatially separated by ∆x. Two signals are mea-
sured, for example X = ñ(x, t) and Y = ñ(x + ∆x, t). Next, the time delay
between the signals is estimated from the correlation ∆t = argmaxt(cXY (τ)).
A velocity can be composed by u = ∆x/∆t. This velocity is superposition
of the background velocity and the phase velocity of the turbulent structure
(see Sec. 4.1). Due to poor time resolution, high structure speeds may lead
to ∆t = 0 detections resulting in undefined velocities. The TDE method also
faces problems if the points of measurement are separated too much and the
correlation is lost. In such a case the result is more or less random. This
can be checked by the amount of correlation (7.6). There are additional prob-
lems like propagation into the distance orthogonal to the probed measurement
positions or eddy tilting (Sec. 3.6.1) which can be diminished by taking into
account multiple spatial points [24, 278, 279]. By taking more points into ac-
count there is a smooth transition from TDE to velocimetry, which is studied
below.

Eddy-lifetime measurements
With the standard TDE method described above, it is possible to measure
a velocity by the time delay between spatially two separated probing areas.
With varying distance between the probed areas, the correlation is not only
shifted, but also decreases with distance. From the reduction of amplitude a
dissipation time (or lifetime) can be estimated [280, 256, 281]. The lifetime
is the decorrelation time in the plasma frame and does not have to be equal
to the auto-correlation time. Heuristic descriptions of turbulence suppression
strongly rely on the decorrelation time. The time step in a diffusion-like de-
scription of turbulent transport is given by the decorrelation time. Also the
regime of turbulence depends on the decorrelation time. The ratio of the
decorrelation time to the eddy-turn-over time (inverse proportional to the rms
vorticity level Ω̃rms), the so-called Kubo number K [3], determines, if the tur-
bulence is in the weak (K ≪ 1) or strong turbulence regime (K ≫ 1). In the
case of weak turbulence, linear instabilities and wave physics are important
and turbulence can be described by quasi-linear theory. In such a case the
plasma transport behaves diffusively and the quasi-linear diffusion coefficient
DQL ∼ K2 [282]. In the case of Hasegawa-Mima turbulence K ∼ 1 [3]. In such
a case the decorrelation time can be approximated by the eddy-turn-over time,
as often done in plasma turbulence. In Sec. 9.3 effects of the eddy-turn-over
time on growth rates and dispersion are discussed in more detail.

Velocimetry
Velocimetry is distinguished mainly in two types; particle imaging velocimetry
(PIV) and particle tracking velocimetry (PTV). In PIV tracer particles much
larger than the particles of the fluid are seeded and tracked, in PTV individual
particle resident in the fluid are tracked. Therefore, PIV is a Eulerian approach
and PTV is a Lagrangian approach. As individual particles cannot be tracked
in a plasma, velocimetry in plasmas [283] refers to PIV. In contrast to a neutral
fluid no tracer particles are seeded, but intrinsic structures in the turbulence
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are traced. In PIV two consecutive images are compared for similar structures.
Subsets of the larger first image are compared to the second image. The
region where the second image most closely resembles the first images subset
indicates the structures destination. Therefore, by comparing the structure of
these two consecutive images the displacement of these structures is estimated.
There are very sophisticated ways to implement PIV. The displacement of the
structures gives the velocity field. Velocimetry has been widely used for the
interpretation of gas-puff-imaging data [283, 266, 79, 284, 25]. The technique
avoids misinterpretation due to tilted structures as possible in the standard
TDE approach [24].

Figure 7.2: Four panels in the consecutive frames (with 5 µs temporal resolution)

showing the Te evolution just prior the ELM crash at 2.7472 s. A mode is propagat-

ing in electron diamagnetic direction. Arrows show the velocimetry results, which

are showing a mostly poloidal propagation. Figure taken from Ref. [161].

As an example for PIV the Te evolution just prior to the ELM crash at
2.7472 s is shown in Fig. 7.2 by four panels in consecutive frames (with 5 µs
temporal resolution). The propagation velocity of turbulent structures has
been estimated with a rather simple particle image velocimetry (PIV) algo-
rithm optimized for noisy data [285], including a pattern matching technique,
subpixel interpolation and denoising by removing displacement vectors which
seem quite different from any of their neighboring displacements. Arrows rep-
resent the velocimetry results, which show a mostly poloidal propagation in
electron diamagnetic direction in the lab frame. This mode is a type-I ELM
precursor which has been identified as an MTM [161] (see Sec. 4.7 for MTM).

7.1.2 Conditional average and sampling

Conditional average
Conditional averaging is used to study the effects of prominent features. Two
examples where this method is regularly used in plasma turbulence studies
are the dynamics of blobs in the scrape-off layer, and the dynamics around
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Figure 7.3: Principle of conditional average. A condition is defined, usually this

is a threshold to overcome. Where this condition is fulfilled the time series around

this point is cut out and it is averaged over all of these cutouts.

ELMs (Sec. 2.2.2) [286, 287, 288]. The analysis procedure can be described as
emphasized in Fig. 7.3:

i) A trigger condition is defined, usually this is a threshold in a reference
signal.

ii) If the condition is fulfilled at time t, sub-windows in the same but also in
related signals are extracted around the trigger condition at t. Related
signals can be those of different variables than the reference or at other
positions. E.g., one can extract sub-windows at different positions to
investigate the conditional averaged dynamics in two or three dimensions.

iii) The extracted sub-windows are averaged with respect to the condition.

One advantage of conditional average is that small events correlated or co-
herently coupled to the trigger events (such as precursors for example) might
be detected, which otherwise might be unnoticed in the ambient fluctuation
level. The conditional dynamics can provide great indications on the physical
mechanisms at play. The pictures shown in Fig. 12.7 or the results reported in
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Ref. [275] are examples of conditionally averaged pictures. However, one must
not forget that the averaged dynamics cannot be translated to the dynamics of
individual events. For example, if you throw a dice several times, on average
you obtain 3.5, but this result is never obtained at an individual throw. One
should not expect that the conditionally averaged dynamics can be observed
most often in the dynamics of the individual events. This does not mean the
conditional averaged picture is irrelevant in general; it is even highly impor-
tant for the physics with the specific condition as it carves out the statistical
relevant parts of the physics.

Conditional sampling
A similar technique is conditional sampling. If the diagnostic is sampling
actually fast enough to record the fluctuations or events which are desired to
be analyzed, but the calculation of the desired quantity needs post processing,
this is the technique to use. For example one would be interested in the
electron temperature of plasma blobs in the scape-off layer. The temperature
can be estimated from the current-voltage characteristics of a Langmuir probe
(Sec. 6.1). The Langmuir probes are sampling fast enough to detect the blobs.
But as the probe sweeps not fast enough to record the full current-voltage
characteristics during the event, it is not possible to calculate a time series
of the temperature capturing these events. However, because one is sampling
fast enough one can conditional sample the current voltage characteristics to
estimate the average electron temperature of these events. An example for
conditional sampling can be found in Refs. [289, 290].

7.2 Spectral data analysis

By Fourier-transformation a periodic signal X(t) can be decomposed in its
spectral (in this case frequency) contributions X̂(ω). By spectral analysis these
spectral components are investigated in more detail. The power spectrum of a
fluctuating quantity X̂(ω) is defined by

PX(ω) = 〈|X̂(ω)|2〉 = 〈X̂(ω)X̂∗(ω)〉. (7.7)

Here 〈·〉 denotes ensemble averaging. The power spectrum identifies the con-
tributions of different frequencies to the signal. Within the spectral analysis
Fourier transformed time series build a statistical ensemble. To gain statistical
significance a longer time series can be split up in smaller time series which are
Fourier transformed. These are called sub-windows. It can be recommended
to build sub-windows up to the lowest frequency of interest. Similar to the
individual time series also the Fourier transform exhibits a stochastic charac-
ter. Features like stationarity and ergodicity are not passed to the ensemble of
Fourier transforms. Therefore, to account for the stochastic character of the
fluctuating quantity a large number of realizations in the ensemble is neces-
sary [291]. This is in particular problematic for high-temperature plasmas (see
Sec. 2.1.1) which only allow for short time series and, hence, short number of
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realizations under the same experimental conditions, but also for simulations
exhibiting usually short time series. On the other hand this shows the merit
of low-temperature plasmas (see Secs. 2.1.3 and 2.1.4) which allow for a high
number of realizations through long time series.

PX(ω) dω can be interpreted as the mean power contribution of the har-
monic component of X(t) at frequencies within [ω, ω + dω] to the total power
of the fluctuations in time. The power spectrum is a real valued quantity and
does not contain information on the phase. Due to hermiticity of the Fourier
transformation of real functions (X̂(−ω) = X̂∗(ω)) the power spectrum fulfills
PX(−ω) = PX(ω). The Wiener-Khintchine theorem states a relation between
the power spectrum (7.7) and the auto-correlation function (7.3) given by [292]

PX(ω) =

∫ +∞

−∞

CXX(τ) e
iωτ dτ.

The power spectrum is the Fourier transform of the auto-correlation function.

The generalization of the power spectrum of two signals X̂(x, ω) and Ŷ (x+
∆x, ω) at a spatial positions x and x+∆x is the cross-power spectrum, defined
by [293]

PXY (∆x, ω) = 〈X̂∗(x, ω)Ŷ (x+∆x, ω)〉. (7.8)

By analogy to the cross-correlation function (7.5) the cross-power spectrum is
a measure of the correlation of two quantities X̂ und Ŷ , appearing at different
spatial positions x and x+∆x, in frequency space. As the cross-power spectrum
is a complex valued quantity it can be decomposed into an amplitude and a
phase

PXY (∆x, ω) = pXY (∆x, ω) e
iθ(∆x,ω). (7.9)

pXY (∆x, ω) is called cross-amplitude spectrum and θ(∆x, ω) is called the phase
spectrum. If the phase θ(∆x, ω) of X̂(x, ω) and Ŷ (x + ∆x, ω) is equally dis-
tributed within the interval (−π, π], the phase spectrum as well as the cross-
amplitude spectrum vanishes. There is no coherent phase relationship between
the signals at both observation positions. The signals are phase incoherent.
Finite contributions to PXY (∆x, ω) can only be obtained by a mean coher-
ent phase relationship. The normalized cross-amplitude spectrum [291] or
coherency is

γ2(∆x, ω) =
pXY (∆x, ω)

2

〈PX(x, ω)〉〈PY (x+∆x, ω)〉 (7.10)

The values of γ2 are limited to the interval [0, 1], where γ2 = 0 means phase
incoherence, γ2 ∈ (0, 1) partially phase coherence and γ2 = 1 complete phase
coherence. As cross-phases are very important for plasma instabilities, esti-
mation of the cross-phases by the cross-phase spectrum θ(ω) is an important
technique for plasma turbulence studies.

In analogy to the power spectrum, the mean cross-power spectrum is the
Fourier transform of the mean cross-correlation function.
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7.2.1 Envelope modulation technique

The following method provides a possibility to measure velocity fluctuations
from a time series measured at a single point in space. The basic idea of this
technique is that large scale turbulent flows like zonal flows or geodesic acoustic
modes lead to a modulation of the small-scale turbulence due to the parametric
modulation instability (Secs. D.3, 3.6, 5.2.3). The envelope of the small-scale
turbulence can be used to estimate the time-evolution of these large-scale flows
[294]. As small-scale structures correspond to high-frequency structures, the
signal has to be high-pass filtered. The envelope of the high-pass filtered
density fluctuations ñhp(t) is given by Env(t) =

√

Re(ñhp(t))2 + Im(ñhp(t))2.
The real part is measured directly. The unknown imaginary part can be re-
constructed. It can be deduced in frequency space from the Fourier trans-
form ñhp(ω) and is given by −i · sgn(ω)ñhp(ω). The inverse Fourier trans-
form of this relation is the convolution nhp(t) ∗ 1/(πt) = H(nhp(t)) which is
the Hilbert transform H by definition. Therefore the envelope is given by
Env(t) =

√

(ñhp(t))2 + (H(ñhp(t)))2. Low frequency modulation frequencies
can be inferred by the auto power spectrum of the envelope (below the high
pass filter frequency). The envelope modulation technique has been used in
Sec. 11.2.

7.2.2 Pseudo wavenumber spectra

In a tokamak the temporal resolution of a diagnostic is usually pretty good,
but the spatial resolution is very limited. The dispersion relation or eigen-
frequency characterizes the underlying instability, but how can information in
wavenumber space be gathered at poor spatial resolution? The method by
Beall [295] allows to study dispersion relations with a minimum effort (at least
two points of measurements). Any harmonic perturbation φ at a particular
position x can be written in polar form

X(x, ω) = X̂(x, ω) exp(iθ(x, ω)) (7.11)

with amplitude X̂(x, ω) and phase θ(x, ω). A (local) wavenumber can be
defined by the spatial derivative of the eikonal

k(x, ω) =
∂

∂x
θ(x, ω) (7.12)

which in discrete form is given by

k(x, ω) =
θ(x+∆x, ω)− θ(x, ω)

∆x
. (7.13)

Measurements at at least two spatially displaced positions allow to estimate a
local wavenumber. The time series is divided into small sub-windows. Each
frequency ω in this sub-window is attributed to a local wavenumber k and the
spectral power at this frequency P (ω) is assigned to this wavenumber P (ω)→
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P (ω, k). By averaging over a lot of sub-windows a pseudo wavenumber-
frequency spectrum P (ω, k) can be obtained. Mode numbers of magnetic
signals are usually estimated by the phase difference between spatially sep-
arated magnetic coils [287, 288].

7.2.3 Wavelet analysis

If the phenomenon to study is very dynamic and/or inherently non-stationary,
as for example the L-H transition (see Chap. 10) or the ELM cycle, the Fourier
transform will face problems. In such situations the wavelet transformation
offers advantages. Using a Fourier transform all temporal information is lost
due to the integral over the time series. One can calculate a spectrogram, which
is a sequence of sub-windows which are Fourier transformed. In a spectrogram
the lowest resolved frequency determines the time resolution. The sampling
of low frequencies with a Fourier transform prohibits a high time resolution
investigation at high frequencies. In general the time and frequency resolution
∆t and ∆ω, respectively, are subject to the uncertainty principle ∆t∆ω ≥ 1.
This holds for every frequency itself. In a wavelet transform higher frequencies
can have a higher time resolution than the low frequencies, where of course
every frequency is still subject to the uncertainty principle. Furthermore, the
appearance of the pulses does not have to be periodic in the wavelet analysis,
which is interesting regarding intermittency studies. The wavelet transfor-
mation provides the frequency information for every point of the time series.
Also less basis functions may be sufficient to describe the data. This makes
wavelets a powerful tool for data denoising or data compression (as JPEG 2000
for example). The wavelet transform is given by

X(t)→ X(t, τ) =
1√
τ

∫

dt′ψ(
t− t′
τ

)X(t′) (7.14)

where τ is a characteristic time and ψ(t) is a defined basis function called the
mother wavelet. As the characteristic time τ can be related to a characteristic
frequency ω the corresponding signal X(t, ω) provides information on the time
evolution of X at a given frequency. Choosing suitable basis functions is the
art in wavelet analysis. The choice of basis function always constitutes a
compromise between time and frequency resolution, which has to be adapted
to the concrete problem. The pulse form should be similar to the typical pulse
form observed in the data, as otherwise higher harmonics are generated. In
the present work only the Morlet wavelet

ψ(t) = C(ei2πt − e−2π2

)e−t
2/2 (7.15)

is used as it is proved in plasma turbulence [296]. In principle all data analysis
techniques presented here can be carried out either with a Fourier transform
or with a wavelet transform.
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7.3 Higher order spectral analysis

7.3.1 Bispectrum

The power spectrum does not distinguish between independently excited and
nonlinearly coupled waves. As shown in Sec. 3.4 the three-wave coupling is
a feature of quadratic nonlinearities in Fourier space, in wavenumber space
k = k′ + k′′ as well in frequency space ω = ω′ + ω′′. A measure of the
quadratic (nonlinear) coupling of two frequencies ω1, ω2 with a third one ω3 is
the bispectrum. It is defined by [297]

B(ω1, ω2) = 〈X̂(x, ω1)X̂(x, ω2)X̂
∗(x, ω1 + ω2)〉. (7.16)

If spectral components at frequencies ω1, ω2 and ω3 = ω1 +ω2 are present and
spontaneously excited and independent from each other, they are characterized
by a statistical random phase relationship. The bi-phase

β(ω1, ω2) = θ(ω1) + θ(ω2)− θ(ω1 + ω2) (7.17)

with corresponding phase angle θ(ωi) of the Fourier transform is randomly
distributed within the interval (−π, π]. By taking the expectation value the
bispectrum vanishes. In contrast a coherent coupling leads to fixed phase
relationship between the spectral components among each other. In such a
case the bispectrum takes a finite value.

Different regions of the bispectrum in the (ω1, ω2)-plane are shown in
Fig. 7.4. Since of the Fourier transform of a real valued quantity is a Her-
mitian function, some symmetry features can be obtained [298]

B(ω1, ω2) = B(ω2, ω1) = B∗(−ω1,−ω2) (7.18)

= B∗(−ω1, ω1 + ω2) = B∗(−ω2, ω1 + ω2). (7.19)

Due to discretization the definition region is limited by the Nyquist-frequency

−ωNy ≤ ω1, ω2 ≤ ωNy and − ωNy ≤ ω1 + ω2 ≤ ωNy. (7.20)

The symmetry (7.18) leads to mirror symmetry at the axis ω1 − ω2 = 0 and
ω1 + ω2 = 0 and reduces the hexagon to the regions

I: 0 ≤ ω2 ≤ ωNy/2 and ω2 ≤ ω1 ≤ ωNy − ω2 (7.21)

II: −ωNy ≤ ω2 ≤ 0 and ω2 ≤ ω1 ≤ ωNy. (7.22)

Region I contains the sum-interactions. Region II contains the differential
interactions [298]. Additionally the symmetry (7.19) maps region II onto region
I. Therefore the region I contains all information of the discrete bispectrum.
This region is non-redundant.

A measure of the statistical relation of experimental in general complex
quantities X̂(ω3) and X̂(ω1)X̂(ω2) is the quadratic correlation coefficient [291]
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Figure 7.4: Domain of the bispectrum of a directed time series. The domain is

restricted to the hexagon, given by the condition |ω1|, |ω2|, |ω1 + ω2| ≤ ωNy. The

symmetry (7.18) leads to a reflection about the axes ω1 − ω2 = 0 and ω1 + ω2 = 0.

Due to the additional symmetry (7.19) region II can be mapped onto the region I

and vice versa (adapted from Ref. [299]).

|B(ω1, ω2)|2/(|X̂(ω1)X̂(ω2)|2|X̂(ω1 + ω2)|2), which motivates the definition of
the quadratic bicoherence

b2(ω1, ω2) =
|〈X̂(ω1)X̂(ω2)X̂

∗(ω1 + ω2)〉|2

〈|X̂(ω1)X̂(ω2)|2〉〈|X̂(ω1 + ω2)|2〉
. (7.23)

With the help of the Schwarz-inequality it can be shown that the bicoherency
spectrum b(ω1, ω2) is limited to the interval [0, 1]. Values close to one indicate
that a wave at ω3 = ω1 + ω2 is excited by coupling to waves at ω1 and ω2. A
value close to zero indicates that the wave is independently excited [298].

It should be noted that a phase coupling not necessarily means the exis-
tence of nonlinear wave interaction [300]. Instrumentally nonlinear effects can
also lead to fixed phase relationships. On the other hand a low bicoherence
implies low nonlinear activity or noise. The symmetry (7.18) also holds for the
discrete bicoherence spectrum, the symmetry (7.19) does not [299]. Therefore,
in practice the non-redundant bispectrum should be examined in regions I and
II.

Using bispectral analysis it is possible to distinguish the parameteric decay
instability (Sec. D.2) and the parametric modulational instability (Sec. D.3).
As indicated in Fig. 7.5 the parametric decay instability occurs as one localized
region of enhanced coupling in region I, whereas the parametric modulational
instability occurs as stripes. A non-local coupling characteristic for parametric
modulational instabilities between turbulence and zonal flows including GAMs
has been demonstrated using bispectral analysis methods in Refs. [301, 302,
303, 304, 305].
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Figure 7.5: How parametric instabilities appear in the bispectrum. The decay

instability is usually restricted to a local coupling process of the driving frequency,

the modulational instability appears as lines at low frequencies compared to the

driving frequencies.

7.3.2 Spectral power and energy transfer

The bicoherence can only identify possible nonlinear interactions, but does
not provide information on the direction and strength of the spectral power
transfer (which mode is actually driving which other mode). In particular, this
information is necessary to determine the direction of the turbulent cascades
(see Secs. 3.2 and 5.1.2) and and also important for studying the impact of
secondary instabilities as zonal flows or geodesic acoustic modes (see Secs. 3.6
and 5.2.3). Once possible nonlinear interactions have been identified it would
be desirable to estimate the spectral power transfer from one mode to the
other.

Let us consider a nonlinear system described by a nonlinear wave coupling
equation

∂X(k, t)

∂t
= ΛL(k)X(k, t) +

1

2

∑

k=k1+k2

ΛQk (k1,k2)X(k1, t)X(k2, t). (7.24)

Examples of equations fulfilling this relation are the Navier-Stokes-equation
(3.4) as well as the most important nonlinearity {Ω, φ} appearing in the
Hasegawa-Wakatani model (5.2). Here X(k, t) is the spatial Fourier spec-
trum of a fluctuating quantity. ΛL is the linear transfer function and contains
the growth rate γk and the dispersion ωk

ΛL(k) = γk + iωk. (7.25)

The coupling coefficients ΛQk (k1,k2) determine the strength of the coupling
between the three waves (k, ω), (k1, ω1) and (k2, ω2). Therefore, coupling
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coefficients, growth rate and dispersions characterize the turbulence. For drift-
waves the growth rate is given by Eq. (B.28) the dispersion by Eq. (B.23).

The simplest proposed method to determine the direction of energy transfer
is called amplitude correlation technique [306, 307]. Here the direction of the
energy transfer is deduced by the causality from the temporal relation between
the modes, based on the assumption that an energy gaining mode should
increase later in time than the driving mode. Therefore, first the coupling
partners are identified by bicoherence and afterward the time lag between
them is estimated by cross-correlation. However, this assumption does not
hold in general, since the energy must be transferred at the same time. Else
the energy conservation is violated. Energy transfer processes appear as a
negative correlation at zero time lag [37]. With linear analysis methods such as
cross-correlation it is intrinsically impossible to get detailed information about
the nonlinear terms in general. Only if the system is completely dominated by
the interaction of the modes determines by bicoherence analysis before, it can
be excluded that the energy increase found later is due to this interaction and
not due to another mechanism.

The coupling coefficients can be calculated from the governing equation
as done in Refs. [110, 111, 112]. If the coupling coefficients are known the
spectral power transfer can be calculated by estimating the bispectrum and
multiplication with these coupling coefficients. The Camargo method [111] (see
Sec. 3.4) provides such a method. It is the most precise and comparatively fast.
As the coupling coefficients depend on the wavenumbers this method can only
be used for spatially resolved measurements since the wavenumber spectrum
is needed. As the wavenumber spectrum cannot be directly measured in a
high temperature plasma for the time being, this method is restricted to low-
temperature plasmas, where it has been used to study the turbulent cascade
[35] and the interaction of zonal flows and turbulence [142].

If the nonlinearity to be studied is known, e.g. (u · ∇)u or (u · ∇)n, one
may be successful in measuring it directly in configuration space in a particular
spatial region. This can be achieved with the help of a multi-tip configuration
of a Langmuir probe array or with GPI for example. However, these methods
allow to deduce the nonlinearity of interest in frequency space at a single point
in space, but not in terms of spectral wavenumber decomposition as needed for
the Camargo method described above. But as ∂tu ∼ (u · ∇)u the nonlinearity
(u · ∇)u corresponds to the bispectrum u(f)(∇u)(f)u(−f) from which the
energy transfer in frequency space can be calculated directly. This has been
proposed by Xu [54, 55]. It has recently been used to study energy transfer
before the L-H transition in HL-2A tokamak [308], during I-mode and L-H and
L-I transitions in Alcator C-Mod [79, 270, 271, 272]. This method is the most
reasonable one for high-temperature plasmas from a practical point of view.

If only data from a single point is available, if the precise analytical form of
the nonlinearity is unknown, or if quantities to calculate the nonlinearity are
missing, approaches based on statistical properties [309, 310, 311, 312, 313]
are recommended. Here the unknown coupling coefficients are determined by
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higher order moments. The solution of an equation can equally be described
by an unlimited number (hierarchy) of moments of this equation. Higher mo-
ments need a higher realization number to converge on averaging. The method
proposed by Ritz [309, 310] allows to estimate growth rate, dispersion relation
and coupling coefficients from the experimental data. From the coupling co-
efficients and the bispectrum the spectral power transfer can be calculated.
As turbulence is close to be Gaussian distributed [314, 315] the Ritz method
assumes a Gaussian distribution [309, 310]. For Gaussian distributed variables
the fourth order moment can be replaced by second order moments [316] which
are much faster and easier to calculate. For strong turbulence this should hold
[309]. If the turbulence is weak one should take the fourth order moment
into account. This is done by the Kim method [311]. The Ritz as well as the
Kim method can be used in wavenumber or frequency space [10]. The Kim
method has been used to provide evidence of the dual cascade in drift-wave
turbulence [34], to study the evolution of energy transfer during the transition
to plasma turbulence [10] and most recently to study the impact of collision-
ality on self amplification of the Reynolds stress drive of zonal flows [39]. An
improvement of the Kim method by taking into account central differences
instead of a forward differences has been provided by Baver [312, 313], where
also the interaction of different fluctuating quantities (like density and poten-
tial for example) has been taken into account. Energy transfer studies of the
turbulence-zonal flow interaction and the turbulent cascades have been carried
out for example in Ref. [306, 317, 318, 319, 54]. Usually only the real part of
the spectral energy transfer is considered. However, also the imaginary part
may be important as it can lead to nonlinear modifications of the cross-phase
as shown in Hasegawa-Wakatani simulations [320]. This nonlinear cross-phase
modification may be in particular important for intermittency [321].



Chapter 8

Drift-wave turbulence

8.1 Structure formation in the inverse energy

cascade

In three-dimensional turbulence in the case of a direct cascade, large coherent
structures are getting smaller and smaller due to vortex interaction. Finally,
they pass their energy to the random field and the energy is dissipated. The
information necessary for time reversal is not lost, instead it is transferred to
the smallest scales in the system where it is invisible for practical purposes.
In two-dimensional turbulence the energy is transferred to large scales and
a dissipation process like in three dimensions is not possible. Instead the
inverse energy cascade results in a reduction of the degrees of freedom and
therefore in negative entropy generation. However, also for two-dimensional
turbulence the energy must be dissipated and transferred finally to the small-
scale random (noncoherent) field. It appears reasonable to suggest that there
is an interaction between the coherent and the random part of two-dimensional
turbulence.

In this chapter the generation mechanisms of large-scale turbulent struc-
tures as well as the dissipation mechanisms in a close to two-dimensional sys-
tem will be investigated in detail considering the energy transfer between dif-
ferent scales of coherent and noncoherent motion. This provides the possibility
to distinguish the different mechanisms of large-scale turbulent structure for-
mation. This chapter is adapted from Ref. [9].

The energy transfer between turbulent vortices of different scales has been
investigated experimentally [34, 35] in a toroidally confined low-temperature
plasma in the stellerator experiment TJ-K [30] (Sec. 2.1.3). By means of a two-
dimensional probe array [34] potential fluctuations have been measured, from
which the turbulent E×B flow can be derived. Energy and the enstrophy are
transferred in opposite directions in k-space as expected for two-dimensional
fluid turbulence [35, 34]. Nonlocal transfer plays an important role in the
inverse cascade supporting the vortex thinning picture (see Sec. 3.3.2).

The Reynolds decomposition (see Eq. (3.38)), where the measure of interest

95
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is decomposed in a mean and a fluctuating part, is the most often applied
statistical method to investigate turbulent flows. To study coherent structures
the Reynolds decomposition can be extended to the triple decomposition [153]

ϕ = 〈ϕ〉+ ϕc + ϕn, (8.1)

where any quantities as the stream function ϕ is decomposed in its mean
〈ϕ〉, the coherent ϕc and noncoherent (random) ϕn contributions. Several
definitions of coherent structures exist in literature. The identification used in
the following goes back to Okubo and Weiss [118, 119]. The Weiss number is
defined by tr((∇⊗ u)2)− (tr(∇⊗ u))2 which can also be written as

Q =
1

2
(σ2 − Ω2) (8.2)

where

σ2 = (∂xũx − ∂yũy)2 + (∂yũx + ∂xũy)
2 (8.3)

is the rate of deformation. The rate of deformation is the symmetric part of the
stress tensor ∇⊗u. The first term on the r.h.s. in Eq. (8.3) is called stretching
strain including both elongation and compression. The second term on the
r.h.s. in Eq. (8.3) is due to shear effects and called shear deformation. The
asymmetric part of the stress tensor ∇⊗ u is Ω = ∇2ϕ which is the vorticity.
Here ũx = ∂yϕ and ũy = −∂xϕ are the velocity components in the radial x and
poloidal y directions in slab geometry, respectively. ϕ is the stream function
(Eq. 3.24), which is directly proportional to the plasma potential φ assuming
the E×B velocity as the dominant velocity and the magnetic field B constant.
Most important, the Weiss number locally characterizes the motion. A positive
Weiss number indicates a hyperbolic motion and for negative Q the motion
is elliptical [119]. Hyperbolic motion corresponds to strain or deformation
dominated regions, where elliptical regions are vorticity or rotation dominated.
As proven by Weiss [119], Q measures whether two particles will separate
(Q > 0) or not (Q < 0) when following the frozen streamlines. In this way,
a flow can be separated into structures which stay together (coherent) and
structures which will separate. We identify non-separating trajectories (Q < 0)
as belonging to coherent structures [322].

Using the stream function the Weiss number Q reduces to

Q = (∂x∂yϕ)
2 − (∂2xϕ)(∂

2
yϕ). (8.4)

The first term is always positive and it is exactly one half of the stretching
strain (compare to the first term in Eq. (8.3)). Stretching or compression
increases the Weiss number which can even result in a transition from a coher-
ent structure (Q < 0) to an open-streamline vorticity concentration (Q > 0).
Thus, these effects always try to decorrelate the turbulence. This is called
straining-out. It appears as the second term of Eq. (8.4) and means that the
circular motion is stabilizing the turbulent structure. The second term does
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not only result from the vorticity, but comes from the shear deformation (sec-
ond term in Eq. (8.3)) and the vorticity to the same extend. For a negative
Weiss number Q < 0 the vorticity must compensate the stretching deforma-
tion by the term (∂2xϕ)(∂

2
yϕ), which also results in a stabilizing contribution in

the same amount from the shearing deformations. This means, as long as the
turbulent structure remains as a structure (Q < 0), the shear is stabilizing.

The energy transfer (Sec. 7.3.2) is estimated by the Camargo method
(Sec. 3.4) [111]. In a Fourier decomposition in terms of wavenumbers k,
waves (or modes) can interact satisfying the constraint k = k1 + k2. The
time evolution of the kinetic energy EV q of the coherent (q = c) or noncoher-
ent (q = n) potential fluctuation field can be separated in linear and nonlinear
terms, whereas the nonlinear terms have our main attention:

∂EV q(k)

∂t
= linear terms +

∑

k1

T V qrs(k← k1). (8.5)

Here
∑

k1
T V qrs(k← k1) is the nonlinear transfer function which describes the

nonlinear energy transfer to or from the mode k by the interaction with the
modes k1 and k2 = k − k1. The spectral transfer of the fluid kinetic energy
from mode k1 to mode k is given by [323, 111]

T V qrs(k← k1) = −2(kxk1y − k1xky)k22Re
〈
φ∗
kqφk1rφk2s

〉
, (8.6)

where q, r, s ∈ {c, n} denote the coherent and noncoherent potential field, re-
spectively. The bispectrum

〈
φ∗
kqφk1rφk2s

〉
only exhibits a finite value if all

three waves k, k1 and k2 are phase-locked and therefore coherently coupled to
some degree. The distinction between coherent and noncoherent fluctuating
fields distinguishes between elliptical (closed) and hyperbolical (open) stream-
line configurations. It does not give any information about the coherency of
the coupling process between these modes. There is a difference between co-
herent structures and coherent nonlinear coupling. The asterisk denotes the
complex conjugate and Re is the real part of a complex number. The factor
kxk1y − k1xky = b(k × k1) is intrinsically two dimensional and follows from
the nonlinearity. Here b is the unit vector in direction of the magnetic field.
The method has been tested successfully on Hasegawa-Wakatani simulations
[35] (see Chapter 5.1) and it was used for investigations of the dual cascade
[35] and turbulence zonal flow interactions [142] on TJ-K. In difference to the
previous investigations [35, 142] the method is applied to the potential field,
decomposed in coherent and noncoherent structures to investigate the nonlin-
ear interaction of both fields.

The data analysis procedure is as follows. First theWeiss numberQ(φ(x, y))
is calculated using Eq. (8.3) at every point in time. Then the potential field is
decomposed in coherent and noncoherent structures, where

φc(x, y) =







φ(x, y) Q < 0

0, Q ≥ 0






(8.7)
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φn(x, y) =







0 Q < 0

φ(x, y), Q ≥ 0






. (8.8)

Afterward both potential fields are Fourier transformed into the two-dimensional
wave number space and the energy transfer functions are estimated according
to Eq. (8.6).

Here, fluctuation data from a Langmuir probe array measuring floating po-
tential fluctuations obtained in the stellarator experiment TJ-K are analysed.
The results are summarized in Fig. 8.1. Large-scale coherent structures (k <
2.5) are driven by coherent structures (

∑

k1
T V ccn > 0 and

∑

k1
T V ccc > 0).

Note
∑

k1
T V ccn and

∑

k1
T V cnc result from the same coupling (two coherent

structures and one noncoherent structure). Both show the energy transfer
into the coherent field, but

∑

k1
T V ccn gives the energy coming from the co-

herent field and
∑

k1
T V cnc gives the energy from the noncoherent (random)

field. The energy in the large scale coherent fluctuations (
∑

k1
T V cnc < 0 for

k < 2.5) is transferred directly to the random fluctuations (
∑

k1
T V ncc > 0 for

k > 2.5). The nonlinear coupling of coherent fluctuations with coherent fluctu-
ations T V ncc appears as the main drive of random fluctuations at small scales
and consequently represents dissipation. A large-scale strain field is generated
(
∑

k1
T V ncn > 0 with k < 2.5) which is in turn balanced by a direct energy

cascade of noncoherent fluctuations
∑

k1
T V nnc as in three-dimensions.

Figure 8.1: Energy transfer into coherent TV crs (a) and noncoherent TV nrs (b) po-

tential fluctuations. The solid black lines depict the total energy transfer
∑

r,s T
V crs

and
∑

r,s T
V nrs. Figures taken from Ref. [9].

In the following the energy transfer will be investigated and discussed in
more detail. T (k ← k1) forms a four-dimensional quantity depending on
(kx, ky, k1x, k1y), with the constraint k = k1 + k2. Hence, for a graphical
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Figure 8.2: Kinetic energy transfer between coherent structures. Figures taken

from Ref. [9].

representation, sums of all contributions at given |k| and |k1| have been taken
and divided by the number of contributions.

The kinetic energy transfer into or from the coherent field in the k-k1 plane
is shown in Fig. 8.2. As the interactions are among coherent structures it
depicts the energy transfer between different scales of eddies. Nonlinear in-
teractions in general conservatively transfer energy in wavenumber space k,
T V qrs(k ← k1) = −T V rqs(k1 ← k). As in this case no cross-field transfer is
involved and the energy transfer is restricted to interaction within a subfield as
(T V ccc or T V nnn) the energy is conserved. The energy conservation is reflected
in the antisymmetric behavior around the line given by k = k1, the energy
transfer is as expected conservative. Compared to the energy transfer includ-
ing noncoherent fluctuations (Figs.8.3 and 8.4) the energy transfer between
eddies is strongest in amplitude and therefore eddies dominate the total en-
ergy transfer. As seen in a previous investigation [35] the energy is dominated
by energy transfer from the smallest scales (k > 4) into larger scales (k < 4)
by nonlocal interactions (arrow (A) in Fig.8.2 ). Nonlocal energy transfer can
be attributed to vortex thinning (see Sec. 3.3.2). As the nonlocal inverse ki-
netic energy transfer takes place as the dominant mechanism (Fig. 8.1) for
interaction among eddies. It does not include noncoherent fluctuations.

Interactions between random fluctuations are about an order of magnitude
lower and furthermore do not show a preferred direction. The interaction
among noncoherent fluctuations is therefore random and does not lead to co-
herence in the nonlinear coupling and subsequently to no significant intermodal
energy transfer. This supports the work by Bruneau [324] where it is shown
that in neutral 2D fluids eddies are indeed responsible for the inverse energy
transfer. However, the conclusion that noncoherent structures do not signif-
icantly participate in the nonlinear coupling process is misleading as we will
see in the following.

In order to investigate the interaction of the coherent and noncoherent
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Figure 8.3: Kinetic energy transfer between two coherent and one noncoherent

structure. Within this process the energy is transferred between the two coherent

structures (a), from the noncoherent into the coherent (b) and from the coherent

into the noncoherent fluctuations (c). Figures taken from Ref. [9].

Figure 8.4: Kinetic energy transfer between one coherent and two noncoherent

structures. Within this process the energy is transferred from the coherent into the

noncoherent (b) and from the noncoherent into the coherent fluctuations (c) and

between the two noncoherent structures (c). Figure taken from Ref. [9].

field two cases can be distinguished. In the first two coherent modes couple
with a noncoherent mode. In the second two noncoherent modes couple with
one coherent mode. The first case is shown in Fig. 8.3. The energy transfer
between different coherent scales T V ccn(k← k1) in the presence of noncoherent
scales is inverse and local as shown by the arrows (B1) and (B2) in Fig. 8.3a.
The energy is conservative as seen by the asymmetry around the k = k1 line
due to T V ccn(k ← k1) = −T V ccn(k1 ← k). The common vortex merger is
representative of a local event by merging two (corotating) eddies of the same
size to an eddy of nearly twice the size. However, one would assume this process
is taking place within interaction among only coherent structures (Fig. 8.2).
To understand why this process is observed here as a cross-field transfer a
closer look on the anatomy of the flow field of vortex mergers is necessary
(see Chapter 3.3.1). In fact the interaction between two merging vortices is
mediated by noncoherent filamentary structures, either the so-called exchange
band or the recirculation band.

Let us consider the transfer from or into the coherent field T V cnc(k← k1)
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first. As seen in Fig. 8.3b energy in the coherent field at large scales is lost
to noncoherent structures at small scales ((C1) and (C2)), which could be
the filamentary structure in the exchange band or the filaments in the outer
recirculation region. Furthermore, coherent structures gain energy from non-
coherent structures at small but similar scales (the red region (C3) in T V cnc).
This process displays the alignment of random vortices giving them a preferred
direction which in turn increases the coherent vortices at larger scales. How-
ever, this mechanism is not as important as the vortex merger. The energy
transfer in Fig. 8.3b is not anti-symmetric around the line k = k1, however, the
process is still conservative. Because it is a cross-field transfer, the contribu-
tion T V cnc has to be studied together with the contribution T V ncc. Considering
T V ncc(k ← k1) in Fig. 8.3c the balance comes out likewise. Due to the inter-
action of two coherent and one noncoherent structure the noncoherent field is
strongly driven by coherent fluctuations at large scales. Since all these obser-
vations are related to the same three-wave coupling process the local inverse
energy cascade of coherent structures is directly bound to a transfer of large-
scale coherent energy to small-scale noncoherent energy. As a result coherent
energy is transferred to larger coherent scales and to small noncoherent struc-
tures. Although large coherent structures are formed the overall process just
transfers energy from small-scale coherent into small-scale noncoherent struc-
tures using the coherent field as an interim energy reservoir or catalyst. The
transfer of energy into the noncoherent field can be seen as a mechanism of
dissipation and an increase in entropy. Vortex merging does not only decrease,
but it also partially increases the entropy.

