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Chapter 1

Preface

1.1 Introduction

Charge exchange processes during atom-surface or molecule-surface collisions have
been the subject of intense scientific research during the last decades[108,141]. Clearly,
this type of surface reactions is of fundamental interest. Technically, it represents
a quantum-impurity problem where a finite many-body system with discrete quan-
tum states couples to an extended system of continuum states essentially acting as
a reservoir for electrons. Under appropriate conditions[52,94,120] such an arrangement
for instance gives rise to the Kondo effect[51] originally found in metals containing
magnetic impurities or to Coulomb blockades as discussed in the field of nanostruc-
tures[41].

Apart from being a particular realization of a quantum impurity problem, atom-
and molecule-surface collisions are also of immense technological interest, mainly
due to the associated secondary electron emission. The latter can be due to a vari-
ety of different surface reaction channels the presence of which is determined by the
energetic structure of the projectile-surface system. The resulting electron yield is
usually encapsulated in the secondary electron emission coefficient γe which denotes
the average number of electrons released in an elementary surface reaction involving
a single projectile and one or multiple reaction channels. Thus, the emission coeffi-
cient γe is specific to the surface material, the projectile and the particular collision
processes under consideration.

To illustrate the particular technological importance of secondary electron emis-
sion in the wake of atom- and molecule-surface scattering, we consider a few ex-
amples. For one thing, emission spectra of secondary electrons generated during
the surface de-excitation of metastable atoms are used in surface-sensitive electron
spectroscopy experiments[47,67,119,140]. Moreover, secondary electron emission plays
an important role in a number of industrial applications. Among the latter are
for instance atmospheric pressure dielectric barrier discharges, commonly known as
DBDs. This type of discharge is used in various technological processes like polymer
surface treatment, thin film coating, sterilization, gas flow control and ozone pro-
duction[40,92]. For all of these applications the discharge’s stability and homogeneity
are vital to a steady and successful performance. Secondary electron emission from
the electrodes increases the DBD’s self-sustain and is, thus, crucial to the discharge’s
operation mode. In particular, there is experimental evidence that the stability of
DBDs is controlled by secondary electron emission from plasma boundaries for in-
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stance due to impacting metastable species[15,91]. In DBDs the latter process is one
of the main wall-based secondary electron emission channels which together with
wall recombination and various volume-based charge production and destruction
channels governs the overall charge balance in the plasma[79]. Hence, controlling the
yield with which secondary electrons are produced is of great practical interest. This
generally applies to bounded low-temperature plasmas and even more so to micro-
discharges[10] where the continuing miniaturization steadily increases the influence
of charge-transferring surface reactions on the properties of the discharge.

Another technological application which is strongly influenced by secondary elec-
tron emission from surfaces are plasma display panels, also known as PDPs. These
devices are commonly found in modern-day large size TV monitors. PDPs are usu-
ally based on AC driven high pressure microdischarges[107] in noble gas mixtures[9]
and often utilize electrodes coated with Al2O3 or MgO[132]. The panel’s firing volt-
age, that is the voltage required for discharging, is directly influenced by secondary
electron emission from the dielectric electrodes[132], for instance due to impacting
metastable species present in the discharge.

Focusing on DBDs and PDPs we clearly see that the operativeness of these ap-
plications heavily depends on the yield of secondary electrons which, as mentioned
before, can be condensed into the emission coefficient γe. The latter either has to
be measured experimentally or calculated from first principles and is an important
input parameter for numerical simulations. For the particular case of DBDs these
investigations are inevitable[15,40] since although this type of discharge has been stud-
ied for more than 20 years, its basic mechanisms are still not entirely understood[92].
Furthermore, for PDPs a numerical analysis of the employed materials, the overall
discharge geometry and the operation mode can help to improve the performance
of the discharge[107].

The demand for reliable γe values for use in numerical simulations of DBDs,
PDPs and related gas discharges contrasts with the very sparse and often uncertain
available reference data. In many cases crude rules of thumb have to be used[109].
Moreover, the database is especially sparse for secondary electron emission due to
molecular projectiles. With the present work we aim to contribute to the filling
of this gap. Our objective is, however, not the mere production of reference data
but rather the setup of a flexible and easy-to-use model that allows for a conve-
nient calculation of the emission coefficient and related quantities for a wide range
of projectile-surface systems. In particular, we focus on atomic and especially di-
atomic molecular species impacting on a metallic or dielectric surface. In such a
surface collision process generally both the target and the projectile are composite
objects. Hence, usually a great variety of reaction channels is conceivable making
the investigation of this scattering process a challenging task, particularly for mole-
cules. However, not all of the theoretically allowed transitions are equally efficient.
Consequently, we restrict our investigations to the most dominant reaction channels
having a direct or indirect impact on the secondary electron yield.

One of these channels is the surface de-excitation of metastables. For atomic pro-
jectiles this process has been studied exhaustively in the past[13,25,58,86,90,103,115,119]
and, thus, will not be considered in the present work. For molecular species, on
the other hand, an in-depth understanding of the dominating de-excitation chan-
nels is still missing. Therefore, we will concentrate on the de-excitation of diatomic
molecules using the example of the dominant metastable state of the nitrogen mol-
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ecule, N2(3Σ+
u). This case is especially interesting because as a result of resonant

electron capture N2(3Σ+
u) can form the negative ion shape resonance N−

2(2Πg) which
itself can decay into the ground state N2(1Σ+

g) by resonantly emitting an electron[127].
Thus, de-excitation of N2(3Σ+

u) is possible via a two-step resonant charge trans-
fer (RCT) reaction. In addition, N2(3Σ+

u) can also de-excite indirectly in an Auger
transition[127].

Both of these reactions have been investigated experimentally by Stracke et
al.[127] for a tungsten surface. The latter authors concluded that out of the two
competing processes the resonant reaction should be more efficient as it is a combi-
nation of two single-electron charge transfer transitions whereas the Auger channel
represents a less probable two-electron transition. Using thermal molecules Stracke
et al.[127] measured the energy spectrum of the released electrons and estimated
the overall secondary electron emission coefficient γe to lie between 10−3 and 10−2.
This experimental estimate for γe does, however, not discriminate between the two
de-excitation channels but rather includes both of them. Indeed, Stracke et al.[127]
mention that in the emission spectrum they observe a weak signal due to Auger
de-excitation giving rise to an isolated emission coefficient of about 10−4 to 10−3.

In a subsequent theoretical work Lorente et al.[82] investigated the de-excitation
of N2(3Σ+

u) molecules on an aluminum surface based on the assumption that the reso-
nant channel is the dominant one. The resonance-driven secondary electron emission
coefficient resulting from their calculated electron emission spectrum amounts to ap-
proximately 10−1 which is one order of magnitude larger than the value Stracke et
al.[127] give for tungsten.

While the works of Stracke and Lorente[82,127] mainly focused on the RCT mech-
anism, for a different surface material Auger and resonant de-excitation might be
eye-to-eye competitors. Moreover, in general the surface’s band structure may per-
mit either none, one or both of the channels to operate at the same time, thus,
allowing for a wide range of coupling effects. A detailed analysis of these features
is, however, still lacking for the N2(3Σ+

u) molecule as former studies concerning the
interaction of resonant and Auger channels in surface collisions were mainly limited
to atomic projectiles[70,83,104,125,145]. In particular, for the case of Li(2p) atoms de-
exciting on a metallic surface an investigation of the coupling between tunneling and
Auger processes has been conducted by Onufriev and Marston[102]. Using a sophis-
ticated many-body theoretical description of the scattering process they concluded
that depending on the model parameters the two de-excitation channels interfere
either constructively or destructively. Further studies were carried out by other
authors. Starting with the work of Vicente Alvarez et al.[131] a detailed theoretical
analysis of the interference of Auger and resonant tunneling processes has been given
by Goldberg and coworkers[33,39,134]. Their results for H+ and He+ indicate that the
Auger channel is only active close to the surface whereas the resonant channel is
already efficient at rather large projectile-surface distances. Hence, when both chan-
nels are coupled together the dynamics of the system is controlled by the resonant
channel since it destroys the initial species before the Auger channel can become
operative. The latter is, therefore, strongly suppressed in the coupled system albeit
the individual efficiencies of the two channels are comparable.

With this work we aim to provide a fundamental investigation of the coupling
between resonant and Auger de-excitation of N2(3Σ+

u) with an eye on the secondary
electron yield. As our interest in these surface processes primarily stems from their



4 Chapter 1. Preface

relevance for bounded low-temperature gas discharges, we will focus on the regime
of low projectile energies and develop an effective model of the projectile-surface
interaction. Stripping some of the microscopic details, the model we propose con-
centrates on the most important degrees of freedom and enables us to describe the
system by only a small number of parameters which are easily accessible through ex-
periments or theoretical calculations. Thus, to some extent our description possesses
universality since it can easily be applied to different projectile-surface combinations
by adjusting the parameters.

In particular, our model is centered about a square potential well approximation
of the solid surface and a semi-empirical two-level representation of the metasta-
ble molecule. The latter is based on an LCAO approach and consists of an initially
empty ground state level and an initially occupied excited level. Furthermore, molec-
ular continuum states are described by two-center Coulomb waves.

Within the overall system of solid and projectile states we then consider two
active electrons, one of them residing in a specific energy band of the surface and
the other being located in the excited level of the molecular system. The associated
Hamiltonian is obtained from a generalization of an approach due to Gadzuk[30] by
considering the interplay of the various real and image charges. This Hamiltonian is,
however, not capable of describing the combination of both de-excitation channels
due to two reasons. Firstly, it does not account for the conditional coupling between
the two subreactions of the resonant channel1. Secondly, our two-level approxima-
tion of the molecule disregards a number of passive electrons which can introduce
additional intra-molecular Coulomb correlations leading to a displacement of the
active energy levels.

A way to overcome these problems would be to set up a more general projectile
Hamiltonian, including active and spectator electrons and their mutual Coulomb
interactions. However, treating these intra-molecular Coulomb correlations explic-
itly is extremely demanding. It embraces a full quantum-chemical description of
the approaching molecule which cannot easily be adapted from one projectile to
another. Retaining this adaptability is, however, an important criterion for us in
view of the application of our model to bounded low-temperature plasmas. There-
fore, we stay within the limits of our semi-empirical two-level system and introduce
a set of projection operators together with two auxiliary bosonic levels. The pro-
jection operators allow us to assign different parameterizations to the molecular
two-level system, depending on its occupancy. Moreover, they can be used to assure
that the positive ion state N+

2(2Πu) never occurs in the dynamical evolution of the
system which automatically generates the conditional coupling of the RCT subreac-
tions. In addition, the auxiliary boson states enable us to mimic the intra-molecular
Coulomb correlations which need to kick in to ensure resonance in the two tunnel-
ing processes of the RCT de-excitation reaction. As a result, we can formulate a
Hamiltonian containing both de-excitation channels without explicitly considering
intra-molecular Coulomb interactions.

We then express the projection operators in terms of boson- and fermion-like
pseudo-particle operators representing the individual states of the nitrogen mole-
cule. The strength and flexibility of the pseudo-particle or slave field approach,
originally developed by Coleman[22] in the context of the infinite-U Anderson model,
has been demonstrated many times for Anderson- and Anderson-Newns-type Hamil-

1The second subreaction can only launch after the first has completed.
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tonians[3,26,76,120,139]. Here we apply this method to a generalized Anderson-Newns
model describing the coupling of different molecular configurations to a solid. In
particular, our Hamiltonian is of the type but not identical to the one introduced
by Marston and coworkers[90,102].

Building upon the original and the slave-particle Hamiltonian, we subsequently
simulate the kinetics of electrons within our effective model by employing the non-
equilibrium2 Green function technique[12,23,69,110] in a quantum-kinetic calculation.
Admittedly, a description of surface collisions with Green functions[26,38,86,87,120,131]
is mathematically more demanding than using the widespread rate equation ap-
proach[13,18,44,103,115,143]. The Green function formalism is, however, more flexible
in handling the non-adiabaticity of the projectile’s motion[86,87], the Coulomb cor-
relations on the projectile[26,38,120] and the collective electronic excitations of the
surface[131]. Moreover, a theoretical description based on Green functions can easily
embrace level shifts and broadenings due to image interactions as well as molecular
vibrations.

In particular, for the isolated reactions of Auger de-excitation, resonant elec-
tron capture and resonant electron emission our quantum-kinetic calculation follows
along the lines of Makoshi and coworkers[86,87,95,143]. The latter authors employed the
Keldysh formulation[69] of the non-equilibrium Green function technique to calculate
the secondary electron emission coefficient and related quantities within the trajec-
tory approximation[143]. The analysis presented in this work, however, goes beyond
the studies of Makoshi et al. since we don’t restrict ourselves to time-local self-
energies and, thus, to the wide-band approximation. Instead we analytically solve
the Dyson equations and replace the exact solution by an approximate exponential
form which still accounts for the nonlocality of the self-energies. In addition, our
approach is not restricted to phenomenological matrix elements as we work with the
full expressions and merely exploit the locality of the bound molecular states and
the large distance of the molecule’s turning point from the surface.

In order to combine the isolated reactions within our slave-particle model, we
then follow the works of Langreth et al.[76,120] and derive a system of quantum-kinetic
equations for the pseudo-particle propagators. Using the semi-classical approxima-
tion we reduce this system to a set of rate equations for the occupancies of the
molecular pseudo-particle states which represent the probabilities of finding the dif-
ferent molecular states in the course of the collision. The resulting rate equation
system is capable of describing the de-excitation of N2(3Σ+

u) in situations where the
resonant and the Auger channel are active simultaneously and relies on quantum-
kinetic transition rates.

Finally, as a proof of concept we will generalize our effective model of the
projectile-surface system to the neutralization of positive ions. Similar to the de-
excitation of N2(3Σ+

u) the neutralization can proceed via a resonant or an Auger
channel. Here, however, the resonant reaction is a one-step process which neutral-
izes the projectile without generating secondary electrons. Consequently, only the
Auger neutralization process can contribute directly to the emission coefficient γe.
When both neutralization channels are active at the same time, the resonant reaction
can, however, have an indirect effect on the secondary electron yield by neutralizing
the incoming projectile before the Auger channel can get operative.

2The non-equilibrium character of our system is introduced by the motion of the projectile
which results in time-dependent interaction potentials.
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By analogy to the previously discussed de-excitation reactions former theoretical
studies of surface neutralization processes were primarily concerned with atomic
projectiles[18,32,43–45,59,81,101,122,129]. Moreover, most investigations focused on metallic
surfaces and the regime of high kinetic energies (keV and above). For the case of
low projectile energies an extensive analysis of resonant and Auger neutralization
on metallic surfaces was conducted by Heiland and coworkers for atomic[50,124,125] as
well as molecular[49,55,56] projectiles using a rate equation approach. Their results
for H+ and H+

2 indicate that for a realistic description of the neutralization process
both the resonant and the Auger channel have to be considered provided that they
are operative simultaneously.

In view of gas discharges the aforementioned common restriction to high energy
projectiles might appear justified since in front of a charged surface, like for instance
an electrode inside a DBD, an ion can pick up significant amounts of kinetic energy.
However, inside a plasma the ion also collides with other particles and, hence, pos-
sesses a mean free path which limits its maximum kinetic energy. Thus, depending
on the discharge parameters the case of low kinetic energies might be important as
well. With an eye on bounded low-temperature plasmas we will, therefore, focus on
the low energy situation in the present work and perform a quantum-kinetic investi-
gation of the interaction of resonant and Auger neutralization for dielectric surfaces.
Here the amount of available emission coefficients is particularly small.

Generalizing our effective treatment of the de-excitation reactions, the pro-
jectile enters our neutralization model merely with a single localized level which
for N+

2(2Πu) corresponds to the ground state of our previously discussed two-level
system. As a result, it is particularly easy to consider different projectiles since one
only has to exchange a single wave function in the neutralization matrix elements.
In addition to N+

2(2Πu) we will, therefore, also investigate the neutralization of the
atomic ions He+(2S1/2) and Ar+(2P3/2).

Finally, we stress that the effective nature of our model bolsters the ease of its
adaption to different material combinations and surface reaction channels empha-
sizing once more its partial universality. In order to demonstrate the particular
versatility of our description we will present numerical results for several different
metallic and dielectric surface materials including aluminum, tungsten, Al2O3, CaO,
Diamond, MgO and SiO2. For this purpose we employ a numerical scheme based on
a combination of tabulation, interpolation and Monte-Carlo integration techniques
which allows us to efficiently evaluate the final semi-classical equations emerging
from our quantum-kinetic treatment.

We close this introductory section by briefly sketching the structure of the re-
mainder of this work. In the next sections of this chapter we will further discuss
the particular surface reaction channels under consideration (see Sec. 1.2) and in-
troduce our method of calculation, the non-equilibrium Green function technique
(see Sec. 1.3). In Chapter 2 we will then explicitly present our effective model
of the projectile-surface system and discuss the involved approximations. After-
wards, Chapter 3 will guide the reader through a quantum-kinetic calculation with
respect to the various surface reactions. In the following we will concretize the ma-
trix elements and present numerical results for the de-excitation and neutralization
channels in Chapters 4 and 5, respectively. Finally, we will sum up the main results
of this work and discuss possible further targets of investigation in Chapter 6. In
the appendices we will then list the explicit values of the material parameters (see



Chapter 1. Preface 7

Appendix A) as well as the particular form of the Langreth-Wilkins rules (see Ap-
pendix B) that were employed in this work. Moreover, we will discuss the nested
double integral series emerging from our iterative solution of the Dyson equations
in Appendix C and explicitly evaluate the lateral Fourier transforms needed for
the calculation of the Auger neutralization matrix element in Appendix D. Finally,
Appendix E briefly sketches the basics of our numerical scheme.

1.2 Surface Reaction Channels
In the following we will discuss the particular de-excitation and neutralization reac-
tions introduced in Sec. 1.1 in a more detailed way.

1.2.1 De-Excitation of Metastable Species

As stated earlier, in this work we will study the surface de-excitation of metasta-
bles using the example of the dominant metastable state of the nitrogen mole-
cule, N2(3Σ+

u). The different de-excitation channels are best understood in terms of
the aforementioned two-level approximation of the nitrogen molecule which consists
of a ground state level and an excited level3. In the metastable state N2(3Σ+

u) the
ground state level is empty whereas the excited level carries a single electron. Being
located in front of an occupied energy band of a solid surface the metastable mole-
cule can then resonantly capture an electron into the empty ground state level and
form the negative ion shape resonance N−

2(2Πg). The latter has a lifetime of 1.6 fs[24]

and naturally decays into the ground state molecule N2(1Σ+
g) by resonantly emitting

the electron from the excited level. This process is sometimes also referred to as
auto-decay. In addition to the natural decay, in front of a surface the resonant emis-
sion of the excited electron can also be triggered by the molecule-surface interaction
potential. Note that in both cases the electron emission proceeds into a molecular
continuum state that means a free electron state moving along with the projectile.
In total this two-step RCT reaction can be written in the schematic form

N2(3Σ+
u) + e−⃗

k

resonant captureÐÐÐÐÐÐÐÐÐÐ→ N−
2(2Πg) resonant emissionÐÐÐÐÐÐÐÐÐÐÐÐÐ→

natural/surface-induced
N2(1Σ+

g) + e−⃗q . (1.1)

Here e−⃗
k
represents an electron inside the surface and e−⃗q denotes an electron in a

molecular continuum state. For the particular case of a diamond surface a visual
representation of Eq. (1.1) can be found in the left-hand panel of Fig. 1.1.

In addition to the resonant channel, N2(3Σ+
u) can also de-excite indirectly via

the Auger reaction

N2(3Σ+
u) + e−⃗

k

Auger transitionÐÐÐÐÐÐÐÐÐÐ→ N2(1Σ+
g) + e−⃗q , (1.2)

which is also known as Penning de-excitation. Here the metastable molecule captures
an electron from the surface into its empty ground state level and simultaneously
releases the electron from the excited level into a molecular continuum state. The de-
excitation, thus, proceeds in an indirect way (see right-hand panel of Fig. 1.1). In a
direct de-excitation, on the other hand, the electron from the excited molecular level
straightly falls down into the ground state level thereby exciting a surface electron

3Details of this representation will be given in Sec. 2.2.3.
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rc
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Figure 1.1: Schematic illustration of the different de-excitation channels of N2(
3Σ+

u) on
a diamond surface. Occupied electronic states are indicated by ● while empty states are
marked with ○. Furthermore, the drawing is to scale in terms of energy units and VB
and CB denote the valence and conduction band, respectively. The left panel depicts the
RCT reaction (1.1) embracing the subprocesses of resonant capture (rc) and resonant re-
lease (rr) of an electron. The latter transition is drawn with a dashed line because the
electron emission actually occurs at the same z-position and, hence, at the same energy.
Consequently, the emitted electron will only reach the shown location over time. Further-
more, the right panel shows the reactions of indirect Auger de-excitation (iad) and direct
Auger de-excitation (dad), Eqs. (1.2) and (1.3). The direct Auger transition is drawn
with a dotted line as it is spin-blocked for the N2(

3Σ+
u)-state. Note that the projectile

levels’ energies and image shifts are determined in terms of the removal of an electron
and, hence, depend on the molecular state formed through the transitions (see Table A.3
and Sec. 2.2.4). For clearness in the above figure the level energies ε0 and ε1, thus, carry
additional subscripts g, ∗ and − denoting the respective level’s energy in the molecular
ground state N2(

1Σ+
g ), the metastable molecule N2(

3Σ+
u) and the negative ion N−

2(
2Πg).

from an occupied band state k⃗ into an empty band state k⃗′. This complementary
transition is also depicted in the right-hand panel of Fig. 1.1 and can be expressed
schematically as

N2(3Σ+
u) + e−⃗

k

Auger transitionÐÐÐÐÐÐÐÐÐÐ→ N2(1Σ+
g) + e−⃗

k′ . (1.3)

Depending on the surface’s band structure the excited state k⃗′ may lie above the
vacuum level. An electron in such a state could, thus, tunnel through the surface
barrier and contribute to the experimentally observable secondary electron yield.
However, for the particular case of N2(3Σ+

u) a direct de-excitation is spin-blocked
by the electronic configuration rendering the Auger transition (1.3) impossible. For
different metastable states of the nitrogen molecule, on the other hand, the direct
channel might be allowed and, hence, could account for an important contribution to
the emission coefficient γe. Therefore, we will, nevertheless, consider Eq. (1.3) in our
quantum-kinetic treatment. Since in the present work we exclusively concentrate
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Figure 1.2: Schematic representation of the Auger and resonant neutralization channels
for the special case of N+

2(
2Πu) on a diamond surface. The figure is to scale in terms of

energy units. The left panel shows the Auger neutralization (an) reaction (1.4) whereas the
right panel depicts the resonant neutralization (rn) channel (1.5). As the neutralization
ends up in the molecular ground state N2(

1Σ+
g ), the projectile level’s energy is ε0g in both

reaction channels (see also the caption of Fig. 1.1).

on the dominant metastable state N2(3Σ+
u), we will, however, neither concretize the

matrix element nor present numerical results for this reaction channel. Even so, the
outcome of our quantum-kinetic calculation will be beneficial to future theoretical
studies concerned with different metastable species.

1.2.2 Neutralization of Positive Ions

Within the bounds of our effective model the surface neutralization of a singly
charged positive ions can be described by considering only one initially empty pro-
jectile level. For the special case of N+

2(2Πu) the latter corresponds to the ground
state level of our molecular two-level system. For simplicity we will, therefore, re-
fer to this level as the ground state level regardless of the particular projectile in
question.

In the following we will consider a general positive ion A+. In front of a surface
such a particle can be neutralized by capturing an electron from an occupied energy
band of the surface into its empty ground state level. As noted earlier, this can be
achieved by two different reaction channels.

First there is the possibility of Auger neutralization involving two surface elec-
trons populating the states k⃗1 and k⃗2, respectively. In the Auger transition one of
these electrons fills the ion’s empty ground state level while the other is excited into
a previously unoccupied band state k⃗′ (see left-hand panel of Fig. 1.2). We may,
thus, describe this reaction by

A+ + e−⃗
k1
+ e−⃗

k2

Auger transitionÐÐÐÐÐÐÐÐÐÐ→ A + e−⃗
k′ . (1.4)
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Similar to the direct Auger de-excitation reaction (1.3) the excited electron e−⃗
k′ may

reside in a state with positive energy. Thus, under certain conditions it can breach
through the surface barrier whereupon it is detectable as a secondary electron by
diagnostic tools.

In addition to the Auger channel (1.4) a positive ion A+ can also be neutralized
by resonantly capturing a surface electron into its empty ground state level. This
reaction can be expressed as

A+ + e−⃗
k

resonant captureÐÐÐÐÐÐÐÐÐÐ→ A , (1.5)

and is depicted in the right-hand panel of Fig. 1.2. Even though the transition (1.5)
does not generate secondary electrons, it can still have an immense effect on the
emission coefficient γe. In particular, when both neutralization channels are active
at the same time, a very efficient resonant reaction (1.5) can cause the incoming pro-
jectile to be completely neutralized before the Auger channel (1.4) can kick in. For
a realistic theoretical treatment it is, thus, necessary to consider both neutralization
channels although the resonant reaction does not generate secondary electrons.

Note that for the particular case of N+
2(2Πu) in terms of the molecular ground

state level the transition (1.5) is equivalent to the first step of (1.1). It does, however,
lead to a different state of the nitrogen molecule and, hence, the energy of the ground
state level ε0 and its image shift are different from the situation described by (1.1)
(see also Figs. 1.1 and 1.2). This point will become more clear in our discussion of
the projectile states in Sec. 2.2.

Finally, as stated earlier, within this work we will analyze the interplay of reso-
nant and Auger neutralization for the positive ions of helium, argon and the nitrogen
molecule. Hence, in the reactions (1.4) and (1.5) the ion A+ corresponds to either
one of He+(2S1/2), Ar+(2P3/2) and N+

2(2Πu) while the neutral species A equals the
respective ground state He(1S0), Ar(1S0) or N2(1Σ+

g).
1.3 Non-Equilibrium Green Functions

In the surface reactions considered in this work the projectile constantly moves
with respect to the surface. As a result, the projectile-surface interaction is time
dependent and we are faced with a non-equilibrium problem. In order to treat
these situations dynamically we will employ the non-equilibrium Green function
formalism. The latter represents a quantum-kinetic generalization of the ordinary
Green function method to systems out of equilibrium. The technique is particularly
flexible and has been employed successfully in various contexts. Among them are
transport phenomena in metals[27,60,69], non-equilibrium superconductivity[6,54] and
Fermi liquids[2,80]. More recently it has also been used to simulate quantum dots[3,139]
as well as charge transfer during atom- and ion-surface collisions[34,38,76,86,131,143].

The non-equilibrium Green function technique comes in two different formu-
lations which have been developed in parallel by Keldysh[69] and Kadanoff and
Baym[65], respectively. In the following we give a brief description of the technique’s
general idea and the two formulations. The main purpose of this section is to fix our
notation for the quantum-kinetic calculations of Chapter 3. For a comprehensive
overview of the formalism we refer the reader to Refs. [23, 48, 80, 110] for further
details.
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1.3.1 General Idea

Consider a system described by the Hamiltonian

Ĥ(t) = Ĥ0 + Ĥ1(t) , (1.6)

where Ĥ0 represents the non-interacting system and Ĥ1(t) denotes a time-dependent
perturbation. We assume the perturbation to be adiabatically switched on and off
at times −t0 and +t0, respectively, and initially let t0 →∞ (see Ref. [48]). The
non-interacting Hamiltonian Ĥ0 may possess a simple, meaning diagonalizable, time
dependence as well. The operator does, however, not vanish as t approaches ±t0. For
the sake of clearness we, therefore, suppress this time dependence in our notation.

Due to the adiabatic time dependence of the perturbation Hamiltonian Ĥ1,
Eq. (1.6) represents a non-equilibrium system. We will now show how the ordi-
nary Green function technique can be generalized to such a situation. To do so, we
first consider the expectation value of an arbitrary one-particle operator Ô given by

⟨Ô(h)(t)⟩ = ⟨Φ(h)∣ Û(−∞, t) Ô(i)(t) Û(t,−∞) ∣Φ(h)⟩ , (1.7)

where the superscripts (h) and (i) denote the Heisenberg representation and the
interaction representation, respectively (see for instance Ref. [35]). Moreover, Φ is
an arbitrary state of the system and Û(t1, t2) represents the interaction picture time
evolution operator defined by[23]

Û(t1, t2) = [Θ(t1 − t2) T̂c +Θ(t2 − t1) T̂a] e− ih̵ ∫ t1t2 dt′ Ĥ(i)
1 (t′) , (1.8)

with T̂c and T̂a labeling the real time chronological and anti-chronological time-
ordering operator, respectively, and h̵ identifying Planck’s Constant h divided by 2π.
In equilibrium theory one now rewrites the time evolution operators of (1.7) in the
form

Û(−∞, t) = Û(−∞,∞) Û(∞, t) , (1.9)

and utilizes the fact that the system’s final state is equal to the initial state multiplied
by a phase factor (see for instance Ref. [74]). Here, however, we cannot follow this
track since in general for a non-equilibrium system the final state of the system is
fundamentally distinct from its initial state. Therefore, we need to formulate the
evolution of the system with reference to its initial state only and avoid any reference
to asymptotically large times[48]. For this purpose we first insert (1.8) into (1.7) and
obtain

⟨Ô(h)(t)⟩ = ⟨Φ(h)∣ T̂a [e− ih̵ ∫ −∞t dt′ Ĥ(i)
1 (t′)] Ô(i)(t) T̂c [e− ih̵ ∫ t−∞dt′ Ĥ(i)

1 (t′)]∣Φ(h)⟩ . (1.10)

In order to join the exponentials to the left and right of Ô(i)(t), we now imagine the
time to run on a contour C in the complex plane starting at −∞, passing through
some maximum time τ and returning to −∞ (see Fig. 1.3). We then introduce a
contour time-ordering operator T̂C that is equal to T̂c on the increasing branch and
equal to T̂a on the decreasing branch. As a result, we can rewrite (1.10) as

⟨Ô(h)(t)⟩ = ⟨Φ(h)∣ T̂C [e− ih̵ ∫Cdt′ Ĥ(i)
1 (t′)Ô(i)(t)]∣Φ(h)⟩ , (1.11)
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−∞ +∞
τ

Figure 1.3: Contour C in the imaginary time plane running from −∞ to a maximum
time τ and back to −∞. The value of τ should exceed the largest physical time under
consideration and usually one lets τ →∞.

where ∫C denotes the integral over the contour. Due to the introduction of the
complex time path C, the expectation value (1.11) is now in suitable form for dia-
grammatic expansion using Feynman diagrams. Note that the shape of the contour C
is not limited to the special case depicted in Fig. 1.3 as it may be deformed in an
arbitrary manner. Moreover, the maximum time value τ has no physical mean-
ing beyond the fact that it exceeds the largest physical time under consideration.
Consequently, one usually lets τ →∞.

We now proceed with the generalization of the Green function onto the contour.
The one-particle contour-ordered Green functionGαβ(t, t′) describes the propagation
from a state β at time t′ to a state α at time t and is defined as

iGαβ(t, t′) = ⟨T̂C [Ψ̂(h)
α (t) Ψ̂

†(h)
β (t′)]⟩ , (1.12)

with Ψ̂ denoting the usual fermionic or bosonic field operator. When the system’s
initial state is uncorrelated4, Eq. (1.12) can be straightforwardly expanded into a
perturbation series by employing (1.11) and Wick’s theorem[110]. The procedure is
analogous to the equilibrium case except that here one has to integrate over the
complex time contour C rather than over inverse temperatures.

Moreover, as in equilibrium theory, the details of the perturbation expansion can
be encapsulated in a Dyson equation. The latter contains the self-energy Σ which
may be calculated to an arbitrary order by diagrammatic techniques. To shorten
our representation of the Dyson equation, we introduce the compact notation

{Aαγ ∗Bγβ}C(t, t′) =∑
γ
∫C dt1 Aαγ(t, t1)Bγβ(t1, t′) , (1.13)

which can be extended to a product of three quantities straightforwardly. Note that
within (1.13) the sum over γ is only to be taken if α ≠ γ ≠ β. Making use of (1.13)
we can express the contour Dyson equation either in integral form[80]

Gαβ(t, t′) = G(0)
αβ (t, t′) + {G(0)

αγ ∗Σγδ ∗Gδβ}C(t, t′) , (1.14)

or in differential form[80]

[i ∂
∂t

− εα(t)
h̵

]Gαβ(t, t′) = δ(t − t′) + {Σαγ ∗Gγβ}C(t, t′) . (1.15)

Here εα denotes the energy of the state α and G(0) represents the unperturbed Green
function which is determined by Ĥ0 only. Equations (1.14) and (1.15) may also be
written in their adjoint forms[80]

Gαβ(t, t′) = G(0)
αβ (t, t′) + {Gαγ ∗Σγδ ∗G(0)

δβ }C(t, t′) , (1.16)

4For the treatment of a correlated initial state see Ref. [110] and references therein.
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and

[−i ∂
∂t′ − εβ(t

′)
h̵

]Gαβ(t, t′) = δ(t − t′) + {Gαγ ∗Σγβ}C(t, t′) . (1.17)

For a further analytical or numerical treatment of these equations the contained
contour integrations now need to be broken down onto the real axis. This step
is sometimes also referred to as analytic continuation. The two different formula-
tions of the theory, which we will present in the following sections, utilize different
approaches to cope with this situation.

1.3.2 Keldysh Formulation

In the formulation due to Keldysh[69] the complex time contour is divided into an
increasing branch labeled + and a decreasing branch labeled −. Depending on the po-
sition of its time arguments on either one of these branches the Green function (1.12)
can, thus, be decomposed into the four analytical pieces

iG++
αβ(t, t′) = ⟨T̂c [Ψ̂(h)

α (t) Ψ̂
†(h)
β (t′)]⟩ , (1.18a)

iG+−
αβ(t, t′) = ∓⟨Ψ̂†(h)

β (t′) Ψ̂
(h)
α (t)⟩ , (1.18b)

iG−+
αβ(t, t′) = ⟨Ψ̂(h)

α (t) Ψ̂
†(h)
β (t′)⟩ , (1.18c)

iG−−
αβ(t, t′) = ⟨T̂a [Ψ̂(h)

α (t) Ψ̂
†(h)
β (t′)]⟩ , (1.18d)

where the upper sign holds for fermions and the lower one for bosons. Obviously,
the analytical parts of the Green function are linearly dependent as the relation

G++
αβ(t, t′) +G−−

αβ(t, t′) = G+−
αβ(t, t′) +G−+

αβ(t, t′) , (1.19)

follows directly from the definition of the ++, +−, −+ and −− components of Gαβ.
Furthermore, the decomposition (1.18) can also be expressed in matrix notation,

Gαβ(t, t′) = ⎛⎝G
++
αβ(t, t′) G+−

αβ(t, t′)
G−+
αβ(t, t′) G−−

αβ(t, t′)
⎞⎠ . (1.20)

Since the self-energy Σ is defined on the contour as well, it possesses an analogous
matrix representation,

Σαβ(t, t′) = ⎛⎝Σ++
αβ(t, t′) Σ+−

αβ(t, t′)
Σ−+
αβ(t, t′) Σ−−

αβ(t, t′)
⎞⎠ . (1.21)

Consequently, the Dyson equation turns into a matrix equation which yields equa-
tions of motion for the analytical pieces of the Green function upon expansion of
the matrix products. Moreover, the rules for the diagrammatic calculation of the
self-energy components (1.21) are equivalent to the equilibrium case except that one
has to handle the + and − signs at the ends of each line. For details we refer the
reader to Ref. [80].

Employing (1.19) together with the matrix Dyson equation one finds the iden-
tity[80]

Σ++
αβ(t, t′) +Σ−−

αβ(t, t′) = −Σ+−
αβ(t, t′) −Σ−+

αβ(t, t′) . (1.22)
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Thus, the analytical pieces of the self-energy are linearly dependent as well. This
fact can be exploited in order to simplify the structure of the matrix Dyson equation.
Employing the unitary transformation

U = 1√
2

⎛⎝ 1 −1

1 1

⎞⎠ , (1.23)

we obtain the transformed expressions

U Gαβ U
† = ⎛⎝ 0 GA

αβ

GR
αβ GK

αβ

⎞⎠ , U Σαβ U
† = ⎛⎝ΣK

αβ ΣR
αβ

ΣA
αβ 0

⎞⎠ . (1.24)

Here the superscripts A, R and K denote the advanced, retarded and Keldysh part
of the corresponding quantity, respectively. The individual components of (1.24) are
given by

GA
αβ(t, t′) = G++

αβ(t, t′) −G−+
αβ(t, t′) = G+−

αβ(t, t′) −G−−
αβ(t, t′) , (1.25a)

GR
αβ(t, t′) = G++

αβ(t, t′) −G+−
αβ(t, t′) = G−+

αβ(t, t′) −G−−
αβ(t, t′) , (1.25b)

GK
αβ(t, t′) = G++

αβ(t, t′) +G−−
αβ(t, t′) = G+−

αβ(t, t′) +G−+
αβ(t, t′) , (1.25c)

and

ΣA
αβ(t, t′) = Σ++

αβ(t, t′) +Σ−+
αβ(t, t′) = −Σ−−

αβ(t, t′) −Σ+−
αβ(t, t′) , (1.26a)

ΣR
αβ(t, t′) = Σ++

αβ(t, t′) +Σ+−
αβ(t, t′) = −Σ−−

αβ(t, t′) −Σ−+
αβ(t, t′) , (1.26b)

ΣK
αβ(t, t′) = Σ++

αβ(t, t′) +Σ−−
αβ(t, t′) = −Σ+−

αβ(t, t′) −Σ−+
αβ(t, t′) . (1.26c)

Note that the retarded and advanced parts of the Green function fulfill the relation[80]

GA
αβ(t, t′) = [GR

βα(t′, t)]∗ , (1.27)

which follows from the combination of their definitions (1.25a) and (1.25b) with the
explicit form of the analytical pieces (1.18).

We now employ the transformation (1.23) within the integral form of the Dyson
equation (1.14) and obtain the following equations of motion

G
A/R
αβ (t, t′) = GA/R(0)

αβ (t, t′) + {GA/R(0)
αγ ∗Σ

A/R
γδ ∗GA/R

δβ }(t, t′) , (1.28a)

GK
αβ(t, t′) = GK(0)

αβ (t, t′) + {GK(0)
αγ ∗ΣA

γδ ∗GA
δβ}(t, t′)

+ {GR(0)
αγ ∗ [ΣK

γδ ∗GA
δβ +ΣR

γδ ∗GK
δβ]}(t, t′) . (1.28b)

Here we have used the compact notation

{Aαγ ∗Bγβ}(t, t′) =∑
γ
∫ ∞
−∞dt1 Aαγ(t, t1)Bγβ(t1, t′) , (1.29)

where in contrast to (1.13) the time integration runs over the real axis only. Note
that in (1.29), as before, the sum over γ is only needed when α ≠ γ ≠ β.
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The Keldysh component of the Dyson equation (1.28b) can be solved iteratively
to give the important relation[12]

GK
αβ(t, t′) = {[δαγ +GR

αδ ∗ΣR
δγ] ∗GK(0)

γξ ∗ [ΣA
ξν ∗GA

νβ + δξβ]}(t, t′)
+ {GR

αδ ∗ΣK
δγ ∗GA

γβ}(t, t′) . (1.30)

Thus, once the advanced and retarded parts of the Green function are known the
Keldysh part can be computed directly from Eq. (1.30). The diagonal compo-
nent GK

αα then yields the occupation of a state α at arbitrary times,

nα(t) = 1

2
[1 − iGK

αα(t, t)] . (1.31)

Finally, we consider the Green functions of an interaction-free Hamiltonian with
a diagonalizable time dependence,

Ĥ0(t) =∑
α

εα(t) c†α cα . (1.32)

Within our effective model subsystems of the general form (1.32) will act as the non-
interacting part of the Hamiltonian. The associated Green functions, thus, represent
the unperturbed propagators of our system and, hence, the starting point of our
quantum-kinetic calculations (see Chapter 3). Employing Heisenberg’s equation it
is straightforward to calculate the time evolution of cα and c†α under (1.32). Making
use of the general definitions (1.18) we find

iG
++(0)
αβ (t, t′) = [Θ(t − t′) ∓ nα(−∞)] e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.33a)

iG
+−(0)
αβ (t, t′) = ∓nα(−∞) e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.33b)

iG
−+(0)
αβ (t, t′) = [1 ∓ nα(−∞)] e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.33c)

iG
−−(0)
αβ (t, t′) = [Θ(t′ − t) ∓ nα(−∞)] e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.33d)

where, like before, the upper sign applies to fermionic particles and the lower one to
bosonic particles. The transformed Green function components can be calculated
by inserting (1.33) into (1.25) and read

G
A(0)
αβ (t, t′) = iΘ(t′ − t) e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.34a)

G
R(0)
αβ (t, t′) = −iΘ(t − t′) e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.34b)

G
K(0)
αβ (t, t′) = −i[1 ∓ 2nα(−∞)] e− ih̵ ∫ tt′ dt1 εα(t1) δαβ . (1.34c)

Combining the expressions for GA(0)
αβ , GR(0)

αβ and GK(0)
αβ we find the relation

G
K(0)
αβ (t, t′) = −i[1 ∓ 2nα(−∞)]GR(0)

αβ (t,−∞)GA(0)
αβ (−∞, t′) , (1.35)

which after insertion into (1.30) and utilization of the advanced and retarded Dyson
equations (see Eq. (1.28a)) yields

GK
αβ(t, t′) = −i∑

γ

[1 ∓ 2nγ(−∞)]GR
αγ(t,−∞)GA

γβ(−∞, t′)
+ {GR

αδ ∗ΣK
δγ ∗GA

γβ}(t, t′) . (1.36)

Equation (1.36) is an important simplification of the more general form (1.30) and
holds for any Hamiltonian with a non-interacting part in the structure of (1.32).
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1.3.3 Kadanoff-Baym Formulation

Here we will present the Kadanoff-Baym variant of the non-equilibrium Green func-
tion technique in the form due to Langreth[75]. In this formulation contour-ordered
quantities are split into analytical pieces according to the order of their time argu-
ments along the contour. In particular, the Green function (1.12) is decomposed
into

iGαβ(t, t′) = ΘC(t − t′)G>
αβ(t, t′) ∓ΘC(t′ − t)G<

αβ(t, t′) , (1.37)

where ΘC is the contour step function and, as before, the upper sign holds for
fermions and the lower one for bosons. Utilizing the definition (1.12) we obtain the
explicit form of the analytical pieces G>

αβ and G<
αβ,

G>
αβ(t, t′) = ⟨Ψ̂(h)

α (t) Ψ̂
†(h)
β (t′)⟩ , (1.38a)

G<
αβ(t, t′) = ⟨Ψ̂†(h)

β (t′) Ψ̂
(h)
α (t)⟩ . (1.38b)

Inspecting Eq. (1.38b) we find that within the Kadanoff-Baym formulation the oc-
cupation of a state α at time t can be calculated from

nα(t) = G<
αα(t, t) . (1.39)

Furthermore, the associated advanced and retarded Green functions are given by

iGA
αβ(t, t′) = −Θ(t′ − t) [G>

αβ(t, t′) ±G<
αβ(t, t′)] , (1.40a)

iGR
αβ(t, t′) = Θ(t − t′) [G>

αβ(t, t′) ±G<
αβ(t, t′)] . (1.40b)

Moreover, the self-energy Σ possesses an analogous decomposition,

iΣαβ(t, t′) = ΘC(t − t′)Σ>
αβ(t, t′) ∓ΘC(t′ − t)Σ<

αβ(t, t′) , (1.41)

which results in the advanced and retarded components

iΣA
αβ(t, t′) = −Θ(t′ − t) [Σ>

αβ(t, t′) ±Σ<
αβ(t, t′)] , (1.42a)

iΣR
αβ(t, t′) = Θ(t − t′) [Σ>

αβ(t, t′) ±Σ<
αβ(t, t′)] . (1.42b)

The analytical pieces of the self-energy can be calculated by employing the ordinary
diagrammatic expansion technique and afterwards projecting the result onto the
real axis by means of the Langreth-Wilkins rules (see Appendix B). The latter rules
can also be used for the analytic continuation of the contour Dyson equation. In
particular, we obtain the differential Dyson equations

[i ∂
∂t

− εα(t)
h̵

]G>
αβ(t, t′) = {ΣR

αγ ∗G>
γδ +Σ>

αγ ∗GA
γδ}(t, t′) , (1.43a)

[i ∂
∂t

− εα(t)
h̵

]G<
αβ(t, t′) = {ΣR

αγ ∗G<
γδ +Σ<

αγ ∗GA
γδ}(t, t′) , (1.43b)

[i ∂
∂t

− εα(t)
h̵

]GA/R
αβ (t, t′) = δ(t − t′) + {Σ

A/R
αγ ∗GA/R

γδ }(t, t′) , (1.43c)
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and their adjoint versions

[−i ∂
∂t′ − εβ(t

′)
h̵

]G>
αβ(t, t′) = {GR

αγ ∗Σ>
γδ +G>

αγ ∗ΣA
γδ}(t, t′) , (1.44a)

[−i ∂
∂t′ − εβ(t

′)
h̵

]G<
αβ(t, t′) = {GR

αγ ∗Σ<
γδ +G<

αγ ∗ΣA
γδ}(t, t′) , (1.44b)

[−i ∂
∂t′ − εβ(t

′)
h̵

]GA/R
αβ (t, t′) = δ(t − t′) + {GA/R

αγ ∗Σ
A/R
γδ }(t, t′) . (1.44c)

We stress that the advanced and retarded Green function are identical in both
formulations. Consequently, the Dyson equations (1.43c) and (1.44c) are nothing
but the differential form of (1.28a) and the corresponding adjoint equation.

Finally, we again consider the Green functions associated with an interaction-free
Hamiltonian of the general form (1.32). Making use of Heisenberg’s equation and
the definitions (1.38) we obtain

G
>(0)
αβ (t, t′) = [1 ∓ nα(−∞)] e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.45a)

G
<(0)
αβ (t, t′) = nα(−∞) e− ih̵ ∫ tt′ dt1 εα(t1) δαβ , (1.45b)

where once more the upper sign pertains to fermions and the lower one to bosons.
The associated advanced and retarded function can be calculated from the combi-
nation of (1.45) and (1.40) which yields the expressions (1.34a) and (1.34b), respec-
tively.
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Chapter 2

Effective Model

The present chapter embraces the foundations of our effective model of the projectile-
surface system. As noted earlier our description makes a distinction between two
different types of electronic states. Electrons in the bulk of the solid, on the one
hand, are modeled as an interaction-free electron gas inside a square potential well
the boundaries of which are determined by the surface material’s band structure.
Projectile electronic states, on the other hand, are divided into bound and contin-
uum states possessing negative and positive energies, respectively. Bound states are
described by means of a hydrogen-like model with effective nucleus charge that, for
the case of N2, is combined with an LCAO approach. Furthermore, projectile con-
tinuum states, which in view of the surface reactions studied in this work have only
to be considered for the nitrogen molecule, are approximated by two-center Coulomb
waves satisfying the correct asymptotic boundary condition. The particular nature
of electronic states in the surface and on the projectile will be discussed explicitly
in Secs. 2.1 and 2.2, respectively.

Another integral part of our model is the projectile trajectory which we supply
externally in consistence with the usual trajectory approximation (see Sec. 2.3).
The associated turning point is calculated from a Morse-type approximation to the
surface potential with material-specific parameters.

Building upon the aforementioned electronic states and the trajectory approxi-
mation we then consider two active electrons within the system and derive a Hamil-
tonian by analyzing the interplay of the various real and image charges in Sec. 2.4.
Here the projectile’s motion enters our description as a parametric time dependence
of the interaction potentials and projectile level displacements. Section 2.5 sub-
sequently explains how the Hamiltonian can be extended to account for Coulomb
correlations on the projectile by means of a projection operator approach and two
auxiliary bosonic levels.

