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1 Introduction

With the continuous rise of quantum engineering in
solid state devices, well known models of atom-
field interaction come into focus once again. The
most generic of these, the Rabi model, implements
the physics of competing timescales in a very clear
way. In particular, it features a classical phase transi-
tion whose influence on the quantum mechanical be-
haviour are observable in the ground state and dy-
namical properties.

1.1 Rabi model

• Spin 1/2 + harmonic oscillator

H =
∆

2
σx + ǫσz + Ωb†b + γ

√
Ω(b† + b)σz

∆: spin frequency, Ω: oscillator frequency, γ: coupling

•Realizations
Atom in cavity Two-site Holstein Model

∆
Ω

t

ω0ω0

•Note: interaction includes “counter-rotating”
terms (b†σ+, bσ− after spin rotation aboutπ2 around
y-axis), in difference to the much simpler Jaynes-
Cummings model of quantum optics.

•Reflection symmetry: H invariant under

σz 7→ −σz ; b 7→ −b

– broken through external fieldǫ 6= 0

– possibly broken in phase transition

•No analytical solution, but ‘exact’ numerics
possible

1.2 Topics

(i) Classical phase transition atΩ = 0 (static limit),
but no “strict” quantum phase transition atΩ > 0
How does the ground state properties evolve when
the osc. frequency approaches theΩ→ 0 limit?

(ii) “Fast oscillator limit” Ω≫ ∆
How does the ground state evolve at large coupling
far away from theΩ = 0 phase transition?

(iii) Nature of ground state
Is a simple variational ansatz able to describe the
different ground state properties?

(iv) Renormalization of spin dynamics
How is the actual spin frequency linked with the
renormalized∆̃ in the ground state?

(v) Quantum dynamics
Can the ground state phase transition be recog-
nized also in the dynamics?

2 Ground state properties

2.1 Exact limiting cases

Static oscillator limit: Phase transition

• At Ω = 0 the model undergoes a phase transition:
below the critical couplingγ2

c = ∆/2 the ground
state is non-degenerate with〈σz〉 = 0 (order pa-
rameter), aboveγc it is two-fold degenerate with
〈σz〉 6= 0.

• Integrating out the oscillator coordinates:

Landau functional for spin

E(m) = −γ2m2 − ∆
2

√
1−m2

γ2
 < γ

c

2

γ2 > γ
c

2

E

m

• Phase transition with mean-field exponents:

m = 〈σz〉 =

{
0 γ < γc

±
√

1− ∆2

4γ4 γ > γc

χ = −∂m
∂ǫ =





1
2(γ2

c−γ2)
γ < γc

γ4
c

2γ2(γ4−γ4
c )

γ > γc

• Ground state:|Ψstatic〉 = 1√
2
(
√

1 + m|↑〉+
√

1−m|↓〉)⊗|α〉
coherent stateb†|α〉 = α|α〉

Fast oscillator limit: Spin renormalization

• Ω −→∞, keepingγ2/Ω = const.

• Lang- Firsov transformation

U = e
− γ√

Ω
(b−b†)σz

maps on effective spin-modelHLF = ∆̃σx

“effective” spin frequencỹ∆ = ∆e−2γ2/Ω

•Ground state:|Ψ〉 = 1√
2
(|↑〉 ⊗ |α〉 ± |↓〉 ⊗ |−α〉)

2.2 Small oscillator frequency

•Precursors of phase transition in quantum model

– finite Ω≪ 1, ǫ→ 0

–χ diverges atγ = γc for Ω = 0, almost divergent
for Ω→ 0
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Fig. 3: Magnetization m (left) and susceptibilityχ (right)

as a function of coupling for frequencyΩ = 10−3 and

ǫ = 0.1 (black),ǫ = 0.01 (green) andǫ = 0.001 (blue).

Circles: Results from the variational ansatz (see below).

2.3 Limit Ω→ 0

•Oscillator behaviour:

–γ < γc: oscillator can’t follow spin for smallΩ

–γ > γc: crossover from spin-dependent shift at
largeΩ to global shift nearΩ = 0

•Spin behaviour:

– separatrix (γ = γc) between different phases
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Fig. 4: Oscillator displacement〈x〉 for γ2 = 0.16 < γ2
c (left)

andγ2 = 1.0 > γ2
c = 0.25 (mid), Black: Spin up, Red: Spin

down; Right: Magnetization m in the limitΩ→ 0

2.4 Large oscillator frequency

•Renormalization emerges forΩ, γ ≫ ∆

– decrease of〈σx〉 ∼ e−2γ2/Ω with increasing
coupling

– susceptibility increases asln(χ) = 2γ2/Ω
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Fig. 5: Left: |〈σx〉| as a function of coupling for different

oscillator frequencies; Right:ln(χ) as a func. of coupl.

for Ω = 10 and finiteǫ; Circles: Results from the var.

ansatz.

2.5 Ground state wave function &
variational ansatz

•Small oscillator frequency

– ǫ ≈ 0: one osc. state per spin belowγc, two
above; displacement is spin-dependent

– ǫ > 0: one osc. state with spin-independent shift
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Fig. 6: Spin- projected wave functions forΩ = 0.1 and

ǫ = 10−5 (left) andǫ = 0.1 (right). Black: Spin up, Red:

Spin down. Couplingγ2 = 0.01 (dotted line) andγ2 = 0.5

(solid line).