Just by the superposition of the vorticity field cluster of same-sign vortices
constitutes a large-scale strain field, which can interact with other structures.
A cluster does not exhibit closed streamlines and is therefore a large-scale
noncoherent structure consisting of small-scale coherent structures (eddies).
The self-organization into a cluster should transfer energy from the small-scale
coherent into the large-scale noncoherent field. The coupling between two
noncoherent and one coherent mode is shown in Fig. 8.4. As seen in Fig. 8.4a
coherent fluctuations at smaller scales transfer energy into the large-scale non-
coherent field (D1). This large-scale noncoherent structure is not an eddy
but it constitutes a strain field, which can be seen as a cluster. As energy is
transferred from small-scale coherent to large-scale noncoherent fluctuations
(Fig. 8.4a) there must be a loss of coherent energy at small scales to non-
coherent fluctuations as seen in Fig. 8.4b. Also here a cascade within the
noncoherent energy is involved (Fig. 8.4c). Kinetic energy is transferred from
large to small scales as in three-dimensional turbulence. Left to themselves
without energy supply from the coherent field the vortex clusters cannot sus-
tain themselves. This is a result of the rather weak self-rotation, since the
vorticity is smaller than the strain as Q > 0, and therefore the eddies within
the vortex cluster will diffuse out of the cluster and the cluster is splitting up in
smaller and smaller ones. Even though large noncoherent structures are formed
the overall process transfers energy from small-scale coherent into small-scale
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noncoherent structures as in the case of the vortex merger. Therefore vortex
clustering increases the entropy.

In summary, the linear drive in two-dimensional turbulence provides a con-
stant source of coherent kinetic energy into the system. Since the kinetic
energy in two-dimensional turbulence cannot be dissipated as in three dimen-
sions, the turbulence has to find a way to transfer the coherent energy into
the noncoherent field. The kinetic energy transfer between the different scales
of coherent and noncoherent motion in two-dimensional drift-wave turbulence
in a confined magnetized plasma has been studied experimentally. Large-scale
turbulent structures are generated by vortex merging, thinning and cluster-
ing. The process of vortex merging constitutes an inverse cascade process
of coherent energy, which is accompanied by a transfer from large-scale co-
herent to small-scale noncoherent energy (negative coherence production at
large scales). Large-scale strain fields can be generated by an alignment of
coherent structures, where energy is transferred from small-scale coherent to
large-scale noncoherent fluctuations. This negative coherence production at
small scales is coupled to a direct cascade of noncoherent energy resulting in
dissipation. It is therefore convenient for two-dimensional turbulent systems
or it is even required that large-scale turbulent structures are generated due
to vortex merging and clustering to transfer energy from the coherent into
the noncoherent field as a way to dissipate coherent energy. Nonlocal energy
transfer by vortex thinning appears to be the strongest process in structure
formation in drift-wave turbulence.

8.2 Subcritical transition to plasma turbulence

The process of a laminar flow becoming turbulent, the transition to turbulence,
is an extraordinary complicated not yet fully understood process. It remains
one of the main intriguing problems of turbulence research. The process is
in general not instantaneous, but proceeds through a series of stages. There
are two major kinds of transitions to turbulence. In the first kind a linear
instability grows which due to nonlinear saturation will lead to turbulence. If
the growth rate depends on the Reynolds number a critical Reynolds number
can be estimated and often this critical Reynolds number agrees quite well with
the observed onset of turbulence. This is called supercritical turbulence. There
are some flows which do not care much on this critical Reynolds number or a
linear instability. In particular the pipe flow experiment, Reynolds started to
study turbulence phenomena in, is one of them. Here the onset of turbulence
is far below the estimated critical Reynolds number. If the onset is below the
critical Reynolds number, theses flows are called subcritial. In such systems
externally excited perturbations can lead to turbulence even if the instability
threshold is not exceeded. A linear instability is not necessary.

Despite the important progress in theory [211] and experiment [212] on
understanding drift-wave turbulence, studies on the transition to turbulence
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[325, 326, 327, 328] in magnetized plasmas are still uncommon. In large confine-
ment experiments, fully developed turbulence is usually observed. Once a flow
becomes turbulent, it can be difficult to determine its origin due to the chaotic
nature and the irreversibility of turbulent flows. In contrast, laboratory-scale
plasma experiments are well suited to study the transition to a turbulent state.
In this chapter experimental results from a laboratory-scale plasma experiment
CSDX (Sec. 2.1.4) will be presented. Previous studies, for example the phase-
locked regime observed in [325] and the appearance of a quasi coherent mode
[326] will be related with each other and connected to theory [217]. This
chapter is based on the results published in Ref. [10]. It will be shown that
drift-wave turbulence is subcritical. This is an important observation, since in
the plasma physics community turbulence is commonly treated as supercriti-
cal and the calculation of growth rates is one of the most important working
horses. Subcritical turbulence will be also studied in detail in Sec. 9.3.

Commonly the development of broadband turbulence from an initial insta-
bility is explained in terms of wave-wave interactions (Sec. 3.4) due to the non-
linearities. For an increasing control parameter (similar to the Reynolds num-
ber for fluid turbulence (Eq. (3.9))) the drift-wave modes undergo a series of
mode coupling phenomena until reaching a turbulent state [325, 326]. Klinger
et al. [325] found that the bifurcation sequence of these different mode coupling
phenomena follows the Ruelle-Takens scenario. Beginning with one mode, in
the so called periodic regime, this mode is subject to nonresonant three-wave
interaction in the quasi periodic regime. By a transition from nonresonant to
resonant three-wave interactions the system reaches the phase locked regime,
which is characterized by a dominant mode and its harmonics. Small phase
dislocations lead to a broadening of the dominant peaks (chaotic regime) and
with further increasing control parameter the weakly turbulent regime can be
achieved.

During a similar transition, the evolution of mode coupling using a bico-
herence analysis (Sec. 7.3.1) was investigated by Burin et al. [326]. The results
are shortly summarized next. In the quasi linear regime many discrete and in-
tensive regions of three-wave coupling appear. In what will be identified as the
phased locked regime later, the bicoherence is dominated by the interactions
of a quasi coherent mode and its second harmonic with all other frequencies.
Above a certain threshold in the control parameter the maximum bicoherence
significantly reduces and with increasing control parameter no significant dis-
crete area of coupling in the bicoherence appears. Since the total bicoherence
is not reduced, the coupling must then occur across a much larger range of
time scales. This is the weak turbulence regime. The present study mainly
closes a gap between these previous investigations [325, 326] by estimating
the evolution of the nonlinear power transfer (Sec. 7.3.2) of the nonlinearities,
which are the major players in turbulence.

Drift-wave turbulence exhibits mainly two nonlinearities, where one acts on
the vorticity (Eq. (5.5)) and the other on the density fluctuations (Eq. (5.4)).
The vorticity fluctuations are perturbations of the perpendicular polarisation
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current [213]. The polarisation drift itself can be commonly neglected in
the hydrodynamic derivative, therefore it is determined by the E × B-drift
dt = ∂t + vE×B∇. However, since the nonlinearity fundamentally results from
polarisation current fluctuations it will be here referred to as the polarisation
drift nonlinearity. Due to quasi neutrality the divergence of the perpendicu-
lar current is balanced by that of the parallel current, which also occurs in
the continuity equation for the electrons. The hydrodynamic derivative in the
electron continuity equation gives rise to the nonlinearity of the density fluc-
tuations, here called E × B-drift nonlinearity. The spectral power transfer
functions are calculated with the Kim method [311] (Sec. 7.3.2). Details can
be found in the original reference [10].

Experiments were carried out on the linear cylindrical laboratory plasma
device CSDX heated by a helicon antenna. A higher magnetic field results in
a tightening of the Larmor radius and also in a reduction of the ion viscos-
ity. Therefore the ratio of convection (nonlinearity) to viscosity (dissipation)
is enhanced. This can be seen as an enhancement of the Reynolds number
(3.9), which also gives the ratio of convection to dissipation. Furthermore, in
a helicon plasma as CSDX the central plasma density is also proportional to
the magnetic field, therefore the density gradient as a drive for turbulence en-
hances, too. The magnetic field strength was varied from 54 mT to 98 mT and
used as the control parameter as used also in Refs. [326, 329]. Measurements
were done with Langmuir probe arrays (Sec. 6.1), which were used for detailed
studies of the interactions of the turbulence and zonal flows [53, 54, 55]. More
details on the experimental setup can be found in Ref. [10].

Below 58 mT turbulence has not developed yet, the spectra are dominated
by one mode. The potential fluctuations are much stronger than the density
fluctuations (ñ/n0)

2 < (eφ̃/Te)
2, which is a clear feature of shear instabilities

like Kelvin-Helmholtz or centrifugal modes, but not of drift waves [330]. At
58 mT the low frequencies begin to fill up. In contrast to the earlier potential-
dominated fluctuations the Boltzmann criterion is roughly satisfied (ñ/n0)

2 ∼
(eφ̃/Te)

2, which is characteristic for drift waves. On the other hand the cross-
coherence of potential and density fluctuations is decreasing and their cross-
phase is still close to π/2 [326]. As discussed in Sec. 4.3 drift waves exhibit a
cross-phase between potential and density perturbations close to zero, where
essentially all activity is below about π/4 [112]. A cross-phase close to π/2
points to interchange-like instabilities as the centrifugal instability in the case
of a linear device like CSDX.

Coupling of the dominant mode to sidebands is observed. This is a signa-
ture of the parametric instability consistent with earlier observations [325, 327].
Through this coupling with incommensurate frequencies the energy can be
transferred to larger and smaller scales. The sidebands also gain energy, which
is a clear signature of the quasi-periodic regime [325, 327]. The broadband free
energy is transferred to the smaller scales by a coupling through the E × B
nonlinearity to large scale potential fluctuations. Due to this mechanism more
modes are incorporated into the system, which means that the excited degrees
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of freedom increase with the control parameter. This is the most important
feature during a transition to a turbulent state. By increasing the control
parameter up to 66 mT this feature is getting more and more pronounced.

Figure 8.5: Growth rate of density fluctuations (a,f), power spectra of density

(free energy) (b,g) and potential (kinetic energy) (c,h) fluctuations as well as the

spectral energy transfer functions of the free (d,i) and kinetic (e,j) energies in the

phase-locked regime at 70 mT (a-e) and the weak turbulent regime at 94 mT (f-j).

Measurements done at CSDX. Figure adapted from Ref. [10].

For B = 70 − 78 mT, both density and potential spectra are dominated
by one mode at 5 kHz corresponding to the quasi coherent mode [326]. In the
framework of the Ruelle-Takens scenario this corresponds to the phase locked
regime [325, 327]. In this regime the cross-phase is significantly smaller and also
the cross-coherence is much higher [326], suggesting that these fluctuations can
be related to drift-wave turbulence. This point is very important and has not
been emphasized in the original publication [10]. Even though the fluctuations
are centrifugal-instability-driven in the linear regime, in the nonlinear regime
the fluctuations are drift-wave dominated.

The density spectra do not exhibit a strong amplitude increase at the larger
scales, but instead show a strong broadening of the turbulence. Since the
larger scale potential fluctuations transfer energy to the small scale density
perturbations, the power in the larger scale potential fluctuations does not
increase as the magnetic field is increased, even though the inverse energy
cascade is strongly present between 60 and 74 mT. The large scale potential
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fluctuations thus act like a catalyst in this regime, nonlinearly scattering or
transferring density fluctuations to smaller spatial scales.

In this regime the small-scales (high frequency) density fluctuations do not
become linearly unstable (Fig. 8.5a). Instead, through a coupling to the large
scale potential perturbations, which result from the turbulent inverse cascade
(Fig. 8.5e), the small scale density fluctuations have access to the free energy
of the background density gradient (Fig. 8.5d). Thus, these small scale modes
are nonlinearly driven. This mechanism is in principle similar to that one
described in Refs. [217] (see Sec. 5.1.2). Due to adiabatic coupling initial
density fluctuations appear also as potential fluctuations at the same scale.
While the kinetic energy is always transferred to larger scales, the free en-
ergy is always transferred to smaller scales. The free energy transfer analysis
(Fig. 8.5d) clearly shows that large scale potential fluctuations generated by
inverse kinetic energy transfer (Fig. 8.5e) effectively modulate density fluctu-
ations at all scales and not just at the linear driving scale. Therefore density
fluctuations at a given scale can be destabilized even if the energy input at the
same scale from the density gradient is much smaller than expected from the
linear growth rate. Thus drift-wave turbulence is always subcritical. As new
born density perturbations at smaller scales are generated in this manner the
density perturbations become phase locked with the potential perturbation at
large scale. The density perturbations are not long lived, but generated in
phase to the larger-scale potential fluctuations. As these structures are phase
locked all of them appear as the long-living quasi coherent mode observed in
the previous investigation [326] at intermediate magnetic field strengths up to
75 mT. As the density fluctuations are nonlinearly generated the energy will
be transferred due to adiabatic coupling to the potential fluctuations at the
same frequency, which results in a broadening of the linear growth rate in the
potential as observed [10].

Above 75 mT this quasi coherent mode breaks down. The reason can be
related to two effects. First, the power of the low frequency potential fluctu-
ations decreases. As the large scale flows get weaker they cannot modulate
the new born density perturbations any more. As a result the nonlinear free
energy transfer to high frequencies weakens. Second, the drive of drift-wave
turbulence is given by the background pressure gradient scale length, which
also increases with the magnetic field at the position, where the measurements
were done [326]. Therefore, the linear growth rate of the density fluctuations
increases. These new born density fluctuations are dominantly linearly driven
and no longer phase locked to the large scale potential perturbations, and thus
they altogether do not appear as a quasi coherent mode anymore. As the
spectral power gets more and more concentrated in the dominant modes and
these modes are no longer phase locked to the large scale potential fluctua-
tions, they start to undergo parametric instability themselves and couple to a
wide number of different modes. This weakens the large scale potential struc-
tures additionally. Since the observed break up is accompanied by a onset of
disturbances of the quasi coherent mode, its break up could be referred to a
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chaotic regime in the framework of Ref. [325].

Above 80 mT the low frequency range in the potential increases dramati-
cally, where that of the density fluctuations only increases slightly. This fea-
ture is consistent with expectations for two-dimensional turbulence, while the
kinetic energy is transferred to larger scales [89]. The range above 80 mT is de-
noted here as the weakly turbulent regime. The kinetic energy is mainly trans-
ferred from the unstable region around 10 kHz to the larger scales. This is the
common inverse energy cascade, also observed in [34, 35, 54, 55, 317, 331, 332].
One can observe local interactions at low frequencies, which can be related to
vortex merging. Also a second nonlocal mechanism can be found. The 10
kHz mode loses energy to all larger scales consistent with the vortex-thinning
mechanism explained in Refs. [21, 35, 94, 143], in which small-scale structures
are elongated and thinned by large scaled flows. The structures at larger scales
absorb the smaller ones progressively by coiling them up. The inverse kinetic
energy transfer could raise large scale fluctuations, as for example zonal flows,
which have been studied intensively in CSDX, see e.g. [53, 54, 55, 333, 334].
Above 94 mT the free energy is transferred to the smaller scales following a
direct cascade (Fig. 8.5i) as observed in Ref [331]. Indeed, the forward transfer
of the free energy is necessary to avoid the infrared catastrophe, which would
result from the inverse energy cascade of the kinetic energy [335] and provides
a saturation mechanism by the large scale flows that are created by the in-
verse energy transfer (Fig. 8.5j). This mechanism develops after the kinetic
energy gets condensated in the large scale region. Furthermore, it acts as an
additional source of free energy for the mode at 10 kHz as a mechanism of
self-sustainment of drift-wave turbulence [217].

8.3 Spatial nonlocality of zonal flow excitation

Zonal flow generation being a nonlocal phenomenon in wavenumber space is
quite well established (see Chapter 3.6). In the present chapter, which has
been published in Ref. [11], it will be shown that zonal flow generation is
also a nonlocal phenomenon in the original position space domain in the sense
that a finite amplitude mean flow structure also requires a spatial separation
of excitation and dissipation regions [336, 337]. It follows that the spatial
structure and wave propagation are of central importance for the flow genera-
tion. Also previous experimental results in magnetized plasmas indicated that
the zonal flow formation is linked to an emission, propagation and absorption
process of drift-wave packets [144], indicating that an additional investigation
of the energy redistribution in configuration space as it was proposed earlier
[338, 339] together with the information obtained from previous Fourier anal-
yses [10, 34, 35, 37, 54, 55, 302, 340, 303, 304, 142, 319, 317, 318, 341, 342]
appears necessary to gain a more complete picture of the self-organization of
the turbulence - zonal flow system.

The energy equations for the turbulence-shear flow systems have been de-
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rived in Sec. 3.6.2. For easier readability the main equations are recapitulated
here. The turbulence energy K̃ evolution is given by (3.48)

∂tK̃ = −∂xT̃ − P + ǫ̃,

the mean (zonal) energy K̄ satisfies (3.51)

∂tK̄ = −∂rT̄ + P + ǭ.

The global energy exchange between turbulence and shear flow is completely
determined by the turbulence production P . But this does not determine their
local values. The growth or damping of the local mean flow is not determined
by the production itself. In addition to the turbulent production a further term
∂
∂r
T̄ contributes to the mean flow energy as described by Eq. (3.51) [134]; this

is denoted as the turbulent kinetic energy transport here. This term results as
well from the Reynolds stress, but it does not appear in the energy equation of
the turbulence and thus does not act like a direct suppression mechanism of the
turbulence. This term is a divergence of a flux and thus it does not generate
mean kinetic energy, but instead corresponds to the radial transport of mean
kinetic energy by the turbulence. At the position of strong shear, where the
zonal flow is expected to be generated, we have 〈ũrũθ〉∂r〈uθ〉 ≫ 〈uθ〉∂r〈ũrũθ〉
and thus at such a location we can write

− ∂

∂r
T̄ ≈ −〈ũrũθ〉∂r〈uθ〉 = −P . (8.9)

Therefore, most of the mean kinetic energy produced by the turbulence will
be transported away from this position. At the position of weak shear we can
write − ∂

∂r
T̄ ≈ −〈uθ〉∂r〈ũrṽθ〉. Substituting the Reynolds stress drive by the

stationary case of Eq. (3.45) gives

− ∂

∂r
T̄ ≈ −〈uθ〉µ∂2r 〈uθ〉 = −ǭ. (8.10)

The mean kinetic energy is therefore transported to the extremal positions of
the velocity profile, where the energy is nearly completely dissipated. Already
from this consideration it is clear that a spatial separation of the production
or generation region and the dissipation region is necessary to obtain a finite
mean flow structure.

The fluctuating energy balance (Eq. (3.48)) exhibits a similar quantity
∂
∂r
T̃ which is mainly responsible for the redistribution of the turbulent kinetic

energy in configuration space via the radial flux of kinetic energy in the fluctu-
ating field; this has been denoted as turbulence spreading elsewhere [343, 344].

Measurements of flows and the Reynolds stress were done in the linear
device CSDX with two 3 × 3 Langmuir probe arrays, which were also used
before for detailed studies of the interactions of the turbulence and zonal flows
[53, 54, 55, 10, 144]. A shear layer at about rsh = 3.7 cm is observed. As
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Figure 8.6: Radial profile of the (a) velocity, (b) shear and (c) Reynolds stress in

the linear device CSDX. Figure adapted from Ref. [11].

shown in Fig. 8.6b the shear is nearly constant and positive (r ≤ 3.5 cm) and
strongly negative from 4 to 5 cm.

The Reynolds stress is shown in Fig. 8.6c by the + symbols. For further
analysis the Reynolds stress has to be smoothed (shown by the solid line). The
Reynolds stress is positive in the region 2.8 cm ≤ r ≤ 3.7 cm, which means
it transports positive momentum outwards or negative momentum inwards.
Toward the plasma center (r ≈ 2 cm) the Reynolds stress is negative indicating
inwards transport. Therefore, the turbulent momentum must be generated
around r = 2.5 cm and is then transported inward and outward from this
position. The position corresponds to the maximum density gradient region,
where most of the turbulent structures are born. At the outer region of the
plasma (4 cm ≤ r ≤ 5 cm) the Reynolds stress is also negative, consistent with
inward transport of positive momentum. Together with the outwards flux of
positive momentum from r ≤ 3.5 cm, these fluxes act to accumulate positive
momentum and thus amplify the shear layer at rsh = 3.7 cm. The divergence
of the flux of turbulent kinetic energy (Fig. 8.7a) supports this consideration.
Turbulent kinetic energy is transported out of the region between 2.5 ≤ r ≤ 3
cm, which can be interpreted as spreading. Also from r ≥ 3.5 cm the turbulent
kinetic energy is transported inwards resulting in its concentration in the region
from 3 to 3.5 cm.

The turbulent production of shear flow P is shown in Fig. 8.7b. At the
position of the shear layer at 3.7 cm the shear vanishes. Therefore the energy
transfer from the turbulence into the mean flow vanishes at this location and
the mean flow cannot be generated by the turbulence and thus P = 0 here.
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Figure 8.7: Radial profile of the (a) transport of turbulent energy, (b) the energy

production and (c) the transport of mean kinetic energy in the linear device CSDX.

Figure adapted from Ref. [11].

However, at r ≈ 3.3 cm and r ≈ 4.4 cm on either side of the shear layer
the Reynolds stress and the background flow are in the same direction and
therefore the production is high. Therefore the turbulent kinetic energy which
has been transported from r ≈ 2.5 cm to r ≈ 3.2 cm (Fig. 8.7a) is then
absorbed in part by the shear flow at this location.

To understand the profile of the local mean flow the transport of mean
kinetic energy −∂rT̄ has to be considered as shown in Figure 8.7c. Nearly all
the energy transferred from the turbulence to the mean flow (denoted by P
Fig. 8.7b) is radially transported (−∂rT̄ > 0 in Fig. 8.7c) to the shear layer at
rsh ≈ 3.7 cm, consistent with our considerations (see Eq. (8.9)). At the same
position an outgoing wave energy flux is observed (−∂rT̃ < 0 in Fig. 8.7a).

The following picture arises as summarized in Fig. 8.8: In the region of the
maximum (density or pressure) gradient turbulent structures are generated.
Since they are just generated they have no preferential tilt and no associated
Reynolds stress. The structures are transported outward, where those exhibit-
ing positive vorticity will become positively tilted by the background shear
(see Chapter 3.6.1). This yields a Reynolds stress, which is correlated with
the mean shear flow and thus leads to a subsequent amplification of the mean
flow shear by turbulent production P > 0. The energy is transferred from
the eddies to the zonal flow by an elongation and tilting (and thinning) of the
eddy [142, 144]. Beside this energy transfer of kinetic energy from the turbu-
lence to the mean or zonal flow, the Reynolds stress transports mean kinetic
energy across the radius, resulting in a flux of mean kinetic energy from ei-
ther side of the shear layer into the shear layer. Since the turbulence exhibits



8.4 Concluding remarks on basic drift-wave turbulence studies in low-temperature plasmas111

Figure 8.8: Principle mechanism of the spatial redistribution of turbulent and

mean kinetic energy.

backward-wave character the transport of mean kinetic energy is coupled to
the spreading of the turbulence [336, 337]. Finally the mean energy gets dis-
sipated at the shear layer. The transport of mean kinetic energy appears to
be the dominant mechanism for transfer of energy into the mean flow; how-
ever the direct turbulence flow interaction (the production term P) is also of
central importance and cannot be neglected, since it reflects the generation
mechanism of the mean kinetic energy.

Finally, the results shown here explicitly show that the spatial structure and
(wave) propagation are of central importance for the flow formation. Therefore,
these dynamics are inherently nonlocal and cannot be captured by inherently
localized flux-tube type computational approaches. The presented considera-
tions also show that a local balance of driving and damping of zonal flows will
not provide much insight into the zonal flow generation and damping process.
In regions the zonal flow is excited and the turbulence is suppressed the zonal
flow itself maybe quite weak, whereas in regions the zonal flow is strong and
dissipated the suppression of the turbulence and its drive maybe very weak.

8.4 Concluding remarks on basic drift-wave

turbulence studies in low-temperature plas-

mas

Low-temperature plasma experiments offer possibilities to study basic effects
and mechanisms of plasma turbulence not feasible in high-temperature experi-
ments. In particular sets of Langmuir probes enable fluctuation measurements
with high spatial and temporal resolution. This enables for example the in-
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vestigation of wavenumber spectra, the energy transfer among different spatial
scales (Sec. 8.1) and global investigations (Sec. 8.3). Studies of the transition
to turbulence have been only possible in linear devices so far (Sec. 8.2). Lang-
muir probes would not withstand the high heat fluxes under high temperature
more fusion relevant conditions. Of course in principle other diagnostics can
be used instead, however, a high spatial coverage of the domain is simply too
expensive.

The studies presented in this chapter revealed:

i) The kinetic energy transfer in drift-wave turbulence follows the dual cas-
cade (Sec. 8.1). Generation of large-scale structures has been found to
be mainly due to the vortex-thinning mechanism. Vortex-thinning oc-
curs at rather small scales (enstrophy cascade range kρs ≥ 1), where the
enstrophy is large and most of the vorticity is concentrated. Indeed, the
large-scale region (energy cascade range kρs ≤ 1) is dominated by the
vortex merger process and is local in wavenumber space. Therefore, if
the experiments reported in Sec. 8.1 would exhibit a more pronounced
inertial range, the cascade might be more local in wavenumber space.
This identifies a weak point of turbulence studies in low-temperature
plasmas. On the other hand, plasma turbulence simulations usually re-
solve vortices at kρs ∼ 1 with just a few points at best and vortex
interactions as depicted in Sec. 3.3 are most likely artificially suppressed.
Therefore, the experimental findings also identify a weak point of sim-
ulations. Vortex merging is accompanied by strong energy transfer to
small-scale noncoherent fluctuations (dissipation) balancing the negative
entropy generation due to the self-organization process.

ii) The transition to (interchange-)drift-wave turbulence follows the Ruelle-
Takens scenario (Sec. 8.2). Once the system is dominated by nonlinear
processes, the turbulence shows drift-wave character. The underlying
mechanism of the phase-locked regime have been traced back to the phase
locking of large-scale potential fluctuations with subcritically excited
density fluctuations. Those together appear as a quasi-coherent mode.
The experiments could also provide evidence for the self-sustainment
mechanism of drift-wave turbulence.

iii) The excitation and dissipation region of zonal flows are radially disjunct
(Sec. 8.3). Therefore, it is not possible to balance zonal flow drive and
dissipation based on local measurements. Also radial propagation of
fluctuation energy is an intrinsic feature of a (even stationary) zonal
flow profile.

Although experimental results from low-temperature experiments cannot
be transferred one-to-one to high temperature experiments, as essential addi-
tional physics is missing in the low temperature experiments, the identified
mechanisms will be present. Such essential additional physics are due to fi-
nite ion temperatures, conduction (due to the higher electron temperature),
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off-diagonal transport like thermodiffusion (due to the higher temperature gra-
dient), a much more pronounced inertial range (due to the smallness of ρs/a)
and of course, considering experiments in linear devices, magnetic field curva-
ture. The importance of these mechanisms with respect to high-temperature
plasmas can only be studied by experiments in high-temperature plasmas or
simulations.
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Chapter 9

Turbulence in the L-mode

In this chapter we will have a look at the strength of turbulence. What does
weak and strong turbulence mean? Under which circumstances turbulence
is considered to be weak or strong? Does the physics of turbulence change
with its fluctuation amplitude? The here presented chapter is based on the
publication [12].

It is assumed that turbulence in the edge of the confined region of the
plasma in the low confinement regime is drift-wave dominated [166]. Drift
waves exhibit a well defined phase velocity in the electron diamagnetic di-
rection. Doppler reflectometry measurements in ASDEX Upgrade show no
significant phase velocity in the plasma edge. The measured velocity is ap-
proximately the E × B background velocity [345] with no signs of dispersion
[256]. This has also been observed in W7-AS [346] and seems to be in con-
tradiction to drift waves being the dominant instability in the plasma edge
from a linear perspective. On the other hand finite phase velocities have been
reported from the plasma core in ASDEX Upgrade [347, 348] and rather in
the core (r/a = 0.8) in Tore Supra [349].

For the purpose of illustration an example of measurements at different
wavenumbers is shown in Fig. 9.1. The data is shown in normalized dimen-
sionless units (left and bottom axis) and in dimension-assigned units (right
and top axis). The Doppler reflectometer (DR) (see Sec. 6.2.2) with a movable
mirror allows to probe varying wavenumbers (6 < k⊥ < 12 cm−1) during the
discharge, the poloidal correlation reflectometer (PCR) [256] (see Sec. 6.2.1)
is sensitive at low wavenumbers (k⊥ < 3 cm−1). The measured Doppler fre-
quency shows a linear relationship to the probed wavenumber. The measured
frequencies by the PCR align well with the one by the DR. The E × B back-
ground velocity has been estimated by uE×B ≈ (1/en)∇pi ≈ (1/en)∇pe to be
around 4 km/s (uE×Bk⊥ is indicated by the blue shaded area in Fig. 9.1), the
measured dispersion in the phase velocity is small (< 0.35 km/s) and within
the error bars of the measurements. A possible phase velocity is significantly
lower than the electron diamagnetic velocity which is of the order of uE×B as
indicated by the grey shaded line in Fig. 9.1.

Fully developed fluid turbulence is usually not classified by driving insta-
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Figure 9.1: Frequency versus wavenumber measured at the plasma edge (ρpol =

0.985) of a typical ASDEX Upgrade L-mode plasma at a temperature of Te = 124

eV. Measurements are done with Doppler (DR) and poloidal correlation reflec-

tometry (PCR). The frequency is normalized to the cold ion sound speed cs, the

wavenumber to ρs = 0.7 mm calculated with the magnetic field on axis B = 2.6 T.

The frequency broadening ∆f (blue) is about 1/3 of the measured frequency. The

corresponding perpendicular velocity ∂f/∂k is not varying with the wavenumber

within the error bars. The estimate for the E ×B velocity is indicated by the blue

shaded area, an estimate of the drift-wave dispersion relation is indicated by the

gray shaded area. Figure taken from Ref. [12].

bilities as it is common in plasma physics [198, 350, 193]. The reason is the
strength of the nonlinearity. Is it possible that plasma turbulence loses linear
features as growth rates and dispersion at high fluctuation levels? This ques-
tion will be studied in detail in Sec. 9.3. Before, turbulence will be classified in
weak and strong turbulence regimes (Sec. 9.1). We will find that it is indeed
possible that dispersion is suppressed by strong fluctuations. Subsequently we
will spend some attention (Sec. 9.4) to the question, how measurements of the
phase velocity are affected by strong fluctuation levels. In the following a short
discussion on how phase velocities are measured in a plasma is given.

To infer spatial characteristics from temporal signals, experimentally one
has to map time to space. This is done by Taylor’s hypothesis of frozen turbu-
lence [351]. It is assumed that at a single point in space the change of turbulent
velocity fluctuations in time can be directly related to their spatial change via
the mean convection velocity. Already in the fifties it was shown that the
hypothesis is restricted to a limited range of wavenumbers (or frequencies) for
shear flows [352]. The applicability of Taylor’s hypothesis also depends on the
fluctuation level: for validity, turbulent velocity fluctuations must be signifi-
cantly smaller than the mean velocity [352]. The averaged phase velocity is not
unique. One can integrate in wavenumber direction keeping frequency constant
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or integrate in frequency direction and keep wavenumber constant. Depending
on the shape and the broadening of the wavenumber-frequency distribution
P (k, ω), this results in different answers as we will see in the following.

For example by choosing the wavenumber to be constant, k0, we take a cut
in the frequency direction. The average frequency is defined by

〈ω〉(k0) =
∫
P (k0, ω)ωdω
∫
P (k0, ω)dω

. (9.1)

Doppler reflectometry measures a power spectrum P (k0, ω) at a given wavenum-

ber k0, from which a wavenumber dependent phase velocity u(k0) =
〈ω〉(k0)
k0

can
be estimated in principle. Since the low frequency range is often corrupted by
the directly reflected microwave beam this approach is often misleading and
the Doppler shift should be determined by fitting a Gaussian to the power
spectrum.

By choosing a constant frequency ω0 to examine wave velocities, cuts along
the wavenumber direction in P (k, ω0) give an average wavenumber defined by

〈k〉(ω0) =

∫
P (k, ω0)kdk
∫
P (k, ω0)dk

. (9.2)

A wave velocity can be estimated by u(ω0) =
ω0

〈k〉
. An estimate of a wavenum-

ber is provided through the phase difference of spatially separated points. If
fluctuations can be represented by an eikonal ∼ exp(iθ) with θ = kx− ωt the
effective or pseudo wavenumber [295] (Sec. 7.2.2) is given by 〈k〉(ω) = ∂θ

∂x
. Time

delay estimation (TDE) (Sec. 7.1.1) works in a similar manner. Also here the
phase is measured at two spatially displaced positions θ(x, t) and θ(x+∆x, t).
Now the time lag ∆t is estimated, where both signals are in phase. Hence,
θ(x, t) = θ(x + ∆x, t + ∆t) or k∆x = ω∆t. From this a frequency depen-
dent phase velocity can be directly inferred uph(ω) = ω

k
= ∆x

∆t
. The spatial

displacement ∆x, a time delay ∆t and the frequency at which the time delay
is measured are determined. What is actually estimated here is an effective
phase velocity 〈u〉TDE(ω) = ω

〈k〉TDE
which corresponds to effective wavenum-

ber 〈k〉TDE(ω) = ω
∆x

∆t. Of note, the operator 〈·〉TDE is not equal to simply
averaging over wavenumber space as in Eq. (9.2). Nearly all measurements
of velocities done with Langmuir probe arrays, gas-puff or electron-cyclotron
emission imaging, beam emission spectroscopy, correlation reflectometry or
phase contrast imaging measure an effective wavenumber 〈k〉(ω).

In the following the two methods for estimating phase velocities are inves-
tigated for weak and strong plasma edge turbulence cases.

9.1 Turbulence regimes

The distinction between weak and strong turbulence goes back to Kadomtsev
[353]; The latest review can be found in Ref. [354]. The regimes of turbu-
lence are distinguished by the strength of fluctuations represented by spectral
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broadening. The frequency broadening is defined by
√

〈ω2〉 − 〈ω〉2

∆ω(k) =

√∫
P (k, ω)ω2dω
∫
P (k, ω)dω

− 〈ω〉2. (9.3)

The wavenumber broadening is defined by
√

〈k2〉 − 〈k〉2

∆k(ω) =

√∫
P (k, ω)k2dk
∫
P (k, ω)dk

− 〈k〉2. (9.4)

In the picture of weak turbulence a wave-like instability grows and its nonlinear
saturation is responsible for the turbulence. To retain its wave-like features
the frequency is similar to the linear eigenfrequency 〈ω〉 ∼ ωl and the growth
rate is smaller than the linear eigenfrequency γl ≪ ωl. The weak turbulence
regime is also called wave turbulence. An introduction to wave turbulence
in general can be found in Ref. [355]. The growth rate of the instability is
balanced by nonlinear saturation γl ∼ ∆ω. Weak turbulence is characterized
by small frequency broadening ∆ω ≪ ωl.

In the strong turbulence regime the nonlinearities dominate and the turbu-
lence is independent of the excitation process. Strong turbulence is character-
ized by strong frequency broadening ∆ω exceeding the analytically expected
eigenfrequency, ∆ω ≫ ωl. As a result strong turbulence does not feature a
linear wave frequency due to the short decorrelation time τ ≈ 1/∆ω resulting
in γl ≪ ∆ω, ωl ≪ ∆ω. Equivalent considerations apply for the wavenumber.

The nonlinearity not being dominant in the weak turbulence case does
not imply that redistribution of spectral energy (cascades) is not present. It
just means that the turbulent spectral power P (k, ω) is tightly bound to the
linear dispersion relation in the wavenumber-frequency plane as indicated by
the grey region in Fig. 9.2a. Along the dispersion relation the spectral power
can be redistributed and a cascade can be observed as indicated by the blue
upper spectrum in Fig. 9.2a. However, vertical and horizontal cuts through
the wavenumber-frequency plane, corresponding to frequency (wavenumber)
spectra at a given wavenumber (frequency), show no cascades but just the
dispersion. In the case of strong turbulence (Fig. 9.2b) the dispersion relation
can be neglected and the spectral power mainly follows the Doppler shift of the
background flow. Due to the strong nonlinearity the spectral power spreads in
all directions with the tendency to lower frequencies and wavenumbers in the
two-dimensional case. These can be also observed in the frequency (wavenum-
ber) spectra at a given wavenumber (frequency). Weak and strong turbulence
are ideal cases. Real plasma edge turbulence will be somehow in between.

9.2 Weak turbulence regime ∆ω < ωl

For the purpose of introduction we start to study a weak turbulence case.
Weak turbulence can be obtained for small gradients appearing for example in
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Figure 9.2: Schematic view of spectral features of weak and strong turbulence.

Figure taken from Ref. [12].

the core. Simulations have been carried out at ASDEX Upgrade parameters
(R = 1.65 m, a = 0.5 m, B = 2.4 T, qs = 4.6). The reference surface has
been chosen to be at ρ = 0.5. The simulations cover the region 0.3 < ρ < 0.7
with a gradient scale lengths of LT i = LTe = 0.3Ln = 20 cm, which is rather
flat compared to the edge cases studied. Only the drift plane at the outboard
midplane is analyzed here.

The wavenumber-frequency power spectrum P (k, ω) of density fluctuations
in the plasma frame of reference at ρ = 0.5 are shown in Fig. 9.3a in the late
growth phase of the simulation. The directions are defined positive for the
ion diamagnetic direction and negative in the electron diamagnetic direction.
As ω/k is positive a clear phase velocity in the ion diamagnetic direction can
be observed, which is a signature of ITG turbulence. From Eq. (9.1) the
linear phase velocity can be calculated, which is shown by the black line in
Fig. 9.3c. Most of the turbulence activity is restricted to this very narrow
line. This situation corresponds to the weak turbulence case. The turbulence
saturates at a fluctuation level of about ñ/n ≈ 1 %. In the saturated phase
the turbulence gets more broadband as shown by Fig. 9.3b. The averaged
frequency 〈ω〉 as shown by the red dotted line in Fig. 9.3c is reduced compared
to the growth phase, but a phase velocity in ion diamagnetic direction is clearly
observable. The averaged frequency 〈ω〉 is above the frequency broadening
〈ω〉 > ∆ω (shown by the blue line in Fig. 9.3c). Therefore, this case is in
the weak turbulence regime even though not ideal as the frequency does not
clearly exceed the broadening. The underlying instability (ITG) can imprint
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Figure 9.3: Weak turbulence case: Wavenumber-frequency power spectrum

P (k, ω) of density fluctuations at ρ = 0.5 in the plasma frame in the late growth

phase (a) and in the saturated phase (b). Frequency broadening shown by the blue

solid line compared to the average frequency in the plasma frame shown by black

solid (red dotted line) in the growth (saturated) phase, respectively (c). The rms

vorticity level is indicated by the gray area. The linear eigenfrequency (black line)

exceeds both the frequency broadening and rms vorticity level. Figures taken from

Ref. [12].

its linear phase velocity to the turbulence. The linear frequency significantly
exceeds the frequency broadening ωl ∼ 〈ω〉 ≫ ∆ω and rms vorticity, indicated
by the gray region in Fig. 9.3c, which will be important later.

9.3 Marginal strong case ∆ω & ωl

Next, simulations have been carried out, corresponding to typical experimental
parameters at the last closed flux surface (LCFS) as those shown in Fig. 9.1.
Why this is called the marginal strong case will be clear by the end of this
section. The simulations cover the region 0.96 < ρ < 1.04.

Figure 9.4: Marginal strong case: Wavenumber (a) and frequency (b) broadening

shown by blue solid lines compared to the average wavenumber and frequency shown

by red dashed lines. The drift-wave eigenfrequency is included as a black line and

the rms vorticity level is indicated by the grey area. Data is shown in the laboratory

frame of reference taken at ρ = 0.980. Figures taken from Ref. [12].
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Figure 9.5: Marginal strong case: Wavenumber-frequency power spectrum P (k, ω)

of density fluctuations at ρ = 0.980 (a). The mode at kρs = 0.1 is an interchange

mode. Frequency averaged frequency 〈ω〉(k) (red dashed line), the mean E × B

velocity ω = uE×Bk (blue solid line), phase velocity from wavenumber average

ω/〈k〉 (red dotted line), fitted mean of the Gaussian in dependence of wavenumber

(black dashed line) and corresponding phase velocity by TDE (black dotted line)

(b). Data is shown in the laboratory frame of reference. Figures taken from Ref. [12].