Finally, in Sec. 2.6 we introduce a set of surface transmission functions. These
functions cut off emitted electrons that are unable to breach through the surface
barrier and can, thus, be used to extract the amount of experimentally observable
secondary electrons from our theory.

The key strength of our model is its ease of adaption to different material com-
binations following from its small number of parameters. Most of these parameters
pertain to the electronic structure of either the surface material or the projectile.
An overview of the size of the parameter space and the particular values used in this
work can be found in Appendix A.
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z

εk⃗

V0

−L
2

L
2

Figure 2.1: Square potential well model used for the calculation of the solid’s wave
functions. The vertical axis represents the energy scale while the horizontal axis denotes
the distance from the surface edge. On the solid side the well has a depth of V0 whereas
outside the surface the potential vanishes. The dashed red lines mark the limits of the
box normalization volume [−L/2, L/2]3 on the z-axis. Also indicated here is the schematic
form of the wave function for a bound and an internally excited electron.

2.1 Solid Surface
We assume the solid surface to be planar, ideal, uncharged and to stretch over the
entire half space z < 0. In order to calculate the wave functions of bound or excited
electrons within the surface, we employ a square potential well model, sometimes
also referred to as the Sommerfeld model[30,58]. The latter has been used successfully
in the context of atom-surface collisions by a number of authors[99,111,115,138] and is
depicted schematically in Fig. 2.1. In particular, the well has a depth of V0 within
the surface and vanishes on the outside,

V (z) = Θ(−z)V0 . (2.1)

The constant potential V0 prevailing inside the solid may be identified with the lower
edge of the respective energy band in question. The associated upper band edge is
then realized by restricting the maximum energy of electrons inside the well. For
a situation with more than one active energy band a description of this type can
be employed separately for each band. We emphasize that this kind of treatment is
an effective one since the many-particle details of the solid are encapsulated in the
band edges which may be obtained from an ab initio calculation.

The wave functions of the square potential well model Ψk⃗ can be derived straight-
forwardly by solving the Schrödinger equation in the left and right half spaces. After
matching the wave functions and their derivatives at the origin we find

Ψk⃗(r⃗) = NL e
ikxx eikyy Ψkz(z) , (2.2)

with
Ψkz(z) = Θ(−z) [eikzz +Rkz e

−ikzz] +Θ(z)Tkz eik̄zz . (2.3)
Here NL is a normalization constant while Rkz and Tkz denote the reflection and
transmission coefficients given by

Rkz = kz − k̄zkz + k̄z , Tkz = 2kz
kz + k̄z . (2.4)
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Furthermore the scattered wave number k̄z can be calculated from kz via

k̄z =
√
k2
z + 2meV0

h̵2
, (2.5)

where me is the electronic mass.
The overall energy εk⃗ associated with the wave function (2.2) amounts to

εk⃗ = h̵2k2

2me

+ V0 = h̵2k2
x

2me²
εkx

+ h̵2k2
y

2me±
εky

+ h̵2k2
z

2me

+ V0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
εkz

. (2.6)

Its vertical component εkz determines the nature of the wave function. In particular,
for the case εkz > 0 the electron resides in an internally excited state. Here k̄z is a
real quantity and, consequently, the wave function Ψk⃗ is oscillatory on both sides of
the surface edge (see upper wave function in Fig. 2.1). If, on the other hand, εkz < 0,
then the electron is bound in the z direction. In this case k̄z is purely imaginary
and we may write

k̄z = i
√

−k2
z − 2meV0

h̵2
= iκkz , (2.7)

where κkz is real. As a result, the vertical part of the wave function (2.3) turns into

Ψkz(z) = Θ(−z) [eikzz +Rkz e
−ikzz] +Θ(z)Tkz e−κkz z . (2.8)

As wee see, here Ψk⃗ is oscillatory within the surface and decreases exponentially on
the outside (see lower wave function in Fig. 2.1). Moreover, the otherwise real-valued
reflection and transmission coefficients (2.4) become complex quantities,

Rkz = kz − iκkzkz + iκkz , Tkz = 2kz
kz + iκkz . (2.9)

Finally, we need to determine the normalization constant NL. Since the wave
function (2.2) is completely delocalized, it cannot be normalized in a strict sense. We
can, however, normalize Ψk⃗ over a finite volume [−L/2, L/2]3 and let L→∞ at the
end of our calculation. This procedure is also referred to as box normalization (see
for instance Ref. [93]) and is usually combined with periodic boundary conditions.
In particular, we require that

Ψk⃗(x, y, z) != Ψk⃗(x ±L, y, z) , (2.10a)

Ψk⃗(x, y, z) != Ψk⃗(x, y ±L, z) , (2.10b)

Ψk⃗(x, y, z) != ⎧⎪⎪⎨⎪⎪⎩
Ψk⃗(x, y, z − L

2
) for z ≤ 0 ,

Ψk⃗(x, y, z + L
2
) for z ≥ 0 and εkz > 0 ,

(2.10c)

which leads to a discretization of the k⃗-states with the spacings

∆kx = ∆ky = 2π

L
, ∆kz = 4π

L
. (2.11)

Note that this discretization is an artifact of the seemingly peculiar periodicity re-
quirements (2.10). When we let L→∞, the constraints (2.10), however, become
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irrelevant. Consequently, the discretization disappears and k⃗ becomes continuous
again. For a finite L we can now evaluate the normalization integral by leverag-
ing (2.10) which yields

NL = 1

L
3
2

, (2.12)

where only the fastest growing power of L has been retained1.
As we will see in the following chapters, the box normalization length L con-

tained in (2.12) is canceled at the end of our calculation. In particular, the wave
function (2.2) always appears as part of a matrix element, assigning to the latter an
(at this point) discrete k⃗-dependency and a factor of NL. We then have to sum the
squared matrix element over all possible discrete k⃗-states. When we now let L→∞,
the sum turns into an integral and we obtain

N2
L ∑⃗

k

⋅ ⋅ ⋅ = N2
L(∆k)3´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

1
16π3

∑⃗
k

(∆k)3 . . .
L→∞ÐÐÐÐ→ 1

16π3 ∫ dk⃗ . . . , (2.13)

where (∆k)3 = ∆kx ∆ky ∆kz. As we see, the box parameter L is lifted completely
and, hence, our calculation is consistent.

Finally, we admit that the square potential well model presented in this section
neglects any image charge forces acting on electrons outside the surface. To account
for the latter we could instead employ the truncated classical image potential

Vi(z) = Θ(zc − z)V0 −Θ(z − zc)Qε
e2

0

16πε0

1

z − zi , (2.14)

where e0 is the elementary charge, ε0 denotes the vacuum permittivity, zi specifies
the position of the image plane and zc marks the intersection point of the constant
bulk potential V0 and the classical image potential,

zc = zi − e2
0

16πε0

1

V0

. (2.15)

Moreover, Qε represents the factor

Qε = ⎧⎪⎪⎨⎪⎪⎩
εbr+1

εbr−1
for a dielectric surface ,

1 for a metallic surface ,
(2.16)

with εbr labeling the static dielectric constant of the solid’s bulk.
An even more sophisticated model could be constructed by employing the Jones-

Jennings-Jepsen potential[63], often referred to as the Jennings potential,

Vj(z) = ⎧⎪⎪⎨⎪⎪⎩
Qε

e20
16πε0

e−λ(z−zi)−1
z−zi for z > zi ,

V0

AeB(z−zi)+1
for z < zi . (2.17)

Here λ is a material specific parameter while the constants A and B are determined
by the continuity condition for V (z) and its derivative at zi,

A = −16πε0

e2
0

V0

λ
− 1 , B = −16πε0

e2
0

V0

2A
. (2.18)

1Slower growing powers become irrelevant as we let L→∞.
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While offering a more realistic description, the potentials (2.14) and (2.17) in-
volve a couple of issues. For one thing, both of them are only suitable for cases
where V0 < 0. Furthermore, the wave functions of electrons moving in these poten-
tials are certainly more complicated than the wave functions of the square potential
well (2.1). In fact, the wave functions associated with the truncated image poten-
tial (2.14) involve confluent hypergeometric functions outside the surface[84]. For the
Jennings potential (2.17) the situation is even more involved. For z < zi the wave
functions can be represented by a combination of general hypergeometric functions
while for z > zi only a numerical solution seems to be possible[137]. The complexity
of these wave functions is a significant issue as it almost completely denies any an-
alytical manipulation of the matrix elements occurring in our further calculation.
Moreover, the Jennings potential (2.17) relies on an additional material specific pa-
rameter λ which may not be available for arbitrary surface substances. Due to these
reasons we won’t consider the potentials (2.14) and (2.17) for the description of elec-
tronic states within the surface. Note, however, that we will employ the truncated
classical image potential (2.14) when considering bound and continuum projectile
levels in front of the surface.

2.2 Projectile States

We now turn our attention to the electronic states on the projectile. Here again
our treatment carries an effective character to the extent that we are considering
only those electrons which are active in the surface reactions studied in this work.
The remaining passive electrons on the projectile are not included explicitly in our
model. Rather we assume them to generate an effective nucleus charge number
which is then used in the calculation of the active electrons’ wave functions. As a
result, we are able to reduce the description of the projectile to a small number of
material parameters (see Appendix A).

Admittedly, such a treatment is most suitable for alkali atoms and noble gas
metastables. Here, however, we assume the approach to be valid for other species
as well. As we will see in Secs. 4.1 and 5.1, this allows us to retain the full time
and single-particle quantum number dependence of the matrix elements. Thus, our
analysis goes clearly beyond a number of previous studies[4,14,38,86,104].

2.2.1 Hydrogen-Like Model

For the projectile materials under consideration we construct the wave functions
of bound states from a hydrogen-like model with an effective nucleus charge num-
ber Zeff. In such a model the solutions of the Schrödinger equation for negative
energies and a set of quantum numbers n, l and m are most conveniently expressed
in spherical coordinates (r, ϑ,ϕ) and read[118]

Ψnlm(r, ϑ,ϕ) = Rnl(r)Ylm(ϑ,ϕ) , (2.19)

with

Rnl(r) = −
¿ÁÁÀ(n − l − 1)! (2κn)3

2n[(n + l)!]3 (2κnr)l e−κnrL2l+1
n+l (2κnr) , (2.20)
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and

Ylm(ϑ,ϕ) = (−1)m+∣m∣
2

¿ÁÁÁÀ2l + 1

4π

(l − ∣m∣)!

(l + ∣m∣)!
eimϕPl∣m∣(cos(ϑ)) . (2.21)

Here Lsr denotes the associated Laguerre polynomial,

Lsr(x) = ds

dxs
(ex dr

dxr
[e−xxr]) , (2.22)

and Plm represents the associated Legendre function,

Plm(cos(ϑ)) = (−1)l
2l l!

sinm(ϑ) dl+m
d(cosl+m(ϑ))[sin2l(ϑ)] . (2.23)

The effective nucleus charge Zeff enters the wave function (2.19) via the constant κn
given through

κn = Zeff

naB
, (2.24)

where aB is the Bohr radius.

2.2.2 Positive Ions of Helium and Argon

As stated earlier, we describe the neutralization of singly charged positive ions using
only a lone unoccupied projectile level. In the following we will present the associ-
ated wave functions emerging from the hydrogen-like model introduced in Sec. 2.2.1
for He+(2S1/2) and Ar+(2P3/2). In consistence with our treatment of the nitrogen
molecule in a forthcoming passage (see Sec. 2.2.3) we will label these wave functions
with Ψ

(He)
0 and Ψ

(Ar)
0 , respectively. Here the subscript 0 is a tribute to the fact that

for the N+
2(2Πu) ion the active projectile level corresponds to the ground state level

of our two-level approximation to the nitrogen molecule.
We start our considerations with the positive ion of helium. In the surface

neutralization of He+(2S1/2) the neutralizing electron is captured into the empty
portion of the 1s orbital. Consequently, we are interested in the wave function Ψ100

with an effective nucleus charge generated by the shielding due to the second electron
in the same shell. Employing (2.19) we obtain

Ψ
(He)
0 (r, ϑ,ϕ) = Ψ100(r, ϑ,ϕ) = (κHe) 3

2√
π

e−κHer , (2.25)

which may also be written in cylindrical coordinates2, denoted (R,ϕ, z), leading to

Ψ
(He)
0 (R,ϕ, z) = (κHe) 3

2√
π

e−κHe

√
R2+z2

. (2.26)

Here κHe is given by

κHe = Zeff

aB
, (2.27)

2The cylindrical form of the projectile wave functions will be needed for the calculation of lateral
Fourier transforms in Appendix D
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and involves the effective nucleus charge number Zeff = 1.7 which can be derived by
means of Slater’s rules for the determination of atomic shielding constants[123].

We now proceed with the Ar+(2P3/2) ion. Employing Hund’s rules (see for in-
stance Ref. [29]) we find that here the neutralizing electron fills them = −1 portion of
the 3p-orbital. Hence, we are seeking the wave function Ψ31−1. Utilization of (2.19)
yields

Ψ
(Ar)
0 (r, ϑ,ϕ) = Ψ31−1(r, ϑ,ϕ) = 2(κAr) 5

2√
3π

r (1 − κAr

2
r) e−κArr sin(ϑ) e−iϕ , (2.28)

which can as well be expressed in cylindrical coordinates,

Ψ
(Ar)
0 (R,ϕ, z) = 2(κAr) 5

2√
3π

R(1 − κAr

2

√
R2 + z2) e−κAr

√
R2+z2

e−iϕ . (2.29)

The constant κAr is defined as

κAr = Zeff

3aB
, (2.30)

with an effective charge number Zeff = 6.75 that can again be found by usage of
Slater’s rules[123].

2.2.3 Molecular Nitrogen

The set of surface reactions studied in this work involves transitions between four
different states of the nitrogen molecule (see Sec. 1.2). In the two-step resonant de-
excitation channel (1.1), for one thing, a metastable N2(3Σ+

u)molecule de-excites into
the ground state N2(1Σ+

g) via the intermediate negative ion shape resonance N−
2(2Πg).

The Auger de-excitation reactions (1.2) and (1.3), for another thing, consist of a one-
step transition between the metastable N2(3Σ+

u) state and the ground state N2(1Σ+
g).

Finally, the Auger and resonant neutralization channels (1.4) and (1.5) represent a
conversion between the positive ion N+

2(2Πu) and the ground state N2(1Σ+
g). Conse-

quently, our theoretical treatment has to embrace all of these molecular states. In
addition, our model also has to account for molecular continuum states for electrons
emitted from N−

2(2Πg) and N2(3Σ+
u) due to the resonant and the indirect Auger de-

excitation reactions (1.1) and (1.2). Our approach to handle all of these states will
be explained in the following.

We first focus on the description of bound molecular electrons. In order to ob-
tain their wave functions, we employ the technique of linear combination of atomic
orbitals (LCAO) an outline of which may be found for instance in Ref. [8]. The re-
sulting molecular orbitals and their generating atomic nitrogen orbitals are depicted
in Fig. 2.2 for the molecular ground state N2(1Σ+

g). The electronic configurations of
the three remaining molecular states, N+

2(2Πu), N2(3Σ+
u) and N−

2(2Πg), differ from
the ground state only in the occupation of the 2pπu and 2pπ∗g orbitals, as shown in
Fig. 2.3. Also indicated in the latter figure are those electronic states which actively
participate in transitions between the four different molecular configurations. As wee
see, only two out of the eight different electronic orbitals have to be changed in occu-
pancy in order to switch between N+

2(2Πu), N2(1Σ+
g), N2(3Σ+

u) and N−
2(2Πg). Since

the surface processes considered in this work constitute direct transitions between
either two of these molecular states, we can treat the non-participating orbitals as
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↑↓ ↑↓↑↓
↑↓

↑↓ ↑↓↑↓
↑↓

↑ ↑↑ ↑↑ ↑↑↓
↑↓ ↑↓

1sσ∗u
1sσg

2sσ∗u
2sσg

2pσ∗u

2pσg

2pπ∗g

2pπu

1s 1s

2s 2s

2p 2p

N N2(1Σ+
g) N

Figure 2.2: Molecular orbitals of N2 as constructed from atomic nitrogen orbitals by
means of the LCAO technique. Within the LCAO framework various different notation
conventions for the designation of molecular orbitals have been established. In the above
figure we employed a mixture of the styles used in Refs. [8] and [46]. Moreover, as usual,
electrons with spin ±

1
2 are indicated by ↑ and ↓, respectively. Note that the σ-orbitals

correspond to a magnetic quantum number of m = 0 whereas the π-orbitals are twofold
degenerate in m involving m = ±1. Furthermore, the depicted occupation of the molecular
orbitals represents the ground state N2(

1Σ+
g ).

passive spectators and focus exclusively on the active electronic states. As a result,
the molecule reduces to a two-level system consisting of a ground state level “0” and
an excited level “1” with energies ε0 and ε1. These levels mimic the active portions
of the 2pπu and 2pπ∗g orbitals (marked in red in Fig. 2.3) and can each carry ex-
actly one electron. Hence, four different electronic configurations are possible each
of them corresponding to one of the four different molecular states of the nitrogen
molecule (see Fig. 2.4).

Note that the two-level system’s parametrization, that means the value of the
energies ε0 and ε1, depends on its occupation and, thus, on the particular molecular
state (see Table A.3). For clearness we, therefore, attach an additional index +, g,∗ or − to these energies which denotes the value in the positive ion N+

2(2Πu), the
ground state N2(1Σ+

g), the metastable state N2(3Σ+
u) and the negative ion N−

2(2Πg),
respectively (see also Fig. 2.4). In our later analysis, however, only the energies of
the occupied levels ε0g, ε1∗, ε0− and ε1− will matter3.

In addition, as seen from Fig. 2.3, the magnetic quantum numbers of the ac-
tive orbitals are equal. Hence, the entire molecular two-level system possesses a
single magnetic quantum number m = ±1 which enters our calculation as an initial
parameter.

Exploiting the connection between our two-level system and the LCAO repre-

3Note that in our analysis of the positive ions He+(2S1/2) and Ar+(2P3/2) we will, for obvious
reasons, label the active level’s energy with ε0g as well.
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⇡⇣ ⇡⇣
↑↓ ↑⇣

N+
2(2Πu)

⇡⇣ ⇡⇣
↑↓ ↑↓

N2(1Σ+
g)

⇡⇣ ↑⇣
↑↓ ↑⇣

N2(3Σ+
u)

⇡⇣ ↑⇣
↑↓ ↑↓

N−
2(2Πg)

2pπu

2pπ∗g
2pπu

2pπ∗g
2pπu

2pπ∗g
2pπu

2pπ∗g

Figure 2.3: Occupation of the 2pπu and 2pπ∗g orbitals in the different molecular states of
nitrogen. Empty electronic states are indicated by the dashed arrows ⇡ and ⇣, respectively.
Furthermore, electronic orbitals whose occupation has to be changed in order to switch
between the depicted states of the molecule have been marked in red. Note that for the
negative ion the depicted configuration is not the only possible arrangement. It does,
however, emerge when an electron is attached to the metastable state which is the process
under consideration in this work (see Eq. (1.1)).

ε0+
ε1+

N+
2(2Πu)

ε0g

ε1g

N2(1Σ+
g)

ε0∗
ε1∗

N2(3Σ+
u)

ε0−
ε1−

N−
2(2Πg)

Figure 2.4: Effective two-level system and its relation to the different states of the nitro-
gen molecule. Occupied states are indicated by ● whereas empty states are marked with ○.
Furthermore, ε0 and ε1 denote the energies of the levels 0 and 1 and the indices +, g, ∗
and − characterize the respective molecular state.

sentation of the nitrogen molecule we can now calculate the wave functions of the
ground state level Ψ

(N2)
0m and the excited level Ψ

(N2)
1m from the following combination

of 2p atomic nitrogen wave functions

Ψ
(N2)
νm (r⃗) = 1√

Nν

[Ψ21m (r⃗ + %
2
) + (−1)ν Ψ21m (r⃗ − %

2
)] , ν = 0,1 . (2.31)

Here ν labels the respective level, % denotes the bond length of the nitrogen molecule
(see Appendix A) and Nν represents a normalization constant. Employing (2.19)
we then find the explicit form of the wave functions Ψ

(N2)
νm in Cartesian coordinates,

Ψ
(N2)
νm (x, y, z) = −m (κN2) 5

2√
2πNν

(x + imy)
× [e−κN2

√
x2+y2+(z+ %

2
)2 + (−1)νe−κN2

√
x2+y2+(z− %

2
)2] ,

(2.32)

which may also be expressed in cylindrical coordinates,

Ψ
(N2)
νm (R,ϕ, z) = −m (κN2) 5

2√
2πNν

Reimϕ

× [e−κN2

√
R2+(z+ %

2
)2 + (−1)νe−κN2

√
R2+(z− %

2
)2] .

(2.33)

The constant κN2 appearing in (2.32) and (2.33) is given by

κN2 = Zeff

2aB
, (2.34)
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and contains the effective nucleus charge number Zeff = 4 which we have deter-
mined by fitting our hydrogen-like atomic nitrogen wave functions to the Roothaan-
Hartree-Fock calculations of Clementi and Roetti[21].

Finally, the explicit values of the normalization constants Nν can be calculated
from the normalization integrals of the wave functions (2.31). In particular, we
obtain

Nν = 2 + 2 (κN2)5(−1)ν ∫ ∞
0

dR∫ ∞
−∞dz R

3 e−κN2

√
R2+(z+ %

2
)2

e−κN2

√
R2+(z− %

2
)2

, (2.35)

which needs to be evaluated numerically. Employing the parameters of Appendix A,
a Monte Carlo integration of (2.35) yields

Nν = 2 + (−1)ν ⋅ 0.53417540831 , (2.36)

with an error estimate of about 10−12.
Having discussed our treatment of bound molecular states, we now turn to the

continuum states which represent free states moving along with the molecule. These
states are populated by electron emission from N−

2(2Πg) and N2(3Σ+
u) in the resonant

and indirect Auger de-excitation channels (1.1) and (1.2), respectively. Generally
the wave function of the emitted electron should carry the two-center character of
the nitrogen molecule. This is especially true in the Auger reaction (1.2) since here
the electron leaves a temporary positive charge behind. In this particular situation
a description using plane waves would be utterly inappropriate as the latter reflect
neither the two-center structure nor the temporary attractive charge. Instead we
approximate the emitted electron’s wave function by means of a two-center Coulomb
wave. This special type of wave functions is based on a Pluvinage-like treatment[105]
of the Schrödinger equation for an unbound electron moving in the field of two
fixed centers. It was first introduced by Joulakian et al.[64] and has since been used
successfully in the modeling of electron-impact ionization and photo-ionization of H2

and H+
2 molecules[135,136,144].

In particular, the two-center continuum wave function of an electron with the
wave vector q⃗ moving in the field of two nuclear charges Z1 e0 and Z2 e0 reads[136]

Ψ
(N2)
q⃗ (r⃗) = eiq⃗⋅r⃗(2π) 3

2

NZ1(q)CZ1(q⃗, r⃗1)NZ2(q)CZ2(q⃗, r⃗2) . (2.37)

Here q stands for the absolute value of q⃗ and the vectors r⃗1/2 represent the posi-
tion vectors of the electron as seen from the two nuclear centers. Moreover, the
functions CZ1/2 are defined by

CZ(q⃗, r⃗) =M(−iδ,1,−i[qr + q⃗ ⋅ r⃗]) , (2.38)

where δ is shorthand for Z/(q aB) andM denotes the confluent hypergeometric func-
tion of the first kind. Finally, the normalization constants NZ1/2 can be calculated
analytically and amount to

NZ(q) = eπ2 δ Γ(1 + iδ) , (2.39)

with Γ representing the usual gamma function. Note that (2.39) is derived from a
delta-function normalization condition. Hence, we can treat the q⃗-states as a true
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continuum and don’t have to introduce an artificial discretization like we did for the
k⃗-states in Sec. 2.1. For the sake of visual consistency we will, however, still treat
the q⃗-continuum as a discrete set on the level of the Hamiltonian. Consequently, the
self-energies of our quantum-kinetic calculation (see Chapter 3) will involve discrete
sums over q⃗. This fits in nicely with our notation for continuum states within the
surface and is not an issue as long as we remember that any sum over q⃗-states can
be replaced by an integral,

∑⃗
q

. . . ←→ ∫ dq⃗ . . . . (2.40)

We will now explicitly discuss the use of the two-center Coulomb wave (2.37) for
the description of the emitted electron in the de-excitation channels (1.1) and (1.2).
During the indirect Auger de-excitation reaction (1.2), in particular, the released
electron departs from a neutral molecule. Consequently, a single positive charge is
left behind. The latter is temporary since at the same time the molecule emits the
electron from the excited level it captures a surface electron into its ground state
level. Even so, the temporary charge will affect the emitted electron’s wave function
in the moment of emission. Therefore, as proposed in Ref. [135], we account for
the partial screening of the nuclei by the passive electrons and choose Z1 = Z2 = ZC
with ZC = 1

2 .
In the resonant de-excitation channel (1.1), on the other hand, the departing

electron leaves a neutral molecule behind. As a result, the residual charge num-
bers Z1 and Z2 vanish. In this case the two-center Coulomb wave (2.37) reduces to
the plane wave

Ψ
(N2)
q⃗ (r⃗) = eiq⃗⋅r⃗(2π) 3

2

. (2.41)

We stress that here a plane wave description is appropriate since beyond a certain
distance the emitted electron should not feel any nuclear charge. We will, however,
only use the wave function (2.41) in the description of the surface-induced electron
emission from N−

2(2Πg). For the electron release due to the natural decay of N−
2(2Πg),

on the other hand, a corresponding matrix element cannot easily be constructed
within the limits of our effective model. Therefore, we will manually incorporate the
natural decay into the semi-classical rate equation system derived in Sec. 3.3. This
requires knowledge of the natural decay rate and the associated line shape both of
which will be discussed in the following.

First of all, the rate of natural decay Γn can be obtained from the negative
ion’s mean natural lifetime τn = 1.6 fs[24] which implies that Γn = τ−1

n = 0.625 fs−1. In
addition, for the line shape of the auto-decay reaction Lorente et al.[82] have proposed
the usage of a Lorentzian function, also known as Breit-Wigner distribution. In
accordance with this approach we introduce the spectral decay rate %n(ε∞⃗q ) through

%n(ε∞⃗q ) = δn
2πτn

1

(ε∞⃗q − ε∞1−)2 + δ2
n

4

. (2.42)

Here ε∞⃗q and ε∞1− denote the energies of a molecular continuum state q⃗ and the excited
molecular level of N−

2(2Πg) at an infinite distance from the surface. As we will see in
Sec. 2.2.4, the image shifts of these states cancel exactly and, hence, do not enter %n.



30 Chapter 2. Effective Model

Moreover, in (2.42) δn is the line’s full width at half maximum and can be estimated
using Heisenberg’s uncertainty relation

δn ≳ h

τn
. (2.43)

The natural decay rate Γn then relates to %n via

Γn = ∫ ∞
−∞dε

∞⃗
q %n(ε∞⃗q ) = 1

τn
= 0.625 fs−1 . (2.44)

Note that in order to account for the possible trapping of emitted electrons in the
image potential in front of the surface, the line shape (2.42) needs to be multiplied by
a surface transmission function. As will be explained in Sec. 2.6, this turns the decay
rate’s spectrum and with it the decay rate itself into time-dependent quantities.

2.2.4 Image Shift of Projectile Levels

After our investigation of the projectile wave functions in the previous sections we
now turn to the variation of the associated energy levels during the surface reactions.
In general, when an atomic or molecular particle approaches a metallic or dielectric
surface its electronic levels are displaced due to image interactions between charges
on the projectile and in the surface. Thus, in the scattering processes considered
here the energies of projectile electrons exhibit a z-dependence which by way of the
projectile trajectory turns into a time dependence.

For the projectile’s continuum states, in particular, the energy variation is trivial
since these states represent free electrons. Hence, their overall energy εq⃗(z) obviously
follows the image potential which here and in the following we approximate by the
truncated classical form Vi(z) given by (2.14). As a result we find

εq⃗(z) = ε∞⃗q + Vi(z) . (2.45)

For bound projectile electrons, on the other hand, things are a little more in-
volved. In Sec. 2.4 we will see how these level shifts could be calculated from a matrix
element involving electronic as well as nuclear image charges. However, since in this
work we are considering the case of low kinetic energies, there is a more easy way of
obtaining the level shifts. For this purpose we consider an occupied energy level εn
of a neutral or singly charged projectile located at a distance z from the surface.
Following the ideas of Newns et al.[101] we can estimate the level’s effective ionization
energy εn(z) by considering the overall projectile energy change under three virtual
operations.

1. Move the projectile from the position z to infinity.
For neutral projectiles no energy change is associated with this step. When,
on the other hand, the projectile carries a single charge, its overall energy at
the position z from the surface is lowered by the value of the image potential
at this location. Since the latter vanishes at infinity, the relocation causes the
overall projectile energy to change by −Vi(z).

2. Ionize the bound electron to the vacuum level.
Since the projectile is infinitely far away from the surface, the level is at its
unperturbed value ε∞n . Consequently, the ionization results in an overall pro-
jectile energy change of −ε∞n .



Chapter 2. Effective Model 31

3. Bring the resulting projectile back to the initial position z.
This step introduces an energy change of Vi(z) when the ionized projectile
carries a single charge. If, however, the ionization led to a neutral projectile,
no change of energy is connected with this step.

The value of εn at the position z is then given by the negative of the sum of these
energy changes. Adding up the effects for an occupied level of a singly charged
negative ion we obtain

εn(z) = −[−Vi(z)´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
Relocation to infinity

+
Ionization at infinity³¹¹¹¹·¹¹¹¹¹µ(−ε∞n )+ 0®

Relocation to z

] = ε∞n + Vi(z) . (2.46)

Thus, the level εn shifts downwards upon approaching the surface. On the contrary,
for a neutral projectile we find

εn(z) = −[ 0®
Relocation to infinity

+
Ionization at infinity³¹¹¹¹·¹¹¹¹¹µ(−ε∞n )+ Vi(z)²

Relocation to z

] = ε∞n − Vi(z) . (2.47)

Consequently, the level moves upwards as the projectile gets closer to the surface.
We stress that the procedure presented here is independent of the specific projec-

tile level. Thus, we conclude that upon approaching the surface all of the ionization
levels of a negative ion like N−

2(2Πg) shift downwards due to (2.46). Similarly, ac-
cording to (2.47) for neutral projectiles like He(1S0), Ar(1S0) and N2(1Σ+

g) each and
any of the ionization levels are shifted upwards as the projectile approaches the sur-
face. In terms of the previously introduced projectile energies ε0g, ε1∗, ε0− and ε1−
we, thus, find

ε0g(z) = ε∞0g − Vi(z) , ε1∗(z) = ε∞1∗ − Vi(z) ,
ε0−(z) = ε∞0− + Vi(z) , ε1−(z) = ε∞1− + Vi(z) . (2.48)

Finally, the reader may note that the shift of the ionization energies does not
correspond to an actual energy change of the projectile. The ionization levels are
defined solely in terms of the removal of an electron from the molecule and, hence,
do not imply an energy change for a bound electron.

2.3 Projectile Trajectory
In the theoretical description of charge exchange during surface collisions of atomic
and molecular projectiles one usually employs the trajectory approximation (see for
instance Refs. [13, 56, 90, 143]). In particular, this means that the projectile mo-
tion is decoupled from the dynamics of the system and one supplies its trajectory
externally. This approach completely ignores any feedback between the electronic
degrees of freedom and the projectile motion[90]. Consequently, it is an adequate ap-
proximation only if the projectile mass is much larger than the electronic mass[13].
Hence, the trajectory approximation would for instance not be suitable to describe
the scattering of a single electron from a surface. For the case of atomic and molecu-
lar projectiles, however, the overall projectile mass is in general at least three orders
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Figure 2.5: Schematic illustration of the collision geometry for atomic and diatomic
projectiles. Here r⃗p denotes the projectile’s center of mass and v represents its velocity.
Moreover, for the diatomic case % denotes the molecule’s bond length and ϕ is the angle
between the z-axis of the molecular reference frame and the surface. Note that the corre-
sponding angle for atomic particles is not shown in order not to overload the drawing. In
addition, the orientation of the projectile reference frame can be expected to play a minor
part for mononuclear particles.

of magnitude larger than the mass of an electron. Therefore, the trajectory ap-
proximation is valid in these cases and will, thus, be employed in this work. In the
following we will describe our particular choice for the projectile trajectory.

For simplicity we assume a classical trajectory. The projectile may start its
motion at t = −∞ and reach the turning point of its trajectory at t = 0. Moreover,
it may approach the surface under normal incidence and with constant velocity v.
Upon reaching the turning point z0 the projectile then bounces off the surface and its
motion is reversed instantly. Under these conditions the trajectory of the projectile’s
center of mass r⃗p can be described by

r⃗p(t) = zp(t) e⃗z = (v ∣t∣ + z0) e⃗z , (2.49)

where e⃗z is the unit vector in z direction.
In addition to this translative motion we also have to consider the orientation of

the projectile axis, constituting the z-axis of the projectile’s reference frame, with
respect to the surface. In particular, it is sufficient to only consider rotations of
the projectile about one specific< axis in the x-y-plane due to the translational
symmetry of the solid surface in this plane. Here, without loss of generality, we
choose the y-axis. Moreover, to simplify our analysis we assume the projectile
axis to stay fixed throughout the scattering process, thus, neglecting any rotational
excitations of the projectile. Hence, we can encapsulate the projectile orientation
in the angle ϕ which measures the constant rotation of the projectile axis around
the laboratory y-axis. The consequential overall geometry of the surface collision
process is shown in Fig. 2.5.
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Let us now turn to the turning point z0. Since the center of mass trajectory is
classical, z0 can be determined by considering the motion of the projectile in the
projectile-surface interaction potential Vps for a given initial kinetic energy εkin. The
latter relates to the projectile velocity v via

εkin = Mp

2
v2 , (2.50)

where Mp is the projectile mass (see Appendix A). In particular, assuming the
projectile’s total energy to stay fixed during the scattering process4 the turning
point can be obtained by solving

Vps(z0) != εkin , (2.51)

for z0. This requires us first to concretize the projectile-surface interaction po-
tential Vps. In the range of low kinetic energies (εkin ≤ 1eV) the latter is usually
approximated by the Morse-type potential[13]

Vps(z) = d [1 − e−a(z−ze)]2 − d , (2.52)

with material parameters d, a and ze (see Appendix A). In general, these parameters
are specific to both the projectile and the surface material. However, at least for
nitrogen colliding with metallic surfaces it is claimed that the respective values are
not very specific to the surface material[68]. For simplicity we, thus, assume that
the parameters of (2.52) are only specific to the projectile material. Hence, the
values listed in Appendix A are valid for arbitrary metallic and dielectric surfaces.
We stress that this approximation is necessary due to a lack of consistent data
for projectile turning points on different surface materials. However, this does not
restrict the universality of our model since the turning only enters our calculations
as a parameter and may, thus, be exchanged at any time.

Employing the Morse potential (2.52) we can now explicitly solve (2.51) for the
turning point which yields

z0 = ze − 1

a
ln(1 +√

1 + εkin
d

) . (2.53)

Figure 2.6 shows the variation of z0 over εkin as calculated from for the three different
projectile materials considered in this work. As we see, for N2 the turning point
remains practically constant within the depicted range of kinetic energies. For He
and Ar, on the other hand, the values of z0 decrease significantly as the projectile’s
kinetic energy rises. In total, with values ranging significantly above 3aB for kinetic
energies below 0.1 eV, the turning point seems to be rather large for all of the three
projectile substances.

Note that in addition to the z0-values emerging from (2.53), for the neutraliza-
tion of He+(2S1/2) we will also consider the turning point z0 = 1.2 ⋅ 10−10 m ≈ 2.27aB
proposed by Modinos and Easa[96] for εkin = 50 meV. This value significantly deviates
from the turning point z0 ≈ 3.6aB calculated from the Morse potential (2.52) using

4Note that the effect of surface reactions proceeding at the expense of the projectile’s kinetic
energy can be neglected since here we focus on the case of slow projectiles (εkin ≤ 1eV). Hence,
the projectile’s kinetic energy is significantly smaller than the energies of electrons involved in the
surface reactions studied in this work.
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Figure 2.6: Variation of the turning point z0 with the projectile’s kinetic energy εkin
for He, Ar and N2. The values of z0 were calculated from the Morse potential (2.52) by
means of (2.53) using the parameters listed in Appendix A.

the parameters of Bonini et al.[13] for the metastable state of helium at the same
kinetic energy (see Fig. 2.6). As will be shown in Chapter 5, this discrepancy in the
turning point leads to a significant difference in the efficiency of the neutralization
process.

Finally, we stress that the trajectory (2.49) is particularly handy and allows for
an analytical evaluation of some of the time integrals occurring in our quantum-
kinetic calculation (see for instance Sec. 4.1.2). Moreover, as we will see in Sec. 2.4,
the trajectory only enters the Hamiltonian as a parameter determining the time
dependence of the matrix elements. Thus, at the cost of sacrificing numerical per-
formance our model allows for the inclusion of a more realistic, and hence more
complicated, trajectory as well. This feature is a direct consequence of the trajec-
tory approximation.

2.4 Hamiltonian
As pointed out earlier, we aim at constructing an effective model of the surface reac-
tions discussed in Sec. 1.2. One important step towards achieving this objective was
discussed in Sec. 2.3. Here we showed how the projectile’s motion can be approxi-
mated by an externally supplied trajectory. This so called trajectory approximation
allows us to separate the dynamics of the projectile nuclei from the rest of the sys-
tem. As a result, the nuclei coordinates only enter the Hamiltonian parametrically
and we can omit any interaction terms operating exclusively on the projectile’s cores.
Furthermore, instead of considering the full many-electron Hamiltonian we will re-
strict our analysis to those electrons which are actively participating in the charge
transfer reactions we are studying. Since there are at most two electrons engaging
in these reactions, we only consider two active electrons in our model. All of the
remaining passive electrons are assumed to act as frozen spectators generating effec-
tive interaction potentials for the active electrons. As we saw in Secs. 2.1 and 2.2,
on the solid side this leads to an effective bulk potential describing the solid’s energy
bands while on the projectile side this results in effective nucleus charges.

We will now outline the general procedure for deriving the Hamiltonian from the
aforementioned assumptions. For the case of an atomic projectile a similar analysis
has been presented by Gadzuk[30]. Here we adapt this approach to the case of a
general multi-core projectile.
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Figure 2.7: Exemplary distribution of actual (solid circles) and image (dashed circles)
charges for a neutral diatomic molecule in front of a metallic or dielectric surface. The solid
is located on the left-hand side and positive and negative charges have been marked with +
and −, respectively. In the depicted situation the blue electron belongs to the projectile
and resides outside the surface while the red electron occupies a band state inside the solid.
The latter electron does, thus, not generate an image charge by itself. On the projectile
side the positive nucleus charges result from the screening of the actual core charges by
the passive electrons on the projectile. The relevant interactions between the electrons and
the various real and image charges are marked with arrow lines.

In particular, to obtain the Hamiltonian we need to consider the interplay of
the various real and image charges within the system. As shown by Gadzuk[30], we
can, however, neglect interactions between image charges inside the surface. His
argument is that these correlations should serve to shift the band states as a result
of the external charges. Since the band represents a continuum of states all of these
are shifted and, consequently, in case of an occupied band the resulting energy shift
for a single state is negligible. Moreover, we also omit any forces acting on the
projectile’s nuclei as the nucleus motion has already been fixed by the trajectory
approximation. Altogether, we, thus, only have to consider interactions pertaining
to the two involved real electrons, as shown in Fig. 2.7 for the exemplary situation
of a diatomic projectile. For the general case of a projectile with np nuclear centers
the total Hamiltonian in position space representation reads (see also Ref. [58])

Ĥ(r⃗1, r⃗2, t) = 2∑
ν=1

[T̂ (r⃗ν) + Ĥs(r⃗ν) + Ĥp(r⃗ν , t) + Ĥi(r⃗ν , t)] + Ĥee(r⃗1, r⃗2) . (2.54)

Here T̂ is the operator of kinetic energy,

T̂ (r⃗) = − h̵2

2me

∇r⃗ , (2.55)

and Ĥs(r⃗ν) contains the constant bulk potential within the solid,

Ĥs(r⃗) = Θ(−z)V0 . (2.56)
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Moreover, Ĥp embraces the Coulomb interactions between the electrons and the
projectile’s nuclei,

Ĥp(r⃗, t) = − np∑
j=1

V̂
Zj
C (r⃗ − r⃗pj(t)) , (2.57)

while Ĥi accounts for the electronic self-image interaction as well as the Coulomb
interactions between the electrons and the images of the projectile’s core charges,

Ĥi(r⃗, t) = V̂i(r⃗) + np∑
j=1

V̂
Zj
C (r⃗ − r⃗′pj(t)) . (2.58)

Here and in the following a primed position vector r⃗′ marks the location of an image
charge associated with a real charge at the position r⃗,

r⃗′ = r⃗ − 2 (r⃗ ⋅ e⃗z) e⃗z , (2.59)

and V̂ Z
C denotes the screened Coulomb potential of an electron in the field of Z-fold

negative charge,

V̂ Z
C (r⃗) = Ze2

0

4πε0εr(r⃗) e
−κ(r⃗)∣r⃗∣
∣r⃗∣ . (2.60)

In (2.60) εr and κ label the static dielectric and screening constant both of which
may depend on the positions of the interacting particles. Furthermore, in (2.58) the
expression V̂i represents the truncated classical self-image potential (2.14). Finally,
the last term of (2.54), Ĥee, consists of the mutual Coulomb interactions between
the two electrons and their images,

Ĥee(r⃗1, r⃗2) = V̂C(r⃗1 − r⃗2) − V̂C(r⃗1 − r⃗′2) − V̂C(r⃗′1 − r⃗2) , (2.61)

where V̂C is shorthand for V̂ 1
C and the interaction between the images themselves

has been neglected in accordance with Gadzuk’s[30] aforementioned argument.
As pointed out earlier, the usage of the truncated classical self-image poten-

tial (2.14) is an approximation since in reality the image potential will gradually
blend into the constant bulk potential. A better description would be given by the
aforementioned Jones-Jennings-Jepsen potential[63] (see Eq. (2.17)). However, as
noted at the end of Sec. 2.1, the latter potential involves additional material spe-
cific parameters and is not easily handled in an analytical or numerical treatment.
Moreover, Kürpick and Thumm[72] have investigated various surface potential models
and their influence on the matrix elements occurring in the interaction of hydrogenic
levels with a metallic surface. Their results indicate that the truncated image poten-
tial is a reasonable approximation although the Jones-Jennings-Jepsen potential[63]
yields better results in certain situations. Therefore, we stick with the truncated
image potential (2.14) at this point. Note that for the dielectric surface materials
considered in this work reliable values for the position of the image plane zi were
note available. We, therefore, assumed zi = 0 for these situations.

In order to prepare the Hamiltonian (2.54) for a quantum-kinetic treatment, we
now switch to the second quantization representation. For this purpose we assume
that a basis of the Hilbert space can be formed by combining the states within the
isolated solid ∣k⃗⟩ and the bound and continuum states of the isolated projectile ∣n⟩
into a set. Such a set represents a basis only when it fulfills the usual conditions
of completeness and orthogonality. The former is not a problem as any arbitrary
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state of the combined system may be constructed by a linear combination of ∣k⃗⟩-
and ∣n⟩-states (see also Ref. [31]). The orthogonality condition, on the other hand,
is in general not fulfilled exactly since the scalar product ⟨k⃗∣n⟩ is non-vanishing in
most cases. One might, however, argue that when the projectile’s turning point is
far enough outside the surface, the overlap of solid and projectile wave function is
negligible and, hence, they may be considered orthogonal. This is also true if k⃗ and n
pertain to continuum states as the asymptotic form of the projectile’s continuum
wave functions is a plane wave.

On the other hand, if the projectile’s turning point is close enough to the sur-
face the orthogonality approximation breaks down. In such situations orthogonality
could for instance be enforced by subtracting the non-orthogonal component from
the solid’s states (see Ref. [18]),

∣k⃗⟩ = ∣k⃗0⟩ −∑
n

⟨n∣k⃗0⟩∣n⟩ . (2.62)

Here ∣k⃗0⟩ denotes a state of the unperturbed surface and ∣k⃗⟩ is an orthogonalized
surface state. Since in this work we are considering the case of low kinetic energies
resulting in a distant turning point (see Fig. 2.6), we can, however, safely stick with
the orthogonality assumption.

We now calculate the second quantized version of (2.54) by employing the usual
rules for one- and two-particle operators (see for instance Ref. [117]). We start with
the one-particle terms which we collect in a quantity Ĥ1,

Ĥ1 = ∑
b1,b2

⟨b1∣ T̂ + Ĥs + Ĥp + Ĥi ∣b2⟩ c†b1cb2 . (2.63)

Here b1 and b2 run over all the states within the set {∣k⃗⟩, ∣n⟩}. Making use of the
Schrödinger equations of the isolated surface and projectile systems,

(T̂ + Ĥs)∣k⃗⟩ = εk⃗ ∣k⃗⟩ , (2.64a)

(T̂ + Ĥp)∣n⟩ = ε∞n ∣n⟩ , (2.64b)

Equation (2.63) turns into

Ĥ1 = ∑⃗
k

εk⃗ c
†
k⃗
c
k⃗
+∑

n

ε∞n c†n cn +∑
n,n′

⟨n∣ Ĥs + Ĥi ∣n′⟩ c†n cn′
+ ∑⃗
k,n

[⟨k⃗∣ T̂ + Ĥs + Ĥi + Ĥp ∣n⟩ c†k⃗cn +H.c.] , (2.65)

where we have neglected internal couplings between states inside the solid sur-
face due to the aforementioned argument of Gadzuk[30]. In Eq. (2.65) the diagonal
terms ∑k⃗ εk⃗ c†k⃗ ck⃗ and ∑n ε∞n c†n cn describe unperturbed states within the solid and
on the projectile, respectively. Moreover, the diagonal components of the matrix
element ⟨n∣ Ĥs + Ĥi ∣n′⟩ represent the image shifts of projectile states in front of the
surface. Hence, the effective energy of a projectile level n amounts to

εn(t) = ε∞n + ⟨n∣ Ĥs + Ĥi ∣n⟩ . (2.66)

Here the time dependence of εn stems from the motion of the projectile with respect
to the surface which results in time-dependent projectile wave functions. Note that
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while we could use (2.66) to calculate the variation of the projectile levels along the
trajectory, in this work we will rather employ the procedure introduced in Sec. 2.2.4
as it offers an easy-to-use approximate approach that is valid due to the distant
turning point of the projectile. In total the diagonal component of Ĥ1 reads

∑⃗
k

εk⃗ c
†
k⃗
c
k⃗
+ ε0(t) c†0 c0 + ε1(t) c†1 c1 + ∑⃗

q

εq⃗(t) c†q⃗ cq⃗ , (2.67)

where we have split up the projectile states n into the bound states 0 and 1, per-
taining to our two-level system, and the continuum states q⃗.

We now consider the non-diagonal components of ⟨n∣ Ĥs + Ĥi ∣n′⟩. These terms
describe the resonant tunneling between two different projectile states. Due to the
strong effect of energy conservation, such a transition is only efficient when the two
levels are degenerate. For the surface reactions under consideration in the present
work this is only the case for the second step of the two-step resonant de-excitation
of N2(3Σ+

u) consisting of the decay of the N−
2(2Πg) ion (see Eq. (1.1)). Here an

electron resonantly tunnels between the excited state of our molecular two-level
system ∣1⟩ and a projectile continuum state ∣q⃗⟩. Consequently, in any other case
this interaction term can be neglected and we only retain

∑⃗
q

[⟨q⃗∣ Ĥs + Ĥi ∣1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vq⃗(t)

c†q⃗ c1 +H.c.] , (2.68)

where the time dependence of the tunneling matrix element Vq⃗(t) again is a conse-
quence of the projectile motion. Note that (2.68) only describes the electron emis-
sion due to the surface-induced decay of N−

2(2Πg) since clearly the matrix element Vq⃗
merely involves interactions introduced by the presence of the surface but not the
internal correlations of the negative ion. In principle the natural decay of N−

2(2Πg)
could be described by an analogous term with a different matrix element. However,
as mentioned in Sec. 2.2.3, we will not follow this track here as a corresponding
matrix element cannot easily be derived within the limits of our effective model. In-
stead the natural decay reaction will be manually incorporated into our description
in Sec. 3.3.

