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Abstract

Inspired by the strong experimental evidence for
the coexistence of localized and itinerant charge
carriers close to the metal-insulator transition
(MIT) in the ferromagnetic (FM) phase of colos-
sal magnetoresistive (CMR) manganites, for a
theoretical description of the CMR transition we
propose a two-phase scenario with percolative
characteristics between equal hole-density po-
laron and Zener band-electron phases.

Motivation

¢ Transition from a metallic FM low-T" phase to
an insulating paramagnetic high-1' phase ob-
served in hole-doped manganese perovskites
= unusual dramatic change in their electronic
and magnetic properties, including a spectac-
ularly large negative magnetoresistance.
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Fig. 1. Schematic phase diagram for La;_,Ca,MnOg3
[after P. Schiffer et al., PRL 75, 3336 (1995)].

e Link between magnetic correlations & trans-
port properties: Zener's double-exchange
(DE) mechanism!

[C. Zener, Phys. Rev. 82, 403 (1951); P. W. Anderson
and H. Hasegawa, Phys. Rev. 100, 675 (1955)]

(DE ~» Maximization of the hopping of strongly Hund’s
rule coupled Mn e -electrons in a polarized background
of S = 3/2 (ty,) core spins [quantum version - K. Kubo
and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972)])

Problem: Even complete spin disorder does not
lead to a significant reduction of the electronic
bandwidth, and therefore cannot account for the
observed scattering rate!

[P. Majumdar and P. B. Littlewood, Nature 395, 479 (1998)]

Suggestion: Orbital and lattice effects are crucial
In explaining the CMR phenomenon!
[A. J. Millis, Nature 392, 147 (1998)]

Experimental findings

e Small polaron transport above 7!
[D. C. Worledge al., PRB 57, 15267 (1998)]

e X-ray-absorption fine structure & pair distribu-
tion data indicate that charge localized and
delocalized phases coexist close to the CMR
transition!

[C. H. Booth et al., PRL 80, 853 (1998); S. J. L. Billinge
et al., PRB 62, 1203 (2000)]

e Zero-field muon spin relaxation and neu-
tron spin echo measurements yield two time
scales in the FM phase of La_,SrxMnOs3!

[R. H. Heffner et al., PRL 85, 3285 (2000)]

~» Charge carriers partly retain their polaronic
character well below 7!

e Small octahedral distortions persist at low T,
forming a nonuniform metallic state!
[A. Lanzara et al., PRL 81, 878 (1998)]

e Limits of small (x < 0.1) and high (x ~ 1) hole
densities: nanometer scale clusters with dif-
ferent electronic densities
~> phase separation scenarios.

[A. Moreo, S. Yunoki, and E. Dagotto, Science 283,
2034 (1999)]

e CMR regime (0.15 < = < 0.5): even larger
clusters are reported - but xm-sized domains,
If charged, are energetically unstable (electro-
neutrality condition) ~- alternative concept:
MIT and associated CMR behaviour might be
viewed as a percolation phenomenon.

[L. P. Gor'kov and V. Z. Kresin, JETP Lett. 67, 985
(1998); A. Moreo et al., PRL 84, 5568 (2000)]

~ Intrinsic iInhomogeneities & mixed-phase ten-
dencies play a key role in manganites!

ldea: Two-phase model for the
CMR transition

Percolative coexistence of two “intertwined”
equal-density phases: metallic double-
exchange dominated and polaronic insulating.
The MIT transition is driven by a feedback ef-
fect which, at 1., abruptly lowers the fraction of
delocalized holes, leading to an collapse of the
bandwidth of the Zener state.

A. Delocalized Zener state

Band structure: itinerant e, charge carriers carry
an orbital degree of freedom:
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Correlations: Kondo lattice Hamiltonian = limit

U>Jg > t%y/ * = effective transport Hamilto-
nian for (spinless) e, holes (cond-mat/0101234)

Assumption: Renormalization of the Zener state
bandwidth is driven by two mechanisms:

_ =1 (0

e = P DyglSN] e
() Effective field A = SgupHz tends to or-
der the ion spins in z-direction ~~ temperature-
and field-dependent band narrowing due to the
Kubo-Ohata factor (S = S +1/2 = 2):
vglz] = § + 525 coth(%£2) [coth(z) — L coth(%)]

25+1

~ effective hole transfer amplitude ¢ = vg[SA]t.

(i) Percolative aspects of the MIT imply the ex-
Istence of insulating enclaves embedded in the
conducting FM (Zener) phase. We assume that
the hole hopping amplitude has the value ¢ in-
side the conducting region and zero elsewhere.
~> Feedback effect: The bandwidth is renormal-
ized by the size of the FM region N\/) < N, or

pJ) :N(f>/N,

which has to be determined self-consistently.
B. Localized polaronic state

“Polaron” — doped charge carrier (hole) quasi-
localized with an associated lattice distortion.

