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1 Summary

1.1 Introduction

Optomechanical systems describe the interaction between light and matter. The generic

model of cavity optomechanics is a light field in a cavity that consists of a fixed mir-

ror and a mechanical oscillator [1]. In the standard Hamiltonian description a single

quantized mode of the electromagnetic field is coupled via radiation pressure to the

vibrational mode of the mechanical oscillator [2, 3]. Radiation pressure causes a dis-

placement of the oscillator, but the position of the oscillator also determines the ra-

diation pressure force. Thus, in the equations of motion the light-matter interaction

appears as a nonlinear term which is responsible for the unique dynamical properties

of optomechanical systems [4].

The realistic description of optomechanical systems requires a consideration of the

environment. Even when the temperature is assumed to be zero, that is, when classical

thermal fluctuations are neglected, quantum entanglement with the environment has a

significant impact on the dynamical properties of the system. This is especially true for

the photon field, for which a sufficiently high dissipation rate causes decoherence. The

system is forced into a classical mixed ensemble such that classical signatures that are

hidden in the isolated quantum system become visible in the open quantum system [5–

7]. On the other hand, the nonlinear optomechanical interaction induces fluctuations

around the classical steady state of the photon field [8]. Near the semiclassical limit,

the quantum dynamics can therefore be considered as fluctuations which occur in the

linearized equations of motion as deviations from classical expectation values [1].

Driving the system enhances the radiation pressure force so that the light-matter in-

teraction is parametrized by an effective optomechanical coupling tunable by the laser

power, instead of the bare single photon-phonon coupling. The other optomechanical

parameters can be adjusted over a wide range due to the almost arbitrary dimensioning

of the building components. Therefore, optomechanical systems are of great interest

since they allow the investigation and experimental detection of a variety of quantum

and classical phenomena on both the microscopic and the macroscopic scale [9, 10].

Examples of experimental realizations in terms of the single optomechanical cell are

a cavity with an oscillating mirror, the membrane-in-the-middle setup, microtoroids,

or electromechanical implementations using superconducting circuits. Depending on

the detuning between laser frequency and cavity resonance frequency, different dynam-

ical effects have been detected, including non-demolution measurements [11–13], quan-

tum ground state cooling [14–16], micro-macro entanglement [17–19], the generation

of non-classical states such as squeezed light [20–22] or Schrödinger-cat states [23, 24],

nonlinear multistability effects and self-sustained oscillations for the cavity-cantilever-

setup [25–32] and for the membrane-in-the-middle-setup [33–39], as well as coherent

state transfer between photons and phonons [40–44].

Of particular importance in the context of the latter are coupled optomechanical sys-
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Fig. 1: Illustration of the two aspects studied in this thesis (colored red) and ap-

plied methods. For the single optomechanical cell the bare photon-phonon-coupling g0

(photon dissipation ∼ κ) determines the transition from classical to quantum multi-

stability. For the honeycomb array of optomechanical cells the periodically oscillating

part g1 (frequency Ω) in the laser-driven effective optomechanical coupling determines

the transition from elastic to inelastic Dirac transport.

tems such as artificial optomechanical arrays, that are setups composed of several peri-

odically arranged optomechanical cells [45–48]. The dynamical multi-mode effects that

occur here allow insight into new (quantum) phenomena at a macroscopic level and can

be utilized for transport, storage, processing and conversion of optical and mechani-

cal collective excitations [49–60], as well as creation of classical gauge fields [61–63]

and topological effects [64]. Planar metamaterials are of particular interest because of

their special, in-situ optically tunable band structure and the ease of optical control.

One of these metamaterials is optomechanical graphene. Here, low-energy photons and

phonons can be described within the linearized semiclassical regime by an optomechan-

ical Dirac-Weyl Hamiltonian, which is similar to that for electrons in graphene [65].

The crucial difference is the photon-phonon coupling inside the barrier. In addition

to ultrarelativistic transport phenomena such as Klein tunneling, the formation of po-

lariton states may cause the interconversion between light and sound. Furthermore, as

demonstrated for the photon-assisted electron transport in graphene-based nanostruc-

tures [66], time-dependent external fields produce new effects which are also relevant for

fundamental problems such as zitterbewegung [67–71]. Due to the energy sensitivity of

the transport phenomena, driven optomechanical barriers in optomechanical graphene

should have a significant impact, too. In this context circular barriers are of special

interest as they allow for a richer scattering behaviour due to their finite size [72–75].

The first part of this thesis deals with the dynamics of a single driven optomechanical

cell and focuses on multistability effects in the classical and in the quantum regime,

see Fig. 1 (left). This work was motivated by the possibility to detect the quantum-to-

classical crossover directly in the dynamical behaviour of optomechanical systems near
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1.2 Optomechanical multistability

the semiclassical limit [30,32]. The crossover is controlled via the quantum parameter,

which is defined as the ratio of single photon-phonon coupling to photon dissipation,

g0/κ. A clear classical picture is required, so first the dynamics in the classical limit

is studied where classical multistability is characterized by stationary signatures. For

studying the dynamics in the quantum regime the quantum-optical master equation is

solved numerically. We discuss whether and how classical multistability is manifested

in the quantum regime, where new dynamical patterns appear because quantum tra-

jectories can move between classical attractors due to fluctuation induced instabilities.

To follow the transition from quantum mechanics to classical mechanics, we employ

phase space techniques such as Wigner and autocorrelation functions.

The second part of this thesis deals with the driven elastic and inelastic transport

of Dirac quasiparticles, propagating as light and sound waves on a honeycomb ar-

ray of optomechanical cells (optomechanical graphene), see Fig. 1 (right). This work

was motivated by the various ultrarelativistic transport phenomena for electrons in

graphene [76–80], which occur in optomechanical graphene in a new manner due to

the additional optomechanical degree of freedom. Within an effective Dirac-Weyl the-

ory, we study the scattering/tunneling of a plane photon wave by/through laser-induced

photon-phonon coupling planar and circular barriers. First, the energy-conserved (elas-

tic) case of static barriers is investigated. Analyzing the stationary scattering regimes in

dependence of the system parameters we discuss how the phonon-affected transport in

the barrier determines the scattering behaviour. Then, considering finite values of the

time-dependent part of the coupling strength (g1/Ω > 0), the non-energy-conserved (in-

elastic) case of periodically oscillating barriers is studied. The related time-dependent

scattering problem is solved using Floquet theory for an effective two-level system. We

discuss the importance of avoided crossings in the quasienergy bands, which occur due

to the optomechanical degeneration. Furthermore, we investigate the role of sideband

states and their interference for the new dynamical signatures that occur there.

1.2 Optomechanical multistability

Our goal is to detect the quantum-to-classical crossover in the dynamics of the single

optomechanical cell, which is characterized by multistability effects. After introducing

the Hamiltonian description, we explain how the quantum-to-classical transition can

be realized via the quantum parameter that enters the rescaled equations of motion.

Based on these equations, the classical dynamics is analyzed for the membrane-in-the-

middle setup (article II). Then, the quantum dynamics is investigated for the simpler

cavity-cantilever setup (article I).

Hamiltonian description The isolated optomechanical cell, see Fig. 2, is described

by the Hamiltonian [1–3] H/~ = H0 +Hint +Hext where

H0 = −∆
(
a†LaL + a†RaR

)
+ Ωmb

†b, (1a)

Hint = g0(b† + b)(a†LaL − a
†
RaR)− J(a†LaR + aLa

†
R), (1b)

Hext = α(aL + a†L) + eiϕα(aR + a†R). (1c)
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brating cantilever with transmis-

sivity ∝ J (J = 0) is subjected to

the cavity photon field via radia-

tion pressure ∝ g0. The system is

driven from both sides (left side).

Here b and aL/R are bosonic operators for the cantilever (frequency Ωm) and for the

left/right cavity photon field (frequency Ωc), respectively. The radiation pressure in-

duced interaction is parametrized by the bare single-photon coupling rate g0 = Gxzpf ,

where G = Ωc/(L/2) (L is the length of the whole cavity) and xzpf =
√
~/2mΩm

is the zero-point fluctuation of the membrane with effective mass m. In the case of

the membrane-in-the-middle setup the transmissivity of the membrane is taken into

account by a finite photon tunneling probability ∼ J [50, 81–83]. The simpler cavity-

cantilever setup is obtained formally by setting J = aR ≡ 0 in the Hamiltonian, cf.

Fig. 2. Note that the Hamiltonian is written in the rotating frame of the external

pump laser (amplitude α, phase shift ϕ = π) so that only the detuning ∆ = Ωl − Ωc

appears (Ωl denotes the frequency of the laser). Our theoretical analysis is based on

the quantum-optical master equation [84]

ρ̇ = − i
~

[H, ρ] + 2ΓD [b, ρ] + 2κ
∑

L/R

D
[
aL/R, ρ

]
, (2)

from which we obtain the time evolution of the cavity-cantilever density matrix ρ (t).

The environment is taken into account by the dissipative terms D [L, ρ] = LρL† −
1
2(L†Lρ + ρL†L) which describe cantilever damping (∝ Γ) and radiation losses (∝ κ).

We neglect thermal fluctuations, i.e., the temperature is assumed to be zero.