Further inspection of (2.65) draws our attention to the hybridization term be-
tween ∣k⃗⟩- and ∣n⟩-states which represents the resonant tunneling of electrons be-
tween the surface and the projectile. This expression can describe the resonant
electron capture subreaction of the two-step resonant de-excitation of N2(3Σ+

u) (see
Eq. (1.1)) as well as the resonant neutralization of a positive ion (see Eq. (1.5)).
The associated matrix element ⟨k⃗∣ T̂ + Ĥs + Ĥi + Ĥp ∣n⟩ can be further simplified by
employing the orthogonality assumption of solid and projectile states together with
either (2.64a) or (2.64b). This results in two different tunneling matrix elements
involving either Ĥp and Ĥi or Ĥs and Ĥi. As outlined in Ref. [31], the former one
is preferable because it properly accounts for the orthogonality requirements within
the limits of our approximation. Moreover, since we are only interested in the res-
onant electron tunneling between the projectile’s ground state level ∣0⟩ and surface
states ∣k⃗⟩, we strip out the remaining transitions keeping only the term

∑⃗
k

[⟨k⃗∣ Ĥp + Ĥi ∣0⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vk⃗(t)

c†
k⃗
c0 +H.c.] . (2.69)



Chapter 2. Effective Model 39

Here Vk⃗(t) is the matrix element connected with the electron capture subreaction
of the resonant de-excitation channel (1.1) and the resonant neutralization chan-
nel (1.5). Its time dependence once more follows from the motion of the projectile.

We now proceed with the two-particle term which we encapsulate in the opera-
tor Ĥ12,

Ĥ12 = ∑
b1,b2,b3,b4

⟨b1 b2∣ Ĥee ∣b3 b4⟩ c†b1c†b2cb4cb3 . (2.70)

Here the bi-states (i = 1, . . . ,4) again run over the entire set {∣k⃗⟩, ∣n⟩}. Expansion of
the series in (2.70) results in a vast number of terms most of which are not meaningful
to us because either the transitions are energetically blocked or they are not relevant
for the surface reactions we are interested in. Consequently, we only extract those
expressions that describe the specific two-particle Auger transitions studied in this
work (see Sec. 1.2). In particular, these are the direct Auger de-excitation term (see
Eq. (1.3)),

∑⃗
k,k⃗′

[⟨0 k⃗′∣ Ĥee ∣1 k⃗⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vk⃗k⃗′(t)

c†0 c1 c
†
k⃗′ ck⃗ +H.c.] , (2.71)

the indirect Auger de-excitation term (see Eq. (1.2)),

∑⃗
k,q⃗

[⟨0 q⃗∣ Ĥee ∣k⃗ 1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vk⃗q⃗(t)

c†0 ck⃗ c
†
q⃗ c1 +H.c.] , (2.72)

and the Auger neutralization term (see Eq. (1.4)),

∑
k⃗1,k⃗2,k⃗′

[⟨0 k⃗′∣ Ĥee ∣k⃗1 k⃗2⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vk⃗1k⃗2k⃗

′(t)
c†0 ck⃗1

c†
k⃗′ ck⃗2

+H.c.] . (2.73)

Here Vk⃗k⃗′(t), Vk⃗q⃗(t) and Vk⃗1k⃗2k⃗′(t) are the associated Auger matrix elements. Since
all of these involve states on the projectile and in the surface, they vary in time as
the projectile moves along its trajectory.

The full Hamiltonian can now be obtained by adding the one- and two-particle
operators Ĥ1 and Ĥ12. In particular, this involves the diagonal component (2.67),
the hybridization terms (2.68) and (2.69) as well as the Auger terms (2.71), (2.72)
and (2.73). The resulting Hamiltonian is of the generalized Anderson-Newns type[90]
and can be used to analyze the Auger de-excitation reactions (1.2) and (1.3) as well
as the Auger and resonant neutralization channels (1.4) and (1.5). It is, however,
not capable of describing the two-step resonant de-excitation reaction (1.1) and its
interaction with the Auger de-excitation channels (1.2) and (1.3) due to two reasons.
For one thing, the Hamiltonian does not involve couplings between the subprocesses
of (1.1), the resonant electron capture and the resonant electron emission, since these
transitions involve different projectile levels (see Eqs. (2.68) and (2.69)). Hence,
there is no way to restrict the electron emission from one level to only proceed after
an electron has been captured into the other. For another thing, the Hamiltonian
completely neglects Coulomb correlations between the active and passive electrons
on the projectile. Inclusion of this effect is, however, required to describe the different
parametrizations of the projectile level energies and to account for the energy that
is picked up or released by the passive electrons during the resonant reaction (1.1).
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These issues render the Hamiltonian inappropriate for the description of the resonant
de-excitation channel (1.1) and its coupling to the Auger reactions (1.2) and (1.3)
and call for a manual extension of our model. In the following section we will explain
how this can be achieved by means of a projection operator approach leading to a
pseudo-particle representation.

2.5 Pseudo-Particle Representation
We will now focus on the description of the de-excitation reactions (1.1), (1.2)
and (1.3) building upon the Hamiltonian derived in the previous section. As ex-
plained earlier, the projectile level energies ε0 and ε1 depend on the particular oc-
cupation of the projectile levels n0 and n1 (see Sec. 2.2.3). The same also applies
to the surface reactions themselves. The electron capture subreaction of (1.1) and
its reverse, on the one hand, should only act on the configurations (n0, n1) = (0,1)
and (n0, n1) = (1,1) representing the metastable state N2(3Σ+

u) and the negative
ion N−

2(2Πg), respectively. On the other hand, the electron emission subchannel
of (1.1) and the associated opposite reaction should only be effective for the situa-
tions (n0, n1) = (1,1) and (n0, n1) = (1,0) corresponding to the negative ion N−

2(2Πg)
and the ground state N2(1Σ+

g), respectively. Finally, the Auger de-excitation chan-
nels (1.2) and (1.3) and their inverse reactions should only be active for the occu-
pations (n0, n1) = (0,1) and (n0, n1) = (1,0) which stand for the metastable mole-
cule N2(3Σ+

u) and the ground state N2(1Σ+
g), respectively.

Since this occupation dependence is obviously not contained in the Hamiltonian
derived in Sec. 2.4, it needs to be incorporated manually. For this purpose we utilize
the operators

Pn0n1 = ∣n0n1⟩⟨n0n1∣ , (2.74)

projecting onto the different configurations (n0, n1). In addition, we introduce two
auxiliary bosonic levels b(†)0 and b

(†)
1 with energies ω0 and ω1. These levels shall

engage in the subreactions of the two-step resonant de-excitation channel (1.1) and
mimic the intra-molecular Coulomb correlations. For this purpose the explicit values
of the energies ω0 and ω1 need to be fixed. This will be done later on in this section
after the pseudo-particle representation has been derived.

Introducing the projection operators (2.74) and the auxiliary bosonic levels our
extended Hamiltonian reads

Ĥ(t) = ∑
n0,n1

Pn0n1[ε(n0n1)
0 (t) c†0 c0 + ε(n0n1)

1 (t) c†1 c1]
+ ∑⃗

k

εk⃗ c
†
k⃗
c
k⃗
+ ∑⃗

q

εq⃗(t) c†q⃗ cq⃗ + ω0 b
†
0 b0 + ω1 b

†
1 b1

+ ∑⃗
k

[(P01 + P11)Vk⃗(t) c†k⃗ b†0 c0 +H.c.]
+ ∑⃗

q

[(P10 + P11)Vq⃗(t) c†q⃗ b†1 c1 +H.c.]
+ ∑⃗
k,k⃗′

[(P10 + P01)Vk⃗k⃗′(t) c†0 c1 c
†
k⃗′ ck⃗ +H.c.]

+ ∑⃗
k,q⃗

[(P10 + P01)Vk⃗q⃗(t) c†0 ck⃗ c†q⃗ c1 +H.c.] .

(2.75)
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Here the projected projectile energies are given by

P10 ε
(n1n2)
0 = ε(10)

0 = ε0g , P01 ε
(n1n2)
1 = ε(01)

1 = ε1∗ ,
P11 ε

(n1n2)
0 = ε(11)

0 = ε0− , P11 ε
(n1n2)
1 = ε(11)

1 = ε1− ,
(2.76)

with the subscripts g, ∗ and − denoting the respective energy value in the ground
state molecule N2(1Σ+

g), the metastable state N2(3Σ+
u) and the negative ion N−

2(2Πg),
respectively (see also Fig. 2.4). Note that we don’t have to specify the remaining
energies as these will drop out in the course of the pseudo-particle representation
that will be introduced in the following.

As we see, the projection operators (2.74) permit us to describe the transi-
tions (1.1), (1.2) and (1.3) by a single Hamiltonian. Depending on the process and,
thus, the occupancy of the molecular levels, different matrix elements can be assigned
to the Hamiltonian. Moreover, the projectors also guarantee that the occupancies
of the two molecular levels never vanishes simultaneously. Thus, the N+

2(2Πu)-state
is never realized and the conditional coupling between the two subreactions of the
resonant de-excitation channel (1.1) is contained automatically.

However, a significant drawback of the projection operators is that they are not
suitable for a diagrammatic treatment which would offer a flexible and powerful way
to obtain quantum-kinetic equations. In order to work around this situation, we now
employ a pseudo-particle approach allowing us to rewrite the Hamiltonian (2.75)
in terms of slave fields[3,22,26,76,120,139]. The starting point for this procedure is the
completeness condition,

∣00⟩⟨00∣ + ∣10⟩⟨10∣ + ∣01⟩⟨01∣ + ∣11⟩⟨11∣ = 1 , (2.77)

which expresses the fact that the molecule can exhibit exactly one of the configu-
rations depicted in Fig. 2.4 at the same time. We then introduce pseudo-particle
operators c†+, c†g, c†∗ and c†− which create the positive ion N+

2(2Πu), the ground state
molecule N2(1Σ+

g), the metastable molecule N2(3Σ+
u) and the negative ion N−

2(2Πg)
from an abstract vacuum state ∣vac⟩,

∣00⟩ = c†+∣vac⟩ , ∣10⟩ = c†g ∣∣vac⟩ ,
∣01⟩ = c†∗ ∣vac⟩ , ∣11⟩ = c†−∣∣vac⟩ . (2.78)

As a result, the completeness condition (2.77) can be rewritten in the form

c†+ c+ + c†g cg + c†∗ c∗ + c†− c− = 1 . (2.79)

Moreover, by employing (2.77) and (2.78) the operators c(†)
0/1 creating and destroying

an electron in the two states of our molecular two-level system can be expressed as

c0 = c0 ∗ 1 = ∣00⟩⟨10∣ − ∣01⟩⟨11∣ = c†+ cg − c†∗ c− , (2.80a)

c†0 = c†0 ∗ 1 = ∣10⟩⟨00∣ − ∣11⟩⟨01∣ = c†g c+ − c†− c∗ , (2.80b)

c1 = c1 ∗ 1 = ∣00⟩⟨01∣ + ∣10⟩⟨11∣ = c†+ c∗ + c†g c− , (2.80c)

c†1 = c†1 ∗ 1 = ∣01⟩⟨00∣ + ∣11⟩⟨10∣ = c†∗ c+ + c†− cg . (2.80d)

Note that here we have defined c0 ∣11⟩ = −∣01⟩ and c†0 ∣01⟩ = −∣11⟩ in order to satisfy
the anticommutation relations of the c(†)

0/1 (see also Ref. [17]). The relations (2.80)
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then reproduce the completeness condition (2.79) when either the cg/∗ are bosonic
and the c−/+ are fermionic or the cg/∗ are fermionic and the c−/+ are bosonic. With-
out loss of generality we choose cg and c∗ to be bosonic and declare the labeling
conventions

c
(†)
g Ð→ b

(†)
g , c

(†)∗ Ð→ b
(†)∗ , c

(†)+ Ð→ f
(†)+ , c

(†)− Ð→ f
(†)− . (2.81)

Consequently, the constraint (2.79) takes the form

Q = b†g bg + b†∗ b∗ + f †− f− + f †+ f+ = 1 , (2.82)

where we have introduced the usual pseudo-particle number operator Q.
Formally, the auxiliary fermion and boson operators f−/+ and b∗/g represent

pseudo-particle operators creating and annihilating molecular configurations. The
constraint (2.82) ensures that at any time only one of the four possible molecular con-
figurations is present in the system. The occupancy of a molecular pseudo-particle
state is, thus, at most unity. Hence, it represents the probability with which the
respective molecular configuration appears in the course of the scattering event.

We now construct the pseudo-particle representation of the Hamiltonian by in-
serting the decomposition (2.80) into (2.75), making the identifications (2.81) and
collecting only terms which are in accordance with (2.82). The result reads

Ĥ(t) = εg(t) b†g bg + ε∗(t) b†∗ b∗ + ε−(t) f †− f−
+ ∑⃗

k

εk⃗ c
†
k⃗
c
k⃗
+ ∑⃗

q

εq⃗(t) c†q⃗ cq⃗ + ω0 b
†
0 b0 + ω1 b

†
1 b1

− ∑⃗
k

[Vk⃗(t) c†k⃗ b†0 b†∗ f− +H.c.] + ∑⃗
q

[Vq⃗(t) c†q⃗ b†1 b†g f− +H.c.]
+ ∑⃗
k,k⃗′

[Vk⃗k⃗′(t) c†k⃗′ ck⃗ b†g b∗ +H.c.] + ∑⃗
k,q⃗

[Vk⃗q⃗(t) ck⃗ c†q⃗ b†g b∗ +H.c.] ,
(2.83)

where we have introduced the abbreviations

εg = ε0g , ε∗ = ε1∗ , ε− = ε0− + ε1− . (2.84)

Note that by construction no term in (2.83) contains the operator f+ or its adjoint
since the positive ion N+

2(2Πu) is not involved in the transitions the Hamiltonian
is supposed to model (see Eqs. (1.1), (1.2) and (1.3)). Furthermore, the physical
meaning of the various terms in (2.83) is particularly transparent. Consider for
instance the last term describing the indirect Auger de-excitation reaction (1.2).
Here a metastable molecule and an electron from the surface are annihilated while
a ground state molecule and an Auger electron are created.

Inspecting the structure of the resonant tunneling terms in (2.83) we can now fix
the energies of the auxiliary boson states ω0 and ω1. In particular, the hybridization
term describing the surface electron capture reaction,

∑⃗
k

[Vk⃗(t) c†k⃗ b†0 b†∗ f− +H.c.] , (2.85)

involves the tunneling of a band electron k⃗ into the projectile’s ground state level
at the energy ε0 = ε0− + ε1− − ε1∗ − ω0. Since this transition forms the N−

2(2Πg)-state
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(see Eq. (1.1)), the energy of the projectile level capturing the electron should,
however, be ε0 = ε0−. Consequently, we choose

ω0 = ε1− − ε1∗ . (2.86)

An equivalent treatment can also be applied to the hybridization term associated
with the resonant electron emission,

∑⃗
q

[Vq⃗(t) c†q⃗ b†1 b†g f− +H.c.] . (2.87)

This expression describes the tunneling of an electron from the excited projectile
level at the energy ε1 = ε1− + ε0− − ε0g − ω1 into a projectile continuum state q⃗. Since
here the electron is emitted from the negative ion state N−

2(2Πg) (see Eq. (1.1)), the
excited level’s energy should, however, amount to ε1 = ε1−. Hence, we choose

ω1 = ε0− − ε0g . (2.88)

With the proper parametrization the auxiliary boson states b(†)
0/1, thus, account for

the additional energy that is picked up or released by the passive projectile electrons
in the course of the resonant de-excitation reaction (1.1).

In total, together with the constraint (2.82) and the bosonic energies (2.86)
and (2.88) the Hamiltonian (2.83) is capable of describing the two-step resonant de-
excitation reaction (1.1) as well as the Auger de-excitation channels (1.2) and (1.3)
and their mutual interactions. Moreover, since the pseudo-particle operators f−
and b∗/g comply to standard commutation and anti-commutation relations, it is
possible to conduct a non-equilibrium diagrammatic expansion of the interaction
terms involved in (2.83). However, while the Hamiltonian itself conserves the pseudo-
particle number Q, the quantum-kinetic equations resulting from a diagrammatic
treatment may contain terms which violate the constraint (2.82). Therefore, the
projection onto the physical subspace Q = 1 needs to be carried out explicitly in
the course of our quantum-kinetic calculation. For this purpose we will employ the
Langreth-Nordlander projection technique[76] in Sec. 3.3.

2.6 Surface Transmission Functions
The last component of our effective model discussed in this chapter are the sur-
face transmission functions which allow us to extract the amount of experimentally
observable secondary electrons from our theory.

The surface reactions considered in this work release secondary electrons either
into internally excited states of the solid surface or into continuum states of the
projectile (see Sec. 1.2). In order to observe these electrons in an experiment, two
conditions must hold. Firstly, the electron’s wave vector must point outside the
surface as otherwise the electron will travel into the interior of the solid and remain
inaccessible to common diagnostic tools. Secondly, the electron must be energetic
enough to breach through the surface barrier. For internally excited electrons trans-
mission through the surface edge is handled by means of the transmission coeffi-
cient Tkz appearing in the associated wave function[81,98] (see Eq. 2.3). Thus, to
an extent determined by the transmission coefficient Tkz these electrons can always
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escape the surface as long as their vertical energy is positive. On the other hand,
for electrons emitted into projectile continuum states we need to explicitly consider
the effect of their image potential Vi (see Eq. (2.14)). The latter is not included in
the wave functions (2.37) and can trap emitted electrons close to the surface. For an
electron to escape the attractive image force the sum of its vertical kinetic energy
and the image potential at the location of emission must be larger than zero. The
latter can be approximated by the position of the projectile’s center of mass r⃗p(t)
in the moment of emission[82].

The aforementioned effects need to be incorporated into a calculation of the
secondary electron emission coefficient. This can be done by introducing the surface
transmission functions

Tk⃗(t) = Θ(kz)Θ(εkz) , (2.89a)

Tq⃗(t) = Θ(qz)Θ(εqz + Vi(zp(t))) , (2.89b)

acting on internally excited electrons k⃗ and electrons in projectile continuum states q⃗,
respectively. Note that for the latter the term surface transmission function is
actually somewhat misleading since the electron is already emitted outside of the
surface. Nevertheless, the term has been established in these situations as well[82]
although the transmission is not through the surface itself but through the image
potential in front of it.

In the quantum-kinetic calculations of chapter 3 the transmission functions (2.89)
will be used to cut off the interaction matrix elements when considering electrons
that have escaped the surface. Moreover, as pointed out in Sec. 2.2.3, the surface
transmission function Tq⃗ also needs to be incorporated into the natural decay rate Γn
of the nitrogen shape resonance N−

2(2Πg). In particular, the fraction of the natural
decay rate Γ̃n that only pertains to emitted electrons capable of escaping the surface
can be calculated from the integral

Γ̃n(t) = 1

π ∫
∞

−∞dε
∞⃗
q ∫ π

0
dϑq⃗ Tq⃗(t)%n(ε∞⃗q ) . (2.90)

Here ϑq⃗ = arccos(qz/ ∣q⃗∣) and %n denotes the full decay rate’s energy spectrum (see
Eq. (2.42)). Employing (2.89b) we can carry out the ϑq⃗-integration in (2.90) and
obtain

Γ̃n(t) = ∫ ∞
0

dε∞⃗q %̃n(ε∞⃗q , t) , (2.91)

where the spectral decay rate %̃n(ε∞⃗q , t) is given by

%̃n(ε∞⃗q , t) = 1

π
Θ(ε∞⃗q + Vi(zp(t))) arccos

⎛⎜⎝
¿ÁÁÀ−Vi(zp(t))

ε∞⃗q
⎞⎟⎠ %n(ε∞⃗q ) . (2.92)

The final energy integral (2.91) then needs to be calculated numerically. As we see,
the rate Γ̃n varies in time due to the inclusion of the transmission function (2.89b).

Finally, we stress that while in the past surface transmission functions have
sometimes been used to fit numerical results to experimental measurements[44], this
is not needed in our case. Here the surface transmission functions (2.89) are part of
the physical structure of our effective model and do not involve any free parameter.
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Chapter 3

Quantum Kinetics

In this chapter we will present quantum-kinetic descriptions of the surface reactions
that were introduced in Sec. 1.2. Building upon the Hamiltonians derived in Secs. 2.4
and 2.5 we will analyze the isolated channels as well as their mutual interaction. For
every particular case our goal is to obtain equations which directly relate our model’s
parameters (most importantly the matrix elements) to the transient occupation of
the individual states within the system. The matrix elements are, however, not
concretized at any point within this chapter and, thus, our calculations possess a
universal character.

In the following we will first investigate the isolated electron capture and surface-
induced electron emission subreactions of the resonant de-excitation channel (1.1) by
means of the Green function formulation due to Keldysh (see Sec. 3.1). Subsequently,
in Sec. 3.2 we will utilize the same approach to analyze the Auger de-excitation
reactions (1.2) and (1.3). Afterwards, we will study the interplay of resonant and
Auger de-excitation using the Kadanoff-Baym formulation in Sec. 3.3. The latter
section will also embrace our treatment of the natural decay subreaction of (1.1).
Finally, in Sec. 3.4 we will again employ the Keldysh formulation in order to examine
the interaction of Auger and resonant neutralization due to (1.4) and (1.5).

3.1 Resonant Electron Capture and Release
Here we consider the dynamics of a single time-dependent fermion level εp(t) which
is resonantly coupled to a continuum of states ξ⃗. The associated Hamiltonian reads

Ĥ(t) = ∑⃗
ξ

εξ⃗(t) c†ξ⃗ cξ⃗ + εp(t) c†p cp + ∑⃗
ξ

[Vξ⃗(t) c†ξ⃗ cp +H.c.] , (3.1)

where Vξ⃗ denotes the tunneling matrix element. From the derivation of the over-
all Hamiltonian in Sec. 2.4 we know that upon choosing a proper parametrization
the system (3.1) can be used to describe the electron capture and surface-induced
electron emission subreactions of the resonant de-excitation channel (1.1). The par-
ticular link between the above Hamiltonian and these surface reactions will be es-
tablished later on in this section1. First, however, we consider the general dynamics
of (3.1).

1Note that the model (3.1) could also be used to study the resonant neutralization reaction (1.5).
Even so, this will not be the subject of the current section since the neutralization channels (1.4)
and (1.5) will be analyzed in detail in Sec. 3.4.
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In terms of its structure the Hamiltonian (3.1) represents the time-dependent
Newns-Anderson model without Coulomb interactions on the projectile (see for
instance Ref. [143]). It was originally introduced in the description of magnetic
impurities in metals[5] and has since been employed exhaustively in various con-
texts. As a standard problem of many particle physics it can be treated exactly
using the Keldysh formulation of the non-equilibrium Green function technique[12].
Here the self-energy solely consists of a trivial first-order diagram possessing only
non-diagonal components. The resulting advanced and retarded parts are given by

Σ
A/R
ξ⃗p

(t1, t2) = i

h̵
Vξ⃗(t1) δ(t1 − t2) = − [ΣA/R

pξ⃗
(t1, t2)]∗ , (3.2)

while the Keldysh component vanishes identically,

ΣK
ξ⃗p
(t1, t2) = 0 = ΣK

pξ⃗
(t1, t2) . (3.3)

Since the non-interacting part of the Hamiltonian (3.1) is consistent with the general
form (1.32), the unperturbed Green functions are given by Eqs. (1.33) and (1.34).
As a result, we can calculate the Keldysh component of the full Green function from
Eq. (1.36) which upon insertion of (3.3) simplifies to

GK
αβ(t, t′) = −i∑

γ

[1 − 2nγ(−∞)]GR
αγ(t,−∞)GA

γβ(−∞, t′) . (3.4)

Here and in the following α, β and γ can take any of the values p or ξ⃗. Combin-
ing (1.31) and (3.4) we can then calculate the occupation of an arbitrary state of
the system α from

nα(t) =∑
β

nβ(−∞) ∣GR
αβ(t,−∞)∣2 . (3.5)

Note that in order to obtain (3.5), we have used the relation

∑
γ

GR
αγ(t,−∞)GA

γα(−∞, t) = 1 , (3.6)

which can for instance be derived from (3.4) and the definition ofG++
αβ given by (1.18a)

(see also Refs. [12, 95]). Inspecting the particular cases α = p and α = ξ⃗ in (3.5) we
obtain

np(t) = np(−∞) ∣GR
pp(t,−∞)∣2 + ∑⃗

ξ

nξ⃗(−∞) ∣GR
pξ⃗
(t,−∞)∣2 , (3.7a)

nξ⃗(t) = nξ⃗(−∞) ∣GR
ξ⃗ξ⃗
(t,−∞)∣2 + np(−∞) ∣GR

ξ⃗p
(t,−∞)∣2 . (3.7b)

In order to calculate np(t) and nξ⃗(t) we, thus, need to calculate the four different
retarded Green functions appearing in (3.7a) and (3.7b). The respective Dyson
equations can be constructed from the general form (1.28a) and its adjoint variant.
Employing the compact notation (1.29) they read

GR
pp(t, t′) = GR(0)

pp (t, t′) + {GR(0)
pp ∗ΣR

pξ⃗
∗GR(0)

ξ⃗ξ⃗
∗ΣR

ξ⃗p
∗GR

pp}(t, t′) , (3.8a)

GR
pξ⃗
(t, t′) = {GR

pp ∗ΣR
pξ⃗
∗GR(0)

ξ⃗ξ⃗
}(t, t′) , (3.8b)

GR
ξ⃗ξ⃗
(t, t′) = GR(0)

ξ⃗ξ⃗
(t, t′) + {GR(0)

ξ⃗ξ⃗
∗ΣR

ξ⃗p
∗GR

pp ∗ΣR
pξ⃗
∗GR(0)

ξ⃗ξ⃗
}(t, t′) , (3.8c)

GR
ξ⃗p
(t, t′) = {GR(0)

ξ⃗ξ⃗
∗ΣR

ξ⃗p
∗GR

pp}(t, t′) . (3.8d)
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As we see, knowledge of the diagonal propagator GR
pp is sufficient since the remaining

Green functions are given in terms of integrals involving unperturbed propagators,
self-energy components and GR

pp. The latter’s Dyson equation (3.8a) can be solved
iteratively and yields

GR
pp(t, t′) = GR(0)

pp (t, t′)σ[∆](t, t′) , (3.9)

where σ[∆] operates on a complex function ∆(t1, t2) and defines the infinite series

σ[∆](t, t′) = ∞∑
ν=0

σ(ν)[∆](t, t′) , (3.10)

with

σ(ν)[∆](t, t′) = (−1)ν ∫ t

t′ dt1∫ t1

t′ dt2∫ t2

t′ dt3 . . .∫ t2ν−1

t′ dt2ν
ν∏
i=1

∆(t2i−1, t2i) . (3.11)

The ∆-function appearing as the argument of the σ-series in (3.9) emerges from the
self-energy and reads

∆(t1, t2) = 1

h̵2 ∑⃗
ξ

V ∗⃗
ξ
(t1)Vξ⃗(t2) e− ih̵ ∫ t1t2 dt3 [εξ⃗(t3)−εp(t3)] . (3.12)

The infinite series (3.10) will play a central role in all of the quantum-kinetic cal-
culations of this chapter and is discussed in detail in Appendix C. In the latter
we also derive three different integral identities involving combinations of σ- and
∆-terms that will be used at various points within this chapter. Furthermore, we
demonstrate how the σ-series can be approximated by the exponential expression

σ[∆](t, t′) ≈ e− ∫ tt′ dt1 ∫ t1t′ dt2 ∆(t1,t2) , (3.13)

which holds in cases where ∆(t1, t2) is strongly peaked along the time diagonal t1 = t2.
Note that (3.13) is also known as semi-classical approximation and constitutes the
basis of the numerical results that will be presented in Chapters 4 and 5. Its validity
for the particular situations studied in this work will be demonstrated explicitly in
Sec. 4.2.3. Here, however, we will not employ the approximate form (3.13) until the
end of this section.

After inserting the exact expression for GR
pp (see Eq. (3.9)) into the Dyson equa-

tions (3.8b), (3.8c) and (3.8d) we can now calculate the remaining retarded propa-
gators. Substituting the resulting Green functions in (3.7a) and (3.7b) we can then
evaluate the occupancies np(t) and nξ⃗(t).

Up to now we have not concretized the projectile level εp and treated the ξ⃗-states
as a general continuum without any connection to the surface reactions studied in
this work. This link will be established in the following as we investigate the expres-
sions (3.7a) and (3.7b) for two special situations which are of physical relevance. In
particular, we consider the cases (rc) meaning resonant capture and (rr) meaning
resonant release which are defined by

(rc) ∶ εp(t) = ε0−(t) , np(−∞) = 0 , nξ⃗(−∞) = 1 ∀ ξ⃗ ∈ Br , (3.14a)

(rr) ∶ εp(t) = ε1−(t) , np(−∞) = 1 , nξ⃗(−∞) = 0 ∀ ξ⃗ ∈ Br . (3.14b)
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Here Br denotes the relevant portion of the continuum embracing only those ξ⃗-states
that become resonant or almost resonant to the projectile level εp(t) at some point
during the dynamical evolution of the system. Note that continuum states which
are clearly non-resonant to the projectile level can be neglected as they are unable to
cause significant contributions to the tunneling reaction due to their strong violation
of energy conservation.

As mentioned before, the cases (rc) and (rr) describe two distinct physically
relevant situations. Case (rc), on the one hand, represents the empty ground state
level of N2(3Σ+

u) in front of a completely filled continuum from which it can reso-
nantly capture an electron to form the N−

2(2Πg)-state. Consequently, the case (rc)
can be used to study the first step of the resonant de-excitation reaction (1.1).
Case (rr), on the other hand, describes the occupied excited level of N−

2(2Πg) inter-
acting with an empty continuum into which it can resonantly release its electron.
Here the continuum resembles the free projectile states and, consequently, case (rr)
corresponds to the second step of the resonant de-excitation channel (1.1). As we
know, this subreaction splits up into a natural and a surface-induced transition.
However, since our effective model only provides us with a matrix element for the
latter, the case (rr) does only describe the surface-induced electron emission sub-
reaction of (1.1). In addition, (rr) does also apply to the tunneling of an electron
from the excited molecular level into an empty portion of a surface’s band struc-
ture. This type of reaction is, however, not studied in this work. In order to stay
consistent with the notation established in Chapter 2, we, thus, introduce the sub-
stitutions ξ⃗ → k⃗ and ξ⃗ → q⃗ in the cases (rc) and (rr), respectively. Moreover, we
will identify the localized level p with the ground state and excited molecular level
as indicated in (3.14).

Employing the initial conditions of case (rc) in (3.7a) we then find

n
(rc)
0 (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆rc(t1, t2)σ[∆](t, t1)σ[∆∗](t, t2) . (3.15)

Here the term ∆rc is equal to ∆ as defined in (3.12) but with the k⃗-sum2 restricted
to the initially occupied states only,

∆rc(t1, t2) = 1

h̵2 ∑⃗
k

nk⃗(−∞)V ∗⃗
k
(t1)Vk⃗(t2) e− ih̵ ∫ t1t2 dt3 [εk⃗(t3)−ε0−(t3)] . (3.16)

Since for the case (rc) we previously assumed that the projectile level stays well
inside the initially occupied portion of the surface’s band structure, initially unoc-
cupied states do strongly violate energy conservation and can, thus, not contribute
to the tunneling. Hence, we can safely replace ∆ by ∆rc in the σ-terms of (3.15).
Employing the integral identity (C.18) we then can simplify (3.15) to

n
(rc)
0 (t) = 1 − σ[∆rc](t,−∞)σ[∆∗

rc](t,−∞) . (3.17)

Note that the occupation of the continuum states nk⃗(t) is not of interest in the
case (rc) since these states only act as a reservoir supplying electrons to the projectile
level.

2Remember that we replaced ξ⃗ with k⃗ for the case (rc).
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We now proceed with the case (rr). Here we assumed that the projectile level
only becomes (near-)resonant with initially unoccupied continuum states. Conse-
quently, we can restrict the q⃗-sum3 in (3.12) to initially unoccupied states. Moreover,
we can neglect the second term of (3.7a) due to its energy off-resonance as well as
the first term of (3.7b) which only applies to initially occupied q⃗-states. As a result,
we obtain

n
(rr)
1 (t) = σ[∆rr](t,−∞)σ[∆∗

rr](t,−∞) , (3.18a)

n
(rr)
q⃗ (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆q⃗
rr(t1, t2)σ[∆∗

rr](t1,−∞)σ[∆rr](t2,−∞) , (3.18b)

where (3.18b) only holds for initially unoccupied q⃗-states. Here the term ∆q⃗
rr repre-

sents ∆ as defined in 3.12 but without the q⃗-sum,

∆q⃗
rr(t1, t2) = 1

h̵2
V ∗⃗
q (t1)Vq⃗(t2) e− ih̵ ∫ t1t2 dt3 [εq⃗(t3)−ε1−(t3)] , (3.19)

and ∆rr is given by

∆rr(t1, t2) = ∑⃗
q

[1 − nq⃗(−∞)]∆q⃗
rr(t1, t2) . (3.20)

The spectrum of emitted electrons (3.18b) is quite involved and cannot be simplified
analytically. Clearly, the shape of the spectrum is determined by the ∆q⃗

rr-function
as it is the only component carrying a q⃗ dependence. The σ-factors, on the other
hand, are proportional to the occupation of the excited level (see Eq. (3.18a)) and,
hence, act in a renormalizing way accounting for the transient projectile occupation.
Simply neglecting these terms is, therefore, only acceptable when ∆rr is small and
the excited molecular level stays almost completely occupied during the process. In
cases where initially unoccupied continuum states are degenerate to ε1− the tunneling
will, however, most likely be very efficient unless the matrix element is very small.
In such a situation the renormalizing effect of the σ-terms must not be neglected.

We now move on to the total number of electrons n(rr)(t) that have tunneled
into the continuum of q⃗-states at a time t. This quantity can be obtained by sum-
ming (3.18b) over all initially unoccupied q⃗-states. Employing (3.20) and the integral
identity (C.15) we find

n(rr)(t) = ∑⃗
q

[1 − nq⃗(−∞)]n(rr)
q⃗ (t) = 1 − σ[∆rr](t,−∞)σ[∆∗

rr](t,−∞) . (3.21)

Comparing this expression to the occupation of the projectile level (3.18a) we find

n
(rr)
1 (t) + n(rr)(t) = 1 ∀t . (3.22)

Hence, the overall number of particles in the projectile level and the initially unoc-
cupied continuum states is conserved.

The result (3.21) does, however, not represent the amount of experimentally
observable electrons since, as explained in Sec. 2.6, the surface’s attractive image
potential can trap electrons emitted at low energies or small distances from the

3Remember that we replaced ξ⃗ with q⃗ for the case (rr).
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surface edge. To account for this effect, we need to include the surface transmission
function Tq⃗(t) (see Eq. (2.89b)) in ∆q⃗

rr. This can be done by introducing the function

∆̃q⃗
rr(t1, t2) = Tq⃗(t1)Tq⃗(t2)∆q⃗

rr(t1, t2) , (3.23)

which replaces ∆q⃗
rr when the number of escaped electrons is to be calculated. We

admit that the particular structure of (3.23) might make the impression of double
counting the transmission effect. Remember, however, that ∆q⃗

rr includes two matrix
element factors at different times (see Eq. (3.19)). Consequently, the transmission
functions cut down the individual matrix elements when the transmission condition
is violated.

The spectrum of escaped electrons ñ(rr)
q⃗ (t) can now be obtained by replacing ∆q⃗

rr

with ∆̃q⃗
rr in (3.18b),

ñ
(rr)
q⃗ (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆̃q⃗
rr(t1, t2)σ[∆∗

rr](t1,−∞)σ[∆rr](t2,−∞) . (3.24)

The total number of escaped electrons ñ(rr)(t) is then found by summing (3.24) over
all initially unoccupied q⃗-states which yields

ñ(rr)(t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆̃rr(t1, t2)σ[∆∗
rr](t1,−∞)σ[∆rr](t2,−∞) , (3.25)

with
∆̃rr(t1, t2) = ∑⃗

q

[1 − nq⃗(−∞)] ∆̃q⃗
rr(t1, t2) . (3.26)

The associated secondary electron emission coefficient γ(rr)
e follows from (3.25) upon

setting t =∞. Note, however, that this emission coefficient does not hold for the
two-step resonant de-excitation of N2(3Σ+

u) since in the calculations of the present
section the two subreactions of (1.1), corresponding to the cases (rc) and (rr), were
treated separately.

Finally, we stress that up to this point we have not used any approximations
beyond the restriction to (near-)resonant states. The latter constitutes an excellent
approximation due to the strong effect of energy conservation and, hence, all of the
results presented so far within this section can be considered exact. Unfortunately,
the equations we derived here are highly complex and cannot be evaluated easily
due to the involvement of the infinite σ-series. As pointed out earlier, the latter
can, however, be approximated by the exponential representation (3.13) when the
function it operates on is peaked about equal times. In Sec. 4.2.3 it will be demon-
strated that this is the case for the situations considered in this work. Therefore,
we can use (3.13) to replace any of the σ-terms in our previous results. We stress
that the usage of (3.13) is highly advantageous, since the infinite σ-series is not
very convenient to handle in a numerical treatment although theoretically it allows
for an explicit calculation up to arbitrary order in the ∆-terms. The approximate
representation (3.13), on the other hand, can be calculated rather easily.

The incorporation of (3.13) in the results of this section is straightforward. The
projectile occupancies for the cases (rc) and (rr) (see Eqs. (3.17) and (3.18a)), for
instance, turn into the approximate expressions

n
(rc)
0 (t) ≈ 1 − e− ∫ t−∞dt1 ∫ t−∞dt2 ∆rc(t1,t2) , (3.27a)

n
(rr)
1 (t) ≈ e− ∫ t−∞dt1 ∫ t−∞dt2 ∆rr(t1,t2) . (3.27b)
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The derived equations for other quantities like n(rr)
q⃗ , ñ(rr)

q⃗ and ñ(rr) (see Eqs. (3.18b),
(3.24) and (3.25)) can be approximated in an analogous way.

3.2 Direct and Indirect Auger De-Excitation

In this section we investigate the interplay of the Auger de-excitation channels (1.2)
and (1.3). As mentioned earlier, the direct transition (1.3) is actually spin-blocked
for the N2(3Σ+

u)-state. It might, however, play an important role for other metastable
states of the nitrogen molecule or different projectiles. Therefore, we will include
this process in our quantum-kinetic analysis.

An appropriate Hamiltonian for the description of the two Auger reactions within
the limits of our effective model was derived in Sec. 2.4. Adding up the relevant
terms and concretizing the projectile energies it reads

Ĥ(t) = ∑⃗
k

εk⃗ c
†
k⃗
c
k⃗
+ ∑⃗

q

εq⃗(t) c†q⃗ cq⃗ + ε0g(t) c†0 c0 + ε1∗(t) c†1 c1

+ ∑⃗
k,k⃗′

[Vk⃗k⃗′(t) c†0 c1 c
†
k⃗′ ck⃗ +H.c.] +∑⃗

k,q⃗

[Vk⃗q⃗(t) c†0 ck⃗ c†q⃗ c1 +H.c.] , (3.28)

where, as before, 0 and 1 represent the ground state and excited level of our molecular
two-level system, q⃗ labels molecular continuum states and k⃗(′) refers to states within
the solid surface. Moreover, Vk⃗k⃗′ and Vk⃗q⃗ denote the matrix elements of direct and
indirect Auger de-excitation, respectively. Note that in the direct Auger transition
term of (3.28) a surface electron residing in an occupied state k⃗ is excited into a
previously empty state of the surface k⃗′. For the sake of clearness we will stick
with this notation for the rest of this work. Hence, from now on k⃗′ always refers to
an internally excited state of the surface. Furthermore, since in the reactions (1.2)
and (1.3) the molecule initially is in its metastable state N2(3Σ+

u), our molecular
two-level system exhibits the initial occupations n0(−∞) = 0 and n1(−∞) = 1. The
molecular continuum states q⃗, on the other hand, are completely empty.

In the following we will present a quantum-kinetic analysis of the system (3.28)
based on the Keldysh formulation. Since the non-interacting part of the Hamilto-
nian (3.28) exhibits the general form (1.32), the unperturbed Green functions are
again given by (1.33) and (1.34). In order to calculate the full Green functions of
the system, we now need expressions for the self-energies which, in line with the
work of Makoshi[86], we derive from a diagrammatic expansion up to second order in
the Auger matrix elements. This neglects diagrammatic couplings between the two
Auger channels which is, however, justified because in general the associated matrix
elements are rather small.

We start our investigations with the projectile states. The second-order self-
energy diagrams for the ground state level and the excited level are shown in Fig. 3.1.
Mathematically they evaluate to

ΣA
00(t1, t2) = Θ(t2 − t1)ΣK

00(t1, t2) , (3.29a)

ΣR
00(t1, t2) = −Θ(t1 − t2)ΣK

00(t1, t2) , (3.29b)

ΣK
00(t1, t2) = Σ

(dad)
00 (t1, t2) +Σ

(iad)
00 (t1, t2) , (3.29c)
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× ×
V
k⃗k⃗′(t1) V ∗⃗

kk⃗′(t2)

k⃗′
1

k⃗

0 0 × ×
V
k⃗q⃗
(t1) V ∗⃗

kq⃗
(t2)

q⃗

1

k⃗

0 0

× ×
V ∗⃗
kk⃗′(t1) V

k⃗k⃗′(t2)

k⃗′
0

k⃗

1 1 × ×
V ∗⃗
kq⃗
(t1) V

k⃗q⃗
(t2)

q⃗

0

k⃗

1 1

Figure 3.1: Second-order self-energy diagrams of the molecular ground state level (upper
two diagrams) and the excited level (lower two diagrams). In both rows of this figure the
left diagram is due to the direct de-excitation channel (1.3) while the right one pertains to
the indirect reaction (1.2). Note that the gray dashed lines merely represent the diagram’s
connectors and do not belong to the actual self-energies.

and

ΣA
11(t1, t2) = −Θ(t2 − t1)ΣK

11(t1, t2) , (3.30a)

ΣR
11(t1, t2) = Θ(t1 − t2)ΣK

11(t1, t2) , (3.30b)

ΣK
11(t1, t2) = Σ

(dad)
11 (t1, t2) +Σ

(iad)
11 (t1, t2) . (3.30c)

Note that here and in the following the labels dad and iad are used to discriminate
between the direct and indirect Auger de-excitation channels. Consequently, the
terms Σ

(dad)
00/11

and Σ
(iad)
00/11

denote the components of the Keldysh self-energies ΣK
00/11

due to the direct and indirect reaction, respectively. Their explicit form reads

Σ
(dad)
00 (t1, t2) = i

h̵2 ∑⃗
k,k⃗′

nk⃗(−∞)[1 − nk⃗′(−∞)]Vk⃗k⃗′(t1)V ∗⃗
kk⃗′(t2)

× e− ih̵ ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−εk⃗′(t3)] ,
(3.31a)

Σ
(iad)
00 (t1, t2) = i

h̵2 ∑⃗
k,q⃗

nk⃗(−∞)[1 − nq⃗(−∞)]Vk⃗q⃗(t1)V ∗⃗
kq⃗
(t2)

× e− ih̵ ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−εq⃗(t3)] ,
(3.31b)

and
Σ

(dad/iad)
11 (t1, t2) = [Σ(dad/iad)

00 (t1, t2)]∗ e− ih̵ ∫ t1t2 dt3 [ε0g(t3)+ε1∗(t3)] . (3.32)

We now utilize the self-energies (3.29b) and (3.30b) to calculate the retarded prop-
agators GR

00 and GR
11. The corresponding Dyson equations can be constructed

from (1.28a) and, similar to the previous section, allow for an iterative solution.
A straightforward calculation yields

GR
00(t, t′) = GR(0)

00 (t, t′)σ[∆dad+iad](t, t′) , (3.33a)

GR
11(t, t′) = GR(0)

11 (t, t′)σ[∆∗
dad+iad](t, t′) , (3.33b)
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where σ represents the familiar infinite series of nested double integrals (see Ap-
pendix C). Here σ operates on a function ∆dad+iad which itself is the sum of two
complex functions given by

∆dad+iad(t1, t2) = ∆dad(t1, t2) +∆iad(t1, t2) , (3.34)

with
∆dad/iad(t1, t2) = −iΣ(dad/iad)

00 (t1, t2) e ih̵ ∫ t1t2 dt3 ε0g(t3) . (3.35)

Note that the advanced propagators of the projectile levels can be obtained from
the expressions (3.33) by means of (1.27),

GA
00(t, t′) = GA(0)

00 (t, t′)σ[∆∗
dad+iad](t′, t) , (3.36a)

GA
11(t, t′) = GA(0)

11 (t, t′)σ[∆dad+iad](t′, t) . (3.36b)

We now calculate the transient occupancy of the projectile levels by combin-
ing (1.31) and (1.36). Employing the Keldysh self-energies (3.29c) and (3.30c) as
well as the retarded and advanced propagators (3.33) and (3.36) we obtain

n
(dad+iad)
0 (t) = 1

2
− 1

2
σ[∆dad+iad](t,−∞)σ[∆∗

dad+iad](t,−∞)
+ 1

2 ∫
t

−∞dt1∫
t

−∞dt2 ∆dad+iad(t1, t2)
× σ[∆dad+iad](t, t1)σ[∆∗

dad+iad](t, t2) ,
(3.37a)

n
(dad+iad)
1 (t) = 1

2
+ 1

2
σ[∆dad+iad](t,−∞)σ[∆dad+iad]∗(t,−∞)

− 1

2 ∫
t

−∞dt1∫
t

−∞dt2 ∆∗
dad+iad(t1, t2)

× σ[∆∗
dad+iad](t, t1)σ[∆dad+iad](t, t2) .

