Sparse Polynomial Space Approach to dissipative quantum systems

Andreas Alvermann
Holger Fehske

Institut für Physik
Ernst-Moritz-Arndt Universität Greifswald

Korrelationstage Dresden 2009
Open quantum systems: coupling to (dissipative) baths or (particle) reservoirs

spin-boson model: two-level system coupled to bath of harmonic oscillators

\[H = \frac{\Delta}{2} \sigma_x + \sum_i \lambda_i (b_i^+ + b_i) \sigma_z + \sum_i \omega_i b_i^+ b_i \]

continuous bath:
\[J(\omega) = \sum_i \lambda_i^2 \delta(\omega - \omega_i) \propto \omega^s \quad \text{for} \quad 0 \leq \omega \leq \omega_c \]

physics: dissipative spin dynamics, (sub)-ohmic \((s \leq 1)\) quantum phase transition

possible methods: NRG, TD-NRG, QMC, DMRG, perturbation theory
issues: long-time stability, nature of QPT (discrepancy NRG vs. QMC)

What about exact diagonalization? (Lanczos, Jacobi-Davidson, Chebyshev, . . .)

The problem: How to represent continuous bath degrees of freedom with a finite-dimensional Hamiltonian matrix?

New suggestion: Sparse Polynomial Space Representation (SPSR)
Polynomial expansions

Calculation of, e.g., spectral functions using polynomial expansions

- orthogonal polynomials P_m to weight $w(\omega)$: \[\int d\omega \; w(\omega) \; P_l(\omega) P_m(\omega) = \delta_{lm} \]

- expansion of spectral function $A(\omega) = \langle \psi | \delta[\omega - H] | \psi \rangle = w(\omega) \sum_m \mu_m P_m(\omega)$

 ▶ function $A(\omega) \leftrightarrow$ moments $\mu_m = \int d\omega A(\omega) P_m(\omega) = \langle \psi | P_m[H] | \psi \rangle$

- two-term recurrence $P_{m+1}(\omega) = (a_m \omega - b_m) P_m(\omega) - c_m P_{m-1}(\omega)$

 \leadsto efficient recursive calculation of μ_m to given H

Hamiltonian \rightarrow finite matrix \rightarrow moments $\mu_m \rightarrow$ spectral function $A(\omega)$

▶ ‘best choice’: Chebyshev polynomials with $w(\omega) \propto (1 - \omega^2)^{-1/2}$
Polynomial expansions

With Chebyshev polynomials: Kernel Polynomial Method (KPM)
[review: Weiße, Wellein, Alvermann, Fehske, RMP 78, 275 (2006)]

- high resolution, fast convergence, absolute numerical stability
 even for discontinuous functions [no Gibbs phenomenon]

impurity in a host

Holstein polaron within DMFT

- efficient & general techniques for:
 static & dynamic correlations, zero & finite temperature, time-propagation

Prerequisite: represent quantum system by finite Hamiltonian matrix
Continuous bath degrees of freedom

Representation of continuous bath degrees of freedom

- traditional: discretization
 (i) small number M of discrete energies replace continuous $J(\omega)$
 (ii) n bosons: $\binom{n+M}{M} \approx M^n$ states
 \[\text{‘curse of dimension’} \]
 (iii) small M results in discretization artefacts
 example:
 \[A(\omega) = \langle \uparrow; \text{vac} | \delta[\omega - H] | \uparrow; \text{vac} \rangle \]
 for spin-boson model with $\Delta = 0$
 [parameters: $s = 0.5$, $\alpha = 0.2$]

Instead of discretization: Construct polynomial function space
Sparse Polynomial Space Representation

Polynomial function space for multiple bosonic excitations

(i) \(n \)-boson state in first quantization:

\[
\psi_n : [0, \omega_c]^n \rightarrow \mathbb{C} \\
\vec{\omega} \mapsto \psi_n(\vec{\omega})
\]

\(\psi_n(\vec{\omega}) \): amplitude of bosons at energies \(\vec{\omega} = (\omega_1, \ldots, \omega_n) \)

(ii) expansion in products of orthogonal polynomials

\[
\psi_n(\vec{\omega}) = \sum_{\vec{m}} \psi_{\vec{m}} \prod_{i=1}^{n} P_{m_i}(\omega_i)
\]

\(n \)-dimensional function \(\leftarrow \leftrightarrow \) \(n \)-dimensional moments \(\psi_{\vec{m}} \in \mathbb{C}^n \)

(iii) operators \(b^{(\dagger)} \): simple algebraic operations

\(e.g. H_B = \sum_i \omega_i b_i^{\dagger} b_i \) corresponds to multiplication \(\psi_n(\vec{\omega}) \mapsto (\sum_i \omega_i) \psi_n(\vec{\omega}) \)

i.e., using two-term recurrence for \(P_m \), shifting indices of \(\psi_{\vec{m}} \) by \(\pm 1 \)

How to select finite subspace?

