Photoemission spectra and optical response of many-polaron systems
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Motivation

e Optical measurements have proven the importance
of electron-phonon (EP) coupling and even polaron
effects in important classes of materials, including
quasi-1d MX chains, quasi-2d cuprate superconduc-
tors, and 3d colossal magnetoresistance manganites.

e In all these systems, a noticeable density of (pola-
ronic) charge carriers is observed, which puts the ap-
plicability of single-polaron theories into question,
particularly in the often realized case of intermediate
EP couplings and phonon frequencies.

e Questions: What happens to polarons if their density
IS large enough so that individual quasiparticles (QP)
would overlap? Is there a density-driven crossover
from (large) polarons to weakly dressed electrons?

e Problem: Even for the most simplified models no re-
liable analytical results exist for finite carrier densi-
ties in the intermediate EP coupling regime!

Model

1D spinless fermion Holstein model:
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Parameter ratios:
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Known results:

e For a single particle a transition from a large polaron
to a small polaron takes place with increasing EP
coupling strength (at least in 1D).

e In the intermediate coupling regime \ ~ 1, ¢ ~ 1,
the size of the polaron is strongly dependent on the
phonon frequency:

. rather extended distortion
- localised distortion.
e Focusing on the intermediate coupling adiabatic
regime we expect strong density-effects due to a pos-

sible overlap of phonon clouds (of course, In the
U — oo limit, bipolaron formation is suppressed)!

M ethods

Quantum Monte Carlo (QMC) [1,2]

e Grand-canonical approach, free of autocorrelations.
e Finite-temperature Trotter discretization (A7 = 0.1).

e Lang-Firsov transformed model ~» moderate sign
problem [which is most pronounced for intermediate
A and small « at low temperatures 7' (3 = 1/kgT)].

e Maximum entropy method to get dynamic quantities.

Exact diagonalization (ED) [ 3]

e Lanczos technique HY — TL (Krylov subspaces):
Fast convergence for extremal eigenvalues £y, [¢g)
(D <10, L =100 ~ AE; < 1079)!

e Phonons? D = oo! ~» Controlled Hilbert space trun-
cation combined with a density-matrix based phonon
basis optimisation procedure.

Dynamical properties at T=07?
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— complete spectrum necessary!?

Kernel polynomial method (KPM) [4]

e Expansion of ¢|. . .| using Chebyshev polynomials
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° Determilnation of moments
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by iterative MVM (X = (H —b)/a — E, € [—1,1])
e Problem: M < oo! ~» Gibbs oscillations ~» trunca-

tion errors! Solution: Damping factors (e.g., Jackson
or Lorentz kernels)!

e (FFT) Reconstruction of A9 (z) from the M calcu-
lated moments via linear approximation (KPM) or
nonlinear optimisation procedure (MEM).

Advantages of KPM:

A= 0.1,

e High-resolution applications — polarons!
e Uniform reconstruction of spectra — gap features)!
e CPU-time (o« M D); trace — average over random

7).

Cluster Perturbation Theory (CPT) [5]

Green function G(k, w) on an infinite lattice (N. = o0)?
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e \We have: Green function 5, (w) on finite cluster(s)
of NV, sites (OBC) !

e 1st order perturbationin V' = >~ [— t _}
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e Fourier transform:
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Observables

e Single-particle spectral function:
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with CZ = c};, ). = Cpe
A;_(w_) [AZ(w)] Is related to the [inverse (1)] photo-
emission (PE) of an electron.

Note that A;.(w — ) = —%ImG(k,w — 1), Where
the imaginary-time Green function G(k, 7) can be di-
rectly measured by QMC.

e Partial densities of states (DOS):

pr(w) =) Af(w).
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e Optical conductivity, Reo(w) = Dé(w) + o' (w),
the regular part of which Is given by
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Numerical results

Weak coupling

— QMC results for N = 32, 5t =8

single-particle spectral function (QMC)
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e pronounced QP peak Vn
e gap feature develops for n — 0.5 < CDW

— dressed “electronic” QPs!

Strong coupling

A = 2.0, — QMC results for N = 32, Gt = 8

single-particle spectral function (OMC)
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e exponentially small spectral weight at 1 Vn
e QP band - “gap” - broad incoherent feature

— small “polaronic” QPs!

|ntermediate coupling

A = 1.0, , N =10 (ED) and N = 10, ft = 8 (QMC)

single-particle spectral function (ED)
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spectral functions (CPT)
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en = 0.1: Fermi level lies within the polaron band;
band flattening at large wave-vectors k.

e Incoherent part of the spectrum closely follows the
free electron (cosine) dispersion.

e Polaron band merges with incoherent excitations at
about n = 0.3 ~ no clear separation of the QP peak!

— density-driven change of the “character” of the
charge carriers!

density of states (CPT)
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en . small (polaronic) DOS at Ep (o e_92) —
“metallic” DOS at Ey (“polaron dissociation”) —
pseudo-gap - precursor of CDW (3 for A > A.(wy))

—s crossover from polaronic to metallic behaviour!

partial DOS & optical response (ED)
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For comparison, the analytical strong coupling re-
sult [6]
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IS Included (o) = 8) — noticable deviations!.

Anti-adiabatic (strong-coupling) regime

A = 2.0, N =10 (ED)
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e Phonon absorption bands with electronic satellites.

e Spectra are mainly unchanged going from n = 0.1
[green/blue] to n = 0.3 [red/black] (i.e., ther are al-
most no finite-density effects).

— Carriers are small polarons also at large fillings!

Conclusions

In the physically most important adiabatic intermediate
electron-phonon coupling regime, for which no analyt-
Ical results are available, we observe a dissociation of
polarons with increasing band filling, leading to nor-
mal metallic behaviour, while for parameters favour-
Ing small polarons, no such density-driven changes oc-
cur. The present work points towards the inadequacy of
single-polaron theories for a number of polaronic ma-
terials such as the manganites.
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