(3.37b)

Here the superscripts (dad + iad) indicate that the occupation numbers are due to
both the direct and the indirect Auger de-excitation channel. Employing the integral
identity (C.18) and its complex conjugate the expressions (3.37) simplify to

n
(dad+iad)
0 (t) = 1 − σ[∆dad+iad](t,−∞)σ[∆∗

dad+iad](t,−∞) , (3.38a)

n
(dad+iad)
1 (t) = σ[∆dad+iad](t,−∞)σ[∆∗

dad+iad](t,−∞) . (3.38b)

Consequently, the total occupation of the two-level system remains constant since

n
(dad+iad)
0 (t) + n(dad+iad)

1 (t) = 1 ∀t . (3.39)

We now turn to the electrons excited into initially empty states within the solid
surface k⃗′ and electrons released into the continuum of free projectile states q⃗. The
former are generated by the direct Auger de-excitation channel whereas the latter
are the outcome of the indirect de-excitation reaction. The second-order self-energy
diagrams for Σk⃗′k⃗′ and Σq⃗q⃗ can be obtained from the upper row of Fig. 3.1 by
interchanging the labels 0 and k⃗′ in the left diagram and 0 and q⃗ in the right
diagram, respectively. Note that the resulting self-energies also possess non-diagonal
components which are, however, canceled in an iterative treatment of the Dyson
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equations. Following along the lines of our previous calculation for the projectile’s
ground state level we obtain the occupation of the k⃗′- and q⃗-states in the form

n
(dad+iad)
k⃗′ (t) = 1 − [1 − nk⃗′(−∞)]σ[∆k⃗′

dad](t,−∞) (σ[∆k⃗′
dad](t,−∞))∗ , (3.40a)

n
(dad+iad)
q⃗ (t) = 1 − [1 − nq⃗(−∞)]σ[∆q⃗

iad](t,−∞) (σ[∆q⃗
iad](t,−∞))∗ . (3.40b)

Here ∆k⃗′
dad and ∆q⃗

iad are given by

∆k⃗′
dad(t1, t2) = 1

h̵2 ∑⃗
k

nk⃗(−∞)Vk⃗k⃗′(t1)V ∗⃗
kk⃗′(t2)

× e− ih̵ ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−ε0g(t3)−εk⃗′(t3)] ,
(3.41a)

∆q⃗
iad(t1, t2) = 1

h̵2 ∑⃗
k

nk⃗(−∞)Vk⃗q⃗(t1)V ∗⃗
kq⃗
(t2)

× e− ih̵ ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−ε0g(t3)−εq⃗(t3)] ,
(3.41b)

which after comparison with (3.35) leads to

∑⃗
k′

[1 − nk⃗′(−∞)]∆k⃗′
dad(t1, t2) = ∆dad(t1, t2) , (3.42a)

∑⃗
q

[1 − nq⃗(−∞)]∆q⃗
iad(t1, t2) = ∆iad(t1, t2) . (3.42b)

Unfortunately, Eqs. (3.40) are not very useful, because they cannot easily be summed
over k⃗′ and q⃗. This is, however, required in order to calculate the total number
of Auger electrons. Moreover, the individual occupancies (3.40a) and (3.40b) are
isolated that means they neglect the destruction of the metastable state by the re-
spective other de-excitation channel. To make this more clear one may imagine a
situation where the direct de-excitation reaction is only efficient at small distances
from the surface while the indirect Auger channel is so effective that the metastable
projectile is completely de-excited already at very large projectile-surface separa-
tions. In such a case the direct channel cannot operate at all since the metastable
state is already destroyed entirely before it gets close enough to the surface. This
behavior is, however, not reflected by Eq. (3.40a) as the latter only involves terms
containing the direct matrix element Vk⃗k⃗′ but no contributions due to the indirect
de-excitation channel.

Because of these obstacles we adopt the approach of Makoshi[86,87] and expand
the general expression for the Keldysh components GK

k⃗′k⃗′ and G
K
q⃗q⃗ (see Eq. (1.36)) up

to first order in the self-energies. To make up for this approximation we replace the
unperturbed Green function of the excited projectile level with the full propagator in
the self-energies of the k⃗′- and q⃗-states. One may think of this propagator dressing
as a way of accounting for lifetime effects of the excited projectile level[86]. Note,
however, that the very same effect could also be achieved by employing the full
propagator of the molecular ground state level instead. The second-order self-energy
diagrams resulting from the dressing of the excited level are shown in Fig. 3.2. The
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× ×
V
k⃗k⃗′(t1) V ∗⃗

kk⃗′(t2)

0

1

k⃗

k⃗′ k⃗′ × ×
V
k⃗q⃗
(t1) V ∗⃗

kq⃗
(t2)

0

1

k⃗

q⃗ q⃗

Figure 3.2: Second-order diagrammatic representation of the dressed self-energies Σk⃗′k⃗′
(left panel) and Σq⃗q⃗ (right panel). The full propagator of the excited level G11 is indicated
by a double line.

Keldysh components of these diagrams evaluate to

ΣK
k⃗′k⃗′(t1, t2) = 1

h̵2 ∑⃗
k

Vk⃗k⃗′(t1)V ∗⃗
kk⃗′(t2)G−+(0)

00 (t2, t1)G+−(0)
k⃗k⃗

(t1, t2)G+−
11 (t1, t2) , (3.43a)

ΣK
q⃗q⃗(t1, t2) = 1

h̵2 ∑⃗
k

Vk⃗q⃗(t1)V ∗⃗
kq⃗
(t2)G−+(0)

00 (t2, t1)G+−(0)
k⃗k⃗

(t1, t2)G+−
11 (t1, t2) . (3.43b)

In order to proceed we, thus, need to calculate the full Green function G+−
11 . For this

purpose, we first rewrite the corresponding component of the matrix Dyson equation
(see Sec. 1.3.2) into

G+−
11 (t, t′) = {G+−(0)

11 ∗ [1 +ΣA
11 ∗GA

11]}(t, t′) + {GR(0)
11 ∗ΣR

11 ∗G+−
11 }(t, t′) , (3.44)

where we have employed Σ++
11 (t1, t2) = ΣR

11(t1, t2) and Σ−−
11 (t1, t2) = −ΣA

11(t1, t2) which
follows directly from (3.30). Inserting the latter self-energy components and the full
advanced Green function (3.36b) we can solve Eq. (3.44) iteratively and obtain

G+−
11 (t, t′) = G+−(0)

11 (t, t′)σ[∆∗
dad+iad](t,−∞)

× [1 − ∫ t′
−∞dt1∫

t′
t1

dt2 σ[∆dad+iad](t′, t2)∆dad+iad(t2, t1)] . (3.45)

After interchanging t1 and t2 in the integral term of (3.45) we can apply the iden-
tity (C.12) which results in

G+−
11 (t, t′) = G+−(0)

11 (t, t′)σ[∆∗
dad+iad](t,−∞)σ[∆dad+iad](t′,−∞) . (3.46)

Employing the Green function (3.46) in the Keldysh self-energies (3.43a) and (3.43b)
we then find

ΣK
k⃗′k⃗′(t1, t2) = i

h̵2 ∑⃗
k

nk⃗(−∞)Vk⃗k⃗′(t1)V ∗⃗kk⃗′(t2) e− ih̵ ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−ε0g(t3)] , (3.47a)

ΣK
q⃗q⃗(t1, t2) = i

h̵2 ∑⃗
k

nk⃗(−∞)Vk⃗q⃗(t1)V ∗⃗kq⃗(t2) e− ih̵ ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−ε0g(t3)] , (3.47b)

where Vk⃗k⃗′ and Vk⃗q⃗ denote the renormalized Auger matrix elements

Vk⃗k⃗′(t) = Vk⃗k⃗′(t)σ[∆∗
dad+iad](t,−∞) , (3.48a)

Vk⃗q⃗(t) = Vk⃗q⃗(t)σ[∆∗
dad+iad](t,−∞) . (3.48b)
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As we see, here the individual matrix elements of direct and indirect Auger de-
excitation are renormalized by the σ-series of ∆∗

dad+iad which is due to both Auger
reaction channels. The inclusion of the σ-terms in renormalized matrix elements as
proposed by Makoshi[86] does, however, not provide any further insight. In fact it
might be even more advantageous to keep the σ-series out of the matrix elements
which allows us to write the self-energies (3.47) in terms of ∆k⃗′

dad and ∆q⃗
iad (see

Eqs. (3.41)),

ΣK
k⃗′k⃗′(t1, t2) = i∆k⃗′

dad(t1, t2) e− ih̵ ∫ t1t2 dt3 εk⃗′

× σ[∆∗
dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) , (3.49a)

ΣK
q⃗q⃗(t1, t2) = i∆q⃗

iad(t1, t2) e− ih̵ ∫ t1t2 dt3 εq⃗

× σ[∆∗
dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) . (3.49b)

We now proceed with the calculation of the occupation of k⃗′- and q⃗-states due
to both Auger channels. Combining (1.31) and (1.36) we obtain

n
(dad+iad)
α (t) = 1

2
[1 −∑

β

[1 − 2nα(−∞)]GR
αβ(t,−∞)GA

βα(−∞, t)]
− i

2
{GR

αβ ∗ΣK
βγ ∗GA

γα}(t, t) ,
(3.50)

where α stands for either k⃗′ or q⃗, β and γ run over all states of the system and, as
before, the superscript (dad + iad) indicates that the occupancy is due to both de-
excitation channels. Note that the latter dependence is implicitly contained in ΣK

αα

(see Eqs. (3.49)). We now expand (3.50) up to first order in the self-energy terms
by inserting the once iterated advanced and retarded Dyson equations,

G
A/R
αβ (t, t′) ≈ GA/R(0)

αα (t, t′) δαβ + {GA/R(0)
αα ∗Σ

A/R
αβ ∗GA/R(0)

ββ }(t, t′) . (3.51)

After neglecting terms of higher than first order in the self-energies only diagonal
terms survive. Upon employing4

ΣA
αα(t1, t2) −ΣR

αα(t1, t2) = Σ++
αα(t1, t2) +Σ−−

αα(t1, t2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΣKαα(t1,t2)

+2 Σ−+
αα(t1, t2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶∼n0(−∞)=0

= ΣK
αα(t1, t2) ,

(3.52)

we, finally, arrive at[87]

n
(dad+iad)
α (t) ≈ nα(−∞) − i[1 − nα(−∞)]

× ∫ t

−∞dt1∫
t

−∞dt2 G
R(0)
αα (t, t1)ΣK

αα(t1, t2)GA(0)
αα (t2, t′) . (3.53)

Concretizing (3.53) for α = k⃗′ and α = q⃗ by utilizing the self-energies (3.49) we then

4Remember that here α can only take the values k⃗′ or q⃗.
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find

n
(dad+iad)
k⃗′ (t) ≈ nk⃗′(−∞) + [1 − nk⃗′(−∞)]∫ t

−∞dt1∫
t

−∞dt2 ∆k⃗′
dad(t1, t2)

× σ[∆∗
dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) , (3.54a)

n
(dad+iad)
q⃗ (t) ≈ nq⃗(−∞) + [1 − nq⃗(−∞)]∫ t

−∞dt1∫
t

−∞dt2 ∆q⃗
iad(t1, t2)

× σ[∆∗
dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) . (3.54b)

We stress that in contrast to (3.40a) and (3.40b), Eqs. (3.54a) and (3.54b) are not
isolated since here ∆k⃗′

dad and ∆q⃗
iad are renormalized by σ-terms operating on ∆dad+iad

which is due to both reaction channels. Moreover, (3.54a) and (3.54b) can be used
to calculate the total number of electrons ending up in k⃗′- and q⃗-states. For this
purpose we sum these equations over all initially empty k⃗′- and q⃗-states, respectively,

n
(dad+iad)
dad (t) = ∑⃗

k′
[1 − nk⃗′(−∞)]n(dad+iad)

k⃗′ (t) , (3.55a)

n
(dad+iad)
iad (t) = ∑⃗

q

[1 − nq⃗(−∞)]n(dad+iad)
q⃗ (t) . (3.55b)

Note that in (3.55) the subscripts dad and iad denote the respective channel respon-
sible for transferring electrons into k⃗′- or q⃗-states while the superscripts (dad + iad)
indicate that the renormalization effect of both channels is included. Making use
of (3.42) and (3.54) we find

n
(dad+iad)
dad (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆dad(t1, t2)
× σ[∆∗

dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) , (3.56a)

n
(dad+iad)
iad (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆iad(t1, t2)
× σ[∆∗

dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) . (3.56b)

Considering the total number of Auger electrons due to both channels we can em-
ploy (C.15) to obtain

n(dad+iad)(t) = n(dad+iad)
dad (t) + n(dad+iad)

iad (t) (3.57a)

= 1 − σ[∆dad+iad](t,−∞)σ[∆∗
dad+iad](t,−∞) . (3.57b)

Comparing this result to (3.38a) we then find the relation

n(dad+iad)(t) = n(dad+iad)
0 (t) ∀t . (3.58)

Consequently, at any instant of time the amount of charge transferred into the pro-
jectile’s ground state level equals the total number of electrons excited into k⃗′-states
or released into q⃗-states. Hence, the probability of metastable de-excitation is equal
to the probability of finding an electron in the k⃗′- and q⃗-states. Our approximate
treatment of the latter states, thus, guarantees particle conservation.

In contrast to the total number of Auger electrons, the expressions for the indi-
vidual occupancies (3.56a) and (3.56b) cannot be simplified further as long as both
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de-excitation channels are active simultaneously. If, on the other hand, only one of
the channels is open we can employ (C.15) to obtain

n
(dad)
dad (t) = 1 − σ[∆dad](t,−∞)σ[∆∗

dad](t,−∞) , (3.59a)

n
(iad)
iad (t) = 1 − σ[∆iad](t,−∞)σ[∆∗

iad](t,−∞) . (3.59b)

In either case the number of electrons ending up in k⃗′- and q⃗-states does not equal
the number of electrons that can escape the surface, as was explained in Sec. 2.6.
In order to strip out those Auger electrons that are trapped within the surface or in
the image potential in front of it we, thus, need to employ the surface transmission
functions Tk⃗′ and Tq⃗ (see Eqs. (2.89a) and (2.89b)), respectively. Following along
the lines of Sec. 3.1 we introduce the functions

∆̃k⃗′
dad(t1, t2) = Tk⃗′(t1)Tk⃗′(t2)∆k⃗′

dad(t1, t2) , (3.60a)

∆̃q⃗
iad(t1, t2) = Tq⃗(t1)Tq⃗(t2)∆q⃗

iad(t1, t2) . (3.60b)

The distribution of escaped electrons over initially unoccupied k⃗′- and q⃗-states, ñk⃗′
and ñq⃗, can then be obtained by replacing ∆k⃗′

dad and ∆q⃗
iad with ∆̃k⃗′

dad and ∆̃q⃗
iad

in (3.54a) and (3.54b),

ñ
(dad+iad)
k⃗′ (t) ≈ ∫ t

−∞dt1∫
t

−∞dt2 ∆̃k⃗′
dad(t1, t2)

× σ[∆∗
dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) , (3.61a)

ñ
(dad+iad)
q⃗ (t) ≈ ∫ t

−∞dt1∫
t

−∞dt2 ∆̃q⃗
iad(t1, t2)

× σ[∆∗
dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) . (3.61b)

The overall number of escaped electrons in k⃗′- and q⃗-states follows after sum-
ming (3.61a) and (3.61b) over all initially empty k⃗′- and q⃗-states, respectively,

ñ
(dad+iad)
dad (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆̃dad(t1, t2)
× σ[∆∗

dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) , (3.62a)

ñ
(dad+iad)
iad (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆̃iad(t1, t2)
× σ[∆∗

dad+iad](t1,−∞)σ[∆dad+iad](t2,−∞) . (3.62b)

Here we have introduced the quantities

∆̃dad(t1, t2) = ∑⃗
k′

[1 − nk⃗′(−∞)] ∆̃k⃗′
dad(t1, t2) , (3.63a)

∆̃iad(t1, t2) = ∑⃗
q

[1 − nq⃗(−∞)] ∆̃q⃗
iad(t1, t2) . (3.63b)

Finally, the secondary electron emission coefficient γ(dad+iad)
e due to both Auger

de-excitation channels is given by the final overall number of escaped Auger elec-
trons ñ(dad+iad) which follows from the addition of (3.62a) and (3.62b) at t =∞,

γ
(dad+iad)
e = ñ(dad+iad)(∞) = ñ(dad+iad)

dad (∞) + ñ(dad+iad)
iad (∞) . (3.64)
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Note that due to their structure Eqs. (3.61a), (3.61b), (3.62a) and (3.62b) can not
be simplified further analytically.

We stress that apart from our expansion of the Dyson equations of GK
k⃗′k⃗′ and G

K
q⃗q⃗,

which we made up for by introducing dressed self-energies, so far all of the results of
this section are exact up to second order in the Auger matrix elements. However, as
mentioned earlier, the infinite σ-series is difficult to handle in a numerical treatment.
If, on the other hand, we assume that ∆dad(t1, t2) and ∆iad(t1, t2) are peaked about
the time diagonal t1 = t2, we can approximate all of the σ-terms by means of (C.8).
As a result, the projectile occupations (3.38) turn into

n
(dad+iad)
0 (t) ≈ 1 − e− ∫ t−∞dt1 ∫ t−∞dt2 ∆dad+iad(t1,t2) , (3.65a)

n
(dad+iad)
1 (t) ≈ e− ∫ t−∞dt1 ∫ t−∞dt2 ∆dad+iad(t1,t2) . (3.65b)

Similarly, the equation for the total number of Auger electrons (3.57b) becomes

n(dad+iad)(t) ≈ 1 − e− ∫ t−∞dt1 ∫ t−∞dt2 ∆dad+iad(t1,t2) . (3.66)

Moreover, for the total number of escaped electrons ñ(dad+iad) a particularly conve-
nient approximation arises when we replace ∆dad+iad with ∆̃dad+iad in the σ-terms
of (3.62). We then can simplify the resulting equation by means of the integral
identity (C.15) and obtain

ñ(dad+iad)(t) = ñ(dad+iad)
dad (t) + ñ(dad+iad)

iad (t) ≈ 1 − e− ∫ t−∞dt1 ∫ t−∞dt2 ∆̃dad+iad(t1,t2) , (3.67)

which leads to
γ
(dad+iad)
e ≈ 1 − e− ∫ ∞−∞dt1 ∫ ∞−∞dt2 ∆̃dad+iad(t1,t2) . (3.68)

This kind of approximation does underestimate the lifetime effect of the metastable
since in contrast to ∆dad+iad the quantity ∆̃dad+iad is cropped by the surface trans-
mission functions. Nevertheless, the lifetime effect is still included to some extent.
Moreover, for the case of small de-excitation probabilities (3.67) constitutes an ex-
cellent approximation since here the σ-terms in (3.62) are close to unity already
for ∆dad+iad.

Let us finally remark that although, as far as the logic of our approach is con-
cerned, we closely followed Makoshi[86], our results have wider applicability. First
of all, we did consider the interplay of direct and indirect Auger de-excitation while
Makoshi was only concerned with the latter. Moreover, in contrast to him we are
not restricted to a specific form of the matrix element and have not employed the
wide-band approximation for the k⃗′- and q⃗-states which would lead to time-local
self-energies. Finally, we are not limited to the approximate results following from
the replacement of the σ-terms by (C.8) as in principle we can calculate corrections
to these expressions using the higher order expansion coefficients of the σ-series.

3.3 Unification of Auger and Two-Step Resonant
De-Excitation

Having analyzed the electron capture and surface-induced electron emission subre-
actions of the two-step resonant de-excitation channel (1.1) as well as the Auger
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de-excitation channels (1.2) and (1.3) in Secs. 3.1 and 3.2, respectively, we will now
investigate the interplay of these processes. As outlined in Sec. 2.5, this must be done
in a slave-particle representation in order to account for the conditional coupling of
the two steps of (1.1) and the intra-molecular Coulomb correlations introduced by
the passive projectile electrons. The resulting Hamiltonian reads (see Eq. (2.83))

Ĥ(t) = εg(t) b†g bg + ε∗(t) b†∗ b∗ + ε−(t) f †− f−
+ ∑⃗

k

εk⃗ c
†
k⃗
c
k⃗
+ ∑⃗

q

εq⃗(t) c†q⃗ cq⃗ + ω0 b
†
0 b0 + ω1 b

†
1 b1

− ∑⃗
k

[Vk⃗(t) c†k⃗ b†0 b†∗ f− +H.c.] + ∑⃗
q

[Vq⃗(t) c†q⃗ b†1 b†g f− +H.c.]
+ ∑⃗
k,k⃗′

[Vk⃗k⃗′(t) c†k⃗′ ck⃗ b†g b∗ +H.c.] + ∑⃗
k,q⃗

[Vk⃗q⃗(t) ck⃗ c†q⃗ b†g b∗ +H.c.] ,
(3.69)

and is supplemented by the constraint

Q = b†g bg + b†∗ b∗ + f †− f− + f †+ f+ = 1 , (3.70)

which needs to be enforced in the course of our calculation. Here the levels g, ∗
and − represent the pseudo-particle states associated with the molecular ground
state N2(1Σ+

g), the metastable molecule N2(3Σ+
u) and the negative ion N−

2(2Πg), re-
spectively. The intra-molecular Coulomb correlations arising in these configurations
are handled by means of the auxiliary bosons b(†)

0/1. Moreover, as before, q⃗ and k⃗(′)
label molecular continuum states and states within the solid surface, respectively.
In addition, Vk⃗ and Vq⃗ constitute the matrix elements of resonant electron capture
and surface-induced resonant electron release whereas Vk⃗k⃗′ and Vk⃗q⃗ stand for the
matrix elements of direct and indirect Auger de-excitation. Note that the effect of
resonant electron emission due to the natural decay of N−

2(2Πg) will be manually
incorporated into our description later on in this section.

We will now treat the system (3.69) by means of the non-equilibrium Green
function technique. In contrast to the previous sections of this chapter, here we
will employ the formulation due to Kadanoff and Baym instead of Keldysh’s matrix
notation. This allows us to compare our results to the previous works of Langreth
et al.[3,76,120] who investigated systems similar to (3.69). In addition, we can make
use of the powerful Langreth-Wilkins rules[77] (see Appendix B) which lead to the
final quantum-kinetic equations in a more direct way.

We start our analysis with a consideration of the self-energy terms. Since the
occupation of k⃗′- and q⃗-states5 will be obtained from the projectile occupations by
a logical argument at the end of our calculation, we merely have to focus on the
self-energies associated with the three different pseudo-particle states g, ∗ and −.
For the latter we truncate the diagrammatic expansion beyond the second order
and employ the commonly used self-consistent non-crossing approximation[76]. The
resulting diagrams for the fermionic self-energy Σ−− and the bosonic self-energies Π∗∗
and Πgg are shown in Figs. 3.3, 3.4 and 3.5, respectively. Mathematically they

5Remember that by convention we label initially unoccupied excited states within the surface
with k⃗′.
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− −

Figure 3.3: Second-order self-energy diagrams of the negative ion state in non-crossing
approximation. Here the left diagram represents the contribution to Σ−− due to resonant
electron capture while the right diagram pertains to the surface-induced resonant electron
emission. As before, a double line indicates a full propagator.
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Figure 3.4: Second-order self-energy diagrams of the metastable state in non-crossing
approximation. The upper diagram depicts the component of Σ∗∗ due to resonant electron
capture whereas the lower left and right diagrams constitute the direct and indirect Auger
term, respectively. Here again a double line symbolizes a full propagator.
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Figure 3.5: Second-order self-energy diagrams of the ground state in non-crossing ap-
proximation. Here the upper diagram pertains to the surface-induced resonant electron
emission while the lower left and right diagrams embrace the contributions to Σgg due to
direct and indirect Auger de-excitation, respectively. Like before, a double line stands for
a full propagator.
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evaluate to

Σ−−(t1, t2) = i χrc(t1, t2)B∗∗(t1, t2) + i χrr(t1, t2)Bgg(t1, t2) , (3.71a)

Π∗∗(t1, t2) = −i χrc(t2, t1)G−−(t1, t2) + χdad+iad(t1, t2)Bgg(t1, t2) , (3.71b)

Πgg(t1, t2) = −i χrr(t2, t1)G−−(t1, t2) + χdad+iad(t2, t1)B∗∗(t1, t2) . (3.71c)

Note that here we employed the subscript notation established in the previous sec-
tions of this chapter. Consequently, the terms χrc, χrr and χdad+iad = χdad + χiad
pertain to the individual reactions of resonant electron capture, surface-induced res-
onant electron release, direct Auger de-excitation and indirect Auger de-excitation,
respectively. The explicit form of these quantities reads

χrc(t1, t2) = i

h̵2 ∑⃗
k

V ∗⃗
k
(t1)Vk⃗(t2)G(0)

k⃗k⃗
(t1, t2)B(0)

00 (t1, t2) , (3.72a)

χrr(t1, t2) = i

h̵2 ∑⃗
q

V ∗⃗
q (t1)Vq⃗(t2)G(0)

q⃗q⃗ (t1, t2)B(0)
11 (t1, t2) , (3.72b)

χdad(t1, t2) = − 1

h̵2 ∑⃗
k,k⃗′

V ∗⃗
kk⃗′(t1)Vk⃗k⃗′(t2)G(0)

k⃗k⃗
(t2, t1)G(0)

k⃗′k⃗′(t1, t2) , (3.72c)

χiad(t1, t2) = − 1

h̵2 ∑⃗
k,q⃗

V ∗⃗
kq⃗
(t1)Vk⃗q⃗(t2)G(0)

k⃗k⃗
(t2, t1)G(0)

q⃗q⃗ (t1, t2) . (3.72d)

As we see, the χ-terms contain unprojected propagators and, hence, possess a prop-
agator character themselves. Moreover, since each of these terms represents an
individual (sub)reaction, the resonant and Auger de-excitation channels are sepa-
rated within the self-energies (3.71). A coupling of the reactions does, however, arise
through the dressed propagators introduced by the non-crossing approximation.

We now investigate the effect of the self-energies (3.71) within the Dyson equa-
tions. Using the Langreth-Wilkins rules for analytic continuation (see Refs. [76, 77]
and Appendix B) we obtain the Dyson equations for the lesser Green functions,

(i ∂
∂t

− ε−(t)
h̵

)G<−−(t, t′) = ∫ t

−∞dt1 ΣR−−(t, t1)G<−−(t1, t′)
+ ∫ t′

−∞dt1 Σ<−−(t, t1)GA−−(t1, t′) ,
(3.73a)

(i ∂
∂t

− ε∗/g(t)
h̵

)B<∗∗/gg(t, t′) = ∫ t

−∞dt1 ΠR∗∗/gg(t, t1)B<∗∗/gg(t1, t′)
+ ∫ t′

−∞dt1 Π<∗∗/gg(t, t1)BA∗∗/gg(t1, t′) ,
(3.73b)

and those for the retarded propagators,

(i ∂
∂t

− ε−(t)
h̵

)GR−−(t, t′) = δ(t − t′) + ∫ t

t′ dt1 ΣR−−(t, t1)GR−−(t1, t′) , (3.74a)

(i ∂
∂t

− ε∗/g(t)
h̵

)BR∗∗/gg(t, t′) = δ(t − t′) + ∫ t

t′ dt1 ΠR∗∗/gg(t, t1)BR∗∗/gg(t1, t′) . (3.74b)
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The projected self-energy terms appearing in these equations can again be derived by
employing the Langreth-Wilkins rules from Appendix B. Making use of the explicit
form of the self-energies (see Eqs. (3.71)) we find the lesser components

Σ<−−(t1, t2) = χ<rc(t1, t2)B<∗∗(t1, t2) + χ<rr(t1, t2)B<
gg(t1, t2) , (3.75a)

Π<∗∗(t1, t2) = χ>rc(t2, t1)G<−−(t1, t2) + iχ<dad+iad(t1, t2)B<
gg(t1, t2) , (3.75b)

Π<
gg(t1, t2) = χ>rr(t2, t1)G<−−(t1, t2) + iχ>dad+iad(t2, t1)B<∗∗(t1, t2) . (3.75c)

For the retarded self-energies the calculation is analogous and yields

ΣR−−(t1, t2) = χ>rc(t1, t2)BR∗∗(t1, t2) + χRrc(t1, t2)B<∗∗(t1, t2)+ χ>rr(t1, t2)BR
gg(t1, t2) + χRrr(t1, t2)B<

gg(t1, t2) , (3.76a)

ΠR∗∗(t1, t2) = χ<rc(t2, t1)GR−−(t1, t2) + χArc(t2, t1)G<−−(t1, t2)+ iχ>dad+iad(t1, t2)BR
gg(t1, t2) + iχRdad+iad(t1, t2)B<

gg(t1, t2) , (3.76b)

ΠR
gg(t1, t2) = χ<rr(t2, t1)GR−−(t1, t2) + χArr(t2, t1)G<−−(t1, t2)+ iχ<dad+iad(t2, t1)BR∗∗(t1, t2) + iχAdad+iad(t2, t1)B<∗∗(t1, t2) . (3.76c)

Note that the Langreth-Wilkins rules offer some kind of freedom as to which com-
ponents are used to construct the projected terms (see Appendix B). Here we have
chosen those projection rules that generate only lesser and retarded full propaga-
tors. The set of Eqs. (3.73) and (3.74) is, thus, complete and can be solved without
having to take the greater and advanced propagators of the levels −, ∗ and g into
account. The latter can be calculated from the solutions of (3.73) and (3.74) by
means of the definitions (1.40) and the symmetry relation (1.27). Moreover, we
note that the components of (3.75) and (3.76) pertaining to the RCT channel are
equivalent to the equations published by Langreth and Nordlander[76] but with two
bosonic pseudo-particles instead of one and an additional energy shift caused by the
auxiliary bosons.

We now turn our attention to the constraint (3.70). The set of Dyson equa-
tions (3.73) and (3.74) contains terms which violate the latter relation. Before phys-
ically meaningful information can be extracted, the Dyson equations, thus, have to
be projected onto the physical subspace defined by (3.70). The procedure to achieve
this is originally due to Langreth and Nordlander and has been outlined several
times[3,76,139]. It is based on an inspection of the order of the Green functions in the
conserved pseudo-particle number Q. In particular, the retarded functions GR−−, BR∗∗
and BR

gg are proportional to Q0 while the lesser propagators G<−−, B<∗∗ and B<
gg are

proportional to Q1. Hence, we have to drop terms of higher order than Q0 from the
retarded self-energies (3.76) and terms of higher order than Q1 from the lesser self-
energies (3.75). We stress that this procedure is not an additional approximation
but an exact projection enforced by the constraint (3.70) (see also Ref. [76]).

Before carrying out the projection, we first split off the Green functions’ oscil-
lating factors by means of the decompositions[120]

G
</R/A−− (t, t′) = G̃</R/A−− (t, t′) e− ih̵ ∫ tt′dt1 ε−(t1) , (3.77a)

B
</R/A∗∗ (t, t′) = B̃</R/A∗∗ (t, t′) e− ih̵ ∫ tt′dt1 ε∗(t1) , (3.77b)

B
</R/A
gg (t, t′) = B̃</R/A

gg (t, t′) e− ih̵ ∫ tt′dt1 εg(t1) , (3.77c)
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and

G̃R−−(t, t′) = −iΘ(t − t′) g−−(t, t′) , (3.78a)

G̃A−−(t, t′) = iΘ(t′ − t) g−−(t, t′) , (3.78b)

B̃R∗∗/gg(t, t′) = −iΘ(t − t′) b∗∗/gg(t, t′) , (3.78c)

B̃A∗∗/gg(t, t′) = iΘ(t′ − t) b∗∗/gg(t, t′) . (3.78d)

Using the definition of the retarded and advanced Green functions (1.40) we then
obtain the following relations[120]

g−−(t, t) = b∗∗/gg(t, t) = 1 , (3.79a)

g−−(t, t′) = [g−−(t′, t)]∗ , (3.79b)

b∗∗/gg(t, t′) = [b∗∗/gg(t′, t)]∗ . (3.79c)

Moreover, by evaluating the explicit form of the bigger and lesser components of the
χ-terms according to the Langreth-Wilkins rules (see Appendix B) and comparing
the results to the definitions of the ∆-functions (3.16), (3.20) and (3.35) we find the
identities

χ<rc(t, t′) = ∆rc(t, t′) e− ih̵ ∫ tt′dt1 [ε−(t1)−ε∗(t1)] , (3.80a)

χ>rr(t, t′) = ∆rr(t, t′) e− ih̵ ∫ tt′dt1 [ε−(t1)−εg(t1)] , (3.80b)

χ>dad+iad(t, t′) = −i∆∗
dad+iad(t, t′) e− ih̵ ∫ tt′dt1 [ε∗(t1)−εg(t1)] . (3.80c)

Furthermore, the terms χ>rc ∼ [1 − n0(−∞)] and χ<rr ∼ n1(−∞) vanish identically due
to the initial conditions n0(−∞) = 1 and n1(−∞) = 0. In addition, we can also neglect
the lesser component of χdad+iad since this term involves initially empty k⃗-states and
initially occupied k⃗′- and q⃗-states and, hence, does not represent the Auger de-
excitation channels we consider.

We now employ the Langreth-Nordlander technique together with (3.80) and
the decompositions (3.77) and (3.78) in order to project the Dyson equations (3.73)
and (3.74). Within the latter equations the oscillating terms emerging from (3.77)
are absorbed in the ∆-functions introduced in (3.80). For the lesser propagators we
then obtain

∂

∂t
G̃<−−(t, t′) = −∫ t

−∞dt1 ∆rr(t, t1) bgg(t, t1) G̃<−−(t1, t′)
+ ∫ t′

−∞dt1 ∆rc(t, t1) B̃<∗∗(t, t1) g−−(t1, t′) ,
(3.81a)

∂

∂t
B̃<∗∗(t, t′) = −∫ t

−∞dt1 ∆rc(t1, t) g−−(t, t1) B̃<∗∗(t1, t′)
− ∫ t

−∞dt1 ∆∗
dad+iad(t, t1) bgg(t, t1) B̃<∗∗(t1, t′) ,

(3.81b)

∂

∂t
B̃<
gg(t, t′) = ∫ t′

−∞dt1 ∆rr(t1, t) G̃<−−(t, t1) bgg(t1, t′)
+ ∫ t′

−∞dt1 ∆∗
dad+iad(t1, t) B̃<∗∗(t, t1) bgg(t1, t′) .

(3.81c)
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The Dyson equations of the retarded Green functions (3.74) can be treated in an
analogous way. In particular, for t > t′ we find

∂

∂t
g−−(t, t′) = −∫ t

t′ dt1 ∆rr(t, t1) bgg(t, t1) g−−(t1, t′) , (3.82a)

∂

∂t
b∗∗(t, t′) = −∫ t

t′ dt1 ∆rc(t1, t) g−−(t, t1) b∗∗(t1, t′)
− ∫ t

t′ dt1 ∆∗
dad+iad(t, t1) bgg(t, t1) b∗∗(t1, t′) ,

(3.82b)

∂

∂t
bgg(t, t′) = 0 . (3.82c)

The corresponding equations for t < t′ can be constructed from (3.82) and the rela-
tions (3.79b) and (3.79c). Moreover, the adjoint Dyson equations can be calculated
in the same manner. For the lesser propagators for instance we obtain

∂

∂t′ G̃
<−−(t, t′) = −∫ t′

−∞dt1 G̃
<−−(t, t1)∆rr(t1, t′) bgg(t1, t′)

+ ∫ t

−∞dt1 g−−(t, t1) ∆rc(t1, t′) B̃<∗∗(t1, t′) ,
(3.83a)

∂

∂t′ B̃
<∗∗(t, t′) = −∫ t′

−∞dt1 B̃
<∗∗(t, t1)∆rc(t′, t1) g−−(t1, t′)

− ∫ t′
−∞dt1 B̃

<∗∗(t, t1) bgg(t1, t′)∆∗
dad+iad(t1, t′) ,

(3.83b)

∂

∂t′ B̃
<
gg(t, t′) = ∫ t

−∞dt1 bgg(t, t1)∆rr(t′, t1) G̃<−−(t1, t′)
+ ∫ t

−∞dt1 bgg(t, t1) B̃<∗∗(t1, t′)∆∗
dad+iad(t′, t1) .

(3.83c)

Equations (3.81), (3.82) and (3.83) constitute the final set of projected Dyson equa-
tions determining the dynamics of the system within the subspace Q = 1. The
rate-equation-like structure of these equations is already evident. The Dyson equa-
tion of the lesser Green function of the negative ion, Eq. (3.81a), for instance, con-
tains a production term proportional to ∆rc and B̃<∗∗ and a loss term proportional
to ∆rr and G̃<−−. These terms obviously relate to the production and loss of negative
ions due to the electron capture and surface-induced electron emission subreactions
of (1.1).

Upon employing (3.81) and (3.83) we can now calculate the time evolution of
the occupation of the different projectile states from[76]

dn
(rc+rr+dad+iad)− (t)

dt
= ∂G̃<−−(t, t′)

∂t
∣
t=t′

+ ∂G̃<−−(t, t′)
∂t′ ∣

t=t′
, (3.84a)

dn
(rc+rr+dad+iad)∗ (t)

dt
= ∂B̃<∗∗(t, t′)

∂t
∣
t=t′

+ ∂B̃<∗∗(t, t′)
∂t′ ∣

t=t′
, (3.84b)

dn
(rc+rr+dad+iad)
g (t)

dt
= ∂B̃<

gg(t, t′)
∂t

∣
t=t′

+ ∂B̃<
gg(t, t′)
∂t′ ∣

t=t′
. (3.84c)
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Note that here, similar to the previous sections of this chapter, we added the super-
scripts (rc + rr + dad + iad) to indicate that the occupancies are due to the combi-
nation of resonant capture and release, constituting the RCT de-excitation reaction,
as well as direct and indirect Auger de-excitation. We stress that due to the cou-
pled structure of the Dyson equations (3.81) and (3.83) each of the pseudo-particle
occupations depends on all four (sub)reactions.

While being conceptually appealing, the final Dyson equations (3.81), (3.82)
and (3.83) involve the strongly oscillating functions ∆rc, ∆rr and ∆∗

dad+iad which
turn out to be highly problematic in a numerical treatment. If, however, these
∆-functions are sharply peaked along the time diagonal, we can apply a saddle-
point approximation to the time integrals in the Dyson equations. We explicitly
demonstrate this for the first integral term in (3.81a),

∫ t

−∞dt1 ∆rr(t, t1) bgg(t, t1) G̃<−−(t1, t′) ≈ bgg(t, t) G̃<−−(t, t′)∫ t

−∞dt1 ∆rr(t, t1) . (3.85)

Note that this is the same approximation that leads to the approximate exponential
representation of the σ-series occurring in Secs. 3.1 and 3.2 (see also Appendix C).
As mentioned earlier, the validity of this approach for the particular situations
considered in the present work will be demonstrated in Sec. 4.2.3.

We now introduce the saddle-point approximation within the Dyson equations of
the lesser propagators (3.81) and (3.83) and combine the latter in order to calculate
the projectile occupancies from (3.84). Making use of (1.39) and (3.79a) we then
obtain the set of rate equations

dn
(rc+rr+dad+iad)− (t)

dt
≈ −Γrr(t)n(rc+rr+dad+iad)− (t) + Γrc(t)n(rc+dad+iad)∗ (t) , (3.86a)

dn
(rc+dad+iad)∗ (t)

dt
≈ −[Γrc(t) + Γdad(t) + Γiad(t)]n(rc+dad+iad)∗ (t) , (3.86b)

dn
(rc+rr+dad+iad)
g (t)

dt
≈ [Γdad(t) + Γiad(t)]n(rc+dad+iad)∗ (t)
+ Γrr(t)n(rc+rr+dad+iad)− (t) . (3.86c)

Here Γrc and Γrr denote the rates of electron capture and surface-induced electron
emission due to the resonant de-excitation channel while Γdad and Γiad represent the
rates of direct and indirect Auger de-excitation. The explicit form of these quantities
reads

Γrc(t) = ∫ t

−∞dt1 2R{∆rc(t, t1)} , (3.87a)

Γrr(t) = ∫ t

−∞dt1 2R{∆rr(t, t1)} , (3.87b)

Γdad(t) = ∫ t

−∞dt1 2R{∆dad(t, t1)} , (3.87c)

Γiad(t) = ∫ t

−∞dt1 2R{∆iad(t, t1)} . (3.87d)

Note that in (3.86) we dropped the rr-superscript from the occupation of the me-
tastable state since, as seen from (3.86b), the latter is determined solely by Γrc,
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Γdad and Γiad. Thus, the saddle-point approximation lifts the dependence of n∗ on
the surface-induced resonant electron release subreaction which was present in the
original equations (3.84).

At this point we now manually incorporate the natural decay of N−
2(2Πg) by

introducing a new rate Γ̄rr which is formed by adding the surface-induced decay
rate Γrr (see Eq. (3.87b)) and the natural decay rate Γn (see Sec. 2.2.3),

Γ̄rr(t) = Γrr(t) + Γn . (3.88)

The rate Γ̄rr then replaces Γrr in the rate equation system (3.86). We stress that
this manual approach is only needed because we could not derive the matrix element
of resonant electron release due to the natural decay of N−

2(2Πg) within the limits
of our effective model.

In total, similar to the works of Langreth et al. in the context of neutralization of
atomic ions[76,120], we have reduced the complicated set of Dyson equations (3.81),
(3.82) and (3.83), describing the de-excitation of a metastable molecule via the
simultaneous action of the RCT channel and the Auger reactions, to the easy-to-
handle system of rate equations (3.86). The reaction rates (3.87) and (3.88) entering
the rate equations are linked to quantum-kinetic quantities and, thus, related to our
semi-empirical model.

We will now seek an analytic solution to the coupled rate equations (3.86). As
a starting point we first take a step back and consider the isolated decay channels
of resonant electron capture, resonant electron emission and Auger de-excitation.
Singling out the individual reactions in (3.86) we obtain

dn
(rc)∗ (t)
dt

= −Γrc(t)n(rc)∗ (t) , (3.89a)

dn
(rr)− (t)
dt

= −Γ̄rr(t)n(rr)− (t) , (3.89b)

dn
(dad)∗ (t)
dt

= −Γdad(t)n(dad)∗ (t) , (3.89c)

dn
(iad)∗ (t)
dt

= −Γiad(t)n(iad)∗ (t) , (3.89d)

where, as before, the superscripts (rc), (rr), (dad) and (iad) identify the isolated
resonant electron capture, resonant electron emission6, direct Auger de-excitation
and indirect Auger de-excitation, respectively. Since the channels are isolated, each
of the decay equations (3.89) comes with an analogous equation for the species that
is produced. For instance, accompanying (3.89a) there is the equation

dn
(rc)− (t)
dt

= Γrc(t)n(rc)∗ (t) . (3.90)

The time derivatives of n(rc)∗ and n(rc)− do, however, only differ in sign. Hence, the
occupation n

(rc)− is given through the initial conditions upon exploiting the con-
servation of particles7. As a result, the supplementary equations do not contain

6Note that the label rr now refers to resonant electron release due to both the surface-induced
and the natural decay of N−

2(
2Πg).

7Remember that this is only valid when the channels are isolated.
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additional information and, hence, can be omitted. The system (3.89) itself can be
solved straightforwardly using the initial conditions

n
(rc)∗ (−∞) = n(dad)∗ (−∞) = n(iad)∗ (−∞) = 1 . (3.91)

The result is

n
(rc)∗ (t) = e− ∫ t−∞dt1 Γrc(t1) , (3.92a)

n
(rr)− (t) = n(rr)− (t′) e− ∫ tt′dt1 Γ̄rr(t1) , (3.92b)

n
(dad)∗ (t) = e− ∫ t−∞dt1 Γdad(t1) , (3.92c)

n
(iad)∗ (t) = e− ∫ t−∞dt1 Γiad(t1) . (3.92d)

Inserting the explicit form of the reaction rates (3.87) and comparing (3.92) to (3.27)
and (3.65) while leveraging (3.39) we obtain the relations

n
(rc)∗ (t) = 1 − n(rc)

0 (t) , (3.93a)

n
(dad)∗ (t) = n(dad)

1 (t) = 1 − n(dad)
0 (t) , (3.93b)

n
(iad)∗ (t) = n(iad)

1 (t) = 1 − n(iad)
0 (t) . (3.93c)

These equations connect the occupancies of the pseudo-particle states with the oc-
cupation of our molecular two-level system for the isolated reaction channels.

We can now employ the isolated occupancies (3.92) to calculate the solution of
the full coupled system of rate equations (3.86). We start with the occupation of
the metastable state. Using the initial condition n(rc+dad+iad)∗ (−∞) = 1, Eq. (3.86b)
can be solved by separation of variables and yields

n
(rc+dad+iad)∗ (t) = e− ∫ t−∞dt1[Γrc(t1)+Γdad(t1)+Γiad(t1)] = n(rc)∗ (t)n(dad)∗ (t)n(iad)∗ (t) . (3.94)

Next we turn to the occupancy of the negative ion state. To solve (3.86a) we first
multiply this equation by a factor exp(∫ t−∞dt2 Γ̄rr(t2)) and afterwards rearrange the
terms to obtain

d

dt
(n(rc+rr+dad+iad)− (t) e∫ t−∞dt2 Γ̄rr(t2)) = Γrc(t)n(rc+dad+iad)∗ (t) e∫ t−∞dt2 Γ̄rr(t2) . (3.95)

Relabeling t as t1 and integrating the equation from t1 = −∞ to t1 = t while minding
the initial condition n−(−∞) = 0 yields after a further rearrangement

n
(rc+rr+dad+iad)− (t) = ∫ t

−∞dt1 Γrc(t1)n(rc+dad+iad)∗ (t1) e− ∫ tt1dt2 Γ̄rr(t2) (3.96a)

= ∫ t

−∞dt1 [−dn
(rc)∗ (t1)
dt1

]n(dad)∗ (t1)n(iad)∗ (t1) n(rr)− (t)
n
(rr)− (t1) . (3.96b)

Finally, the occupancy of the ground state ng, that is the solution of Eq. (3.86c), is
given through the particle conservation property of the full system (3.86),

n
(rc+rr+dad+iad)
g (t) = 1 − n(rc+dad+iad)∗ (t) − n(rc+rr+dad+iad)− (t) . (3.97)
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Note that the projectile occupancies (3.94), (3.96), and (3.97) emerging from the
combined rate equation scheme (3.86) are determined completely by the occupan-
cies n(rc)∗ , n(rr)− , n(dad)∗ and n(iad)∗ due to the isolated reaction channels (3.89). How-
ever, for the combined system a direct relation between the occupations of the
pseudo-particle states and the molecular two-level system is only obvious for the
metastable state. In particular, inspection of (3.94) reveals

n
(rc+dad+iad)∗ (t) = 1 − n(rc)

0 n
(dad)
0 n

(iad)
0 = 1 − n(rc+dad+iad)

0 , (3.98)

where n(rc+dad+iad)
0 is the occupation of the molecular ground state level due to the

combination of resonant electron capture and the Auger de-excitation channels. For
the remaining pseudo-particle states we now have to employ an intuitive approach.
For this purpose we first consider the molecular ground state. From the struc-
ture of the Hamiltonian (3.69) and the reactions (1.1), (1.2) and (1.3) it is obvious
that N2(1Σ+

g) can only be generated through the removal of the electron from the
excited level of the incident N2(3Σ+

u) molecule. This observation directly yields

n
(rc+rr+dad+iad)
g (t) = 1 − n(rc+rr+dad+iad)

1 (t) . (3.99)

As we see, in contrast to the ground state level’s occupation given through (3.98),
the occupancy of the excited molecular level n(rc+rr+dad+iad)

1 depends on all four
(sub)reactions. This is due to the fact that the resonant emission from the excited
level can only proceed after an electron has been resonantly captured into the ground
state level. Combining (3.98) and (3.99) by means of the particle conservation
property of the system we now also find

n
(rc+rr+dad+iad)− (t) = n(rc+dad+iad)

0 + n(rc+rr+dad+iad)
1 − 1 . (3.100)

We stress that (3.98), (3.99) and (3.100) only hold true because the positive ion
state N+

2(2Πu) never occurs in the course of the de-excitation reaction.
We now move on to the spectrum of electrons emitted into initially empty states

of the surface k⃗′ and the projectile’s continuum states q⃗. While the evolution of
these states has not been considered explicitly in our quantum-kinetic calculation,
their occupation can, nevertheless, be found using the solution of (3.86). From the
reactions (1.1), (1.2) and (1.3) it is obvious that the probability for emitting an elec-
tron n(rc+rr+dad+iad)(t) is equal n(rc+rr+dad+iad)

g (t) since every ground state molecule
must have resulted from the reaction chain and, hence, must be accompanied by an
emitted electron. Consequently, the evolution of n(rc+rr+dad+iad)(t) is governed by
Eq. (3.86c).

