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Abstract

Motivated by recent experiments, which give strong
evidence for an excitonic insulating phase in
TmSe0.45Te0.55, we developed a scheme to quanti-
tatively construct, for generic two-band models, the
phase diagram of an excitonic insulator. As a first
application of our approach, we calculated the phase
diagram for an effective mass two-band model with
long-range Coulomb interaction. The shielded po-
tential approximation is used to derive a general-
ized gap equation controlling for positive (negative)
energy gaps the transition from a semi-conducting
(semi-metallic) phase to an insulating phase. Nu-
merical results, obtained within the quasi-static ap-
proximation, show a steeple-like phase diagram in
contrast to long-standing expectations.

Motivation

The possibility of an excitonic insulator (EI) phase,
separating, below a critical temperature, a semicon-
ducting from a semi-metallic phase, has been pre-
dicted by theorists more than three decades ago [1].
However, experimental efforts to establish this phase
in actual materials largely failed. It is only un-
til recently, that detailed experimental investigations
of TmSe0.45Te0.55 suggested the existence of an EI
phase in this compound [2, 3]. The pressure de-
pendence of the electrical resistivity below 270K,
for instance, strongly points towards an emerging EI
phase [2]. Further evidence for collective behavior
which may have its origin in an EI phase comes from
the linear increase of the thermal conductance and
diffusivity at very low temperatures [3].

0 2 4 6 8 10 12 14 16
PRESSURE  (kbar)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
E

SI
ST

IV
IT

Y
  (

O
hm

 c
m

)

Fig 1: Pressure dependence of the electrical resistivity of
TeSe0.45Te0.55 for T=4.2K (upper curve) and T=300K (lower
curve). Data from Ref. [2].

Under the assumption that the external pressure controls the en-
ergy gap Eg, the resistivity data have been used to construct a
phase diagram for TmSe0.45Te0.55 in the Eg-T plane [2]. Al-
though experimental data strongly suggest that this phase dia-
gram is the phase diagram of an EI, to unambiguously decide if
this interpretation is correct requires further theoretical exami-
nation.
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Fig 2: Phase diagram for TeSe0.45Te0.55 as obtained from the
resistivity data [3].

Model

A quantitative phase diagram for an EI has never been calcu-
lated, even not for the simplest two-band model: an isotropic,
effective mass two-band model for (spinless) valence and con-
duction band electrons interacting via long-range Coulomb
forces.
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Fig 3: Schematic band structure for an isotropic, effective mass
two-band model. Defining momenta ki (i=1,2) with respect to
the band extrema, the model also holds for an indirect (Γ-X)
energy gap.

As a first step towards a theoretical scrutiny of the phases of
the Tm[Se, Te] system we present here such a calculation. As
far as the actual material is concerned, the model is of course
rather crude, neglecting, for instance, strong intraband correla-
tions (due to the mixed valence) and electron-phonon interac-
tions. The two bands should be therefore considered as effective
single-particle bands describing the electronic degrees respon-
sible for the formation of an EI. With the proper parametriza-
tion/interpretation, we expect our results to be also relevant for
the Tm[Se,Te] system.

The indirect (Γ-X) energy gap Eg of Tm[Se, Te] can be formally
turned into a direct gap by measuring the momenta for conduc-
tion (valence) band electrons from the X-point (Γ-point). The
Hamiltonian can then be written as

H =
∑

i

∑

k

εi(k)c†i,kci,k +
1

2

∑

q

V0(q)ρ(q)ρ(−q), (1)

with ρ(q) =
∑

i,k c†i,k+qci,k the total charge density and V0(q) =

4πe2/ε0q
2 the bare Coulomb potential. The dispersions of the

two bands are given by (~ = 1)

ε1(k) = − k2

2m1

+ µ1, ε2(k) =
k2

2m2

− µ2, (2)

where µ1 and µ2 are the chemical potentials for valence band
holes and conduction band electrons, respectively. If the non-
interacting system is an instrinsic semi-conductor (Eg > 0),

µ1, µ2 < 0 and − µ1 − µ2 = Eg, (3)

whereas for a semi-metal (Eg < 0)

µ1, µ2 > 0 and µ1 + µ2 = −Eg = |Eg|. (4)