In ASDEX Upgrade usually a significant frequency broadening is present,
however, it does not exceed the averaged frequency. In Fig. 9.1 the frequency
broadening as estimated from Doppler reflectometry is ∆fmeas/〈fmeas〉 ≈ 0.3.
Therefore typical L-mode plasmas at the plasma edge in ASDEX Upgrade are
closer to a weak turbulence regime. Due to the turbulence the frequency is
broadened by ∆ω(k) = k∆u + uE×B∆k + ∆k∆u, where ∆k is the nonlinear
wavenumber broadening and ∆u is the nonlinear broadening of the velocity
spectrum. The measured frequency broadening is not only due to fluctua-
tions at the probed wavenumber k0 but also due to the finite spectral resolu-
tion ∆k0 [356, 357], resulting in a frequency broadening 2π∆fdiag = ∆k0 · u.
Taking ∆k0 = 2.2 cm−1 we get ∆fdiag/∆fmeas ≈ 0.5. As ∆fdiag basically
gives the sensitivity of the diagnostics it is likely that ∆fmeas provides the
correct estimate of the frequency broadening by the turbulence. It does not
exceed ∆ω < 2π∆fmeas. In a conservative approach the minimum frequency
broadening by the turbulence would be ∆ω > 2π(∆fmeas −∆fdiag), therefore
∆ω/〈ω〉 ≈ 0.15–0.3.

In contrast to plasma core parameters, a weak turbulence regime in the
plasma edge seems not to be easily accessible in GEMR. By fixing the back-
ground profiles to the initial conditions a reduction in the spectral broaden-
ing can be obtained. Except for very low frequencies the averaged frequency
strongly exceeds the frequency broadening 〈ω〉(k) ≫ ∆ω(k) (Fig. 9.4b) by
〈ω〉(k)/∆ω(k) ≈ 4–7. This is of a similar order as in the experimental obser-
vation (Fig. 9.1) where the averaged frequency exceeds the frequency broaden-
ing by 〈ω〉(k)/∆ω(k) ≈ 1.5–3.5 (taking into account broadening by diagnostic
effects discussed above this factor maybe assumed to be〈ω〉(k)/∆ω(k) ≈ 3–
7). At these low frequencies an interchange instability is present. As seen in
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Fig. 9.5b 〈ω〉(k) ≈ uE×Bk and no significant wavenumber shift is observed. Ap-
proximating velocities with the center of gravity of the frequency [358] as done
by Eq. (9.1) is not the usual evaluation method. Commonly a Gaussian is fit-
ted to the logarithmic power spectrum P (k0, ω). The center of the Gaussian is
equated with the Doppler shift as the advecting velocity. Thus the background
velocity is recovered. The averaged wavenumber 〈k〉(ω) strongly exceeds the
wavenumber broadening ∆k(ω) up to roughly (a/cs)ω < 20 (Fig. 9.4a). For low
frequencies with low frequency broadening ((a/cs)ω < 20) the phase velocity
follows the background velocity ω/〈k〉 ≈ uE×B (Fig. 9.5b). At higher frequen-
cies with significant broadening in wavenumber space (Fig. 9.4a) a propagation
in electron diamagnetic direction is observed (Fig. 9.5b). Also a frequency
dependent diagnostic will usually not resolve the wavenumber according to
Eq. (9.2), but instead estimate the velocity by correlation. Indeed, the ve-
locity estimated with TDE using a spatial separation of about 5 mm (black
dotted line in Fig. 9.5b) recovers the background velocity (blue solid line in
Fig. 9.5b) as shown by the overlap of the lines in Fig. 9.5b. In summary, this
simulation does not show any significant phase velocity in the plasma frame
nor dispersion.

Figure 9.6: Marginal strong case: Density fluctuation level (a), vorticity fluctu-

ation level (b), vorticity, growth rate γl, turbulence gradient drive rate (c) at the

beginning of the simulation. Figures taken from Ref. [12].

How linear features can get lost in drift-wave turbulence can be found in
Ref. [159], which is shortly summarized here. In the weak turbulence picture
the linear growth rate balances the nonlinear broadening γl ∼ ∆ω. This is
not the case for fully developed drift-wave turbulence in the plasma edge; the
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linear growth rate is much smaller than the rms vorticity γl ≪ 〈Ω̃〉rms [159]. As
the nonlinear spectral transfer is mainly realized by the vorticity equation, the
rms vorticity should be of the order of the frequency broadening 〈Ω̃〉rms ∼ ∆ω.
Regarding the aspect γ ∼ ∆ω fully developed drift-wave turbulence is not in
the weak turbulence regime [159].

In the beginning of the simulation the transition to turbulence occurs and
the growth phase can be studied. For t < 30 cs/a the turbulence grows ex-
ponentially as seen by the amplitude in Fig. 9.6a. The growth rate is about
γl ≈ 0.2 cs/a and are carried mainly by an interchange mode at kρs ≈ 0.1.
As the density fluctuation level increases also the rms vorticity level increases.
The rms vorticity equals to the inverse eddy-turn-over time. The vorticity is
calculated by Ω̃ = ∇2

⊥(φ̃+p̃i) and takes electrostatic potential and ion pressure
fluctuations into account. At t ≈ 25 cs/a the rms vorticity exceeds the linear
growth rate. Shortly after this at (t ≈ 35 cs/a) the growth rate drops to zero.
Also the turbulence gradient drive rate 〈ũxñ〉〈dn/dr〉/ñ2 drops strongly. The
turbulence level saturates. The turbulence has to generate its own vorticity
through nonlinear self-sustainment [359, 217]. Similar to a background shear
the nonlinear vorticity scatters small-structures apart before they can experi-
ence a linear instability. As a consequence linear features as the linear growth
rate or propagation velocity can get lost. The growth rate γl ≈ 0.2 cs/a is far
below 〈Ω〉rms ≈6–14 a/cs, the vorticity rms level of the electrostatic potential
fluctuations only is between 3–6 a/cs. As the drift-wave phase velocity is much
higher than the growth rate ωl ≫ γl it might survive. In Fig. 9.4b the black
line shows the drift-wave dispersion relation ωl = ue,diaky/(1 + ρ2s(kx + ky)

2)
which is approximated by ue,diak/(1 + 2ρ2sk

2) assuming isotropic structures
kx = ky. The drift-wave eigenfrequency (black line in Fig. 9.4b) is in a similar
order of magnitude as the spectral broadening ωl ≈ ∆ω (blue line in Fig. 9.4b).
Note that one should not compare only the eigenfrequency ωl(kl) at a partic-
ular scale with its spectral broadening ∆ω(kl), since the drift wave ωl(kl) is
also disturbed by different scales k 6= kl. The total rms vorticity level Ω̃ in-
dicated by the gray shaded area in Fig. 9.4b) is at least similar to the linear
eigenfrequency and mostly exceeds it (black line in Fig. 9.4b) which seems
to be sufficient to mix and disturb the drift wave during its propagation and
no typical drift-wave phase velocity is measured. The small-scale vorticity is
generated at a rate similar to the diamagnetic drift frequency as previously ob-
served in Ref. [217]. The structures are only advected by the background flow.
The present regime shows features of strong turbulence γl ≪ ∆ω, but as the
eigenfrequency is close to the frequency broadening, ωl ≫ ∆ω is not fulfilled.
Therefore, the presented regime is closer to strong than to weak turbulence.

9.4 Strong turbulence regime ∆ω ≫ ωl

In the strong turbulence case the gradients evolve. The spectral broadening
exceeds the averaged value for both the frequency and wavenumber (Fig. 9.7).
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Figure 9.7: Strong turbulence case: Wavenumber (a) and frequency (b) broaden-

ing shown by blue solid lines compared to the average wavenumber and frequency

shown by red dashed lines. The broadening exceeds the averaged values but is of

the same order of magnitude. Data is shown in the laboratory frame of reference.

Figures taken from Ref. [12].

As the broadening does not exceed the averaged values by orders of magnitude
(∆ω/〈ω〉 ≈ 3

2
, ∆k/〈k〉 ≈ 4

3
) the simulation also seems to marginally be in the

strong turbulence regime. As we will see later, the simulations are in the strong
turbulence regime.

Figure 9.8: Strong turbulence case: Wavenumber-frequency power spectrum

P (k, ω) of density fluctuations at ρ = 0.995. Data is shown in the laboratory

frame of reference (a) and in the plasma frame of reference (b). Figures taken from

Ref. [12].

The wavenumber-frequency spectrum of density fluctuations in the drift
plane at the outboard midplane is shown in Fig. 9.8. The power distribution
follows more or less the mean convective velocity ω = uE×Bk as indicated by
the white solid line. The mean convective velocity is in electron diamagnetic
direction, which is defined negative here. In Fig. 9.8a it appears as if the tur-
bulence amplitude is symmetrically spread around ω = uE×Bk. By integrating
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Figure 9.9: Strong turbulence case: Averaged frequency 〈ω〉 in dependence of the

wavenumber (a) and averaged wavenumber 〈k〉 in dependence of the frequency ω (b)

(both red solid lines) in comparison with the mean convective velocity ω = uE×Bk

(blue dashed line) in electron diamagnetic direction. The phase velocities in the

plasma frame are indicated by the arrows. The l.h.s. shows a phase velocity in ion

diamagnetic, the r.h.s. in electron diamagnetic direction. The velocity as measured

by a DR is included by the dotted black line in (a), the corresponding one by TDE

technique is included as a black dotted line in (b). Data is shown in the laboratory

frame of reference. Figures taken from Ref. [12].

in frequency space to estimate the mean frequency (Eq. (9.1)) a propagation in
ion diamagnetic direction in the plasma frame is observed (see Fig. 9.9a). This
is expected for ITG modes. However, if we integrate in wavenumber space to
estimate the mean wavenumber (Eq. (9.2)) and compare it against frequency,
modes at higher wavenumber propagate in electron diamagnetic direction in
the plasma frame (Fig. 9.9b), which is characteristic of drift waves. Indeed
estimating the velocity by TDE using a spatial displacement of 5 mm results
in the phase velocity as shown by the black dotted line in Fig. 9.9b which is
roughly two times the background E × B velocity. As the E × B velocity
is roughly the ion diamagnetic velocity in electron diamagnetic direction the
corresponding phase velocity as measured by TDE is the electron diamagnetic
velocity as expected for electrostatic drift waves.

In summary, the structures propagate in ion diamagnetic direction at a
given wavenumber and in electron diamagetic direction at a given frequency.
In a linear framework this seems impossible. The reason of the discrepancy
of different phase velocities 〈ω〉/k and ω/〈k〉 is the nonlinear broadening. In
the case of drift-wave turbulence the power is transferred to low frequencies
and low wavenumbers [111, 35, 10, 9] leading to the power spectrum being
skewed to low wavenumbers and low frequencies. This is called the inverse
energy cascade [89]. At a given wavenumber k the power is transferred to
low frequencies responsible for a reduction of the effective frequency 〈ω〉 and
therefore also propagation velocity 〈ω〉/k compared to the background velocity.
If the background velocity is in the electron diamagnetic direction, this leads
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to a propagation in ion diamagnetic direction in the plasma frame.
At a given frequency ω the power is transferred to lower wavenumbers.

This leads to a reduction of the effective wavenumber 〈k〉 at this frequency
and therefore to an increase of the effective propagation velocity ω/〈k〉. If the
background velocity is in the electron diamagnetic direction, the propagation
velocity in the plasma frame is also in the electron diamagnetic direction.

By mapping the wavenumber-frequency power spectrum P (k, ω) to the
plasma frame, P (k, ω − uE×Bk), it has to be taken into account that in the
present case the background velocity is time dependent uE×B(t). Therefore,
every sub time interval has to be mapped in the plasma frame and the ensem-
ble average is done afterward. The wavenumber-frequency power spectrum
P (k, ω) in the plasma frame is shown in Fig. 9.8b. It exhibits clear broadband
characteristics. No signs of dispersion are observable. As in the present regime
no eigenfrequency ωl = 〈ω〉 − uE×Bk is detectable, ωl ≪ ∆ω. In Sec. 9.3 we
have seen that also the growth rate is negligible γ ≪ ∆ω. Therefore, the pre-
sented regime is not only marginal but clearly in the strong turbulence regime
(ωl, γl ≪ ∆ω).

A shift to low frequencies due to the nonlinear energy transfer as observed
by the red line in Fig. 9.9a is not observed by the Doppler reflectometry [346,
345, 256] (Fig. 9.1b). By fitting a Gaussian the skewed part at particular
low frequencies of the spectrum P (k0, ω) which is the result of the cascade
is basically ignored. In the average (Eq. (9.1)) the impact of this nonlinear
shift is much stronger as the power is taken linearly and not logarithmically
into account. The resulting Doppler shift is shown by the black dotted line in
Fig. 9.9a. The Doppler shift is more or less dispersionless and very close to the
mean E×B velocity, which is basically in agreement with Refs. [346, 345, 256].

9.5 Concluding remarks on strong L-mode tur-

bulence

In this chapter the influence of strong fluctuation levels on the plasma turbu-
lence just inside the last closed flux surface in the edge of magnetized confined
plasmas is investigated by means of gyrofluid simulations. At typical fluctu-
ation levels observed in this region, the rms vorticity level is high enough to
suppress linear features of the turbulence. The physical reason is that the
mixing rate of the turbulence exceeds the typical rates of the linear insta-
bility or wave (like growth rate or dispersion). The growth rate is certainly
suppressed in any case, making linear instability analyses nonrelevant in this
region. Instead of linear instabilities, the turbulence is driven by nonlinear
self-sustainment. At sufficiently high fluctuation levels even the phase velocity
can be suppressed. In the plasma core, where the fluctuation levels are much
lower, a characterization of turbulence by linear stability analysis still makes
sense. However, one should not transfer results, i.e. that most linear features
of the turbulence transmit to the nonlinear regime, from the core to the edge.
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At high-confinement regimes (I-mode and H-mode) in the plasma edge the
fluctuation level is smaller than in L-mode. But certainly, the fluctuation lev-
els are high enough to suppress the growth rate of any micro-instability (except
for KBMs perhaps). Whether dispersion is relevant under this conditions has
to be investigated in the future.
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Chapter 10

Turbulence at the L-H
transition

10.1 Zonal flow as trigger of the L-H transition

Theory predicts that the L-H transition can be explained by an intermedi-
ate, quasi-periodic transient stage, where turbulence, zonal flow, mean shear
flow and the pressure gradient are coupled [360, 361]. The physical picture
of this model is depicted in Fig. 10.1 and shows the variation of turbulence
amplitude, zonal flow strength, and ion pressure gradient in dependence of
the heating power. We will refer to this model as the Kim-Diamond model.
Increasing the heating power does not lead to an enhancement of the pres-
sure gradient in L-mode. Instead only the fluctuation level of the turbulence
increases. In this sense, this fulfills the definition of profile stiffness, even
though the ad-hoc model of transport stiffness as introduced in Sec. 4.4 might
be not fulfilled. With increasing fluctuation level also the drive of the zonal
flow increases (Secs. 3.6 and 5.2.3). At some point the drive overcomes the
zonal flow damping rate. A finite zonal flow then begins to grow and extract
kinetic energy from the turbulence and thereby acts to suppress the turbu-
lence amplitude. This leads to saturation of the turbulence. However, as
turbulence is suppressed the zonal flow drive also reduces. For input pow-
ers just below the transition threshold, self-regulation between turbulence and
zonal flows occurs as an oscillatory behavior, characteristic for predator-prey
systems (Sec. 3.6.3). These predator-prey oscillations have been observed in
various devices [37, 362, 363, 364, 365]. This regime is called the I-phase [362].
The I-phase must not be confused with the I-mode. The I-mode is
an improved energy confinement regime with H-mode-like energy confinement
and L-mode-like particle confinement (see chapter 11). Back to the I-phase.
Zonal flows can trigger the transition to high confinement by regulating the
turbulence level and associated transport until the mean shear flow is high
enough to suppress the remaining turbulence and associated transport, caus-
ing the pressure gradient to increase by radial force balance. As a result, the
mean radial electric field shear increases to the point where it can maintain a

129
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state of suppressed turbulence. Therefore, for sufficient high heating power (in
H-mode) the pressure gradient increases with heating power and the profile
is not stiff. For a faster heat power ramp, a classic L-H transition can occur,
characterized by a single burst of zonal flow energy that extracts the most or
all of the energy from the turbulence. This is followed by the collapse of the
turbulence and onset of a strong radial electric field shear sustained by the ion
pressure gradient [366].

Figure 10.1: The picture of the L-H transition according to the Kim-Diamond

model [360, 361].

All experimental investigations before 2012 have been dedicated to the
temporal relationship between turbulence amplitudes, zonal flow amplitudes,
and the evolution of the sheared background mean radial electric field; the
results of these studies have been qualitatively consistent with the predator-
prey model. However, an essential piece of the physics – namely the nonlinear
exchange of energy between the turbulence (the prey) and the zonal flow (the
first predator) in the presence of a background mean sheared E×B flow (sec-
ond predator) has not been study during the L-H transition. In here presented
work [13], the first study of this kind has been performed by inserting a suit-
ably arranged Langmuir probe array inside the separatrix region of a discharge
which undergoes an L-H transition. This provides the first quantitative mea-
surement of the energetics of turbulence-zonal flow coupling during the L-H
transition.

In order to motivate the data analysis strategy, it is useful to recapitulate a
schematic set of coupled predator-prey equations for the zonal-flow – drift-wave
system (Sec. 3.6.3). These are

∂

∂t
ǫT = γeffǫT − 〈ũrũθ〉

∂uZF
∂r

, (10.1)

∂

∂t
ǫZF = 〈ũrũθ〉

∂uZF
∂r
− µǫZF . (10.2)

Here ǫT = 〈ũ2〉 and ǫZF = 〈uZF 〉2 are the turbulence and zonal flow energies,
respectively, and γeff is a total, effective growth rate, including gradient drive,
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mean shearing and nonlinear mixing. Thus γeff = γeff (∇T,∇n, ´〈u〉, ǫT , . . .),
which is addressed experimentally by studying fluctuation recovery rates γeff
during the limit cycle regime occurring at the power threshold. The energy
transfer given by the production term (Sec. 3.6.3)

P⊥ = 〈ṽrṽθ〉
∂〈vZF 〉
∂r

, (10.3)

is the Reynolds work of the fluctuations on the flow. 〈ũrṽθ〉 ∼ ±∂uZF/∂r in-
dicates negative (i.e. zonal flow growth) or positive (i.e. zonal flow damping)
viscosity, respectively. This Reynolds work term is usually measured by bico-
herence studies (Secs. 7.3.1 and 7.3.2) [142, 144, 301, 302, 317, 318, 367, 368].
However, bispectral analysis needs long stationary time series, which are gen-
erally not available in high-temperature fusion plasmas. Furthermore, the L-H
transition is inherently non-stationary. Therefore, for estimating the energy
transfer between the shear flow and the turbulence, we use an approach sim-
ilar to that in Refs. [339, 11] in which the relevant quantities are computed
in the time-domain using suitably filtered and averaged quantities. This ap-
proach is based on an K-ǫ model introduced in Sec. 3.6.2. Here µ is the total
zonal flow damping rate, including collisional, charge exchange, and nonlinear
damping. We do not present a direct measurement of µ here, but this might
be approached by studying the decay rate of the zonal flow energy in the H-
mode, when turbulence damping eliminates the Reynolds work source in the
ǫZF equation (10.2).

The obvious criterion for triggering of the L-H transition is ∂ǫT/∂t < 0,
with a positive phase between 〈ũrũθ〉 and ∂uZF/∂r - i.e. negative viscosity
which results in a net decay of the fluctuation energy. In this case, the zonal
flow is sinking energy from the turbulence faster than the turbulence grows.
This requires

〈ũrũθ〉∂〈uZF 〉
∂r

γeffǫT
> 1 (10.4)

which emerges as a natural figure of merit for the collapse of the turbulence
and the onset of transition. In terms of experimentally measurable quan-
tities, Eq. (10.4) requires that the turbulence-to-zonal flow energy transfer
P⊥ exceeds the change in turbulence intensity during a recovery period, i.e.
P⊥/γeff〈ṽ2〉 > 1. This condition then defines a criterion which the normal-
ized energy transfer must satisfy. Thus a suitably arranged experiment can
measure the appropriate quantities to test this model of the L-H transition.

Such an experiment has been carried out on the EAST tokamak [369]. The
Reynolds stress has been measured with a Langmuir probe array consisting
of three tips [368, 370, 364]. The probe array has been inserted ∼ 1.5 cm
inside the separatrix as estimated by observing a break in the slope of the DC
floating potential profile and also by estimating the separatrix position from
reconstructions of the MHD equilibrium. Floating potential fluctuations are
interpreted as plasma potential fluctuations. As discussed in Sec. 6.1 floating
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potential measurements in high temperature experiments like EAST have to
be taken with caution. Therefore, absolute numbers of the velocity might be
corrupted by electron temperature fluctuations. Even the sign might change.
However, also the structures in the electron temperature are tilted by the flow
and therefore the Reynolds stress measurements by floating potential mea-
surements should be proportional to the Reynolds stress and at least give the
correct trend. One big advantage of Eq. (10.4) is that most systematic errors
(even changes in sign) cancel each other due to the normalization.

The discharge shown in Fig. 10.2 in red has been reported in detail in
Ref. [364]. For comparison also another discharge at similar plasma parame-
ters is included in blue in the figures. Basic features of the discharge are shown
in the original publications [13, 364]. At a second probe plunge the plasma
is in the I-phase which exhibits multiple limit cycles. During this phase a
zonal flow has been identified as a coherent mode at 2 kHz, which is driven by
broadband turbulent fluctuations between 30 and 100 kHz [364]. The scale sep-
aration of the relevant quantities is necessary to extract their energy transfer
by Eq. (10.3) which through the time-averaging operation requires the iden-
tification of the turbulent scales and (separately) the zonal flow scale. The
effective growth rate γeff of the the first L-H transition is approximated by
the turbulence recovery rate during the I-phase of the second plunge at similar
parameters. The average turbulent energy recovery time has been estimated
from 27 limit cycle oscillations in the dithering phase and found to be approx-
imately 90 µs [13]. The net power input into the turbulence, which varies in
proportion to the turbulent kinetic energy during the transition, is then given
by γeff ṽ

2
⊥.

Using the low-frequency intensity as an indicator for the zonal flow inten-
sity is a common approach [367, 371, 368, 334]. Consistent with the observed
frequencies for turbulent and flow scales, the Reynolds stress during the L−H
transition is calculated from high pass (f > 15 kHz) filtered floating potential
fluctuations and the sheared flow from low pass (f < 2 kHz) filtered float-
ing potential fluctuations which are then used to estimate the electric field
and E × B drift motion. This scale separation is consistent with the previ-
ously identified regimes of turbulence and zonal flow in the EAST device [364];
however the results discussed below are not sensitive to the precise choice of
these frequency bands and thus do not change the conclusions arising from
the analysis. Measurements show that the poloidal velocity at the separatrix
is small compared to the values at 1.5 cm inside. We thus take the poloidal
velocity at the separatrix to be zero and calculate ∂r〈uθ〉 ≈ −〈uθ〉/∆r, with
∆r = 1.5 cm being the distance to the separatrix, allowing us to then estimate
P⊥ ≈ 〈ũrũθ〉〈uθ〉/∆r. It is unlikely that the probe is any deeper than 1.5 cm
inside the LCFS (otherwise it would overheat and inject large quantities of im-
purities into the plasma). Therefore the estimated production values (shown
in Fig. 10.2d) and e)) likely represent minima; actual production rates could
be higher by as much as a factor of 2-3 determined mostly by uncertainties in
the depth of probe penetration.
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Figure 10.2: Dα (a), turbulent (b) and flow (c) fluctuation amplitude during L-H

transition. Energy transfer between turbulence and shear flow (d) and normalized

to turbulent fluctuation amplitude and energy recovery time (e). Data from 1.0-1.5

cm inside LCFS is denoted by blue and red curves. Data taken 1 cm outside of the

LCFS in the SOL region denoted by green curve. Measurements have been carried

out in EAST. Figure adapted from [13].
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Figure 10.3: Hodograph of turbulent and flow energies during L-H transition.

Measurements have been carried out on EAST. Figure adapted from [13].

Figure 10.2 shows the time traces of the Dα signal indicating an L-H tran-
sition. Here we have set t = 0 to correspond to the beginning of the drop in Dα

for all of the discharges shown. To guide the eye the L-H transition is indicated
by a gray box. The relation between the energy in the shear flow and the tur-
bulence can also be represented by a hodograph as shown in Fig. 10.3 similar
to that of Ref. [363]. In Figures 10.2 and 10.3 we define several key periods in
the transition as phase (I), phase (II), and phase (III). The evolution of the
kinetic energy in the turbulence and low frequency flow across this transition
are shown in Figs. 10.2b and c. The results show that 3 ms before the L-H
transition the turbulent fluctuation amplitude (Fig. 10.2b) increases defining
phase (I) of the transition. At about 1 ms before the L-H transition the ki-
netic energy in the low frequency flow (Fig. 10.2c) builds up and the energy in
the higher frequency fluctuations (Fig. 10.2b) drops, defining phase (II) of the
transition. The growth of the flow appears on the fast, turbulent time scales
(i.e. 100’s of µs) providing a strong indication that the flow is turbulence gen-
erated, and therefore a zonal flow. We observe a small phase lag between flow
and turbulent energy (Fig. 10.2b and c) consistent with the predator (zonal
flow) following the prey (turbulence) in time. Once the shear flow grows to
large enough amplitude, the turbulence induced flow shear then causes a re-
duction in the turbulent amplitude and the flow then begins to decay, defining
phase (III) in the transition, consistent with observations in TJ-II [363]. The
delay between the reduction in the turbulent amplitude and the drop of the Dα

(Fig. 10.2a and b) most likely corresponds to a combination of the time needed
for cross-field transport and parallel flow from the midplane region to the di-
vertor region where the Dα emissions are observed. The kinetic energy transfer
P⊥ from the turbulence into the shear flow continues to increase while the tur-
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Figure 10.4: Predator-prey model with fast power ramp up. Evolution of the

turbulent, zonal flow (ZF) and mean flow (MF) amplitudes (a), the zero frequency

ZF shearing (b) and normalized energy transfer (c). Model is described in detail in

[366], figure adapted from [13].

bulence amplitude is decreasing (Fig. 10.2d) during phase (III), while the L-H
transition is approached as shown in Fig. 10.2d). This confirmed the earlier
conjecture above the low frequency flow being actually driven by a transfer
of energy from the turbulence. About 1 ms before the L-H transition occurs,
the kinetic energy transfer P⊥ peaks. To evaluate whether this energy transfer
is sufficient to reduce the turbulence level significantly the transfer rate must
be compared to the energy input rate into the turbulence as discussed above.
Using experimental data, we find the ratio of the production, P⊥, normalized
by γeff〈ũ2⊥〉 in Figure 10.2e. This ratio indicates the power transfer rate into
the shear flow normalized by the power transfer into the turbulence from the
combined effects of the free energy source and the background Er shearing
during periods of weak flow. As the Dα signal starts to drop (the traditional
measure of the start of the L-H transition) the turbulence has already reached
its minimum. Commensurate with the drop in Dα signal the flow production
rate surpasses the turbulence recovery rate and the turbulence energy collapses
to nearly zero. After the peak of the normalized production rate, the produc-
tion P⊥ remains small. The low frequency flow begins to recover (Fig. 10.2c),
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suggesting that after the transition the flow is sustained by non-turbulent pro-
cesses. The growth of the radial electric field and associated flow shear after
the drop in Dα light has already been shown to be associated with the growth
of the ion pressure gradient [372]. No ion temperature profiles are available
here, but the observation here is consistent with earlier result. Furthermore,
in an analysis of similar data obtained just outside of the separatrix (shown
in green in Fig. 10.2), no such transient behavior is observed. This indicates
that these observations are isolated to the region inside the LCFS, and that
on open field lines the turbulence amplitude simply collapses after the H-mode
transition, as has been reported earlier [373].

The one-space, one-time multiple shearing predator-prey model [366] is
used for comparison with the experimental results reported here from EAST.
A fast ramp of the heating power is used to model the regular L-H transition.
Under these conditions no limit-cycle oscillations are observed. Instead, a
single burst of zonal flow energy and turbulence collapse is observed, followed
by a classic L-H transition. A typical time trace around the L-H transition is
shown in Fig. 10.4. Here Fig. 10.4a depicts the evolution of the amplitudes of
the turbulence I, the zonal flow E2

0 and the mean flow. The modest decrease
of turbulence I in the early part of the model evolution is triggered by a rapid
growth of the mean flow, or a decorrelation of turbulence drive by mean flow
shearing. The coupling between the zonal flow and the turbulence is given by
α0IE

2
0 , where α0 is the coupling parameter between them. As seen in Fig. 10.4b

the coupling increases toward the L-H transition. A small increase of zonal
flow and a decrease of turbulence leads to a large peak in the production
rate, normalized to the net energy input rate (Fig. 10.4c). This peak is a
trigger of a rapid quench of turbulence, i.e. the L-H transition. Comparing
the experimentally observed normalized energy production P⊥/γeff ũ

2
⊥ to the

results in Fig. 10.4c, we observe a very similar peaking in the normalized energy
production rate in both experiment and model.

Obtaining these types of probe data - which provide the key physics data
needed to test the role of turbulence-zonal flow coupling in the L-H transition
- is technically challenging and thus data from only a few discharges are avail-
able. Taken in isolation, such observations would not be sufficient to make a
firm claim that the role of the zonal flow as a trigger mechanism for the L-H
transition has been conclusively demonstrated. However, the results reported
here cannot be viewed in isolation, but rather must be seen as building on the
substantial body of evidence that turbulence-driven zonal flows or GAMs play
an important role in triggering the L-H transition. For example, the observed
transient shear flow just prior to the L-H transition certainly exhibits several
features that are consistent with it being a zonal flow. In particular, it shows
a strong bicoherence and Reynolds stress modulation indicating the nonlinear
drive by the turbulence, features a toroidal mode number of zero and exhibits
the characteristic predator-prey oscillations [364]. These features have been
observed not only in EAST [364]. The limit-cycle behavior between the radial
electric field and the turbulent amplitude just prior to the L-H transition has
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also been shown in TJ-II [363]. Afterward, ASDEX-Upgrade [362] and DIII-D
[365] have investigated these limit-cycles in detail documenting the existence
of the I-phase. Both devices reported strong oscillations in the shearing rates
in this regime showing the importance of time-varying shear flows during the
limit-cycles. Where ASDEX Upgrade reported geodesic acoustic modes re-
sponsible for the limit-cycle behavior [362], the work on DIII-D points to low
frequency zonal flows [365]. However, both emphasize the importance of tur-
bulence generated shear flows. The new evidence reported here builds on these
earlier results by investigating the physics of the trigger mechanism directly,
by estimating the suppression strength due to the generation of these shear
flows and by comparing the generation rate of the shear flows to the energy
input rate from the free energy source. The present estimation (even though
rough, but novel) shows that the zonal flow is strong enough to suppress the
turbulence over a sufficient time so that a transition into the H-mode can oc-
cur. A comparison with the predator-prey model is able to reproduce these
essential features. Taking together all these observations in different devices
with different diagnostics and the good agreement with present modeling [366]
provide evidence that the basic physical mechanism triggering the L-H transi-
tion is reasonably well captured by the Kim-Diamond model [361]. However,
it is explicitly pointed out that other routes to the L-H transition may also
exist, too.

In summary, the energies of as well as the energy transfer between low
frequency shear flows and the ambient turbulence have been estimated during
the L-H transition for the first time. In an L-H transition that does not
exhibit an I-phase (as in [362, 365]), a transient increase in the zonal flow and
turbulent stress are observed showing the important role of zonal flows in the
L-H transition. When the rate of energy transfer from the turbulence into the
zonal flow becomes comparable to the power input into the turbulent kinetic
energy, then the turbulence amplitude collapses. The turbulent transport then
drops, resulting in a decrease in the fueling of the open field line region. As a
result the Dα signal in the divertor drops. Based on earlier results, it can be
expected that the edge pressure gradients build up, resulting in the formation
of a growing radial electric field just inside the LCFS which then sustains the
turbulence suppression via the E × B shearing mechanism. As a result, the
system is driven into the H-mode. The results reported here thus indicate that
the strong turbulent suppression associated with this energy transfer from the
turbulence into the zonal flow acts to trigger the L-H transition.
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10.2 Ballooned transport induced Stringer-spin

up

10.2.1 Magnetic signature around the L-H transition in
ASDEX Upgrade

It has been observed that magnetic field fluctuations are strongly correlated
with turbulent fluctuations in the I-phase of ASDEX Upgrade [62, 374]. Figure
10.5 shows different fluctuating time traces: the top row shows the Doppler
shift (Fig. 10.5a) and the amplitude (Fig. 10.5b) measured by Doppler reflec-
tometry (Sec. 6.2.2) proportional to velocity and density fluctuations, respec-
tively. Figure 10.5c shows the fluctuations in the divertor current proportional
to the transport. The bottom row shows the poloidal magnetic field fluctu-
ations Ḃθ measured at C09-23 (see Fig. 6.4). By comparing these four time
series the magnetic field fluctuations are strongly correlated with the other
signals and show the clearest signature. The predator-prey model [360, 361]
(see Fig. 10.1) introduced in previous section (Sec. 10.1) does not include any
electromagnetic effects. The question arises what is the reason of these fluctu-
ations and what are their role within the I-phase?

Figure 10.5: A transition from L-mode to I-phase in ASDEX Upgrade indicated

by the vertical line. Fluctuations in the velocity are shown by the Doppler shift fD

(a), the amplitude of the fluctuations can be approximated by the amplitude AD

measured by the Doppler reflectometer (b), the divertor current Idiv is proportional

to the transport (c) and the time derivative of poloidal magnetic field fluctuations

Ḃpol measured above the inner divertor C-09-23 (d).

To obtain a global picture of the poloidal mode structure the cross-correlation
between different poloidally displaced Mirnov coils on a poloidal cross-section
has been calculated. During the I-phase in ASDEX Upgrade the magnetic
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Figure 10.6: Poloidal mode structure from cross-correlation of poloidally displaced

Mirnov coils (C09-09 is the reference coil) at the same toroidal position. Figure

taken from Ref. [14]. Details of this particular discharge can be found in Ref. [375].

The shown feature, however, is universal for the I-phase in AUG.

fluctuations exhibit a pronounced up-down asymmetry as shown in Fig. 10.6.
This corresponds to a poloidal mode number of m = 1. For the measurement
of the toroidal mode structure an array of poloidal field pick-up coils, which is
spread along the toroidal coordinate at fixed poloidal angle, was used (C09-17,
C10-21, C04-17, C05-21, C07-17 in Fig. 6.4). The mode number is determined
by the slope of a linear fit through the coil phases plotted over the coil posi-
tions [287]. The low-frequency oscillations exhibit a dominant n = 0 structure,
where n is the toroidal mode number [14]. Therefore the magnetic structure
is toroidally symmetric (n = 0) and up-down asymmetric (m = 1).

Similar magnetic oscillations have been recently observed in the I-phase of
EAST [26] and HL-2A plasmas [376]. It has been proposed that these mag-
netic fluctuations are induced by the fluctuations of the equilibrium pressure
gradient due to the equilibrium condition ∇p = J × B [376, 26]. However,
such fluctuations would exhibit an in-out asymmetry as they are carried by
the Pfirsch-Schlüter current (〈J̃‖ cos s〉 with parallel current J̃‖, ballooning an-
gle s and zonal average 〈·〉 as described below). This is explained in detail
in Sec. 5.2.3. While the poloidal symmetry of the fluctuations has not been
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studied in the tokamak HL-2A, the magnetic fluctuations in EAST show an
up-down asymmetry instead of the expected in-out asymmetry of the Pfirsch-
Schlüter current. The fluctuations are essentially the same as those in the
M-mode (which seems to be the I-phase too) observed in JET with ’unknown
origin’ [377, 378] showing also an m = 1 mode with up-down asymmetry. Re-
cently also the GLOBUS-M spherical tokamak found an up-down asymmetry
of the poloidal magnetic field oscillations during I-phase [379].

Where additional Pfirsch-Schlüter current perturbations cannot be excluded,
on AUG the up-down asymmetry 〈J̃‖ sin s〉 is much more pronounced in am-
plitude than the in-out asymmetry [374]. Therefore, the focus of the present
investigation is on the up-down asymmetric component. As shown in the fol-
lowing (Sec. 10.2.2) these fluctuations can result as a response to the transport
events during the I-phase and are not related to the Pfirsch-Schlüter balance
of the equilibrium.

Furthermore, as shown in Ref. [374] the limit cycle oscillations show mag-
netic precursors similar to those of type-III ELMs (Sec. 2.2.2). Also type-III
ELMs can be modeled by reduced models [380, 381]. The limit cycles observed
in reduced models of type-III ELMs result from the interaction of the gradient
with the turbulence (as those limit cycles shown on the r.h.s. of Fig. 10.17),
while limit cycle oscillations resulting from the interaction of zonal flows and
turbulence should favor the limit-cycle behavior as shown on the left hand
side of Fig. 10.17. These typ-III-ELM-like precursors are also observed in the
I-phase of COMPASS [382]. A model describing these magnetic fluctuations
based on the DALF model has been developed [383].

10.2.2 Stringer spin-up sideband balance

In the following an evolution equation for the up-down asymmetry in current
and flows is deduced from the DALF model (see Sec. 5.2) similar to the deriva-
tion of the in-out asymmetric current and flow, which is the Pfirsch-Schlüter
current or flow (see Sec. 5.2.3). Whereas the Pfirsch-Schlüter current is cou-
pled to the zonal flow and geodesic acoustic mode (see Sec. 5.2.3) the up-down
asymmetric current will be shown to be coupled to the ballooned transport
and the Stringer spin-up.

The experimentally observed up-down asymmetry (sin s) in the parallel
current J̃‖ as described in the second section can be written as 〈J̃‖ sin s〉. The
evolution can be obtained from Eq. (5.11) multiplied with sin s for the up-down
asymmetry and zonally averaged afterward

∂
∂t
〈(β̂Ã‖ + µ̂J̃‖) sin s〉 = − ∂

∂x
〈µ̂ũExJ̃‖ sin s〉

+〈b̃x
(
∂p̃

∂x
− ∂φ

∂x

)

sin s〉

−〈(p− W̃ ) cos s〉
−C〈J̃‖ sin s〉. (10.5)
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Here, 〈sin s∇‖p〉 = 〈∇‖(p sin s)〉 − 〈p∇‖ sin s〉 = −〈p cos s〉 is used since the
zonal average of parallel derivatives vanishes. Up-down asymmetric current
perturbations are coupled to the in-out asymmetric pressure and vorticity side-
bands via 〈(p− W̃ ) cos s〉 which will be investigated later. Due to 〈ũ‖ sin s〉 =
〈ṽ‖ sin s〉+ 〈J̃‖ sin s〉 up-down asymmetric current perturbations are coupled to
up-down asymmetric flow perturbations which are investigated next. The up-
down asymmetry in parallel momentum evolves according to 〈Eq. (5.12) ·sin s〉

ǫ̂ ∂
∂t
〈ũ‖ sin s〉 = − ∂

∂x
〈ǫ̂ũExũ‖ sin s〉

−〈b̃x
∂p̃

∂x
sin s〉

+〈p cos s〉 − µ‖〈ũ‖ sin s〉. (10.6)

Up-down asymmetric flows are driven by the up-down asymmetric radial-
parallel Reynolds stress 〈ǫ̂ũExu‖ sin s〉 and saturated by the parallel ion viscos-
ity µ‖. The up-down asymmetric radial-parallel Reynolds stress is the up-down
asymmetric parallel momentum transport, which is large as the symmetry of
the gyrokinetic distribution function f(s, v‖) = f(−s,−v‖) gives an up-down
asymmetric statistical moment of parallel momentum and due to ballooning of
the potential the parallel momentum transport is up-down asymmetric [384].
This asymmetry is also the reason for the need of parallel symmetry breaking
for intrinsic rotation, which is not needed to generate an up-down asymmetric
flow. Additionally a coupling of the up-down symmetric flow 〈ũ‖ sin s〉 with
the in-out asymmetry in the pressure 〈p cos s〉 is found, where the evolution of
the latter is given by 〈Eq. (5.10) · cos s〉

∂
∂t
〈pe cos s〉 = − ∂

∂x
〈ũExpe cos s〉

− ∂

∂x
〈b̃xṽ‖ cos s〉+ 〈J̃‖ sin s〉 − 〈ũ‖ sin s〉

−ωB
2
〈(∂p
∂x
− ũy) sin 2s〉. (10.7)

The in-out asymmetry in the pressure can be understood as an in-out move-
ment of the plasma column or by a local flattening of the pressure profile on the
low field side. It can result from ballooned transport 〈ũExpe cos s〉. Another
drive is an up-down asymmetric parallel electron flow 〈ṽ‖ sin s〉, which is con-

nected to the parallel ion flow and current by 〈ṽ‖ sin s〉 = 〈ũ‖ sin s〉−〈J̃‖ sin s〉.
In particular the ballooned transport 〈ũExpe cos s〉 can be expected to be quite
large and could provide the most important turbulent drive for the here de-
scribed sideband balance. Elongation of the magnetic equilibrium introduces
m = 2 modes [385, 386], which appear to drive in-out asymmetric pressure
disturbance by 〈( ∂p

∂x
− ũy) sin 2s〉 which contains coupling to the pressure gra-

dient ∂p/∂x as well as to the perpendicular flow ũy = ∂W̃/∂x with ion stream
function W̃ . The term arises from the curvature 〈cos sK(φ̃− p)〉 = 〈ωB ∂

∂x
(φ̃−
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p) cos s sin s〉 with the geodesic contribution to the curvature K = ωB sin s ∂
∂x
.