Quantum-to-classical transition From eq. (2) we obtain the equations of motion

for the expectation values

d

dt
〈aL〉 = i∆ 〈aL〉 −ig0 〈(b† + b)aL〉 − κ 〈aL〉 − iJ 〈aR〉 − iα, (3a)

d

dt
〈aR〉 = i∆ 〈aR〉 +ig0 〈(b† + b)aR〉 − κ 〈aR〉 − iJ 〈aL〉 − eiϕiα, (3b)

d

dt
〈b〉 = −iΩ 〈b〉 −ig0 〈a†LaL − a

†
RaR〉 − Γ 〈b〉 . (3c)

The cantilever phase space variables are given as x = xzpf (b†+ b) and p = pzpf i(b
†− b),

where pzpf =
√

~mΩm/2 is the zero-point fluctuation of the momentum. The inter-

action terms in eqs. (3) scale with g0 = Gxzpf ∼
√
~ and contain quantum correla-

tions. We explain under which conditions such correlations can be neglected, i.e., when

〈ab〉 = 〈a〉 〈b〉 (mean field). This leads to the quantum-to-classical transition.

If one considers the equations of motion (3) as force equations of the type d2 〈ξ〉 /dt2 =

〈F (ξ)〉 (the components ξi are the generalized coordinates of the system and Fi the

corresponding forces), then the classical equations apply to their expectation values [85].

4



1.2 Optomechanical multistability

But 〈F (ξ)〉 = F (〈ξ〉) (mean field) only applies if quantum correlations are negligible.

To estimate their influence we expand the force around the expectation value 〈ξ〉,

〈Fi (ξ)〉 = Fi (〈ξ〉) +
1

2

∑

j,l

∂2Fi (〈ξ〉)
∂ξj∂ξl

〈(ξj − 〈ξj〉) (ξl − 〈ξl〉)〉+ ... . (4)

For forces that depend linearly on ξi (harmonic oscillator) the correction terms dis-

appear. Then, the semiclassical equations of motion are automatically fulfilled, in

particular coherent states remain coherent. However, the nonlinear correlation terms

in the eqs. (3) are of higher order and lead to quantum corrections which are deter-

mined by the size of the Heisenberg uncertainty (variances). Thus, the quantum nature

consists on the one hand of the general uncertainty of the state and, on the other hand,

of quantum corrections determined by the uncertainty.

In the classical limit the Heisenberg uncertainty must go to zero, since only then

quantum corrections disappear. To realize this, we introduce dimensionless quanti-

ties, i.e., we measure time as τ = t · Ω and rescale the system parameters according to

(∆, κ,Γ) → (∆, κ,Γ) /Ωm, J → eiϕJ/Ωm. The field amplitudes are rescaled according

to b→ (g0/Ωm) · b and a→ (Ωm/α) · a. Now, the quantum correction terms in eq. (4)

are determined by rescaled variances. They vanish for g0 → 0 and α ∝ 1/g0 → ∞,

because then the width of the states in phase space approaches the delta peak. At the

same time, the parametrization of the nonlinear interaction in eq. (3) remains constant

because it is now given by the combined size P = g2
0α

2/Ω4
m (proportional to the pump

power). Thereby, the classical dynamics does not change under this rescaling and the

quantum-to-classical transition is formally equivalent to decreasing Planck‘s constant,

~→ 0, making it possible to study the influence of quantum effects.

In this context optical dissipation plays an important role as it leads to the attenuation

of quantum effects. As a result, quantum corrections in eq. (4) are small for the

photon field (justifying its linearized equations of motion) and the system is close to the

semiclassical limit (for a more detailed explanation see chapter quantum multistability).

For this reason, instead of g0 only, it is usual to employ the dimensionless quantum

parameter σ = g0/κ [1, 30, 32]. For our purposes we fix κ = 1 (Γ = 0.001) and vary g0

only.

Classical multistability In the classical limit σ = 0, the mean field equations ap-

ply (we omit the brackets 〈·〉 for the expectation values). Classical multistability is

characterized by stationary solutions, that are, attractors or repulsors, reaching from

simple fixed points to more complicated nonlinear signatures on the route to chaos. We

discuss them in dependence on the pump power P and the detuning ∆, where we focus

on the cantilever motion. Special attention is paid to self-sustained oscillations.

The system reveals a reflection symmetry x → −x with p → −p and aL/R → aR/L,

which implies the existence of a trivial fixed point x0 = 0. Increasing the pump power P

leads to a symmetry breaking through the occurence of further fixed points ±xi which

are defined as the static solutions of (3), see Fig. 3 (a) and (b) [eqs. (2)-(5) in article

II]. These non-trivial fixed points appear through supercritical (a) and subcritical (b)

pitchfork bifurcations with the latter being accompanied by a saddle-node bifurcation

(for a global plot see Fig. 3 in article II). Changes in the stability of the fixed points

5



1 Summary

0 1 2 3

P/κ
3

-1.2

-0.6

0

0.6

1.2

x
i

P
p

x
0

x
1

x
2

P
H

P
H

(c)route to

chaos

(a)

1.2 1.4 1.6

P/κ
3

-2

-1

0

1

2

x
i x

0

x
1

x
2

x
3

x
4

P
s

P
s

P
p

P
H

P
H route to

chaos
(b)

1.4 1.6 1.8 2

P/κ
3

0

0.3

0.6

0.9

1.2

x

0

0.2

F
(x

L
)[

a
rb

. 
u

n
it
s
]

P/κ
3
=1.69

0

0.2P/κ
3
=1.88

0 1 2 3
ω

0

0.2P/κ
3
=2

x
1

periodic
orbits

x

c

p

a b a

b

c

P
H

period

chaos

doubling

(c)

Fig. 3: Fixed points in dependence on the pump power P with (a) supercritical (∆/κ =

0), (b) subcritical (∆/κ = −1.65) pitchfork bifurcation (Pp) for J/κ = −0.5, together

with saddle-node bifurcation (Ps) and Hopf bifurcations (PH). Solid (dashed) curves

denote stable (unstable) fixed points. Panel (c): route to chaos in the Feigenbaum

diagram starting at the upper fixed point after the supercritical pitchfork bifurcation

in panel (a), and optical spectrum of the left photon mode.

occur according to the bifurcation type, which implies hysteresis for case (b). The fixed

point bifurcations and stability characteristics can also be obtained in dependence on

detuning ∆, where new patterns like a ’boomerang’ appear (Figs. 3, 10 in article II).

If the pump power P (or detuning |∆|) is further increased, Hopf bifurcations occur and

lead to the instability of the fixed points x1,2. Within linear stability analysis [Jacobi

matrix is given by eqs. (B2),(B3) of article II] Hopf bifurcations are manifested by the

transition of two complex eigenvalues of the Jacobian matrix from the negative to the

positive real numbers (Fig. 4 in article II). As a result, self-sustained periodic oscil-

lations occur with a frequency given by the imaginary part of the complex eigenvalue

pair. A further increase of the pumping leads to period-doubling bifurcations and fi-

nally to chaos. The different dynamical regimes of the mechanical mode are illustrated

in the Feigenbaum diagram in Fig. 3 (c) and are also reflected in the optical spectrum.

The analysis of oscillations for finite amplitudes away from the Hopf bifurcation requires

a description that goes beyond linear stability analysis. For this, a simple periodic

oscillation of the cantilever is assumed,

x (t) = xc +A cosωt, (5)

taking into account that the frequency of the oscillation does not have to match the

natural frequency of the cantilever. To determine the parameters xc, A and ω we insert

the ansatz (5) in the equations of motion (3c), which yields the conditions

xc = −P
∑

m

|amL |2 − |amR |2, (6a)

ΓωA = −2P Im

{∑

m

am∗L am−1
L − am∗R am−1

R

}
, (6b)

A(1− ω2) = −2P Re

{∑

m

am∗L am−1
L − am∗R am−1

R

}
. (6c)

Here we have exploited that the cantilever oscillation leads to the excitation of sidebands

of the photon field at integer multiples of the frequency ω. Hence, the photon fields

6
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different ∆/κ (P/κ3) at P/κ3 = 1 (∆/κ = 0.5). In all panels J/κ = 0.

also reveal a periodic motion, aL/R (t) = exp (∓i(A/ω) sinωt)
∑∞

n=−∞ a
n
L/Rexp(inωt),

where the Fourier components anL/R must be determined by the equations of motion (3a)

and (3b) self-consistently [eqs. (8) in article II]. For small values of J this can be

done iteratively. The self-sustained oscillations after the Hopf bifurcation are correctly

predicted within this approach (see Fig. 8 in article II).

The eqs. (6) allow for a simple physical interpretation. They imply that for a harmonic

cantilever-oscillation on average over time, (a) the force acting on the oscillator, (b)

the change in oscillator energy, and (c) the phase shift of the oscillation must vanish.

Condition (b) can be written as a power balance P = Prad − Pfric = 0, where Prad =

−PωAIm {...} is the mean energy gain due to radiation pressure and Pfric = Γω2A2/2 is

the mean energy loss due to friction [28,30,35]. Condition (c) determines the oscillation

frequency, which in a simpler approach that is mostly used in literature agrees with the

natural frequency of the cantilever, ω = Ωm. However, for certain system parameters

there may be significant deviations from the natural frequency, so the simpler approach

would yield the wrong result for such a case (see Figs. 5, 8 in article II). In principle,

this effect should be measurable in the optical spectrum.