Method

In close analogy to the strong-coupling theory of superconduc-
tivity, we employ a matrix propagator formalism. Within the
two-band model, the anomalous or off-diagonal (in the band in-
dices i = 1, 2) self-energy Σ12(k, iωn) describing the pairing
between conduction and valence band electrons, serves as an
order parameter: Σ12(k, iωn) 6= 0 signals the existence of the
EI phase. The order-parameter has to be calculated within a
selfconsistent approximation resulting in a nonlinear functional
equation whose particular form depends on the physical pro-
cesses included. Linearizing this equation in the vicinity of
the phase boundary, where Σ12(k, iωn) is small, yields, after
a quasi-particle approximation, a generalized “gap equation”.
The phase boundary T(Eg) can then be found by mapping out
the T-Eg range for which the “gap equation” has nontrivial so-
lutions.

Shielded potential approximation

To illustrate our selfconsistent approach, we calculate
Σ12(k, iωn) within the shielded potential approximation. In
terms of diagrams:

= +

= +

(a)

(b)

Fig 4: a) Dyson equation for the matrix propagator in the
shielded potential approximation. b) Random phase approxi-
mation (RPA) for the shielded potential. Thick and thin solid
(dashed) lines depict, respectively, dressed and bare matrix
propagators (Coulomb interactions).

On the real energy axis, the anomalous self-energy is after lin-
earization given by

(

ReΣr
12(k, ω)

ImΣr
12(k, ω)

)

=

∫

dω′dk′

8π3

(

K11 K12

K21 K22

)(

ReΣr
12(k

′, ω′)
ImΣr

12(k
′, ω′)

)

(5)

with

K11 = A Im{Gr
11G

r
22} K12 = A Re{Gr

11G
r
22} (6)

K21 = B Im{Gr
11G

r
22} K22 = B Re{Gr

11G
r
22} (7)

and

A = V0(k − k′)nF (ω′)

+ P

∫

dε

π

ImV r
s (k − k′, ε)

ω′ − ω + ε
[nF (ω′) + nB(−ε)] (8)

B = ImV r
s (k − k′, ω − ω′)[nF (ω′) + nB(ω′ − ω)]. (9)

To simplify Eq. (5), we employ a quasi-particle approximation
for the intraband propagators,

Gr
ii(k, ω) =

1

ω + iδ − ei(k) + iγi(k)
, (10)

with renormalized band dispersions and lifetimes given by

ei(k) = εi(k) + ReΣr
ii(k, ei(k)) , (11)

γi(k) = −ImΣr
ii(k, ei(k)), (12)

respectively. Extended calculations have shown, that, within the
shielded potential approximation, ei(k) = ε(k) + ∆ε [4]. The
renormalization leads therefore only to a k-independent energy
shift which can be included in the definition of the chemical
potentials µi.

Generalized gap equation

Inserting (10) in (5) and ignoring lifetime effects, that is, set-
ting ImΣij = 0 for all i and j, we obtain two coupled integral
equations for ReΣ12(k, ei(k)) ≡ ∆i(k), i=1,2. For an isotropic
system, ∆i(k) = ∆i(k). Instead of k, we use ε = e2(k) as an
integration variable and write the generalized gap equation as
follows (measuring energies and length in excitonic Rydbergs
and Bohr radii)

∆i(ε) =
∑

j

∫ ∞

−µ2

dε′Uij(ε, ε
′)(−)1+jB(ε′)∆j(ε

′), (13)

with B(ε′) = 1/(e′2 − e′1), e′1 = −α(e′2 + µ2) + µ1, e2 = ε, and
the mass ratio α = m2/m1.

Note, in contrast to the gap equation for superconductivity, Eq.
(13) is not restricted to the Fermi surface. Instead we keep the
full momentum and (on-shell) energy dependence. This is par-
ticularly important for low densities, below the Mott density,
where bound states (excitons) exist.

Interaction kernel

The interaction kernel depends on the dielectric function ε(q, z)
which has to be calculated in some approximation. For simplic-
ity we consider a RPA inspired plasmon-pole approximation al-
though this might not be a good approximation at intermediate
densities corresponding to small band gaps/overlaps. The dy-
namically screened Coulomb interaction is then given by

Vs(q, z) =
V0(q)

ε(q, z)
, ε(q, z) = 1 +

ω2
pl

z2 − ω(q)2
, (14)

with ω(q) = ωpl

√

1 + q2/κ2. The screening wavenumber κ and
the plasmon energy ωpl are given below.