Now cos s sin s = 1
2
sin 2s induces the coupling to the second harmonic. In

general, a disturbance of the axis-symmetry of the magnetic equilibrium can
drive in-out asymmetric pressure perturbations as well as in-out asymmetric
flow perturbations.

Figure 10.7: Schematic view of the Stringer spin-up sideband balance.

The evolution of this sideband system is closed by the in-out asymmetric
vorticity 〈Ω̃ cos s〉 = 〈∇2

⊥W̃ cos s〉
∂
∂t
〈Ω̃ cos s〉 = − ∂2

∂x2
〈ũExũy cos s〉

+
∂2

∂x2
1

β̂
〈b̃xb̃y cos s〉

+〈J̃‖ sin s〉 −
ωB
2
〈∂p
∂x

sin 2s〉. (10.8)

Besides the disturbance of the axis-symmetry of the equilibrium, the in-out
asymmetric vorticity is coupled to the ballooned perpendicular Reynolds stress
and again the up-down asymmetry in the parallel current. Therefore also
in an up-down symmetric equilibrium a ballooned perpendicular Reynolds
stress leads to up-down asymmetric parallel current perturbations 〈J̃‖ sin s〉 =
∂2

∂x2
〈ṽExũy cos s〉. Due to the coupling of the in-out asymmetry in the pressure

and flow, up-down asymmetric parallel current perturbations can be expected.

In conclusion, the observed up-down asymmetric magnetic fluctuations
〈J̃‖ sin s〉 are coupled to up-down asymmetric flow perturbations 〈ũ‖ sin s〉 via
〈ũ‖ sin s〉 = 〈ṽ‖ sin s〉 + 〈J̃‖ sin s〉 and in-out symmetric pressure 〈p cos s〉 via
Eqs. (10.5) and (10.7). Furthermore it is coupled to vorticity (as well as binor-
mal shear flow) 〈Ω̃ sin s〉 perturbations via Eqs. (10.5) and (10.8). Ballooned
transport and Reynolds stress as well as the up-down asymmetric parallel-
radial Reynolds stress are involved in the sideband balance. All these quan-
tities cannot be expected to be small a priori. The induction of an up-down
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asymmetric parallel flow 〈ũ‖ sin s〉 by the ballooned transport 〈ṽExpe cos s〉 is
known for a long time. This is the Stringer spin-up [387, 388].

Based on the above derivation of the evolution equation of the up-down
asymmetry in the current a simplified picture can be drawn as shown in
Fig. 10.7. Strongly ballooned transport 〈ũExpe cos s〉 leads to an in-out asym-
metry in the pressure 〈p cos s〉, which directly induces an up-down asymmetry
in flows and currents.

The presented set of equations (10.5)-(10.8) allows for multiple limit-cycle
scenarios as shown in detail in the original reference [14].
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Figure 10.8: Stringer spin-up relaxation frequency fSSU = cs/(2πqR) against

limit-cycle frequencies of several AUG discharges.

As an example the ion relaxation of the ballooned transport is shown
here. Replacing the parallel electron Eq. (10.5) by that of the ions (10.6)
gives a coupling of the ballooned transport with the up-down asymmetric
flow, which is the Stringer spin-up [387, 388]. Linearizing both equations

gives iωSSU〈ũ‖ sin s〉 = (1+τi)
ǫ̂
〈pe cos s〉 and iωSSU〈pe cos s〉 = −〈ũ‖ sin s〉 corre-

sponding to an eigenfrequency of ωSSU =
√

(1 + τi)/ǫ̂ (renormalization gives

fSSU = csi/(2πqR)). Note that this scaling is by a factor 1/(
√
2q) smaller than

the GAM frequency. This scales as fSSU ∼ 1/q ∼ Ip similar to the observa-
tion in the M-mode in JET [377] which scales with the poloidal Alfvén velocity
[378]. It cannot explain the result of the multivariate linear regression for AUG

limit cycles which gives fI−phase ∼ 1/βt,pedq
3/2
95 with the toroidal plasma beta

βt,ped measured in the pedestal [374]. Still, a comparison with the recent data
base of I-phase discharges [374] shows an overall good qualitative agreement
(Fig. 10.8). The experimental frequencies are below the frequency predicted by
the Stringer spin-up relaxation frequencies. It seems that this relaxation gives
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an upper boundary for the I-phase frequency. The inclusion of any kind of
damping in the equation system would reduce fSSU . However, considering the
derivation of fSSU is done for a simple large aspect ratio circular plasma. The
corresponding GAM frequency of fGAM =

√
2csi/2πR also predicts smaller fre-

quencies as actually measured in the edge in AUG [389]. Taken divertor shaped
equilibria may substantially improve the agreement between experiment and
theory.

10.3 Magnetic shear induced Reynolds stress

Understanding the influence of a complex magnetic field structure on plasma
turbulence opens up new perspectives for the optimization of transport and
significant improvements of confinement in magnetically confined fusion plas-
mas. One important example where the magnetic configuration influences the
confinement is the position of the X-point. In the unfavorable configuration,
where the ion ∇B drift is directed away from the X-point, the power threshold
of the L-H transition is higher than in the favorable configuration, where the
ion ∇B drift is directed towards the X-point [390, 391, 392]. The underlying
mechanism so far is still unknown.

Two of the main parameters determining confinement of magnetic fusion
plasmas are magnetic and flow shear [393]. Flow shear, as well as magnetic
shear, leads to a tilt of turbulent structures in the plane perpendicular to
the magnetic field. The tilt of turbulent structures corresponds to a finite
Reynolds stress. There are possible synergistic effects of magnetic and flow
shear. Stronger magnetic shear leads to narrower layers of the zonal vorticity
which is beneficial for confinement [394]. It is known that magnetic shear con-
tributes to the E×B flow shearing rate [395, 396] and exhibits a contribution
to the Reynolds stress [397]. This contribution can be due to a coupling to
the radial-parallel Reynolds stress 〈ũxũ‖〉 by the sheared slab approximation
as in Ref. [397], however the tilt due to the magnetic shear can also directly
influence the Reynolds stress as explained in the following.

The Reynolds stress is subject to change due to geometric modifications
of the boundary conditions [398]. In a single null configuration the X-point
breaks the poloidal symmetry of the magnetic shear induced tilt of turbulent
structures, transmitting a finite contribution of the Reynolds stress to the
flux-surface average. This residual Reynolds stress works either to reinforce
or weaken the background flow shear. The sign of the residual stress depends
on the magnetic configuration. In one configuration the flow shear is stronger
and favorable and in the other the flow shear is weaker, which is unfavorable.
Indeed changes of the energy transfer rate from the turbulence into the low
frequency zonal flow (proportional to the Reynolds stress) are observed with
changing poloidal position of the X-point [272]. The poloidal position of the
limiter could have similar effects in principle.

For comparison with the dynamics in physical space, zonal flow modeling



10.3 Magnetic shear induced Reynolds stress 145

intrinsically requires flux surface averaged values of the Reynolds stress. How-
ever, not much is known about the spatial distribution of the Reynolds stress.
In recent studies at the stellarator TJ-K [40], the Reynolds stress turned out to
be strongly inhomogeneous on a flux surface. Thus, local measurements have
to be interpreted with caution when comparing with theoretical predictions.
This section reports on the natural poloidal structure of the Reynolds stress
as a result of purely magnetic shear in tokamak experiments. In addition, the
impact of the poloidal limiter position and the presence of an X-point on the
flux-surface averaged Reynolds stress is investigated by means of turbulence
simulations. The present section is based on Ref. [15].

In the following, the effect of magnetic shear on turbulent structures is
compared to the effect of flow shear in the next Sec. 10.3.1. The development
of residual Reynolds stress due to magnetic shear is also described in this sec-
tion. The impact of divertor geometry on the poloidal pattern of the Reynolds
stress is discussed and subsequently studied by means of flux-coordinate inde-
pendent fluid simulations done with GRILLIX [399] in Sec. 10.3.2. At present,
GRILLIX does not feature finite ion temperatures. Therefore, a self-consistent
radial electric field is not present and the impact of the magnetic shear induced
Reynolds stress on the radial electric cannot be studied with GRILLIX for the
time being. Instead, we use the gyrofluid code GEMR [400, 190] to study this
effect. GEMR includes a self-consistent equilibrium, but does not include X-
point geometry. The impact of different limiter positions on the radial electric
field and the Reynolds stress will be discussed and subsequently studied in
the circular-limited configuration using Tore Supra parameters, by means of
field-aligned gyrofluid simulations in Sec. 10.3.3.

10.3.1 Magnetic shear induced tilt of turbulent struc-
tures

In the presence of magnetic shear ŝ = ρ
qs

dqs
dρ

(with radial coordinate ρ and

safety factor qs) turbulent structures are progressively tilted as illustrated in
Fig. 10.9. For positive magnetic shear ŝ > 0 the safety factor qs is increasing
with the radius. The field lines further outwards are less strongly twisted
than further inwards. One can also understand this from the definition of
the safety factor qs = N/M , the ratio of toroidal N to poloidal revolutions
M , corresponding to the ratio of the toroidal n to the poloidal mode number
m. For qs = m/n increasing with radius (ŝ > 0), the poloidal mode number
for a given toroidal mode number is increasing, hence the distance between
the structures reduces with increasing radius. Whereas for the flux surfaces
further inwards the poloidal mode is decreasing, hence the distance between
the structures increases. In any case, magnetic shear leads to a poloidal tilt
of magnetic flux tubes and associated turbulent structures. The tilt of the
structures is equivalent to a finite Reynolds stress which is given by 〈ũxũy〉.
In a plasma with circular cross-section the structures above and below the
midplane are tilted in opposite directions (Fig. 10.9). Thus, the tilt induced
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by magnetic shear is up-down asymmetric. The geodesic curvature κg in a
tokamak with circular cross-section changes sign at the midplane and has a
sinusoidal form with minimum and maximum at bottom and top. In Ref. [40]
it has been found that the poloidal distribution of the Reynolds stress roughly
follows the geodesic curvature. At smaller radii the flow is low and above
the midplane the outer flow would point downwards (negative shear) whereas
below the midplane the outer flow would point upwards (positive shear). In
a limited plasma with circular cross section the confined region is poloidally
symmetric, and therefore the magnetic shear should not affect the zonally
averaged Reynolds stress. Therefore, only if the poloidal symmetry is broken,
can magnetic shear lead to a residual contribution to the zonal flow drive.

Figure 10.9: Illustration of the tilt of turbulent structures by magnetic shear. It is

shown how turbulent structures are tilted by the magnetic shear. The tilt induced

by magnetic shear is up-down asymmetric. Figure taken from Ref. [15].

Once a residual Reynolds stress is induced by the magnetic shear, it may act
as a seed tilt, which can be self-amplified by the interaction of zonal flows and
turbulence [398]. The Reynolds stress as the correlation between radial and
perpendicular velocities 〈ũxũy〉 ∼ −kxky|φ̃2| is proportional to the tilt which
can be written in wavenumber space as kxky. In an eikonal representation

the radial wavenumber is subject to a change kx = −ky ∂uy∂x τc if exposed to a
sheared flow uy over the correlation time τc. The magnetic shear ŝ can lead to
a tilt similar to the flow shear. Structures born at a particular position θ0 (for
example the outboard midplane θ0 = 0 for curvature-induced instabilities),
which follow magnetic field lines are progressively tilted by the magnetic shear
kx = kyθŝ [398, 401], where θ is the poloidal ballooning angle. The ŝ-induced
Reynolds stress is given by [398, 401]

Πŝ(θ) = −ŝθ〈ũ2x(θ)〉t, (10.9)

where 〈·〉t denotes time average. The ŝ-residual Reynolds stress is given by the
flux surface average 〈Πŝ(θ)〉θ. In the case of a poloidally symmetric plasma,
〈Πŝ〉θ vanishes. An imbalance between positive tilt and negative tilt can be
provided by a poloidal truncation of the ballooning envelope, which can be
provided by X-point resistivity [402] for diverted plasmas or the limiter position
for limited plasmas [398, 401].
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The derivation of Eq. (10.9) has been based on infinitesimal changes of the
radial wavenumber by infinitesimal changes of the phase due to the effect of
magnetic shear. For this reason Eq. (10.9) is valid only for an infinitesimal
distance ∆θ = θ − θ0 from the original poloidal angle θ0, where the structure
originates. This forces a linear dependence of Eq. (10.9) on the poloidal angle
θ. However, the entire behavior of the tilt is important, because what matters
in the end is the flux-surface average of this quantity and only taking into
account a narrow or even infinitesimal region around the low-field side mid-
plane might not be a good approximation. Since the turbulence level is high
at the midplane on the low-field side, one might be tempted to argue that only
this region matters, however, one must not forget that the ŝ-induced Reynolds
stress is small due to the linear θ dependence. Also Eq. (10.9) allows only
for a periodic solution, important for the confined region, if ũ2x(θ) vanishes at
the opposite ballooning angle to the angle where the structures are generated
ũ2x(θ0 + π) = 0. On the high-field side differently sheared structures coalesce
coming from above and below the midplane. This leads to a cancellation of the
ŝ-induced Reynolds stress. To take the coalescence into account, Eq. (10.9)
can be modified according to

Πŝ = u2x(θ0)

(

e−
(θ−θ0)

2

∆θ2 ŝ(θ − θ0)− e−
(2π−θ+θ0)

2

∆θ2 ŝ(2π − θ + θ0)

)

(10.10)

using ũ2x(θ) = ũ2x(θ0)e
−

(θ−θ0)
2

∆θ2 as in Ref. [398]. This would provide a sinusoidal
pattern of the Reynolds stress induced by tilt due to the magnetic shear as
expected from basic considerations shown in Fig. 10.9.

It should also be noted that the flow shear V ′ used in Refs. [398, 401] is
subject to variation along the poloidal angle. As the potential is a flux-function
it should be constant on a flux-surface, but the E ×B flow and therefore also
the shear depends on the magnetic field strength. Additionally flux expansion
effects have to be taken into account.

10.3.2 Impact of the X-point

In the presence of an X-point the X-point resistivity can act directly inside the
confined region and therefore it can be expected that it has a much stronger
effect on the Reynolds stress. The influence of the X-point on the tilt of
turbulent structures by magnetic shear is illustrated in Fig. 10.10. Close to the
outboard midplane the structures are expected to be tilted similarly to the case
without X-point (Fig. 10.9). Approaching the X-point the structures become
strongly elongated and thinned due to the strong magnetic shear close to the
X-point. As very thin structures exhibit a high wavenumber these structures
are strongly dissipated [402]. Therefore, the X-point directly truncates the
ballooning envelope. This effect is not restricted to the scrape-off layer as in
the limiter case described below. If the magnetic shear strongly varies with
the ballooning angle, the magnetic shear ŝ in Eq. (10.10) should be replaced

by its local value ρ
q
∂
∂ρ

Bϕ(θ)

Bθ(θ)
.
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Figure 10.10: Impact of an X-point on the tilt of turbulent structures. Figure

taken from Ref. [15], similar figures can be found in Refs. [398, 401].

Approaches based on field-aligned coordinates suffer from coordinate sin-
gularities due to the X-points. Flux-coordinate independent approaches offer
the possibility to study these configurations. Such a flux-coordinate indepen-
dent approach is done in the code GRILLIX [399]. An isothermal electrostatic
drift-reduced Braginskii model [403] is simulated with different geometries.
GRILLIX takes into account a realistic geometry. . Details on the simulation
parameters can be found in Ref. [15].

As a first verification of our considerations we numerically investigate the ef-
fect of magnetic shear on individual structures. A typical field-aligned ballooning-
like structure is considered in circular geometry without shear in Fig. 10.11a,
with magnetic shear in Fig. 10.11c and in diverted geometry in Fig. 10.11e.
The structures are all poloidally symmetric Gaussians at the outboard mid-
plane and field aligned with a Gaussian ballooning envelope along the par-
allel direction. The structures are tilted and distorted according to the re-
spective magnetic geometry. Several toroidal positions are shown overlaid
in the left column of Fig. 10.11. Assuming plasma parameters of the tur-
bulence simulations presented later on the corresponding Reynolds stresses
Π = 〈eψ · ∇u (eψ × eϕ) · ∇u〉ϕ of the individual structure u are shown in
the right column respectively (Figs. 10.11b,d,f). In the absence of magnetic
shear the structure is not tilted (Fig. 10.11a) and is not associated with any
Reynolds stress (Fig. 10.11b). Including magnetic shear, the structure is tilted
(Fig. 10.11c) and the corresponding Reynolds stress shows the characteristic
up-down asymmetry (Fig. 10.11d), which confirms the picture in Fig. 10.9. In
divertor geometry, including X-points, the structure becomes strongly tilted
and elongated at the upper high-field side and as well close to the lower X-
point (Fig. 10.11e). Here we find the strongest contributions to the Reynolds
stress from the individual structures (Fig. 10.11f). Keeping the structure and
geometry fixed the Reynolds stress scales like Π ∝ ρ−2

s , i.e. for the same struc-
tures the absolute values of the Reynolds stress at half ρs would be four times
larger. However, we want to note that instabilities and turbulence itself are
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Figure 10.11: GRILLIX simulations: The left hand side shows poloidal cross-

sections of an individual structure starting at the outboard midplane and summed

over several toroidal positions (a,c,e). Assuming the same plasma parameters as in

the turbulence simulations presented later on (ρs/R0 = 1 · 10−3), and identifying

the structure with normalized potential eφ/Te, the corresponding Reynolds stress

is shown on the right hand side (b,d,f) in units of [m2/s2]. Both are shown in the

case of a circular cross-section without magnetic shear (a,b), with magnetic shear

(c,d) and in the case of a diverted plasma (e,f).Figure taken from Ref. [15].
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Figure 10.12: Reynolds stress 〈ũrũθ〉ϕ,t in m2/s2 in the poloidal plane in a circular

cross-section simulated with GRILLIX including finite magnetic shear. Figure taken

from Ref. [15].
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Figure 10.13: Reynolds stress 〈ũrũθ〉ϕ,t in m2/s2 in the poloidal plane in a diverted

configuration with X-point simulated with GRILLIX. Figure taken from Ref. [15].

also sensitive to ρs.

For comparison with our basic considerations (Fig. 10.9) and for compar-
isons with the GEMR simulations shown later, simulations in a circular cross-
section are performed with GRILLIX. Since our aim is a qualitative compari-
son, no detailed matching of the exact parameters is needed and we used pre-
viously performed simulations. The radial-poloidal Reynolds stress 〈ũrũθ〉ϕ,t
has been computed and is shown in Fig. 10.12. Here 〈·〉ϕ,t denotes an aver-
age over the toroidal (axissymmetric) angle and time. Qualitatively consistent
with our preliminary considerations (Fig. 10.9), an up-down asymmetry in the
Reynolds stress is observed here.

Figure 10.13 shows the radial-poloidal Reynolds stress 〈ũrũθ〉ϕ,t in divertor
geometry. The up-down asymmetry is not as clear as in the circular cross-
section. But on the high-field side some of this asymmetry appears to remain.
Major contributions to the Reynolds stress can be found above the lower X-
point and below the upper X-point. The enhanced magnetic shear in these
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Figure 10.14: Impact of the limiter position on the tilt of turbulent structures.

Figure taken from Ref. [15].

regions impacts the tilt of the structures and thus the Reynolds stress. Very
close to the lower X-point the Reynolds stress vanishes as the magnetic shear
is too strong, and due to the strong thinning of the structures they are dissi-
pated. This is what is meant by the X-point resistivity. Close to the X-point
this X-point resistivity acts to truncate the ballooning envelope. A bit fur-
ther away the magnetic shear is not strong enough to dissipate the turbulent
structures, but because the magnetic shear is very large the structures are very
highly tilted leading to very strong contributions to the Reynolds stress. The
basic structure of turbulence can in fact be traced back to the magnetic shear.
The strongest contributions to the Reynolds stress in the case of turbulence
(Fig. 10.13) can be found at the upper high-field side (positive Reynolds stress)
and close to the lower X-point (negative Reynolds stress), which also show up
for individual structures (Fig. 10.11f). Thus, to first order the poloidal varia-
tion of the Reynolds stress can be understood as the effect of magnetic shear
on individual structures.

On the low-field side the Reynolds stress does not show a strong up-down
asymmetry but instead is organized in bands with radially alternating signs.
This is expected from a zonal flow staircase-like structure.

10.3.3 Impact of the limiter position

In the scrape-off layer (SOL) region the position of the limiter may induce a
truncation of the ballooning envelope and can lead to a finite contribution to
the zonally averaged Reynolds stress. Three examples are shown in Fig. 10.14.
If the limiter is placed at the bottom (Fig. 10.14a) or the top (Fig. 10.14b)
the fluctuation level directly behind the limiter is reduced, which leads to an
up-down asymmetry. Besides the point directly at the low-field side (LFS) mid-
plane where the asymmetry vanishes by definition, the asymmetry increases
the closer the limiter is located to the LFS midplane (Fig. 10.14c). Direct
impact of the limiter is restricted to the SOL region. However, a finite contri-
bution to the zonally averaged Reynolds stress at the LCFS, at the boundary
of the confined region, can impact the edge region, which may be nonlinearly
self-amplified (Sec. 5.1.3). This can only be found out via simulations.
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Figure 10.15: GEMR simulations of Tore Supra discharges. Radial electric

field (a,b), radial profile of the zonally averaged Reynolds stress (solid line) (c,d),

poloidally resolved contribution to the Reynolds stress (solid line) and the ŝ-residual

Reynolds stress contribution (dashed line) at the separatrix ρ = 1.00 (e,f) for the

lower θX = −33.75◦ (a,c,e) and upper limiter case θX = +33.75◦ (b,d,f). Figure

taken from Ref. [15].

The influence of the limiter position has been investigated with the help
of simulations carried out with GEMR (see Sec. 5.3). As GEMR is limited to
circular plasma poloidal cross sections a comparison to experiments in such a
geometry is desirable. In Ref. [401] the model of the ŝ-induced residual stress
[398] has been compared to experiments in Tore Supra. The model parameters
can be found in the original Ref. [15] or in Tab. C.1. A situation similar to the
one described in Ref. [401] is intended to be studied where the limiter positions
are θX = ±35◦, here we use θX = ±33.75◦.

In the lower limiter case, θX = −33.75◦, (Fig. 10.15a) the radial electric
field is deeper at the separatrix than in the upper limiter case, θX = +33.75◦

(Fig. 10.15b). Therefore, in the GEMR simulations the lower limiter case
shows better confinement properties for the favorable configuration. The ra-
dial electric fields are similar to the experimental values in Tore Supra [401].
The GEMR simulations found minima in the radial electric field at around
6 and 3 kV/m in the lower and upper limiter case, respectively. In the Tore
Supra experiment the minima in the radial electric field for the lower and
upper limiter case are at 7 and 4 kV/m [401]. Here, the ion diamagnetic veloc-
ity is defined negative for easier comparison with Refs. [398, 401]. Therefore,
the shear across the LCFS is negative. Turbulence structures tilted in the
direction of this shear exhibit a negative zonally averaged Reynolds stress as
observed in Figs. 10.15c and d. When the zonally averaged Reynolds stress
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Figure 10.16: GEMR simulations of Tore Supra discharges. Poloidally and ra-

dially resolved Reynolds stress contribution 〈ũxũy〉y,t for the upper limiter case

θX = +33.75◦ (a) and the lower limiter case θX = −33.75◦ (b). Figure taken from

Ref. [15].

drive −∂x〈ũxũy〉y,s,t is positive (Figs. 10.15c and d) this leads to an acceleration
in electron diamagnetic direction (Figs. 10.15a and b). The zonally averaged
Reynolds stress in the lower limiter case (Fig. 10.15c) is of similar order of
magnitude to, but steeper than, than the upper limiter case (Fig. 10.15d).
Therefore both the Reynolds stress drive −∂x〈ũxũy〉y,s,t as well as the turbu-
lence suppression 〈ũxũy〉y,s,t∂x〈uy〉y,s,t are stronger in the former case. Here 〈·〉a
are the corresponding zonal (binormal and parallel) and time averages, with
a ∈ {y, s, t}. Deeper into the confined region (ρ < 0.99) the Reynolds stress
shows marginal impact on the limiter position (Figs. 10.15c and d and 10.16).
The Reynolds stress is small at the outer midplane (θ = 0), increases towards
negative θ and decreases towards positive θ. Both contributions largely cancel
out in the zonally averaged value (Fig. 10.15c and d). As expected by our pre-
liminary consideration in the case of dominant impact of the magnetic shear
(Fig. 10.9), the Reynolds stress mainly shows an up-down asymmetric m = 1
structure in the confined region, as shown in Fig. 10.16. This is not affected
by the limiter position. Therefore, the impact of the magnetic shear on the
structure tilt is stronger than the impact of the flow shear, and the limiters
cannot influence the plasma far into the confined region.
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10.4 Concluding remarks on the L-H transi-

tion

According to results presented in Sec. 10.1, which have been confirmed by
several other experiments including DIII-D, TEXTOR and Alcator C-Mod
[404, 258, 269, 270, 271] and reproduced by simulations [405, 406, 407] in-
cluding the most sophisticated simulations possible for the time being (full-f
gyrokinetic simulations including realistic geometry and SOL carried out by
XGC1) [408, 409], the mystery of the L-H transition seemed to be resolved
and to follow the predator-prey model by Kim and Diamond [360, 361]. Not
all subsequent experiments have been in agreement with the Kim Diamond
picture, though. Weak or insufficient zonal flow activity at the L-H transition
have been found [410, 411, 412, 62, 413]. These experiments are discussed in
more detail in the following.

Figure 10.17: The figure of the right hand side (also shown in Fig. 3.8) shows

the predator-prey limit cycle expected from the interaction between zonal flows and

turbulence. On the left hand side is a limit cycle as expected from the interaction

between the gradient and the turbulence.

In the HL-2A tokamak the limit cycles are first in the direction as expected
for the interaction between zonal flows and turbulence (l.h.s. of Fig. 10.17),
but before the actual transition to H-mode the limit cycles change direction
[411]. This can be understood by the contribution of the gradient as depicted
on the right hand-side in Fig. 10.17. If the turbulence level is low the gradient
can increase (I), once the gradient increases it induces more turbulence and
the gradient growth saturates (II), the enhanced turbulence level leads to a
collapse of the gradient (III) and the drive of the turbulence reduces (IV). As
the gradient contributes to the flow by its ion diamagnetic contribution (called
neoclassical contribution in Ref. [62]) the flow can be a proxy for the gradient.
This is in principle not in disagreement with the Kim-Diamond model as at
some point the gradient has increased during the I-phase to give the dominant
contribution to the total flow. In the JFT-2M tokamak the Reynolds stress
has been found to be too weak to have impact on the flow [410], in NSTX the
Reynolds stress has been found to even have the wrong sign [413]. In ASDEX
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Upgrade the E × B flow has been compared to its neoclassical contribution
and no signs of a zonal flow contribution have been found [62].

The results from ASDEX Upgrade [62] and DIII-D [365] show similarities,
but partly also a very different behavior (most important the role of the neo-
classical electric field). It might be that the L-H transition is not universal and
the physics may depend on the collisionality for example (which in DIII-D is
usually lower than in ASDEX-Upgrade). As the I-phase in DIII-D appears to
be closer to the L-mode and the I-phase in ASDEX Upgrade appears closer
to the H-mode, maybe zonal flow dominated predator-prey dynamics appears
before the L-I transition in ASDEX Upgrade. Indeed, indications for limit
cycles in agreement with the expectation of zonal flow-turbulence interaction
have been found in the early phase of the I-phase in ASDEX Upgrade [414].
And there is the possibility that another mechanism is universally responsible
for the L-H transition.

The observed up-down asymmetry in the poloidal magnetic field fluctua-
tions in ASDEX Upgrade [14, 374] (Sec. 10.2.1) are related to strongly bal-
looned transport fluctuations [14] (Sec. 10.2.2). Therefore, the strongly pro-
nounced up-down asymmetry points to a pressure-gradient-relaxation phe-
nomenon (as depicted on the r.h.s. of Fig. 10.17) behind the observed limit-
cycle oscillations in I-phase. Also the presence of type-III-ELM-like precursors
[374] points to pressure gradient driven limit cycles. These are independent
confirmations of the conclusion drawn in Ref. [62], that zonal flows play a
minor role for the I-phase in ASDEX Upgrade.

Regarding the discrepancy in the Reynolds stress, the influence of the mag-
netic field topology on the poloidal Reynolds stress distribution (Sec.10.3),
which has been motivated by a theoretical prediction [398] and a recent exper-
imental finding [40]. The simulations carried out here reveal the strong poloidal
asymmetry of the Reynolds stress. Hence, measurements at one poloidal posi-
tions should not be taken as representative of the zonal average. Therefore, it is
not surprising that experiments on different devices with diagnostics at differ-
ent positions find differences in sign and strength of the Reynolds stress: inves-
tigations of the impact of the Reynolds stress with respect to the L-H transition
found that the Reynolds stress is strong enough [13, 404, 269, 258, 270, 271]
to trigger the L-H transition or not [410, 413] (even with a different sign in
Ref. [413]). To point this out explicitly, both is possible an overestimation
or an underestimation of the flux-surface average Reynolds stress by taking
a local measurement only. Even opposing Reynolds stress contributions have
been found at two different poloidal locations [415].

Therefore, it seems unlikely that Reynolds stress measurements will reli-
able resolve the L-H transition, because Reynolds stress investigations demand
measurements on the entire flux-surface, due to the non-homogeneous distri-
bution described here, but also due to the nonlocality in wavenumber space
[142], which demand resolution of the ion Larmor radius. Furthermore, as the
zonal flow drive and damping are nonlocal in the radial domain (Sec. 8.3),
several flux-surfaces have to be measured before evaluating a momentum or
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energy balance.



Chapter 11

Turbulence in the I-mode

The I-mode is an improved energy confinement regime with H-mode-like energy
confinement and L-mode-like particle confinement. A general introduction to
the I-mode confinement regime can be found in Sec. 2.2.3. Up to now studies
of turbulence in I-mode are restricted to Alcator C-Mod. Investigations in
different experiments as the present one in ASDEX Upgrade are helpful to
elaborate similarities and differences of turbulence in I-mode between Alcator
C-Mod and ASDEX Upgrade and which phenomena are I-mode specific in
general. The I-phase must not be confused with the I-mode. The I-
phase is the regime at the transition from the low to high confinement regime.
The interested reader is referred to Chapter 10.

Previous works at Alcator C-Mod showed that at the transition to the I-
mode low frequency broadband fluctuations decrease while simultaneously a
weakly coherent mode (WCM) in the density and magnetic fluctuations at
high frequencies (f ∼ 100 − 300 kHz) develops [77]. The WCM appears in
the electron temperature Te pedestal region (0.95 < r/a < 1.0 in Alcator C-
Mod) [76] with a tail towards the pedestal top [79]. Fluctuation levels of the
WCM in the density, magnetics and temperature are around ñ/n ∼ 10–16 %,
B̃/B ∼ 0.01–0.02 % and T̃e/Te ∼ 1–2 %, respectively [77, 79, 416]. The WCM
is thought to be responsible for the regulation of the particle transport and
therefore the cause of the L-mode like particle transport in the I-mode. While
the WCM appears quite broadband in frequency space it is rather narrow in
wavenumber space and has short wavelengths (kθ = 1.3± 0.5 cm−1) [79]. The
WCM propagates in the electron diamagnetic direction in both the laboratory
[76] and E × B frame [79]. In the E × B frame the propagation velocity is
roughly a factor of three below the electron diamagnetic velocity [79]. The
WCM can develop at low q95 and low collisionality and promptly disappears
at the transition to the H-mode [76].

The nonlinear analysis in Ref. [79] showed a nonlinear coupling of the
geodesic acoustic mode (GAM) and the WCM and also an energy transfer
from the WCM into the GAM which constitutes a saturation mechanism for
the WCM. Another effect is that the GAM scatters the energy of the central
WCM peak by transferring energy below the WCM frequency from higher to
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lower and above the WCM frequency from lower to higher frequencies. Thereby
the GAM is responsible for the broadband feature of the WCM. Indeed, such
a coupling to a rather low-wavenumber mode as the GAM is necessary to pre-
serve the narrow width of the WCM in wavenumber. Therefore, the central
frequency peak of WCM is acting as a source of the WCM. A basic conclusion
from this is that there must by an underlying instability responsible for the
WCM.

In the present chapter the turbulence in the I-mode regime of the ASDEX
Upgrade will be characterized. The results presented in this chapter have
been published in Refs. [16, 17]. Besides the WCM (see Sec. 11.1) and the
GAM (see Sec. 11.2), also a mode at similar frequency as the WCM is present
during the I-mode in ASDEX Upgrade. This can be identified as a global
Alfvénic oscillation (see Sec. 11.3). Furthermore, strongly intermittent events
of solitary waveform occur during the I-mode. These fluctuations are studied
in more detail in Sec. 11.4. Some general introduction into different kinds of
intermittency can be found in Chap. 3.5. Finally, a model to explain these
intermittent events is proposed in Chap. 11.5.

11.1 Weakly coherent mode (WCM)

Typical density fluctuations at the transition from L- to I-mode are shown
in Fig. 11.1 measured by normal incidence reflectometry (Sec. 6.2.1). Details
on the reflectometry setup can be found in Ref. [16]. Density fluctuations in
Figs. 11.1 were obtained for a cut-off density ne = 2.5 · 1019 m−3 located at
ρ = 0.98 ± 0.01. In L-mode the turbulence is rather broadband (Fig. 11.1),
In I-mode we observe two bands in frequency space, one at low frequencies
(f < 30 kHz) and one at higher frequencies (80 < f < 150 kHz). Although
the mode is not as pronounced in AUG, this behavior is very similar to the
WCM observed in Alcator C-Mod [77, 79].

These fluctuations can also be observed at cut-off densities between
1.78 · 1019 m−3 and 2.84 · 1019 m−3, but not so clearly pronounced. There-
fore, this mode is located at ρ = 0.97−0.99 corresponding to the minimum Er
in I-modes at ASDEX Upgrade [60] and consistent with the recent observation
on Alcator C-Mod [79]. The minimum of (∇pe)/ne is located at ρ = 0.99. The
mode is also neither observed in the scrape-off layer region or at much higher
densities. The electron density fluctuation level of the WCM estimated using
the 1D C. Fanack model [417], was found to be between 6 and 13 %.

For better comparison, Fig. 11.2a shows the spectra of density fluctuations
in L- and I-mode. In I-mode a rather broadband mode around 130 kHz is
observed (the WCM). Turbulence is slightly reduced in the frequency range
from 20 to 80 kHz and increased at higher frequencies. By means of charge
exchange spectroscopy the mean poloidal velocity has been measured during
beam blips which is used to translate the obtained frequency spectra into the
plasma frame. This is shown in Fig. 11.2d. The wavenumber of the WCM
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Figure 11.1: Spectrogram of density fluctuations from (hopping) reflectometry.

Amplitudes are shown color-coded in logarithmic representation. Note that the

plot is not continuous. Sub-windows of 10 ms length corresponding only to the

cut-off layer density of ne = 2.5 · 1019 m−3 are shown. The hopping reflectometry

measures every 70 ms at this cut-off layer for 10 ms. Figure taken from Ref. [16].

found at kθ = 2πf/vθ ≈ 1.5 cm−1 is similar to the Alcator C-Mod results
[79]. In this representation we seen that the spectral power of the the WCM
is actually not increased, but a result from the increased Doppler shift. The
fluctuation amplitude decreases from L- to I-mode at all wavenumbers.

11.2 Geodesic acoustic mode (GAM)

It can be expected that the WCM is modulated by a geodesic acoustic mode
(GAM) as in Alcator C-Mod [79]. GAMs can be directly observed in veloc-
ity fluctuations measured for example by Doppler reflectometry. Furthermore,
GAMs show up in bispectra as they are nonlinearly driven and modulate the
turbulence at the GAM frequency [303, 304]. The intrinsic modulation of
all higher frequencies by the GAM can be used for the detection of GAMs
(Sec. 7.2.1). The modulation shows up in the envelope of the fluctuations
which will be used as a proxy for the GAM. The envelope of density fluctua-
tions measured by hopping reflectometry has been estimated from fluctuations
above 400 kHz. For better comparison with the density fluctuations the en-
velope in Fig. 11.2b is shown for a sub-window size of 1 ms corresponding to
a frequency resolution of 1 kHz. A pronounced feature in the order of typical
GAM frequencies is observed at around 8 kHz. The envelope at low frequen-
cies around 8 kHz is about 2 orders of magnitude larger in I-mode pointing to
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Figure 11.2: (a) Spectrum of density fluctuations from reflectometry, (b) its en-

velope deduced from density fluctuations and (c) magnetic fluctuations Ḃθ below

400 kHz in L and I-mode. Spectra are also shown in the plasma frame (d-f) with

vθ ≈ −2 km/s in L-mode and vθ ≈ −5 km/s in I-mode, respectively. Negative

velocities are in the electron diamagnetic direction. Figure taken from Ref. [16].

a strong modulation of the turbulence at the GAM frequency. Compared to
cs/R0 this frequency seems rather low. However, as we will see in the following
section, it agrees well with the theoretical prediction of the GAM frequency.

In drift-wave turbulence, E×B nonlinearity in the density lead to an trans-
fer of free energy from low to high wavenumbers (Sec. 5.1.2), corresponding to
a transfer from low to high frequencies. As seen in Fig. 11.2d the turbulence
level in the I-mode is reduced, and the increase in fluctuation level at high
frequencies in Fig. 11.2a can be traced back rather to the Doppler shift though
increased rotation in the I-mode than to an increase of free energy transfer
from low to high frequencies by the GAM.

A study of the free energy transfer as done in Ref. [79] would require an
estimate of the E × B nonlinearity Re(ñ∗(f)(〈b̂×∇⊥φ̃(f2) · ∇⊥)ñ(f1)〉) with
magnetic field direction b̂ and therefore the cross-bicoherence between density
and potential fluctuations. Density fluctuations ñ can be deduced from re-
flectometry. Potential fluctuation measurements are not available at ASDEX
Upgrade. But with Doppler reflectometry poloidal velocities can be measured.
Velocity fluctuations are approximated by the center of gravity of the Doppler

shift given by cgr =
∫
dffS(f)∫
dfS(f)

with the power spectrum S(f) of the Doppler

reflectometer heterodyne signal. The center of gravity is calculated for sub-
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windows of 1 µs length corresponding to 25 points (25 MHz acquisition). The
amplitude of the Doppler reflectometer heterodyne signal is proportional to
density fluctuations ñ. Also the amplitude of the reflectometer heterodyne
signal is averaged over 1 µs. It should be pointed out that the center of grav-
ity is measured in absolute units (Hz), which in general are not equal to the
Doppler shift. Therefore, the the center of gravity does not allow for conclu-
sions on the absolute value of the velocity fluctuations.