As before, we are particularly interested in electrons that are able to escape the
surface since these contribute to the secondary electron emission coefficient. In order
to restrict our analysis to these electrons, we now adopt a two-step strategy. First
we introduce the spectral rates %rr(ε∞⃗q , t), %dad(εk⃗′ , t) and %iad(ε∞⃗q , t) via

Γ̄rr(t) = ∫ ∞
0

dε∞⃗q %rr(ε∞⃗q , t) + ∫ ∞
−∞dε

∞⃗
q %n(ε∞⃗q ) , (3.101a)

Γdad(t) = ∫
Bk′

dεk⃗′ %dad(εk⃗′ , t) , (3.101b)

Γiad(t) = ∫ ∞
0

dε∞⃗q %iad(ε∞⃗q , t) , (3.101c)
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where %n is the spectrum of the natural decay rate Γn (see Eq. (2.42)) andBk′ denotes
the overall domain for the k⃗′-integration embracing all initially empty excited states
within the solid. Note that the integral over %n formally runs from −∞ to +∞ due to
the definition of the natural line shape as a Breit-Wigner distribution (see Sec. 2.2.3).
In a second step we then incorporate the surface transmission functions Tk⃗′ and Tq⃗
(see Sec. 2.6) by letting %rr/n/dad/iad → %̃rr/n/dad/iad with

%̃rr/iad(ε∞⃗q , t) = ∫ π

0
dϑq⃗ ∫ 2π

0
dϕq⃗ Tq⃗(t) d2%rr/iad(ε∞⃗q , t)

dϑq⃗ dϕq⃗
, (3.102a)

%̃dad(εk⃗′ , t) = ∫ π

0
dϑk⃗′ ∫ 2π

0
dϕk⃗′ Tk⃗′(t) d2%dad(εk⃗′ , t)

dϑk⃗′ dϕk⃗′
, (3.102b)

and %̃n as given by Eq. (2.92). We now insert the resulting spectral decomposition of
the rates into Eq. (3.86c), identify n(rc+rr+dad+iad)

g with ñ(rc+rr+dad+iad), denoting the
probability for emitting an electron which can escape from the surface, and obtain

dñ(rc+rr+dad+iad)(t)
dt

= ∫ ∞
0

dε∞⃗q [%̃rr(ε∞⃗q , t) + %̃n(ε∞⃗q , t)]n(rc+rr+dad+iad)− (t)
+ ∫ ∞

0
dε∞⃗q %̃iad(ε∞⃗q , t)n(rc+dad+iad)∗ (t)

+ ∫
Bk′

dεk⃗′ %̃dad(εk⃗′ , t)n(rc+dad+iad)∗ (t) .
(3.103)

Integrating over the time argument with the initial condition ñ(rc+rr+dad+iad)(−∞) = 0
we then find the overall number of electrons emitted into k⃗′- or q⃗-states at time t,

ñ(rc+rr+dad+iad)(t) = ∫ t

−∞dt1∫
∞

0
dε∞⃗q %̃iad(ε∞⃗q , t1)n(rc+dad+iad)∗ (t1)

+ ∫ t

−∞dt1∫
∞

0
dε∞⃗q [%̃rr(ε∞⃗q , t1) + %̃n(ε∞⃗q , t1)]n(rc+rr+dad+iad)− (t1)

+ ∫ t

−∞dt1∫Bk′dεk⃗′ %̃dad(εk⃗′ , t1)n(rc+dad+iad)∗ (t1) .
(3.104)

By letting t→∞ Eq. (3.104) can now be used to calculate the secondary electron
emission coefficient γ(rc+rr+dad+iad)

e due to resonant and Auger de-excitation,

γ
(rc+rr+dad+iad)
e = ñ(∞) . (3.105)

Furthermore, the individual distributions of electrons over k⃗′- and q⃗-states can be
derived from (3.104) by stripping out the energy integrals,

ñ
(rc+rr+dad+iad)
ε∞⃗q (t) = dñ(rc+rr+dad+iad)(t)

dε∞⃗q (3.106a)

= ∫ t

−∞dt1 [%̃rr(ε∞⃗q , t1) + %̃n(ε∞⃗q , t1)]n(rc+rr+dad+iad)− (t1)
+ ∫ t

−∞dt1 %̃iad(ε∞⃗q , t1)n(rc+dad+iad)∗ (t1) , (3.106b)

ñ
(rc+dad+iad)
εk⃗′ (t) = dñ(rc+rr+dad+iad)(t)

dεk⃗′
(3.106c)

= ∫ t

−∞dt1 %̃dad(εk⃗′ , t1)n(rc+dad+iad)∗ (t1) . (3.106d)
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Note that here ñ(rc+dad+iad)
εk⃗′ does not depend on the electron emission subreaction of

the resonant channel.
The occupations of the projectile pseudo-particle states (3.94), (3.96), (3.97),

the total number of escaped electrons (3.104) and their spectra (3.106) are the main
results of this section. The occupancies fully characterize the temporal evolution of
the de-excitation of a metastable projectile when the RCT reaction and the Auger
channels are active simultaneously. The required input ingredients, embracing the
occupancies arising from the isolated processes n(rc)∗ , n(rr)− , n(dad)∗ and n(iad)∗ as well
as the surface-transmitted spectral rates %̃rr, %̃dad and %̃iad, can be obtained from
the quantum-kinetic calculation and, thus, from our semi-empirical model. In addi-
tion, we also showed how the natural decay of the negative ion can be consistently
integrated into our description by means of its decay rate Γn and the associated
spectrum %̃n.

Finally, we note that, as we showed in Ref. [88], the rate equation system (3.86)
can also be derived without the analysis presented in this section by following an
intuitive approach. First of all, the general architecture of (3.86) can as well be
postulated from the start by simply inspecting the structure of the reactions (1.1),
(1.2) and (1.3). Moreover, the explicit form of the involved reaction rates (3.87) can
be determined by considering the derivatives of the isolated semi-classical projec-
tile occupations derived in Secs. 3.1 and 3.2. For the indirect Auger de-excitation
channel, for instance, differentiation of (3.65a) leads to

d(
n
(iad)∗ (t)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1 − n(iad)
0 (t))

dt
= −∫ t

−∞dt1 2R{∆iad(t, t1)}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γiad(t)

(
n
(iad)∗ (t)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1 − n(iad)
0 (t)) . (3.107)

This equation is identical to the isolated rate equation (3.89d) and yields the rate of
indirect Auger de-excitation Γiad (see Eq. (3.87d)). The remaining rates occurring
in (3.86) could be obtained in a similar manner. These findings a posteriori justify
our pseudo-particle approach and underline the correctness of our analysis.

3.4 Auger and Resonant Neutralization

After our extensive investigation of the de-excitation channels in the previous sec-
tions of this chapter we will now turn to the reactions of Auger and resonant neu-
tralization, (1.4) and (1.5). The corresponding Hamiltonian can be constructed by
adding up the relevant terms from Sec. 2.4. After concretizing the projectile level’s
energy it reads

Ĥ(t) = ∑⃗
k

εk⃗ c
†
k⃗
c
k⃗
+ ε0g(t) c†0 c0 + ∑⃗

k

[Vk⃗(t) c†k⃗ c0 +H.c.]
+ ∑
k⃗1,k⃗2,k⃗′

[Vk⃗1k⃗2k⃗′(t) c†0 ck⃗1
c†
k⃗′ ck⃗2

+H.c.] , (3.108)

where 0 represents the projectile’s initially empty ground state level and k⃗(′), k⃗1

and k⃗2 label states inside the solid surface. Moreover, Vk⃗ and Vk⃗1k⃗2k⃗′ denote the



72 Chapter 3. Quantum Kinetics

× ×
V ∗⃗
k
(t1) V

k⃗
(t2)

k⃗0 0 × ×
V
k⃗1k⃗2k⃗′(t1) V ∗⃗

k1k⃗2k⃗′(t2)

k⃗1

k⃗2

k⃗′
0 0

Figure 3.6: Diagrammatic representation of the self-energy Σ00 up to second order. The
left diagram shows the component due to resonant neutralization which for the isolated
resonant channel represents the exact self-energy. The right diagram, on the other hand,
depicts the second-order self-energy term due to the Auger neutralization channel.

matrix elements of resonant and Auger neutralization, respectively. For the latter k⃗1

and k⃗2 represent initially occupied states within the surface while, as before, k⃗′ refers
to an internally excited and initially empty state of the solid.

We will now study the dynamics of (3.108) using the non-equilibrium Green
function technique. For this purpose we will once more employ the formulation
due to Keldysh since, as we will see, the emitted electrons can be treated by the
same renormalization procedure that was employed in our analysis of the Auger
de-excitation channels in Sec. 3.2.

Similar to Sec. 3.2 we again start our investigations with the projectile self-
energies. The resonant neutralization process was already described in Sec. 3.1 on
the basis of an exact first-order non-diagonal self-energy. In order to couple the two
neutralization reactions, it is, however, more convenient to work with a second-order
diagonal self-energy for the resonant channel. Note that this is merely a different
representation which is still exact. In addition, we perform an expansion of the
Auger self-energy up to second order in Vk⃗1k⃗2k⃗′ . Figure 3.6 shows the resulting self-
energy diagrams for the ground state level. The advanced, retarded and Keldysh
components of Σ00 evaluate to

ΣA
00(t1, t2) = Θ(t2 − t1)[Σ(an)

00 (t1, t2) +Σ
(rn)
00 (t1, t2)] , (3.109a)

ΣR
00(t1, t2) = −Θ(t1 − t2)[Σ(an)

00 (t1, t2) +Σ
(rn)
00 (t1, t2)] , (3.109b)

ΣK
00(t1, t2) = Σ

(an)
00 (t1, t2) + Σ̃

(rn)
00 (t1, t2) , (3.109c)

where the terms Σ
(an)
00 , Σ

(rn)
00 and Σ̃

(rn)
00 are given by

Σ
(an)
00 (t1, t2) = 2

i

h̵2 ∑
k⃗1k⃗2k⃗′

nk⃗1
(−∞)nk⃗2

(−∞) [1 − nk⃗′(−∞)]
× Vk⃗1k⃗2k⃗′(t1)V ∗⃗

k1k⃗2k⃗′(t2) e− ih̵ (εk⃗1
+εk⃗2

−εk⃗′)(t1−t2) ,
(3.110a)

Σ
(rn)
00 (t1, t2) = i

h̵2 ∑⃗
k

V ∗⃗
k
(t1)Vk⃗(t2) e− ih̵ εk(t1−t2) , (3.110b)

Σ̃
(rn)
00 (t1, t2) = − i

h̵2 ∑⃗
k

[1 − 2nk⃗(−∞)]V ∗⃗
k
(t1)Vk⃗(t2) e− ih̵ εk(t1−t2) . (3.110c)

Here we leveraged the fact that the non-interacting part of the Hamiltonian (3.108)
exhibits the general form (1.32). Consequently, the unperturbed Green functions of
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the system are given by (1.33) and (1.34). Furthermore, in Eqs. (3.109) and (3.110)
the superscripts (an) and (rn) identify contributions due to Auger and resonant
neutralization, respectively. Note that the Auger component Σ

(an)
00 actually contains

an additional term proportional to [1 − nk⃗1
(−∞)] [1 − nk⃗2

(−∞)]nk⃗′(−∞). This con-
tribution can, however, be neglected since it would only be meaningful for an initially
occupied projectile level which is not the situation considered here. Moreover, we
manually introduced a factor 2 in (3.110a) in order to account for the arbitrary spin
of the Auger electron which is not handled in our otherwise spinless description.

We now proceed with the calculation of the retarded and advanced Green func-
tions GR

00 and GA
00. The associated Dyson equations (see (1.28a)) can again be solved

iteratively and yield

GR
00(t, t′) = GR(0)

00 (t, t′)σ[∆an+rn](t, t′) , (3.111a)

GA
00(t, t′) = GA(0)

00 (t, t′)σ[∆∗
an+rn](t′, t) . (3.111b)

Here σ represents the well-known infinite series (C.1) and ∆an+rn is the sum of two
complex functions,

∆an+rn(t1, t2) = ∆an(t1, t2) +∆rn(t1, t2) , (3.112)

with
∆an/rn(t1, t2) = −iΣ(an/rn)

00 (t1, t2) e ih̵ ∫ t1t2 dt3 ε0g(t3) . (3.113)

Note that, as indicated by their subscripts, the functions ∆an and ∆rn are due to the
Auger and the resonant reaction, respectively. Moreover, the function ∆rn is equal
to ∆ as defined in (3.12) with ξ⃗ and εp replaced by k⃗ and ε0g. Similar to Sec. 3.1, we
can restrict the k⃗-summation, implicitly contained in the (rn)-component of (3.113),
to initially occupied surface states provided that the projectile level ε0g(t) does not
get (near-)resonant to initially empty k⃗-states. As a result, ∆rn is identical to ∆rc

as given by (3.16) if in the latter equation ε0− is replaced by ε0g.
We now employ the Green functions (3.111) and the Keldysh self-energy (3.109c)

to calculate the transient occupation of the projectile level from the combination
of (1.31) and (1.36). After a short rearrangement we find

n
(an+rn)
0 (t) = 1

2
[1 − σ[∆an+rn](t,−∞)σ[∆∗

an+rn](t,−∞)
+ ∫ t

−∞dt1∫
t

−∞dt2 ∆an+rn(t1, t2)σ[∆an+rn](t, t1)σ[∆∗
an+rn](t, t2)] ,

(3.114)

where the superscript (an + rn) indicates that the occupancy is due to both the
Auger and the resonant neutralization channel. Making use of (C.18) we then,
finally, obtain

n
(an+rn)
0 (t) = 1 − σ[∆an+rn](t,−∞)σ[∆∗

an+rn](t,−∞) . (3.115)

Having analyzed the dynamics of the projectile level we now turn to the Auger
electron states k⃗′ representing previously empty excited states of the surface. Similar
to the Auger de-excitation reactions (see Sec. 3.2) here again a treatment of these
states analogous to the projectile level is unrewarding as the resulting expression for
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0
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Figure 3.7: Dressed second-order self-energy of the excited surface states k⃗′. The full
propagator of the projectile level is indicated by a double line.

the occupation number is not very convenient to sum over the continuum of final
states. Consequently, we again employ Makoshi’s approach[86] of renormalizing the
Auger electrons’ self-energy and expanding the associated Dyson equation.

The dressed self-energy of the excited surface electrons is depicted in Fig. 3.7.
Here we only need to consider the diagonal component due to our later expansion
of the Dyson equation. The associated Keldysh part evaluates to

ΣK
k⃗′k⃗′(t1, t2) = 2

h̵2 ∑
k⃗1,k⃗2

V
k⃗1k⃗2k⃗′(t1)V ∗⃗

k1k⃗2k⃗′(t2)
×G+−(0)

k⃗1k⃗1
(t1, t2)G+−(0)

k⃗2k⃗2
(t1, t2)G−+

00 (t2, t1) ,
(3.116)

where, similar to (3.110a), we manually inserted a factor 2 to incorporate the Auger
electron’s arbitrary spin. In order to evaluate (3.116), we need to calculate the full
projectile propagator G−+

00 . The corresponding Dyson equation (see Sec. 1.3.2) can
be rewritten into

G−+
00 (t, t′) = G−+(0)

00 (t, t′) + {G−+(0)
00 ∗ΣA

00 ∗GA
00}(t, t′)

+ {GR(0)
00 ∗ΣR

00 ∗GR
00}(t, t′) , (3.117)

where we used
Σ−+

00 (t1, t2) ∼ G+−(0)
k⃗′k⃗′ (t1, t2) ∼ nk⃗′(−∞) , (3.118)

which implies that Σ−+
00 can be neglected because the resulting terms would conflict

with energy conservation for the processes we consider. Equation (3.117) can then
be solved iteratively and yields

G−+
00 (t, t′) = G−+(0)

00 (t, t′)σ[∆an+rn](t,−∞)
× [1 − ∫ t′

−∞dt1∫
t1

−∞dt2 σ[∆∗
an+rn](t′, t1)∆∗

an+rn(t1, t2)] . (3.119)

Utilizing the complex conjugate of (C.12) this equation simplifies to

G−+
00 (t, t′) = G−+(0)

00 (t, t′)σ[∆an+rn](t,−∞)σ[∆∗
an+rn](t,−∞) . (3.120)

Hence, the Keldysh self-energy (3.116) becomes

ΣK
k⃗′k⃗′(t1, t2) = 2

i

h̵2 ∑
k⃗1,k⃗2

nk⃗1
(−∞)nk⃗2

(−∞)V
k⃗1k⃗2k⃗′(t1)V ∗⃗

k1k⃗2k⃗′(t2)
× σ[∆an+rn](t2,−∞)σ[∆∗

an+rn](t1,−∞)
× e− ih̵ ∫ t1t2 dt3 [εk1

+εk2
−ε0g(t3)] .

(3.121)



Chapter 3. Quantum Kinetics 75

Note that here the σ-factors could again be used to form renormalized matrix ele-
ments. This does, however, not provide any further insights. Moreover, since Σ−+

k⃗′k⃗′
can be neglected, we again have

ΣA
k⃗′k⃗′(t1, t2) −ΣR

k⃗′k⃗′(t1, t2) = ΣK
k⃗′k⃗′(t1, t2) . (3.122)

Thus, the expansion of (1.36) is analogous to the Auger de-excitation case (see
Sec. 3.2). Focusing on the initially unoccupied k⃗′-states we, consequently, obtain

n
(an+rn)
k⃗′ (t) ≈ −i∫ t

−∞dt1∫
t

−∞dt2 G
R(0)
k⃗′k⃗′ (t, t1)ΣK

k⃗′k⃗′(t1, t2)GA(0)
k⃗′k⃗′ (t2, t′) . (3.123)

After inserting the unperturbed Green functions and ΣK
k⃗′k⃗′ from (3.121) we then find

n
(an+rn)
k⃗′ (t) ≈ ∫ t

−∞dt1∫
t

−∞dt2 ∆k⃗′
an(t1, t2)

× σ[∆∗
an+rn](t1,−∞)σ[∆an+rn](t2,−∞) , (3.124)

with

∆k⃗′
an(t1, t2) = −iΣK

k⃗′k⃗′(t1, t2) e ih̵ εk⃗′(t1−t2)
σ[∆∗

an+rn](t1,−∞)σ[∆an+rn](t2,−∞) , (3.125)

and ∑⃗
k′

[1 − nk⃗′(−∞)]∆k⃗′
an(t1, t2) = ∆an(t1, t2) . (3.126)

As we see from (3.124), the shape of the Auger electron spectrum is determined
by ∆k⃗′

an whereas ∆an+rn only acts in a renormalizing way. This manifests the fact
that only the Auger channel can generate secondary electrons while the resonant
channel merely has an indirect effect on the electron yield by destroying the initial
positive ion. The total number of electrons excited into initially empty surface
states k⃗′ is given by

n(an+rn)(t) = ∑⃗
k′

[1 − nk⃗′(−∞)]n(an+rn)
k⃗′ (t) (3.127a)

= ∫ t

−∞dt1∫
t

−∞dt2 ∆an(t1, t2)
× σ[∆∗

an+rn](t1,−∞)σ[∆an+rn](t2,−∞) . (3.127b)

Note that if the resonant channel was absent, we could simplify (3.127b) by means
of (C.15),

n(an)(t) = 1 − σ[∆an](t,−∞)σ[∆∗
an](t,−∞) . (3.128)

When both channels are operating at the same time, this is, however, not possible.
In order to calculate the number of secondary electrons that can escape the

surface we now incorporate the surface transmission function Tk⃗′ (see Eq. (2.89a))
by introducing a new function ∆̃k⃗′

an defined as

∆̃k⃗′
an(t1, t2) = Tk⃗′(t1)Tk⃗′(t2)∆k⃗′

an(t1, t2) . (3.129)

Upon replacing ∆k⃗′
an with ∆̃k⃗′

an in (3.124) we then obtain the spectrum of escaped
electrons ñ(an+rn)

k⃗′ in the form

ñ
(an+rn)
k⃗′ (t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆̃k⃗′
an(t1, t2)

× σ[∆∗
an+rn](t1,−∞)σ[∆an+rn](t2,−∞) . (3.130)
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The total number of escaped electrons ñ(an+rn) can now be calculated by sum-
ming (3.130) over all initially empty k⃗′-states. The result reads

ñ(an+rn)(t) = ∫ t

−∞dt1∫
t

−∞dt2 ∆̃an(t1, t2)
× σ[∆∗

an+rn](t1,−∞)σ[∆an+rn](t2,−∞) , (3.131)

where, in accordance with (3.126),

∆̃an(t1, t2) = ∑⃗
k′

[1 − nk⃗′(−∞)] ∆̃k⃗′
an(t1, t2) . (3.132)

The secondary electron emission coefficient γ(an+rn)
e due to Auger and resonant neu-

tralization then follows from (3.131) by setting t =∞,

γ
(an+rn)
e = ñ(an+rn)(∞) . (3.133)

Note that due to their structure Eqs. (3.130) and (3.131) cannot be simplified further
by analytical means.

Finally, we stress that all of the results presented so far in this section can be
considered exact up to second order in the interaction matrix elements. The only
approximation we employed was the expansion of the Keldysh Dyson equation for
the Auger electrons which was, however, made up for by introducing a dressed self-
energy. Unfortunately, as before, the equations emerging from our calculation are
highly complex and cannot be evaluated easily due to the presence of the infinite
σ-series. Therefore, we will again assume that the ∆-functions introduced in this
section are strongly peaked about the time diagonal which allows us to employ the
approximate representation (C.8). The latter is particularly easy to calculate and
will significantly increase the performance in a numerical treatment.

Switching to (C.8) in our previous results is straightforward. The projectile
occupation (3.115) for instance turns into

n
(an+rn)
0 (t) ≈ 1 − e− ∫ t−∞dt1 ∫ t−∞dt2 ∆an+rn(t1,t2) . (3.134)

Moreover, based on the assumption that ∆̃k⃗′
an+rn is strongly peaked for equal times

we can also find a slight simplification of the equation describing the spectrum of
escaped electrons, (3.130). In particular, we split the time integral in (3.130) into
two identical additive components and afterwards perform a saddle-point approxi-
mation by setting t1 = t2 in the σ-terms of the first addend and t2 = t1 in the σ-terms
of the second addend. Upon employing (3.115) this generates the symmetrical ap-
proximation

ñ
(an+rn)
k⃗′ (t) ≈ 1

2 ∫
t

−∞dt1∫
t

−∞dt2 ∆̃k⃗′
an(t1, t2)

1−n(an+rn)
0 (t2)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

σ[∆∗
an+rn](t2,−∞)σ[∆an+rn](t2,−∞)

+ 1

2 ∫
t

−∞dt1∫
t

−∞dt2 ∆̃k⃗′
an(t1, t2) σ[∆∗

an+rn](t1,−∞)σ[∆an+rn](t1,−∞)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1−n(an+rn)

0 (t1)
(3.135a)

= ∫ t

−∞dt1∫
t

−∞dt2 R{∆̃k⃗′
an(t1, t2)} [1 − n(an+rn)

0 (t2)] , (3.135b)
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which assures that the occupancy stays real. The advantage of (3.135b) over (3.130)
is that the integrand is real valued from the start which simplifies a numerical
treatment because it reduces the amount of data that has to be calculated and
stored. Note that the saddle-point approximation leading to (3.135a) is the same
one that is used in the derivation of the approximate exponential representation of
the σ-series in Appendix C.

Finally, if the Auger neutralization is rather weak and the resonant channel
is blocked completely, we can calculate the number of escaped electrons from the
truncated approximate form

ñ(an)(t) ≈ 1 − σ[∆̃∗
an](t,−∞)σ[∆̃an](t,−∞) , (3.136)

which emerges after replacing ∆
(∗)
an with ∆̃

(∗)
an in the σ-terms of (3.131) and em-

ploying (C.15) (see also Sec. 3.2). Setting t =∞ and introducing the approximate
representation of the σ-series (C.8) in (3.136) we find the secondary electron emission
coefficient γ(an)

e due to Auger neutralization in the form

γ
(an)
e ≈ 1 − e− ∫ ∞−∞dt1 ∫ ∞−∞dt2 ∆̃an(t1,t2) . (3.137)
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Chapter 4

De-Excitation of Metastable
Nitrogen

Building upon the quantum-kinetic calculations of Chapter 3 we will now specifically
consider the de-excitation of metastable N2(3Σ+

u) molecules due to the resonant de-
excitation channel (1.1) and the indirect Auger de-excitation reaction (1.2). From
the analysis presented in Secs. 3.1, 3.2 and 3.3 we know that the transient occu-
pancies of projectile and surface states due to these reactions are given in terms of
time integrals of various ∆-functions (∆rc, ∆rr, ∆iad, . . . ). Each of these functions
describes a particular surface (sub)reaction and involves a double product of the
associated matrix element at two different times. In the following we will first con-
cretize these matrix elements in the context of our effective model and present suit-
able approximations for their efficient calculation in Sec. 4.1. The latter section also
embraces an analysis of the particular structure of the ∆-functions and their time
integrals for an exemplary case. In Sec. 4.2 we will then present numerical results
for the isolated de-excitation reactions as well as the combined two-channel scheme.
Note that, as mentioned earlier, the direct Auger de-excitation process (1.3) will not
be investigated here since it is spin-blocked for the particular case of N2(3Σ+

u).
4.1 Matrix Elements and ∆-Functions

4.1.1 Indirect Auger De-Excitation

As we saw in Sec. 2.4, the indirect Auger de-excitation reaction (1.2) is driven by the
electron-electron interaction term Ĥee. The latter, according to (2.61) and (2.72),
involves Coulomb and image interactions between an electron on the projectile and
another one in the surface. Clearly the Coulomb interaction is the dominating
term here and in order not to overly complicate our analysis we, therefore, neglect
the image interactions in Ĥee (see also Ref. [58]). Switching to the position space
representation the associated matrix element Vk⃗q⃗, thus, reads

Vk⃗q⃗(t) =∫ dr⃗∫ dr⃗′ [Ψ(N2)
0m (r⃗ϕ(t))]∗ Ψk⃗(r⃗)

× VC(∣r⃗ − r⃗′∣) [Ψ(N2)
q⃗ϕ

(r⃗′ϕ(t))]∗ Ψ
(N2)
1m (r⃗′ϕ(t)) . (4.1)

Here the interaction potential VC = V 1
C is the statically screened repulsive Coulomb

potential (2.60). Moreover, Ψ
(N2)
0m and Ψ

(N2)
1m denote the wave functions of the nitro-
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gen molecule’s ground state hole and excited electron, respectively, both of which
exhibit the same magnetic quantum number m = ±1 (see Eq. (2.32) and Sec. 2.2.3).
Furthermore, the wave functions Ψ

(N2)
q⃗ϕ

and Ψk⃗ pertain to a projectile continuum
state (see Eq. (2.37)) and a bound electron within the solid surface (see Eq. (2.2)),
respectively.

Obviously, the molecular wave functions Ψ
(N2)
0m , Ψ

(N2)
1m and Ψ

(N2)
q⃗ϕ

are defined with
respect to the projectile reference frame. The latter possesses an orientation and is
centered about the molecule’s center of mass r⃗p(t) which moves with respect to the
surface (see (2.49)). Consequently, in (4.1) the molecular wave functions need to be
taken at the positions r⃗ (′)

ϕ which mark the vectors r⃗ (′) as seen from the molecular
reference frame. Since, as explained in Sec. 2.3, we assume the molecule to move
with a fixed orientation and to have its axis aligned perpendicular to the laboratory’s
y-axis, the vectors r⃗ (′)

ϕ and r⃗ (′) are interrelated by

r⃗
(′)
ϕ (t) = Ωϕ [r⃗ (′) − r⃗p(t)] , (4.2)

where Ωϕ is the standard rotation matrix

Ωϕ =
⎛⎜⎜⎜⎝

sinϕ 0 − cosϕ

0 1 0

cosϕ 0 sinϕ

⎞⎟⎟⎟⎠ , (4.3)

and ϕ denotes the angle between the molecular axis and the surface (see Fig. 2.5).
In addition, the wave vectors of projectile continuum states are defined with respect
to the molecular reference frame, too. Hence, in (4.1) we have to employ the wave
vector q⃗ϕ which equals q⃗ as seen from the molecule’s reference frame,

q⃗ϕ = Ωϕ q⃗ . (4.4)

Due to the complexity of the nitrogen wave functions, especially Ψ
(N2)
q⃗ϕ

(see
Eq. (2.37)), the matrix element (4.1) cannot be simplified analytically. Moreover,
a numerical computation of Vk⃗q⃗ by means of standard Monte Carlo techniques, al-
though being straightforward, is rather costly from a performance point of view1.
Therefore, we seek for physically motivated approximations to the matrix element
which allow for an efficient calculation.

For this purpose we first utilize the particular form of the wave functions (see
Secs. 2.1 and 2.2.3). Since the wave functions of bound molecular electrons Ψ

(N2)
0m/1m

are localized on the molecule and, furthermore, the wave functions of electrons inside
the surface and in projectile continuum states, Ψk⃗ and Ψ

(N2)
q⃗ϕ

, are, in the mathemati-
cal sense, bounded throughout the entire integration domain, the main contribution
to the matrix element (4.1) will arise from points close to the actual molecule po-
sition. Moreover, for the low kinetic energies we are interested in (εkin ≤ 1 eV) the
molecule’s turning point lies far outside the surface (z0 ≥ 4.35aB, see Fig. 2.6). We
can, thus, safely restrict the r⃗-integration in (4.1) to z ≥ 0 and, hence, neglect the
overlap of the wave functions inside the solid.

1Remember that later the matrix element Vk⃗q⃗ has to be integrated over its multidimensional
wave vector dependence in order to calculate the ∆-functions (see for instance ∆iad defined in
Eq. (3.35)). Therefore, a computation time of a few seconds for the matrix element itself already
turns out to be incredibly expensive in view of the subsequent calculations.
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By the same argument we also disregard any influence of the surface’s static
dielectric constant εr for the case of a dielectric surface. This is justified since the
latter will only have a significant effect on Coulomb interactions within the surface
which have, however, been neglected by requiring z ≥ 0. Note that the dielectric
constant might still have an effect in regions where z and z′ are located on opposite
sides of the surface edge. Due to the compactness of the projectile wave functions
and the distant turning point we can, however, assume these areas to be of lesser
importance to the matrix element.

In addition, we consider the Coulomb potential’s static screening constant κ to be
position-independent. When investigating the effect of screening for aluminum and
tungsten surfaces in Sec. 4.2.1, this approximation will be made up for by employing
the surface screening constant κs of the solid instead of the bare bulk value κb (see
Table A.1). Note that for dielectric surfaces screening is suppressed by the energy
gap and, hence, we can drop κ completely in these cases.

Employing the aforementioned facts and assumptions together with the trans-
formation

r⃗ (′) = Ω†
ϕ r⃗1(2) + r⃗p(t) , (4.5)

the explicit form of the electronic wave functions (see Secs. 2.1 and 2.2.3) and the
projectile trajectory (2.49) we then arrive at

Vk⃗q⃗(t) ≈ NLCV e
−κkz zp(t) V̄k⃗q⃗ , (4.6)

with

CV = e2
0

4πε0

1

(2π) 5
2 (κN2)2

√
N0N1

, (4.7a)

V̄k⃗q⃗ = Tkz [NZ̄(q)]2∫ dr⃗1∫ dr⃗2 Θ(z1ϕ + z0)R1R2 e
im(ϕ2−ϕ1) e−κ∣r⃗1−r⃗2∣∣r⃗1 − r⃗2∣

× [e−∣r⃗1+∣ + e−∣r⃗1−∣] [e−∣r⃗2+∣ − e−∣r⃗2−∣] ei(kxx1ϕ+kyy1ϕ) e−κkz z1ϕ
× e−iq⃗ϕ⋅ r⃗2 CZ̄(q⃗ϕ, r⃗2+)CZ̄(q⃗ϕ, r⃗2−) ,

(4.7b)

where Ri and ϕi (i = 1,2) denote the lateral cylindrical coordinates associated with
the vectors r⃗1/2 and κ represents the surface’s static screening constant. Moreover,
we introduced the abbreviations

Z̄ = 2
ZC
Zeff

, (4.8a)

r⃗1/2± = r⃗1/2 ± %
2
e⃗z , (4.8b)

r⃗1ϕ = (x1ϕ, y1ϕ, z1ϕ) = Ω†
ϕ r⃗1 , (4.8c)

with % labeling the bond length of the molecule. Note that in Eq. (4.7b) we silently
switched to dimensionless atomic variables by letting

xr⃗ → xr⃗
κN2

, xk⃗ → κN2 xk⃗ , xt → xt
κN2v

, (4.9)

where xr⃗ denotes any spatial variable (like r⃗1 and r⃗p(t)), xk⃗ specifies a wave vector
variable (like k⃗ and q⃗ϕ) and xt is shorthand for any time variable. Furthermore, in
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the integrand of (4.7b) we replaced Θ(z1ϕ + zp(t)) by Θ(z1ϕ + z0) which, as numeri-
cal tests confirmed, is a good approximation for the distant turning point positions
we are considering. In total, our approximate representation (4.6) of the matrix ele-
ment (4.1) separates the time dependence from the spatial integral. As will become
obvious later, this will greatly simplify the calculation of the system’s occupancies
since the time integrations can be carried out in separate.

In order to investigate the structure of the ∆-functions connected with the in-
direct Auger de-excitation channel and the effect of our approximate matrix ele-
ment (4.6) in these quantities, we now consider the exemplary case of ∆iad. Starting
from (3.35) we insert (4.6) and convert the k⃗- and q⃗-sums into integrals according
to (2.13) and (2.40) which yields

∆iad(t1, t2) = ∣CV ∣2
16π3

(κN2)6

h̵2 ∫
occ.

dk⃗∫
unocc.

dq⃗ ∣V̄k⃗q⃗∣2 e−κkz [zp(t1)+zp(t2)]
× e− ia ∫ t1t2 dt3 [ε1∗(t3)+εk⃗−ε0g(t3)−εq⃗(t3)] ,

(4.10)

where the (κN2)6-prefactor is due to the rescaling (4.9) and a is given by

a = h̵κN2v . (4.11)

Note that in (4.10) the labels “occ.”and “unocc.” indicate that the integrals over k⃗-
and q⃗-states exclusively involve initially occupied and unoccupied states, respec-
tively. Moreover, in (4.10) we integrate over the q⃗-vector in the laboratory frame
while V̄k⃗q⃗ still contains q⃗ as seen from the molecular reference frame (see Eq. (4.7b)).

Time integrals of ∆iad can now be obtained from (4.10) in a straightforward
manner. We will demonstrate this using the example of the double time integral

I(t) = 1(κN2v)2 ∫ t

−∞dt1∫
t

−∞dt2 ∆iad(t1, t2) , (4.12)

which is for instance needed to compute the projectile occupancies (3.66). Note that
here the prefactor (κN2v)−2 is again caused by the variable transformation (4.9).
Inserting ∆iad from (4.10) and interchanging the wave vector and time integrations
we obtain

I(t) = 1(κN2v)2

∣CV ∣2
16π3

(κN2)6

h̵2 ∫ π/2
0

dϑk⃗ ∫ 2π

0
dϕk⃗ ∫ π

0
dϑq⃗ ∫ 2π

0
dϕq⃗ ∫

occ.
dk∫

unocc.
dq

× k2 sin(ϑk⃗) q2 sin(ϑq⃗) e−2κkz z0 ∣V̄k⃗q⃗∣2 ∣Γk⃗q⃗(t)∣2 ,
(4.13)

where we switched to spherical wave vector coordinates and introduced the term

Γk⃗q⃗(t) = ∫ t

−∞dt1 e
−κkz ∣t1∣ e− ia ∫ t10 dt2 [ε1∗(t2)+εk⃗−ε0g(t2)−εq⃗(t2)] . (4.14)

In addition, we utilized the fact that within our effective model the initial occupation
of k⃗- and q⃗-states follows from their energy and, hence, their radial components k
and q.

Due to the approximate matrix element (4.6) the time and space integrations
in (4.13) can be carried out separately which accounts for a significant performance
boost in a numerical calculation. Actually, the time integral (4.14) is even solvable
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analytically. The explicit solution does, however, involve very large numeric factors
and is, thus, not suitable for numerical use. Therefore, it is most convenient to
solve (4.14) by a standard one-dimensional integration routine. Furthermore, it is
advantageous to tabulate the matrix element stub V̄k⃗q⃗ on a grid over the range of
relevant wave vector coordinates2. Equation (4.13) can then be evaluated efficiently
by means of a standard Monte Carlo integration procedure. For details of the
numerical procedure we refer the reader to Appendix E.

Note that the remaining ∆-functions of the indirect Auger de-excitation channel,
like for instance ∆̃iad (see Eq. (3.63b)), possess the same principal structure as ∆iad.
Consequently, they can be handled in an equal way. Moreover, single- or double-time
integrals of the ∆-functions with different integration boundaries can be calculated
in the same manner as (4.12). Since the procedure is obvious, this will, however,
not be demonstrated here.

4.1.2 Two-Step Resonant De-Excitation

Here we will concretize the matrix elements and ∆-functions associated with the
electron capture and surface-induced electron emission subreactions of the resonant
de-excitation channel (1.1).

We start with the resonant electron capture. The associated matrix element Vk⃗
was given in (2.69). In position space representation it reads

Vk⃗(t) = ∫ dr⃗ Ψ∗⃗
k
(r⃗) [−V Zeff

C (r⃗−r⃗p1(t))−V Zeff
C (r⃗−r⃗p2(t))+Vi(z)]Ψ

(N2)
0m (r⃗ϕ(t)) , (4.15)

where Ψk⃗ and Ψ
(N2)
0m denote the wave functions of a bound surface electron (2.2)

and the molecular ground state level (2.32), respectively. Due to the motion of
the molecule the latter again has to be taken at the position r⃗ϕ given by (4.2).
Furthermore, the interaction potential in (4.15) embraces the truncated classical
image potential Vi defined in (2.14) as well as the attractive Coulomb potential −V Zeff

C

associated with the molecular nuclei (see Eq. (2.60)). The latter account for an
effective charge number Zeff = 4 (see Table A.3) and are located at the positions r⃗p1/2
which relate to the molecule’s center of mass location r⃗p via

r⃗p1/2(t) = r⃗p(t) ± %⃗2 . (4.16)

Here %⃗ denotes the inter-nuclear vector which was introduced in Fig. 2.5. Note
that in contrast to the general matrix element given in (2.69), Eq. (4.15) does not
involve interactions due to the image charges of the molecular cores since from the
surface’s point of view the nuclei charges are completely screened in the neutral
initial state N2(3Σ+

u).
Similar to the previous section an analytical simplification of the matrix ele-

ment (4.15) seems to be impossible due to the complicated structure of the projec-
tile wave function and the different interaction potentials. Consequently, we need
to introduce further approximations to make a numerical calculation of the matrix
element and derived quantities feasible.

2Since the effect of energy conservation is quite strong, one only has to tabulate V̄k⃗q⃗ for near-
resonant energies εk⃗ and εq⃗.
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In order to construct such approximations, we analyzed the components of the
full matrix element (4.15) numerically. For this purpose we introduced a step ap-
proximation to the static dielectric constant within the Coulomb potential V Zeff

C ,

εr(z) = ⎧⎪⎪⎨⎪⎪⎩
εbr for z ≤ 0 ,

1 for z > 0 .
(4.17)

For dielectric materials corresponding values of the bulk dielectric constant εbr are
listed in Table A.2. For metallic surfaces, on the other hand, we formally set εbr = −∞
in order to neglect the perfectly screened Coulomb interaction inside the solid. Fur-
thermore, as in Sec. 4.1.1, we drop the screening constant κ for dielectric surfaces and
replace it by its surface value κs for metallic materials, respectively. Our numerical
investigations then revealed that the Coulomb interactions V Zeff

C clearly outweigh the
image potential Vi. Moreover, we found that the matrix element can be neglected
in the half space z ≤ 0 also for dielectric materials.

Making use of these findings we employ the coordinate transformation (4.5) and
utilize the relation

∣r⃗ − r⃗p(t) ± %⃗
2
∣ = ∣r⃗ − r⃗p(t) ± %

2
Ω†
ϕ e⃗z∣ = ∣Ω†

ϕ [r⃗ϕ ∓ %
2
e⃗z]∣ = ∣r⃗ϕ ± %

2
e⃗z∣ . (4.18)

As in Sec. 4.1.1, we then approximate Θ(z1ϕ + zp(t)) by Θ(z1ϕ + z0) with z1ϕ defined
in (4.8c) and obtain

Vk⃗(t) ≈ NLDV e
−κkz zp(t) V̄k⃗ , (4.19)

where

DV = m√
2πN0κN2

Zeff e2
0

4πε0

, (4.20a)

V̄k⃗ = T ∗
kz ∫ dr⃗1 Θ(z1ϕ − z0) e−κkz z1ϕ 1

εr(z1) [e−κr1+
r1+ + e−κr1−

r1− ] [e−r1+ + e−r1−]
× (x1 + imy1) e−i(kxx1ϕ+kyy1ϕ) .

(4.20b)

Note that here, as explained earlier, κ takes the value κ = 0 for a dielectric surface
and κ = κs for a metallic surface. Moreover, in (4.20b) we again used the atomic
coordinate scaling (4.9) and introduced the shorthand notation

r1± = ∣r⃗1 ± %
2
e⃗z1 ∣ . (4.21)

Obviously, in the approximated matrix element (4.19) the time dependence is sep-
arated from the spatial integral which, as before, will immensely benefit the perfor-
mance of a numerical calculation.

We now turn our attention to the function ∆rc which is the only meaningful
∆-function associated with the resonant electron capture subreaction (see Sec. 3.1).
In order to explicitly calculate this quantity, we insert the approximate matrix el-
ement (4.19) into (3.16). After converting the k⃗-sum into an integral by means
of (2.13) we find

∆rc(t1, t2) = D2
V

16π3

κ3
N2

h̵2 ∫occ.dk⃗ ∣V̄k⃗∣2 e−κkz [zp(t1)+zp(t2)] e− ia ∫ t1t2 dt3 [εk⃗(t3)−ε0−(t3)] , (4.22)
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where a is given by (4.11). In (4.22) the wave vector integral and the implicitly
involved spatial integrations contained in the matrix element stub V̄k⃗ can be com-
puted efficiently in a nested Monte Carlo integration scheme without additional
tabulations. Moreover, the calculation of time integrals of ∆rc is straightforward
and follows our treatment of ∆iad in Sec. 4.1.1. Similar to the latter section, our
matrix element approximation (4.19) allows us to evaluate the involved space and
time integrals independently. By employing a separate standard one-dimensional
integration routine for the time integrals this results in a tremendous reduction in
computation time during a numerical simulation.

We now turn to the surface-induced resonant electron emission. The associated
tunneling matrix element Vq⃗ can be found in (2.68). Employing the position space
representation it takes the form

Vq⃗(t) = ∫ dr⃗ [Ψ(N2)
q⃗ϕ

(r⃗ϕ(t))]∗ [Θ(−z)V0 + Vi(z)]Ψ
(N2)
1m (r⃗ϕ(t)) , (4.23)

where the bound and continuum molecular wave functions Ψ
(N2)
1m and Ψ

(N2)
q⃗ϕ

are given
by (2.32) and (2.41), respectively. Note that here the latter represents a plane wave
since the departing electron leaves a neutral molecule behind. As pointed out in
Sec. 2.2.3, conceptually this corresponds to a two-center Coulomb wave with zero
effective nucleus charge. Moreover, due to the motion and orientation of the mole-
cule both wave functions in (4.23) have to be calculated in terms of the molecular
coordinates r⃗ϕ (see Eq. (4.2)). For the same reason we also have to employ the
emitted electron’s wave vector q⃗ϕ instead of q⃗ (see Eq. (4.4)).

The interaction potential in (4.23) involves the constant bulk potential of the
solid surface V0 and the truncated classical image potential Vi (see Eq. (2.14)).
Note that here again the nuclear charges do not generate image charges inside the
surface since they are completely screened due to the bound molecular electrons.
Consequently, the electron’s self-image potential Vi constitutes the only relevant
image interaction.

In order to analytically reduce the matrix element we now insert the explicit
form of Ψ

(N2)
q⃗ϕ

from (2.41) and make use of

q⃗ϕ r⃗ϕ(t) = [Ωϕ q⃗] [Ωϕ(r⃗ − r⃗p(t))] = q⃗ Ω†
ϕ Ωϕ´¹¹¹¹¸¹¹¹¹¶

1

(r⃗ − r⃗p(t)) = q⃗ (r⃗ − r⃗p(t)) , (4.24)

which allows us to rewrite (4.23) as

Vq⃗(t) = 1(2π) 3
2
∫ ∞
−∞dz e

−iqz[z−zp(t)] [Θ(−z)V0 + Vi(z)]
× ∫ ∞

−∞dx∫
∞

−∞dy Ψ
(N2)
1m (r⃗ϕ(t)) e−i(qxx+qyy) .

(4.25)

The x-y-integral in this equation is equal to 2π times the lateral Fourier transform of
the projectile wave function Ψ

(N2)
1m of the rotated argument r⃗ϕ. For the two principal

molecule orientations ϕ = 0 (axis parallel to surface) and ϕ = π
2 (axis perpendicular

to surface) this quantity can be calculated analytically (see Appendix D.4). Thus,
formally we obtain

V
/⊥

q⃗ (t) = 1√
2π
∫ ∞
−∞dz e

−iqz[z−zp(t)] [Θ(−z)V0 + Vi(z)]Ψ
/⊥

1m(qx, qy, z − zp(t)) , (4.26)
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where we used and ⊥ to label the parallel and perpendicular molecule orientation,
respectively. In addition, we introduced the abbreviations

Ψ1m(qx, qy, z) = Ψ
(N2)
1m (−z, qy, qx) , Ψ⊥1m(qx, qy, z) = Ψ

(N2)
1m (qx, qy, z) , (4.27)

which represent the lateral Fourier transforms of Ψ1m for the two orientations. The
explicit form of these expressions is given in Eqs. (D.52a) and (D.52b) using cylindri-
cal coordinates. Hence, the matrix elements (4.26) represent a significant simplifica-
tion over the original equation (4.23) since they only include a single one-dimensional
spatial integral. The latter can be calculated very efficiently by a standard numerical
integration routine.

Having analyzed the particular structure of the matrix element Vq⃗ we now turn
to the ∆-functions of the surface-induced resonant electron emission subreaction. As
an example we will consider ∆̃rr which involves the surface transmission function Tq⃗.
Starting from (3.26) we convert the q⃗-sum into an integral by means of (2.40) and
obtain

∆̃rr(t1, t2) = κ3
N2

h̵2 ∫unocc.dq⃗ Tq⃗(t1)Tq⃗(t2)V ∗⃗
q (t1)Vq⃗(t2) e− ia(ε∞⃗q −ε∞1−)(t1−t2) , (4.28)

with a defined in (4.11). Note that here the prefactor κ3
N2

is again due to the
scaling (4.9). Moreover, (4.28) only involves the unperturbed energies of the emitted
electron and the excited molecular level, ε∞⃗q and ε∞1−, since the associated classical
image shifts cancel each other exactly (see Sec. 2.2.4). Numerically, Eq. (4.28) can
be computed straightforwardly by combining a Monte Carlo procedure for the k⃗-
integral with a standard one-dimensional integrator for Vq⃗ and its conjugate.

In order to calculate physical quantities, we now need to evaluate time integrals
of the ∆-functions. For the particular case of ∆̃rr these integrals involve terms of
the form

Γq⃗(ta, tb) = 1

κN2v
∫ ta

tb
dt1 Tq⃗(t1)Vq⃗(t1) e ia (ε∞⃗q −ε∞1 )t1 , (4.29)

where the prefactor (κN2v)−1 is again a consequence of the coordinate transfor-
mation (4.9). Inserting the matrix elements (4.26) and the surface transmission
function (2.89b), Eq. (4.29) turns into

Γ
/⊥
q⃗ (ta, tb) = 1

κN2v

Θ(qz)(2π) 3
2κN2

∫ ∞
−∞dz Ψ

/⊥
1m(qx, qy, z) e−iqzz Iq⃗(ta, tb, z) . (4.30)

Here we shifted the time dependence into the interaction potential terms by trans-
forming the z-integral and introduced the quantity

Iq⃗(ta, tb, z) = ∫ ta

tb
dt1 Θ(ε∞qz + Vi(zp(t1))) e ia(ε∞⃗q −ε∞1 )t1

× [Θ(−z − zp(t1))V0 + Vi(z + zp(t1))] . (4.31)

Using the explicit form of Vi (see Eq. (2.14)) this integral can be calculated analyt-
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ically in a straightforward but rather tedious procedure. The result reads

Iq⃗(ta, tb, z) = 2V0

α
[Θ(τ2 − τ1)Θ(−tb) eiα τ1+τ22 sin(ατ2 − τ1

2
)

+Θ(t)Θ(τ4 − τ3) eiα τ3+τ42 sin(ατ4 − τ3

2
)]

+Qε
κN2e

2
0

16πε0

[Θ(τ5 − tb)Θ(−tb) eiαz̄
× {Ei(−iα(z̄ − τ5)) + π

2
(1 + i sgn(α))}

−Θ(ta)Θ(ta − τ6) e−iαz̄ {Ei(iα(z̄ + ta)) −Ei(iα(z̄ + τ6))}] ,

(4.32)

where Ei is the exponential integral and Qε is given by (2.16). Moreover, Eq. (4.32)
involves a number of abbreviations which are summarized in the following

τ = zc − z − z0 , τ1 = max(tb,−τ) , τ2 = min(0, tqz , ta) ,
τ3 = max(tb, tqz ,0) , τ4 = min(τ, ta) , τ5 = min(−τ,−tqz ,0, ta) ,
τ6 = max(tb,0, τ, tqz) , α = ε∞⃗q − ε∞1

a
, tqz = Qε

κN2e
2
0

16πε0

1

εqz
− z0 ,

z̄ = z + z0 .