Within the plasmon-pole approximation the interaction kernel
becomes

UPPA
ij (ε, ε′) = Ux

ij(ε, ε
′) + U c

ij(ε, ε
′) (15)

Ux
ij(ε, ε

′) =
1

πk
log

(k + k′

k − k′
)2

nF (e′j) (16)

U c
ij(ε, ε

′) =
1

πk

∫ ω+

ω−
dω

ω2
pl

ω2 − ω2
pl

h(ω, ei, e
′
j) (17)

with

h(ω, ei, e
′
j) = −

nF (e′j) + nB(ω)

ω + ei − e′j
+

1 − nF (e′j) + nB(ω)

ω − ei − e′j
(18)

ω+ = ωpl

√

1 +
(k + k′)2

κ2
ω− = ωpl

√

1 +
(k − k′)2

κ2
. (19)

Instead of splitting the interaction kernel into an exchange (U x
ii)

and a correlation term (U c
ii), we can alternatively speparate the

kernel into a statically screened exchange term (U ssx
ii ) and a dy-

namical term (U dyn
ii ) which accounts for finite recoil energies

ei − e′j. Explicitly:

UPPA
ij (ε, ε′) = U ssx

ij (ε, ε′) + Udyn
ij (ε, ε′) (20)

with

U ssx
ij (ε, ε′) = Vs(ε, ε

′)nF (e′j) + C(ε, ε′) (21)

Vs(ε, ε
′) =

1

πk
log

[(k + k′)2 + κ2

(k − k′)2 + κ2

]

nF (e′j) (22)

C(ε, ε′) =
1

πk

∫ ω+

ω−
dω

ω2
pl

ω(ω2 − ω2
pl)

(23)

and

Udyn
ij (ε, ε′) =

2

πk

∫ ω+

ω−
dω

ω2
pl

ω(ω2 − ω2
pl)

h̃(ω, ei, e
′
j) (24)

h̃(ω, ei, e
′
j) = f(ω, ei, e

′
j)nF (e′j) + g(ω, ei, e

′
j) (25)

f(ω, ei, e
′
j) = 1 − ω

2

( 1

ω + ei − e′j
+

1

ω − ei + e′j

)

(26)

g(ω, ei, e
′
j) =

ω

2

( 1 + nB(ω)

ω − ei + e′j
− nB(ω)

ω + ei − e′j

)

− 1

2
. (27)

Quasi-static approximation

The full analysis of Eq. (13) is the subject of a forthcoming
work [5]. Here, we focus on the quasi-static approximation,
which neglects the recoil energies ei − e′j. In that limit U dyn

ij

vanishes. As a result, ∆1(ε) = ∆2(ε) ≡ ∆(ε) and the gap equa-
tion reduces to

∆(ε) =

∫ ∞

−µ2

dε′Vs(ε, ε
′)
nF (e′1) − nF (e′2)

e′2 − e′1
∆(ε′). (28)

To obtain a closed set of equations, the chemical potentials have
to be determined as a function of temperature and energy gap.
Combining the constraint −µ1−µ2 = Eg, which is just the defi-
nition of the energy gap Eg, with particle conservation n1 = n2,
where n1 is the number of holes in the valence band and n2 the
number of electrons in the conduction band, we find

∫ ∞

−µ1

dε
√

ε + µ1nF (ε) = α
3
2

∫ ∞

µ1+Eg

dε
√

ε − Eg − µ1nF (ε)(29)

from which we determine µ1. Note, on the semiconducting side,
condition (29) takes thermally excited electron-hole pairs into
account. The screening wave number follows from

κ2 =

√
2

π

[

∫ ∞

µ1+Eg

dε
nF (ε)

√

ε − Eg − µ1

+ α−3
2

∫ ∞

−µ1

dε
nF (ε)√
ε + µ1

]

.(30)

Results

To construct the phase boundary T(Eg), we discretize Eq. (28)
and determine, for fixed Eg, the temperature T for which the
determinant of the coefficient matrix of the resulting system of
linear equations vanishes. For Eg < 0 this approach can be di-
rectly applied, whereas for Eg > 0, the logarithmic singularity
of the kernel at ε = ε′ has to be removed first [5]. Recall that
we measure energies and temperatures in units of the exciton
Rydberg R0.