To investigate the nonlinear coupling between WCM and GAM, the cross-
bicoherence can be estimated from the density fluctuations ñ and the center
of gravity c̃gr fluctuations

b̂(f1, f2) =

√

‖〈ñ(f1)c̃gr(f2)ñ∗(f1 + f2)〉‖2
〈‖ñ(f1)c̃gr(f2)‖〉2〈‖ñ(f1 + f2)‖〉2

. (11.1)

Phase locking is a necessary condition for nonlinear coupling. A coupling of the
GAM with the WCM as expected from recent Alcator C-Mod experiments [79]
should be observable in the cross-bicoherence. The bispectral analysis is done
for a sub-window size of 500 µs, resulting in 90 realizations and a frequency
resolution of 2 kHz. The corresponding significance level is 0.011.

The bispectra for L-mode and I-mode are shown in Figs. 11.3a and 11.3b,
respectively. In the L-mode no pronounced modes can be found. In I-mode a
coupling of the center of gravity proportional to velocity fluctuations at low
frequency (∼ 10 kHz) with the broadband turbulence (> 200 kHz) is observed.
A pronounced coupling of these fluctuations at 10 kHz with the WCM (70 - 140
kHz) is found. The cross-bicoherence of 0.14 strongly exceeds the significance
level. The WCM itself is also nonlinearly coupled to other frequencies. The
velocity fluctuations of the WCM are coupled to low frequency density fluctua-
tions (f1 < 20 kHz) and to fluctuations near the WCM frequency. In addition,
coupling of velocity fluctuations at the WCM frequencies with higher frequen-
cies in the density fluctuations is observed (f1 > 200 kHz for f2 = +fWCM and
f1 > 300 kHz for f2 = −fWCM). This might indicate that the bursts in the
density fluctuations observed with Doppler reflectometry [348] are nonlinearly
generated by the WCM.

The nonlinear coupling of the GAM with the WCM is also observed in
the bicoherence inferred from the envelope analysis of data from normal in-
cidence reflectometry (results not shown here). Compared against each other
the bispectra deduced from the Doppler reflectometry are more detailed. How-
ever, under the conditions of temporary strongly reduced fluctuation levels as
present in I-mode or H-mode, Doppler reflectometry is very susceptible for
misinterpretation.

11.3 Geodesic Alfvénic mode (GAlf)

Both density and magnetic field fluctuations show very similar features com-
pare (Figs. 11.2a and 11.2c). Also the low-frequency fluctuations at 8 kHz seen
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Figure 11.3: Bicoherence of density fluctuations from Doppler reflectometry in

(a) L-mode and (b) I-mode. The frequency of density fluctuations f1 couples with

frequencies in velocity fluctuations f2 to density fluctuations f = f1 + f2. Data is

taken at upper X-mode at 80 GHz. Figure taken from Ref. [16].

Figure 11.4: Spectogram of fluctuations in the time derivative of magnetic fluc-

tuations Ḃθ measured at the top of AUG (C09-09) in logarithmic amplitude repre-

sentation.



11.3 Geodesic Alfvénic mode (GAlf) 163

Figure 11.5: Frequency of maximum power in the magnetic fluctuations in the

range between 100 and 200 kHz and inverse square root of the edge density nor-

malized to their values at the beginning of the I-mode shown against each other.

Figure taken from Ref. [16].

in the envelope of the density fluctuations are observed in the magnetic field
fluctuations once the I-mode is accessed from t = 3.2 s on (Fig. 11.4). As a
high-frequency zonal flow the GAM could potentially lead to the spontaneous
confinement transition at t = 3.2 s and the drop in the diamagnetic contri-
bution of the radial electric field (∇pi)/ne. This has also been speculated in
Ref. [79]. Note that magnetic fluctuations at the frequency of the WCM (130
kHz) can be detected well before the L-I transition. This is in contrast to the
observations in Alcator C-Mod, where the frequency of the magnetic fluctua-
tions follow the frequency of the WCM, which increases during the beginning
of the I-mode [76]. Therefore, the magnetic fluctuations investigated in detail
in the following are probably not related to the WCM even though appearing
at a similar frequency.

The GAM is the oscillation between the zonal flow and its pressure side-
band. These pressure sidebands are not only coupled to the turbulence but
also to the global Alfvénic oscillation [223]. If the high-frequency magnetic
oscillations at the WCM frequency are related to Alfvénic modes they should
scale ∼ 1/

√
n. This scaling can be investigated in a discharge with a steady

I-mode phase where the density is varying smoothly over time. Figure 11.5
shows the frequency of the maximum power in the range between 100 and 200
kHz and therefore tracks the frequency changes of the high-frequency magnetic
fluctuations, which appear also at around 140 kHz in this discharge and are
proportional to 1/

√
n from the edge density measured with interferometry. To

compare the time evolution both are normalized to their values at the begin-
ning of the I-mode. This comparison is just a plausibility check as both signals
are not matched in physical space. The long-time behavior (the time evolu-
tion is shown in detail in the original Ref. [16]) the high frequency oscillations
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Figure 11.6: Spectrum of Alfvénic branch with n = 0 calculated with LIGKA.

The m = 0 branch corresponds to the geodesic acoustic mode, the m = 1 branch

to the geodesic Alfvénic mode. Figure taken from Ref. [16].

in the magnetic field follow the trend of ∼ 1/
√
n both increasing by about 5

%, which points to an Alfvénic mode. The two signals do not exhibit a clear
correlation on shorter time scales, or in shorter I-mode phases.

The gyrokinetic eigenvalue solver LIGKA [418, 419] is used to determine
the kinetic continuum branches for (n = 0,m = 0) and (n = 0,m = 1). The
spectrum is shown in Fig. 11.6. At the position where the WCM (f ∼ 130 kHz)
and the GAM-like mode (f ∼ 8 kHz) is observed in the density fluctuations
(ρ ∼ 0.98) the (n = 0, m = 1) branch is found at f ∼ 140 kHz and the GAM
branch (n = 0, m = 0) is found close to f ∼ 10 kHz, respectively. Coherent
modes are expected slightly below the minimum of the branches since the
continuum damping is rather small there.

Motivated by the LIGKA results the mode characteristic has been inves-
tigated in detail by calculating the cross-power spectrum of toroidally and
poloidally displaced Mirnov coils similar to Ref. [420]. The cross-phases di-
vided by the toroidal and poloidal angular distances, respectively, give the
corresponding mode numbers n and m. The cross-coherence and mode num-
ber are shown in Fig. 11.7. The WCM can be identified as an n = 0, m = 1
mode. For a coherent mode an increased coherency with respect to the sur-
rounding frequencies can be expected. This is clearly visible for the toroidal
correlation (Fig. 11.7a). The absence of increased coherency in poloidal direc-
tion (Fig. 11.7b) does not support a coherent mode at the WCM frequency in
the magnetic fluctuations.

The toroidal mode number of the low-frequency mode is close to n = 0, the
poloidal mode number is between −1 ≤ m ≤ 1. The estimation of the poloidal
mode number as done here can be regarded as very rough as the local field
line inclination is not taken into account. To obtain a global picture of the
modes also the cross-correlation between different poloidally displaced Mirnov
coils on a poloidal cross-section has been calculated. As shown in Fig. 11.7e,
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Figure 11.7: Cross-coherence (a,b) and toroidal (c) and poloidal mode numbers

(d) during I-mode at 4 s of two mainly toroidally (C04-17 and C05-21) and poloidally

(C09-09 and C09-08) displaced Mirnov coils. (e) Poloidal mode structures of the

low (10 kHz) and (f) high (130 kHz) frequency oscillations during I-mode at 4 s

shown by the cross-correlation without time lag (τ = 0) of bandpass-filtered signals

at the corresponding frequency (10 and 130 kHz, respectively) from one Mirnov coil

as a reference (cross-correlation is 1) with poloidally displaced Mirnov coils at the

same toroidal position. Figure taken from Ref. [16].

the 10 kHz mode exhibits a clear m = 0 mode structure and the mode close
to the WCM-frequency corresponds to a m = 1 (Fig. 11.7f).

Whether the observed m = 0 mode characteristic of the low frequency
mode at 10 kHz is compatible with a GAM is disputable. The GAM itself is
electrostatic. It is theoretically expected that the GAM generates a halo of
magnetic fluctuations with mode numbers ofm = ±2 just outside the magnetic
flux surface of the GAM [421]. This halo has been recently observed in TCV
[422]. In this experiment (Fig. 11.7) the low-frequency mode exhibits such a
halo, though the poloidal mode numbers are m = ±1. On the other hand, the
observed (n = 0, m = 0) structure constitutes a zonal magnetic field, which
has been predicted to be excited at the GAM frequency for finite β turbulence
[423]. Here, further systematic studies of the magnetic signature of GAMs
in ASDEX Upgrade are needed, also in the usual favorable configuration to
evaluate if the here observed signature is related to the I-mode configuration
in particular.

11.4 Strongly intermittent density fluctuations

The edge turbulence in L-mode is characterized by broadband fluctuations as
measured by Doppler reflectometry (DR) in Fig. 11.8a. While the background
density turbulence level is reduced in I-mode compared to the L-mode level,
the I-mode in AUG exhibits strong intermittent density bursts (Fig. 11.8b)
causing a heavy-tail probability distribution function [424, 83]. The bursts
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exhibit a solitary waveform and last for about 2–10 µs [424, 83]. These bursts
are not ELMs, the peeling-ballooning stability boundaries are far away from the
experimental parameters in I-mode as calculated with the MISHKA code [83].
Furthermore, no pronounced magnetic signature as typical for type-I ELMs (in
H-mode) [287] or type-III ELMs (in H-mode or I-phase) [374, 62] is observed.
The bursts in I-mode show some similarities to inter-ELM fluctuations in H-
mode as previously observed [425].

Figure 11.8: Comparison of turbulence amplitude behavior in (a) L- and (b) I-

mode measured with Doppler reflectometry. Figure has been taken from Ref. [17].

Most importantly, the intermittent events show up in the divertor mea-
sured by absolute extended ultraviolet (AXUV) diode based bolometry [426]
several tens of microseconds later than observed with the DR in the confined
region at the minimum of the radial electric field [83]. The divertor impact in
combination with the strong density perturbation in the confined region sug-
gests that these bursts are playing an important role in hampering the density
pedestal to develop. Although a proof by direct measurements of the particle
transport is not possible as the bolometer detects rediation by a combination
of density, temperature, and impurity concentration. The analysis of transient
divertor heat loads shows that intermittent turbulent events, observed in the
confinement region, are responsible for a significant part of divertor heat loads
[427].

Previous results show a strong correlation between density bursts and the
WCM. The bursts appear as wave trains with the frequency of the WCM
[424]. Complementary to the previous analysis [424], a wavelet-based approach
(Sec. 7.2.3) has been used in Ref. [17]. During the strongly intermittent bursts
strong activity at the WCM and GAM frequency is found. An intermittent
behavior of the GAM is not unusual and has been reported from most devices
[358, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439]. Strong activity
of global modes (as the GAM or WCM) can lead to strongly localized turbu-
lent activity. Intermittent transport emitted by the GAM has been studied
theoretically near the critical gradient regime [440]. Also due to turbulence
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localization the transport can become bursty [441].

Figure 11.9: PDFs of density fluctuation amplitudes obtained at ρpol = 0.99 for

different sizes, k⊥ ≈ 10 cm−1, k⊥ ≈ 7 cm−1, k⊥ ≈ 5 cm−1 shown at the same level

of confinement in L-mode at H98 = 0.51 (a) and I-mode at H98 = 0.81 (b) and at

H98 = 0.93 (c). Heavy tails develop with improved confinement in I-mode. Larger

structures show more pronounced tails. Figure has been taken from Ref. [17].

The perpendicular wavenumber measured with the Doppler reflectometer
has been scanned between k⊥ ≈ 5–10 cm−1. The deviation from Gaussian
statistics increases with improving confinement [424, 83] as seen in Fig. 11.9
by the probability distribution function (PDF) of the density fluctuation am-
plitude. The density bursts are not only observed when small structures are
probed, but also at rather large scales. At large scales the development of the
heavy tail in the PDF is even more pronounced. Therefore, the intermittency
in I-mode seems not to be related to small-scale intermittency in particular,
but first of all to external intermittency (Sec. 3.5).
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11.5 Generation of solitary-like structures

The density bursts exhibit a solitary waveform. Solitons are a result of a
competition between self-steepening by a nonlinearity and dispersion as de-
scribed for example in 1D by the Korteweg-de-Vries (KdV) equation. The
non-linearity appearing in the KdV and Burgers equations are known to be
responsible for intermittency in 1D systems [442]. Self-steepening results in
the generation of higher harmonics. This is not possible for the standard non-
linearities in a magnetized plasma given by the E × B drifts. Those can be
written as Te

eBρ2s
(ẑ×∇⊥φ̃) ·∇⊥ with electron temperature Te, elementary charge

e and ρs =
√
Temi/eB. In wavenumber space ∇⊥ → ik this is proportional

to (ẑ× k) · k′ = ẑ(k′ × k). Therefore higher harmonics k′ = ck with constant
scalar c cannot be generated directly. The observation of the generation of
higher harmonics in the bispectrum is not as trivial as it seems.

Here, one possibility for the generation of such solitary-like structures is
shown. Starting point is the advective part of the electron temperature of the
Braginskii equation [403]

3

2
n
dTe
dt

=
3

2

(

n
∂Te
∂t

+ nvE×B∇⊥Te

)

. (11.2)

In the next step, temperature and density are normalized by typical values,
n0 and Te0, respectively. The normalized density and temperature are decom-
posed in background and fluctuating quantities n = n̄ + ñ and Te = T̄e + T̃e.

Making use of the Poisson bracket uE×B · ∇⊥ =
{

φ̃, ·
}

= ∂xφ̃∂y − ∂yφ̃∂x, with
x the radial and y the binormal coordinate, the advective part can be written
as

∂T̃e
∂t

= n̄
{

φ̃, T̃e

}

+ ñ
{

φ̃, T̄e

}

+ ñ
{

φ̃, T̃e

}

. (11.3)

In drift-wave ordering the gradients of the fluctuations are of the order of the
gradients in the background values. Therefore, the first term is the highest in
drift-wave ordering and the last two terms would be neglected. As a product
of three fluctuating quantities the third term is negligibly small. However, the
second term can be written as

∂T̃e
∂t
∼ ñ

∂φ̃

∂y

∂T̄e
∂x

(11.4)

and in the case of these strong density bursts in I-mode, the density fluc-
tuation level as well as the background temperature gradient are considered
to be high. On the other hand the first term in competition is proportional
to the temperature fluctuation level, which is considered to be low. This
has been observed to be the case in Alcator C-Mod [416]. A confirmation
in AUG is still pending. The transition of the dominant turbulence regime
from drift-wave dominated to resistive ballooning dominated is expected to
occur at CωB > 1 [159], where the local normalized collisionality is given by
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C = 0.51(me/mi)(qR/L⊥)
2νe(L⊥/cs) and ωB = 2L⊥/R with electron and ion

masses me and mi, respectively, safety factor q, collisionality νe and ion sound
speed cs =

√

Te/mi. For ne = 2.5 ·1019 m−3, Te = 250 eV, q = 5 and L⊥ = 2.5
cm at ρ = 0.98 we get C ≈ 1 and ωB ≈ 7.5 · 10−3, hence CωB ≪ 1. It seems
reasonable at these low collisionalities at high temperatures to assume adia-
batic electrons with φ̃ ≈ ñ. In this case the nonlinearity has the form ∼ ñ∂yñ
of a KdV-nonlinearity explicitly proportional to the radial temperature gra-
dient. Therefore, drift-wave turbulence with intrinsically low transport can
generate solitary-like temperature perturbations. How are those transmitted
to the density? The adiabatic coupling including temperature perturbations
is given by [403] φ̃− ñ− 1.71T̃e ≈ 0. The temperature fluctuations can be ap-

proximated by T̃e ≈ φ̃−ñ
1.71

. For low temperature fluctuations φ̃ ≈ ñ is still valid.
Therefore there is no contradiction with the argumentation above. Defining
a small phase difference δ between potential and density fluctuations with
φ̃ = ñ(1 − iδ), it follows T̃e ≈ (φ̃ − ñ)/1.71 = ñ(1 − 1 − iδ)/1.71. Density
fluctuations can be induced by the temperature fluctuations as ñ ≈ i1.71T̃e/δ.
If the phase difference δ is small the bursts appear larger in the density than
in the temperature. The temperature fluctuations also lead to particle trans-
port Γ = ũE×Bxñ = i(ky/B)φ̃ñ. With the iδ response this can be written

as Γ = ṽE×Bxñ = +(ky1.71
2T̃e

2
)/(δB). The associated heat transport is

q = ṽE×BxñT̃e = −1.71k2yT̃
3
e

δB
, which is small as T̃e is small and in the oppo-

site direction as the particle transport.

One possible scenario for the generation of solitary-like density perturba-
tions regulating the particle transport is the following: a close to adiabatic
coupling between potential and density can induce a solitary-like perturbation
in the electron temperature, if the density fluctuation level and the electron
temperature gradient are high and the electron temperature fluctuation level
is low. This temperature perturbation can be proportional to the phase shift
between potential and density and an increase of the temperature fluctuation
level can lead to an increase in particle transport accompanied by a soliton-like
waveform in the density induced by the adiabatic coupling. By means of line
ratio spectroscopy on helium [242] or correlation electron cyclotron emission
[243] it may be possible in the near future in AUG to measure density and
temperature fluctuations at the same point in space and time and hence their
cross-phase allowing a quantitative examination of the presented scenario.

11.6 Concluding remarks of turbulence in the

I-mode

The major mystery in I-mode is which mechanism is responsible for reducing
only one of the transport channels. I-mode turbulence promises great insight
to the interaction of energy and particle transport barriers in general. In this
chapter it has been shown, that
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i) The most prominent feature of turbulence in I-mode is the weakly-
coherent mode (WCM) (Sec. 11.1), which is a result of the ambient
turbulence being modulated by the geodesic acoustic mode (Sec. 11.2).
Magnetic fluctuations appearing at the WCM frequency are due to a
global Alfvénic mode.

ii) Strong intermittent bursts appear during the I-mode. These bursts are
responsible for a significant part of divertor heat loads. A strong corre-
lation between density bursts and the WCM is observed (Sec. 11.4).

iii) A possible generation mechanism of these bursts based on a Korteweg-
de-Vries-like nonlinearity has been proposed in Sec. 11.5.

External intermittency is a basic process of the transition from a laminar
to a turbulent flow. At the transition from laminar to turbulent flows, laminar
and turbulent regions coexist in the same flow. The Kármán vortex street is a
well known example for this. This is consistent with the kind of intermittency
observed by Doppler reflectometry in I-mode. Most of the time the turbulence
is strongly suppressed and the fluctuations are restricted to small periods in
time. Interestingly, there is a further similarity with a specific transition sce-
nario to a turbulent state. The transition to drift-wave turbulence is found
to follow the Ruelle-Takens scenario which has been described in detail in
Sec. 8.2. By increasing the control parameter the system passes through dif-
ferent regimes from periodic to quasi-periodic to mode locked to weakly turbu-
lent regime. In the mode locked regime a quasi-coherent mode appears. In this
regime a large-scale flow structure is generated by the inverse energy cascade
process and coupled to small-scale density fluctuations (Sec. 8.2). Through
this coupling the density perturbations are phase locked and synchronized to
the large-scale flow and appear as a quasi-coherent mode. This appears to be
very similar to the WCM, where the density fluctuations are phase locked by
the GAM. From this point of view, the I-mode can be seen to be at the transi-
tion to turbulence. Also other high confinement regimes exhibit quasi-coherent
modes and may be considered to be rather at the transition to turbulence than
turbulent. For example in the usual H-mode also quasi-coherent fluctuations
appear in the magnetics at high frequency [443, 286] and the turbulence level
is small.

Recently, huge progress on I-mode operation in ASDEX Upgrade has been
made. Usually during I-mode the confinement successively increases, leading
to an I-H transition. Now I-modes can be operated stationarily in a reliable
way via beta feedback control [427]. This will allow for more detailed studies
of turbulence in the I-mode regime in the future.



Chapter 12

Scrape-off layer turbulence

The scrape-off layer (SOL) refers to the region outside the last closed flux sur-
face (LCFS) in a limiter plasma or outside the separatrix in a divertor plasma.
The SOL is characterized by open field lines ending on material surfaces. The
SOL governs the heat load on the plasma facing components, determines the
power and particle balance and regulates the impurity dynamics. Therefore,
understanding the SOL is essential for future reactor design. Transport in
the SOL is determined to a huge fraction by intermittently occurring struc-
tures of enhanced plasma pressure [444, 445, 446, 447]. In the poloidal cross-
section or drift-plane they appear compact and localized and therefore are
called plasma blobs. These structures are also field-aligned [448] and therefore
also called plasma filaments. Blobs are driven by the interchange instability
[449, 450] (see Sec. 4.2). Due to the field alignment the parallel wavenumber
is k‖ = 0, which is also a main feature of the interchange instability. The
interchange instability of a strong pressure perturbation induces a charge sep-
aration as indicated in Fig. 12.1. Potential perturbations shifted by a phase
of π/2 with respect to the pressure perturbation compose a potential dipole
structure. The potential perturbations exhibit different signs and the corre-
sponding radial electric field results in an outwards propagation of the original
pressure perturbation. The blob generates its own convective flow. Therefore,
blobs intrinsically propagate radially outward, which leads to rather strong
radial convective transport. The dipole configuration of the potential has an-
other interesting aspect. As explained in Sec. 3.5.3 the generation position of
intermittent structures corresponds to saddle points of the potential and the
saddle point of the potential dipole structure is exactly at the center of the
blob.

Whereas these considerations hold for low-temperature laboratory plasmas
[451, 181], the tokamak SOL is more complicated. If finite ion temperatures
are included a dipole potential structure is observed neither in fluid [452, 453]
and global full-f gyrokinetic simulations [454] nor in experiments in ASDEX
Upgrade [180]. Instead, the potential rather exhibits a monopole like structure.
However, the monopole in the potential is shifted with respect to the density
structure still resulting in radial propagation and a saddle point within the

171
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blob structure even though not exactly at the center. The influence of finite ion
temperatures on the different regimes of blob propagation will be investigated
in Secs. 12.1.2 to 12.1.7. Sec. 12.1 is based to mainly on the publications
[18, 19].

The strong radial transport is a major concern for the first wall. Recent
estimates of the erosion on plasma facing components found dominant erosion
by plasma blobs for pure deuterium plasmas. Taking an impurity concentration
of only 1 % into account the background plasma parameters determine the total
gross erosion [455]. Also a stronger convective SOL transport may be desirable
to relieve the divertor. The scrape-off layer heat flux width λq = −q/∇q is
in current experiments just of a few millimeters [456], which compares well
with a heuristic drift-based model [457] λq ≈ 2qsρs. However, turbulence
based models of λq over-predict this observation [458]. This let suggest that
filamentary transport is not that important around the separatrix region. The
generation of plasma blobs will be subject of Sec. 12.2, which is based on the
publication [20].

12.1 Blob propagation regimes

12.1.1 Standard blob models

The standard blob model provides a simple mathematical description of plasma
blobs. Starting with a monopole (single-peaked) density perturbation with
a peak value higher than (usually 2.5 times) the surrounding rms level, the
magnetic curvature induces a charge polarization. Two E×B flow vortices with
different signs are created poloidally above and below the blob (see Fig. 12.1).
The resulting E×B drift moves the density in the direction of lower magnetic
field strength or to larger major radius R.

The main elements of the plasma blob physics (charge separation and con-
nection to the wall) appear in the polarization equation [459]

∇ · d
dt

(

enρ2s
e

Te
∇⊥φ

)

+
2c2smi

RB

∂n

∂y
=

2ne2cs(φ− φfl)
L‖Te

, (12.1)

where φ is the plasma potential, cs is the sound speed, L‖ the parallel con-
nection length, ρs =

√
Temi/eB with electron temperature Te, ion mass mi,

magnetic field strength B and elementary charge e. The first term is the time
evolution of the vorticity, the second term is the so-called interchange forcing
(Sec. 5.2.1) responsible for the charge separation and the term on the right-
hand side results from the sheath (see Sec. A.4), where the floating potential
φfl ≈ 3Te/e is assumed to be constant in space and time. Under stationary
conditions the parallel dynamics, i.e. the parallel current (right-hand side of
Eq. (12.1)) is balanced with the interchange forcing (second term on the left
hand side of Eq. (12.1)) to gain an expression of the potential dynamics

φ =
csρ

2
sBL‖

R

1

n

∂n

∂y
+ φfl.
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Figure 12.1: The blob equivalent electric circuit.

The time derivative of the vorticity (first term on the left hand side of Eq.
(12.1)) is neglected, which leaves, as explained before, the polarization due
to the magnetic field curvature as responsible for the blob propagation. It is
assumed that the blob is radially advected with the E ×B velocity associated
with this potential. As the floating potential is constant it does has no impact
on the radial velocity

vb = −
1

B

∂φ

∂y
= −csρ

2
sL‖

R

∂

∂y

1

n

∂n

∂y
. (12.2)

By making the ansatz of an isolated blob parabolically shaped in y direction
and propagating in radial (x) direction

n(x, y, t) = n(x)(x− vbt)e−(y/δb)
2

with the size of the blob being δb. It follows that

∂

∂y

1

n

∂n

∂y
= −(2/δ2b ).

Inserted into (12.2) the famous Krasheninnikov scaling arises [449, 460, 461]

vb = 2cs

(
ρs
δb

)2 L‖

R
. (12.3)

This is called the sheath limited regime of blob propagation. The application
of this model to the radial propagation of ELM induced filaments has been
done by Fundamenski [462].

As described by Garcia, there are several reasons why the conventional
approximation of the sheath current may be insufficient [463]. It does not
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comply with the observed ballooning and transport driven parallel flows and
the assumption implies that it should be collisionless, while SOL plasmas often
have significant collisionality. By neglecting the parallel current Garcia et al.
obtain a blob propagation scaling independent of the parallel scale length and
proportional to the square root of the blob size [463]

vb = cs

√

2δb
R
p̃e, (12.4)

where p̃e gives the blob pressure amplitude normalized to the background
pressure. This scaling results from a balance between the first and the second
term on the left-hand side of Eq. (12.1). In contrast to the Krasheninnikov
model the sheath can be neglected. Recently this so-called inertial regime
(Garcia scaling) and the sheath dissipation regime (Krasheninnikov scaling)
have been unified by order of magnitude estimates [464] or by the inclusion of
neutral collisions [465].

12.1.2 Blob model with warm ions

Most of the blob theories and simulations invoke cold ion models, which are
realistic for most basic plasma physics experiments [465, 181, 466, 467, 182].
Here, theory and experiments of plasma blobs seem to converge [461]. The
cold ion case is not realistic for the tokamak scrape-off layer, where typically
the ion temperature Ti exceeds that of the electrons Te [247, 289, 468, 469]. In
the divertor it can be assumed that ion and electron temperature are thermally
coupled resulting in τi = Ti/Te ≈ 1 in agreement with the experiments at least
in the near SOL [468]. Upstream the divertor in the case of a sheath connected
plasma the parallel heat transport is dominated by conduction. Thus, the ion
to electron temperature ratio can be roughly estimated by τi ∼ (κe/κD)

2/7 ∼ 3
[470] in agreement with the experiments [247, 289, 468]. Here κe,D is the
Spitzer heat conduction coefficient for electron and ion, respectively. Towards
the wall, in the far SOL, the perpendicular transport by blobs becomes more
important reducing the parallel transport by heat conduction and therefore
modifying τi. In the far SOL 6 ≤ τi ≤ 12 is observed [469]. Therefore, the
relevance of warm ions for the blob dynamics increases with the relevance of
the blobs themselves. However, the SOL physics in the warm ion case relevant
for fusion experiments have been only rarely investigated [452, 471, 472, 453]
before subsequently presented work established a more detailed understanding
of the role of warm ions in the SOL dynamics.

The following discussion is based on the DALF model (see Sec. 5.2) which
includes finite ion effects. As seen above blobs are determined by the vorticity
equation. The vorticity Ω̃ = (1/B2)∇2

⊥W̃ is determined by the total ion flow
stream function W̃ = φ̃ + τip̃e which includes the ion pressure p̃i = τip̃e. The
reason is that for finite ion temperatures also the ion diamagnetic velocity
can change in time and has a contribution to the polarization drift. The first
main difference to the standard blob models originates from the inclusion of
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the ion diamagnetic contribution p̃i = τip̃e to the polarization drift, which is
neglected in the cold ion case. The negligence of ∇2

⊥p̃i in the vorticity is equal
to the negligence of the ion diamagnetic contribution to the polarization drift,
which indirectly assumes MHD ordering [473]. If ∇2

⊥p̃i is neglected, also ∇‖J̃‖
should be neglected in a self-consistent treatment [473], which has been done
self-consistently in the Garcia scaling (12.4).

An important difference to the cold ion case is that the dipolar vortex
induced by the interchange drive is due to the ion pressure. This dipolar
perturbation adds to the blob pressure inducing an asymmetry in poloidal
direction, a feature also seen in simulations [452, 453]. Due to the asymmetry
additional dipoles may form [453]. As the interchange drive will be stronger at
the steeper flank this part of the blob will move faster resulting in a tilt of the
blob. This effect is also called blob spinning. Additionally due to the tilt, the
blob velocity is no longer just in the radial direction and a large fraction of the
blob velocity vb given by Eq. (12.15) may be in the poloidal direction. Also
this has been seen in simulations [452, 453]. The poloidal fraction of the blob
velocity will increase with the distance to the separatrix, effectively reducing
the radial velocity of the blob.

The second term in Eq. (5.9) is the ion diamagnetic nonlinearity, which
cascades energy from larger to smaller scales [474]. It can also be written as
{

∇⊥φ̃,∇⊥p̃i

}

[473] consistent with the models in [452, 472]. Here {·, ·} denotes
the Poisson bracket. The ion diamagnetic nonlinearity has been neglected in
the derivation of the scaling laws.

To investigate the impact of the ion dynamics on the blob dynamics the
parallel current equation (5.11) will be further simplified. First, no variation
of the background pressure on a field line ∇‖pe = 0 is assumed. Second, the
normalized mass ratio µ̂ is neglected, which is justified as long as the effective
growth rate of the blob stays below the ion-electron collision frequency. Both
contributions to Eq. (5.11) possibly have an impact on the blob dynamics,
but neither they result from the ion dynamics nor they are considered in the
standard blob models. We leave these effects for future investigations.

The ion to electron temperature ratio τi has three main effects, all in the
vorticity equation: It increases the interchange forcing and the drive of the
blobs, it leads to polarisation currents which have a direct impact on the
vorticity and it induces an additional nonlinearity which cascades energy to
smaller scales, which can potentially break blobs apart.

Due to the simplifications explained above the scaling laws will be derived
from the evolution of the polarization

d∇2
⊥(φ̃+ τip̃e)

dt
= ∇‖J̃‖ − (1 + τi)

2L⊥

R

∂

∂y
p̃e, (12.5)

the electron pressure

dp̃e
dt

= ∇‖J̃‖ +
2L⊥

R

∂

∂y
(φ̃− p̃e), (12.6)
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and the parallel current

β
∂Ã‖

∂t
= ∇‖(p̃e − φ̃)− CJ̃‖. (12.7)

With the so-called blob correspondence principle [459, 461] (which is nothing
else than a dimensional analysis by introducing typical scales, times and ve-
locities as done in derivation of the cascades in Sec. 3.2), the linear instability
of these fluid equations can be related to the radial blob velocity and scale size
by

ωb →
vb
δb
, (12.8)

k⊥ →
1

δb
, (12.9)

where ωb is the characteristic blob frequency and k⊥ is its perpendicular
wavenumber. In the inertial regime of the standard blob models this character-
istic blob frequency is the growth rate γb. In principle the blob correspondence
principle also includes L⊥ → δb and k‖ → 1/L‖, which is not applied here. The
blob velocity is determined by the polarization (12.5), where in the inertial (or
resistive) regime ∇‖J̃‖ = 0. If losses to the wall become important the sheath
dissipation needs to be considered. Sheath dissipation σφ/B [464] with sheath
conductivity σ = cs/L‖ρ

2
s can be included in the polarization equation (12.5).

Due to its physical dimension it has to be normalized by L⊥ρ
2
s/cs and it is

included as σ = L⊥/L‖ resulting in

∇‖J̃‖ = L⊥/L‖φ̃. (12.10)

12.1.3 Inertial regime

In the limit of a highly resistive plasma the parallel current is neglected. This
regime corresponds to the hydrodynamic regime in the Hasegawa-Wakatani
model (see Sec. 5.1). First as consistency check, the standard cold ion case
(τi = 0) (the case under MHD ordering) is derived. Then the warm ion case
(τi ≫ 1) is studied and finally both regimes are unified.

In the cold ion case, both the polarization velocity and the vorticity are
given by the potential W = φ̃. The renormalized polarization equation (12.5)
reads

L⊥

cs

d

dt
ρ2s∇2

⊥

L⊥

ρs
φ̃ = −2L⊥

R
ρs
∂

∂y

L⊥

ρs
p̃e.

The blob velocity is the E × B velocity ∇φ̃ = −vb/(ρscs)

−L⊥

c2s

d

dt
ρs∇⊥

L⊥

ρs
vb = −

2L⊥

R
ρs
∂

∂y

L⊥

ρs
p̃e. (12.11)

Applying dimensional analysis (∂/∂x → ikx, ∂/∂y → iky) to Eq. (12.11),
assuming the blob is purely growing (d/dt→ γb) and the blob correspondence
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principle (γb = vb/δb, δb = 1/k) it is obtained that

L2
⊥

c2s

v2b
δb

1

δb
=

2L⊥

R
ρs

1

δb

L⊥

ρs
p̃e. (12.12)

and recover the scaling of Garcia (12.4). It should be noted that all derivations
in this contribution are also valid for blobs being radially more strongly ex-
tended than poloidally δb = 1/ky ≫ 1/kx. Usually blobs exhibit this so-called
streamer-like shape. In the presence of strong shear flows the blobs may be
more strongly extended in the poloidal direction. In this case the poloidal size
should still be taken as the blob size.

For moderate to high τi and/or strong pressure fluctuations which seem
certainly justified for a blob, the ion flow stream function is determined by the
ion pressure contribution W = φ + τipe ≈ τipe and the polarization equation
(12.5) reads

L⊥

cs

d

dt
ρ2s∇2

⊥

L⊥

ρs
τip̃e = −(1 + τi)

2L⊥

R
ρs
∂

∂y

L⊥

ρs
p̃e. (12.13)

Applying dimensional analysis (d/dt→ iωb = ivb/δb) yields

−L⊥

cs

vb
δb
ρ2s

1

δ2b

L⊥

ρs
τip̃e = −(1 + τi)

2L⊥

R
ρs

1

δb

L⊥

ρs
p̃e. (12.14)

From the above given equation a scaling law for blob propagation can be
derived

vb = 2cs
(1 + τi)

τi

(
δb
ρs

)2
ρs
R

(12.15)

revealing a square dependence on the blob size, in contrast to the standard
models in Eqs. (12.3) and (12.4).

Before taking both contributions to the vorticity into account, the differ-
ences of the cold and warm ion cases are discussed in more detail. As the
electrostatic potential φ has been neglected in the total ion stream function
W , one could imagine that the electrostatic potential is not important for the
blob dynamics and ask the question, what is the mechanism for blob propaga-
tion? The charge separation necessary for the blob propagation is hidden in the
term d/dt = ∂/∂t+vx∂/∂x with the advection vx. Due to the gyroviscous can-
cellation upon advection the advective derivative vx∂/∂x is given by the E×B
velocity only [475, 159]. As iωb = d/dt ≈ vx∂/∂x ≈ ivb/δb the advective mo-
tion due to charge separation is contained in vb = ωbδb. Therefore, also in this
case the propagation is given by the E×B velocity due to the charge separation
resulting from the interchange drive. In the cold ion case the blob correspon-
dence principle is used to relate the blob growth rate to the blob velocity and
size by dimensional arguments d/dt ≈ ∂/∂t = γb = vb/δb. In the warm ion case
it is an advection induced dispersion d/dt ≈ vx∂/∂x ≈ ivb/δb = iωb balancing
the effective gravity in stationary conditions, which can be also interpreted as
wave propagation vb = ω/kx = ωbδb.



178 12. Scrape-off layer turbulence

Figure 12.2: Blob velocity against blob size in the hot ion inertial regime. Plasma

parameters used for this example are τi = 3, p̃e = 1, ρs = 10−4 m, R = 1.5 m. Blobs

with δb/ρs ≪ 3

√

τ2i R/(8(1 + τi)ρs) ≈ 16 are dominated by the ion contribution

to the polarization, larger blobs are determined by the plasma potential. Figure

adapted from Ref. [18].

Finally both contributions ∇2
⊥φ̃ and ∇2

⊥p̃i to the vorticity are taken into
account. The contributions from potential and pressure fluctuations are not
in phase since we assume interchange characteristics

(
vb
cs

)2
1

δ2b
− i
(
vb
cs

)
τiρs
δ3b

p̃e = −i(1 + τi)
2

Rδb
p̃e. (12.16)

After completing the square
((

vb
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)

− i
(
τiρs
2δb

p̃e

))2

= −
(
τiρs
2δb

p̃e

)2

︸ ︷︷ ︸
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−i (1 + τi)
2δb
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p̃e

︸ ︷︷ ︸

g

and by matching real and imaginary parts, the blob velocity reads
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∣
∣
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√
√

f 2
i + g2 − fi

2
.

This result exhibits two limits illustrated by Fig. 12.2. For |g| ≫ |fi|, which
holds for large blobs (δb/ρs)

3 ≫ τ 2i Rp̃e/(8(1+τi)ρs), except a factor of
√

(1 + τi)/2,
the τi-modified Garcia scaling is obtained

∣
∣
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∣

vb
cs

∣
∣
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√
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δb
R
p̃e. (12.17)

For smaller blobs |g| ≪ |fi| and since fi > 0
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∣
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∣
∣
∣
∣
=

√

fi
√

1 + g2/f 2
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2
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2

√

g2

fi
, (12.18)
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which recovers Eq. (12.15). Therefore, there are two inertial regimes, for
smaller blobs the ion diamagnetic contribution to the polarisation current is
responsible for their acceleration, where for larger blobs it is the E×B contri-
bution. The first one is called the ion pressure dominated resistive ballooning
regime (iRB) and the second the conventional resistive ballooning regime (RB).
For typical SOL parameters (ρs ∼ 10−4 m, R ∼ 1 m) the boundary between
quadratic and square root blob size dependence is about δb/ρs ∼ 10.

In Ref. [18] it has been explicitly pointed out that the ion diamagnetic
nonlinearity is dimensionally equal to the left-hand side of Eq. (12.13). Thus
Eq. (12.15) gives also the maximum radial velocity at a given size in the linear
approximation. Faster or non-isotropic structures will be strongly effected by
the direct cascade of the ion diamagnetic nonlinearity and those structures
will decay. Because potential and pressure perturbations do not have the
same spatial structure and the impact of the ion diamagnetic nonlinearity is
stronger on smaller structures compared to the ion diamagnetic contribution to
the polarisation, just dimensional arguments could be misleading. A detailed
numerical study has been necessary to investigate the canceling capabilities
of the ion diamagnetic nonlinearity and its effects on the blob dynamics. In
subsequent recent fluid and gyro-fluid simulations with seeded blobs the iRB
regimes (blobs close to the ion Larmor radius scale) have been studied [476,
477]. In both studies the iRB scaling significantly underpredicts the blob
velocity [476, 477].