Besides self-induced oscillations after the Hopf bifurcation, further periodic orbits may

occur at larger amplitudes. These can be determined numerically via the self-consistent

eqs. (6). By way of illustration we take a step back and represent the power balance P
as a function of the amplitude A and detuning ∆, see the left panel in Fig. 4 (here J = 0;

for J 6= 0 see Figs. 6, 7 in article II). In addition to the condition for periodic orbits

P = 0, for stability dP/dA < 0 must be satisfied (otherwise friction forces would cause

an unphysical increase of the amplitude). Our approach predicts the multistability of

self-sustained oscillations, that is the coexistence of several stable periodic orbits with

different amplitudes, in agreement with the numerically determined solutions. Again,

the oscillation frequency of the orbits may deviate significantly from the natural can-

tilever frequency, see the right panels in Fig. 4. Obviously, a frequency renormalization

is necessary to obtain the right solutions at smaller amplitudes, while at larger ampli-

tudes the simpler approach with ω = Ωm is a good approximation.
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Many of the classical signatures just discussed exist in a similar manner for the simpler

cavity-cantilever setup. This applies especially to the classical multistability of self-

sustained oscillations, which are the origin of the quantum multistability analyzed in

the next section.

Quantum multistability For analyzing the dynamic behavior of the system in the

quantum regime, we focus on the cantilever motion again. Therefore, we fix the param-

eters as P = 3/16 [P = 1.5 in article I, due to a different rescaling in eqs. (4),(5) there]

and ∆ = −0.4. For these parameter values the classical cantilever dynamics features

simple periodic orbits at amplitudes A ≈ 1.2 und A ≈ 2.7 (Fig. 1 in article I) with a

frequency very close to Ωm (thus no frequency renormalization is necessary).

We let σ become finite, but we keep σ � 1 in order to stay close to the semiclassical

limit. Quantum correlations are now important and the master equation (2) must

be solved without using the mean field approximation. This is done by means of

the Quantum state diffusion method [86] which represents one possible unraveling of

the master equation [6]. For this purpose, the density matrix ρ (τ) is represented

by an ensemble of quantum trajectories |ψk (τ)〉, each of which satisfies the nonlinear

stochastic differential equation [87]

|dψ〉 = − i
~H |ψ〉 dτ +

∑

m=1,2

(〈Lm〉Lm −
1

2
L†mLm −

1

2
〈L†m〉 〈Lm〉) |ψ〉dτ

+
∑

m=1,2

(Lm − 〈Lm〉) |ψ〉dξm. (7)

Here, H/~ is the Hamiltonian (1), Lm ∈ {
√

2κa,
√

2Γb} are the Lindbladians of the cav-

ity mode or the cantilever mode respectively, and dξm are normalized, uncorrelated dif-

ferential random complex numbers (Wiener increments). The temporal evolution of the

density matrix results from the ensemble averaging ρ (τ) =Mk(|ψk (τ)〉 〈ψk (τ)|), and

expectation values from observablesO are obtained according toMk(〈ψk (τ) |O|ψk (τ)〉).
For the numerical treatment we use the implementation from ref. [88] and average about

3000 trajectories. Since we want to compare the classical with the quantum dynamics,

the initial state is prepared as the state that is closest to the classical state, i.e., a pure

product state from coherent cantilever and cavity states at 〈a〉 = 〈b〉 = 0 (brackets of

the expectation values are omitted in what follows).

At the beginning, the position-momentum uncertainty product of the cantilever has

the minimal value, but it takes on larger values when the system is evolved in time, see

Fig. 5 (a). The increase of uncertainty is associated with the out-spreading of the phase

space volume occupied by the cantilever state. As a result, the quantum dynamics of

the cantilever initially follows the harmonic oscillation of the inner classical orbit, but

deviates significantly from it at later times, see Fig. 5 (b) und (c).

To get an insight into the physical process the full phase space dynamics of the cantilever

is displayed in Fig. 6 by means of the Wigner function [89]. Initially, almost all of the

the phase space volume is weigthed on the inner classical orbit and is well localized.

This explains why in Fig. 5 (b) the time evolution of the quantum expectation value

is close to the classical one. Later, part of the phase space volume is transferred to

8



1.2 Optomechanical multistability
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regime σ = 0.1 (black curve).

the second classical orbit until finally almost all of the weight lies on it. During the

temporal evolution, the once localized state becomes delocalized and is spread out along

the entire orbit, associated with the increase in the uncertainty product. The smaller

the value of σ the larger the time scale on which this effect takes place (see Figs. 6, 7,

8 in article I).

Apparently, the classical multistability has a counterpart in the quantum regime, where

quantum multistability appears as the dynamical spread out of the phase space volume

on different classical periodic orbits. However, due to the delocalization of the phase

space quasiprobability, a quantitative analysis or experimental observation of the effect

can not be provided by means of simple expectation values, see Fig. 5 (c). Instead one

can employ the cantilever position autocorrelation function

Rτ (δτ) =

τ+π∫

τ−π

〈x
(
τ ′
)
x
(
τ ′ + δτ

)
〉dτ. (8)

Rτ (δτ) represents the weighted sum of the oscillatory motion on the classical orbits,

where its amplitude indicates how the weight of the full phase space volume is dis-

tributed over the two orbits, see Fig. 6. For more details regarding the definition of the

autocorrelation function see eqs. (9),(10) in article I and corresponding explanations.

For the interpretation of the results we analyze the properties of the single quantum

trajectory, which itself is not measurable, but nevertheless provides insight into the

physical behavior of the whole system. As can be seen from eq. (7), the temporal

evolution of each quantum trajectory is determined on the one hand by the Hamiltonian

and dissipative (coherent) dynamics (the first two terms), and on the other hand by the

environment-induced white noise (last term). As explained in ref. [90], near the classical

limit ~ → 0, for large enough disspation rates the noise term predominate and leads

to a rapid localization of the trajectory in phase space (decoherence). However, the

coherent state is not reached. If the trajectory has shrunk to a phase space volume close

to its minimal Heisenberg uncertainty, the drift terms are of comparable magnitude and

cause the opposite effect, namely delocalization in phase space. The dynamic interplay

of these competing regimes results in fluctuations in the uncertainty product close to

its minimal value. Due to their interaction, this holds not only for the photon but also

for the phonon mode, σxσp & 1
2(g0/Ω)2 ∼ σ2 (see Fig. 4 in article I), in spite of the

relatively small damping loss of the membrane. In this context it becomes clear why

the photon dissipation rate enters the quantum parameter g0/κ: For larger values of κ

9
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Fig. 6: Cantilever Wigner function W (x, p) and position autocorrelation function ac-

cording to eq. (8) at σ = 0.1; dashed curves: autocorrelation functions of the two

classical orbits.

the localization effects are more pronounced than the delocalizations effects (that scales

with ∼ g0), so the Heisenberg uncertainty product is closer to its minimal value and

the system is moved closer towards the semiclassical limit.

Accordingly, the quantum trajectories move on classical trajectories, but are subjected

to stochastic fluctuations which lead to deviations from the classical trajectory. This

is illustrated in Fig. 7. If the fluctuation is large enough, the quantum trajectory can

jump from one attractor to the other. This is the reason why quantum multistability

appears as a dynamic effect. The transition probability of the attractor jump, and

thus the time scale of the instability, is essentially determined by the ratio of the width

of the wave packet to the distance of the classical trajectories in phase space. In the

classical limit σ = 0 the instabilities disappear and the trajectory remains on the classic

trajectory for all time. In the quantum regime σ > 0, on the other hand, the width of

the wavepacket is finite and the transition probability increases the more the wavepacket

overlaps with the adjacent classical trajectory. In addition, the random nature of the

quantum fluctuations (realized by different noise realizations in numerics) ensures that

the quantum trajectories do not remain at the same phase space point but diverge with

time, leading to the outspreading visible in Fig. 6.

According to Fig. 5, after a sufficiently long time almost the entire phase space volume

is weighted on the outer orbit. This raises the question why the reverse process, i.e.

the jump of the quantum trajectories from the outer to the inner orbit, is much less

likely. An answer can be found in the power balance derived within the mean field

description, which can be understood as a kind of effective potential (Ueff ) in phase

space and takes the form of a double well for the two classical orbits. The tunneling

effect (in phase space), induced by the finite Heisenberg uncertainty of the state, causes

transitions from one well into the other. The tunneling probabilities, and therefore the

stability characteristics of the quantum trajectories, are determined by the height and

the width of the potential wall. Thus, the probability of the transition from the inner

to the outer orbit (P12) is larger than for the opposite case (P21). In the classical limit

10
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Fig. 7: Single stochastic state picture. Quantum multistability arises as a result of fluc-

tuation induced instabilities, which have their origin in the tunneling through barriers

of an effective potential Ueff in phase space.

σ = 0, that is, when the wavepacket width vanishes, the transition probabilities on both

sides go to zero. Based on this mechanism, quantum mechanics can protect the system

from irregular dynamics by replacing less stable chaotic attractors with the more stable

simple periodic orbits [see Figs. 6 (c), 7 and 8 in article I]. We also found that in the

quantum regime the system can be localized on simple periodic orbits, although in the

classical limit such orbits do not exist as the power balance is not fulfilled [see Fig. 6

(b) in article I].