(4.33)

Note that (4.32) can be immediately adapted to the case of ∆rr by setting tqz = 0
and dropping the Θ(qz)-term from (4.30). In addition, other ∆-functions associated
with the surface-induced resonant electron emission, like for instance ∆q⃗

rr, may be
treated in the same manner due to their equivalent structure.

4.2 Numerical Results
Utilizing the matrix elements and ∆-functions introduced in Sec. 4.1 we now present
numerical results for the de-excitation of N2(3Σ+

u) due to the isolated and com-
bined reaction channels of indirect Auger de-excitation and two-step resonant de-
excitation. All of our calculations build upon the simplified equations stemming
from the saddle-point, or semi-classical, approximation to composite time integrals
of the ∆-functions (see Chapter 3). The explicit validity of this approximation is
demonstrated in Sec. 4.2.3.

In the following, we fix the molecule’s turning point to the value given by
Eq. (2.53) for 50 meV (≈ 4.42aB) since, as seen from Fig. 2.6, z0 varies only weakly
within the considered energy range εkin ≤ 1 eV. In addition, we restrict our analysis
to the special case m = 1 since, as our numerical investigations revealed, the initial
magnetic quantum number m = ±1 seems to have no effect on our results. More-
over, we only consider the two principal molecule orientation ϕ = 0 (axis parallel to
the surface) and ϕ = π

2 (axis perpendicular to the surface) as these are expected to
produce the most fundamental results. Finally, for the most part we neglect the
influence of Coulomb screening for metallic surfaces since the available screening
constants are rather uncertain. The particular effect of screening will, however, be
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Figure 4.1: Secondary electron emission coefficient γ(iad)e and final occupancy of the
excited molecular level n(iad)

1 (∞) in parallel (black lines) and perpendicular (red lines)
molecule orientation over the molecule’s kinetic energy εkin. The curves were calculated
for an aluminum surface without Coulomb screening using the formulas (3.65b) and (3.68),
respectively.

analyzed at the end of Sec. 4.2.1. The explicit values of the screening constants and
other material specific parameters used in our calculation are listed in Appendix A.

4.2.1 Indirect Auger De-Excitation

Here we consider the isolated indirect Auger de-excitation channel (1.2) and aim at
calculating the transient and final occupancies of the two projectile levels as well as
the final distribution of escaped electrons and their total amount which constitutes
the secondary electron emission coefficient γ(iad)

e . In particular, we focus on the
case of metallic surfaces using the example of aluminum. Moreover, at the end of
this section we will also present numerical results for a tungsten surface for a which
a comparison to experimental measurements is possible. Due to their energetic
structure (see Table A.1), both of these materials exclusively allow for the Auger
de-excitation mechanism and suppress the resonant de-excitation channel almost
entirely3.

We start our analysis with an aluminum surface and consider the excited pro-
jectile level’s final occupancy n

(iad)
1 (∞) and the emission coefficient γ(iad)

e which
represents those Auger electrons that can escape the surface. We calculate the for-
mer from the approximate expression (3.65b) while for the latter we employ the
truncated approximate form (3.68). The resulting occupancies are shown in Fig. 4.1
over the kinetic energy of the incident molecule. Obviously, the de-excitation process
gets more efficient for lower kinetic energies which is evident because lower kinetic
energies correspond to smaller molecule velocities and, thus, to larger interaction
times of the projectile-surface system. Furthermore, we see that the final occupancy
of the excited projectile level, which represents the survival probability of the inci-
dent N2(3Σ+

u) molecule, saturates at unity for large kinetic energies. The emission
coefficient, on the other hand, strives towards one for small projectile energies. Both
of these effects are consequences of the exponential forms (3.65b) and (3.68) that

3Note that aluminum theoretically allows for the resonant channel. It is, however, strongly
suppressed since for N2(

3Σ+
u) the resonant projectile level capturing a surface electron in the first

step of (1.1) lies very close to the bottom of the conduction band (see Tables A.1 and A.3). Here
the extension of the solid’s wave functions into the vacuum is very weak and, hence, the tunneling
matrix element is particularly small.
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Figure 4.2: Comparison of the secondary electron emission coefficient γ(iad)e computed
from the truncated approximate form (3.68) (black line) and the zeroth order of (3.62b)
(red line) which is obtained by dropping the σ-terms. The graphs were calculate for an
aluminum surface without Coulomb screening and a nitrogen molecule in the perpendicular
orientation.

were used to generate Fig. 4.1. If, on the contrary, we calculate γ(iad)
e by simply

dropping the σ-terms from (3.62b), the emission coefficient diverges for εkin → 0 (see
Fig. 4.2). This unphysical peculiarity is a consequence of the negligence of lifetime
effects of the metastable which are encapsulated in the σ-terms. The approximate
form (3.68), on the other hand, does account for the gradual de-excitation of the
N2(3Σ+

u) molecule. Even though here the truncated σ-terms are underestimating
the de-excitation probability, their approximate representation (see Eq. (C.8)) leads
to exponential factors which damp the integrand in the divergent region and, thus,
guarantee γ(iad)

e → 1 for εkin → 0. Figure 4.2 explicitly demonstrates this behavior.
Note that the region in which the zeroth-order result for γ(iad)

e exceeds unity cor-
responds to very low molecule velocities (εkin ≤ 10−5 eV). Moreover, for kinetic ener-
gies above approximately 0.1 meV the difference between the two curves in Fig. 4.2 is
vanishingly small indicating that in this energy range the zeroth order of Eq. (3.62b)
is sufficient. This fact is caused by the particular inefficiency of the Auger interac-
tion and has an important implication. When considering the distribution of emitted
electrons for thermal collision energies, it allows us to drop the σ-terms from (3.54b)
and (3.61b). Consequently, the emission spectra can be determined solely in terms
of the time integrated ∆q⃗

iad- and ∆̃q⃗
iad-functions.

Going back to Fig. 4.1 we see that the de-excitation probability, which is given
by 1 − n(iad)

1 (∞), is higher in the parallel orientation while the amount of escaped
electrons is larger in the perpendicular orientation. This seemingly contradictory
result is a consequence of the different distributions of emitted electrons over q⃗-states
in the two orientations. To make this more clear we calculate the final qz-spectrum
of the emitted electrons by integrating over the lateral wave vector dependence
of (3.54b),

n
(iad)
qz (∞) = ∫ ∞

−∞dqx∫
∞

−∞dqy n
(iad)
q⃗ (∞) . (4.34)

Focusing on the case of εkin = 50 meV, which is about twice the thermal energy
of a nitrogen molecule at room temperature, we can neglect the renormalizing σ-
terms contained in n

(iad)
q⃗ (see Eq. (3.54b)) due to the previously given argument

concerning the inefficiency of the Auger de-excitation process. The resulting lateral
spectrum of the Auger electrons is shown in Fig. 4.3. As we see, for the parallel
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Figure 4.3: Distribution of emitted electrons over the z-component of q⃗ for an aluminum
surface in parallel (black line) and perpendicular (red line) orientation. The curves were
computed from (3.54b) by dropping the σ-terms and integrating over the lateral wave
vector dependence. The effect of Coulomb screening was not included. Note that qz is
denoted in units of κN2 (see Eq. (2.34)) and only the region qz ≥ 0 is shown since wave
vectors pointing in the negative z-direction traverse into the solid and, thus, cannot escape
the surface.

case the electron has a significant probability to be emitted with a rather small
vertical wave vector. For the perpendicular case, on the other hand, the spectrum
almost vanishes at qz = 0 and is concentrated at higher qz-values around 0.15κN2 .
Since emitted electrons with a small qz-component are very likely to get trapped in
the image potential , large parts of the parallel spectrum are cut-off by the surface
transmission function while the perpendicular spectrum is affected less strongly.
Therefore, the emission coefficient is higher in the perpendicular orientation although
the de-excitation probability is larger in the parallel orientation.

Next, we investigate the variation of the molecular occupancies n(iad)
0 and n(iad)

1

which can be obtained from (3.65a) and (3.65b), respectively. The arising occupa-
tion numbers are plotted in Fig. 4.4 for an aluminum surface at a kinetic energy
of 50 meV. Obviously, the occupancy of the molecular levels changes significantly
only in the range ∣t∣ ≤ 4 which, taking the turning point into account, equals maxi-
mum distances of the molecule’s center of mass from the surface of roughly 6.5aB.
Thus, the indirect Auger de-excitation is only effective close to the projectile’s turn-
ing point z0. Moreover, the process is equally efficient in the incoming and outgoing
branches of the trajectory which means that the projectile occupations depend only
on ∣t∣. Note that this behavior is neither evident nor expected from the double
time integral structure of (3.65a) and (3.65b) and in part is a consequence of the
particular inefficiency of the indirect Auger channel. In fact, for the case of a more
effective de-excitation this symmetry would be broken by the exponentials in (3.65a)
and (3.65b) which lead to a saturation of the molecular occupation numbers.

The final distribution of the escaped electrons over their unperturbed energy ε∞⃗q
is also of interest. It can be obtained from (3.61b) by switching to spherical wave
vector coordinates and integrating over the two angle components,

ñ
(iad)
ε∞⃗q (∞) = κ3

N2

2
( 2me

h̵2κ2
N2

)
3
2 ∫ π

0
dϑq⃗ ∫ 2π

0
dϕq⃗

√
εq⃗ sin(ϑq⃗) ñ(iad)

q⃗ (∞) . (4.35)

Here we again consider a kinetic energy of εkin = 50 meV which, as explained be-
fore, allows us to drop the σ-terms from ñ

(iad)
q⃗ (see Eq. (3.61b)). Figure 4.5 shows
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Figure 4.4: Time evolution of the occupancies of the excited molecular level (upper
panel) and the ground state level (lower panel) for parallel (black lines) and perpendic-
ular (red lines) molecule orientation on an aluminum surface. The kinetic energy of the
incident molecule was fixed to 50 meV. Moreover, the curves were calculated from (3.65a)
and (3.65b), respectively, while neglecting Coulomb screening effects. Note that here the
time is measured in the atomic units of (4.9). Thus, a time difference of ∆t = 1 corresponds
to the motion of the molecule over a distance of ∆z = aB/2.

the resulting energy spectra for the two principal molecule orientations on an alu-
minum surface. Both graphs start at the origin, monotonously increase until approx-
imately 4.8 eV and then drop off rapidly. The maximum observable energy resembles
the classical cut-off energy εmaxq⃗ which for a kinetic energy of 50 meV is given by

εmaxq⃗ = ε∞1∗ − ε∞0g + εF − Vi(z0) ≈ 5.74 eV . (4.36)

This implies that energy conservation is restored at the end of the collision, as it
should be. Note that the spectrum shown in Fig. 4.5 is different from the one we
published in Ref. [89]. The latter didn’t include the influence of the image potential
on the emitted electron’s energy. This effect should, however, not be neglected since,
as we see, it leads to a significant extension of the spectrum beyond the classical
cut-off energy without the image potential which amounts to merely 3.43 eV.

Further inspection of Fig. 4.5 reveals that the low-energy part of the spectra is
sharply cut off. This is caused by the surface transmission function Tq⃗ contained
in ∆̃q⃗

iad (see Eq. (3.60b)) which allows electrons to escape from the surface only
when their perpendicular energy is large enough. Moreover, the spectrum takes on
larger values for the perpendicular than for the parallel case, as was explained in
connection with the qz-spectrum of the emitted electron shown in Fig. 4.3.

Finally, integration of the energy spectra over ε∞⃗q yields the secondary electron
emission coefficients listed in Table 4.1. Also shown here are the emission coefficients
obtained from a surface-screened Coulomb potential. So far the results presented in
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Figure 4.5: Final energy spectrum of the escaped electrons in parallel (black line) and
perpendicular (red line) orientation. The kinetic energy of the incident molecule was fixed
to 50 meV. Moreover, the graphs were calculated for an aluminum surface without Coulomb
screening by means of (4.35) and (3.61b).

unscreened surface screened
parallel 1.280 ⋅ 10−2 2.025 ⋅ 10−3

perpendicular 2.057 ⋅ 10−2 8.409 ⋅ 10−3

Table 4.1: Secondary electron emission coefficient γ(iad)e due to indirect Auger de-
excitation of N2(

3Σ+
u) on an aluminum surface in the two principal molecule orientations

for a kinetic energy of 50 meV. The table shows the bare emission coefficients without
Coulomb screening as well as those obtained by employing a statically screened Coulomb
potential with the surface screening wave number κs listed in Table A.1.

this section were calculate without considering the static screening of the Coulomb
potential which drives the Auger de-excitation of the molecule. In reality, however,
the Coulomb interaction in the vicinity of a surface is screened due to the charge
carriers of the solid. The strength of de-excitation should, thus, be affected by
screening. In fact, the data in Table 4.1 indicates that upon using the surface
screening constant κs (see Table A.1) the emission coefficients on aluminum are
reduced by approximately 60% to 80%. However, the exact value of κs is rather
uncertain4. Therefore, the previous results of this section were calculated without
taking the screening into account.

We now apply our model to a different metallic surface, tungsten, and investigate
the influence of the molecule’s turning point on the de-excitation process. In order
to do so, we calculate the final occupation of the excited projectile level for the
two turning points z0 = 4.42aB and z0 = 4aB. Note that the former value naturally
arises from (2.53) for a kinetic energy of 50 meV while the latter one is artificial.
The numerically obtained occupation numbers n(iad)

1 (∞) are shown in Fig. 4.6 over
the projectile’s kinetic energy. As we see, for the lowered turning point the de-
excitation probability increases drastically at low energies leading to significantly
reduced occupancies of the excited molecular level. At larger energies, on the other
hand, the difference in the turning points shows almost no influence. Quantitatively,

4Here we converted between the bulk and the surface screening constant by using an empirical
factor of 0.6 which was derived from the positron transmission and trapping experiments conducted
by Neilson et al.[100] for various metallic films.



Chapter 4. De-Excitation of Metastable Nitrogen 93

10−5 10−4 10−3 10−2 10−1 100
10−5
10−4
10−3
10−2
10−1
100

εkin [eV]

n
(iad
)

1
(∞)

z0 = 4.42aB
z0 = 4.00aB

Figure 4.6: Comparison of the final occupancy of the excited molecular level n(iad)
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for two different values of the turning point z0. The curves were computed for a tungsten
surface in the perpendicular orientation by means of (3.65b). The effect of screening was
not included.

for energies below 0.1 meV, the occupancy of the excited molecular level for z0 = 4aB
is at least one order of magnitude smaller than the one obtained for z0 = 4.42aB.
Note that this has, however, no influence on the number of escaped electrons (not
shown in Fig. 4.6) because an electron emitted closer to the surface has a lower
vertical energy and can, thus, no longer breach through the image potential, as we
discussed before.

So far we have not compared our results to experimental measurements. In order
to make contact with the experimental data obtained by Stracke et al.[127], we calcu-
lated the emission coefficient for tungsten using the turning point emerging from the
surface potential (2.52) for 50 meV and the surface screening constant κs listed in Ta-
ble A.1. We find the values γ(iad)

e ≈ 1.533 ⋅ 10−3 in the parallel and γ(iad)
e ≈ 6.116 ⋅ 10−3

in the perpendicular orientation both of which are rather close to the experimental
estimate γ(iad)

e ≈ 10−4 − 10−3 given by Stracke et al.[127]. Thus, despite of the crude-
ness of our effective model, which for instance neglects dangling bonds and surface
states, and our simplistic treatment of screening near the surface, our approach
seems to capture the essential physics even quantitatively. We attribute this to the
rather large value of the molecule’s turning point (z0 ≈ 4.42aB) which partly immu-
nizes the indirect Auger de-excitation against the details of the electronic structure
in the immediate vicinity of the surface.

Finally, we note that, in contrast to Ref. [89], here we do not compare our
results to the data of Lorente et al.[82]. In our opinion the latter work is rather in-
transparent, if not ambiguous, due to two reasons. Firstly, the authors claim to
investigate the resonant de-excitation channel although the emission spectra pub-
lished in Ref. [82] do not possess the corresponding structure with a strong peak at
the resonance energy. In fact, the curves rather resemble Auger-like distributions
since they monotonously rise until a cut-off energy is reached. Secondly, if Lorente
et al.[82] did indeed include the indirect Auger channel in their calculation, they did,
however, not account for the image shift of the emitted electron’s energy. This can
be seen from the fact that their spectra break down immediately at about 3.4 eV
which resembles the classical cut-off energy (4.36) without the Vi-term. In total, the
results published in Ref. [82] are not understood on our side and we, therefore, will
not draw a comparison to the outcome of our calculations in this work.
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Figure 4.7: Time evolution of the occupation of the molecular ground state level n(rc)
0

in front of an Al2O3 surface for parallel (black line) and perpendicular (red line) molecule
orientation. The curves were calculated from (3.93a) and (3.92a) for a kinetic energy
of 50 meV.

4.2.2 Two-Step Resonant De-Excitation

In this section we investigate the two-step resonant de-excitation channel (1.1). In
order to study the isolated dynamics of this reaction, we require surface materi-
als that suppress the indirect Auger de-excitation channel (1.2) due to their band
structure. This is the case for a wide range of dielectric materials with sufficiently
large energy gaps. In particular, we first consider an Al2O3 surface and projectile
energy of 50 meV. For this setup we analyze the efficiency of the resonant electron
capture and emission subreactions as well as the transient realization of the different
molecular states and the spectrum of escaped electrons. Later we will calculate the
electron emission coefficients of Al2O3, MgO, SiO2 and diamond5 for a wide range
of kinetic energies.

All of the results presented in the course of this section were computed from
the semi-classical equations of Sec. 3.3 while neglecting any contributions due to
Auger de-excitation and employing the explicit and approximate form of the matrix
elements and ∆-functions derived in Sec. 4.1.2. For details of our numerical scheme
we refer the reader to Appendix E.

We start our analysis with the resonant electron capture into the ground state
level which converts the incident N2(3Σ+

u) molecule into an N−
2(2Πg) ion. Since the

indirect Auger de-excitation channel is blocked, we can employ (3.92a) to calculate
the occupation of the metastable state n(rc)∗ . Note that the latter is only influenced
by the first step of (1.1) and, therefore, does not depend on the resonant electron
release subreaction. The occupancy of the lower projectile level n(rc)

0 is then given
through (3.93a) and, similar to the previous section, represents the de-excitation
probability. Figure 4.7 shows the resulting time evolution of n(rc)

0 for the case of
an Al2O3 surface at a kinetic energy of 50 meV. We clearly see that the electron
capture is very effective, since the molecular vacancy is completely filled within the
incoming branch of the trajectory for both orientations. Moreover, the efficiency
is higher in the parallel orientation where a complete filling of the ground state
hole is realized at about t = −1, corresponding to a molecule-surface distance of
approximately 4.92aB. In the perpendicular orientation, on the other hand, the

5Note that Diamond actually supports both de-excitation channels. However, as will be demon-
strated in Sec. 4.2.3, the resonant channel strongly dominates over the Auger channel.
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Figure 4.8: Fraction of negative ions versus time for the surface-induced decay process
(upper panel) and the natural decay reaction (lower panel) in front of an Al2O3 surface
at a molecular kinetic energy of 50 meV. The black lines represent the parallel orientation
whereas the red lines denote the perpendicular orientation. The results were calculated
from Eq. (3.96).

occupation only reaches unity at about t = 1 which represents the same distance
from the surface but in the outgoing branch of the trajectory. Note that, in contrast
to the indirect Auger de-excitation studied in the previous section (see Fig. 4.4),
here the occupation of the projectile level is not symmetric with respect to t. This
is caused by the effectiveness of the electron capture which in connection with the
exponential structure of (3.92a) leads to a saturation of the occupancy.

Next, we focus on the decay of the negative ion which was generated through
electron capture into the ground state level. As we know, this reaction can proceed
in the subchannels of natural and surface-induced decay. To estimate the relative
strength of these processes, we treat them separately and calculate the associated
number of intermediate negative ions along the trajectory. From the respective
amount of negative ions we will then be able to deduce the particular efficiency of
the individual decay reactions. Figure 4.8 shows the time evolution of the fraction
of negative ions n(rc+rr)− as calculated from Eq. (3.96) for both processes in front
of an Al2O3 surface at εkin = 50 meV. As we see, within the incoming branch the
portion of negative ions first increases due to the previously demonstrated efficiency
of electron capture into the ground state level and the finiteness of the decay rates.
At some point, however, the decay process starts to outbalance the generating re-
action, resulting in a decrease of the negative ion fraction. Apparently the negative
ion share due to the surface-induced reaction levels out to a non-zero value at large
collision times (see upper panel of Fig. 4.8). This can be explained by the fact that
the corresponding matrix element (see Eq. (4.23)) is mainly driven by the image
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Figure 4.9: Time evolution of the molecular fractions n(rc)∗ and n(rc+rr)
g pertaining to the

metastable state and the ground state molecule, respectively. The figure shows data for
the parallel (black lines) and perpendicular (red lines) orientation on an Al2O3 surface at a
kinetic energy of 50 meV. The curves were obtained by employing Eqs. (3.92a) and (3.97),
respectively, while only considering the natural decay channel.

potential which vanishes at large distances from the solid. For the natural decay,
on the other hand, the decay rate is constant and, thus, the negative ion fraction
eventually drops to zero (see lower panel of Fig. 4.8). Furthermore, we observe that
the respective saturation level due to the surface-induced reaction is much lower for
the parallel than for the perpendicular orientation. This is caused by the antisym-
metry of the molecular wave function Ψ

(N2)
1m (see Eq. (2.31)) in the plane normal

to the molecule’s axis. In the parallel orientation this antisymmetry is broken by
the surface which results in a significantly enlarged matrix element and, hence, in a
higher rate of decay.

Inspecting Fig. 4.8 an important point to notice is that along the trajectory the
amount of negative ions due to the surface-induced reaction is about two orders
of magnitude higher than the amount of negative ions due to the natural decay
channel. Consequently, the natural decay rate must be considerably larger than the
surface-induced decay rate. We stress that in part this is caused by the distant
turning point of the molecule. In fact, for a turning point closer to the surface an
increased matrix element Vq⃗ (see (4.23)) would arise which in turn would result in
a higher rate of surface-induced decay. Since this is, however, not the case for the
material combinations considered in this work we completely neglect the surface-
induced decay channel in the following.

Focusing exclusively on the natural decay channel we now turn to the fraction of
ground state molecules n(rc+rr)

g . Note that the latter, in contrast to n(rc)∗ , is the result
of the combined two-step resonant reaction. Its time evolution, therefore, has to be
calculated from the solution of the coupled rate equation (3.97). The corresponding
occupation for an Al2O3 surface and a kinetic energy of 50 meV is depicted in Fig. 4.9
together with the fraction of metastables n(rc)∗ . Obviously, with the decrease of n(rc)∗
the number of ground state molecules n(rc+rr)

g almost immediately rises by the same
amount. This effect is caused by the rather large rate of natural decay and the
resulting small number of intermediate negative ions n(rc+rr)− (see lower panel of
Fig. 4.8).

We now move on to the energy distribution of the escaped electrons which can be
calculated from Eq. (3.106b). Figure 4.10 shows the electronic spectrum at t = ∞,
again for the case of Al2O3 and εkin = 50 meV, while neglecting the surface-induced
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Figure 4.10: Final spectrum of escaped electrons for an Al2O3 surface calculated from
Eq. (3.106b) in parallel (black line) and perpendicular (red line) orientation. The molecule’s
kinetic energy was fixed to 50 meV and only the natural decay process was taken into
account.

decay channel. As we see, the spectrum exhibits a strong cut-off for energies below
approximately 1 eV in both molecular orientations which is a direct consequence
of the image potential. The latter traps low-energy electrons close to the surface
and was incorporated into our calculation by means of the surface transmission
function Tq⃗ (see Eq. (2.89b)). Following the low-energy cut-off, the spectra show
a strong peak at about 1.8 − 1.9 eV before they slowly fall off towards zero for
larger energies. Examining the curves we further note that the spectrum is larger
in the parallel orientation than in the perpendicular orientation. This can again be
attributed to the trapping effect since, as seen from Fig. 4.9, in the perpendicular
geometry the negative ion is generated and destroyed closer to the surface than in
the parallel orientation. The image potential and, hence, the trapping effect are,
thus, stronger in the perpendicular case which in turn reduces the amount of escaped
electrons.

Finally, we calculate the secondary electron emission coefficient γ(rc+rr)
e for the

particular cases of Al2O3, MgO, SiO2 and diamond. As we assume (2.53) and the
associated parameters to be valid for all of these materials, the turning point lies far
outside the surface in each case. Consequently, we can neglect the surface-induced
decay process over the much more efficient natural decay. Figure 4.11 depicts the
resulting emission coefficients over the molecule’s kinetic energy εkin as calculated
from Eq. (3.105). Leaving MgO aside (for a discussion see below), the emission
coefficients are on the order of 10−1 over the depicted range of kinetic energies. These
rather large values of γ(rc+rr)

e can be attributed to the shape resonance N−
2(2Πg)

which is not only efficiently formed in front of the surface but also quickly decays by
releasing an electron. In contrast, atomic projectiles, for instance metastable argon
which cannot form a negative ion, would lead to much smaller emission coefficients.
Moreover, the size of the emission coefficients depicted in Fig. 4.11 agrees rather well
with the values required for a convergent, self-consistent kinetic simulation of DBDs
involving the resonant de-excitation channel[15]. Thus, in accordance with our initial
motivation our effective microscopic model is indeed capable of providing input data
for the kinetic modeling of gas discharges with sufficient accuracy.

Let us now analyze Fig. 4.11 in more detail. Apparently the emission coefficients
increase with decreasing kinetic energy. This can be explained by the enlarged
molecule-surface interaction time which leads to a more effective filling of the ground
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Figure 4.11: Secondary electron emission coefficient γ(rc+rr)e for several dielectric surface
materials plotted against the molecule’s kinetic energy εkin. The individual materials
are encoded in different colors and in each case two curves are depicted. The solid one
corresponds to the parallel molecule orientation whereas the dashed one identifies the
perpendicular molecule orientation. All of the results were obtained from Eq. (3.105).

state hole. Apart from this obvious monotony property, the specific form of the
particular graphs is, however, not easily understood. The reason for this is the
complex dependence of the secondary electron emission coefficient on the surface’s
band structure and its static dielectric constant. For the materials we considered
here a few general remarks can, nevertheless, be given.

First, we note that the value of γ(rc+rr)
e is sensitive to the efficiency of the electron

capture into the molecular ground state level. A high efficiency results in negative
ions getting produced at large distances from the surface. The subsequent electron
emission will, thus, also take place at large distances because of the high natural
decay rate of the ions. This is beneficial to the emission coefficient as the image
potential trapping is less severe farther outside the surface. The efficiency of the
electron capture in turn is determined by the alignment of the solid’s valence band
to the molecular hole level. Since the filling of the molecular vacancy is a resonant
tunneling process, the vacancy level ε0− has to be degenerate to occupied states
within the surface in order to allow for an efficient generation of negative ions.
In addition, the electron capture is more productive if the degeneracy appears at
higher energies within the valence band. This is due to the fact that at higher
energies the wave functions of electrons within the solid have a larger extension
outside the surface. Thus, their overlap with the molecular wave function is increased
which directly influences the matrix element (4.15) and, hence, the efficiency of
the electron capture. For the particular case of MgO both conditions, degeneracy
and higher energies within the valence band, are violated since the molecular hole
level ε0− shifts downwards out of the valence band at small distances (see Tabs. A.2
and A.3). As a result, MgO has the smallest emission coefficient of the materials
under consideration.

In addition to the efficiency of electron capture the emission coefficient is also
influenced by the surface material’s dielectric constant εbr. Here a larger value of εbr
seems to have an adverse effect on γ

(rc+rr)
e since for the most part the emission

coefficients for SiO2 and diamond, both having lower dielectric constants, range
above the emission coefficient of Al2O3 which possesses a higher dielectric constant
(see Table A.2). This effect can probably be attributed to the amount of image
potential trapping of slow electrons which is proportional to (εbr − 1)/(εbr + 1). As
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this factor increases with εbr, the image potential and with it the effect of trapping
is enlarged for materials with higher dielectric constants.

4.2.3 Combined Two-Channel De-Excitation

Having studied the isolated reactions of resonant and indirect Auger de-excitation
we now turn to the combined two-channel de-excitation of N2(3Σ+

u). As mentioned
earlier, diamond supports both de-excitation channels and will, therefore, be inves-
tigated in this section. However, as we will see, here the resonant channel clearly
dominates over the Auger transition. In order to demonstrate the correct inclusion
of both de-excitation reactions in our model we will, therefore, also discuss two arti-
ficial situations for an aluminum surface. Note that, in accordance with the findings
of Sec. 4.2.2, we neglect the surface-induced decay channel in our analysis.

Similar to the previous section, the calculations discussed here build upon the
semi-classical rate equations derived in Sec. 3.3 in which, this time, we only drop
terms pertaining to the direct Auger de-excitation channel. The validity of the
saddle-point approximation leading to these equations will be the first target of our
investigations. As outlined in Sec. 3.3, approximations of the form (3.85), which were
also used to derive the approximate exponential representation of the σ-series (C.8),
are only acceptable if the involved ∆-function is sufficiently peaked on the time diag-
onal. In order to demonstrate the correctness of this assumption for the situations
studied in this work, we calculate the functions ∆rc(t1, t2) and ∆iad(t1, t2), per-
taining to the resonant electron capture subreaction of (1.1) and the indirect Auger
de-excitation channel (1.2), respectively, along the anti-diagonal t1 = −t2. The results
are shown in Fig. 4.12 for a diamond surface and a molecule in the perpendicular
orientation at a kinetic energy of 50 meV. The plots represent profiles with respect
to the time diagonal and were generated directly from the defining equations (4.22)
and (4.10) while focusing only on those k⃗- and q⃗-states that allow for transitions in
approximate agreement with energy conservation. Inspecting the results in Fig. 4.12
we see that for both functions the real part has its maximum on the time diagonal
whereas the imaginary part vanishes on the diagonal itself but exhibits the largest
value very close to it. Furthermore, when the distance from the time diagonal is
enlarged, both functions decrease in an oscillating way. In particular, for ∆rc the
amplitude decreases to about 10% over a dimensionless time interval of ∆t ≈ 0.05.
Via (4.9) this relates to a physical time span of

∆tphys = aB
2v

∆t ≈ 2.25 fs , (4.37)

and to a motion of the molecule along a distance of roughly 0.025aB. For ∆iad the
fall-off is even more drastic. Moreover, the behavior for shifted anti-diagonals and
the parallel molecule orientation is very similar and, hence, not shown here.

Altogether, we can conclude that with respect to the macroscopic motion of
the molecule the functions ∆rc and ∆iad are indeed sufficiently peaked on the time
diagonal. Thus, the semi-classical approximation is valid in our case. We stress that
this is a result of the particularly low kinetic energies considered in this work. For
incident projectiles with higher kinetic energies the semi-classical approximation is,
in general, not applicable.

Note that although we haven’t shown results for ∆rr here, we still assume the
semi-classical approximation to be acceptable for this case as well because the matrix
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Figure 4.12: Variation of the real (black lines) and imaginary (red lines) part of ∆rc(t1, t2)
(upper panel) and ∆iad(t1, t2) (lower panel) as calculated from (4.22) and (4.10) along the
anti-diagonal t1 = −t2 = t. The results hold for a diamond surface and an N2(

3Σ+
u) molecule

with its axis aligned perpendicular to the surface at a kinetic energy of 50 meV. The
behavior for negative time arguments t is omitted since the real (imaginary) part of both
functions is symmetric (anti-symmetric) with respect to the time diagonal.

element structure and the energy scale are very similar. For the same reason the
semi-classical approximation is also considered to hold true for the ∆-functions of
the neutralization channels, ∆an and ∆rn.

We now move on to the occupancies of the molecular pseudo-particle states,
that is, the probabilities with which the molecular configurations involved in the
de-excitation process appear in the course of the two-channel scattering event. The
time dependence of the occupancies n(rc+iad)∗ , n(rc+rr+iad)− and n(rc+rr+iad)

g can be cal-
culated from Eqs. (3.94), (3.96) and (3.97) where, in contrast to Sec. 4.2.2, we now
retain the terms due to the indirect Auger de-excitation reaction. Figure 4.13 de-
picts the resulting occupation numbers for a diamond surface and εkin = 50 meV in a
semi-logarithmic plot. Inspection of the curves reveals that, similar to the isolated
resonant reaction considered in the previous section, even close to the surface the
occupancy of the negative ion state is rather low. Hence, the metastable molecule is
almost immediately converted into its ground state. In Fig. 4.13 this fact is recog-
nizable at the crossing point of the curves of n(rc+iad)∗ and n(rc+rr+iad)

g which occurs
at approximately half filling of both levels.

We stress that the low occupancy of the negative ion state is caused by the high
efficiency of the natural decay channel and not by the Auger channel destroying the
metastable molecule which constitutes the generating species of the negative ion.
In fact, it is the other way around and in order to substantiate this claim, we now
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Figure 4.13: Transient occupation of the pseudo-particle levels of the ground state mol-
ecule n(rc+rr+iad)

g , the metastable molecule n(rc+iad)∗ and the negative ion n
(rc+rr+iad)− in

parallel (black lines) and perpendicular (red lines) orientation for a diamond surface. The
molecule’s kinetic energy was fixed to 50 meV and the dotted line represents half filling
of the respective level. The curves were calculated from Eqs. (3.94), (3.96) and (3.97),
respectively.

investigate the relative efficiency of the two de-excitation channels by considering the
respective reaction rates. Figure 4.14 shows the rates of resonant electron capture Γrc
and indirect Auger de-excitation Γiad as calculated from Eqs. (3.87a) and (3.87d) for
a diamond surface and a kinetic energy of 50 meV. For both channels the rates are
highest at the molecule’s turning point (approximately 4.42aB) which is the point
of smallest molecule-surface separation and strongest molecule-surface interaction.
Furthermore, when the distance from the surface is increased, the rates decrease
exponentially. Quantitatively, the resonant reaction rate is about two orders of
magnitude higher than the Auger rate. Consequently, the resonant channel captures
surface electrons much more efficiently than the indirect Auger channel. In fact,
the resonant channel is so effective in capturing electrons that it underruns the
Auger reaction by destroying its starting point, the metastable state. As a result, in
the combined two-channel system the Auger channel’s performance is significantly
diminished as compared to the isolated Auger reaction. This conclusion may be
verified by considering the term within the rate equation scheme which is responsible
for the production of ground state molecules due to indirect Auger de-excitation. It
is given by (see Eqs. (3.86c) and (3.94))

Γiad(t)n(rc+iad)∗ (t) = Γiad(t)n(rc)∗ (t)n(iad)∗ (t) . (4.38)

Here the factor n(rc)∗ (t) is only present in the combined two-channel system but not
for the isolated indirect Auger de-excitation. Based on numerical observations we
note without explicit proof that the occupancies n(rc)∗ (t) and n(rc+iad)∗ (t) are almost
identical. In combination with Fig. 4.13 we, thus, find that in the combined system
the Auger channel’s ground state production term (4.38) is strongly suppressed
already in the incoming branch of the trajectory due to the efficiency of the resonant
de-excitation mechanism.

Having discussed the occupancies of the projectile’s pseudo-particle states, we
now turn to the energy distribution of the observable secondary electrons. For
the calculation of this quantity we employ (3.106b) while once more focusing on a
diamond surface and a kinetic energy of 50 meV. Figure 4.15 depicts the resulting
spectrum of escaped electrons at t =∞ for the combined two-channel scheme as well
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Figure 4.14: Variation of the rates of resonant electron capture Γrc (upper panel) and
indirect Auger de-excitation Γiad (lower panel) for the parallel (black lines) and perpendic-
ular (red lines) molecule orientation. The curves were calculated from (3.87a) and (3.87d)
for a diamond surface at a projectile energy of 50 meV.

as for the isolated reaction channels. As we see, the isolated resonant spectra exhibit
a strong peak at about 1.5 eV and slowly drop off for higher energies. The isolated
Auger spectra, on the other hand, monotonously increase until approximately 2.8 eV
and then strongly decline. The combined spectra, finally, are almost equal to the
isolated resonant spectra and show a slight increase with respect to the latter curves
in the range between 1.5 eV and 2.5 eV. Obviously this minor enlargement is due
to the indirect Auger channel and supports our previous finding that the resonant
transition dominates the Auger reaction. Note that, like before, the low-energy cut-
off of all curves is due to the trapping of emitted electrons with small perpendicular
energies in the image potential close to the surface.

We stress that the combined spectra shown in Fig. 4.15 are different from the
simple addition of the isolated spectra. This behavior is caused by our unified
treatment of the two de-excitation channels and would be even more pronounced for
a projectile that is able to form a stable negative ion. Here the resonant electron
emission would be almost completely blocked as the surface induced decay is always
very weak. The resonant electron capture, however, would still be very efficient in
destroying the initial species. Consequently, the spectrum of the emitted electron
would resemble the Auger spectrum in shape but would be strongly decreased in
magnitude.

Turning back to the situation depicted in Fig. 4.15 the secondary electron emis-
sion coefficients of the combined and isolated reaction channels are given by the area
beneath the spectral curves and are summarized in Table 4.2. In accordance with
our previous observations, the emission coefficients are not changed significantly by
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Figure 4.15: Energy spectrum of the escaped electrons in parallel (upper panel) and
perpendicular (lower panel) orientation as calculated from (3.106b) for a diamond surface
at a kinetic energy of 50 meV. In both panels the black line specifies the isolated spectrum
of indirect Auger de-excitation (iad), the red line denotes the isolated spectrum due to the
two-step resonant reaction (rc + rr) and the blue line represents the combined two-channel
spectrum (rc + rr + iad). Note that the angularity of the Auger spectrum is a consequence
of the tabulations performed in our numerical scheme and could be avoided by choosing a
finer grid (see also Appendix E).

the inclusion of the Auger channel. A similar result was found by Stracke et al.[127]
for N2(3Σ+

u) de-exciting on a tungsten surface. Their experimental measurements
imply that only about 10% of the secondary electron emission coefficient is caused
by the indirect Auger channel.

Finally, in order to demonstrate the correct inclusion of both de-excitation re-
actions in our model in a more impressive way, we now consider two artificial situ-
ations for an aluminum surface. As pointed out before, although theoretically the
latter’s band structure allows for both de-excitation channels, the resonant reac-
tion is strongly suppressed since the molecular level capturing the surface electron
is situated close to the bottom of the conduction band. In an attempt to gener-
ate a synthetic situation in which resonant and indirect Auger de-excitation are
eye-to-eye competitors we, thus, manually shift the lower band edge downwards.
Figure 4.16 shows the resulting spectra obtained from (3.106b) using the original
value V0 = −16.5 eV and the two artificial band edges V0 = −18.5 eV and V0 = −24.5 eV
for a molecule in the perpendicular orientation and εkin = 50 meV. As we see, in the
combined spectrum of escaped electrons for the actual value, V0 = −16.5 eV, only the
indirect Auger component is visible6. Furthermore, for a conduction band extending

6Note that for V0 = −16.5 eV the combined spectrum depicted in Fig. 4.16 is identical to the one
shown in Fig. 4.5 although the latter was calculated from (3.61b). This manifests the suppression
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parallel perpendicular
γ
(iad)
e 0.02760 0.04921

γ
(rc+rr)
e 0.16685 0.15873

γ
(rc+rr+iad)
e 0.16754 0.16335

Table 4.2: Secondary electron emission coefficients for a diamond surface and a kinetic
energy of 50 meV in parallel and perpendicular orientation. The table shows data for the
isolated reactions of indirect Auger and two-step resonant de-excitation as well as for the
combined two-channel de-excitation scheme.
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Figure 4.16: Two-channel energy spectrum of the escaped electrons in perpendicular
orientation for an aluminum surface at three different depths of the conduction band V0.
Note that −16.5 eV is the original value of the band edge whereas −18.5 eV and −24.5 eV
represent artificial cases. The curves were calculated from (3.106b) at a kinetic energy
of 50 meV.

down to −18.5 eV the Auger channel still dominates the emission spectrum but we
can already recognize a significant resonance peak at about 2.1 eV. Finally, when
the lower band edge V0 is shifted to −24.5 eV, this peak gets more prominent and
starts to swallow the Auger contribution which is, however, still clearly visible.

In addition, we notice that while the resonant channel becomes more efficient as
the conduction band gets deeper, the Auger component of the emission spectrum
remains almost unaffected. Two understand this behavior one needs to consider the
active parts of the band structure which can be estimated in terms of the classical
energy conservation condition. For the indirect Auger channel the latter yields

ε1∗(t) + εk⃗ ≈ ε0g(t) + εq⃗(t) , (4.39)

which implies
εk⃗ ≈ ε∞0g − ε∞1∗ + ε∞⃗q + Vi(zp(t)) . (4.40)

On the other hand, for the electron capture subreaction of the resonant de-excitation
channel energy conservation requires

εk⃗ ≈ ε0−(t) = ε∞0− + Vi(zp(t)) . (4.41)

of the resonant channel and, in addition, proves the correctness of our treatment of the emitted
electrons in Sec. 3.3.
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Figure 4.17: Band structure of aluminum together with the active zones for indirect
Auger de-excitation (purple) and two-step resonant de-excitation (light red). The active
areas were calculated from (4.40) and (4.41) using a maximum image shift of 2 eV and
an additional near-resonance shift of ±1 eV. Note that only the occupied portion of the
conduction band (occ. CB) is shown.

Upon inserting the particular unperturbed projectile energies and the maximum and
minimum values of the image potential along the trajectory, Eqs. (4.40) and (4.41)
can be used to calculate the range of energies εk⃗ (and ε∞⃗q for the Auger channel)
that allow for a transition in agreement with energy conservation. For the band
structure of aluminum the resulting active zones are shown in Fig. 4.17. As wee see,
the Auger channel involves band states in the upper region of the conduction band’s
occupied portion whereas the resonant channel can only capture electrons close to
the bottom of the band. Thus, when the band edge is shifted downwards the Auger
channel is not affected since the associated active zone of the band structure as well
as the energy of electrons therein remain fixed. The resonant channel, on the other
hand, is strongly influenced by a variation of the conduction band depth since the
latter directly determines the size of the band structure domain that allows for a
resonant tunneling transition.

In total, our analysis of the lower band edge’s influence (see Fig. 4.16) demon-
strates that the interplay of resonant and indirect Auger de-excitation is captured
correctly in our description.
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Chapter 5

Neutralization of Positive Ions

In this chapter we will employ the results of our quantum-kinetic description pre-
sented in Sec. 3.4 to perform a numerical investigation of the neutralization of singly
charged positive ions due to the Auger channel (1.4) and the resonant reaction (1.5).
As mentioned earlier, we particularly investigate the neutralization of He+(2S1/2),
Ar+(2P3/2) and N+

2(2Πu) on dielectric surfaces. Similar to Chapter 4 our analysis
has to start with a concretization of the associated matrix elements and ∆-functions
which will be done in Sec. 5.1. Building upon the explicit form of these expression
and utilizing the semi-classical approximation we will then present numerical results
concerning the isolated Auger and resonant neutralization reactions as well as the
combined two-channel neutralization scheme in Sec. 5.2.

5.1 Matrix Elements and ∆-Functions

5.1.1 Auger Neutralization

From the derivation of the Hamiltonian in Sec. 2.4 we know that the matrix element
of Auger neutralization Vk⃗1k⃗2k⃗′ involves the interaction term Ĥee (see Eqs. (2.73)
and (2.61)). In accordance with our treatment of the Auger de-excitation matrix
element in Sec. 4.1.1, we reduce this term to the direct electron-electron Coulomb
interaction VC = V 1

C (see Eq. (2.60)) which is the dominating contribution. Conse-
quently, in position space representation Vk⃗1k⃗2k⃗′ has the form

Vk⃗1k⃗2k⃗′(t) = ∫ dr⃗∫ dr⃗′ Ψ∗
p(r⃗ϕ(t))Ψk⃗1

(r⃗)VC(∣r⃗ − r⃗′∣)Ψk⃗2
(r⃗′)Ψ∗⃗

k′(r⃗′) , (5.1)

where Ψk⃗1
, Ψk⃗2

and Ψk⃗′ denote the wave functions of electrons within the surface
(see Eq. (2.2)) and Ψp represents the wave function of the projectile’s ground state
hole. Note that, as explained in Sec. 4.1, within the matrix element the projectile
wave function has to be taken at r⃗ϕ which was introduced in (4.2).

We will now show how the complicated matrix element (5.1) can be reduced
to a one-dimensional integral. For this purpose we first insert the explicit form
of the solid’s wave functions (2.2) and express VC by its inverse lateral Fourier
transform (D.11). Equation (5.1) then turns into

Vk⃗1k⃗2k⃗′(t) = N3
L

2π ∫ dP⃗ ∫ dr⃗∫ dr⃗′ Ψ∗
p(r⃗ϕ(t))Ψk1z(z)Ψk2z(z′)Ψ∗

k′z(z′)
× VC(P, ∣z − z′∣) ei [(k1x+Px)x+(k1y+Py)y−(Px−k2x+k′x)x′−(Py−k2y+k′y)y′] ,

(5.2)
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where P⃗ = (Px, Py). The x′- and y′-integrations in this equation can be carried out
directly and yield

∫ ∞
−∞dx

′ e−i(Px−k2x+k′x)x′ = 2π δ(Px − k2x + k′x) , (5.3a)

∫ ∞
−∞dy

′ e−i(Py−k2y+k′y)y′ = 2π δ(Py − k2y + k′y) . (5.3b)

Furthermore, the x-y-integration in (5.2) represents the lateral Fourier transform of
the conjugated projectile wave function Ψ∗

p of the rotated argument r⃗ϕ. Restricting
our analysis to the two principal projectile orientations we particularly obtain

1

2π ∫
∞

−∞dx∫
∞

−∞dy Ψ∗
p(zp(t) − z, y, x) ei [(k1x+Px)x+(k1y+Py)y]

= Ψp(zp(t) − z, k1y + Py, k1x + Px) , (5.4)

for the parallel case (ϕ = 0) and

1

2π ∫
∞

−∞dx∫
∞

−∞dy Ψ∗
p(x, y, z − zp(t)) ei [(k1x+Px)x+(k1y+Py)y]

= Ψp(k1x + Px, k1y + Py, z − zp(t)) , (5.5)

for the perpendicular situation (ϕ = π
2 ). Employing the explicit form of the ground

state projectile wave functions of the ions He+(2S1/2), Ar+(2P3/2) and N+
2(2Πu),

introduced in Sec. 2.2, these Fourier integrals can be calculated analytically in an
admittedly long-winded procedure (see Appendix D). In total, after relabeling the
transforms (5.4) and (5.5) as Ψ

/⊥
p (k1x + Px, k1y + Py, z − zp(t)) Eq. (5.2) becomes

V
/⊥

k⃗1k⃗2k⃗′(t) = e2
0

4πε0

(2π)2N3
L√

κ2 + P 2
∫ ∞
−∞dz Ψk1z(z)Ωk2zk′z(√κ2 + P 2, z)

×Ψ
/⊥
p (k1x + Px, k1y + Py, z − zp(t)) ,

(5.6)

with Px = k2x − k′x, Py = k2y − k′y and κ denoting the static screening constant. Note
that in this chapter the latter is only retained in our equations for the sake of uni-
versality and could actually be dropped since, as mentioned earlier, we are focusing
on dielectric surfaces here. Furthermore, in (5.6) we introduced the quantity

Ωk2zk′z(√κ2 + P 2, z) = ∫ ∞
−∞dz

′ 1

εr(z, z′)Ψk2z(z′)Ψ∗
k′z(z′) e−√κ2+P 2 ∣z−z′∣ . (5.7)

Here εr denotes the static dielectric constant which due to the two-particle nature
of the Auger matrix element, in general, depends on r⃗ and r⃗′. However, in order to
simplify our analysis we employ a geometrical mean value approximation based on
only the z-components of the position vectors,

εr(z, z′) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εbr for z ≤ 0 and z′ ≤ 0 ,

1 for z ≥ 0 and z′ ≥ 0 ,
εbr+1

2 otherwise .
(5.8)

This approach is particularly convenient as it merely involves piecewise constant
combinations of the solid’s bulk dielectric constant εbr and the vacuum permittiv-
ity which will allow us to calculate the integral in (5.7) analytically. While (5.8)
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of course represents a rather crude approximation, it, nevertheless, enables us to
include the effect of the solid’s dielectric constant which damps the Coulomb in-
teraction, especially within the surface. A more sophisticated approximation might
employ a continuous interpolation between the limiting values. This will, however,
most certainly deny a analytical evaluation of (5.7) and is, therefore, not considered
here.