‘naive’: restrict degree of each \(P_{m_i} \): \(m_i < M \)

but: effort for \(M^n \) polynomials = effort for \(M^n \) discrete points \(\forall \)

Instead: Use concepts from approximation theory \(\sim \) sparse grid
Sparse grids: Interpolation of multivariate functions

(i) Cartesian grid: M points along each axis
n-dim. function \leftrightarrow values at M^n points

(ii) Sparse grid: much less points
for interpolation with comparable accuracy
n-dim. function \leftrightarrow values at few points

(iii) relevant for our purpose: sparse grid interpolation exact
for polynomials $P_{m_1} \cdots P_{m_n}$ with $\sum_{i=1}^{n} \lfloor \log_2(m_i + 1) \rfloor \leq N_g$
this condition defines Sparse Polynomial Space to level N_g
contains polynomials of high degree (up to $2^{N_g} - 1$) and only few in total

Sparse Polynomial Space Representation:
n-boson wavefunction $\psi_n(\vec{\omega}) \leftrightarrow$ few parameters $\psi_{\vec{m}}$
continuous bath degrees of freedom
infinite bosonic Fock space

n-dimensional complex functions

polynomial expansions

sparse grid: sub-space selection

sparse polynomial space

► intrinsic interpolation of sparse grid overcomes problems of discretization
► no discretization artefacts
► exact diagonalization techniques become applicable to open quantum systems

Results with excellent accuracy for moderate effort
Results for the spin-boson model

\[H = \frac{\Delta}{2} \sigma_x + \sum_i \lambda_i (b_i^+ + b_i) \sigma_z + \sum_i \omega_i b_i^+ b_i \]

continuous bath: \[J(\omega) = \sum_i \lambda_i^2 \delta(\omega - \omega_i) \propto \alpha \omega^s \quad \text{(for} \ 0 \leq \omega \leq \omega_c = 1) \]

Spin dynamics

Sparse Polynomial Space + Chebyshev time propagation

initial state:
spin \(|\uparrow\rangle\) + relaxed oscillator bath

- time evolution of a dissipative system with a finite hermitian matrix
- no (discretization) error
- dynamics on long time scales: transients & steady state
- no additional averaging or damping

for comparison: discrete grid of comparable size
Results for spin-boson model

Sub-Ohmic ($s < 1$) quantum phase transition

for coupling α above critical α_c: degenerate groundstate with magnetization $\neq 0$

our criterion: magnetization $m = \langle \sigma_z \rangle \leftrightarrow$ oscillator shift $b_i \mapsto b_i - m \frac{\lambda_i}{\omega_i}$

- groundstate energy E
 (i) $\alpha < \alpha_c$: minimum at $m = 0$, shift $= 0$
 (ii) $\alpha > \alpha_c$: minima at $m \neq 0$, shift $\neq 0$

- convergence of numerical α_c with
 N_b: number of boson
 N_g: sparse grid level
Sub-Ohmic ($s < 1$) quantum phase transition

for coupling α above critical α_c: degenerate groundstate with magnetization $\neq 0$

our criterion: magnetization $m = \langle \sigma_z \rangle \leftrightarrow$ oscillator shift $b_i \leftrightarrow b_i - m \frac{\lambda_i}{\omega_i}$

Phase diagram ($\Delta/\omega_c = 0.1$)

- direct approach
 (no scaling, no extrapolation)
- very accurate & efficient computations
- results agree with QMC and NRG
 (taking NRG discretization into account)

QMC/NRG data: Winter, Rieger, Vojta, Bulla, PRL 102, 030601 (2009)
Results for spin-boson model

Quantum phase transition: Critical behaviour for $s < 0.5$

- calculate magnetization $m = \langle \sigma_z \rangle$ directly in groundstate,
susceptibility $\chi = -\partial m / \partial \epsilon$ with external field $\epsilon \sigma_z$

Of which type is the quantum phase transition for $s < 0.5$?
Results for spin-boson model

Quantum phase transition: Critical behaviour for $s < 0.5$

- calculate magnetization $m = \langle \sigma_z \rangle$ directly in groundstate, susceptibility $\chi = -\partial m / \partial \epsilon$ with external field $\epsilon \sigma_z$

- critical behaviour: mean-field exponents $\chi \propto (\alpha_c - \alpha)^{-1}$, $m \propto (\alpha - \alpha_c)^{1/2}$

in accordance with QMC, but in contradiction to NRG [cf. Winter et al.]
Conclusion & Outlook

Sparse Polynomial Space Representation

- new idea: combine polynomial expansions with sparse grids to represent continuous bath degrees of freedom without discretization
- Hilbert space techniques (Lanczos, Jacobi-Davidson, Chebyshev ...) become applicable to open quantum systems
- no discretization error: results with excellent accuracy e.g. for time propagation on long time scales

For the spin-boson model:

- static & dynamic observables at weak & strong coupling
- quantum phase transition has mean-field character for $s < 0.5$

Applications & future development

- generalized spin-boson models
- fermionic reservoirs using anti-symmetrized functions
- non-equilibrium current and electron pumping in nanostructures