

Mathematische Methoden der Physik Wintersemester 2019/20

Übungsblatt 9

Abgabe: Do 19. Dezember 2019

Aufgabe 1 (2 Punkte)

Berechnen Sie welche Arbeit das Kraftfeld $\vec{F} = xy\vec{e}_x + \vec{e}_y + yz\vec{e}_z$ an einer Masse verrichtet, wenn diese längs einer Schraubenlinie $\vec{r}(t) = \cos t \, \vec{e}_x + \sin t \, \vec{e}_y + t \vec{e}_z$ von P_1 mit t = 0 nach P_2 mit $t = 2\pi$ bewegt wird.

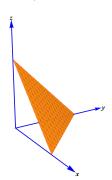
Aufgabe 2 (4 Punkte)

Beweisen Sie, dass $\vec{F} = (2x - 3y)\vec{e}_x + (3y^2 - 3x)\vec{e}_y$ ein konservatives Vektorfeld ist, d.h.

 $\int_{C_1} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int_{C_2} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}}$

wober C_1 eine Linie y = x zwischen (0,0) und (1,1) ist, und C_2 eine Parabola $y = x^2$ zwischen (0,0) und (1,1) ist.

Aufgabe 3 (3 Punkte)


Gegeben ist eine Kugelkappe (Kugelabschnitt) mit dem Kugelradius R und einer Höhe der Kugelkappe von H = R - h. Berechnen Sie mit Hilfe eines Oberflächenintegrals 1. Art die Oberfläche der Kugelkappe.

Aufgabe 4 (5 Punkte)

Berechnen Sie das Oberflächenintegral

$$\iint_{S} xy \, dS$$

wobei S der Teil der Ebene x + y + z = 1 ist, der sich im ersten Oktanten vor der yz— Ebene befindet (Siehe Abbildung).