We now proceed with the analytical calculation of Ωk2zk′z . Employing (2.3) we
can express the vertical wave function term in (5.7) as

Ψk2z(z′)Ψ∗
k′z(z′) = Θ(−z)Φ−

k2zk′z(z′) +Θ(z)Φ+
k2zk′z(z′) , (5.9)

with

Φ−
k2zk′z(z′) = [eik2zz

′ +Rk2ze
−ik2zz

′][e−ik′zz′ +R∗
k′ze

ik′zz′]
= eik−z′ +Rk2ze

−ik+z′ +R∗
k′ze

ik+z′ +Rk2zR
∗
k′ze

−ik−z′ , (5.10a)

Φ+
k2zk′z(z′) = Tk2zT

∗
k′ze

ik̄−z′ , (5.10b)

where we introduced the abbreviations

k− = k2z − k′z , (5.11a)

k+ = k2z + k′z , (5.11b)

k̄− = k̄2z − [k̄′z]∗ . (5.11c)

Note that k̄2z and k̄′z can be calculated from k2z and k′z by means of (2.5). Utiliz-
ing (5.9) together with (5.8) and the shorthand notation α = √

κ2 + P 2 we now split
up the integration domain in (5.7) and obtain

Ωk2zk′z(α, z) = Θ(−z)[ 1

εbr
Ω

(1)
k2zk′z(α, z) + 1

εbr
Ω

(2)
k2zk′z(α, z) + 2

εbr + 1
Ω

(3)
k2zk′z(α, z)]

+Θ(z)[ 2

εbr + 1
Ω

(4)
k2zk′z(α, z) +Ω

(5)
k2zk′z(α, z) +Ω

(6)
k2zk′z(α, z)] ,

(5.12)

which involves the terms

Ω
(1)
k2zk′z(α, z) = e−αz ∫ z

−∞dz
′ Φ−

k2zk′z(z′) eαz′ , (5.13a)

Ω
(2)
k2zk′z(α, z) = eαz ∫ 0

z
dz′ Φ−

k2zk′z(z′) e−αz′ , (5.13b)

Ω
(3)
k2zk′z(α, z) = eαz ∫ ∞

0
dz′ Φ+

k2zk′z(z′) e−αz′ , (5.13c)

Ω
(4)
k2zk′z(α, z) = e−αz ∫ 0

−∞dz
′ Φ−

k2zk′z(z′) eαz′ , (5.13d)

Ω
(5)
k2zk′z(α, z) = e−αz ∫ z

0
dz′ Φ+

k2zk′z(z′) eαz′ , (5.13e)

Ω
(6)
k2zk′z(α, z) = eαz ∫ ∞

z
dz′ Φ+

k2zk′z(z′) e−αz′ . (5.13f)

Assuming α = √
κ2 + P 2 > 0, all of these integrals are well behaved and can be cal-

culated straightforwardly by means of the general rule

∫ dx eikx e±αx = e(±α+ik)x±α + ik . (5.14)
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Moreover, the case α = 0 can be handled by considering the limit α → 0+ in (5.14).
In particular, we find

Ω
(1)
k2zk′z(α, z) = eik−z

α + ik− +Rk2z

e−ik+z
α − ik+ +R∗

k′z
eik+z
α + ik+ +Rk2zR

∗
k′z
e−ik−z
α − ik− , (5.15a)

Ω
(2)
k2zk′z(α, z) = eαz − eik−z−α + ik− +Rk2z

eαz − e−ik+z−α − ik+ +R∗
k′z
eαz − eik+z−α + ik+

+Rk2zR
∗
k′z
eαz − e−ik−z−α − ik− ,

(5.15b)

Ω
(3)
k2zk′z(α, z) = Tk2zT

∗
k′z

eαz

α − ik̄− , (5.15c)

Ω
(4)
k2zk′z(α, z) = e−αz

α + ik− +Rk2z

e−αz
α − ik+ +R∗

k′z
e−αz
α + ik+ +Rk2zR

∗
k′z

e−αz
α − ik− , (5.15d)

Ω
(5)
k2zk′z(α, z) = Tk2zT

∗
k′z[ eik̄−z

α + ik̄− −
e−αz
α + ik̄− ] , (5.15e)

Ω
(6)
k2zk′z(α, z) = Tk2zT

∗
k′z

eik̄−z
α − ik̄− . (5.15f)

Thus, upon employing (5.15) in (5.12) and inserting the resulting expression into (5.6)
we, finally, achieved a reduction of the original matrix element (5.1) to a one-
dimensional integral. We stress that this result could only be found by leveraging the
particularly easy structure of the solid wave functions (2.2) and our approximation
to the dielectric constant (5.8).

Similar to Sec. 4.1, we now employ the atomic variable transformation (4.9)
where we replace κN2 with a placeholder κp which stands for κHe, κAr and κN2 for
the ions He+(2S1/2), Ar+(2P3/2) and N+

2(2Πu), respectively (see Eqs. (2.27), (2.30)
and (2.34)). The matrix element (5.6) then becomes

V
/⊥

k⃗1k⃗2k⃗′(t) = e2
0

4πε0

(2π)2N3
L

κ3
p

√
κ2 + P 2

∫ ∞
−∞dz Ψk1z(z)Ωk2zk′z(√κ2 + P 2, z)

×Ψ
/⊥
p (k1x + Px, k1y + Py, z − zp(t)) .

(5.16)

The final one-dimensional integral in (5.16) is dimensionless and can be calculated
efficiently by a standard numerical integration routine.

We now turn to the ∆-functions associated with the Auger neutralization channel
and consider ∆̃an as an exemplary case. Starting from (3.132) we employ the trans-
formation (4.9) and convert the wave vector sums into integrals by means of (2.13).
As a result, we obtain

∆̃an(t1, t2) = 2κ9
p

h̵2(16π3)3N6
L
∫
occ.

dk⃗1∫
occ.

dk⃗2∫
unocc.

dk⃗′ Tk⃗′(t1)Tk⃗′(t2)
× Vk⃗1k⃗2k⃗′(t1)V ∗⃗

k1k⃗2k⃗′(t2) e− ia ∫ t1t2 dt3 [εk1
+εk2

−εk′−ε0g(t3)] ,
(5.17)

with a as given by (4.11) but with the generic placeholder κp instead of κN2 . Note
that the N6

L-term contained in the prefactor of (5.17) is canceled by the NL-factors
of the matrix elements (see Eq. (5.16)). Thus, as before, the normalization of the
solid’s wave functions does not influence our results.
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The direct numerical computation of (5.17) is extremely costly although each
of the involved matrix elements only contains a single spacial integration. The
reason for this is the large number of wave vector integration dimensions and the
fast oscillation of the complex exponential throughout large areas of the integration
domain. In order to reduce the numerical complexity we, therefore, approximate the
product of the transmission function and the matrix element by an angular mean
value1,

Tk⃗′(t)Vk⃗1k⃗2k⃗′(t) ≈ Vk1k2k′(t)
NTk⃗′

, (5.18)

with

Vk1k2k′(t) = ∫ dΩk⃗1 ∫ dΩk⃗2 ∫ dΩk⃗′ Tk⃗′(t)Vk⃗1k⃗2k⃗′(t) , (5.19a)

NTk⃗′ = ∫ dΩk⃗1 ∫ dΩk⃗2 ∫ dΩk⃗′ Tk⃗′(t) . (5.19b)

Here dΩk⃗1
, dΩk⃗2

and dΩk⃗′ represent the differential solid angles of the three wave
vectors and exhibit the general form

dΩk⃗ = dϑk⃗ dϕk⃗ sin(ϑk⃗) . (5.20)

Moreover, the presence of the Tk⃗′-factor in (5.19b) is caused by the fact that the
transmission function restricts the angle ϑk⃗′ and, thus, shrinks the integration do-
main. Employing the explicit form of Tk⃗′ (see Eq. (2.89a)) we can evaluate (5.19b)
analytically. The result reads

NTk⃗′ = ∫ π/2
0

dϑk⃗1 ∫ 2π

0
dϕk⃗1 ∫ π/2

0
dϑk⃗2 ∫ 2π

0
dϕk⃗2

sin(ϑk⃗1
) sin(ϑk⃗2

)
× ∫ ϑmax

0
dϑk⃗′ ∫ 2π

0
dϕk⃗′ sin(ϑk⃗′)

(5.21a)

= (2π)3(1 − cos(ϑmax)) , (5.21b)

where ϑmax amounts to

ϑmax = Θ(εk⃗′) arccos(Θ(−V0)
√ −V0

εk⃗′ − V0

) , (5.22)

which is found by converting the Θ-functions contained in Tk⃗′ into a condition for ϑk⃗′ .
Substituting (5.21b) back into (5.18) we then obtain

Tk⃗′(t)Vk⃗1k⃗2k⃗′(t) ≈ Vk1k2k′(t)(2π)3(1 − cos(ϑmax)) . (5.23)

After inserting the approximate representation (5.23) into (5.17) we now can carry
out the angle integrations and, finally, find

∆̃an(t1, t2) ≈ 2κ9
p

h̵2(16π3)3N6
L(2π)3 ∫occ.dk1∫

occ.
dk2∫

unocc.
dk′ k2

1 k
2
2 k

′2
1 − cos(ϑmax)

× Vk1k2k′(t1)V ∗
k1k2k′(t2) e− ia ∫ t1t2 dt3 (εk⃗1

+εk⃗2
−εk⃗′−ε0g(t3)) ,

(5.24)

1Note that in our notation the full and the angle-integrated matrix element differ only in the
vector arrows of the subscripts. Thus, the reader may not confuse Vk⃗1k⃗2k⃗′

and Vk1k2k′ .
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where we utilized the fact that within our effective model the occupied and unoccu-
pied regions of the solid’s band structure are determined solely by the energy and,
thus, by the radial components of the wave vectors.

As we see, the original nine-dimensional wave vector integral of (5.17) has been
approximated by a three-dimensional radial integral which, obviously, represents a
tremendous simplification. The quality of this approximation can, however, not be
analyzed because a calculation of the full integral (5.17) is clearly out of reach to us in
terms of computing time. Even so, we assume the angle averaging (5.23) to produce
acceptable results since it correctly retains the radial wave vector dependence of the
matrix element which, probably, is more important than the angle components.

Note that the remaining ∆-functions of the Auger neutralization can be approx-
imated in the very same way. In fact, we can immediately generalize (5.24) to ∆an.
The latter differs from ∆̃an only in the absence of the surface transmission functions
(see Eq. (3.113)) which exclusively enter (5.24) through the upper boundary of the
ϑk⃗′-integration. Consequently, we can simply set ϑmax = π

2 to revoke their effect
which corresponds to a switch from ∆̃an to ∆an in (5.24).

Moreover, using the angle-integrated matrix element (5.18) and the resulting ap-
proximate form (5.24) time integrals of the ∆-functions can be calculated straight-
forwardly. The double time integral of ∆̃an with equal upper boundaries for instance
reads

∫ t

−∞dt1∫
t

−∞dt2 ∆̃an(t1, t2) = 2κ7
p

h̵2(16π3)3N6
L(2π)3v2 ∫occ.dk1∫

occ.
dk2∫

unocc.
dk′

× k2
1 k

2
2 (k′)2

1 − cos(ϑmax) ∣Γk1k2k′(t)∣2 ,
(5.25)

with
Γk1k2k′(t) = ∫ t

−∞dt1 Vk1k2k′(t1) e− ia ∫ t10 dt2 [εk⃗1
+εk⃗2

−εk⃗′−ε0g(t2)] . (5.26)

Other time integrals of ∆̃an or different ∆-functions associated with the Auger neu-
tralization channel may be calculated in a similar manner.

Finally, we note that in order to calculate expressions of the form (5.24) or (5.25)
numerically, it is advantageous to tabulate Vk1k2k′(t1) over the three wave vector
components and the time argument. The integrals can then be calculated efficiently
using a Monte Carlo procedure for the radial wave vector components and a standard
one-dimensional integrator for the time variables.

5.1.2 Resonant Neutralization

As we know, the resonant neutralization reaction (1.5) is equivalent to the electron
capture subprocess of the resonant de-excitation channel (1.1) since both of them are
driven by the same matrix element Vk⃗ (see Eq. (2.69)). In Sec. 4.1.2 we saw that the
latter can be approximated by the time-separated expression (4.19) which allows for
an efficient calculation. Moreover, as pointed out in Sec. 3.4, the quantity ∆rn, which
constitutes the only relevant ∆-function of the resonant neutralization channel, is
equal to ∆rc with ε0g instead of ε0−. Consequently, the explicit calculation of ∆rn

and its time integrals follows the procedure presented in Sec. 4.1.2 where we merely
have to replace κN2 with κp and adjust the energy of the lower projectile level by
setting ε0− = ε0g.
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Ar+(((2P3/2))) He+(((2S1/2))) N+

2(((2Πu)))
Al2O3 rn an rn

CaO an an an

Diamond an + rn an + rn an + rn
MgO rn an -

SiO2
(upper) - an -

SiO2
(lower) rn - rn

Table 5.1: Overview of the considered material combinations and the energetically sup-
ported neutralization channels for the case of low kinetic energies (εkin ≤ 1 eV). As be-
fore, an stands for the Auger neutralization channel (1.4) while rn identifies the resonant
neutralization reaction (1.5). Note that for SiO2 we consider the upper and lower valence
band separately.

5.2 Numerical Results

Having concretized the matrix elements and ∆-functions in Sec. 5.1 we now present
numerical results for the isolated Auger and resonant neutralization as well as their
combination. In particular, we focus on the neutralization of He+(2S1/2), Ar+(2P3/2)
and N+

2(2Πu) on the dielectric materials Al2O3, CaO, MgO, SiO2 and diamond.
Moreover, we will again focus on the case of low kinetic energies (εkin ≤ 1 eV) which
has been put in second place by most of the previous studies in this field. As a
side effect of the slow projectile motion we can employ the saddle-point approxi-
mation leading to the approximate exponential representation of the σ-series (C.8).
The validity of this semi-classical approach was demonstrated for ∆rc and ∆iad in
Sec. 4.2.3. As mentioned earlier, we, however, assume it to hold for the ∆-functions
of the neutralization channels as well.

In our subsequent numerical investigations we will only consider the major pro-
jectile orientations, similar to our treatment of the de-excitation channels in Chap-
ter 4. Consequently, for N+

2(2Πu) we will limit our investigations to the cases ϕ = 0
(axis parallel to the surface) and ϕ = π

2 (axis perpendicular to the surface). For the
two atomic ions, on the other hand, we will restrict ourselves to the situation ϕ = π

2

which means that the z-axis of the projectile’s reference frame aligns with the labo-
ratory z-axis. Note that the latter choice does, however, only affect Ar+(2P3/2) since
the wave function of the ground state hole of He+(2S1/2) is spherically symmetric
(see Eq. (2.25)). Moreover, as in Sec. 4.2, we will only consider the initial magnetic
quantum number m = 1 for the N+

2(2Πu) ion.
Before starting our numerical analysis, we now first identify the presence of the

two neutralization channels for the previously mentioned material combinations.
The operativeness of the reactions for a particular system follows from the band
structure of the surface and the energy of the projectile’s ground state level. Ta-
ble 5.1 summarizes the energetically allowed neutralization channels for the con-
sidered materials and the case of low kinetic energies. All of the listed operative
combinations will be explicitly investigated in the following. Note, however, that for
low kinetic energies no reference measurements concerning these projectile-surface
systems seem to be available. Therefore, we, unfortunately, are unable to benchmark
the outcome of our calculations against experimental results.
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Figure 5.1: Time dependence of the occupation of the projectile level n(an)
0 due to the

Auger neutralization of N+
2(

2Πu) on a CaO surface. Separate graphs are shown for the
parallel (black line) and perpendicular (red line) orientation. The results were calculated
from Eq. (3.134) at a kinetic energy of 50 meV.

5.2.1 Auger Neutralization

In this section we focus on the isolated Auger neutralization channel (1.4). We
start our analysis with a consideration of the transient occupation of the initially
empty projectile level n(an)

0 (t) using the example of N+
2(2Πu) on a CaO surface. As

seen from Table 5.1, this material combination blocks the resonant neutralization
channel and exclusively supports Auger neutralization. Thus, we can calculate the
variation of n(an)

0 over time from (3.134) after dropping the components due to the
resonant reaction. The resulting occupancy is depicted in Fig. 5.1 for a kinetic energy
of 50 meV. As we see, the neutralization reaction is very weak in both of the principal
molecule orientations. In particular, the occupation of the projectile level changes
significantly only close to the turning point, in the range ∣t∣ ≤ 2. Furthermore, in the
outgoing branch of the trajectory the occupancy quickly saturates at about 1.3 ⋅ 10−4

in the parallel and 0.2 ⋅ 10−4 in the perpendicular orientation. Hence, the reaction
is clearly more efficient in the parallel than in the perpendicular orientation which
must be attributed to the symmetry of the matrix element (5.1). In addition, we
notice that both curves are symmetric with respect to t = 0. Similar to the indirect
Auger de-excitation reaction which was discussed in Sec. 4.2.1 (see Fig. 4.4), this is
a consequence of the particular inefficiency of the Auger neutralization channel in
the present situation. For the case of a more effective neutralization the exponential
terms in (3.134) would break the symmetry and lead to a saturation of n(an)

0 at
unity.

We now move on to the spectrum of the internally excited Auger electrons
and their transmission through the surface edge. Here we consider the case of a
He+(2S1/2) ion neutralizing on an Al2O3 surface. According to Table 5.1 this setup
again suppresses resonant neutralization and exclusively allows for the Auger neu-
tralization channel. Formally, the energy distribution of the internally excited elec-
trons n(an)

εk⃗′ and the escaped electrons ñ(an)
εk⃗′ can be obtained by integrating over the

angle dependence of (3.124) and (3.130), respectively. Since, as will become appar-
ent, the Auger neutralization is rather inefficient for He+(2S1/2) on Al2O3 as well,
we can omit the σ-terms in these equations since they are a measure for the survival
probability of the incident ion. Consequently, the quantities n(an)

εk⃗′ and ñ
(an)
εk⃗′ are

given by (5.25) upon adjusting ϑmax, stripping out the k′-integration and converting
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Figure 5.2: Final energy spectrum of the Auger electrons due to the neutralization
of He+(2S1/2) on Al2O3 at a kinetic energy of 50 meV. Here n(an)

εk⃗′ and ñ(an)
εk⃗′ refer to the

internally excited electrons within the surface (black lines) and the electrons capable of
escaping the surface (red lines), respectively. The upper panel shows the results obtained
using the turning point z0 ≈ 3.6aB emerging from (2.53) with the parameters due to Bonini
et al.[13] while in the lower panel we employed the turning point z0 = 1.2 ⋅ 10−10 m ≈ 2.27aB
which was suggested by Modinos and Easa[96]. Note that the angularity of the curves is a
consequence of our numerical tabulation scheme and could be removed by allowing for a
larger computation time.

to an energy representation by means of

(k′)2 dk′ = 1

2
( 2me

h̵2κ2
p

)
3
2 √

εk⃗′ − V0 dεk⃗′ . (5.27)

Note that for the particular situation considered here the generic placeholder κp
is equal to κHe (see Eq. (2.27)) and V0 = −1 eV represents the lower band edge
of the conduction band of Al2O3 (see Table A.2). Figure 5.2 shows the result-
ing spectra for εkin = 50 meV using the turning points z0 ≈ 3.6aB (upper panel)
and z0 = 1.2 ⋅ 10−10 m ≈ 2.27aB (lower panel). The former emerges from (2.53) for
the parameters of Bonini et al.[13] while the latter was proposed by Modinos and
Easa[96]. Physically we would expect the lower turning point to result in a more
efficient neutralization since here the overlap of projectile and solid wave functions
is increased. Comparing the two panels in Fig 5.2 we see that this is indeed the
case. In fact, the difference is dramatic since the spectrum comes out about one
order of magnitude higher with the turning point of Modinos and Easa[96]. How-
ever, apart from the numeric values the spectra possess the same general shape. In
both cases the distribution of internally excited electrons starts out at the bottom
of the conduction band which, as mentioned before, amounts to −1 eV for Al2O3
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(see Table A.2). The curves then exhibit a broad maximum localized between 0 eV
and 2 eV before they gradually fall off and eventually vanish at roughly 4 eV for the
turning point due to Bonini et al.[13] and about 3.5eV for the z0-value of Modinos and
Easa[96]. Similar to the indirect Auger de-excitation process discussed in Sec. 4.2.1,
the cut-off of the spectra can be estimated by considering the energy balance of the
Auger transition which reads

εk⃗1
+ εk⃗2

≈ εk⃗′ + ε0g(t) . (5.28)

This directly leads to a maximum εk⃗′-energy of

εmax
k⃗′ ≈ 2εU − ε∞0 − ∣Vi(z0)∣ , (5.29)

where εU marks the upper edge of the valence band. Employing the energetic pa-
rameters of Table A.2 and the truncated classical image potential (2.14) we ob-
tain εmax

k⃗′ ≈ 3.66 eV for the z0-value due to Bonini et al.[13] and εmax
k⃗′ ≈ 2.76 eV with

the turning point of Modinos and Easa[96]. The discrepancy between these classical
values and the observable breakdown energies of the spectra in Fig. 5.2 is due to the
fact that energy conservation is not fulfilled completely in a non-equilibrium system.
In particular, the engagement of three continuum states in the Auger neutralization
reaction allows for a larger energy off-resonance as compared to the indirect Auger
de-excitation process which only involves two continuum states that are each coupled
to a localized projectile level (see also Fig. 4.5 and Eq. (4.36)). Nevertheless, the
classical expression (5.29) can explain the difference in the cut-off energies of the two
different turning points which results from the fact that for the narrowed z0-value
of Modinos and Easa[96] the image shift at the turning point Vi(z0) is increased.

In addition to the distribution of excited Auger electrons within the surface,
Fig. 5.2 also shows the spectra of electrons that can escape the surface. The cor-
responding curves start out at εk⃗′ = 0 and are obviously reduced with respect to
the spectra of the internally excited electrons. At the high-energy end of the spec-
trum, however, the difference between the two distributions vanishes because here
the effect of the surface transmission function is diminished.

The total amount of electrons that can breach through the surface barrier con-
stitutes the secondary electron emission coefficient γ(an)

e and is given by the area
beneath the spectra of escaped electrons. Table 5.2 lists the γe-values obtained
from Fig. 5.2 together with the emission coefficients of other material combinations
at εkin = 50 meV. As seen from Table 5.1, all of these systems block the resonant
neutralization channel and exclusively allow for Auger neutralization.

Inspecting the data in Table 5.2 a few remarks should be given. First of all, CaO
possesses a negative electron affinity (see Table A.2) which means that all of the
internally excited electrons can escape the surface. As a result, the emission coeffi-
cients for N+

2(2Πu) on CaO are equal to the final occupancies of the projectile level
(see Fig. 5.1). Furthermore, the choice of the turning point of He+(2S1/2) has a dra-
matic effect also for other materials than Al2O3. In particular, switching from the
turning point due to Bonini et al.[13] to the one proposed by Modinos and Easa[96]
results in a change of γ(an)

e by at least one order of magnitude. Thus, the turning
point is crucial to the numeric value of the emission coefficient which was also found
in connection with the indirect Auger de-excitation channel studied in Sec. 4.2.1.

Unfortunately, we have no means of determining the correct turning point of a
He+(2S1/2) ion. However, we assume the value of Modinos and Easa[96] to lie closer
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Projectile Surface Material γ
(an)
e

Ar+(2P3/2) CaO 5.67 ⋅ 10−6

He+(2S1/2) Al2O3 5.10 ⋅ 10−5 (B)
6.23 ⋅ 10−4 (M)

He+(2S1/2) CaO 1.06 ⋅ 10−5 (B)
1.70 ⋅ 10−4 (M)

He+(2S1/2) MgO 3.15 ⋅ 10−4 (B)
3.97 ⋅ 10−3 (M)

He+(2S1/2) SiO2 6.10 ⋅ 10−6 (B)
1.41 ⋅ 10−4 (M)

N+
2(2Πu) CaO 1.31 ⋅ 10−4 ( )

2.18 ⋅ 10−5 (⊥)
Table 5.2: Secondary electron emission coefficients due to Auger neutralization
of Ar+(2P3/2), He+(2S1/2) and N+

2(
2Πu) on various dielectric surfaces at a kinetic en-

ergy of 50 meV. All of the listed material combinations block the resonant neutralization
channel and exclusively support Auger neutralization (see also Table 5.1). Note that the
symbols (B) and (M) indicate the turning point of He+(2S1/2) due to Bonini et al.[13] and
Modinos and Easa[96], respectively. Moreover, as before, and ⊥ denote the parallel and
perpendicular orientation of the projectile axis in case of an incident N+

2(
2Πu) ion.

to the real z0 since it was specifically suggested for the neutralization of He+(2S1/2)
whereas the Morse potential parameters of Bonini et al.[13] were obtained for an
uncharged metastable helium atom. In any case, our effective model allows for
the immediate inclusion of arbitrary turning point values since z0 only enters our
description as a constant parameter.

In total, all of the emission coefficients listed in Table 5.2 are rather small with
values ranging between 10−6 and 10−3. Thus, the Auger neutralization reaction in
general seems to be rather inefficient, at least for the low-energy case studied here.

5.2.2 Resonant Neutralization

We now proceed with an investigation of the isolated resonant neutralization chan-
nel (1.5). Since the latter merely neutralizes the incident ion without generating
secondary electrons, the only meaningful physical quantity is the occupation of the
projectile’s ground state level n(rn)

0 which represents the neutralization probabil-
ity. Focusing on the case of an N+

2(2Πu) ion on an Al2O3 surface, which accord-
ing to Table 5.1 exclusively supports the resonant neutralization reaction, we can
calculate n(rn)

0 from (3.134) upon neglecting the Auger terms. The resulting time-
dependent occupation is depicted in Fig. 5.3 for a kinetic energy of 50 meV. As we
see, the resonant filling of the molecular ground state level is very efficient here.
In fact, the process is almost exclusively effective in the incoming branch of the
trajectory and causes a rapid saturation of the occupancy to approximately 1 for
the parallel and roughly 0.89 for the perpendicular orientation. Thus, similar to the
Auger neutralization reaction discussed in Sec. 5.2.1, the process is more effective
in the parallel than in the perpendicular orientation. In contrast to the Auger neu-
tralization reaction, however, the curves show a strong asymmetry which is caused
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Figure 5.3: Time dependence of the occupation of the projectile level n(rn)
0 (t) due to the

resonant neutralization of N+
2(

2Πu) on an Al2O3 surface. Separate graphs are shown for the
parallel (black line) and perpendicular (red line) orientation. The results were calculated
from Eq. (3.134) for a kinetic energy of 50 meV.
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Figure 5.4: Kinetic energy dependence of the final occupation of the projectile’s ground
state level n(rn)

0 (∞) due to the resonant neutralization of N+
2(

2Πu) on Al2O3 (black lines)
and SiO2 (red lines). The plot shows curves for the parallel (solid lines) as well as
the perpendicular (dashed lines) molecule orientation. The results were calculated using
Eq. (3.134).

by the particular efficiency of the tunneling reaction and the associated saturation
of the occupation due to the exponential structure of (3.134).

In order to further investigate the effectiveness of the resonant neutralization
reaction, we now analyze the dependence of the ground state level’s final occupa-
tion n

(rn)
0 (∞) on the kinetic energy of projectile. In addition to Al2O3, here we

also consider SiO2 which, for an N+
2(2Πu) ion, supports the resonant neutralization

channel by way of its lower valence band while completely blocking Auger neu-
tralization. Figure 5.4 depicts the resulting occupations, which represent the ion’s
overall neutralization probability, in the low-energy range between 10−4 eV and 1 eV.
Obviously, for both materials the final occupancy is higher in the parallel than in the
perpendicular orientation which we already recognized in connection with Fig. 5.3.
Moreover, upon decreasing the projectile’s kinetic energy the neutralization prob-
abilities gradually rise and eventually reach one at the low-energy end of the plot.
This behavior follows from the fact that the nitrogen molecule’s turning point is
practically constant in the depicted energy range (see Fig. 2.6). Thus, by lowering
the kinetic energy the molecule-surface interaction time is increased which results
in a more effective neutralization. Note that by an analogous argument we also
explained the variation of the secondary electron emission coefficients due to the
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Figure 5.5: Kinetic energy dependence of the final occupation of the projectile’s ground
state level n(rn)

0 (∞) due to the resonant neutralization of Ar+(2P3/2) on Al2O3 (black line),
MgO (red line) and SiO2 (blue line). The curves were calculated from (3.134).

de-excitation of N2(3Σ+
u) in Sec. 4.2.

In addition to the previously discussed material combinations involving the
N+

2(2Πu) ion, we can also investigate the isolated resonant neutralization channel
for Ar+(2P3/2) on Al2O3, MgO and SiO2. Figure 5.5 shows the corresponding final
occupancies of the projectile level, or overall neutralization probabilities, for the
same kinetic energy range we used in Fig. 5.4. As we see, the values range be-
tween 0.2 and 1 for the different surface materials and kinetic energies. In addition,
the curves in Fig. 5.5 show a couple of interesting properties.

Let us first take a look at the graphs for Al2O3 and MgO. Here the neutralization
probability shows a minimum at approximately 0.002 eV and gradually rises when
the kinetic energy is reduced or enlarged. This behavior is caused by two effects
working in opposite directions. On the one hand, with a reduction of the kinetic
energy the turning point of the Ar+(2P3/2) ion moves farther outside the surface
(see Fig. 2.6). Hence, the overlap of projectile and solid wave functions is reduced
which negatively affects the neutralization efficiency. At the same time, however, the
projectile-surface interaction time is increased since the ion moves at a slower speed.
This, on the other hand, benefits the neutralization process. Consequently, the
effects of the turning point and the interaction time oppositely affect the efficiency
of the neutralization reaction. The particular behavior of the curves for Al2O3 and
MgO in Fig. 5.5 suggests that at lower energies the increase of the interaction time
outweighs while at higher energies the decrease of the turning point predominates.
In between, the two effects destructively interfere leading to the formation of the
observed minima of the neutralization probabilities.

For SiO2 the behavior is similar to the Al2O3 and MgO curves up to a kinetic
energy of about 0.2 eV. For higher energies, however, the neutralization probability
breaks down again. This is caused by the particular band structure of SiO2 which
possesses two valence bands. The upper one ranges between −8.9 eV and −11.6 eV
while the lower one is situated between −14.7 eV and −20 eV (see Table A.2). The
ground state level of argon lies at −15.755 eV when the ion is infinitely far away
(see Table A.3) and shifts upwards as the projectile approaches the surface. Thus,
for the low-energy case considered here the neutralizing resonant electron capture
is only possible from the lower valence band. At the high energy end of Fig. 5.5
the projectile level does, however, begin to shift upwards out of the lower valence
band into the inter-band gap. Consequently, the neutralization probability breaks
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n
(an)
0 (((∞))) γ

(an)
e

He+(((2S1/2))) 9.37 ⋅ 10−4 (B)
1.74 ⋅ 10−2 (M)

8.41 ⋅ 10−4 (B)
1.51 ⋅ 10−2 (M)

Ar+(((2P3/2))) 2.97 ⋅ 10−5 2.19 ⋅ 10−5

N+

2(((2Πu))) 1.09 ⋅ 10−4 ( )
9.94 ⋅ 10−5 (⊥) 8.91 ⋅ 10−5 ( )

8.12 ⋅ 10−5 (⊥)
Table 5.3: Final projectile occupations n(an)

0 (∞) and secondary electron emission co-
efficients γ(an)e due to the isolated Auger neutralization of He+(2S1/2), Ar+(2P3/2) and
N+

2(
2Πu) on a diamond surface. The values were calculated from Eqs. (3.134) and (3.137),

respectively, for a kinetic energy of 50 meV. As before, the symbols (B) and (M) indi-
cate the usage of the turning point of He+(2S1/2) due to Bonini et al.[13] and Modinos
and Easa[96] while and ⊥ stand for the parallel and perpendicular orientation of the
N+

2(
2Πu) ion.

down. Note that for even higher kinetic energies the ground state level might reach
the upper valence band of SiO2 which would lead to a recovery of the neutralization
probability. This situation is, however, not considered here since, as pointed out
earlier, this work deals with the low-energy case.

Altogether, we find that for the considered material combinations and kinetic
energies the isolated resonant neutralization channel is very effective. Moreover, the
calculated neutralization probabilities sensitively display the electronic structure of
the projectile-surface system which underlines the correct description of the resonant
channel within our effective model.

5.2.3 Combined Two-Channel Neutralization

Having investigated the isolated reactions of Auger and resonant neutralization we
now turn to their combination. As seen from Table 5.1, the only surface material
under consideration that supports both neutralization channels is diamond which
was not included in the analysis of Secs. 5.2.1 and 5.2.2. Consequently, in order
to investigate the particular strength of the individual neutralization channels for a
diamond surface, we first consider the isolated reactions.

Table 5.3 summarizes the final occupancies of the projectile level n(an)
0 (∞) and

the secondary electron emission coefficients γ(an)
e due to the isolated Auger neutral-

ization of He+(2S1/2), Ar+(2P3/2) and N+
2(2Πu) on a diamond surface. The data was

calculated for a kinetic energy of 50 meV and indicates that, similar to the material
combinations studied in Sec. 5.2.1, here again the Auger channel is rather inefficient.
In particular, the values of n(an)

0 (∞) and γ(an)
e range between 10−5 and 10−2. Note

that in each case the emission coefficient is slightly smaller than the final occupation
of the projectile level, which constitutes the overall neutralization probability. This
is caused by the positive electron affinity of diamond (see Table A.2) and the asso-
ciated lossy transmission of Auger electrons through the surface barrier. Moreover,
the highest neutralization probability emerges for He+(2S1/2) with the turning point
due to Modinos and Easa[96] and amounts to 1.74 ⋅ 10−2.

We now proceed with the isolated resonant neutralization of the three ionic
species on a diamond surface. The corresponding final occupation of the projec-
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Figure 5.6: Kinetic energy dependence of the final occupation of the projectile’s ground
state level n(rn)

0 (∞) due to the isolated resonant neutralization of He+(2S1/2), Ar+(2P3/2)
and N+

2(
2Πu) on a diamond surface. The curves were calculated from (3.134). Note that

for He+(2S1/2) only the turning point due to Bonini et al.[13] (B) was considered since the
z0-value proposed by Modinos and Easa[96] only applies to εkin = 50 meV. Moreover, as
before, and ⊥ indicate the parallel and perpendicular orientation of the N+

2(
2Πu) ion.

tile’s ground state level, the overall neutralization probability, is depicted in Fig. 5.6
over the kinetic energy of the incident ion. Obviously the resonant neutralization
channel is very efficient here. In particular, for N+

2(2Πu) and Ar+(2P3/2) the neutral-
ization probability lies between 0.7 and 1 in the depicted energy range. Furthermore,
for He+(2S1/2) with the turning point due to Bonini et al.[13] the value of n(rn)

0 (∞)
ranges between 0.1 and 0.7. The turning point of Modinos and Easa[96] was sug-
gested for He+(2S1/2) at a kinetic energy of 50 meV and is, therefore, not included
in Fig. 5.6. The associated neutralization probability for 50 meV can, nevertheless,
be calculated and amounts to approximately 0.99.

In total, the neutralization probabilities due to the resonant reaction clearly
outbalance the neutralization probabilities due to the Auger reaction. Hence, when
both channels are operative at the same time, the resonant reaction will suppress
the efficiency of the Auger channel even more. In fact, for parameter regions where
the resonant neutralization probability is close to unity (for instance for N+

2(2Πu)
at εkin ≤ 0.1 eV) the resonant channel will destroy the incident positive ion almost
completely before the Auger process can become operative. When, on the other
hand, the probability of resonant neutralization is significantly less then one, like for
instance for He+(2S1/2) with the turning point of Bonini et al.[13] in the energy range
between 0.01 eV and 0.1 eV, the electron yield resulting from the Auger channel is
only slightly reduced.

In order to demonstrate this fact, we calculate the final spectrum of the escaped
electrons ñ(an+rn)

εk⃗′ for the combined two-channel neutralization scheme. Formally,
this quantity can be obtained by integrating over the angular wave vector coordi-
nates of (3.135b) and switching to an energy representation by means of (5.27).
To simplify this procedure we utilize the angular mean value approximation of the
matrix element (5.23). The final time integral can then be efficiently evaluated by
tabulating the transient occupation of the projectile’s ground state level due to both
neutralization channels which is obtained from (3.134). Figure 5.7 shows the result-
ing spectrum together with the isolated Auger neutralization spectrum, calculated
along the lines of Sec. 5.2.1 for the same parameter set. As we see, the combined
two-channel spectrum exhibits lower values than the isolated Auger neutralization
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Figure 5.7: Final energy spectrum of the escaped Auger electrons due to the isolated
Auger neutralization (an, black line) and the two channel neutralization (an + rn, red
line) of He+(2S1/2) on a diamond surface. The results were obtained for a kinetic energy
of 50 meV with the turning point due to Bonini et al.[13]. Note that the angularity of
the curves is a consequence of our numerical tabulation scheme and could be removed by
allowing for a larger computation time.

spectrum. The secondary electron emission coefficient, given by the area beneath
the curves, amounts to 8.41 ⋅ 10−4 for the isolated Auger channel and 7.76 ⋅ 10−4

for the two-channel scheme. Hence, the inclusion of the resonant channel with an
isolated neutralization probability of about 0.13 (see Figure 5.6) results in a reduc-
tion of the secondary electron emission coefficient due to Auger neutralization by
roughly 8%. From this result we see that in case of a very efficient resonant neu-
tralization (n(rn)

0 (∞) ≈ 1) the Auger electron yield would get cut down completely.
Altogether, we conclude that the Auger neutralization channel can only gen-

erate meaningful amounts of secondary electrons when the resonant neutralization
channel is either blocked energetically or exhibits a particularly low neutralization
probability.
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Chapter 6

Conclusion

In this work we presented a theoretical description of electron release due to the
combination of resonant and Auger reactions in the collision of atomic and molec-
ular projectiles with metallic and especially dielectric surfaces. In particular, we
focused on the interaction of two-step resonant and Auger de-excitation of meta-
stable molecules using the example of N2(3Σ+

u). In addition, we also regarded the
interplay of resonant and Auger neutralization of singly charged positive ions where
we explicitly considered the cases of He+(2S1/2), Ar+(2P3/2) and N+

2(2Πu).
In order to study these processes, we constructed a semi-empirical effective model

of the projectile-surface system which is characterized by only a small number of
material parameters. This was achieved by restricting our analysis to only those
projectile orbitals that actively participate in the considered surface reactions. As a
result, the projectile was reduced to a two- and one-level representation for the de-
excitation and neutralization processes, respectively. Moreover, the energy bands
of the surface were described by an interaction-free electron gas inside a square
potential well. For both the projectile and the surface the many-particle details
of the system are encapsulated in the effective parameters of our model the most
important of which are the ionization energies of the active projectile levels and the
edges of the involved energy bands within the surface. We stress that all of our
model’s parameters can be fixed by either theoretical calculations or experimental
measurements. Thus, our description contains no free parameter.

Following the ideas of Gadzuk[30] we derived a Hamiltonian describing the dy-
namics of the active electrons within the system. The Hamiltonian embraces the in-
dividual subreactions of the two-step resonant de-excitation, the Auger de-excitation
channels as well as the processes of resonant and Auger neutralization. In order to
combine the two steps of the resonant de-excitation reaction and to account for
Coulomb correlations due to the omitted passive electrons on the projectile, we sub-
sequently employed a set of projection operators and two auxiliary boson levels.
As a result, all of the considered de-excitation channels could be cast into a single
Hamiltonian which, with the help of pseudo-particle operators, was made amenable
to diagrammatic techniques.

Building upon our effective model we then conducted a quantum-kinetic sim-
ulation of the different reaction channels by utilizing the non-equilibrium Green
function technique. For every particular situation we retained the full non-locality
of the self-energy expressions and derived results that can be considered exact within
the respective perturbation order. Only at the end of each calculation we employed
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a saddle-point, or semi-classical, approximation to obtain equations that allow for a
numerical evaluation.

In particular, we treated the isolated subreactions of the resonant de-excitation
channel using the Keldysh formulation and an exact diagrammatic representation
of the self-energy. Exploiting the strong effect of energy conservation we obtained
virtually exact expressions for the occupancies of the bound and continuum projectile
levels. The results involved an infinite series of nested double integrals, designated
as the (infinite) σ-series, which emerged from an iterative solution of the Dyson
equation. Variants of this series operating on different complex functions appeared
at multiple points within this work. As we showed, all of them can be approximated
by a compact semi-classical representation.

Furthermore, the isolated Auger de-excitation channels were also studied by
means of the Keldysh formulation. As suggested by Makoshi[86], we employed a
second-order approximation of the self-energy which was extended by a dressed
projectile propagator. The latter was needed to make up for a first-order expansion
of the Dyson equations of the Auger electrons. While our general approach followed
the ideas of Makoshi[86], our analysis went beyond his work in multiple aspects.
For one thing, we studied the interplay of direct and indirect Auger de-excitation
whereas Makoshi[86] was only concerned with the latter. Moreover, in contrast to
him, we did neither restrict our investigations to a phenomenological matrix element
nor employ the wide-band approximation. In addition, our final representation of
the occupancies in terms of the infinite σ-series theoretically allows us to calculate
higher order correction terms to the simplified semi-classical results.

The combination of the resonant and Auger de-excitation channels was then an-
alyzed within the scope of our pseudo-particle Hamiltonian while employing the self-
consistent non-crossing approximation for the self-energies. Utilizing the Kadanoff-
Baym formulation of the non-equilibrium Green function method and the Langreth-
Nordlander projection technique[76] we derived a set of integro-differential quantum-
kinetic equations for the various pseudo-particle propagators. By means of the
semi-classical approximation this set was then reduced to a flexible and easy-to-use
system of rate equations describing the occupations of the different projectile states
occurring in the course of the de-excitation reaction.

Finally, for the neutralization channels we employed the Keldysh formulation to-
gether with a second-order representation of the Auger self-energy and an exact di-
agonal form of the resonant tunneling self-energy. Similar to the Auger de-excitation
reactions, the secondary electrons were handled by introducing a dressed self-energy
and expanding the associated Dyson equation up to first order. As a result, we ob-
tained the occupancies of the projectile level and the Auger electron states in terms
of the σ-series.

Following our quantum-kinetic calculation we concretized the transition matrix
elements within the framework of our effective model. While our approximation to
the wave functions might appear crude, it allows us to retain the full single particle
quantum number dependence of the matrix elements which is usually dropped in
favor of a phenomenological approximation[14,86]. However, even for our simplistic
wave functions the final equations were so complex that they could only be evaluated
efficiently by a combination of tabulation, interpolation and Monte Carlo techniques.
In applying the latter we then were able to calculate explicit numerical results for
the individual surface reactions and their combination.
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In particular, for the de-excitation of N2(3Σ+
u) our numerical analysis revealed

that on aluminum and tungsten the isolated indirect Auger de-excitation channel
is rather weak. Specifically, for εkin = 50 meV and a tungsten surface we calcu-
lated a secondary electron emission coefficient γ(iad)

e of 1.533 ⋅ 10−3 in the parallel
and 6.116 ⋅ 10−3 in the perpendicular molecule orientation. Both of these values
agree well with the experimental estimate of Stracke et al.[127].

Moreover, for the isolated two-step resonant de-excitation of N2(3Σ+
u) we pre-

sented numerical results for various dielectric surface materials. Using Al2O3, in
particular, we found that the spectrum of the emitted electrons exhibits the ex-
pected resonance structure with a strong peak at about 1.8 − 1.9 eV. In addition,
concerning the decay of the temporary negative ion our results indicated that the
surface-induced process can be neglected for our situation since it is about two or-
ders of magnitude weaker than the natural decay. Focusing exclusively on the latter
reaction we then calculated the emission coefficient γ(rc+rr)

e for Al2O3, MgO, SiO2

and diamond, obtaining values between 0.02 and 0.2 for collision energies ranging
from 10−5 eV to 1 eV. For thermal energies the γ(rc+rr)

e -figures we found are on the
order of 10−1 and, hence, coincide with the values deduced from kinetic simulations
of dielectric barrier discharges taking this particular secondary electron emission
process into account.

Regarding the combination of two-step resonant and indirect Auger de-excitation
of N2(3Σ+

u) we subsequently considered the particular case of a diamond surface and
explicitly demonstrated the validity of the semi-classical approximation for a kinetic
energy of 50 meV. Using the same energy we also calculated the rates of electron
capture due to the two reactions and found that the resonant tunneling channel
clearly dominates the indirect Auger transition. As a result, the combined emission
spectrum was almost identical to the resonant spectrum and only showed a slight
increase due to the Auger reaction. The latter, thus, merely contributed a few
percent to the overall secondary electron emission coefficient γ(rc+rr+iad)

e which was
on the order of 10−1. Finally, the correct inclusion of both channels in our theory
was demonstrated by investigating two artificial situations for an aluminum surface
in which we manually modified the lower conduction band edge in order to control
the efficiency of the resonant reaction.

After our extensive investigation of the de-excitation channels we then turned
to the neutralization reactions. Considering He+(2S1/2), Ar+(2P3/2) and N+

2(2Πu)
our numerical results indicated that the isolated Auger neutralization channel is
rather weak for all of the considered dielectric surface materials. In particular, at
a kinetic energy of 50 meV typical values of the emission coefficient γ(an)

e ranged
from 5.67 ⋅ 10−6 for Ar+(2P3/2) on CaO to 3.97 ⋅ 10−3 for He+(2S1/2) on MgO with
the turning point of Modinos and Easa[96]. Here, and also in the rest of our results,
we found the value of the turning point to have a critical impact on the emission
coefficient.

In contrast to the Auger neutralization channel, for the resonant neutralization
reaction we observed a particularly high efficiency. Here the associated neutraliza-
tion probability exhibited values from 0.1 to 1 for Ar+(2P3/2) and N+

2(2Πu) on Al2O3,
MgO and SiO2 at kinetic energies between 10−4 eV and 1 eV.

Focusing on the neutralization of He+(2S1/2), Ar+(2P3/2) and N+
2(2Πu) on a dia-

mond surface we then found that for the considered low-energy range the resonant
reaction clearly outbalances the Auger channel in terms of the isolated neutraliza-
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tion probabilities. As a result, the efficiency of the Auger channel is reduced even
more in the combined two-channel neutralization scheme which was validated for
the particular case of He+(2S1/2) at εkin = 50 meV with the turning point due to
Bonini et al.[13]. Here we observed that the inclusion of the resonant neutralization
channel with an overall isolated neutralization probability of 0.13 led to a reduction
of the Auger electron yield by roughly 8%. Hence, in case of a very efficient reso-
nant neutralization the Auger reaction would probably get suppressed completely.
Therefore, we concluded that the Auger neutralization channel can only generate
significant numbers of secondary electrons when the resonant neutralization channel
is either blocked or possesses a particularly low neutralization probability.