12.1.4 Sheath dissipation regime

To model losses to the wall the divergence in the parallel current ∇‖J̃‖ =
L⊥/L‖φ is taken into account. Just this term is included in the polarisa-
tion equation (12.5), everything else stays the same as in the full model
Eq. (12.16). The sheath dissipation adds to the second term in Eq. (12.16) with
i(1/L‖)(δ

3
b/ρ

2
s)(vb/cs). The balance between the second term in Eq. (12.16) and

i(1/L‖)(δ
3
b/ρ

2
s)(vb/cs) gives the boundary

(δb/ρs) =
4

√

τi(L‖/ρs)p̃e (12.19)

between the inertial and the sheath effected regime. In the iRB inertial regime
(12.15), blobs are smaller than (δb/ρs)

4 < τi(L‖/ρs)p̃e (Fig. 12.3). If the sheath
dissipation is stronger than the ion diamagnetic contribution to the polarisa-
tion, fi can be substituted by fc = ((1/L‖)(δ

3
b/ρ

2
s))

2. There are two sub-regimes
of the sheath effected regime. The boundary is given by |g| = |fc| or

(δb/ρs) ≈ 5

√

8(1 + τi)p̃eL2
‖/(ρsR). (12.20)

For blobs smaller than (δb/ρs)
5 ≪ 8(1 + τi)p̃eL

2
‖/ρsR the interchange forcing

is most effective (|g| ≫ |fc|) and the inertial RB scaling (12.17) recovers. As
seen in Fig. 12.3 the RB scaling gives an inaccurate reproduction of the curve
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taking all terms into account. It is advised to take all terms into account in
this regime. Further, it should be noted that the difference between the first
and the second boundary is usually small, therefore the RB regime is very
narrow and usually more difficult to see than in Fig. 12.3. Larger blobs will
follow the Krasheninnikov scaling

∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
= (1 + τi)

(
L‖

R

)(
ρs
δb

)2

p̃e, (12.21)

except the additional drive by the factor of (1 + τi)/2. This regime will be
called the sheath connected (SC) regime, here. Therefore under consideration
of sheath dissipation we observe three regimes: the sheath non-effected iRB
(12.15), the interchange dominated conventional RB regime (12.17) and the
sheath connected regime (12.21).

Figure 12.3: Blob velocity (a) and effective growth rate (b) against blob size

in the sheath dissipation regime. Plasma parameters used for this example are

τi = 3, p̃e = 1, ρs = 10−4 m, R = 0.4 m, L‖ = 10 m. Blobs with

δb/ρs ≪ 3

√

τ2i R/(8(1 + τi)ρs) ≈ 10 are dominated by the ion contribution to

the polarization, larger blobs are determined by the plasma potential. Above

(δb/ρs) ≈ 5

√

8(1 + τi)p̃eL2

‖/(ρsR) ≈ 38 the sheath dissipation dominates. Figure

adapted from Ref. [18].
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Obviously one might ask the question, in which of these regimes most of
the blobs can be expected to occur. The blob correspondence principle states
that the effective growth rate relates to the blob velocity by γb = vb/δb. Due to
the additional factor of 1/δb, the maximum of the effective growth rate exhibits
a maximum at the first boundary (12.19). For larger blobs the growth rate
slightly decreases until the second boundary (12.20), where the growth rate
strongly drops to ∼ δ−3

b . As explained above the diamagnetic nonlinearity,
which breaks the blob apart in smaller structures, as well as the tilt by the
generation of additional dipoles in the vorticity will reduce the effective growth
rate close to the first boundary and shift the scale, where most of the blobs
will be detected closer to the second one. Except the factor of 5

√

8(1 + τi) ≈ 2
this expectation is in line with the standard blob theory [459]. As explained
above the region of the RB regime is quite narrow which might explain, why
in experimental investigations often only one blob size is detected [478].

12.1.5 Experimental and numerical comparisons

Next, these predictions are compared to experimental observations. Blob ve-
locities and sizes have been measured in low-density L-mode discharges in AS-
DEX Upgrade using lithium beam emission spectroscopy (Li-BES) [263] (see
Sec. 6.3) and, in L- and H-mode, gas-puff imaging (GPI) [274] (see Sec. 6.4).
The Li-BES measurements were done for a wide range of B in order to in-

vestigate the ρs dependence. The Li-BES signal is dominantly sensitive to the
electron density. The GPI can measure the spatio-temporal behavior in more
detail compared to the Li-BES with the penalty that the intensity depends
on a combination of density and temperature. The results from the Li-BES
analysis are presented from around ρpol = 1.044. The maximum intensity of
the gas puff was located close to ρpol = 1.065. The experimental results are
from the far SOL. The electron temperature was measured using Thomson
scattering yielding for all discharges values in the range of Te = 12 ± 8 eV
at the normalized poloidal flux coordinate position chosen as reference for the
analysis of the Li-BES data [263]. Due to the lack of Te profiles from probe
measurements, Te had to be assumed for the comparison of the GPI data with
the analytical model. Here, in L-mode Te = 15± 5 eV and Te = 20± 5 eV in
H-mode has been assumed [274].

To determine the blob size with Li-BES the radial half width at half max-
imum of the density perturbations is taken for the blob size. Due to the finite
lifetime of the Li2p state the blobs appear to be smeared out in the emission
response [260]. For the detailed translation to the actual blob size we refer to
Ref. [263]. We compare the cold ion case (τi = 0) to the case with τi = 3,
which agrees with previous measurements in AUG [289] and simple theoretical
considerations [470]. Assuming τi = 3 the warm ion scaling predicts the blob
size as measured by Li-BES (Fig. 12.4a) very well. From the GPI the blob
size δb is determined by the poloidal semi axis of a fitted ellipse. Also the GPI
measurements show a better accordance with the warm ion model (τi = 3)



182 12. Scrape-off layer turbulence

Figure 12.4: Characteristic blob size (a) and velocity (b) from LiBES compared

with cold and warm-ion models (adapted from [19, 263]). Characteristic blob size

(c) and velocity (d) from GPI compared with cold and warm-ion models (adapted

from [19, 274]).

than with the cold-ion approximation (Fig. 12.4c). For the Li-BES data the
radial velocity is calculated after conditionally averaging (Sec. 7.1.2), where
the mean and maximum radial velocities are shown in Fig. 12.4b. The veloc-
ity decreases with increasing blob size indicating the sheath connected regime
(Sec. 12.1.4). The absolute values from the scaling formula agree well with
the measured mean velocities for larger blob sizes (δb/ρs > 50). The measured
maximum velocities generally exceed the cold ion sheath-connected scaling ve-
locities especially for large blob sizes. For smallest blob sizes (δb/ρs ≈ 30),
however, the scaling agrees well with the maximum velocities. Since the scal-
ing formulas should be related to the maximum velocities rather than to the
mean velocities as explained in [450], the better agreement of the warm ion
case with the measurements points again to a possible influence of finite ion
temperatures on the blob dynamics. Similar to the treatment of the simulated
data an object recognition method has been used for the GPI data, where the
blobs are tracked over several images and their radial velocity is estimated by
their trajectories. In both, the Li-BES and GPI data the measured veloci-
ties are substantially smaller compared to the model predictions (Figs. 12.4b
and 12.4d). Concerning the effect of uncertainties on the predictions by the
model, the multiple dependence on the electron temperature (cs, ρs, τi) is most



12.1 Blob propagation regimes 183

challenging.

Changing the toroidal magnetic field strength does not reveal any depen-
dence on the blob size or velocity in the analysis of the Li-BES data, which is
in contradiction to the explicit dependence in the model [263]. GEMR simu-
lations carried out in comparison to measurements at Alcator C-Mod did also
not show any magnetic field dependence in the simulation or the experiments
[479]. Therefore, despite the overall good agreement in absolute numbers of
blob sizes and velocities, it seems that still something is fundamentally wrong
with these scaling laws.

Figure 12.5: The center plot shows the distribution of blob sizes δbρs and blob

velocities vb/cs estimated from blob trajectories in a GEMR simulation with cold

ions. The prediction (Eq. (12.16) solid line) as well as the limiting regimes (iRB

dotted, RB dashed-dotted, SC dotted line) overlay the center plot. On the top the

averaged blob size distribution and on the right-hand side the averaged blob velocity

distribution is shown. Simulations results for cold ions (τi = 0.1) are shown in (a)

and for warm ions (τi = 3) are shown in (b). Figure taken from Ref. [19].

Before the investigation presented here only a few studies of the effects of fi-
nite ion temperature on the blob dynamics had been carried out [452, 471, 453].
Mainly the dynamics of seeded blobs with predefined blob parameters (for ex-
ample size, shape, amplitude) have been studied. We choose a different ap-
proach, where blobs are generated self-consistently and are not seeded. Such
a simulation is provided by the three-dimensional gyrofluid electromagnetic
turbulence model GEMR (see Sec. 5.3) used here. Within this framework,
experimental and modeling results have already been compared with reason-
ably good agreement [479, 289, 180]. As GEMR is a 3D code no parallel
closure is preassigned. Most of the effects, which are believed to play an im-
portant role for the plasma blob dynamics, are included in GEMR, namely,
three-dimensional [480], electromagnetic [481], finite ion temperature [472, 18],
finite Larmor radius [471] and shear flow (amongst others the zonal flow and
the geodesic acoustic mode) effects [482, 483, 376]. Details on the simulation
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parameters can be found in Tab. C.1 or in the original publication [19].

By an object recognition technique [285] (see Sec. 7.1.1) blob events are
tracked over several images. The radial velocity of the trajectory is the blob
velocity. The blob size is defined here by the diameter of a circle of the cor-
responding blob area, which is not circular in general. In this work, blob size
and velocity of these trajectories are shown from the region from 1 cm to 2
cm outside the LCFS. The local plasma parameters are ρs ≈ 3.5 · 10−4 m and
cs ≈ 43 km/s, the connection length is about L‖ ≈ 15 m. For better compari-
son with the experiment the blob-averaged fluctuation level of the density (of
about ñe/〈n〉(τi = 0.1) = 0.22 and ñe/〈n〉 = 0.48) is taken as the blob ampli-
tude. The normalization is done with the local background density 〈n〉(r) as
typically done in the experiments, and not with one density n0 for all radial
positions as typically done in the simulations. Taking n0 as the LCFS value,
local large fluctuations can be still small in the simulation ñe/n0 < ñe/〈n〉 as
n0 > 〈n〉(r). The blob amplitudes strongly exceed the total fluctuation level
of about ñe/〈n〉 = 0.022. For both the cold ion (Fig. 12.5a) and warm ion
(Fig. 12.5b) case, the simulated blob size-velocity distribution is within the
limits, shown by the dotted (iRB), dashed-dotted (RB) and dotted (SC) lines.
For cold ions the predicted blob size-velocity dependence agrees very well with
the simulated distribution. As the ion to electron ratio increases the density
gradient in the SOL becomes flatter. We observe less but larger and faster
blobs (Fig. 12.5b). As finite ion temperature effects become important the
blob size distribution changes from positively skewed to negatively skewed and
a bimodal velocity distribution develops. In the simulation the mean blob size
changes from δb/ρs(τi = 0.1) ≈ 10 to δb/ρs(τi = 3) ≈ 18, where the cold ion

model [459] predicts δb/ρs = 5

√

p̃eL2
‖/(ρsR) ≈ 18 for τi = 0.1 and δb/ρs ≈ 21

for τi = 3. The changes are mainly due to changes in the blob amplitudes.
The warm ion model predicts blobs appearing in the RB inertial regime [18].
This is between the maximum growth rate given by γb = vb/δb [18] (which is
δb/ρs(τi = 0.1) ≈ 4 and δb/ρs(τi = 3) ≈ 14) and the boundary to the SC regime
given by Eq. (12.20) (which is δb/ρs(τi = 0.1) ≈ 27 and δb/ρs(τi = 3) ≈ 41,
respectively). The present simulations are in the inertial RB regime. For finite
ion temperatures the blob size distribution is limited to a very narrow region
of only a few ρs. This feature is often observed in the experiments [478] and is
a further indication that finite ion temperature effects play a significant role
in the blob dynamics of high-temperature fusion plasmas.

12.1.6 Transition from sheath limited to inertial regime
at high density

For magnetic confinement fusion devices such as ITER the power load on
the foreseen divertor target material, tungsten, must be kept below P ≈ 10
MWm−2, which can only be achieved under detached or partially detached
conditions [484]. Detachment is achieved at high SOL plasma densities. Fur-
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Figure 12.6: Shoulder formation in the SOL at high densities, (a) divertor col-

lisionality measured by Langmuir probes, (b) degree of detachment DOD and (c)

evolution of the density profile measured by Li-BES.

thermore, also the fusion performance depends on the density and therefore
a reactor should run at high densities. The extrapolation of SOL transport
based on experimental observations conducted in present tokamaks with at-
tached divertors and low collisionalities may be seriously underestimating the
future particle and heat fluxes onto the main chamber wall. With increasing
background density a transition in SOL transport can occur, manifesting itself
in the development of a shoulder in the radial density profile [485, 486, 487].
As proposed by Myra et al. [488] recent experiments in ASDEX Upgrade show
that this transition occurs when a critical collisionality Λ = (νeiL‖)/(ωceρs)
threshold is exceeded [489]. Here, ωce is the electron cyclotron frequency and
νei is the electron-ion collisionality. It has been found that the divertor param-
eters matter and for Λdiv > 1 larger, faster but fewer blobs have been observed
[489]. The increase of filamentary transport leads to the shoulder formation
[489]. The formation of the density shoulder and the divertor collisionality
Λdiv is shown in Fig. 12.6. The critical divertor collisionality is exceeded at
t ≈ 2.5s. The detachment is classified by the notation of the degree of de-
tachment (DOD), which is defined as the ratio between the calculated and the
measured ion flux to the target. Details on the estimation procedure are given
in Ref. [490]. The degree of detachment is shown in Fig. 12.6b. The flux to
the outer divertor falls below the two-point model estimate at t = 2.3 s. The
outer divertor detaches at t = 3.5 s. The density profiles show that the shoul-
der formation occur before t = 3.0 s, thus before the outer divertor detaches.
This transition occurs in both in L-mode and in H-mode [491, 492]. The phys-
ical reason is that the plasma filaments are disconnected from the wall, the
parallel current cannot be dissipated by the sheath and the curvature drive
is balanced by the polarization current. A transition from the sheath limited
regime (Sec. 12.1.4) of blob propagation to the inertial regime (Sec. 12.1.3) of
blob propagation occurs [493]. The experimental data of the blob velocity-size
dependence is in excellent agreement, once the influence of the amplitude is
assumed to be ñ/(n̄ + ñ) instead of ñ/n̄. This modification is motivated by
full-f simulations [494]. Furthermore, the experimental results indicated that
the ions have to be around Ti ≈ 3Te in the sheath limited regime and cold in



186 12. Scrape-off layer turbulence

the inertial regime after the transition [493]. Subsequent studies could show
that the ion temperature indeed cools down after the transition [491].

Enhanced filamentary transport may be also important during the detach-
ment process. Due to E × B drift induced by the sheath potential the power
load to both divertors is not equally distributed [495], but the outer divertor
receives much more power. Therefore, the inner divertor detaches first with in-
creasing density. Different states are observed during the detachment process
as described in Ref. [490]. Once the plasma blob propagation transitions to
the inertial regime, they can overcome a much larger radial distance and can
be seen in the far-SOL on the high-field side midplane [496]. These filaments
allow for enhanced neutral flux into the region upstream of the X-point [497],
which facilitates an upstream movement of ionization and recombination re-
gions in the inner divertor and correspondingly allows for neutral flux through
the private flux region to the outer divertor. This facilitates the detachment
of the outer divertor.

12.1.7 Electromagnetic regime

It is known that ELM filaments carry a substantial current [498]. Due to
Ampére’s law the parallel current induces a magnetic field J̃‖ = −∇2

⊥A‖, which

translates within our scaling to Ã‖ = (δb/ρs)
2J̃‖. For large blobs this will give

a large contribution even at rather small β̂. If the electromagnetic contribution
dominates over the collisionality, Eq. (12.7) is given by

β̂
L⊥

cs

vb
δb

(
δb
ρs

)2

J̃‖ = −
L⊥

ρs

L‖

δ‖
(φ̃− p̃e) (12.22)

which is solved for (φ̃− p̃e) and inserted into (12.6). From that a response of
the parallel current can be deduced

∇‖J̃‖ =

L2
⊥

ρsδb

vb
cs
p̃e

1− 2L2
⊥β̂

Rρs
(
δ‖
L‖
)2 vb
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. (12.23)

For 1≫ 2L2
⊥β̂

Rρs
(
δ‖
L‖
)2 vb
cs

the adiabatic limit (∇‖J̃ = d/dt(p̃e)→ φ̃ = p̃e) is taken.

Electromagnetic effects dominate the divergence of the parallel current for

1≪ 2L2
⊥β̂

Rρs
(
δ‖
L‖

)2
vb
cs
. (12.24)

Note that here β̂ is additionally normalized with (L‖/L⊥)
2. For example, an

experimentally observed β = nT/(B2/2µ̂0) in the order of 0.01 translates with
(L‖/L⊥) ∼ 102 to a β̂ in the order of 102. Of course, for typical SOL conditions
a β of only 10−5 to 10−4 can be expected, which rules out electromagnetic
effects for modifying the dynamics. However, at least during pellet ablation,
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the formation of high β ∼ 0.05 drifting plasmoids has been observed [499] and
it can be expected that the local β of ELM filaments is much higher than 10−4.
Then Eq. (12.23) reads

∇‖J̃‖ = −
R

2δbβ̂

(
L‖

δ‖

)2

p̃e. (12.25)

This gives the closure for the parallel current in (12.5). This term adds
to the effective gravity. With the Alfvén velocity uA = B/

√
4πn0mi, β̂ =

(cs/uA)
2(L‖/L⊥)

2 and a normalized Alfvén frequency ωA = (uA/δ‖)(L⊥/cs)
the effective gravity can be written as

g = ωB
ρs
L⊥

(

1 + τi +

(
ωA
ωB

)2
)

.

Usually g ≫ fi and the radial velocity is given by
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which gives a square root dependence on the filament size as suggested in
experiments [469]. As the contribution of the electromagnetic part ωA ∼ 1/δ‖
depends on the parallel extent of the structure, different parallel extents will
result in a branch-like distribution in the vb-δb scatter plot as experimentally
observed [469].

Finally the requirements for the electromagnetic regime are summarized.
For blobs larger δb/ρs > 2ΛL‖/R = CωB, also (ω2

A/ωB)(δb/ρs) > C/β̂ holds.
Together with relation (12.24), which is equal to (L⊥/ρs)(vb/cs) ≫ (ω2

A/ωB),

(vb/cs)(δb/ρs)(L⊥/ρs) > (C/β̂) is fulfilled. Therefore, the electromagnetic
regime is valid in finite beta turbulence (β > me/mi), for blobs exceeding
the velocity of (vb/cs) > (Rρs)/(2βL

2
‖) with a size above (δb/ρs) > 2ΛL‖/R.

12.2 Blob birth

As described above a lot of progress has been made in understanding the
propagation of blobs and the relation between blob size δb and velocity vb
[449, 450, 18, 464, 263, 274, 500, 476]. However, it is still unknown or there is no
general agreement on how, where and at which rate blobs are generated [501].
Two generation mechanisms of plasma blobs are introduced in the following.
The top row of Fig. 12.7 shows the common picture of blob generation [461]. A
streamer is generated in the confined region and propagates into the shear layer
at the separatrix. The shear tears apart the streamer into two smaller more
isotropic structures. The structure penetrating into the SOL constitutes a blob
and radially propagates due to interchange forcing. The row at the bottom of
Fig. 12.7 shows the process due to turbulence spreading [502]. Structures in
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the confined region and the SOL move along the background flow. This leads
to enhanced collisions for these structures. The structures merge, particles
and energy get mixed by the superposition of their E × B flow. Due to the
shear the structure is torn apart again. Due to the process structures in the
near SOL enhance their density and temperature, which leads to enhanced
interchange forcing and the blob propagates outward. The spreading picture
of blob generation is investigated in detail in the Sec. 12.2.3.

Figure 12.7: Schematic view of the blob generation process as explained in the

main text.

Blob generation in linear devices due to elliptic instability
Elliptic instabilities are introduced in Sec. 3.3.5. Also vortices in a plasma
should be subject to these kinds of instabilities [503]. In the following, an
example relevant for linear plasma devices is briefly discussed. In linear devices
the blob-ejection process is preceded by an acceleration of an m = 1 mode
[504, 505, 506, 466]. Due to the E×B drift every perturbation in the potential
is equivalent to a vortex. Anm = 1 mode in the potential consists of a negative
and positive perturbation, these are two vortices rotating in opposite directions
and therefore anm = 1 mode is a counter-rotating vortex pair. Also the dipolar
potential structure associated with plasma blobs is a counter-rotating vortex
pair. It could be shown that the flow preceding the blob ejection in a linear
device exhibits signs of the cooperative elliptical instability [275].

12.2.1 Skewness and blob trajectories

Intermittency is associated with non-Gaussian statistics, hence finite skew-
ness and kurtosis (Sec. 3.5.1). As blobs correspond to large events in the
amplitude distribution function, blob activity corresponds to large skewness
values. Therefore, also the region where blobs occur exhibit a positive skew-
ness, where the region where no blobs occur the skewness is zero. Blob birth
is commonly associated with the skewness of density fluctuations crossing zero
[507, 508, 461, 509]. By means of gyrofluid simulations carried out with the
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GEMR code (Sec. 5.3) the generation of plasma blobs has been investigated.
Details on the simulation parameter can be found in Tab. C.1 or in the orig-
inal publication [20]. The results presented here occur for a wide range of
simulation parameters [501].

The skewness and kurtosis profiles of the simulation are shown in Figs. 12.8d
and e. Both are small inside the confined region pointing to a non-intermittent
character of the fluctuations. Across the separatrix both increase indicating a
more intermittent behavior outside. The skewness takes very small values 1
to 2 cm inside the confined region. This region coincides with the maximum
in −∇n/n (Fig. 12.8a). Assuming that the position of zero skewness is the
position of the plasma blob generation, blobs would be generated about 2 cm
inside the confined region. From that, blobs are expected to be generated in-
side the confined region and propagate across the LCFS into the SOL. As we
will see in the following this interpretation is misleading.

Figure 12.8: (a) Background density and inverse background density gradient

length, (b) background radial electric field around the LCFS, radial profiles of the

(c) density fluctuation amplitude, (d) skewness of density fluctuations and radial

distribution of blob trajectories, (e) excess kurtosis of density fluctuations. Figures

taken from Ref. [20].

The simulation provides the possibility to observe the blob generation di-
rectly. A snapshot of the density fluctuations is shown in Fig. 12.9a. Turbulent
structures have a higher fluctuation amplitude inside the confined region as also
shown by Fig. 12.8c. The reason is the stronger gradient. Outside the LCFS
more positive than negative turbulent structures are observed, which can also
be seen in the skewness (Fig. 12.8d). Positive density perturbations, which
appear coherent and isolated, are blobs. Blobs are detected more frequently in
the SOL. To investigate, where blobs originate from, they have to be defined
first. Blob identification is done by three conditions. For every time step we
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Figure 12.9: (a) Snapshot of the fluctuating density. (b) Examples of blob trajec-

tories. Figures taken from Ref. [20].

identify blobs by two conditions. First we define blobs as positive density fluc-
tuations, which exceed the standard deviation by a factor of 2.5. The radially
local value of the standard deviation is used here, since it is usually used in
experimental investigations. Second the blob has to fulfill this condition over
a spatial extent of at least 11 points of the simulation grid (≈ 8ρs ≈ 5 mm).
After possible blobs have been identified for every time step these are tracked
using the algorithm of Ref. [285]. Only structures which can be tracked for
at least 50 time steps (≈ 25 µs) are considered as blobs. That is the third
condition. The radial distribution of blob trajectories is inserted in Fig. 12.8d,
showing a good agreement of the occurrence of the detected blobs with the
skewness. The radial position of the first occurrence of a structure satisfying
these conditions is the plasma blob birth location. The last occurrence will be
defined as the blob death.

Examples for blob trajectories are shown in Fig. 12.9b. Blobs are gener-
ated over the entire domain. This observation is also shown in the blob birth
statistics in Fig. 12.10a. Also the blob occurrence shows a pronounced poloidal
asymmetry. Most of the blobs are detected above the midplane pointing to
the fact that the magnetic configuration impacts the local dynamics similar to
Ref. [41]. Some blobs form inside the confined region, where the background
gradients are high, and propagate outwards (Fig. 12.10c). Most of them cross
the separatrix (Fig. 12.10d). These are usually generated close to the LCFS
(Fig. 12.10e). By propagating across the LCFS they change the poloidal prop-
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Figure 12.10: Statistics of the (a,c,e,g) birth and (b,d,f,h) death location of the

detected blobs also under selective conditions: only blob which are generated inside

the LCFS (c,d), which cross the separatrix (e,f) and which are generated inside the

LCFS and propagate into the far SOL (g,h) are considered. Figures taken from

Ref. [20].

agation direction (Fig. 12.9b). In the confined region blobs propagate in the
electron diamagnetic direction, in the SOL in the ion diamagnetic direction.
A remarkable fraction of blobs vanishes at the shear layer by either being
torn apart or strained out [142], but most blobs reach the boundary of the
simulation.

12.2.2 Blob occurrence rate

The prediction of the the blob occurrence rate [510], blob detection rate fd
[511] or simply blob frequency [455], as part of the blob duty cycle fdτb or blob
packing fraction is of great use for practical considerations about the blob
transport, the SOL width [510, 512] and plasma-wall interaction [455, 512],
since especially the large amplitude events carry the most energy and parti-
cles. For practical purposes the blob occurrence rate has to be estimated by
experience from devices currently in operation [455, 510, 512]. It is basically
assumed that the occurrence rate is same as in present devices. A predictive
formula for the blob occurrence rate has not been available. A recently de-
veloped model enables the quantitative prediction of the blob detection rate
in a fusion plasma [511]. The basic idea is shortly presented in the follow-
ing: A dominant instability generates seed fluctuations, where only those at
a particular size are allowed to become blobs. The most stable blob size δb
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[513, 514] defines a selection rule on which scale the seed fluctuations can de-
velop to blobs. Seed fluctuations at this particular size are generated by the
rate fg = (uE×B + uph)/δb, where uE×B and uph are the E × B background
and phase velocity (of the driving instability), respectively. If the amplitude
distribution function is known, one can calculate how many events per time
exceeding the standard deviation by the desired level are generated. This is
the blob occurrence rate. This prediction has been compared with GEMR sim-
ulations with varying collisionality and shear layer strength. The prediction
shows a robust agreement within a factor of two despite varying generation
positions and driving instabilities [501].

12.2.3 Turbulence spreading in(to) the SOL

Finally the energetics is investigated. A simple K-ǫ model (see Sec. 3.6.2) is
derived to investigate turbulence spreading (Sec. 3.8). Let us consider the
radial convective part of the continuity equation only

∂n

∂t
= −ur

∂

∂r
n (12.27)

neglecting damping and cross-field coupling. Fluctuations are defined by tak-
ing the difference to the zonal and time average 〈·〉 =

∫
dydsdt as the mean

quantity ñ = n − 〈n〉. For simplicity the radial background flow is neglected
〈ũr〉 = 0 and the plasma turbulence is incompressible in the perpendicular
plane, therefore ∂rvr cancels out with its binormal counterpart. The evolution
of the mean density neglecting sources, sinks and dissipation of simplicity is
given by

∂〈n〉
∂t

= −〈ũr
∂

∂r
ñ〉 = − ∂

∂r
〈ũrñ〉. (12.28)

We see that the background density is affected by the divergence of the tur-
bulent transport Γ = 〈ũrñ〉. As a divergence it conserves particles within the
boundaries. The evolution of the background free energy is

1

2

∂〈n〉2
∂t

= −〈n〉 ∂
∂r
〈ũrñ〉 = −

∂

∂r
(〈n〉〈ũrñ〉) + 〈

∂n

∂r
〉〈ũrñ〉. (12.29)

The total free energy (1/2)(〈n〉+ ñ)2 evolution is given by

1
2

∂〈(〈n〉+ñ)2〉
∂t

= −
〈

(〈n〉+ ñ)ũr
∂

∂r
(〈n〉+ ñ)

〉

= −〈n〉 ∂
∂r
〈ũrñ〉 − 〈

∂n

∂r
〉〈ũrñ〉 − 〈ñũr

∂ñ

∂r
〉. (12.30)

Subtracting the mean evolution gives the evolution of the turbulent free energy

1

2

∂〈ñ2〉
∂t

= −〈∂n
∂r
〉〈ũrñ〉 − 〈ñũr

∂ñ

∂r
〉. (12.31)
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Using ∂r〈ũrññ〉 = 2〈ũrñ∂rñ〉 results in

1

2

∂〈ñ2〉
∂t

= −〈∂n
∂r
〉〈ũrñ〉 −

1

2

∂

∂r
〈ũrñ2〉. (12.32)

The first term of this equation appears with a different sign in the evolution of
the background free energy (last term in Eq. (12.29)) and therefore constitutes
a transfer term, which transfers the free energy from the background to the
turbulent field. Where transport is responsible for the main loss of particles,
it is the main drive of turbulence. We define the local drive of the turbulence
by

D = −〈∂n
∂r
〉〈ũrñ〉. (12.33)

The second term is a divergence and preferentially transports the fluctuation
amplitude from unstable to stable regions. This is the turbulence spreading
term

S = −1

2

∂

∂r
〈ũrñ2〉. (12.34)

Figure 12.11: (a) Energetic drive by the background gradient and (b) turbulence

spreading of density fluctuations (solid line). The dashed line in (b) shows the

number of blobs that died reduced by the number of blobs born. Figure taken from

Ref. [20].

Next, we use GEMR simulations already analyzed before (Sec. 12.2.1) to
estimate the quantities discussed above. The present analysis is restricted to
the same 2D plane at the low-field side midplane already analyzed in Figs. 12.8,
12.9 and 12.10 where blobs are prominent. The region considered here is
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similar to those of a 2D simulation or experimental data from gas-puff imaging
at the outboard midplane. It can easily be applied by using the average of
〈·〉 =

∫
dydt. For 1D probe measurements as by a reciprocating Langmuir

probe 〈·〉 =
∫
dt may be used. Figure 12.11 compares the rates of turbulent

drive by the background gradient

ωD =
−〈∂n

∂r
〉〈ũrñ〉

1
2
〈ñ2〉 (12.35)

with the rate of turbulence spreading

ωS =
−1

2
∂
∂r
〈ũrñ2〉

1
2
〈ñ2〉 , (12.36)

both normalized to the local fluctuation amplitude. The normalized turbulent
drive as shown in Fig. 12.11a is interpreted as the local linear effective growth
rate and the normalized turbulence spreading as shown in Fig. 12.11b as the
nonlocal nonlinear growth rate. The local linear effective growth rate is higher
in the confined region and peaks at the LCFS. The turbulent drive is very
similar to the inverse background gradient (Fig. 12.8a). However, most of the
blobs are generated in some distance to this position (Fig. 12.10).

The shear layer has been associated with blob formation [461, 482, 483, 376,
502]. Here it is located close to the LCFS (Fig. 12.8b). At the LCFS a transfer
of free energy by turbulence spreading from the confined region into the SOL
is observed. Compared to the linear growth rate this energy transfer is small
(10%). This corresponds to the cascade-like picture of turbulence spreading
[343] recently investigated at the shear layer close to the LCFS in simulations
and experiments [502].

In the SOL, turbulence spreading transports the free energy from the region
7 mm outside the LCFS into the far SOL. The generation location of the tur-
bulent intensity transport corresponds to the position, where the radial electric
field exhibits its maximum (Fig. 12.8a) and the blobs are generated. The blob
source is given by the number of blobs born reduced by the their deaths. The
negative of the blob source (dashed line in Fig. 12.11b) roughly follows the
turbulence spreading (solid line in Fig. 12.11b). Turbulence spreading con-
nects blob sources and sinks. The analysis of turbulence spreading indicates
a blob birth location of 7 mm outside the LCFS which is pretty close to the
actual birth position at 9 mm, whereas the condition of crossing zero skewness
(Fig. 12.8d) would predict the blob birth region at 20 mm inside the LCFS.
Turbulence spreading provides a more suitable diagnostic for the blob birth
location than the skewness alone. Spreading becomes stronger further out and
reaches half of the local drive 2 cm outside the LCFS (comparing the solid lines
in Fig. 12.11a and b). Therefore, it can be expected that turbulence spreading
is the main drive in the far SOL. Turbulence spreading in the main SOL is
mainly carried by the blobs and not by the cascade-like interaction which is
more relevant around the separatrix. The results presented in this section have
been recently experimentally confirmed in the COMPASS tokamak [515].
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12.3 Concluding remarks on SOL turbulence

The main results of this chapter can be summarized as follows:

i) The basic plasma blob propagation model relies on the assumption of
cold ions, which does not hold in high-temperature fusion experiments.
The impact of finite ion temperatures on plasma blob propagation has
been included into this model (Secs. 12.1.3 and 12.1.4), which lead to
increased agreement of experiments and simulations (Sec. 12.1.5).

ii) Under reactor relevant conditions at high densities, the SOL density
profile flattens and filamentary transport is increased (Sec. 12.1.6).

iii) It has still been unknown or there is no general agreement on how, where,
and at which rate blobs are generated. The results in Sec. 12.2 show that
blobs do not have to be generated in the confined plasma and may be a
SOL-only phenomenon. First attempts on predicting the blob occurrence
rate are presented.

iv) Turbulence in the far-SOL cannot be driven by the gradients as turbu-
lence in the confinement region. Therefore, transport in the far-SOL is
essentially coupled to the confined region or the near-SOL. Such non-
local coupling can be described by turbulence spreading. In Sec 12.2.3 a
turbulence spreading model of the SOL is presented.
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Chapter 13

Conclusions

Turbulence is a very complex phenomenon. Compared to neutral fluids, turbu-
lence in magnetically confined fusion plasmas involves even more fields (veloc-
ity, densities, temperatures, heat fluxes, electrostatic and magnetic potentials
for at least two species). Key issues are to predict and to understand trans-
port of particles, heat and momentum, which determine the confinement of
the magnetically confined fusion plasma and hence its technical and economic
feasibility. At lower turbulence levels higher energy confinement times could
be achieved, which could allow operation of a future fusion reactor at smaller
macroscopic scales. Key questions are:

i) What are the driving instabilities of plasma turbulence and what is their
dependence on plasma parameters and magnetic geometry?

ii) How can plasma turbulence be suppressed, reduced or maybe even avoided?

The traditional way of understanding plasma turbulence is still strongly based
on quasi-linear theory: Plasma turbulence is thought to develop due to the
linear growth of infinitesimal perturbations, which nonlinearly saturate to the
turbulent state. The driving linear instability sets the typical scale (called
injection range), the cross-phases between the different fields (densities, tem-
peratures, electrostatic and magnetic potentials), and by their combination
also the particle and heat transport. In this sense, plasma turbulence is not
universal and may be classified by its driving instability (for example ITG,
ETG, MTM, drift-wave or resistive ballooning turbulence). Understanding
the dependence of the growth rates of the different instabilities on plasma
parameters or magnetic geometry may provide means to reduce the resulting
turbulent transport. A possibility to suppress the turbulence is provided by
shear flows. It is widely accepted that shear flows tear apart small-scale tur-
bulent structures. As a result the typical length scale of the turbulence and
hence the turbulent transport is reduced.

In case of large fluctuation amplitudes, it seems questionable if quasi-linear
theory still provides a sufficient framework. In the plasma edge the fluctua-
tion amplitudes are observed to reach from the order of 10 % in the confined
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region to order of unity in the scrape-off layer. At these high fluctuation levels
nonlinear effects become more important and even new physical mechanisms
arise due to the dynamics of the amplitudes of the turbulent fluctuations them-
selves. Examples for purely nonlinear effects are the cascades (investigated in
detail in Sec. 8.1) and turbulence generated shear flows, so-called zonal flows.
Examples for such new mechanisms are turbulence self-sustainment, where
the turbulence can nonlinearly drive transport and thereby sustain itself even
though the growth rates can be negative, and turbulence spreading, where the
turbulence can radially spread into regions, which are otherwise stable. Both
can lead to turbulence in linear stable situations, which is called subcriti-
cal turbulence. The three mechanisms turbulence self-sustainment, turbulence
spreading and turbulence-shear flow interaction correspond to the mechanisms
of generation, transport and possibly suppression of the turbulence amplitudes.
Specific questions arising and discussed in the here presented work include

i) Once finite perturbations are present, they drive transport and the tur-
bulence can sustain itself without any need of linear instabilities. If
linear instabilities are not necessary, what is the process for the transi-
tion from the ’laminar’ to the turbulent state in drift-wave turbulence
(Sec. 8.2)? How does turbulence self-sustainment effect linear properties
as dispersion (Chap. 9)? Due to improved confinement at some point the
amplitude may be that low that the system is not in the turbulent state
anymore (Chap. 11). Does ’turbulence’ in this state show similarities to
the transition from the ’laminar’ to the turbulent state (Sec. 8.2)?

ii) How does turbulence spreading effect zonal flow formation (Sec. 8.3)?
How can turbulence spreading be quantified or measured (Sec. 12.2.3)?

iii) What is the radial structure of the generation mechanism of zonal flows
(Sec. 8.3)? What is the poloidal structure of their generation mechanism
(Sec. 10.3)? How does the magnetic geometry effect zonal flow formation
(Sec. 10.3)? And, finally, can these turbulence generated shear flows be
strong enough to trigger a transition to improved confinement (Sec. 10)?

In the following the results obtained within this work will be summarized
to gain deeper insight into these three topics: turbulence self-sustainment,
turbulence spreading and turbulence-shear flow interaction.

Subcriticality and self-sustainment have been investigated during the tran-
sition to drift-wave turbulence in a linear low temperature plasma experiment
(Sec. 8.2). Self-sustainment is achieved due to the interplay between the in-
verse and direct cascades of kinetic and free energy, respectively (Fig. 5.1).
Kinetic energy is transferred towards larger scales (kρs < 1). Due to adiabatic
coupling the energy is transferred to the free energy, which is transferred to
smaller scales (kρs ≈ 1). The excited fluctuations lead to transport, which
in presence of a gradient, lead to additional turbulent drive. Due to adia-
batic coupling free energy at kρs ≈ 1 is transferred to kinetic energy, which
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is transferred to larger scales. Prior to the transition to the weak turbulent
regime, a quasi-coherent mode appears. This quasi-coherent mode is a result
of phase-locking the subcritically excited density fluctuations (generated by
the direct cascade) via a large-scale flow, generated by the inverse cascade
(Sec. 8.2). Subcriticality and self-sustainment have also been investigated in
simulations of L-mode plasmas (Chap. 9). The turbulence is fully developed
and the spectra are broadband. Here, the small-scale vorticity generated by
the self-sustainment process can suppress wave-like linear features (even the
phase velocity). In particular the growth rate becomes irrelevant. At lower
fluctuation levels, experiments in ASDEX Upgrade show that the turbulence
in the improved confinement regime (I-mode) is not broadband, but instead
dominated by the so-called weakly coherent mode (Chap. 11). The weakly
coherent mode is a quasi-coherent feature, where the driving region is phase-
locked by a turbulence generated flow (the geodesic acoustic mode). In this
sense the I-mode turbulence is very similar to the phase-locked regime ap-
pearing before the transition to the turbulence state (Sec. 8.2). Interestingly,
turbulence in I-mode becomes very intermittent. The intermittency during
I-mode is of the type of external intermittency, which is a signature of a flow
being at the transition from the laminar to the turbulent state. Quasi-coherent
modes also appear in H-mode [443, 286] and in regimes of reduced turbulence
induced by plasma biasing [139].

Turbulence spreading has been investigated with respect to zonal flow gen-
eration in a linear experiment (Sec. 8.3). Zonal flow generation is a spatially
nonlocal process. Turbulence driven by a pressure gradient spreads into the
region of strong shear, where energy is transferred from the fluctuations to the
mean flow. The mean kinetic energy is radially transported via the Reynolds
stress towards the region of strong mean flow. Therefore, the excitation and
dissipation regions of the zonal flow are radially disjunct. Furthermore, tur-
bulence spreading should be relevant for the scrape-off layer (SOL) (Chap. 12)
and in particular dominant for the far-SOL. The turbulence drive is given as
the product of the transport and the gradient. In the far-SOL the gradients get
very shallow and at some point the locally driven transport cannot account for
the reduction of the gradient anymore. However, due to the transport of the
fluctuation amplitude, turbulence in the far-SOL can be excited. A turbulence
spreading model for the SOL is presented in Sec. 12.2.3.