1.3 Optomechanical Dirac transport

We now turn to the transport dynamics of collective excitations on a two-dimensional

array of optomechanical cells. Within an effective Dirac-Weyl theory we study the

elastic (articles III,IV) and inelastic (articles IV, V) transport and interconversion pro-

cesses of light and sound for the scattering problem of a plane light wave that hits

laser-induced static and periodically oscillating planar and circular barriers, see Fig. 8

(left part).

Hamiltonian description Given is a honeycomb array of identical cavity-cantilever

setups, see Fig. 8 (right part). Each cell for itself is described by the optomechan-

ical Hamiltonian (1) (with aL ≡ a and aR = J = 0). Close to the semiclassical

limit the dynamics of the cavity photon field can be considered as quantum fluc-

tuations around the classical stationary mean-field state αcl. The latter is propor-

tional to the amplitude α of the laser that drives the optomechanical cell. Then,

using the linearized equations of motion and performing the rotating-wave approxi-

mation in the red detuned regime, ∆ = −Ωm, the system Hamiltonian reads H/~ =∑
j Ωmb

†
jbj−∆a†jaj−g(b†jaj +a†jbj)−

∑
〈ij〉Kaa

†
iaj +Kbb

†
ibj + h.c. Here, ai denotes the

fluctuating part of the bosonic operator now. Note that, in the course of linearization,

the optomechanical interaction is no longer given by the bare single photon coupling g0,

11
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Fig. 8: Scattering geometry. On a honeycomb array of optomechanical cells (gray, see

right part) a plane Dirac photon wave of energy E and wavevector kex hits a circular

(planar) barrier of radius R (width w). The barrier with optomechanical coupling

strength g = g0 + g1 cos(Ωt) is created by an external laser with laser power ∼ α(t).

Right part: photons and phonons can hop between neighboured sites with tunneling

frequency Ka/b = 2vo/ma/3, where vo/m is the Fermi velocity of the photon/phonon.

but by the effective optomechanical coupling strength g = g0αcl. Its optical tunability

allows to create barrier potentials of almost arbitrary shape and heigth. The finite

tunneling probability between neighboured sites in the lattice is taken into account by

Ka and Kb, in the same way as for the photon-photon interaction in eq. (1b).

Starting from this Hamiltonian description and taking dissipation into account, trans-

port processes in optomechanical graphene have been studied by means of linearized

Langevin equations [65]. The numerical analysis of the transport of a low-energy opti-

cal wavepacket through a planar barrier has shown, that the phenomena occurring here

are robust against dissipation (the main effect of dissipation is the decay of the field

amplitudes). In addition, a qualitative agreement was found with the results obtained

within the continuum approximation [91], valid for sufficiently low energies and barrier

potentials that are smooth on the lattice constant a but sharp on the de Broglie wave-

length of the quasiparticle wave. For these reasons we employ this effective description

and do not consider dissipative terms explicitly.

Then, the unitary time evolution of the system can be described by the Dirac equation

i~
∂

∂t
|ψ (t)〉 = H |ψ (t)〉 (9)

with the single-valley Dirac-Weyl Hamiltonian (H → H − ~Ωm)

H/~ =

(
v +

1

2
δvτz

)
σ · k − gτx, (10)

where v = (vo + vm)/2, δv = vo − vm. Within this first-quantized one-particle de-

scription the quasiparticles propagate as optical/mechanical waves with wave vector

k and Fermi velocities determined by the photonic/phononic hopping rates, cf. fig 8.

Due to the optomechanical and sublattice degrees of freedom, the states are four-fold

degenerate. This is reflected by the presence of the Pauli matrices τ , σ in the Hamilto-

nian (10), corresponding to the (photon-phonon) polariton and sublattice pseudospin,

respectively.

12



1.3 Optomechanical Dirac transport

The coupling g in the Hamiltonian (10) parametrizes the optomechanical barrier, which

is created by a laser that uniformly drives a sharply edged region of the honeycomb

array. For a time-independent laser amplitude a stepwise constant barrier is created

with coupling strength g0 and stationary scattering takes place. In order to study

dynamic effects of non-stationary scattering, we consider a temporal modeling of the

laser with frequency Ω. This additionally leads to a time-dependent component in the

coupling strength with amplitude g1. Two kinds of barrier shapes are considered,

g =
[
g0 + g1 cos Ωt

]
×
{

Θ(x)−Θ(x− w) planar barrier

Θ(r −R) circular barrier
(11)

with (x, y) and (r, ϕ) as the cartesian and polar coordinates, respectively. For details

on various constraints of the barrier parameter values, refer to articles IV,V.

To formulate/solve the scattering problem, the same procedure is used for all cases (for

details see the theoretical approaches in articles III-V). First, the wave functions are

determined in the different spatial regions, defined by the potential (11). After that,

the continuity of the wave functions is used to obtain the scattering coefficients, which

in turn enter the scattering quantities. The latter are defined in an appropriate way,

depending on the underlying scattering geometry, and are used to discuss the scattering

and transport behaviour. In all our calculations we use dimensionless variables, i.e. we

employ units such that Ω = vo = ~ = 1 (vm = 0.1). Therefore, inelastic scattering

is discussed in dependence of the four parameters E, g0,1, R(w). For static barriers a

further rescaling can be used so that the two parameters E/g0, Rg0(wg0) remain.

Elastic transport For the elastic transport through the static barrier g1 = 0 the

energy is conserved because the Hamiltonian (10) is time-independent. Hence, the

wave functions are built up by the eigenfunctions of the Hamiltonian, |σ, k〉 |τ〉. Here,

|σ, k〉 is the eigenvector of the Dirac-Weyl Hamiltonian H = σk with band index

σ = ±1 (sublattice pseudospin), and |τ〉 is the polariton state with quantum number

τ = ±1 (polariton pseudospin). The latter is formed as a superposition of the bare

optical/mechanical eigenstates |o/m〉 of τz, since photonic and phononic contributions

are mixed inside the barrier where g0 6= 0 and a polariton bandstructure results [cf.

eq. (2) and Fig. 1 in article III]. Outside the barrier the optical/mechanical modes

are uncoupled, |τ〉 = |o/m〉, and the bandstructure simplifies to the two independent

Dirac cones, E = vo/mσk . For all scattering problems, including the inelastic case,

the incoming photon wave is considered to be in a plane wave state at energy E > 0,

|ψin〉 = |+1, kex〉 |o〉, cf. Fig 8.

Transport through the static planar barrier corresponds to an effectively one-dimensional

problem as the photon wave hits the potential perpendicularly. As a result, the helicity

is conserved, σk/k = const., and there are no backscattered waves (Klein tunneling).

Due to the optomechanical coupling, behind the barrier x > w the transmitted wave

consists of optical and mechanical components, |+1, ko/m〉 |o/m〉 (ko ≡ k), although no

phonon waves are impinging on the potential. Therefore, the transmission probability

of the phonon

Tmst =
[
1 + k2v2

o(vo − vm)2/4vovm(g0)2
]−1

sin2((q+ − q−)w/2) (12)
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can be understood as a photon-phonon interconversion probability (q±st are the waven

umbers inside the barrier), which due to T o + Tm = 1 completely characterizes the

transport.

Based on eq. (12), substantially two regimes can be distinguished by the energy-coupling

ratio E/g0. For E/g0 > 1 the denominator becomes larger than one and consequently

the light-sound interconversion is suppressed. In particular, for E/g0 & 3 the trans-

mission becomes almost purely photonic, T ost � Tmst [optical regime, cf. Fig. 1 in

article IV]. The reason is that the wave number of the phonon in the barrier is much

larger than that of the photon (due to vo � vm) and therefore merges with the lin-

ear dispersion of the phonon outside the barrier (cf. Fig. 1 in article III), so that

the scattering/transmission of the phonon disappears. In contrast, for E/g0 < 1, the

transmission probability of the phonon is comparable to that of the photon, T o ∼ Tm

(optomechanical regime). Note that the distinction of these optical and optomechanical

regimes holds not only for the planar barrier, but also for the circular barrier, simply

because the energy dispersion is not affected by the specific geometry. A very simple

picture arises for E/g0 � 1. Then, the interference of the polariton waves inside the

barrier leads to the formation of standing waves such that the barrier can be understood

as a kind of Fabry-Pérot interferometer. In the case of resonance,

wg0 =
√
vovmnπ/2 ' 0.5n (13)

with n even (odd) natural number, constructive interference of the optical (mechanical)

wave causes pure photon (phonon) transmission, Tmst = 0 (Tmst = 1).

For the scattering by the static circular barrier, helicity is in general not conserved

(except for φ = 0), thus the wavevectors of the scattered waves have components in

any planar direction. Exploiting the symmetry, the incident and reflected wavefunctions

(r > R) and the transmitted wavefunction (r ≤ R) are expanded as eigenfunctions of

the angular momentum operator (partial waves) with quantum numbers l = 0, 1, ... [see

eqs. (3) - (6) in article III]. The scattering behavior is characterized by the reflected

wavefunction in the far field, which is composed of optical and mechanical components.
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Fig. 10: Scattering efficiency/reflection coefficients of the photon (red) and the phonon

(black) as a function of Rg0 within the resonant scattering regime (i) E/g0 = 0.001

(ER � 1), the strong reflector regime (ii) E/g0 = 0.158 (ER . 1; dashed l = 0, solid

l = 1), and on the threshold to the weak reflector regime (ii’) E/g0 = 0.5 (ER > 1).