In total, our numerical results imply that, despite its simplicity, our effective
microscopic description seems to capture the essential physics of secondary electron
emission due to the considered surface reactions quite well. We stress that the
effective nature of our model and the associated small parameter space constitute
an invaluable asset. In particular, our model can immediately be applied to arbitrary
metallic and dielectric surfaces as long as the associated electronic parameters, most
importantly the energetic boundaries of the band structure, are known. Moreover,
with minor modifications of the matrix elements our model can also be used to study
different projectiles. In our description of the Auger neutralization for instance the
projectile only entered the matrix element via the Fourier transform of its ground
state level’s wave function which can be exchanged rather easily. This flexibility is
highly advantageous especially in view of the application of our model to charge-
transferring processes at plasma walls where a great variety of different projectile-
surface material combinations arises.

Another advantage of our semi-empirical approach is that it separates the many-
body theoretical description of the non-interacting projectile and target systems
from the quantum-kinetic treatment of the scattering process. The former is encap-
sulated in the effective parameters of the Hamiltonian while the latter is performed
by Green functions. This is particularly helpful in cases where the surface scattering
event is studied primarily due to its connection to the physics of quantum-impurities.

Finally, we note that while not being all-embracing, our model can easily be
extended to account for further effects due to the particular flexibility of the non-
equilibrium Green function technique. The latter, for instance, would allow for a
convenient inclusion of molecular vibrations in our description. In addition, our
approach could also quickly be adapted to other surface reactions, like for instance
Auger de-excitation and neutralization involving electrons from surface states of the
solid. The latter are bound close to the vacuum level by the image potential and
might play an important role for charged surfaces inside a plasma. Generalizing
our description to these transitions merely requires an adaption of the matrix ele-
ments which is achieved rather conveniently. These facts underline the enormous
versatility of our model and its particular value for the calculation of secondary
electron emission coefficients, especially in the context of bounded low-temperature
gas discharges.
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Appendix A

Material Parameters

Here we list the explicit values of the various material parameters used in our nu-
merical calculations. In addition, the following tables also provide an overview of
the size of our model’s parameter space.

V0 [[[eV]]] εF [[[eV]]] zi [[[aB]]] κb [[[1010m]]]
Al -16.5[82] -4.25[82] 2.95[61] 2.0475[16]

W -10.9[43] -4.5[43] 3.0[61] 1.7659[7]

Table A.1: Electronic parameters of solid aluminum and tungsten. In the above table V0

represents the lower edge of the conduction band, εF denotes the Fermi energy, zi specifies
the position of the image plane and κb is the bulk Thomas-Fermi screening wave num-
ber. The latter relates to the surface screening wave number κs via κs = 0.6κb, where the
factor 0.6 is empirical[16,100].

εα [[[eV]]] εg [[[eV]]] ∆εV [[[eV]]] εbr

Al2O3 1.0[142] 8.7[19] 11.8[19] 9.0[112]

CaO -0.86[126] 7.0[126] 3.5[130] 11.1[57]

Diamond 0.52[114] 5.48[113] 21.0[113] 5.66[11]

MgO 0.925[71] 7.6[128] 8.5[128] 9.83[28]

SiO2
(lower) 0.9[116] 13.8[20] 5.3[20] 3.9[112]

SiO2
(upper) 0.9[116] 8.0[20] 2.7[20] 3.9[112]

Table A.2: Electronic parameters for the dielectric materials considered in this work:
electron affinity εα, energy gap εg, valence band width ∆εV and static bulk dielectric
constant εbr. The electron affinity of diamond and MgO is calculated from a mean value
due to lack of consistent data. Note that for SiO2 there exists a lower and an upper valence
band which have been listed as two separate materials. Due to energetic restrictions, the
surface processes considered in this work only involve one of these valence bands at the
same time.
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He Ar N2

ε∞0g [[[eV]]] -24.55637[73] -15.755[62] -17.25[66]

ε∞1∗ [[[eV]]] - - -9.67[66]

ε∞0− [[[eV]]] - - -14.49[53]

ε∞1− [[[eV]]] - - 1.18[53]

Zeff 1.7 6.75 4
Mp [[[u]]] 4.003[97] 39.962[97] 28.013[133]

Table A.3: Material parameters of the projectile substances considered in this work: un-
perturbed ionization energies of two projectile levels in the ground state (ε∞0g), the metasta-
ble state (ε∞1∗) and the negative ion (ε∞0/1−), effective nucleus charge number for the active
orbitals Zeff and total projectile mass Mp in atomic mass units (u = 1.6605389 ⋅ 10−27 kg).
Note that for He and Ar only the ionization energy ε∞0g is listed since we did merely
consider the neutralization of the respective positive ions. Moreover, the effective charge
numbers of these projectile species were obtained by means of Slater’s rules[123]. For N2,
on the other hand, Zeff was determined by fitting the hydrogen-like wave functions (2.19)
to the Roothaan-Hartree-Fock calculations of Clementi and Roetti[21]. Besides, for the ni-
trogen molecule, in addition to the above parameters, we also used the ground state bond
length % = 2.067360389aB

[121], the natural lifetime of the negative ion τn = 1.6 fs[24] and the
effective nucleus charge number ZC =

1
2
[135] for electrons emitted from the neutral molecule.

d [[[eV]]] a [[[1///aB]]] ze [[[aB]]] Surface
He 0.06[13] 0.55[13] 5.2[13] sodium[13]

Ar 0.06[106] 0.43 ⋅ νB [106] 4.5 /νB [106] tungsten[106]

N2 0.738[68] 6.4 ⋅ νB [68] 2.45 /νB [68] metallic[68]

Table A.4: Projectile specific material parameters d, a and ze of the Morse potential (2.52)
and the respective surface materials they were determined for. Here νB is a unit conversion
factor and amounts to aB /10−10 m.
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Appendix B

Langreth-Wilkins Rules

The Langreth-Wilkins rules represent a generic type of algebraic rules for the ana-
lytic continuation of contour propagator combinations onto the real axis. They were
first introduced in a work by Langreth and Wilkins[77] and have since been used and
reviewed by a number of authors (see for instance Refs. [48, 75]). The explicit form
of the rules sensitively depends on the initial definition of the Green functions. For
the latter, unfortunately, there is no common agreement about the usage of i-factors.
Moreover, rules published in former works sometimes contained typographic errors
(see for instance Ref. [76]). Therefore, in the following we list the explicit form
of the Langreth-Wilkins rules used in this work. Details of the derivation are left
out as the rules follow directly from the definition of the lesser, bigger, retarded and
advanced components of boson and fermion propagators (see Eqs. (1.38) and (1.40))
and the contour deformation described in Ref. [48]. Moreover, we only give rules for
propagator pairs since combinations of three or more propagators can be projected
by successive application of the pair projection rules.

We begin with the analytic continuation of propagator products. In the follow-
ing F and B denote fermion and boson propagators, respectively. For the projection
of a boson-like fermion-antifermion pair,

B(t, t′) = F1(t, t′)F2(t′, t) , (B.1)

we find

B>(t, t′) = iF >
1 (t, t′)F <

2 (t′, t) , (B.2a)

B<(t, t′) = iF <
1 (t, t′)F >

2 (t′, t) , (B.2b)

BR(t, t′) = −i [F >
1 (t, t′)FA

2 (t′, t) + FR
1 (t, t′)F >

2 (t′, t)] (B.2c)

= i [F <
1 (t, t′)FA

2 (t′, t) + FR
1 (t, t′)F <

2 (t′, t)] , (B.2d)

BA(t, t′) = −i [F >
1 (t, t′)FR

2 (t′, t) + FA
1 (t, t′)F >

2 (t′, t)] (B.2e)

= i [F <
1 (t, t′)FR

2 (t′, t) + FA
1 (t, t′)F <

2 (t′, t)] . (B.2f)

Furthermore, a fermion-like fermion-boson pair,

F (t, t′) = F1(t, t′)B1(t, t′) , (B.3)
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can be projected by

F >(t, t′) = −iF >
1 (t, t′)B>

1(t, t′) , (B.4a)

F <(t, t′) = −iF <
1 (t, t′)B<

1(t, t′) , (B.4b)

FR(t, t′) = −i [FR
1 (t, t′)B>

1(t, t′) − F <
1 (t, t′)BR

1 (t, t′)] (B.4c)

= −i [FR
1 (t, t′)B<

1(t, t′) + F >
1 (t, t′)BR

1 (t, t′)] , (B.4d)

FA(t, t′) = −i [FA
1 (t, t′)B>

1(t, t′) − F <
1 (t, t′)BA

1 (t, t′)] (B.4e)

= −i [FA
1 (t, t′)B<

1(t, t′) + F >
1 (t, t′)BA

1 (t, t′)] . (B.4f)

Moreover, for a boson-like boson-boson pair,

B(t, t′) = B1(t, t′)B2(t, t′) , (B.5)

the following rules hold

B>(t, t′) = −iB>
1(t, t′)B>

2(t, t′) , (B.6a)

B<(t, t′) = −iB<
1(t, t′)B<

2(t, t′) , (B.6b)

BR(t, t′) = −i [BR
1 (t, t′)B>

2(t, t′) +B<
1(t, t′)BR

2 (t, t′)] , (B.6c)

BA(t, t′) = −i [BA
1 (t, t′)B>

2(t, t′) +B<
1(t, t′)BA

2 (t, t′)] . (B.6d)

Finally, to project a boson-like boson-antiboson pair,

B(t, t′) = B1(t, t′)B2(t′, t) , (B.7)

one may use

B>(t, t′) = −iB>
1(t, t′)B<

2(t′, t) , (B.8a)

B<(t, t′) = −iB<
1(t, t′)B>

2(t′, t) , (B.8b)

BR(t, t′) = −i [B<
1(t, t′)BA

2 (t′, t) +BR
1 (t, t′)B<

2(t′, t)] (B.8c)

= −i [B>
1(t, t′)BA

2 (t′, t) +BR
1 (t, t′)B>

2(t′, t)] , (B.8d)

BA(t, t′) = −i [B<
1(t, t′)BR

2 (t′, t) +BA
1 (t, t′)B<

2(t′, t)] (B.8e)

= −i [B>
1(t, t′)BR

2 (t′, t) +BA
1 (t, t′)B>

2(t′, t)] . (B.8f)

In addition, for the analytic continuation of the Dyson equations we also need
to project terms of the form

C(t, t′) = ∫C dt1 C1(t, t1)C2(t1, t′) , (B.9)
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where all of C, C1 and C2 are either fermion-like or boson-like. This can be accom-
plished by the rules

C<(t, t′) = ∫ ∞
−∞dt1 [CR

1 (t, t1)C<
2 (t1, t′) +C<

1 (t, t1)CA
2 (t1, t′)] , (B.10a)

C>(t, t′) = ∫ ∞
−∞dt1 [CR

1 (t, t1)C>
2 (t1, t′) +C>

1 (t, t1)CA
2 (t1, t′)] , (B.10b)

CR(t, t′) = ∫ ∞
−∞dt1 C

R
1 (t, t1)CR

2 (t1, t′) , (B.10c)

CA(t, t′) = ∫ ∞
−∞dt1 C

A
1 (t, t1)CA

2 (t1, t′) . (B.10d)
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Appendix C

The Infinite σ-Series

In this part of the appendix we investigate the properties of the infinite σ-series
which is defined by

σ[∆](t, t′) = ∞∑
ν=0

σ(ν)[∆](t, t′) , (C.1)

with

σ(ν)[∆](t, t′) = (−1)ν ∫ t

t′ dt1∫ t1

t′ dt2∫ t2

t′ dt3 . . .∫ t2ν−1

t′ dt2ν
ν∏
i=1

∆(t2i−1, t2i) . (C.2)

Here ∆(ti, tj) is an arbitrary complex-valued function of two real arguments and
obeys the relation

∆(ti, tj) = [∆(tj, ti)]∗ . (C.3)

Nested double integral series of the form (C.1) occurred at multiple points within the
quantum-kinetic calculations of Chapter 3 and involved various ∆-functions emerg-
ing from the respective self-energy. While in these contexts the infinite series (C.1)
is an exact expression, it is almost useless for numerical calculations as an evaluation
of series terms beyond the first order usually involves unreasonable computational
efforts. Because of this, it is useful to switch to a differential representation. To do
so we inspect the definition of the series coefficients σ(ν) (see Eq. (C.2)). Taking
the derivative of (C.2) with respect to t while treating t′ as constant we obtain the
recursion relation

d(σ(ν)[∆](t, t′))
dt

RRRRRRRRRRRt′=const. = −∫
t

t′ dt1 ∆(t, t1)σ(ν−1)[∆](t1, t′) , ν ≥ 1 . (C.4)

Utilizing (C.4) we then find that the infinite series (C.1) is equivalent to the ordinary
integro-differential equation

d(σ[∆](t, t′))
dt

RRRRRRRRRRRt′=const. = −∫
t

t′ dt1 ∆(t, t1)σ[∆](t1, t′) , (C.5)

with the initial condition σ[∆](t′, t′) = 1. Moreover, interchanging the roles of t
and t′ we also find the alternative equation

d(σ[∆](t, t′))
dt′

RRRRRRRRRRRt=const. = ∫
t

t′ dt1 σ[∆](t, t1)∆(t1, t′) , (C.6)
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which is supplemented by the same initial condition.
While the differential forms (C.5) and (C.6) are by far easier to calculate than the

infinite series (C.1), the computational effort is still enormous when ∆(ti, tj) oscil-
lates rapidly in its time arguments which, unfortunately, is the case in our situation.
Equations (C.5) and (C.6) can, however, be solved approximately when ∆(ti, tj) is
strongly peaked on the time diagonal ti = tj. In this case we can apply a saddle-point
approximation and drag the σ-term out of the integral in (C.5) which leads to

d(σ[∆](t, t′))
dt

RRRRRRRRRRRt′=const. ≈ −σ[∆](t, t′)∫ t

t′ dt1 ∆(t, t1) . (C.7)

This equation can be solved immediately by separation of variables and yields

σ[∆](t, t′) ≈ e− ∫ tt′ dt1 ∫ t1t′ dt2 ∆(t1,t2) . (C.8)

The alternative differential equation (C.6) does of course produce the same approxi-
mate solution. As we showed in Sec. 4.2.3, the ∆-functions appearing in our analysis
are indeed strongly peaked on the time diagonal for the low-energy case considered
in this work. Hence, the exponential representation (C.8) is a reasonable approxi-
mation to the infinite series (C.1) and, therefore, was applied in all of our numerical
calculations.

The approximate form (C.8) can also be obtained by means of an exponential
resummation[85] of the series (C.1). For this purpose we introduce the virtual expan-
sion parameter λ = 1 which denotes the order of a term in ∆ and require that σ[∆]
be equal to the exponential of a new quantity σ̄[∆]. Expanding σ[∆] and σ̄[∆] in λ
we then obtain

σ[∆](t, t′) = ∞∑
ν=0

λνσ(ν)[∆](t, t′) != eσ̄[∆](t,t′) = e ∞∑
ν=0λ

ν σ̄(ν)[∆](t,t′)
. (C.9)

The components σ̄(ν)[∆] can now be calculated by expanding the exponential on
the right-hand side of (C.9) and comparing the different orders of λ on both sides
of the equation. Up to third order the resulting terms read[89]

σ̄(0)[∆](t, t′) = 0 , (C.10a)

σ̄(1)[∆](t, t′) = σ(1)[∆](t, t′) , (C.10b)

σ̄(2)[∆](t, t′) = σ(2)[∆](t, t′) − 1

2
(σ(1)[∆](t, t′))2

, (C.10c)

σ̄(3)[∆](t, t′) = σ(3)[∆](t, t′) − σ(2)[∆](t, t′)σ(1)[∆](t, t′)
+ 1

3
(σ(1)[∆](t, t′))3

.
(C.10d)

Upon retaining only the lowest-order non-vanishing term σ̄(1)[∆] we then essentially
obtain (C.8). In fact, Eq. (C.8) implies that for a time-diagonal ∆-function

σ̄(ν)[∆](t, t′) ≈ 0 , ν > 1 . (C.11)

We stress that the exponential resummation does not have a strong motivation on
its own as we could have chosen any other resummation form as well. It is, however,
strongly supported by the exponential form of the approximate solution (C.8).
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In the works of Makoshi et al.[87,95] the infinite series (C.1) is represented by
an opaque double-time-ordering operator acting on the approximate solution (C.8).
The details of the time ordering are, however, not laid out and the time-ordering
operator is lifted without further explanation. Our previously presented analysis
explicitly justifies the truncation of Makoshi’s time-ordering operator a posteriori.

We close our analysis of the σ-series by deriving three important integral identi-
ties which were employed at various points within the calculations of Chapter 3. We
stress that the following equations hold for the complete infinite series (C.1) and do
not involve any approximation.

Integral Identity I

For σ[∆](t, t′) and ∆(ti, tj) as defined in (C.1), (C.2) and (C.3) the following identity
holds

∫ t

t′ dt1∫ t1

t′ dt2 σ[∆](t, t1)∆(t1, t2) = 1 − σ(t, t′) . (C.12)

Proof: We treat t as constant and label the left- and right-hand side of (C.12)
as ζL(t, t′) and ζR(t, t′), respectively. Obviously, both sides of the equation possess
one and the same initial condition since

ζL(t, t) = 0 = ζR(t, t) . (C.13)

Furthermore, the derivatives of ζL(t, t′) and ζR(t, t′) with respect to t′ evaluate to

dζL(t, t′)
dt′ ∣

t=const. = −∫
t

t′ dt1 σ[∆](t, t1)∆(t1, t′) = dζR(t, t′)
dt′ ∣

t=const. , (C.14)

where the equality on the right-hand side represents (C.6). Consequently, ζL and ζR
obey one and the same ordinary differential equation (C.14) with one and the same
initial condition (C.13). By virtue of the uniqueness of the solution of (C.14) the
functions ζL and ζR must, thus, be equal.

Integral Identity II

Under the preconditions of the first integral identity we postulate the following
equality

∫ t

t′ dt1∫ t

t′ dt2 ∆(t1, t2)σ[∆](t2, t′)σ[∆∗](t1, t′) = 1−σ[∆](t, t′)σ[∆∗](t, t′) . (C.15)
Proof: As we demonstrated in Ref. [88], the identity (C.15) can be proven along the
same lines as the first integral identity (C.12). Here, however, we employ a more
direct approach. Treating t′ as constant we again label the left- and right-hand side
of (C.15) as ζL(t, t′) and ζR(t, t′) and calculate the derivative of ζR(t, t′) with respect
to t′,

dζR(t, t′)
dt

∣
t′=const. = σ[∆∗](t, t′)∫ t

t′ dt2 ∆(t, t2)σ[∆](t2, t′)
+ σ[∆](t, t′)∫ t

t′ dt2 ∆∗(t, t2)σ[∆∗](t2, t′) .
(C.16)
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In (C.16) we now relabel t as t1 and integrate the equation from t1 = t′ to t1 = t.
Employing ζR(t′, t′) = 0 we then obtain

ζR(t, t′) = ∫ t

t′ dt1∫ t1

t′ dt2 ∆(t1, t2)σ[∆](t2, t′)σ[∆∗](t1, t′)
+ ∫ t

t′ dt1∫ t1

t′ dt2 ∆∗(t1, t2)σ[∆](t1, t′)σ[∆∗](t2, t′) (C.17a)

= ∫ t

t′ dt1∫ t

t′ dt2 ∆(t1, t2)σ[∆](t2, t′)σ[∆∗](t1, t′) = ζL(t, t′) , (C.17b)

where the second equality follows after exchanging t1 and t2 within the second
term of (C.17a) and exploiting (C.3). Thus, we have explicitly proven the equality
of ζL(t, t′) and ζR(t, t′).
Integral Identity III

Starting from the premises of the former two integral identities the following equality
holds

∫ t

t′ dt1∫ t

t′ dt2 ∆(t1, t2)σ[∆](t, t1)σ[∆∗](t, t2) = 1 − σ[∆](t, t′)σ[∆∗](t, t′) . (C.18)

Proof: As before, we label the left- and right-hand side of Eq. (C.18) as ζL(t, t′)
and ζR(t, t′), respectively. Splitting up the integration domain in the ζL-term we
then find

ζL(t, t′) = ∫ t

t2
dt1∫ t

t′ dt2 ∆(t1, t2)σ[∆](t, t1)σ[∆∗](t, t2)
+ ∫ t

t′ dt1∫ t

t1
dt2 ∆(t1, t2)σ[∆](t, t1)σ[∆∗](t, t2) (C.19a)

= 2R{∫ t

t′ dt2∫ t

t2
dt1 σ[∆](t, t1)∆(t1, t2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(σ[∆](t,t2))
dt2

∣
t=const. (see Eq. (C.6))

σ[∆∗](t, t2)} , (C.19b)

where the second equality follows after interchanging t1 and t2 within the second
term of (C.19a) and leveraging (C.3). We now apply integration by parts to (C.19b)
and utilize σ[∆](t′, t′) = σ[∆∗](t′, t′) = 1 which yields

ζL(t, t′) = 2{1 − σ[∆](t, t′)σ[∆∗](t, t′)}
− 2R{∫ t

t′ dt2 σ[∆](t, t2)d(σ[∆∗](t, t2))
dt2

∣
t=const.

} . (C.20)

Finally, adding up (C.19b) and (C.20) the integral terms cancel and we obtain

ζL(t, t′) =R{1 − σ[∆](t, t′)σ[∆∗](t, t′)}
= 1 − σ[∆](t, t′)σ[∆∗](t, t′) = ζR(t, t′) , (C.21)

which proves the identity of ζL and ζR.
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Appendix D

Lateral Fourier Transforms

In the following we derive the explicit form of the lateral Fourier transforms of the
Coulomb potential and the projectile wave functions. As we saw, these quantities
are needed in the calculation of the matrix elements Vq⃗ and Vk⃗1k⃗2k⃗′ pertaining to the
reactions of surface-induced resonant electron emission and Auger neutralization,
respectively (see Secs. 4.1.2 and 5.1.1). Employing symmetrical prefactors a one-
dimensional function f(x) and its Fourier transform f(p) are related by

f(p) = 1√
2π
∫ ∞
−∞dx f(x) e−ipx , (D.1a)

f(x) = 1√
2π
∫ ∞
−∞dp f(p) eipx . (D.1b)

Consequently, the lateral Fourier transform of a three-dimensional function f(x, y, z)
is given by the two-dimensional integral

f(Px, Py, z) = 1

2π ∫
∞

−∞dx∫
∞

−∞dy f(x, y, z) e−iP⃗ ⋅R⃗ , (D.2)

with P⃗ = (Px, Py) and R⃗ = (x, y). In accordance with (D.2) the inverse lateral Fourier
transform of a function f(Px, Py, z) is given by

f(x, y, z) = 1

2π ∫
∞

−∞dPx∫
∞

−∞dPy f(Px, Py, z) eiP⃗ ⋅R⃗ . (D.3)

The integrals in (D.2) and (D.3) are most conveniently calculated in cylindrical
coordinates,

R = √
x2 + y2 , ϕ = arctan(y

x
) ,

P = √
P 2
x + P 2

y , ϕP⃗ = arctan(Py
Px

) .

(D.4)

For the forward transform (D.2), in particular, this leads to

f(P,ϕP⃗ , z) = 1

2π ∫
∞

0
dR∫ 2π

0
dϕ Rf(R,ϕ, z) e−iPR cos(ϕ−ϕP⃗ ) . (D.5)

Here a special case emerges when f is independent of ϕ. In this situation we can
drop ϕP⃗ from the exponent in (D.5) because of the 2π periodicity of the integrand.
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Consequently, the lateral transform becomes a function P and z only. The remaining
angle integral can then be looked up (see Ref. [42, Eq. 3.715 18]) and we obtain

f(P, z) = 1

2π ∫
∞

0
dR Rf(R, z)∫ 2π

0
dϕ e−iPR cos(ϕ) (D.6a)

= 1

π ∫
∞

0
dR Rf(R, z)∫ π

0
dϕ cos(PR cos(ϕ)) (D.6b)

= ∫ ∞
0

dR Rf(R, z)J0(PR) , (D.6c)

where J0 is the zeroth-order Bessel function of the first kind.
Utilizing (D.5) and (D.6c) we will now explicitly calculate the lateral Fourier

transforms of the Coulomb potential and the projectile wave functions.

D.1 Screened Coulomb Potential
Neglecting the position dependence of the dielectric constant the screened Coulomb
potential VC = V 1

C is given by (see Eq. (2.60))

VC(r⃗) = e2
0

4πε0εr

e−κ∣r⃗∣∣r⃗∣ = e2
0

4πε0

e−κ√R2+z2√
R2 + z2

= VC(R, z) , (D.7)

and obviously only depends on R and z. Hence, its lateral Fourier transform can be
calculated from Eq. (D.6c). In particular, after employing the substitution

ξ = √
R2 + z2

∣z∣ , R = ∣z∣√ξ2 − 1 , dR = ∣z∣2 ξ
R

dξ , (D.8)

we arrive at

VC(P, z) = e2
0

4πε0εr
∫ ∞

0
dR R

e−κ√R2+z2√
R2 + z2

J0(PR) (D.9a)

= ∣z∣ e2
0

4πε0εr
∫ ∞

1
dξ e−κ∣z∣ξ J0(P ∣z∣√ξ2 − 1) . (D.9b)

The value of this integral can be found in the literature (see Ref. [42, Eq. 6.616 2])
and, finally, leads to

VC(P, z) = e2
0

4πε0εr

e−√κ2+P 2 ∣z∣√
κ2 + P 2

. (D.10)

Equation (D.10) can now be used to express the screened Coulomb potential (D.7)
by the backward transform (see Eq. (D.3))

VC(r⃗) = 1

2π

e2
0

4πε0εr
∫ ∞
−∞dPx∫

∞
−∞dPy

e−√κ2+P 2 ∣z∣√
κ2 + P 2

eiP⃗ ⋅R⃗ . (D.11)

D.2 Helium Wave Function
The ground state helium wave function Ψ

(He)
0 (see Eq. (2.25)) is a function of ∣r⃗∣

only. As a result, we can employ (D.6c) to calculate its lateral Fourier transform,

Ψ
(He)
0 (P, z) = (κHe) 3

2√
π
∫ ∞

0
dR Re−κHe

√
R2+z2

J0(PR) . (D.12)
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To evaluate this integral we need to employ integration by parts with u(R) and v′(R)
chosen as

u(R) = e−κHe

√
R2+z2

, (D.13a)

v′(R) = RJ0(PR) . (D.13b)

The complementary terms u′(R) and v(R) can be calculated straightforwardly and
read

u′(R) = −κHe
R√

R2 + z2
e−κHe

√
R2+z2

, (D.14a)

v(R) = R
P
J1(PR) , (D.14b)

where we have used the general property (see for instance Ref. [1])

dk

dxk
(xnJn(x)) = xnJn−k(x) , k = 0,1,2, . . . . (D.15)

Employing (D.13) and (D.14) together with the substitution (D.8) we obtain

Ψ
(He)
0 (P, z) = (κHe) 5

2√
πP
∫ ∞

0
dR

R2√
R2 + z2

e−κHe

√
R2+z2

J1(PR) (D.16a)

= ∣z∣2 (κHe) 5
2√

πP
∫ ∞

1
dξ

√
ξ2 − 1 e−κHe∣z∣ξ J1(P ∣z∣√ξ − 1) . (D.16b)

The remaining integral can be looked up (see Ref. [42, Eq. 6.645 2]) and yields the
final result

Ψ
(He)
0 (Pκ, zκ) = 1

π

√
2

κHe

∣zκ∣ 32(1 + P 2
κ) 3

4

K 3
2
(∣zκ∣√1 + P 2

κ) , (D.17)

with zκ = z κHe, Pκ = P /κHe and K denoting the modified Bessel function of the
second kind.

D.3 Argon Wave Function

The ground state wave function of argon, Ψ
(Ar)
0 (see Eq. (2.28)), depends on the

azimuthal angle ϕ. Consequently, its lateral Fourier transform has to be calculated
from the general form (D.5). Shifting the angle argument and exploiting the 2π
periodicity of the integrand we obtain

Ψ
(Ar)
0 (P,ϕP⃗ , z) = 1

2π

2(κAr) 5
2√

3π
e−iϕP⃗ ∫ ∞

0
dR∫ 2π

0
dϕ e−iϕ e−iPR cos(ϕ)

×R2 (1 − κAr

2

√
R2 + z2) e−κAr

√
R2+z2

.

(D.18)

After partitioning the angular integration domain the ϕ integral can be found in the
literature (see Ref. [42, Eq. 3.715 12]) and evaluates to

∫ 2π

0
dϕ e−iϕ e−iPR cos(ϕ) = −4i∫ π/2

0
dϕ cos(ϕ) sin(PR cos(ϕ)) (D.19a)

= −i2πJ1(PR) . (D.19b)
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Substituting (D.19b) back into (D.18) we arrive at

Ψ
(Ar)
0 (P,ϕP⃗ , z) = −i e−iϕP⃗ 2(κAr) 5

2√
3π

(Ψ1(P, z) − κAr

2
Ψ2(P, z)) , (D.20)

with

Ψ1(P, z) = ∫ ∞
0

dR R2 e−κAr

√
R2+z2

J1(PR) , (D.21a)

Ψ2(P, z) = ∫ ∞
0

dR R2
√
R2 + z2e−κAr

√
R2+z2

J1(PR) . (D.21b)

We first consider the term Ψ1. In order to evaluate (D.21a) we employ integration
by parts with

u(R) = e−κAr

√
R2+z2

, (D.22a)

v′(R) = R2 J1(PR) , (D.22b)

and

u′(R) = −κAr
R√

R2 + z2
e−κAr

√
R2+z2

, (D.23a)

v(R) = R2

P
J2(PR) , (D.23b)

where we again made use of (D.15). Utilizing (D.22), (D.23) and the substitu-
tion (D.8) we obtain

Ψ1(P, z) = κAr

P ∫
∞

0
dR

R3√
R2 + z2

e−κAr

√
R2+z2

J2(PR) (D.24a)

= ∣z∣3 κAr

P ∫
∞

1
dξ (ξ2 − 1) e−κAr∣z∣ξ J2(P ∣z∣√ξ2 − 1) . (D.24b)

This integral can be looked up (see Ref. [42, Eq. 6.645 2]) and yields

Ψ1(Pκ, zκ) = 1(κAr)3

√
2

π

Pκ(1 + P 2
κ) 5

4

∣zκ∣ 52 K 5
2
(∣zκ∣√1 + P 2

κ) , (D.25)

where we introduced the abbreviations

zκ = zκAr , Pκ = P

κAr

. (D.26)

We now proceed with the calculation of Ψ2. For the evaluation of (D.21b) we
employ integration by parts with v(R) and v′(R) as defined in (D.22b) and (D.23b)
and

u(R) = √
R2 + z2 e−κAr

√
R2+z2

, (D.27a)

u′(R) = Re−κAr

√
R2+z2 ( 1√

R2 + z2
− κAr) . (D.27b)
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Equation (D.21b) then turns into

Ψ2(P, z) = − 1

P
(Ψ

(1)
2 (P, z) − κArΨ

(2)
2 (P, z)) , (D.28)

with

Ψ
(1)
2 (P, z) = ∫ ∞

0
dR

R3√
R2 + z2

e−κAr

√
R2+z2

J2(PR) , (D.29a)

Ψ
(2)
2 (P, z) = ∫ ∞

0
dR R3 e−κAr

√
R2+z2

J2(PR) . (D.29b)

Comparing (D.29a) and (D.24a) we see the Ψ
(1)
2 is given by

Ψ
(1)
2 (Pκ, zκ) = Pκ Ψ1(Pκ, zκ) , (D.30)

with Pκ and zκ as defined in (D.26). For the calculation of Ψ
(2)
2 , on the other hand,

we once more need to integrate by parts, this time using

u(R) = e−κAr

√
R2+z2

, (D.31a)

v′(R) = R3 J2(PR) , (D.31b)

and

u′(R) = −κAr
R√

R2 + z2
e−κAr

√
R2+z2

, (D.32a)

v(R) = R3

P
J3(PR) , (D.32b)

where we again leveraged (D.15). Employing the transformation (D.8) together
with (D.31) and (D.32) we then obtain

Ψ
(2)
2 (P, z) = κAr

P ∫
∞

0
dR

R4√
R2 + z2

e−κAr

√
R2+z2

J3(PR) (D.33a)

= ∣z∣4 κAr

P ∫
∞

1
dξ (ξ2 − 1) 3

2 e−κAr∣z∣ξ J3(P ∣z∣√ξ2 − 1) . (D.33b)

The integral in (D.33b) can be found in the literature (see Ref. [42, Eq. 6.645 2])
and leads to

Ψ
(2)
2 (Pκ, zκ) = 1(κAr)4

√
2

π

P 2
κ(1 + P 2
κ) 7

4

∣zκ∣ 72 K 7
2
(∣zκ∣√1 + P 2

κ) , (D.34)

with Pκ and zκ given by (D.26).
We now, finally, can construct the overall lateral Fourier transform of Ψ

(0)
Ar (r⃗)

by combining (D.25), (D.30) and (D.34) according to (D.20) and (D.28). The result
reads

Ψ
(Ar)
0 (Pκ, ϕP⃗ , zκ) = −i e−iϕP⃗ (κAr) 5

2√
3π

(3 Ψ1(Pκ, zκ) − κAr

Pκ
Ψ

(2)
2 (Pκ, zκ)) (D.35a)

= −i e−iϕP⃗ 1

π

√
2

3κAr

Pκ(1 + P 2
κ) 5

4

∣zκ∣ 52 Ψ(Pκ, zκ) , (D.35b)

with

Ψ(Pκ, zκ) = 3K 5
2
(∣zκ∣√1 + P 2

κ) − ∣zκ∣√
1 + P 2

κ

K 7
2
(∣zκ∣√1 + P 2

κ) . (D.36)



142 Appendix D. Lateral Fourier Transforms

D.4 Molecular Nitrogen Wave Functions
For the lateral Fourier transform of the nitrogen wave functions we first consider the
ground state level. Since in position space the associated wave function Ψ

(N2)
0m (r⃗)

(see Eq. (2.33)) depends on R, ϕ and z, its lateral transform has to be calculated
from Eq. (D.5). After shifting the ϕ-dependence we obtain

Ψ
(N2)
0m (P,ϕP⃗ , z) = −m2π (κN2) 5

2√
2πN0

eimϕP⃗ ∫ ∞
0

dR∫ 2π

0
dϕ eimϕ e−iPR cos(ϕ)

×R2 (e−κN2

√
R2+(z+ %

2
)2 + e−κN2

√
R2+(z− %

2
)2) .

(D.37)

The value of the angular integral can be constructed from (D.19b) and, hence, we
are left with

Ψ
(N2)
0m (P,ϕP⃗ , z) = imeimϕP⃗

(κN2) 5
2√

2πN0

(Ψ(P, z + %
2
) +Ψ(P, z − %

2
)) , (D.38)

where Ψ is defined by

Ψ(P, z) = ∫ ∞
0

dR R2 e−κN2

√
R2+z2

J1(PR) . (D.39)

The integral in (D.39) is identical to (D.21a) with κAr replaced by κN2 . Consequently,
its value is given by (D.25) with the same substitution. The overall result, thus,
reads

Ψ
(N2)
0m (Pκ, ϕP⃗ , zκ) = imeimϕP⃗

1

π

1√
N0κN2

Pκ(1 + P 2
κ) 5

4

× [Φ(Pκ, ∣zκ + %κ
2
∣) +Φ(Pκ, ∣zκ − %κ

2
∣)] , (D.40)

with
Φ(Pκ, zκ) = ∣zκ∣ 52 K 5

2
(∣zκ∣√1 + P 2

κ) , (D.41)

and
zκ = zκN2 , Pκ = P

κN2

. (D.42)

We now proceed with the lateral Fourier transform of the nitrogen ground state
wave function of rotated arguments Ψ̄

(N2)
0m (r⃗) = Ψ

(N2)
0m (−z, y, x) which is needed when

the molecular axis is aligned parallel to the surface. Starting from the general
form (D.2) we oppositely shift the x dependence in the two exponential terms of the
wave function and obtain

Ψ̄
(N2)
0m (Px, Py, z) = − cos(Px%

2
) m

π

(κN2) 5
2√

2πN0

× ∫ ∞
−∞dx∫

∞
−∞dy (−z + imy) e−κN2

√
x2+y2+z2

e−iP⃗ ⋅R⃗ .
(D.43)

After switching to cylindrical coordinates this equation turns into

Ψ̄
(N2)
0m (P,ϕP⃗ , z) = − cos(P cos(ϕP⃗ ) %2) m

π

(κN2) 5
2√

2πN0× [imΨ̄1(P,ϕP⃗ , z) − zΨ̄2(P,ϕP⃗ , z)] ,
(D.44)
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with Ψ̄1 and Ψ̄2 given by

Ψ̄1(P,ϕP⃗ , z) = ∫ ∞
0

dR∫ 2π

0
dϕ R2 sin(ϕ) e−κN2

√
R2+z2

e−iPR cos(ϕ−ϕP⃗ ) , (D.45a)

Ψ̄2(P,ϕP⃗ , z) = ∫ ∞
0

dR∫ 2π

0
dϕ Re−κN2

√
R2+z2

e−iPR cos(ϕ−ϕP⃗ ) . (D.45b)

We first focus on Ψ̄1. To evaluate (D.45a) we start with the angle integral which after
partitioning the integration domain can be looked up (see Ref. [42, Eq. 3.715 12]),

∫ 2π

0
dϕ sin(ϕ) e−iPR cos(ϕ−ϕP⃗ ) = −4i sin(ϕP⃗ )

× ∫ π/2
0

dϕ cos(ϕ) sin(PR cos(ϕ)) (D.46a)

= −i2π sin(ϕP⃗ )J1(PR) . (D.46b)

Consequently, (D.45a) reduces to

Ψ̄1(P,ϕP⃗ , z) = −i2π sin(ϕP⃗ )∫ ∞
0

dR R2 e−κN2

√
R2+z2

J1(PR) , (D.47)

where the remaining integral is again identical to (D.21a) with κAr and κN2 inter-
changed. Hence, Ψ̄1 is given by (D.25) under the same replacement. In total we
find

Ψ̄1(Pκ, ϕP⃗ , zκ) = −i sin(ϕP⃗ ) 2
√

2π(κN2)3

Pκ(1 + P 2
κ) 5

4

× ∣zκ∣ 52 K 5
2
(∣zκ∣√1 + P 2

κ) ,
(D.48)

with zκ and Pκ as defined in (D.42).
We now proceed with the calculation of Ψ̄2. The angle integration in (D.45b)

can be carried out by means of (D.6) and leads to

Ψ̄2(P,ϕP⃗ , z) = 2π∫ ∞
0

dR Re−κN2

√
R2+z2

J0(PR) . (D.49)

The integral appearing in this equation is identical to the one in (D.12) with κHe

replaced by κN2 . The value of Ψ̄2 can, thus, be constructed from (D.17) by employing
the same substitution and adjusting the prefactor. In particular, we obtain

Ψ̄2(Pκ, ϕP⃗ , zκ) = 2
√

2π(κN2)2

∣zκ∣ 32(1 + P 2
κ) 3

4

K 3
2
(∣zκ∣√1 + P 2

κ) , (D.50)

where, as before, zκ and Pκ are given by (D.42).
The overall lateral transform of Ψ̄

(N2)
0m (r⃗) = Ψ

(N2)
0m (−z, y, x) can now be constructed

from (D.48) and (D.50) by means of (D.44). The final expression reads

Ψ̄
(N2)
0m (Pκ, ϕP⃗ , zκ) = − cos(Pκ cos(ϕP⃗ ) %κ2 ) 1

π

2m√
N0κN2

∣zκ∣ 32(1 + P 2
κ) 3

4

× [m sin(ϕP⃗ ) Pκ√
1 + P 2

κ

∣zκ∣K 5
2
(∣zκ∣√1 + P 2

κ)
− zκK 3

2
(∣zκ∣√1 + P 2

κ)] .
(D.51)
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Our results for the ground state wave function, Eqs. (D.40) and (D.51), can
now immediately be generalized to the excited level’s wave function since the two
only differ in the sign of the involved atomic wave functions and the normalization
constant (see Eq. (2.31)). In particular, we find

Ψ
(N2)
1m (Pκ, ϕP⃗ , zκ) = imeimϕP⃗

1

π

1√
N1κN2

Pκ(1 + P 2
κ) 5

4

× [Φ(Pκ, ∣zκ + %κ
2
∣) −Φ(Pκ, ∣zκ − %κ

2
∣)] , (D.52a)

Ψ̄
(N2)
1m (Pκ, ϕP⃗ , zκ) = −i sin(Pκ cos(ϕP⃗ ) %κ2 ) 1

π

2m√
N1κN2

∣zκ∣ 32(1 + P 2
κ) 3

4

× [m sin(ϕP⃗ ) Pκ√
1 + P 2

κ

∣zκ∣K 5
2
(∣zκ∣√1 + P 2

κ)
− zκK 3

2
(∣zκ∣√1 + P 2

κ)] ,
(D.52b)

where Φ is given by (D.41) and, in accordance with our previous notation, Ψ̄
(N2)
1m

denotes the excited level’s wave function of rotated arguments which, in position
space, is defined by Ψ̄

(N2)
1m (r⃗) = Ψ

(N2)
1m (−z, y, x).
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Appendix E

Numerical Scheme

In order to cope with the numerical tasks of this work, an extensive1 C program was
developed. The application is capable of executing all of the previously described
numerical calculations. Moreover, it is modular in the sense that different compo-
nents of the numerical scheme can be enabled or disabled at compile time. The
compilation process itself is automated by a set of makefiles[36]. In the following we
give a short outline of the particular numerical techniques that were used in our
analysis.

Most of our calculations were concerned with numerical integration. In par-
ticular, we had to deal with time integrals of the various ∆-functions, the wave
vector integrations contained in the ∆-functions themselves and the spatial integra-
tions within the different matrix elements. All of these integrals were treated by
routines included in the GNU Scientific Library[37] (GSL). The latter includes in-
dustrial strength implementations of standard numerical algorithms which, in part,
have been tested for more than a decade. In particular, we handled one and two-
dimensional integrals by means of (nested) adaptive Gauss-Kronrod rules while for
integrals with higher dimensionality we employed an adaptive Monte Carlo scheme
based on the VEGAS algorithm[78].

Another important component of our numerical scheme is the tabulation and
subsequent interpolation of intermediate results. Due to the multitude of integration
dimensions and the nested structure of the integrals the final semi-classical equations
of our theory could not be solved as a whole. Instead we often broke our calculations
down into multiple steps by evaluating intermediate results on a grid, temporarily
storing the discrete values and interpolating between them in subsequent calculation
steps. This approach of course constitutes a trade-off since the gain in performance
was accompanied by an increase in memory consumption. The performance boost
did, however, outbalance the enhanced memory requirements.

The use of interpolation techniques obviously required us to choose sensible val-
ues for the grid spacings. A too dense grid wastes computing resources while an
overly sparse grid will not allow for an accurate representation of the original quan-
tity. Therefore, we always tested our interpolation against the original quantity
using a significant number of sample points and parameter configurations. Simi-
larly, we also sensitively controlled the overall extension of the tabulation grid in
order not to introduce truncations in sensitive regions.

In particular, we tabulated V̄k⃗q⃗, the time-independent part of the separated ma-

1The overall codebase contains roughly 66,000 lines of code and comments.
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trix element of indirect Auger de-excitation (see Eq. (4.7b)), over its six-dimensional
wave vector dependence in spherical coordinates. Here we chose the k⃗-grid to stretch
over the entire occupied region of the band structure’s active portion. Moreover, for
the q⃗-grid we introduced a maximum radial component which was chosen slightly
higher than the approximate classical cut-off energy (4.36). As we saw in the en-
ergetic distribution of escaped Auger electrons, Fig. 4.5, this is justified since the
spectrum falls off very rapidly beyond the classical cut-off. The subsequent wave
vector integration contained in ∆iad and similar functions was then carried out by
means of Monte Carlo techniques while using sexalinear interpolation to obtain the
intergrid-values of V̄k⃗q⃗.

Moreover, in order to speed up the calculation of the number of negative ions n−
due to the resonant and combined two-channel de-excitation (see Eq. (3.96)) we
tabulated the molecular occupancies n(rc)

0 = 1 − n(rc)∗ and n
(iad)
0 = 1 − n(iad)∗ over the

collision time. Since these occupations saturated rather quickly in our situation (see
Figs. 4.4 and 4.7), we cropped the tabulation at ∣t∣ ≤ 20 (in the dimensionless units
of (4.9)). The inter-grid values of n(rc)

0 and n
(iad)
0 were then obtained using the

cubic spline interpolation routines contained in the GSL. Note that along the same
lines we also tabulated the time-dependent occupancy of the ground state projec-
tile level n(an+rn)

0 for the efficient calculation of the Auger neutralization spectrum
from (3.135b).

Furthermore, in the context of the two-channel de-excitation we tabulated the
spectral decay rate %̃iad(ε∞⃗q , t) (see Eq. (3.102a)) over ε∞⃗q and t in order to calculate
the combined spectrum of escaped electrons (see Figs. 4.15 and4.16). Here the
extension of the interpolation grid was chosen in accordance with the aforementioned
argument of energy conservation. For the interpolation of %̃iad we then employed a
standard bilinear scheme.

Finally, we also tabulated the angular mean value of the Auger neutralization
matrix element Vk1k2k′(t) (see (5.19a)) over its wave vector and time dependence.
Here again the extension of the tabulation grid was derived from the classical energy
conservation. This time, however, the cut-off energy had to be chosen significantly
larger than the classical value, as seen from the spectra in Fig. 5.2. The inter-grid
values of Vk1k2k′(t) were obtained using quater-linear interpolation.

In addition to the described tabulation techniques, we also limited the boundaries
of some of the ∆-functions’ time integrations in order to speed-up the calculation.
This is motivated by the fact that extremely large or small times cannot contribute
to these integrals because all of the matrix elements vanish far away from the surface.
These regions can, however, involve rapid oscillations of the integrands, introduced
by the energy exponentials, which can lead to numerically incorrect results.

Besides, all of the special functions involved in our numerical scheme (Γ-function,
Bessel functions, . . . ) were calculated using routines from the GSL. The confluent
hypergeometric function M , however, marks an exception from this rule. This func-
tion appears as part of the projectile continuum wave function Ψ

(N2)
q⃗ in the matrix

element of indirect Auger de-excitation (see Eqs. (2.37) and (4.1)). Within the ma-
trix element Ψ

(N2)
q⃗ is multiplied by a bound projectile wave function of the same

argument which is strongly localized about the projectile position. Thus, it suffices
to generate an accurate approximation of the hypergeometric function M close to
the respective projectile position. In order to calculate M , we, therefore, directly
employed its series expansion (see for instance Ref. [1]) with an empirically deter-
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mined maximum expansion order. Note that for fixed ∣q⃗∣ the associated expansion
coefficients can be calculated in advance and don’t need to be adapted for chang-
ing angular components of q⃗. This fact significantly boosts the performance of the
V̄k⃗q⃗-tabulation when it is arranged to traverse along lines of equal ∣q⃗∣.

Moreover, the precision settings involved in the numerical routines (order of
Gauss-Kronrod rules, number of Monte Carlo samples, . . . ) were always chosen to
obtain satisfactory correctness while maintaining acceptable computing time. This
of course calls for a trade-off since it is impossible to have both simultaneously.
However, all of the results published here have an error estimate of below one percent.

Finally, we stress that while the individual numerical operations involved in
our calculation may not be very complex, their combination into such an extensive
numerical scheme is what makes the process highly complicated.
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