Here we present results for equal band masses, m1 = m2, i.e.,
α = 1. In that case, condition (29) pins the chemical poten-
tial for all temperatures to the middle of the energy gap/overlap.
Thus, µ1 = −Eg

2
for Eg > 0 and µ1 = +

|Eg|
2

for Eg < 0.

First we show in Fig. 5 the phase boundary T (Eg) as ob-
tained from Eq. (28) but with temperature independent
screening, that is, for κ2 = κ2(T = 0, Eg). A very pro-
nounced steeple-like phase boundary arises. The inset shows
T (Eg) for −Eg � T, where it approaches the asymptotic re-
sult T ≈ (γ|Eg|/π) exp (−π

√

|Eg|/ln(1 + π
√

|Eg|/2)), with
γ = exp (0.577) (dashed line in the inset).
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Fig 5: Phase diagram for an excitonic insulator with equal band
masses and temperature independent screening.

The temperature dependence of κ2 is shown in the inset of Fig.
6 for various band gaps/overlaps. For Eg < 0, κ2 is rather large
and quickly exceeds the critical screening length given by the
Mott criterium κ2 = 0.71 above which excitons are unstable.
Note, because of thermally excited electron-hole pairs, κ2 is also
finite for Eg > 0 and T > 0. For small band gaps thermally ex-
cited carriers contribute significantly to screening.
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Fig 6: Phase diagram for an excitonic insulator with equal band
masses and temperature dependent screening. The dashed line
indicates the Mott criterium κ2=0.71. To the left of this line,
(preformed) bound states are unstable. The inset shows κ2 as a
function of temperature for various energy gaps/overlaps.

The phase boundary T (Eg) with temperature dependent screen-
ing included is presented in the main panel of Fig. 6. Above
T1 ≈ 0.1, the EI phase is always unstable. Below T1, we still
find a steeple-like phase boundary which strongly discriminates
between Eg < EMott

crit and Eg > EMott
crit , with EMott

crit ≈ −0.3, the
critical band overlap for which the Mott criterium is satisfied
at T=0. For Eg > −EMott

crit , T (Eg) increases very fast, within a
few percent of R0, to a maximum from which it smoothly de-
creases to zero at Eg = 1, the critical band gap, above which
the EI phase cannot exist. For Eg < −EMott

crit , in contrast, T (Eg)
decreases smoothly (after a small initial increase).

The steeple-like shape of the phase diagram reflects the differ-
ent phases from which the EI is approached: semi-conducting
for Eg > 0 and semi-metallic for Eg < 0. Entering the EI
phase from the semi-conductor side always leads to formation of
strongly bound excitons. On the other hand, when the EI phase
is approached from the semi-metal, exciton formation can only
occur for EMott

crit < Eg < 0; for larger band overlap it is sup-
pressed due to the free carrier’s screening of the Coulomb po-
tential. In that case, the “excitonic insulator” is supported by
loosly bound Cooper-type pairs. As a result the collective phase
becomes more fragile. Anisotropies in the band structure and
other pair breaking effects would easily destroy this part of the
phase diagram [6]. The crossover from excitons to Cooper-type
pairs occurs in our calculation at Eg ≈ −0.3. The precise value
of the critical band overlap depends on the screening model. A
more realistic treatment of screening, in particular at intermedi-
ate densities, is clearly desirable.

Conclusions

Based on an isotropic, effective mass two-band model, we
calculated the phase diagram of an excitonic insulator taking
screening explicitly into account. We obtain a steeple-like
phase boundary which we interpret in terms of a cross-over
from preformed excitons at −0.3 = EMott

crit < Eg < 1 and
Cooper-type electron-hole pairs for Eg < EMott

crit . “Excitons”
per se support the EI phase therefore only for −0.3 = EMott

crit <
Eg < 1. To explore the consequences of the cross-over in more
detail, in particular in view of the experimentally found phases
in the Tm[Se,Te] system, is the subject of on-going research.
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