The radial current density of the reflected wave

jo/m (φ) =
4vo

πko/mr

∞∑

l,l′=0

r
o/m∗
l′ r

o/m
l

[
cos((l + l′ + 1)φ) + cos((l − l′)φ)

]
(14)

describes the angular distribution of the photon/phonon emission by the barrier [the

reflection coefficients r
o/m
l are given by eqs. (7) - (10) in article III]. For the total

intensity we employ the scattering efficiency

Qo/m =
4

ko/mR

∞∑

l=0

|ro/ml |2, (15)

that is the angle-integrated current density divided by the diameter of the barrier and

the incident photon current. Similar to T o/m for the planar barrier, Qo/m can be

understood as a photon-phonon interconversion probability.

Compared to the infinite planar barrier, the finite size of the circular barrier leads to a

richer scattering behavior. The different scattering regimes can be classified by means

of the strength parameter Rg0 and the size parameter ER and are summarized in Fig. 9

(cf. Fig. 2 in article III). As explained above, the light-sound interconversion rate is

determined by the energy-coupling ratio E/g0 that switches between the optical and

the optomechanical regime. In the latter case the barrier acts as a resonant scatterer

with resonance condition

Rg0 =
√
vovmjl,i, (16)

quite similar as for the planar barrier, cf. eq. (13). Here, jl,i denotes the i’th zero of the

Bessel function Jl with i = 0, 1, 2, .... For small size parameters, that is, when the wave

number of the incident photon wave is large compared to the extension of the barrier

(quantum regime), only the first partial waves are excited. This leads to sharp peaks

in the scattering efficiency of the photon and the phonon, see panel (i) in Fig. 10.

When the size parameter becomes larger, higher partial waves are resonantly excited

and the strong reflector regime is entered, see panel (ii) in Fig. 10. Here, one can switch

between entirely photon [case (a)] to phonon scattering [case (b)] just by varying the

radius/coupling of the barrier. On the threshold to the weak reflector regime so much
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Fig. 11: Far-field current of the photon (red) and the phonon (black) according to

eq. (14) in the φ-E/g0 plane (a,b) and as a polar plot (c), corresponding to the cases

marked in panel (ii), (ii’) in Fig. 10 [arrows mark the energy used in panel (ii)].

partial waves are excited such that the definite resonance pattern is replaced by a more

continuous functional behaviour, see panel (ii’) in Fig. 10. At the same time phonon

scattering is weaker since E/g0 ∼ 1. For E/g0 > 1 the scattering becomes optical and

the weak reflector regime is entered (for more details see article III).

Resonances feature vortices of the current inside the barrier, leading to a spatial and

temporal trapping of the photon-phonon bound state [see Fig. 4 and eqs. (13), (14) in

article III]. The specific vortex patterns are reflected in the far-field by a cosinusoidal

angle distribution with maxima at φ = l′/(2l + 1) where l′ ∈ 0, ..., l, see eq. (14). In

addition, interference of different angular contributions l = 0, 1 may lead to a Fano

resonance [92], detectable as a suppression of forward scattering. Both effects arise for

the photon as well as for the phonon, see panels (a),(b) in Fig. 11 (for more details

see Fig. 5 in article III). A richer angular scattering distribution arises at higher size

parameters, where photons and phonons may be emitted simultaneously into different

directions, see panel (c) in Fig. 11. In this way, the circular barrier can be utilized

as an angle-dependent light-sound translator in the sense of a Fano transistor. For

even larger size parameters (quasiclassical regime) the barrier may act as a polaritonic

Veselago lens that focuses the light beam in forward direction (see Fig. 6 in article III).

Inelastic transport For the inelastic transport through the oscillating barrier g1 6= 0

the energy is not conserved because the Hamiltonian (10) is time-dependent. The

polariton states inside the barrier can be treated effectively as periodically driven two-

level systems. To find their time-periodic solution based on eq. (9) we employ the

Floquet formalism [93] for a two-level system [94–99]. The state vector is given by

|ψ (t)〉 = e−iεt |ε(t)〉 with ε as the quasienergy and

|ε (t)〉 =
∑

p

∑

τ=±
cτp |σ,k〉 |τ〉 eipΩt, p ∈ Z , (17)

as the Floquet state expanded in Fourier series. The Fourier coefficients cτp are deter-

mined by the Floquet eigenvalue equation Fc = εc [the Floquet matrix F is given by

eqs. (A.1) - (A.5) in article V]. Eq. (17) implies that the oscillating barrier gives (takes)

energy to (away from) photons and phonons, En = E + nΩ. Hence, the wavefunctions
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are superpositions of states with energies En (central band/sideband states). The

wavefunctions outside the barrier are of the form
∑

n |σn, kn〉 |o/m〉 e−iEnt with wave

numbers k
o/m
n obtained from the unperturbed dispersion. The wavefunction inside the

barrier is composed of Floquet states (17),
∑

n |ε(±) !
= En〉 e−iEnt, where the wave num-

bers q
(±)
n and Fourier coefficients c

τ,(±)
p are obtained from the numerical diagonalization

of the Floquet matrix F [here (±) denotes the two levels of the state].

In contrast to the elastic case, the quantum number n is important now and enters the

effective parameters En/g
0 and EnR (Enw) that characterize the inelastic scattering.

We found that the significance of the sideband states for the scattering is essentially

determined by two aspects. First, the influence of the oscillating barrier becomes

larger for larger values of g1/Ω, since then more sideband states are involved in the

scattering. For our explanations we want to stay close to the static problem, which

is why we assume g1/Ω � 1 (for more details beyond this regime see Figs. 6,8,9

in article V and corresponding explanations). Second, the location of the energies

En in the quasienergy bandstructure is important. The scattering is affected by the

oscillating barrier if the wave numbers of the time-dependent case deviate from the wave

numbers of the time-independent case. These deviations are largest close to avoided

crossings in the polaritonic quasienergy bandstructure (see Fig. 12 in article V). Such

avoided crossings are located at crossing energies (CE) [given by eq. (16) in article V].

Consequently, the impact of the oscillating barrier becomes largest for photon energy

E close to a CE. This is most prominent at symmetric Floquet resonance, that is, when

the static coupling g0 is chosen to be

g0
sr = Ω

√
vovm

vo + vm
. (18)

Then, different CE cross each other at En = nΩ and therefore the sideband states have

a significant impact on the scattering (cf. Fig. 3 in article V).

For the tunneling through the oscillating planar barrier the helicity remains a conserved

quantity, thus Klein tunneling persists and no backscattered waves appear. After nu-

merically solving the infinite system of coupled linear equations for the transmission co-

efficients t
o/m
n and making use of the equation of continuity [with time-periodic current

density according to eq. (3) in artice IV] one obtains the time-averaged transmission

probability

T
o/m

=
vo/m

vo

∑

n

∣∣∣to/mn

∣∣∣
2
, (19)

which can be understood as a photon-phonon conversion probability as T
o

+ T
m

= 1.

At symmetric Floquet resonance g0 = g0
sr the transmission pattern for the static barrier

is drastically modified at photon energies E = 0 and E = Ω, see Fig. 12. At certain

values of wg0, the optomechanical regime is replaced by the optical regime (E/g0 � 1)

and vice versa (E/g0 ≈ 3.5). Obviously, instead of E/g0 the effective energy-coupling

ratio En/g
0 now determines the scattering/transport, which is characterized by the

mixing of the different scattering regimes as a result of interference between the dif-

ferent energy states. Better insight into the underlying mechanism is provided by the

quasienergy spectrum [cf. Fig. 3/4 (a) in article IV]. Because of the symmetric situa-

tion the wave numbers of the wavefunctions under the barrier have equal magnitudes
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Fig. 12: T
m

according to eq. (19) in the wg0-E/g0 plane for g1 = 0.073Ω at symmetric

Floquet resonance g0 = g0
sr. The transmission probability of the photon is T

o
= 1−Tm.

but are antiparallel to each other, which results in standing optical and mechanical

waves of different frequencies [cf. Fig. 3/4 (c) in article IV]. In the same way as for the

static case, the oscillating barrier acts as a kind of Fabry-Pérot interferometer, but now

also for higher harmonics. This leads to the suppression [cf. Fig. 3 (b) in article IV]

or revival [cf. Fig. 4 (b) in article IV] of light-sound interconversion in dependence on

wg0 in Fig. 12. Furthermore, interference of the energy-states causes a time-periodicity

in the current density [see Fig. 3/4 (d) in article IV].

For the oscillating circular barrier, in addition to the energy level n the angular mo-

mentum quantum number l comes into play. Matching the wave functions [eqs. (4)-(7)

in article V], the scattering coefficients are determined by the numerical solution of

the coupled linear system, which is solved for the different values of l [eqs. (8)-(11) in

article V]. As for the elastic case, the angular scattering is described by the far-field

current density of the reflected wave, which is now time-dependent [eq. (14) in article

V]. Consequently, the scattering efficiency consists of a time-dependent part [eq. (13)

in article V] and a time-averaged part

Q
o/m

=
∞∑

n=−∞

∞∑

l=0

Q
o/m
n,l =

∞∑

n=−∞

∞∑

l=0

4

k
o/m
n R

∣∣∣ro/mn,l

∣∣∣
2
, (20)

where Q
o/m
n,l represents the optical/mechanical scattering contribution of partial wave

l at energy level n.