• Large oscillator frequency

– ǫ ≈ 0: one osc. state per spin, symmetrically
displaced

– ǫ > 0: also one osc. state per spin, but with
different weights
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Fig. 7: Spin- projected wave functions forΩ = 2 and

ǫ = 10−5 (left) and ǫ = 0.1 (right). Other parameters

same as in Fig. 6

• Variational ansatz as mixture of coherent states:

|Ψ〉 = a |↑, α + β〉 + b |↑, α − β〉
+ c |↓, α + β〉 + d |↓, α − β〉

– ǫ = 0: Symmetrization of|Ψstatic〉 (Ω = 0)
– ǫ 6= 0: Ansatz allows for shift in spin position

• Excellent quality of ansatz: see Fig. 3

3 Dynamics

3.1 Large oscillator frequency

• Several phenomena can be classified according to
the initial state and the time scale on which they
occur

Renormalized Rabi oscillations
initial state |↑〉 ⊗ |−γ/

√
Ω〉; time scale∆̃−1

•Coupled Rabi oscillations of spin and oscillator

•Renormalization: Actual spin frequency equals ef-
fective spin frequencỹ∆ in the ground state
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Fig. 8: ∆ = 1, Ω = 10. 〈σz〉t (black) and〈x〉t (red)

propagating from the relaxed oscillator initial state with

γ2 = 0.1 (left) andγ2 = 5.0 (right)

Collapse & Revival I
initial state 1√

2
(|↑〉 + |↓〉)⊗ |α〉; time scaleΩ−1

•Oscillator propagates with bare freq.; collapse and
revival of spin with revival timeTrev = 2π

Ω

• Behaviour fully determined by oscillator

• Explained by∆ = 0 approximation:

– Two coherent states oscillates independently;
collapse-revival structure due to phase difference

– Envelope× bare oscillation:

〈σx〉 = exp[−4γ2

Ω (1− cos(Ωt))] cos(4 γ√
Ω
α sin(Ωt))
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Fig. 9: ∆ = 1, Ω = 10. Left: 〈σx〉t (above) and〈x〉t (be-

low) propagating from the coherent oscillator initial state

with γ2 = 5 andα = 10 (black) andα = 1 (red); Blue: en-

velope; Right:∆ = 0 spin projected coherent states (black:

spin up, red: spin down) propagating in phase space.

Collapse & Revival II
initial state |↑〉 ⊗ |α〉; large time scale

• Spin: collapse-revival with largeTrev; renormal-
ized oscillation on short time scale

•Oscillator: beatings on the large time scale; bare
oscillation on short time scale
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Fig. 10: 〈σz〉t (above) and〈x〉 (below) propagating from

the coherent oscillator initial state withΩ = 10, γ2 = 0.01

andα = 4

• “Adiabatic approximation” for revival times:

Trev = 2π/(∆̃(Lα2+1(4γ
2/Ω)− Lα2(4γ2/Ω))

LN(·) ... Laguerre polynomials

– Dynamics on large time scale is strongly depen-
dent on renormalized spin frequency, coupling,
as well as on the initial state parameterα.
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Fig. 11: Left: 〈σz〉 full dynamics (black) and approxima-

tion (orange) in first revival region; Right: Revival times

over coupling for differentα, Lines: Approximation, Cir-

cles: Full dynamics

3.2 Small oscillator frequency

• Influence of ground state phase transition is ob-
servable in spin dynamics with a ‘relaxed’ initial
oscillator state

Static oscillator (Ω = 0)

• Spin rotating in magnetic field~B = ∆~ex + 2γ2~ez

– spin “localizes” similar to ground state phase transition

–γ > γc: 〈σz〉t > 0 for all times

S

B = x+e 2γez

2
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Fig. 12: Left: Rotating spin; Right:〈σz〉t for different

coupling

Slow oscillator Ω≪ ∆

•Crossover in spin behaviour

–γ < γc: spin and oscillator propagates on
different time scales

–γ > γc: “lock-in” of spin and oscillator on short
time scale, between: complicated oscillations
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Fig. 13: 〈σz〉t (black) and〈x〉t (red) propagating from the

initial state|Ψ〉0 = |↑,− γ√
Ω
〉withΩ = 0.1. Left: γ2 = 0.1,

right: γ2 = 1

Contrast: Ω = 0 ←→ Ω 6= 0

•Observing the limitΩ→ 0 in the dynamics
Ω 6= 0: 〈σz〉t = 0 for some timet = T0

–γ < γc: T0 reaches the finiteΩ = 0 value
continuously asΩ→ 0

–γ > γc: while T0 = ∞ for Ω = 0, T0 < ∞ for
Ω 6= 0, butT0 diverges asΩ→ 0
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Fig. 14: Left: “Crossing time” T0 in the limit Ω → 0 for

different coupling; Right:T0 for Ω = 0

4 Conclusion

Despite its seeming simplicity, the Rabi model is a
prototypical example for fundamental physical ef-
fects occuring in quantum-classical phase transitions
and in the complex quantum dynamics of competing
timescales. The present work thus provides a starting
point for further investigations of these and related
phenomena in general spin-boson models.

•Rich physics & Fundamental concepts:

– classical phase transition vs. quantum precursor
– renormalization of effective and real subsystem

dynamics
– influence of ground state phase transition on dy-

namical behaviour
– collapses and revivals: Different effects appear

on different time scales

•Relevance for modern applications

– qBit manipulation
– realization of strong coupling regime (e.g.

Josephson junctions)
– cQED beyond RWA