CMR regime - both breathing-mode collapsed
(Mn*t) and Jahn-Teller distorted (Mn®*t) sites
are created when holes become localized, i.e.:

The energy gain due to the Jahn-Teller splitting
on localized electron sites without the influence
of vacancies is weakened according to

(N'P) N}(Lm)El = (27! - 1)E1N;(Lp>,

and a breathing distortion may occur which low-
ers the energy of the unoccupied ¢, level by the
familiar polaron shift E, = —g*wy — E.

F (F>) describe effective Jahn-Teller (polaronic)
energies In the insulating regions.

The polaronic phase - realized only in a fraction
p'P) = NP)/N of the sample - can be repre-
sented approximately by spinless holes having
the following site-independent energy

Ep = (:z:_l — 1) 1+ By

C. Self-consistency equations

Basic assumption: no large-scale separation of
Mn3t and Mn** ions in the CMR doping regime!

A T = — — p—
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Introducing the grand-canonical potentials

for holes in the ferromagnetic and polaronic
phases, respectively, the free energy

F = Nyu+ 2U) 4 ) —786)
results, where
Sts) = kBN{p(f) [(1 — 2)(Invg[SA] — ASBg[SA])
+a(Invg[S)] — ASBS[S)\])]
+plP) [(1 — 2)Invgl0] + z1n VS[O]] }
represents the mean-field ion-spin entropy, and

Vg|z] = sinh(2) coth(z) + cosh(z)

Bglz] = 2 coth(2#2) — L coth(Z) .

For any T" and x, the FM ordering field (\) and
the size of the Zener phase (N(f>) have to be
determined by minimizing F on the hyperplane
u(\, Ny given by
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Finally the magnetization can be calculated from

M=(1- :U)SpU)BS[S)\] + a:Sp(f)BS[S] . (@

Numerical results
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Fig. 3. Upper pand: magnetization M, normalized by
My=S—=z/2, as a function of 7" at various doping levels
x = 0.175,...,0.4. Results are shown for the models with
(bold lines) and without (thin lines) feedback.
(E1=—0.125 eV, By = —0.25 eV, W = 3.6 eV)

Lower panel: T-dependences of the Zener band and of the
positions of the polaronic level (¢,) and chemical potential
(1) without (a) and with (b) feedback at x = 0.3. Dashed
lines: band edges obtained by the use of

ty=|S(1+ Bg[S’A])]2 /(25)(2S + 1)t instead of t.
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Fig. 4. Phase diagram of the mixed-phase Zener-polaron
model with feedback (Inset: fraction of the Zener phase
as a function of temperature).

Appendix: Percolative picture

To support the assumption that the bandwidth
of the Zener state depends approximately linear
on the fraction of the FM region, we consider a
site percolation model. Lattice points are occu-
pied with probability p. Adjacent occupied sites
will be connected by a hopping matrix element,
which is affected by the background of thermal-
1zed classical spins. The density of states of the
resulting random tight-binding model,

Hy =S 12 (BAp)(cle; + cley),
()
IS determined numerically, using kernel polyno-
mial and maximum entropy methods.
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Fig. 5. Density of states (DOS), p(E), for the tight-binding
site percolation model on a finite 64-lattice (PBC) with dif-
ferent occupation probabilities p (a). Contributions from
unoccupied sites were projected out. Panel (b) shows the
DOS if only states belonging to the “infinite” cluster are
taken into account. At p = 0.5 the field dependence of
p(F) is displayed in panel (c). The insets show the inte-
grated DOS N(E) = | _EW 1» dEp(E') () and the bandwidths
as functions of p (b) and the magnetic field 5\x (C).

Summary

Proposed mechanism for the (CMR) MIT: per-
colative two-phase scenario.

e Below the transition temperatue 7., we found
polaronic inclusions embedded in a dominant
macroscopic metallic phase.

e The bandwidth of the Zener state depends ap-
proximately linear on the fraction of the ferro-
magnetic region.

e The abrupt change, revealed in various elec-
trical and magnetic properties at 7. Is at-
tributed to a collapse of the Zener state mainly
caused by a percolative feedback mechanism.

e At T' = 0 the transition is driven by doping and
occurs at x, ~ 0.1o — 0.18.

e At finite temperatures, disorder due to intrinsic
Inhomogeneities and magnetic scattering act
In combination to reduce the mobility of the
charge carriers.

e The calculated values of T, agree fairly well
with the experimental ones.

Further details: A. Well3e, J. Loos, and H. Fehske
arXiv:cond-mat/0101234 & arXiv:cond-mat/0101235