The interference of the states with energies En causes the mixing of the optical (En/g
0 >

1) and optomechanical (En/g
0 ' 0) regimes, which leads – similar as for the planar

barrier – to the suppression and revival of light-sound interconversion. This is shown

in Fig. 13 (left part) at symmetric Floquet resonance for the case E ' 0 (for the

case E ' Ω see Fig. 7 in article V). The periodic time-dependence of the radiation

characteristics also reveal the periodic time-dependence, which is reflected in the near-

field, see Fig. 13 (right part). In the far field, the symmetric excitation of positive and

negative energy states n = ±1 allows for a time-periodic switching between photon

and phonon emission with frequency 2Ω [see Fig. 5 and Fig. 4 (d) in article V]. In

this context we have argued that the (planar and circular) oscillating barrier can be
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Fig. 14: Polar plots of the time-dependent far-field current density of the optical

reflected wave [for parameter values see captions of Figs. 9-11 in article V].

utilized to observe zitterbewegung. The exact requirements for a possible experimental

implementation are explained in more detail in article V.

The scattering behaviour is further specified by the effective size parameters EnR which

determine the maximum number of partial waves involved. We found that the size

parameter of the central band ER determines the maximum number of partial waves

lmax for all energy channels, whereas the EnR determine the maximum number of

partial waves for the sidebands lmaxn with the constraint lmaxn ≤ lmax. Thus, for E ' 0

only partial waves with l = 0 are resonant, cf. Fig. 13. This is in contrast to the case

E ' Ω for which many partial waves may be resonantly excited (see Fig. 7 in article V).

As a consequence of their interference, the weak reflector and the resonant scattering

regime are mixed (cf. Fig. 9) and new angle-dependent and time-dependent emission

characteristics arise. This is most impressively demonstrated away from symmetric

Floquet resonance, that is, when the strong and the weak reflector regimes are mixed

[cf. case (3) of Fig. 3 in article V]. The interference of partial waves l = 0, 1 at sidebands

n = 0,−1 [cf. Fig. 10 in article V] causes the time-periodic emission of light in different

directions with and without forward scattering, see Fig. 14. In this way the circular

barrier can be utilized as a time-periodic Fano transistor.
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1 Summary

1.4 Conclusions

For driven optomechanical systems, the light-matter interaction is of crucial impor-

tance as it allows to adress different dynamic regimes near the semiclassical limit. In

a single optomechanical cell, by varying the bare photon-phonon coupling g0, effects of

multistability can be studied in the classical regime and in the quantum regime. On a

honeycomb lattice of optomechanical cells (optomechanical graphene), by varying the

effective optomechanical coupling strength and its time-dependent part g1, elastic and

inelastic Dirac transport of light and sound through laser-induced photon-phonon cou-

pling barriers can be studied. The most important stationary and dynamical signatures

we identified are summarized in Fig. 15.

As our investigations have shown, dynamical signatures of multistability effects in single

optomechanical cells provide a realistic opportunity to observe the quantum-to-classical

corssover. Based on the quantum-optical master equation at zero temperature, the

quantum-classical transition is formally achieved by rescaling the equations of motion

with the quantum parameter g0/κ (κ is the photon dissipation rate). In the classical

limit, that is, when quantum correlations are neglible, multistability is the coexistence

of several attractors. A peculiarity of the system are self-sustained oscillations. They

occur on the route to chaos and as simple periodic orbits at multiple amplitudes, and

can be explained by means of an effective potential (power balance). In the quantum

regime, multistability is a dynamic effect. Quantum corrections, resulting from the

nonlinear photon-phonon interaction in the semiclassical equations of motion, cause

the uncertainty product to increase over time and lead to significant deviations from

the classical cantilever motion. At the same time, due to decoherence, the system is

close to a classical ensemble. For this reason, quantum multistability appears as the

distribution of the cantilever phase space volume on classical attractors. For interpre-

tation we have employed quantum trajectories (quantum state diffusion), which can

jump between classical attractors due to noise-induced quantum fluctuations. We have

argued that the attractor jump can be attributed to the tunneling through the effective

mean field potential wall in phase space. Within this semiclassical picture, the tunneling

probability determines the fluctuations and thus the time scale of the quantum jump,

and establishes the quantum-to-classical transition: While in the quantum regime the

tunneling probability is finite and the trajectory leaves the classical attractor after a

certain time to jump onto another one, in the classical limit the trajectory remains

on the attractor for all times because the Heisenberg uncertainty (the potential wall)

approaches zero (goes to infinity). The specific stability characteristics are determined

by the shape of the potential. As a result, quantum mechanics can protect the system

from irregular motion in the sense that chaotic attractors are replaced by the more

stable simple periodic orbits. For this case, an exponential relation between transient

lifetime and quantum parameter has already been detected [100]. Based on these re-

sults, we conclude that there is a close connection between the tunneling mechanism

and the noise-terms for quantum trajectories near the semiclassical limit. Future stud-

ies should address this problem in more detail, ideally involving finite temperatures.

In this context, it must be clarified how the tunneling effect is to be understood in the

presence of time-dependent effective potentials, such as for simple periodic orbits.

Our investigations in the second part of this thesis have shown, that many of the phe-

nomena found for driven and undriven transport of Dirac electrons through circular and
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with underlying mechanisms.

planar potential barriers in graphene, occur in a novel way in optomechanical graphene

as a result of the photon-phonon interaction. In the case of static barriers (g1/Ω = 0),

the phonon-affected transport in the barrier leads to the energy-conserved interconver-

sion between light and sound. For the planar barrier, this effect can be attributed to

Fabry-Pérot resonances of standing optical and mechanical waves. A special feature

is the occurrence of Klein tunneling, that is the unimpeded penetration of the barrier

at normal incidence of the photon wave on the barrier. In contrast, the finite size

of the circular barrier leads to an angle-dependent light-sound conversion (transistor),

accompanied by spatial and temporal trapping by the barrier, lensing, and depletion

of forward scattering (Fano resonances). We found that different scattering regimes

can be characterized by the energy of the incident photon wave, as well as the width

and height of the potential barrier. In the case of oscillating barriers (g1/Ω > 0), the

transport becomes inelastic due to the excitation of sideband states with quantized

energies in the form of integer multiples of the oscillation frequency Ω. We have shown

that the scattering behavior is drastically modified when the energy of the photon wave

(sideband state) is close to an avoided crossing in the quasienergy spectrum (Floquet

resonance). This holds even in the antiadiabatic limit, that is for small values of g1/Ω,

when only a few sidebands are excited. The interference of the energy states results in

the mixing of the scattering regimes, i.e., a mixing of long-wavelength (quantum) and

short-wavelength (quasiclassical) regimes. A result may be the suppression or revival

of light-sound interconversion in dependence on the extension of the barrier. Moreover,

the circular barrier may act as a time-periodic (Fano-)transistor that converts light into

sound in different directions. As a further point we have shown that the oscillating bar-

rier provides the energetic conditions to observe zitterbewegung. Although our model is

based on a one-particle Hamiltonian description, the results should be of fundamental

interest to signal processing applications based on laser-driven optomechanical meta-

materials. Future studies should examine the influence of dissipation on wave packet

dynamics in a more realistic description beyond the continuum approximation.
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Abstract – Classical optomechanical systems feature self-sustained oscillations, where multiple
periodic orbits at different amplitudes coexist. We study how this multistability is realized in the
quantum regime, where new dynamical patterns appear because quantum trajectories can move
between different classical orbits. We explain the resulting quantum dynamics from the phase
space point of view, and provide a quantitative description in terms of autocorrelation functions.
In this way we can identify clear dynamical signatures of the crossover from classical to quantum
mechanics in experimentally accessible quantities. Finally, we discuss a possible interpretation
of our results in the sense that quantum mechanics protects optomechanical systems against the
chaotic dynamics realized in the classical limit.

Copyright c© EPLA, 2016

Introduction. – The interaction of light with mechan-
ical objects [1,2] enjoys continued interest due to the suc-
cessful construction and manipulation of optomechanical
devices over a wide range of system sizes and parameter
combinations (see the recent reviews [3,4] and references
cited therein). With these devices both classical non-
linear dynamics, such as self-sustained oscillations [5–8]
and chaos [9–11], and quantum-mechanical mechanisms,
such as cooling into the ground state [12,13] and quantum
non-demolition measurements [14–16], can be studied in a
unified experimental setup.

This raises the question as to whether it might be pos-
sible to detect the crossover from classical to quantum
mechanics directly in the dynamical behaviour of optome-
chanical systems. In a previous paper [11] we observed
that the classical dynamical patterns, which are charac-
terized by the multistability of self-sustained oscillations,
change in a characteristic way if one moves into the quan-
tum regime. Previously stable orbits become unstable,
the system oscillates at a new amplitude, and especially
the classical chaotic dynamics is almost immediately re-
placed by simple periodic oscillations. In this paper we
explain this behaviour from the point of view of classical
and quantum phase space dynamics. Most importantly,
we will show that the dynamical patterns do not change
at random but that clearly identifiable and new signatures
can be observed.