The role of turbulence generated zonal flows in transport barrier formation
at the transition from low confinement (L-mode) to high confinement (H-mode)
is one of the most controversially discussed topics in magnetically confined fu-
sion plasmas. It is discussed in detail in Chap. 10. The regime between L- and
H-mode (the I-phase) is dominated by limit-cycle oscillations (LCOs). These
LCOs have been predicted by a predator-prey model [360, 361], where turbu-
lence generated flow and equilibrium flow shear are two competing predators
interacting with drift-wave turbulence (prey). The example from the pipe flow,
where by initially increasing turbulence intensities a complete collapse of tur-
bulence can be accomplished [4], is somehow similar to the idea behind the L-H
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transition by Kim and Diamond. By increasing the pressure gradient, the tur-
bulence intensity is strongly increased, leading to the development of a strong
flow shear completely suppressing the turbulence. This theory is supported by
various experiments [362, 365, 364, 13, 404, 410, 376, 26, 258] which found that
turbulence suppression by flow generation appears strong enough to trigger a
transition into the H-mode [13, 404, 258, 271]. On the other hand other exper-
iments show only weak or insufficient zonal flow activity at the L-H transition
[410, 376, 412, 62]. At first glance this seems to be in contradiction. To resolve
this contradiction from an experimental point of view is a demanding task as
zonal flow generation is nonlocal in physical space (Sec. 8.3) and the Reynolds
stress is not homogenous on a flux-surface in diverted geometry (Sec. 10.3),
hence plasma potential and ion pressure fluctuations of the complete poloidal
cross-section in the entire pedestal region have to be measured with a reso-
lution of ρs. However, this possible contradiction can be easily resolved by
the following consideration. The energy transfer from the turbulence to the
shear flow is the Reynolds stress multiplied by the flow shear. Therefore, both
the equilibrium flow shear and the zonal flow shear contribute to the energy
transfer. Assuming the energy transfer from the turbulence to the shear flow
to be strong enough to suppress the turbulence completely, the energy gain of
the mean flow is just in the order of the fluctuation level of the turbulence (10
%). Defining the zonal flows as the turbulence driven difference to the equi-
librium flow, the kinetic energy of the zonal flow would be at best in the order
of this energy gain. The zonal flow would be dissipated via geodesic and adi-
abatic transfer to the global Alfvén oscillation, which is resistively dissipated
(Sec. 5.2.3). It seems therefore impossible for the zonal flow to have major
impact on the total flow, although the energy transfer process (mainly due to
the equilibrium flow shear) can still have substantial impact on the turbulence
level, successively reducing transport, increasing gradients and therefore the
equilibrium flow. This energy transfer process is part of the zonal flow physics
picture and does not appear in a framework considering the equilibrium flow
only. Therefore, the energy transfer process should be important to under-
stand shear flow suppression, because the paradigmatic shear decorrelation
and the associated quenching rule (Sec. 3.7) do not apply to high-amplitude
L-mode conditions in the plasma edge (Chap. 9). Shear decorrelation and the
quenching rule might rather be applicable, once the fluctuation level is reduced
as in high confinement regimes.

Seen in the general context, the here introduced methodology offers a some-
what different perspective on plasma edge turbulence compared to the well-
established quasi-linear point of view. Optimizing the linear growth rates of
driving instabilities seems rather meaningless for the plasma edge. To un-
derstand plasma edge turbulence it is indispensable to investigate the flow of
the generalized turbulence energies and the energy exchange terms between
the different fields and scales. These exchange terms determine the nature
of turbulence as for example the individual gradient drive of the fluctuation
amplitudes, the relative strength of electrostatic and magnetic transport and
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shear flow suppression by energy exchange. The relative strength of the ex-
change terms determines the cross-phases, which set the relative strength of
the different transport channels. These determine the gradient scale lengths of
the different fields. Understanding the complex interplay between the differ-
ent exchange terms and their dependence on plasma parameters and magnetic
geometry seems to be the key to design appropriate plasma edge turbulence.
Viewed from this angle studying the impact of magnetic fluctuations, high den-
sity operation and different ratios of the gradient scale lengths in particular
on the self-sustainment mechanism seem to be reasonable next steps to gain
deeper insight into still not well enough understood phenomena as for example
the transition to different confinement regimes (L-H and L-I transitions).
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Appendix A

Introduction to plasma
dynamics

The two main important quantities describing a fluid are the particle density n
and the velocity u, with the particle density given in units of m−3. In a plasma
we have to consider at least two different species of charged particles: electrons
and ions. Each species follows its own fluid equation, therefore two fluid equa-
tions are needed to describe the plasma. These species will be distinguished
by the index j with j = e for the electrons and j = i for the ions. For neutral
fluids we will skip the index. In plasmas electrons and ions are distinguished
by their mass mj and charge qj. We will consider the mass density

ρmj = mjnj (A.1)

and the charge density
ρj = qjnj . (A.2)

The flow velocity uj = 〈vj〉 is the average 〈·〉 of the statistically distributed
particle velocity vj. Also the temperature Tj is related to the particle velocity
via

3

2
Tj =

1

2
mj〈v2j 〉. (A.3)

Related quantities are the kinetic pressure

pj = njTj (A.4)

and the electric current density

J =
∑

j

qjnjuj. (A.5)

A.1 Magnetized plasmas

This work mainly considers magnetized plasmas, to which a short introduction
is given. In a magnetic field of strength B the particles (ions and electrons) are
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subject to the Lorentz force, which leads to gyration of the particles around
the magnetic field lines. This gyromotion exhibits a characteristic frequency
called gyration or cyclotron frequency

ωc =
qB

m
. (A.6)

The radius of the gyration is called the Larmor radius

ρL =

√
2mT

qB
(A.7)

which has an additional dependence on the temperature T . Both particle
species follow their own equation of motion

ρm
d

dt
u = −∇p+ ρ(E+ u×B)±Rei (A.8)

which is similar to the Navier-Stokes Eq. (3.4). Because the particles are
charged electromagnetic forces (Coulomb force ρE and the Lorentz force ρ(u×
B)) appear. Viscosity can be neglected because the thin gases we consider do
not exhibit strong viscous effects. Instead, a friction force between ions and
electrons appears. Due to the action-reaction principle both forces are equal
and opposite. The friction forces can be written as

Rei = −Rie = (en)2(ue − ui)/σ (A.9)

where σ is the electric conductivity (and 1/σ the electric resistivity). The
friction can also be written as being proportional to the ion-electron collision
frequency νei

Rei = −Rie = nmeνei(ue − ui). (A.10)

Finally, from the conservation of energy the equation of state

p

ργm
= const (A.11)

follows, which is also known from thermodynamics. The adiabaticity coefficient
γ depends on the degrees of freedom f of the system for adiabatic processes:
γ = (f + 2)/f . For isothermal processes γ = 1.

A.2 Drifts in magnetized plasmas

Turbulence in a magnetized plasma occurs mainly perpendicular to the mag-
netic field. As velocity perturbations are the heart of turbulence the velocity
perpendicular to the magnetic field is of major importance. To obtain the
perpendicular motion we have to take the cross product of Eq. (A.8) and
B. The term corresponding to the Lorentz force using the vector identities
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(A × B) × C = −C × (A × B) = −((C · B)A − (C · A)B) gives the per-
pendicular velocity (u × B) × B = −u⊥B

2. Solving Eq. (A.8)×B for u⊥

yields

u⊥ =
E×B

B2
− ∇p×B

ρB2
− ρm

ρ

du
dt
×B

B2
. (A.12)

The first term is the E × B drift which is usually the strongest one. As a
strong pressure gradient will often be present the second term, the so-called
diamagnetic drift, will also be important. The last term is the polarisation
drift. Diamagnetic and polarisation drifts can lead to currents

J = en(ui − ue). (A.13)

As the E ×B drift has no charge or mass dependency it is equal for ions and
electrons and does not lead to currents, in contrast to the other two terms.
The diamagnetic current is given by

Jdia = −
∇p×B

B2
(A.14)

with total pressure p = pe + pi. The polarisation drift

u⊥,pol = −
m

qB2

(
∂u

∂t
×B+ ((u · ∇)u)×B

)

(A.15)

can be further evaluated by some approximations. First, we neglect the second
term (u · ∇)u, which is responsible for all nonlinear interactions (Secs. 3.6.1
and 5.1). Assuming the polarization drift to be of lower order than the E ×B
and the diamagnetic drift, the polarization drift can be iteratively solved

u⊥,pol = −
m

qB2

(

(Ė×B)×B

B2
− (∇⊥ṗ×B)×B

ρB2

)

, (A.16)

with E = −∇⊥φ. This can be written as

u⊥,pol =
m

qB2
Ė− m

q2nB2
∇⊥ṗ. (A.17)

In textbooks of basics plasma physics, the second term is usually omitted for
simplicity. Both terms depend on the mass and are therefore governed by the
ions. The polarization drift induces a polarization current. The second term
induces a polarization drift by a temporal change of the diamagnetic velocity.
This term becomes important for hot ions due to the temperature dependence
of the pressure gradient (Chap.12).

A.3 Flows parallel to the magnetic field

Even if the perpendicular motion is more important for the turbulence inves-
tigated in this work, some basic knowledge about the motion parallel to the
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magnetic field line is required, too. We are going to study how electrons and
ions react to density perturbations parallel to the magnetic field (here in z-
direction). This induces a pressure perturbation, a parallel pressure gradient
and, therefore, a parallel force, too. As the electrons are lighter they will re-
spond first. The parallel equation of motion (A.8) for the electrons can be
written as

ρm
∂uz
∂t

= −∂p
∂z
. (A.18)

Assuming a constant temperature Te and isothermal electrons γ = 1 leads to

nme
∂uz
∂t

= −Te
∂n

∂z
. (A.19)

In linearized form the left hand side can in principle be split up in ñme
∂uz0
∂t

(which vanishes if we assume a constant background flow uz0 = const) and
n0me

∂ũz
∂t

. After making the wave ansatz

n = n0 + ñei(kz−ωt), (A.20)

with ∂t → −iω and ∇ → ik, Eq. (A.19) yields

−n0meiωũz = −Teikñ. (A.21)

To relate both fluctuating quantities ũz and ñ we make use of the linearized
continuity equation

∂

∂t
ñ+∇(n0ũz) = 0. (A.22)

Making again the wave ansatz

iωñ = ikn0ũz (A.23)

we obtain
ω

k

ñ

n0

= ũz. (A.24)

Substituting this in (A.21) yields

−n0meiω
ω

k

ñ

n0

= −Teikñ. (A.25)

A dispersion relation showing a wave character results in

(ω

k

)2

=
Te
me

. (A.26)

Equation (A.26) describes the so-called electron sound wave. Its phase velocity
is the electron sound velocity

cse =

√

Te
me

. (A.27)



A.3 Flows parallel to the magnetic field 207

Figure A.1: Ion sound wave dynamics.

Electrons respond with this velocity to a density or pressure perturbation as
shown on the right hand side of Fig. A.1.

The electron motion from the high density to the low density region will
induce an electric field Ez, which counteracts the electron motion. This is
shown on the left hand side of Fig. A.1. The electric potential Ez = −∂zφ̃ can
be estimated in equilibrium (∂tũz = 0) from the equation of motion (A.8) for
the electrons

−en0ikφ̃+ ikTeñ = 0 (A.28)

or
eφ̃

Te
=

ñ

n0

. (A.29)

This is the Boltzmann relation or Boltzmann response. Is it fulfilled the elec-
trons are called adiabatic electrons. With regard to the Boltzmann relation,
potential fluctuations are typically normalized by e/Te and the density fluctu-
ations by a typical background value n0.

For a real equilibrium, the electric field accelerates the ions. Starting again
with the equation of motion (A.8), but this time for the ions, including the
electric field generated by the electrons yields

ρm
∂uz
∂t

= ρEz −
∂p

∂z
. (A.30)

Now we assume a constant ion temperature Ti but leave γ as a variable.
After making use of the wave ansatz and the Boltzmann relation (A.29) for
the electric field Ez = −ikφ̃ we get

nmiiωũz = en0ik
Te
e

ñ

n0

+ Tiγikñ. (A.31)
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The velocity and density fluctuations are related by the continuity equation
(A.21). Also for the ions a wave equation

ω

k
=

√

Te + γTi
mi

(A.32)

is found with the ion sound velocity

csi =

√

Te + γTi
mi

. (A.33)

This is called the ion sound wave or ion acoustic wave. Also for cold ions the
acceleration by the electrons will lead to the ion sound velocity. We will call
this the ion sound velocity or ion acoustic velocity

cs =

√

Te
mi

. (A.34)

Both velocities are related by the ion to electron temperature ratio τi =
Ti
Te

csi =
√
1 + τics. (A.35)

The ion sound velocity for cold ions cs (and not the ion sound velocity
including finite ion temperatures csi) gives a good typical velocity for plasma
turbulence modeling for the following reasons: The heart of turbulence is the
nonlinearity u · ∇u (3.4), which appears in the polarisation drift (A.15). The
neglected nonlinearity can even induce a polarisation current. As the polar-
ization drift is mass dependent the ions matter most. Therefore, a typical
timescale or velocity should be related to the ions, too. Furthermore, the ion
sound speed does not vanish for cold ions, which is an often used approxima-
tion. A vanishing typical velocity for normalization would be not appropriate.
Furthermore, if magnetic effects are important these can be included straight-
forward by a second control parameter. The plasma β gives the square root
of the ratio between the Alfvén velocity (characteristic for magnetic effects)
and the ion acoustic velocity. The typical time is given by the ion cyclotron
frequency (A.6). The resulting typical length is cs/ωci

ρs =

√
Temi

eB
, (A.36)

the hybrid Larmor radius of ions and electrons. Again, the advantage is that
for cold ions it takes finite values. Therefore, ρs, ωci and cs provide a consistent
description of the typical length, time and velocity even for a cold magnetized
plasma and ion temperature and magnetic effects can be controlled by τi and
β, respectively.
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A.4 Plasma at a wall

If the plasma is in contact to a solid material (wall), the lighter and more mobile
electrons will migrate to the wall and charge it negatively with respect to the
plasma potential φ. Due to the negative potential barrier, slower electrons are
prevented from reaching the wall until electron and ion fluxes balance and the
net flux ceases. The resulting potential is called the floating potential φfl. The
electron current is given by

Ie = Ie,sat exp

(

−e(φ− φfl)
Te

)

, (A.37)

where the electron saturation current Ie,sat = −enA
√

Te/(2πme) is obtained
by integrating over a Maxwellian electron velocity distribution. Here, A is the
effective area of the wall element or probe. The floating potential leads to
an electric field accelerating ions towards the wall. The regions close to the
wall will be occupied by more ions which in turn screen this electric field to
the main part of the plasma. The region, where the potential has dropped is
called the sheath. However, ions will be accelerated towards the wall and are
drained from the plasma. In steady state these ions have to be supplied by
the plasma. The ions at the sheath can react with their ion sound speed csi on
the potential. The kinetic energy of the ions is supplied by the potential drop
across the pre-sheath

e(φ− φs) =
1

2
mic

2
si (A.38)

with the sheath potential φs. For cold ions e(φ− φs) = 1
2
Te. This is called the

Bohm criterion, which states that the ion velocity at the sheath entrance has
to exceed the ion sound speed. The plasma density at the sheath is given by

ns = n exp

(

−e(φ− φs)
Te

)

. (A.39)

For cold ions the plasma density at the sheath is ns = n exp(−0.5) ≈ 0.61n.
The corresponding parallel ion current flux is Γi ≈ 0.61ncsi. The ion current
is given by the ion saturation current

Ii,sat = +eAΓi = 0.61enA

√

Te + γiTi
mi

. (A.40)

From ambipolarity follows that the ion and electron current (A.37) balance
each other and the floating potential can be deduced

φfl = φ− Te
e
ln

(

1

0.61

√

Te
Te + γiTi

√
mi

2πme

)

. (A.41)

Floating potential and ion saturation current are important for Langmuir probe
measurements (see Sec. 6.1) and for the scrape-off layer dynamics (Chapter 12).
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The derivation here is a bit simplified, additional secondary electron emission
has to be taken into account [516], which can be quite strong in the scrape-off
layer [517]. If the total gross erosion of the wall material is determined by the
impurities [455], a larger ion to electron temperature ratio τi, as discussed in
detail in Chap. 12, is beneficial, since the reduced floating potential leads to
less acceleration of the heavier impurities and less sputtering (main process of
material removal of the wall).

A.5 Magnetohydrodynamic (MHD) waves

Up to now only electrostatic plasmas have been addressed. In magnetized
plasma electromagnetic effects can become important and they become partic-
ularly important at high pressure gradients (hence high plasma beta) occurring
in improved confinement regimes. In this section the parallel dynamics includ-
ing electromagnetic effects is introduced.

Ideal MHD is based on the following equations: the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (A.42)

the force balance or equation of motion

ρ
∂u

∂t
+ ρu · ∇u = J×B−∇p, (A.43)

the equation of state written in the isothermal limit

∇p = c2s∇ρ, (A.44)

Ampere’s law

∇×B = µ0J, (A.45)

Faraday’s law

∇× E = −∂B
∂t
, (A.46)

and Ohm’s law

E+ u×B = 0. (A.47)

By combining Eqs. (A.43, A.44, A.45) we get

ρ
∂u

∂t
+ ρu · ∇u = −c2s∇ρ+

1

µ0

(∇×B)×B (A.48)

and by combining Eq. (A.46) and (A.47)

∂B

∂t
= ∇× (u×B). (A.49)
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We decompose the quantities into background values and perturbations ρ =
ρ0 + ρ̃, B = B0 + B̃ and assume the fluid is at rest u = ũ. Eqs. (A.42), (A.48)
and (A.49) are linearized

∂ρ̃

∂t
+ ρ0∇ · ũ = 0, (A.50)

ρ0
∂ũ

∂t
+ c2s∇ρ̃+

1

µ0

B0 × (∇× B̃) = 0, (A.51)

∂B̃

∂t
−∇× (ũ×B0) = 0. (A.52)

By differentiating (A.51) with respect to time a wave equation for ũ can be
obtained

ρ0
∂2ũ

∂t2
+ c2s∇

∂ρ̃

∂t
+

1

µ0

B0 ×
(

∇× ∂B̃

∂t

)

= 0.

Subsequently substituting (A.50) and (A.52) yields

ρ0
∂2ũ

∂t2
+ c2s∇(∇ · ũ) + uA × (∇× (∇× (ũ× uA))) = 0, (A.53)

where

uA =
B0√
µ0ρ0

(A.54)

is the Alfvén velocity. We make the ansatz of harmonic oscillations ũ(x, t) =
ũ exp(ikx − iωt) to replace ∇ → ik and ∂t → −iω and obtain a dispersion
relation

−ω2ũ+ c2s(k · ũ)k− uA × (k× (k× (ũ× uA))) = 0.

Using the vector identity A× (B×C) = B(A ·C)−C(A ·B) the dispersion
relation can also be written as

−ω2ũ+(c2s+u
2
A)(k·ũ)k+(k·uA)((k·uA)ũ−(uA ·ũ)k−(k·ũ)uA) = 0. (A.55)

A.5.1 Shear Alfvén wave

Considering a propagation along the magnetic field (k‖B0) it follows that
k · uA = kuA. The dispersion relation (A.55) reduces to

(k2u2A − ω2)ũ+

(
c2s
u2A
− 1

)

k2(uA · ũ)uA = 0 (A.56)

which allows for two idealized propagation directions. First, we consider ũ‖B0.
For this case the dispersion relation is given by uph = ω/k = cs, which is the
ion acoustic wave (A.34). The other possibility is a transverse wave ũ ⊥ B0

and ũ · k = 0. For this case the dispersion relation is given by

uph =
ω

k
= uA, (A.57)
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which is the tranversal Alfvén wave. The associated magnetic field perturba-
tion can be calculated from (A.52)

−ωB̃− k× (ũ×B0) = 0

to be B̃ = −(B0/(ω/k))u (with ω/k from (A.57)) which is antiparallel to
the fluid perturbation and perpendicular to B0. As the magnetic perpendic-
ular perturbation leads to a deformation of the original magnetic field it gets
sheared. Therefore this wave is also called torsional or shear Alfvén wave.

A.5.2 Magnetoacoustic wave

Considering a propagation just perpendicular to B0 (k ⊥ B0) it follows that
k · uA = 0 and the dispersion relation (A.55) reduces to

−ω2ũ+ (c2s + u2A)(k · ũ)k = 0.

A finite frequency requires (k · ũ)‖k (→ (k · ũ) = kũ). The wave is longitudinal
and the dispersion relation becomes

uph =
ω

k
=
√

c2s + u2A. (A.58)

Since the phase velocity uph depends on the sound velocity it is called mag-
netoacoustic wave. The enhanced propagation velocity compared to the shear
Alfvén wave is due to the contribution of compressional effects in parallel
direction. The wave is also called longitudinal Alfvén wave since it is propa-
gating longitudinal or fast Alfvén wave due to the faster propagation velocity
compared to the shear Alfvén wave.

A.5.3 Global Alfvén modes

Alfvén modes in toroidal geometry are characterized by (ω, n,m) with fre-
quency ω and toroidal and poloidal mode numbers n and m, respectively.
These are global modes and between these modes frequency gaps are observed.
Global Alfvén modes can be excited by resonant interaction between fast par-
ticles with these modes. In current experiments these fast particles originate
mainly from the heating (NBI or ICRH). In an actual reactor additional α
particles will be subject to a strong interaction with global Alfvén modes.

The following explanation is adopted from Ref. [16]. Alfvénic eigenmodes
with n 6= 0 are called beta induced Alfvénic eigenmodes, those with n = 0 are
called global Alfvénic eigenmodes. The branch with (n = 0,m = 0) corresponds
to the geodesic acoustic mode. The global branch with (n = 0,m = 1) is here
referred to as geodesic Alfvénic mode. The gyrokinetic eigenvalue solver (we
will use LIGKA in Sec. 11.3) can be used to determine the kinetic continuum
branches. The equations solved (by LIGKA) are the quasi-neutrality equation
(QN) and the gyrokinetic moment equation (GKM) that together with the
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gyrokinetic equation for the particle distribution functions form a consistent
model for electromagnetic perturbations in tokamak geometry [418, 419]. It
can be shown [518] that the implemented equations have the following general
dispersion relation as analytical limit [519, 520, 521]:

ω2

ω2
A

(

1−
ω∗
p

ω

)

− k̄2‖mR2
0 =

∑

a=i,e

2
v2th,a
ω2
AR

2
0

(

−
[

H(xa,m−1) +H(xa,m+1)
]

+

τa

[Nm(xa,m−1)N
m−1(xa,m−1)

D(xa,m−1)
+
Nm(xa,m+1)N

m+1(xa,m+1)

D(xa,m+1)

]
)

(A.59)

where ωA = uA/R0 =
√

B2/µ0mini is the Alfvén frequency and k̄2‖m stands
for the parallel wave vector including the toroidal coupling up to first order in ǫ,

e.g. k̄2‖m =
(

k2‖m + k2‖m+1 ±
√

(k2‖m − k2‖m+1)
2 + 4ǫ̂2r2k2‖mk

2
‖m+1

)

/
(

2(1− ǫ̂2r2)
)

where ǫ̂ = 5r/2R0. Further,

xa,m =
ω

|k‖,m|vth,a
; vth,a =

√

2Ta
ma

; ω∗
p =

∑

i

kθ
eBni

∂pi
∂r

mini
meffne

; τ = Te/Ta.

The definitions for the polynomials H,N,D including the complex plasma
dispersion function can be found e.g. in Refs. [519, 518]. The upper index m in
Nm(xm−1) refers to the poloidal mode numberm to be used in ω∗

m = Ti
eB
km,θ

∇n
n
.

For the geodesic acoustic mode, taking into account the m = ±1 sidebands,
the following dispersion relation can be derived from the one above for large
safety factor q [522, 523]:

ω2
G/ω

2
t,i = ω̂2

G = q2
[7

4
+ τ
][

1 +
2(23 + 16τ + 4τ 2)

q2(7 + 4τ)2

]

(A.60)

with ωt,i = vth,i/qR0. For the m = 1 branch, the main contribution comes
from the k‖ = −1/qR term on the left hand side of equation (A.59).
The coefficients for the dispersion relation are calculated numerically, based
on realistic particle orbits. A Nyquist contour solver is employed to find local
solutions in the complex plane. The results presented in Sec. 11.3 are calculated
with the HAGIS code [524], where realistic geometry and experimental profiles
are used.
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Appendix B

Mathematical description of
plasma instabilities

B.1 Interchange

The interchange instability can be mathematically described as follows. Let
the magnetic field be in z-direction with its gradient in the negative radial
(x-)direction. The plasma pressure also exhibits a gradient in the negative
x-direction. The plasma potential is perturbed in y-direction (perpendicular
to the magnetic field and the radial direction)

φ̃ = φ exp (ikyy).

The density will be perturbed also in y-direction. As seen in Fig. 4.1 this
density will be in phase with the radial E ×B velocity ũE×B, thus

ñ = n exp (ikyy − iπ/2).

Both are related by the continuity equation

∂ñ

∂t
= −ũE×Bx

∂

∂x
n0 =

∂n0

∂x

ikyφ̃

B

where ũE×Bx = −ikyφ̃/B was used. Its integral with respect to time reads

ñ =

∫

dt
∂n0

∂x

ikyφ̃

B
.

A density perturbation leads to a perturbation of the diamagnetic current via
J̃ ×B = ∇p̃ = T∇ñ

J̃dia,x = −
(Te + Ti)ikñ

B
.

We calculate the radial derivative of this. As the magnetic field is inhomoge-
neous, a divergence of the diamagnetic current remains

∂J̃dia,x
∂x

=
k2y
B
(
∂

∂x

1

B
)(Te + Ti)

∂n0

∂x

∫

dtφ̃.
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By introducing a gradient scale length for the pressure L−1
n = −∇n0/n0 and

the magnetic field L−1
B = −∇B/B this expression can be simplified to

∂J̃dia,x
∂x

= −
k2yn0

B2

(Te + Ti)

LnLB

∫

dtφ̃.

As a result of quasineutrality ∇ · J̃dia +∇ · J̃pol = 0, the divergence of the dia-
magnetic current is balanced by the divergence of the ion polarization current
(min/B

2)∇·Ė. We neglect the additional contribution due to the divergence of
the magnetic field in the polarization current. As the electric field perturbation
is in y-direction

min0

B2

∂

∂t
iky(−iky)φ̃ = −∂J̃dia,x

∂x

which gives

−
min0k

2
y

B2

∂2

∂t2
φ̃ =

k2yn0(Te + Ti)

B2

1

LnLB
φ̃

with cs =
√

Te/mi and τi = Ti/Te

∂2

∂t2
φ̃ = −(1 + τi)c

2
s

LnLB
φ̃.

The growth rate is

γ =

√

(1 + τi)

LnLB
cs (B.1)

which is positive and exponentially growing for LnLB > 0. Hence, the magnetic
field gradient and the density gradient are in the same direction, which is
the case on the low field side. The instability is a purely growing mode, no
eigenfrequency or phase velocity is associated with it. In the good curvature
region on the high field side the interchange instability is stable. Turbulence
dominated by the interchange instability is called resistive ballooning mode
(RBM) turbulence.

B.2 Drift waves

B.2.1 Drift Ordering

Only low-frequency ω plasma oscillations with

ω

ωci
∼ ǫ≪ 1, (B.2)

will be investigated where ωci is the ion gyration frequency. Only small per-
turbations

eφ̃

T0
∼ ñ

n0

∼ ρs
Ln
∼ ω

ωci
∼ ǫ≪ 1 (B.3)
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will be considered. For typical perpendicular and parallel wave numbers

k⊥ρs ∼ 1⇒ k‖/k⊥ ∼ ǫ (B.4)

should hold. The perpendicular gradients of perturbations should be of the
same order as those of the background

∇ñ
∇n0

∼ ∇eφ̃∇T0
∼ 1. (B.5)

B.2.2 Dispersion relation of stable drift wave

Let the density gradient point into negative x-direction, the magnetic field
direction in z-direction. We neglect any effects of the curvature, therefore no
contributions from n∇ · (uE×B + udia) are considered. The density gradient
gives rise to a diamagnetic drift of the electrons

ue,dia =
Te

LneB0

, (B.6)

where L−1
n = −(1/n0)(dn0/dx). We assume harmonic perturbations along the

y-direction. The electrons follow the background magnetic field in the direction
parallel to the magnetic field

∂ue‖
∂t

+ (ue · ∇)ue‖ =
e

me

∂φ

∂z
− 1

mene

∂pe
∂z

. (B.7)

The electron motion is adiabatic and the inertia of the electron can be ne-
glected. The left hand side of the equation vanishes. Furthermore, for isother-
mal electrons

e
∂φ

∂z
− Te
ne

∂ne
∂z

= 0 (B.8)

holds. Its integral reads
ne
n0

= eeφ/Te . (B.9)

For a density perturbation ñe with ne = ne0 + ñe we find (A.29)

ñe
n0

=
eφ̃

Te
. (B.10)

The ions fulfill the continuity equation

∂ñi
∂t

+ ũE×Bx
dn0

dx
= 0 (B.11)

with

ũE×Bx = −
1

B0

∂φ̃

∂y
. (B.12)
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The equation of motion of the ions (A.30) reads

∂ũi‖
∂t

= − e

mi

∂φ̃

∂z
(B.13)

or

ũi,‖ =
k‖
ω

eφ̃

mi

. (B.14)

The polarization drift is given by

ũi,pol =
mi

qB2
0

˙̃E =
mi

qB2
0

(−iω)(−ikyφ̃). (B.15)

Substituting the ion gyration frequency ωci = eB0/mi, it follows that

ũi,p = −
Te

ωcimi

mi

B0e
ωky

eφ̃

Te
= − Te

miω2
ci

ωky
eφ̃

Te
. (B.16)

Continuity demands

∂ñi
∂t

+ ũE×Bx
∂n0

∂x
+ n0

∂

∂y
ũi,p + n0

∂ũi,‖
∂z

= 0 (B.17)

to hold. Taking into account Eqs. (B.12) and (B.16) yields

∂ñi
∂t
− 1

B0

∂φ̃

∂y

∂n0

∂x
− n0

Te
miω2

ci

ωky
∂

∂y

eφ̃

Te
+ n0

∂ũi,‖
∂z

= 0 (B.18)

1

n0

∂ñi
∂t

+
Teκn
eB0

e∂φ̃

Te∂y
− Te
miω2

ci

ωik2y
eφ̃

Te
+
∂ũi,‖
∂z

= 0. (B.19)

In Fourier space under the assumption of a harmonic perturbation and using
Eq. (B.6) this can be written as

−iω ñi
n0

+ ue,diaiky
eφ̃

Te
− Te
miω2

ci

ωik2y
eφ̃

Te
+
ik2‖
ω

eφ̃

mi

= 0. (B.20)

Hence,

ñi
n0

ω =
eφ̃

Te

(

ue,diaky −
Te
mi

1

ω2
ci

ωk2y +
k2‖
ω

Te
mi

)

. (B.21)

It follows in comparison with Eq. (B.9) (quasi-neutrality) that the dispersion
relation of stable drift wave is

ω2(1 + k2yρ
2
s)− ωωe,dia − k2‖c2s = 0 (B.22)

with ρs = cs/ωci and cs = (Te/mi)
1/2. Usually the parallel wavenumber is

comparatively small and the finite ion inertia can be neglected. In this case
the drift-wave dispersion relation reads

ω =
ue,diaky
1 + k2⊥ρ

2
s

. (B.23)
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The drift wave propagate in the electron diamagnetic direction in the binormal
direction with the electron diamagnetic velocity as its phase velocity

ω = ωe,dia = kyue,dia. (B.24)

It should be noted that no advection by the electron diamagnetic velocity has
been assumed in the beginning and this phase velocity is a result of the radial
advection. The dispersion relation of the drift wave is shown in Fig. B.1. Due
to the polarization drift the drift wave exhibit backward wave characteristics
at around kyρs ≈ 1. This can lead to interesting effects as discussed in Sec. 8.3.
The relevance of this linear phase velocity for typical L-mode plasmas will be
discussed in detail in Chap. 9.

Figure B.1: Dispersion relation and growth rate of resistive drift wave.

B.2.3 Instability of the drift wave

As long the electrons are moving freely along the magnetic field lines the Boltz-
mann relation (B.10) holds and the drift wave is stable. There are different
possibilities to limit this free movement of the electrons, as collisionality be-
tween electrons and ions, Landau damping, electron inertia or induction. This
results in a modification of the Boltzmann relation and density and potential
fluctuations are not any longer in phase:

ñe
n0

=
eφ̃

Te
(1− iδ) . (B.25)

Substituted in Eq. (B.10) of this Eq. in the derivative of Eq. in (B.24) yields

ω =
kyue,dia
1− iδ ≈ kyue,dia(1 + iδ). (B.26)

Considering the electron-ion collisionality νei the parallel electron motion
(see Eq. (A.10)) is hampered

eneik‖φ̃− Teik‖ñe − nemeνeiũe,‖ = 0.
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It is possible to get an estimate of the parallel electron motion:

ũe,‖ =
ik‖Te
meνei

(

eφ̃

Te
− ñ

n0

)

.

Substitution in the electron continuity

∂ñ

∂t
+ ũE×Bx

∂n0

∂x
+ n0

∂ũe,‖
∂z

= 0

yields

−ω ñ
n0

+ iky
κTe
B0e

eφ̃

Te
−

k2‖Te

meνei

(

eφ̃

Te
− ñ

n0

)

= 0

for harmonic perturbations. This can be rewritten as

ñ

n0

(

ω + ik2‖
Te

meνei

)

=
eφ̃

Te

(

ue,diaky + ik2‖
Te

meνei

)

,

hence
ñ

n0

=
eφ̃

Te

(

ωe,dia + ik2‖D‖

ω + ik2‖D‖

)

withD‖ =
Te

meνei
. With further simplifications and the assumption of k2‖D‖ ≫ ω

we obtain with

ωe,dia + ik2‖D‖

ω + ik2‖D‖

ω + ik2‖D‖

ω − ik2‖D‖

≈
ωe,diaω + (k2‖D‖)

2 + ik2‖D‖(ω − ωe,dia)
(k2‖D‖)2

ñ

n0

=
eφ̃

Te

(

1− i 1

k2‖D‖

(ωe,dia − ω)
)

.

This result is compared with that of the ions (B.21), where the parallel ion
motion is neglected as it is much smaller than that of the electrons

ωe,dia
ω
− ρ2sk2y = 1− i 1

k2‖D‖

(ωe,dia − ω).

This yields the dispersion relation

ω(1 + ρ2sk
2
y)− iω

1

k2‖D‖

(ωe,dia − ω)− ωe,dia = 0 (B.27)

with real frequency (c.f. (B.23))

ω =
ωe,dia

(1 + ρ2sk
2
y)

and growth rate

γ =
νeime

k2‖Te
ω2
e,diaρ

2
sk

2
y. (B.28)

The growth rate by collisions is illustrated in Fig. B.1. The growth rate peaks
around kρs ≈ 1, which is the typical scale of electrostatic drift-waves. How
the magnetic field topology influences the growth rate is studied in detail in
theory and experiments in Refs. [525, 41], respectively.
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B.2.4 Alfvénic coupling

In the electrostatic limit the drift wave is coupled to the ion sound wave (last
term of (B.22). If additional electromagnetic effects are taken into account the
drift wave has also the possibility to couple to the Alfvén wave (see Sec. A.5).
The ratio between both phase velocities is an important control parameter,
the plasma beta (2.2)

β

µei
=

c2s
u2A

(B.29)

with electron to ion mass ratio µei = me/mi and Alfvén speed uA (see Eq. (A.54)).
To study electromagnetic effects magnetic fluctuations

B̃ = ∇× Ã (B.30)

need to be included. These are defined by the vector potential Ã‖ = Ã‖ẑ
only in the direction parallel to the magnetic field. This leads to magnetic
fluctuations only perpendicular to the magnetic field

B̃⊥ = ∇‖Ã‖ × ẑ. (B.31)

The vector potential also modifies the parallel electric field

E‖ = −∇‖φ̃−
1

c

∂Ã‖

∂t
. (B.32)

The main modification of the perpendicular magnetic field fluctuations is that
they lead to a perpendicular displacement following the field lines (the parallel
dynamics). Thereby parallel derivations are modified according to

∇‖ =
∂

∂z
+

B̃⊥

B0

· ∇. (B.33)

The effect is called magnetic flutter and can lead to perpendicular transport.
It is in particular important for electromagnetic instabilities like the micro-
tearing mode (Sec. 4.7) and kinetic ballooning mode (Sec. 4.8).

Including these modifications to the derivation of the drift-wave dispersion
described above we get the following dispersion relation [162]

(β + µeik
2
⊥)ω − βkyve,dia

−µeik2‖c2s
(
1 + k2⊥ρ

2
s

ω
− kyve,dia

ω2

)

= −µeiνeik2⊥ρ2s. (B.34)

For simplicity we assume µei ≈ β ≪ 1, νei ≈ 0. The dispersion relation splits
up in two limit cases: One for low, one for high frequencies. For low frequencies
ω ∼ k⊥ue,dia we recover the electrostatic dispersion relation including the ion
polarization effect (c.f. (B.23))

ω =
k⊥ue,dia
1 + k⊥ρ2s

.
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For higher frequencies ω ≫ k⊥ue,dia

ω2 = k2‖u
2
A

1 + k2⊥ρ
2
s

1 + k2⊥δ
2
es

(B.35)

holds, which recovers the Alfvénic dispersion ωA = k‖uA (c.f. (A.54)) for

µei ≈ β. Here δse = ρs
√

µei
β

is the collisionless electron skin depth.



Appendix C

Plasma turbulence models

C.1 Derivation of Hasegawa-Wakatani equa-

tions

As in the case of the basic drift-wave instability we assume a constant gradient
in the background density n0 = n0(x). The gradient is normalized to

κn = − 1

n0

∂n0

∂x
.

Quasi-neutrality is equivalent to

∇ · J = 0. (C.1)

The current density J is decomposed into its components perpendicular
and parallel to the background magnetic field

∇ · J⊥ +∇ · J‖ = 0.

The drifts determine the perpendicular current. Since the E × B -drift is
independent of the charge it does not lead to any current. The diamagnetic
and the polarization drifts result in the following current densities

Jdia = −∇p×B

B2
and Jpol = (me +mi)

n

B2
Ė,

respectively.
First we consider the diamagnetic contribution. The divergence of the

diamagnetic current is

−∇ ·
(∇p×B

B2

)

= − 1

B2
(B · (∇×∇p)−∇p · (∇×B)) .