(a)E-mail: alvermann@physik.uni-greifswald.de

The prototypical optomechanical system is a vibrating
cantilever subject to the radiation pressure of a cavity pho-
ton field, for which the Hamilton operator reads [3,4,17]

1

�
H =

[
Ωcav − Ωlas + grad(b† + b)

]
a†a

+Ωb†b + αlas(a
† + a),

(1)

where b(†) and a(†) are bosonic operators for the vibra-
tional mode of the cantilever (frequency Ω) and for the
cavity photon field (Ωcav), respectively. This Hamilton
operator applies to any generic optomechanical system,
but we adopt the cavity-cantilever terminology through-
out this paper. For our theoretical analysis we use the
quantum-optical master equation [18]

∂tρ = − i

�
[H, ρ] + ΓD[b, ρ] + κD[a, ρ] (2)

for the cantilever-cavity density matrix ρ(t), with the dis-
sipative terms

D[L, ρ] = LρL† − 1

2
(L†Lρ + ρL†L) (3)

that account for cantilever damping (∝ Γ) and radiative
losses (∝ κ). Note that the above Hamilton operator is
given in a frame that rotates with the frequency Ωlas of
the external pump laser such that only the cavity-laser
detuning Ωcav − Ωlas appears, and that we assume zero
temperature in the master equation.
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Fig. 1: (Color online) Left panel: chart of self-sustained oscil-
lations in the classical limit for P = 1.5. Self-sustained oscilla-
tions occur for amplitudes A where the power balance between
gains from the radiation pressure (Prad = P 〈|α|2Imβ〉avg) and
losses due to friction (Pfric = Γ̄〈|β|2〉avg) changes from positive
to negative values with increasing A [5,6]. Right panels: classi-
cal orbits in the (x, p) cantilever phase space, for (a) Δ = −0.4,
(b) Δ = −1.1, (c) Δ = −0.85, and (d) Δ = −0.7, as marked by
vertical lines in the left panel. In case (a), the two innermost
orbits have amplitudes A1 ≈ 1.2 and A2 ≈ 2.7. In cases (b), (c)
the innermost orbit shows a few period doubling bifurcations
that occur on the route to chaos [11], in case (d) it is chaotic.

Now introduce the five dimensionless parameters [5,6]

Δ =
Ωlas − Ωcav

Ω
, P =

8α2
lasg

2
rad

Ω4
, σ =

grad

κ
, (4)

and κ̄ = κ/(2Ω), Γ̄ = Γ/(2Ω), and measure time as τ = Ωt.
The parameter Δ gives the detuning of the pump laser and
cavity, while P gives the strength of the laser pumping.
For later numerical results we set the damping parameters
κ̄ = 0.5, Γ̄ = 5 × 10−4 to typical experimental values [4].

The quantum-classical scaling parameter σ is the ra-
tio of the quantum-mechanical quantity grad, which is of
order �1/2 because the quantum-mechanical position op-
erator x̂ ∝ �1/2(b† + b) of the cantilever enters the expres-
sion for the radiation pressure, to the classical quantity κ
that measures the cavity quality. The parameter σ thus
controls the crossover from classical (σ = 0) to quantum
(σ > 0) mechanics [6]. In the following we will increase
σ to move into the quantum regime, but keep σ � 1 in
order to remain in the vicinity of the classical limit σ = 0.

Classical multistability. – Our analysis begins in the
limit σ = 0, where the optomechanical system is described
by the classical equations of motion [6]

∂τα = (iΔ − κ̄)α − i(β + β∗)α − 1

2
i, (5a)

∂τβ = (−i − Γ̄)β − 1

2
iP |α|2 (5b)

for the cavity and cantilever phase space variables
α = (Ω/(2αlas))〈a〉, β = (grad/Ω)〈b〉. We also use
the cantilever position and momentum operator x̂ =
(1/

√
2)(grad/Ω)(b† + b), p̂ = (i/

√
2)(grad/Ω)(b† − b), with

corresponding phase space variables x = 〈x̂〉 = 1/
√

2 (β +
β∗) and p = 〈p̂〉 = (i/

√
2)(β∗ − β).
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Fig. 2: (Color online) Left panel: cantilever position x(τ) from
the classical equations of motion (5) and from the quantum-
mechanical master equation (2) at σ = 0.1, for P = 1.5,
Δ = −0.4 (case (a) in fig. 1). Right panel: cantilever position-
momentum uncertainty product σxσp for the same parameters.

The classical equations of motion predict the onset of
self-sustained cantilever oscillations x(τ) = x0 + A cos τ
as the pump power P is increased. Figure 1 shows the
possible amplitudes A of these oscillations, which are ob-
tained with the ansatz from ref. [5], for the value P = 1.5.
We keep this value fixed throughout the paper, as the be-
haviour discussed here does not depend on it. Note in
fig. 1 that several stable oscillatory solutions at different
amplitudes A can coexist for one parameter choice. This
classical multistability of self-sustained oscillations is the
origin of the quantum multistability analyzed next.

Quantum multistability. – We now move into the
quantum regime by letting σ become finite. In all our
examples the quantum system is initially prepared in the
pure product state of a coherent cantilever and cavity state
at α = β = 0, i.e., in the state that is closest to a classical
state at these coordinates. The cantilever-cavity density
matrix is then evolved according to eq. (2).

Figure 2 shows the cantilever position x and the
position-momentum uncertainty product σxσp, with the

uncertainty σO = (〈Ô2〉 − 〈Ô〉2)1/2 of an observable O.
The quantum dynamics at finite σ closely follows the clas-
sical oscillations for an initial period of time, before it devi-
ates significantly at later times. Deviations occur because
the quantum state spreads out in phase space, as wit-
nessed by the growth of the uncertainty product, whereby
the cantilever position is smeared out.

The full phase space dynamics in fig. 3, which we display
with the Wigner function W (x, p) of the cantilever mode
(see, e.g., ref. [19] for the definitions), reveals a more def-
inite dynamical pattern. For early times (τ � 16) the
Wigner function retraces the classical orbit with ampli-
tude A1 ≈ 1.2 from case (a) in fig. 1. At later times
(τ � 64) the Wigner function shows a contribution from a
second circular orbit with larger amplitude, before almost
all weight is concentrated on the new orbit (τ � 270). In
comparison to case (a) in fig. 1 this orbit is identified as
the second classical orbit with amplitude A2 ≈ 2.7. Dur-
ing time evolution the quantum state spreads out along,
but not perpendicular to, these two classical orbits.

The classical multistability of the optomechanical sys-
tem thus has a direct counterpart in the quantum dy-
namics at small σ, where the system moves between the
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Fig. 3: (Color online) Wigner function W (x, p) in cantilever
phase space (left panels) and cantilever position autocorrela-
tion function Rτ (δτ) (right panels) for case (a) from fig. 1, at
σ = 0.1 slightly away from the classical limit. The autocorre-
lation functions for the two inner classical orbits at amplitudes
A1/2 are included as dashed curves.

different classical orbits. This kind of quantum multista-
bility leads to distinct dynamical features because the os-
cillatory nature of the different orbits is preserved.

The quantum multistability is clearly detected with the
cantilever position autocorrelation function

Rτ (δτ) =

τ+π∫

τ−π

〈x̂(τ ′)x̂(τ ′ + δτ)〉dτ ′, (6)

instead of the position expectation value that averages
over the phase space distribution. We choose this func-
tion because the dynamics is best described in cantilever
phase space. Autocorrelation functions for the cavity mode
could be used as well and should be more accessible to
experimental measurements, but their interpretation is
less straightforward because of the additional sidebands
at multiples of the fundamental oscillation frequency.

The autocorrelation function in fig. 3 is the weighted
sum of the oscillatory motion on the two orbits seen in the
Wigner function. The frequency of the two orbits is iden-
tical (essentially, the cantilever frequency Ω), such that
only one oscillation is visible in Rτ (δτ). The amplitude of
Rτ (δτ) increases as weight is transferred from the inner
to the outer orbit. Noteworthy, the oscillations persist at
all times. In this way, the multistability of the quantum
dynamics is not only observable during a short initial time
period but during extended periods of time.
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Fig. 4: (Color online) Left panels: Wigner function W (x, p)
for a single quantum trajectory starting from a “Schrödinger
cat” state at (i) τ = 0, and at later times (ii) τ = 0.001,
(iii) τ = 0.008, and (iv) τ = 0.4. Right panels: cantilever
position xk and uncertainty product σxσp (see eq. (8)) for a
single quantum trajectory at later times, in the situation of
fig. 5. All results are for case (a) from fig. 1 and σ = 0.1.

Multistability of quantum trajectories. – The
mechanism behind the quantum multistability can be un-
derstood through the phase space dynamics of individual
quantum trajectories, as they arise in the quantum state
diffusion (QSD) approach [20] to the solution of Lindblad
master equations such as eq. (2).

In QSD the density matrix is represented by an ensem-
ble of quantum trajectories |ψk(τ)〉, from which it is ob-
tained as an average

ρ(τ) = meank

{
|ψk(τ)〉〈ψk(τ)|

}
. (7)

Accordingly, expectation values are computed as ensemble

averages O(τ) = tr[ρ(τ)Ô] = meank

{
〈ψk(τ)|Ô|ψk(τ)〉

}
.