As the rotation of gradient fields is zero, the first term vanishes and since
the magnetic field is homogenous the second term vanishes, too. Therefore,
∇·Jdia = 0. Note that, in a curved magnetic field the diamagnetic contribution

223
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remains. Hence, only the polarization current contributes to ∇ · J⊥, where we
fairly assume me + mi ≈ mi. The term ∇n · ∇⊥φ can be neglected by drift
ordering. From quasi-neutrality (C.1) the vorticity equation

∇‖ · J‖ = −∇⊥ · J⊥ =
min

B2
∇2

⊥φ̇ (C.2)

follows. Here, Ω = ∇2
⊥φ is the (scalar) vorticity as deduced by the E × B

velocity. The changes in vorticity are balanced by the parallel current which is
carried by the lighter electrons. We consider the electron continuity equation.
Due to their lower mass the polarization drift can be neglected:

d

dt
n = −∇ · (nu‖e) =

1

e
∇ · J‖. (C.3)

Finally the parallel component of the equation of motion (A.8) is used

men
d

dt
u‖e = ∇‖pe + en(E‖ + (ue ×B)‖)−R‖ei. (C.4)

The Lorentz force has no contribution in direction of the magnetic field. Thus,
the third term on the right-hand side is zero. The change of momentum of the
fluid parallel to B can be realized by a change in the pressure, the Coulomb

force or due to the friction force Rei = ne
(

J‖

σ‖
+ J⊥

σ⊥

)

. Here σ is the electric

conductivity σ‖ = 1.96σ⊥ = 1.96 ne2

meνe
. In general the electric field is given

by E = −∇φ − ∂tA, with vector potential A. From the electron equation of
motion we get a generalized Ohm’s law

me

e

d

dt
J‖ = ∇‖p+ en(−∇‖φ− ∂tA)− en

σ‖
J‖. (C.5)

Our minimum turbulence model now contains three equations. The continuity
equation for the electrons (C.3) is coupled via the parallel current to the vortic-
ity equation (C.2). Finally we have an equation of the parallel electron motion
(C.5). Note that it is the parallel current (hence the electron flux) which cou-
ples potential and density dynamics. As seen and used before quasi-neutrality
reads

∇ · J⊥,i ≃ ∇‖ · J‖,e.
In the electrostatic limit Ohm’s law (C.5) yields

meνe
1.96e

J‖ = ∇‖p− en∇‖φ. (C.6)

By neglecting the electron inertia, the parallel current J‖ in Eq. (C.2) can be
inserted in Eq. (C.3). Due to the separation of perpendicular and parallel
dynamics ∇ · ∇⊥ = ∇2

⊥ and ∇ · ∇‖ = ∇‖ · ∇‖. Two coupled equations result

min

B2
dt∇2

⊥φ =
1.96e

meνe
∇‖ · (∇‖p− en∇‖φ)
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dtn =
1.96

meνe
∇‖ · (∇‖p− en∇‖φ). (C.7)

We will utilize normalized units

eφ
T
→ φ

ñ

n0

→ n

ρs∇ → ∇
1

cs
u→ v

cs
ρs
t→ t L‖∇‖ → ∇‖.

to express Eqs. (C.2) and (C.7) in a more convenient way. We start with the
continuity equation (C.7). The operator containing the advective derivative
deserves our particular attention

dt = ∂t + uE×B · ∇⊥

= ∂t +
B×∇⊥φ

B2
· ∇⊥

→ cs
ρs
∂t +

Te
B0ρ2se

(ẑ×∇⊥φ) · ∇⊥

=
cs
ρs
∂t +

Te
mi

mi

eB0

1

ρ2s
(ẑ×∇⊥φ) · ∇⊥ (C.8)

=
cs
ρs
(∂t + {φ, ·}). (C.9)

In the last step the ion cyclotron frequency ωci = eB0/mi, the ion sound speed
cs =

√

Te/mi and ρs = cs/ωci have been used. {a, b} = ∂xa∂yb − ∂ya∂xb is
the Poisson bracket known from (quantum) mechanics. The Poisson bracket
represents the nonlinearity and can be considered to be the heart of this model.
Even though the nonlinearity depends on the power of two on the fluctuating
quantities, it is not small. Due to drift ordering (Sec.B.2.1) ∂t ∼ u · ∇. The
density evolution is given by

dtn→
csn0

ρs
(∂t

ñ

n0

+ {φ, ñ
n0

} − ∂xn0(x)

n0

∂yφ).

Let us consider the right-hand side of Eq. (C.7)

∇‖ · (∇‖p− en∇‖φ)→
1

L‖

∇‖ ·
(

∇‖(n0Te + n0nTe)− e(n0 + n0n)∇‖
Teφ

e

)

.

(C.10)
Within the first bracket the background density does not change along a field
line ∇‖n0 = 0, therefore only fluctuations have to be taken into account.
Furtermore, n0∇‖n · ∇‖φ ≪ n0 · ∇2

‖φ. The right-hand side of the continuity

equation (C.7) reads

1.96

meνe
∇‖ · (∇‖p− en∇‖φ)→

csn0

ρs

1

ν
∇2

‖(n− φ)
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with the parallel collisionality ν = νe/(1.96ωce), ∇‖ is normalized by L‖ ∼ ρs.
In the same way we proceed with the vorticity equation and get the Hasegawa-
Wakatani equations in 3D

∂tn+ {φ, n}+ κn∂yφ =
1

ν
∇2

‖(n− φ) (C.11)

∂tΩ + {φ,Ω} = 1

ν
∇2

‖(n− φ). (C.12)

The Hasegawa-Wakatani equations in 2D are given by

∂tn+ {φ, n}+ κn∂yφ = C(φ− n) (C.13)

∂tΩ + {φ,Ω} = C(φ− n). (C.14)

The parallel dynamics have been approximated by a characteristic coupling
parameter C = 1/(L2

‖ν) with a typical parallel wavelength ∇2
‖ ≈ −(1/L‖)

2.

In the following the linear features of Hasegawa-Wakatani turbulence are
examined for consistency. Starting with the potential response on a density
fluctuation, by recasting (5.4) for the potential it is obtained that

φ = n+
1

C
(∂tn+ {φ, n}+ κn∂yφ).

For an adiabatic electron response (C ⇒ ∞) it is observed that φ = n. The
Boltzmann relation is consistently recovered. Next, the dispersion relation of
the Hasegawa-Wakatani system is derived. All nonlinear terms in Eqs. (5.4)
and (5.5) are neglected. Equation (5.5) is recast for the density within the cou-
pling term and the result is substituted in Eq. (5.4). After Fourier transform
we gain

k2ω2 − iC(1 + k2)ω + iCkyκn = 0. (C.15)

For C →∞ (adiabatic limit) we get

ω =
κnky
1 + k2

,

the dispersion relation for drift waves (B.23). In first approximation we sub-
stitute this dispersion relation into the quadratic (first) term of (C.15). This
expression is solved for ω in the second term to get the imaginary part

γ = Im(ω) =
1

C

k2k2yκ
2
n

(1 + k2)3
.

This corresponds to the growth rate consistent with the previous considera-
tions (Eq. (B.28)). Electrons experience a finite resistance during their parallel
motion. For this reason the drift wave can get unstable.
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C.2 The gyrofluid code GEMR

C.2.1 Gyroaveraging

Kinetic theory describes the evolution of a distribution function f(x,v, t)
where x is the spatial coordinate vector, v the velocity vector and t the time.
The main equation is called the Vlasov equation

∂

∂t
f + v · ∇f +

q

m
(E+ v ×B) · ∇vf = 0. (C.16)

To get rid of the fast gyromotion guiding center variables can be introduced

X = x− mc

eB(x)
b(x)× v (C.17)

µ =
mv2⊥
2B(x)

(C.18)

v‖ = v · b(x), (C.19)

∂

∂t
f + Ẋ · ∇f + v̇‖

∂f

∂v‖
+ µ̇

∂f

∂µ
= 0, (C.20)

Ẋ = v‖b+ vE + vd (C.21)

where the E × B drift is given by

vE =
c

B0

b×∇J0φ (C.22)

and the diamagnetic drift by

vd =
v2‖
Ω
b× (b · ∇b) + µ

Ω
b×∇B, (C.23)

where the first term is the curvature drift, the second the ∇B drift.

v̇‖ = −
e

m
b · ∇J0φ− µb · ∇B + v‖(b · ∇b)vE (C.24)

These terms describe FLR effects, mirror effects and toroidal momentum bal-
ance. Averaging over the gyro-angle θ is done with the gyro-averaging operator

〈·〉gy =
1

2π

∫ 2π

0

dθ (C.25)

The Fourier representation of the gyro-averaged potential is given by

〈φ〉gy =
1

2π

∫ 2π

0

dθφ(r) =

∫

dk
1

2π

∫ 2π

0

dθeikxφ(k) (C.26)
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with

x = X+ ρ








cos θ

− sin θ

0







. (C.27)

It has to be known that

k · x = ρ(k1 cos θ − k2 sin θ)
= ρ(k1 cos(θ

′ − θ0)− k2 sin(θ′ − θ0))
= ρk1(cos θ

′ cos(−θ0)− sin θ′ sin(−θ0))
−ρk2(cos θ′ sin(−θ0) + sin θ′ cos(−θ0))
= ρ(k1 cos θ0 + k2 sin θ0) cos θ

′ + ρ(k1 sin θ0 − k2 cos θ0) sin θ′

which has to be inserted into Eq. (C.26). This expression can be simplified,
since one is free to choose

k1 cos θ0 + k2 sin θ0 = k⊥

and
k1 sin θ0 − k2 cos θ0 = 0

which yields

cos θ0 =
k1
k⊥

and

sin θ0 =
k2
k⊥
. (C.28)

This results in a more handy expression for k · x given by

k · x = ρk⊥ cos θ′ (C.29)

with ρ = v⊥/ωc. Therefore, the gyro-averaged potential (C.26) can be given
by

〈φ〉gy =
∫

dkeik·X
1

2π

∫ 2π

0

dθei
k⊥v⊥
ωc

(cos θ)φ(k). (C.30)

By identifying the Bessel function

J0(b) =
1

π

∫ π

0

dθeib cos θ (C.31)

in the gyro-averaged potential, Eq. (C.30) can also be written as

〈φ〉gy =
∫

dkeikXφ(k)J0(
k⊥v⊥
Ω

). (C.32)

This operator introduces FLR effects

J0(
k⊥v⊥
Ω

) =
∑

n

1

(n!)2
(i
k⊥v⊥
2Ω

)2n ≈
∑

n

1

(n!)2
(i
ρL
2
)2n∇2n

⊥ ≈ (1− (
ρL
2
)2∇2

⊥).

(C.33)
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C.2.2 Gyrofluid

Fluid-dynamical equations are derived from kinetic theory by taking appro-
priate moments of the velocity-average kinetic equations. The moment of zero
order is the density

n =

∫

fd3v. (C.34)

The first order (mean) gives the particle flux density. In principle this is related
to the momentum and a finite mean will give a flow. The parallel flow velocity
u‖ is determined by

nu‖ =

∫

fv‖d
3. (C.35)

The perpendicular velocity will be determined by the potential later. The flow
is the particle movement in a preferential direction. The irregular movement
of the particles give rise to the temperature. The irregular movement can be
described by the variance. The second order moment (variance) describing the
flow of momentum, is called the stress tensor. This gives the pressure. Here
we have to distinguish the perpendicular

p⊥ = (m/2)

∫

fv2⊥d
3v (C.36)

and the parallel pressure

p‖ = m

∫

f(v‖ − u‖)2d3v (C.37)

as the magnetic field will allow for different velocity distributions along and
perpendicular to the magnetic field. For the parallel pressure a mean parallel
velocity has to be accounted for, a mean perpendicular velocity is expected
to be zero. Note that the perpendicular direction has two degrees of freedom.
The pressure defines the temperatures by

p⊥,‖ = nT⊥,‖. (C.38)

The difference between T‖ and T⊥ is the temperature anisotropy. This can lead
to micro-instabilities as the mirror or the firehose instability. For example the
solar wind is known to exhibit a temperature anisotropy. In a tokamak plasma
heating or magnetic field line expansion can lead to temperature anisotropies.

The third order moment (corresponding to the skewness) is the energy flux
density, which gives the parallel heat flux. The skewness is a measure of the
asymmetry of the probability distribution. A positive skew indicates that the
tail on the right side of the probability density function is longer or fatter
than the left side. The particles in the tail carry the heat flux [470]. The
perpendicular heat flux will be a result of the transport and therefore from
the potentials. However, the parallel heat transport also slits up into two
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contributions due to the different distributions parallel and perpendicular to
the magnetic field. The perpendicular(-parallel) heat flux is given by

q‖,⊥ ≡ q⊥ = (m/2)

∫

fv2⊥(v‖ − u‖)d3v (C.39)

and the parallel(-parallel) heat flux

q‖,‖ ≡ q‖ = m

∫

f(v‖ − u‖)3d3v. (C.40)

C.2.3 Time dependent magnetic equilibrium in GEMR

In the following the magnetic equilibrium of GEMR is introduced. Here it
is important to note that GEMR describes plasma turbulence in field aligned
geometry and as the magnetic field is curved in a tokamak it uses curvilinear
coordinates. A point in three dimensions r can be described by three curvilin-
ear coordinates r(u1, u2, u3). For example in cylinder geometry the curvilinear
coordinates are a radius, an angle and one coordinate describing the height
above the polar plane or in spherical coordinates it is a radius and two (polar
and azimuthal) angles. The basis vectors can be defined locally by either the
tangents ei = ∂r/∂ui or by the normals ei = ∂ui/∂r = ∇ui. The tangents ei
are called covariant vectors and are in general not necessarily perpendicular to
each other and neither normalized. Also the normals ei (called contravariant)
are in general not necessarily perpendicular and normalized. However, co- and
contravariant vectors are reciprocal to each other eiej = δij. The geometry can
be described by the metric coefficients gij = ei ·ej or gij = ei ·ej. Regular used
magnetic field aligned coordinates are Clebsch, Boozer [526] and Hamada [527]
coordinates. GEMR uses Hamada coordinates, which are orthogonal straight
magnetic field line coordinates where also the current is straight [527].

Due to the twist of the magnetic field lines the Pfirsch-Schlüter current
sets in (see Sec. 5.2.3). This current induces a vertical magnetic field which in
superposition with the external magnetic field and the magnetic field induced
by the plasma current leads to a radial outwards shift of the magnetic axis.
This shift is called the Grad-Shafranov shift and the equation describing the
equilibrium is called the Grad-Shafranov equation (Eq. (C.44)). The MHD
equilibrium is given by the balance of current J and pressure gradient ∇p

J×B = c∇p. (C.41)

Here still CGS units are used. The current is determined by Ampere’s law

J =
c

4π
∇×B. (C.42)

The magnetic field in a cylindrical coordinate system (R,z,φ) can be described
by

B = I∇φ+∇ψ ×∇φ, (C.43)
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where I and ψ are scalar functions depending only on R and z. The magnetic
field in a tokamak is axisymmetric. The poloidal plane (Rz-plane) is perpen-
dicular to the symmetry direction ∇φ. From Eq. (C.43) follows B · ∇ψ = 0
which means that magnetic field lines lie on flux-surfaces of constant ψ and
the flux surfaces can be labeled accordingly. The function ψ(R, z) can be
identified with the poloidal flux ψp by the relation ψp = −2πψ. The function
I(R, z) can be identified with the poloidal current Ip through a disk of radius
R lying in the horizontal plane (spanned by ∇R and ∇φ at z = 0), given by
the relation Ip =

c
2
I [528]. I(R, z) is a flux function and can be found in the

Grad-Shafranov equation

4πR2 ∂p

∂ψ
+ I

∂I

∂ψ
+R2∇ · ∇ψ

R2
= 0. (C.44)

The magnetic equilibrium field in GEMR is described in straight-field-line
Hamada coordinates (V,θ,ζ), where V = V (ψ) is the volume surrounded by
the flux surface labeled with the poloidal flux ψ, θ and ζ are poloidal and
toroidal Hamada angles. In GEMR cylindrical Hamada coordinates (R,z,φ)
are used given by [529]

V =

∮

ψ

2πRdRdz (C.45)

where the integral is evaluated for the area enclosed by a curve of constant
poloidal flux ψ in the poloidal plane. The poloidal Hamada angle

θ =

(∮
1

B · ∇ηdη
)−1 ∫ η

η0

1

B · ∇η′dη
′ (C.46)

is evaluated from a cyclic coordinate η satisfying the relations ∇ ·∇φ = 0 and
B · ∇η 6= 0, assuming θ = θ(V, η). The toroidal Hamada coordinate

ζ =
φ

2π
+
I(V )

2π

∫ η

η0

1

B · ∇η′
(〈

1

R2

〉

− 1

R2

)

dη′ (C.47)

is based on the relation B · ∇ζ = ∂ψ(V )
∂V

. The brackets denote flux-surface
average 〈·〉 =

∮
dθ. I(V ) is a scalar function (see Eqs. (C.43) and (C.44)). The

field-aligned coordinates in GEMR are a radial coordinate based on (C.45)

x = V = 2π2R0r
2, (C.48)

a parallel coordinate similar to an extended ballooning angle (the poloidal
Hamada angle (C.46))

s = θ, (C.49)

and a binormal coordinate based on a combination of Eqs. (C.46) and (C.47)

yk = qθ − ζ − αk. (C.50)

Here R0 is the major radius. The radial coordinate r is normalized to the
minor radius a. Magnetic shear deformation is taken into account by shifting
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the y-coordinate by αk = qθk+∆αk where αk is chosen in such a way that ∇x
and ∇yk are locally orthogonal at θ = θk [529].

The evolution of the profiles in GEMR is self-consistently coupled to the
magnetic Shafranov equilibrium for circular flux surfaces. The preset safety
factor profiles determines the initial magnetic equilibrium. In each time step
the change of the safety factor profile is computed by [400]

∆
1

q
= −δ0βe0R0

r

∂

∂r
〈A‖〉yk,s. (C.51)

The time dependent Shafranov shift modifies the metric elements according to
a s− α model in lowest order in r/R0 by

gxx = ∇x · ∇x =

(
∂V

∂x

)2

= (2π)4(R0r)
2 (C.52)

gyyk = ∇yk · ∇yk =
q2

(2πr)2
(C.53)

gxyk = ∇x · ∇yk =
∂q

∂x
(θ − θk)−

∂ds
∂x

sin(2πs)−∆
∂αk
∂x
≡ 0 (C.54)

where the last equation is at θ = θk. The local magnetic shear by the Pfirsch-
Schlüter current is given by ∂ds

∂x
sin(2πs). In order to force gxyk to vanish locally

at θ = θk the shift in the y-coordinate is set to αk = qθk − ds sin θk and

ds = −
δ0βe0q

2R0

πr

∂

∂r
〈A‖ cos(2πs)〉yk,s. (C.55)

When the magnetic flutter is evaluated the axisymmetric part of A‖ is sub-
tracted to avoid that is considered twice.

Transport by the gradient-driven turbulence leads to a degradation of the
gradients. Profile maintenance can only be achieved by sources which is done in
GEMR by source/sink zones at the radial boundaries. The zonal components
(profile perturbations with respect to the initial profile) are feedback dissipated
towards the initially specified profile. More details can be found in Ref. [530].

One particular strength of GEMR is that the simulation does not end at
the last closed flux surface, but the SOL is included. The open field lines
corresponding to the SOL are implemented by the boundary conditions via a
perturbed Debye sheath current [531]. The actual boundary conditions used
in the simulation, which include the temperature dynamics, can be found in
Ref. [530].

C.2.4 Main limitations of GEMR

The strength of GEMR is the completeness of the physics model. Most kinds of
instabilities relevant for the plasma edge can be excited. All relevant nonlinear
phenomena as for example subcritical turbulence, different cascades, zonal
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flows or geodesic acoustic modes are included. Compared to any other fluid
based model the completeness of the model is unsurpassed for the time being.
As GEMR is a gyrofluid model it is much faster compared to a gyrokinetic
model.

Although GEMR is a global model including a time-dependent equilibrium
(see above), GEMR is based on local model equations. Given local reference
values in density n0 and temperature Te0 define δ, β and ν. These three
parameters (δ, β, ν) determine the characteristic dynamics. GEMR is a δ-
f model, which means that the fluctuation levels have to be small ñ/n0 ∼
T̃e/Te0 ≪ 1. The SOL on the contrary is characterized by high local fluctuation
levels approaching unity and above. However, as the reference surface used for
normalization (with density n0 and electron temperature Te0) is usually at the
separatrix or mid-pedestal and not in the SOL the fluctuation level has to be
small only compared to this reference surface and not to the local value.

With increasing distance to the reference surface the parameters (δ, β, ν)
differ from the value calculated from the local values due to the profile evolu-
tion. This induces an inconsistency usually referred to as stratification issue
[237]. As the reference surface is usually taken to be the separatrix or mid-
pedestal in particular the SOL exhibit an overestimated plasma β and an
underestimated collisionality ν.

As GEMR is a global model which by the time-dependent self-consistent
equilibrium, it allows for arbitrary evolving zonal profiles of the dependent
variables (potential, temperatures, densities). These zonal perturbations are
the differences to the initial profile, which can lead to strong modifications.
However, for large differences to the initial profile the present input parameter
(δ, β, ν) are not consistent with the profiles anymore. Therefore, the differ-
ence of the converged profiles has to be small compared to the initial input
parameters. Therefore, in practice the input parameter (δ, β, ν) cannot be cho-
sen arbitrary, but have to be guessed in such a way that they lead to stable
converged profiles. This can only be done with experience.

Another assumption of the local model is that the gradient scale lengths
are comparable in length and those length are small compared to the simu-
lation size domain Ln ∼ LTe ∼ LT i ≪ ∆r, where ∆r is the simulation size
domain. In GEMR the simulation size domain sets the characteristic gradient
scale length. Therefore, simulations with steeper gradients lead to smaller sim-
ulation size domains. Another limitation is the intrinsic circular cross-section.
Most discharges in ASDEX Upgrade exhibit highly shaped equilibria includ-
ing an X-point. Effects of elongation and triangularity cannot be taken into
account. Also effects of the X-point geometry cannot be studied. For the SOL
atom physics is important. Ionization and recombination processes determine
the SOL to a large degree which are not included in the model equations.
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C.2.5 GEMR simulation parameters

Simulations have been carried out at ASDEX Upgrade parameters R = 1.65
m, a = 0.5 m, except for the results in Sec. 10.3.3, which are at Tore supra
parameters (R = 2.4 m, a = 0.70 m, B = 3.5 T). The following table C.1
shows the input parameters of the GEMR simulations presented in this work.

Sec. ne Te τi δ β ν LTe(cm) Ln(cm)

1019 m−3 eV 10−3 10−5 cm cm

9.2 4.5 2k 1 5.38 315 0.03 20 6.7

9.3 2 120 1 1.32 8.39 4.08 5 2.5

9.4 2 100 1 1.20 6.99 5.88 5 2.5

10.3.3 0.4 40 1 0.43 0.28 9.26 3.5 3.5

12.1.5 1.2 60 0.1, 3 0.86 2.14 19.6 4.5 9

12.2.1 1.2 60 1 0.86 2.14 19.6 4.5 9

12.2.3 1.2 60 1 0.86 2.14 19.6 4.5 9

Table C.1: Simulation parameters of the GEMR simulations shown in this work.

Figure C.1: Strong turbulence case (Sec. 9.4): a) Radial electric field (black solid

line), ion pressure contribution (red dashed line) and sheath potential contribution

(blue dotted line) to the radial electric field. Wavenumber spectra of normalized

potential (blue), density (black) and ion temperature (red) fluctuations. At low

wavenumbers potential perturbations are strongest, corresponding to ballooning

modes, at higher wavenumbers density and potential fluctuations are similar and the

ion temperature fluctuations are strongest, pointing to ITG-drift-wave turbulence.

As an example a typical case will be presented here. The radial electric
field is shown in Fig. C.1a; It is dominated by its ion pressure contribution
in the confined region and by the sheath potential in the scrape-off layer.
Depending on the wavenumber the turbulence shows different features. At low
wavenumbers (kρs < 0.2) the strong potential perturbations corresponds to
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resistive ballooning modes (see Fig. C.1b). At higher wavenumbers (kρs > 0.2)
density and potential fluctuation amplitudes are similar which is characteristic
for drift-wave turbulence. At even higher wavenumbers (kρs > 0.6) the ion
temperature fluctuations are strongest pointing to ITG-drift-wave turbulence.
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Appendix D

Nonlinear Instability

D.1 Parametric oscillator

Figure D.1: Person on a swing (a), pendulum with modulated length (b).

For the common harmonic oscillator describing a displacement x with a
restoring force −Dx given by

m
∂2x

∂t2
+Dx = 0 (D.1)

the mass m and the constant D can in principle depend on time

m(t)
∂2x

∂t2
+D(t)x = 0. (D.2)

Therefore, the frequency can generally be time dependent ω2(t) = D(t)/m(t).
One example is a person on a swing as shown in Fig. D.1a. By changing

its center of mass the person is able to amplify the oscillation up to twice the
frequency. Likewise a modulation of the length of a common pendulum can
have a similar effect (Fig. D.1b). The length of the pendulum is modulated

237
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externally by an excentric rotating at a frequency Ω. Similarly if the excentric
is rotating with double the frequency of the eigenfrequency of the pendulum
it can amply the oscillation. This will pump energy into the system. The case
of the pendulum with the modulated length can be described by

∂2ϕ

∂t2
= ω2(t)ϕ (D.3)

with

ω2(t) =
g

l + L cos(Ωt+ Φ)
≈ ω2

0(1−
L

l
cos(Ωt+ Φ)). (D.4)

The parametric oscillator is linked to fluctuations in general. An oscillation is
described by a relation between space x and time t

∂2x

∂2t
+ F(x) = 0 (D.5)

with F being any complicated nonlinear function leading to a stationary solu-
tion x̄. Fluctuations ξ are small deviations from the solution x = x̄ + ξ. The
force operator can be expanded as

F(x) ≈ F(x̄) + ∂F
∂x

∣
∣
x=x̄

ξ =
∂F
∂x

∣
∣
x=x̄

ξ. (D.6)

As the stationary solution does not exhibit any time derivative, an equation
for the fluctuations can be obtained

∂2ξ

∂t2
+
∂F
∂x

∣
∣
x=x̄

ξ (D.7)

As a specific example we come back to the pendulum with modulated rope
length. Without damping, this pendulum is described byMathieu’s differential
equation

∂2

∂t2
x(t) + ω2

0(1− 2ǫ cos(Ωt))x(t) = 0 (D.8)

The eigenfrequency at constant rope length l is ω0 =
√

g/l, the phase Φ has
been set to zero and for the ratio between the modulation amplitude L and the
rope length we define a small parameter 2ǫ = L/l. The rotation frequency of
the excentric is given by Ω. It drives the system and is called the modulation
frequency. Using a Fourier ansatz

x(t) =
1

2π

∫

x(ω)e−iωtdω (D.9)

and

cos(Ωt) =
1

2

(
eiΩt + e−iΩt

)
. (D.10)

This is inserted this into Eq. (D.8), multiply by e−iω
′t and subsequently inte-

grated over time, resulting in
∫

dω(ω2−ω2
0)x(ω)δ(ω−ω′) = −ǫω2

0

∫

dωx(ω)(δ(ω−Ω−ω′)+ δ(ω+Ω−ω′)).

(D.11)
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After integration over ω we obtain the mode-coupling equation

(ω2 − ω2
0)x(ω) = −ǫω2

0(x(ω + Ω) + x(ω − Ω)) (D.12)

the amplitude of the mode at the response frequency of the system ω depends
on the amplitudes of two other modes at frequencies Ω+ω and Ω−ω. Those two
modes are side bands of the driver frequency Ω. In the following we will study
two concrete cases leading to a nonlinear instability. The decay instability at
ω ≈ ω0 and the modulational instability at ω ≪ ω0.

How these two kinds of parametric instabilities can be distinguished with
a bispectral analysis will be shown later in chapter 7.3.1 (see Fig. 7.5).

Figure D.2: For the parametric decay instability a mode k decays in k1 and

k2 = k1 − k. For the the parametric modulational instability a mode k1 can drive

a mode k by interaction with two virtual sideband modes k1 − k and k1 + k.

D.2 Parametric decay instability

A solution in the vicinity of the natural frequency ω0 will provide the paramet-
ric decay instability. The driver is assumed to be at approximately twice the
natural frequency of the oscillator Ω ≈ 2ω0 with a small frequency miss-match
of ∆ = Ω−2ω0. This can be motivated by experience (the person on the swing
described above for example). According to Eq. (D.12) three modes have to
be included. These are

ω ≈ ω0 (D.13)

ω + Ω ≈ ω0 + 2ω0 ≈ 3ω0 (D.14)

ω − Ω ≈ ω0 − 2ω0 ≈ −ω0 (D.15)

which would entrain further modes. In order to close the set of mode-coupling
equations to be involved, it is assumed that the amplitude of the 3ω0 mode is
small. This is reasonable as it is far away from the eigenfrequency or resonance
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ω0. Thus the problem can be reduced to the two coupled equations, both
obtained from Eq. (D.12)

(ω2 − ω2
0)x(ω) = −ǫω2

0x(ω − Ω) (D.16)

and

((ω − Ω)2 − ω2
0)x(ω − Ω) = −ǫω2

0(x(ω) + x(ω − 2Ω)) ≈ −ǫω2
0x(ω), (D.17)

where x(ω − 2Ω) = x(−3ω0) is again assumed to be small as it is far from the
eigenfrequency. The l.h.s. of (D.16) can be further simplified

(ω2 − ω2
0) = (ω + ω0)(ω − ω0) ≈ 2ω0(ω − ω0) (D.18)

where we used (ω + ω0) ≈ 2ω0. Similarly the l.h.s. of (D.17) can be simplified
by

(ω − Ω)2 − ω2
0 = ω2 − 2ωΩ + Ω2 − ω2

0

= (ω2 − ω2
0) + Ω2 − 2ωΩ

≈ 2ω0(ω − ω0) + Ω(Ω− 2ω)

≈ 2ω0(ω − ω0 +∆+ 2ω0 − 2ω)

≈ −2ω0(ω − ω0 −∆).

By multiplying both equations (D.16) and (D.17) and taking into account the
simplifications discussed above yields

−4ω2
0(ω − ω0)(ω − ω0 −∆) = ǫ2ω4

0, (D.19)

which has two solutions for the response frequency

ω1,2 = ω0 +
∆

2
± 1

2

√

∆2 − ǫ2ω2
0. (D.20)

Imaginary square roots are associated with instability, which is the case for

ǫ2 >
∆2

ω2
0

. (D.21)

The modes at ω0 gain energy at the expense of the mode at Ω ≈ 2ω0. This can
be interpreted as the mode at Ω decays into two modes at ω0. The interaction
as in this example is often local in frequency or wavenumber space in the sense
that the frequencies or wavenumbers involved in the process do not differ by
much more than a factor of two. Therefore, such a process can describe the
eddy mitosis behind the Richardson cascade (see Sec. 3.2).
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D.3 Parametric modulational instability

By setting the driving or pump frequency close to the eigenfrequency Ω ≈ ω0

another nonlinear instability can be obtained with a response at low frequencies
ω ≪ Ω. This is called the modulational instability. The frequency miss match
is also assumed to be small and given by ∆ = Ω−ω0. From the mode coupling
equation (D.12) follows

(ω2 − ω2
0)x(ω) ≈ −ω2

0x(ω) = −ǫω2
0(x(ω + Ω) + x(ω − Ω)). (D.22)

The mode at ω couples to two modes ω±Ω, these are called sidebands. There-
fore two additional equations for the sidebands are needed. These are

((ω + Ω)2 − ω2
0)x(ω + Ω) = −ǫω2

0(x(ω + 2Ω) + x(ω)) ≈ −ǫω2
0x(ω) (D.23)

and

((ω − Ω)2 − ω2
0)x(ω − Ω) = −ǫω2

0(x(ω) + x(ω − 2Ω)) ≈ −ǫω2
0x(ω). (D.24)

In the last step it has been assumed that the modes far away from the resonance
are small x(ω ± 2Ω) ≈ x(±2Ω)≪ x(Ω) ≈ x(ω). Using

(ω ±Ω)2 − ω2
0 = ω2 ± ωΩ+Ω2 − ω2

0 ≈ (Ω + ω0)(Ω− ω0)± 2ωΩ ≈ 2ω0(∆± ω)

after the division of Eq. (D.23) by Eq. (D.24) a dispersion relation of the
modulational instability is obtained

1 = −1

2
ǫ2
(

1

ω −∆
− 1

ω +∆

)

(D.25)

with the solutions
ω1,2 = ±

√

∆(ǫ2ω0 +∆). (D.26)

The modulational instability gets unstable for a driving frequency below the
eigenfrequency, Ω < ω0, ∆ < 0 and |∆| ≥ ǫ2ω0. The frequency response at
ω is not in resonance with the harmonic oscillator. Therefore this coupling is
also called non-resonant coupling.
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Reynolds stress
radial-parallel, 141

adiabatic coupling, 65
adiabatic electrons, 207
adiabatic limit, 58
Alcator C-Mod, 12, 157
Alfvénic coupling, 65, 221
Alfvén

geodesic mode (GALf), 161, 212
global mode, 161, 212
logitudinal/fast wave, 212
wave shear/torsional, 212
wave velocity, 211

amplitude correlation technique, 93
anisotropy dissipation, 72
ASDEX Upgrade, 11, 115, 138, 158,

181, 186

ballooned transport, 141
ballooning

angle, 63, 66
ideal, 65
resistive, 65

ballooning envelope, 151
beta stabilization, 50
bicoherence, 92, 161

cross, 161
bicoherency, 91
binormal wavenumber

toroidal modenumber, 63
bispectrum, 30
blob, 171

birth, 187, 189
correspondence principle, 176
equivalent electric circuit, 172
inertial regime, 174

occurrence rate, 192
seeded, 183
shear layer, 194
sheath limited regime, 173
spinning, 175

Bohm criterion, 209
Boltzmann response/relation, 207
Braginskii equations, 71, 168
broadband turbulence, 124
Burgers equation, 168

cascade
direct, 21
dual, 23
free energy, 59
Hasegawa-Wakatani, 59
inverse, 23, 125

center of gravity
Doppler, 122, 160

Charney-Hasegawa-Mima equation, 58
coherency, 87
collisional detrapping rate, 52
collisionality, 226
conditional average, 84
conditional sampling, 86
conducting wall instability (CWI), 52
conduction

SOL, 174
cooperative elliptical instability, 27
core turbulence, 121
correlation function

auto, 81
cross, 81

critical gradient, 49
cross-phase, 87
Crow instability, 27
CSDX, 13
curvature
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geodesic/normal, 63
operator, 63, 70

curvilinear coordinates, 230

DALF, 140, 174
equations, 61

decorrelation, 96
decorrelation time, 83
degree of detachment, 185
density peaking, 52
density pump out, 52
density shoulder, 185
detachment, 185
Dimits shift, 50
dissipation anomaly, 22
divertor, 10, 185
Doppler reflectometry, 76, 117, 126,

160, 161
drift wave

backward wave, 111
dispersion, 218, 226
growth rate, 220, 226

drift-Alfvén turbulence, 61
drift-wave

turbulence, 123
drift-wave turbulence

intermittency, 61

EAST, 11, 131
eddy-turn-over time, 83, 123
edge localized mode (ELM), 15

type-I, 15, 84
type-II, 15
type-III, 16, 140

electromagnetic turbulence, 66
electron sound wave, 206
electron temperature gradient mode

(ETG), 50, 55
elongation, 141
energy transfer, 30

wavenumber space, 97
enstrophy, 23
enstrophy transfer, 30
envelope modulation, 88, 159
ergodicity, 87
Euler equation, 28

explosive, 33

filament
see blob, 171

finite Larmor radius (FLR), 69, 228
Fisher-Kolmogorov-Petrovsky-

Piscounov equation, 42
floating potential, 74, 209
flux-coordinate independent approach,

147
frequency broadening, 118
full-f, 185

gas-puff imaging (GPI), 77, 181
GEMR, 120, 151, 183, 193

equations, 70
geodesic acoustic mode (GAM), 66, 68,

159, 212
frequency, 68
intermittency, 166
magnetic signature, 165

geodesic transfer, 68
good/bad curvature, 46
Grad-Shafranov equation, 231
GRILLIX, 147
growth rate

nonlinear, 123, 194
suppression, 123

gyrofluid, 229

Hamada coordinates, 230
Hasegawa-Mima, 83
Hasegawa-Wakatani, 57

2D, 58, 226
3D, 57, 226
cascades, 59

heat flux, 229
High confinement regime (H-mode), 14
higher harmonics, 168
hybrid Larmor radius, 208
hydrodynamic limit, 58
hydrodynamic regime, 176

I-mode
intermittency, 165
magnetic signature, 164
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I-phase, 129
energy transfer, 132
magnetic signature, 138

Improved L-mode regime (I-mode), 16
impurity accumulation, 50
inertial range, 21
infrared catastrophe, 59
interchange forcing, 65
interchange instability, 46
intermittency, 94, 167

2D turbulence, 33
3D turbulence, 32
drift-wave turbulence, 61
external, 31, 167
generation, 27
I-mode, 166
internal, 31
small-scale, 31
SOL, 171

intrinsic rotation, 141
ion acoustic/sound wave, 208
ion flow stream function, 62
ion sound wave, 208
ion temperature gradient mode (ITG),

49, 66
ion-saturation current, 74
ITG turbulence, 72, 119
ITG-drift-wave turbulence, 235

K-ǫ model, 36, 107, 192
Kim-Diamond model, 129
kinetic ballooning mode (KBM), 55,

66
Kolmogorov scale, 22
Kolmogorov’s four-fifth law, 32
Kolmogorov’s two-third law, 21
Korteweg-de-Vries (KdV)

equation, 168
Kubo number, 83

Landau damping, 72
limit-cycle oscillations, 39, 140, 143
linear Ohmic confinement (LOC), 51
lithium beam emission spectroscopy (Li-

BES), 77, 181
local wavenumber, 88

Lotka-Volterra equations, 39
low-confinement regime (L-mode), 14
lower (upper) single null, 10

M-mode in JET, 140
magnetic flutter, 63, 66, 70, 221
magnetic island, 54
magnetic shear, 8, 144, 145
magnetic signature

I-mode, 164
I-phase, 138

magnetoacoustic wave, 212
Mathieu’s differential equation, 238
Maxwell stress, 68
micro tearing mode (MTM), 53, 66
Millionshchikov approximation, 94
Mirnov coil, 78
mode numbers (poloidal toroidal), 8

Navier-Stokes-equation, 19
negative viscosity, 36
neoclassical radial electric field, 15
neoclassical tearing mode, 54
non-Gaussian statistics, 188
non-resonant coupling, 241
nonlinear energy transfer, 92
nonlinearity

E × B, 58
ion diamagnetic, 175
Korteweg-de-Vries (KdV), 169
Poisson bracket, 225
polarization, 58

nonlocal tranport
heat, 42
momentum, 42

nonlocal transport, 192
normal incidence reflectometry, 75, 158
normalization

DALF, 62
GEMR, 69
Hasegawa-Wakatani, 225

Ohm’s law
generalized, 224

Okubu-Weiss number/criterion, 33, 96,
171
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parallel wavenumber
pol. and tor. modenumbers, 63

parametric decay instability, 91
parametric instability

decay, 239
modulational, 241

parametric modulational instability, 91
particle imaging velocimetry (PIV), 84,

184, 190
particle transport, 48
passive scalar, 61
pedestal, 14
Pfirsch-Schlüter

current/flow, 66
sideband balance, 66

Pfirsch-Schlüter current, 68
phase locking, 106
phase velocity, 124
plasma beta, 7
plasma detachment, 186
plasma frame, 126
polarization

gyro-fluid, 70
polarization drift

diamagnetic, 175, 205
nonlinearity, 205

Poloidal correlation reflectometry (PCR),
76, 115

poloidal cross-section, 9
power spectrum

auto, 86
cross, 87
wavenumber-frequency, 88, 117

predator prey
gradient and transport, 154

predator-prey, 38
model L-H transition, 129
zonal flows and turbulence, 38

production, 38, 109
trigger for L-H transition, 131

pseudo wavenumber, 88, 117

quasi-coherent mode (QCM), 106, 170
quasi-neutrality, 223

gyro-fluid, 70

radial electric field, 10
rate of deformation, 96
residual (Reynolds) stress, 146
resistive ballooning mode (RBM), 216
Reynolds decomposition, 34
Reynolds number, 20, 103
Reynolds stress, 36, 151

in-out asymmetry, 142
up-down asymmetry, 146, 150

Rossby wave, 34, 58
Ruelle-Takens scenario, 103, 170

safety factor, 8, 145
saturated Ohmic confinement (SOC),

51
scrape-off layer, 10, 151
self-sustainment, 59, 107, 123
separatrix, 9
shear decorrelation, 39, 123
sheath, 172, 209
sideband

as global mode, 67, 139
sidebands, 241
skewness, 188, 189
small-scale vorticity generation, 123
SOL width, 172
soliton, 168
spectrogram, 89
stationarity, 87
stiff transport, 49
straining out, 26
stream function, 28
streamer, 50, 177
stretching strain, 96
Stringer spin-up, 143

frequency, 143
strong turbulence, 94, 118, 124
sub-window, 86
subcritical turbulence, 102
supercritical turbulence, 102
symmetry breaking, 141

Taylor’s hypothesis, 116
temperature equipartition, 72
thermo-diffusion, 52
three-wave interaction, 29, 90, 97
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time-delay estimation (TDE), 82, 117
TJ-K, 12, 40, 61
Tore Supra, 12, 115, 152
transition to turbulence, 103, 123
trapped electron mode (TEM), 51
trapped ion mode (TIM), 51
turbulence bursts, 166
turbulence spreading, 42, 108, 188, 194

viscosity (dynamic/kinematic), 20
Vlasov equation, 227
vortex

cluster, 101
merger, 24, 100
stripping, 27
thinning, 25, 99
tilt, 36

vorticity, 61
vorticity/vortex stretching, 28, 32

wave turbulence, 118
wavelet, 89
wavenumber broadening, 24, 118
weak turbulence, 94, 118
weakly coherent mode (WCM), 158

X-point, 10
X-point resistivity, 148

zonal flow, 33, 91, 146, 151
geodesic transfer, 66
self-amplification, 60
sideband, 67
spatial nonlocal drive, 107
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