Each quantum trajectory |ψk(τ)〉 follows a stochastic
equation of motion that combines the Hamiltonian and
dissipative dynamics with a noise term [20]. Numerically,
the density matrix is obtained through Monte Carlo sam-
pling of the trajectories for different noise realizations. We
use the QSD implementation from ref. [21], and typically
average over � 3000 trajectories to obtain the results in
figs. 2–4, 7, 8. Although a single quantum trajectory is not
observable by itself, the phase space dynamics of individ-
ual trajectories as shown in figs. 5, 6 allows us to deduce
the properties of the entire density matrix.

Close to the classical limit quantum trajectories evolve
rapidly into localized phase space states as a consequence
of dissipation [22–24]. This is illustrated in fig. 4 for a sin-
gle trajectory that starts from a “Schrödinger cat” state,
given as the superposition of two coherent states, with the
characteristic interference pattern in the Wigner function.
In less than one oscillation period (τ = 0.4 < 1) the tra-
jectory evolves into a nearly coherent state with a positive
Wigner function, which shows the rapid decoherence. The
quantum trajectory remains in such a state during the sub-
sequent time evolution, and the uncertainty product stays
close to its minimal value

σqσp ≥ 1

2
(grad/Ω)2 =

1

2
(σκ̄)2 (8)
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Fig. 5: (Color online) Stroboscopic (x, p) phase space plot of
a single quantum trajectory (red dots), for case (a) from fig. 1
and σ = 0.1, at early (left panel), intermediate (central panel),
and later (right panel) times τ as indicated. The initial condi-
tions are x(0) = p(0) = 0, the quantum system is prepared in
a coherent state at these coordinates. The two classical orbits
at amplitudes A1/2 are depicted with dashed curves.

Fig. 6: (Color online) Phase space plot of many quantum tra-
jectories in the QSD ensemble (red points) for cases (a)–(d)
from fig. 1, different times τ , and values of σ as indicated.
In all cases, the two innermost classical orbits from fig. 1 are
included as solid curves. In case (b) the second orbit is missing.

given by the Heisenberg uncertainty relation for the x̂, p̂
operators (here, the quantum-classical scaling parameter
σ comes into play). Notice that phase space localization
occurs only in the vicinity of the classical limit, for σ � 1.
It also explains the transition into the classical limit: For
σ → 0 the quantum trajectories evolve infinitely fast into
minimal uncertainty states, and at the same time the lower
bound in eq. (8) goes to zero. Then, every trajectory occu-
pies one point in phase space, i.e., it has become classical.
Under this condition, the classical equations of motion (5)
can be derived directly from the master equation (2).

Because a quantum trajectory is very localized in phase
space it is well represented by a single phase space point,

similar to a classical trajectory. In fig. 5 this represen-
tation is used for a stroboscopic phase space plot of a
single quantum trajectory that contributes to the Wigner
functions in fig. 3. This plot clearly shows the multista-
bility of the quantum trajectory, which initially follows
the inner orbit before it moves towards the outer orbit.
During the time evolution the quantum trajectory follows
the oscillatory motion of the two orbits at the cantilever
frequency, and because the trajectory state is well local-
ized in phase space, these oscillations are not averaged
out but appear directly in the position expectation value
xk(τ) = 〈ψk(τ)|x̂|ψk(τ)〉 that is depicted in fig. 4.

Since every individual trajectory shows this type of
quantum multistability it is also seen in the entire density
matrix, given as the ensemble average of all trajectories.
Because of the noise term in the stochastic QSD equation
of motion the quantum trajectories are not exactly at the
same phase space point but at different points on the re-
spective orbits. This results in the broad distribution of
the relative angle in phase space seen in the Wigner func-
tions in fig. 3 especially at later times, when the quantum
trajectories are spread out fully along the second orbit.
Consequently, all oscillations are averaged out in expecta-
tion values such as the cantilever position x(τ) in fig. 2.
Such values are, therefore, not the right quantities to de-
tect the quantum multistability.

Instead, successful detection requires autocorrelation
functions such as Rτ (δτ) from eq. (6). Similar to the den-
sity matrix the function Rτ (δτ) can be expressed (drop-
ping the τ ′-integration here) as an ensemble average,

Rτ (δτ) =
∑

k

xk(τ)xk(τ + δτ)

+
∑

k

〈(x̂(τ) − xk(τ)) (x̂(τ + δτ) − xk(τ + δτ))〉k, (9)

where the expectation value 〈·〉k = 〈ψk| · |ψk〉 is computed
for each individual quantum trajectory. The correlation
function in the second line is bounded by

|〈(x̂(τ) − xk(τ)) (x̂(τ + δτ) − xk(τ + δτ))〉k|2 ≤〈
(x̂(τ) − xk(τ))

2
〉

k

〈
(x̂(τ + δτ) − xk(τ + δτ))

2
〉

k
. (10)

Whenever the position uncertainty 〈(x̂−xk)2〉k of each tra-
jectory becomes small, as is the case for σ � 1, the auto-
correlation function Rτ (δτ) is thus given by the ensemble
average of the autocorrelation functions of the individual
trajectories, i.e., by the first line in eq. (9). Accordingly,
the oscillations seen in xk(τ) for each individual trajectory
(cf. fig. 4) are preserved in the autocorrelation function
in spite of the ensemble average. Furthermore, Rτ (δτ) is
the weighted sum of the autocorrelation functions for the
different classical orbits, which are directly related to the
orbit amplitudes A1/2 as seen in fig. 3.

Notice that the behaviour described here —the mo-
tion of quantum trajectories between different classical
orbits— emerges only because the trajectory states |ψk〉
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Fig. 7: (Color online) Wigner function W (x, p) in cantilever
phase space for case (d) from fig. 1, for τ and σ as in fig. 6.

deviate from coherent states. The noise terms in the QSD
equations have the form Γ̄(b − 〈b〉k)|ψk〉dξ, here for the
mechanical damping, with a random variable dξ ∝ dτ1/2

from the underlying Wiener process [20]. If |ψk〉 is ex-
actly a coherent state, such that (b − 〈b〉k)|ψk〉 = 0, the
noise term will vanish identically. This observation ex-
plains why the “quantum noise” disappears in the classi-
cal limit σ = 0, and the quantum trajectories follow the
deterministic classical equations of motion (5). At finite
but small σ � 1 trajectories are almost but not exactly in
coherent states. The noise terms become effective but re-
main small, such that the quantum trajectories still follow
the classical dynamics but are subject to a small stochastic
correction. This small correction can change the long-time
stability of classical orbits and their basin of attraction but
does not destroy the classical dynamical patterns. Conse-
quently, the quantum trajectories do not move arbitrarily
in phase space but follow a classical orbit for some time
before they leave the orbit with a finite probability. After-
wards, the trajectories can settle on a different attractive
orbit if such an orbit exists at larger amplitudes.

Quantum multistability and classical orbits. –
The quantum multistability observed for case (a) from

fig. 1 depends on the presence of at least two classical or-
bits between which the quantum trajectories can move.
The remaining cases (b)–(d) are variations of this situa-
tion, where either the second orbit is missing (case (b)) or
the nature of the first orbit has changed (cases (c), (d)).
The four cases are compared in fig. 6 with phase space
plots of many quantum trajectories that represent the
QSD ensemble for the density matrix.

In all cases the time scale relevant for quantum mul-
tistability shortens with increasing σ because the quan-
tum trajectories leave the first classical orbit more rapidly
when the noise terms become larger. For too large σ (e.g.,
σ = 0.3 in case (a)) the clear dynamical pattern of quan-
tum multistability —the movement between different clas-
sical orbits— disappears altogether.

In case (b) the quantum trajectories cannot settle on a
nearby classical orbit once they left the first orbit. Quan-
tum multistability, which is characterized by the preva-
lence of oscillatory motion over random diffusion, cannot
be observed in such a situation.

In cases (c), (d) the inner orbit is no longer simpler peri-
odic but a period-two orbit after the first period doubling
bifurcation on the route to chaos (case (c)) or a chaotic
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Fig. 8: (Color online) Cantilever position x(τ) (left panels)
and position autocorrelation function Rτ (δτ) (right panels) for
case (d) at finite σ, in comparison to the results in the classical
limit σ = 0 (top panels, and dashed curves in the lower panels).
These curves correspond to the Wigner functions in fig. 7.

orbit (case (d)). Quantum multistability is not affected
by the different nature of the inner classical orbit, because
still a second simple periodic orbit at larger amplitude ex-
ists such that oscillations can be observed after the quan-
tum trajectories have left the inner orbit.

This is illustrated for case (d) in figs. 7, 8. First, we
observe again that the relevant time scale changes signifi-
cantly with σ. If σ is increased from 0.05 to 0.1 in fig. 7 al-
most all weight of the Wigner function is transferred from
the inner to the outer orbit. Second, the Wigner func-
tions themselves look quite similar to those for case (a)
in fig. 3. In agreement with this, well-defined oscillations
are observed in the cantilever position and autocorrela-
tion function in fig. 8, and the respective amplitudes can
be related to those of the classical orbits in fig. 1.

The present data might suggest a more ambitious in-
terpretation. Apparently, all curves at finite σ in fig. 8
show simple periodic oscillations even if (at σ = 0.05)
most weight in the Wigner function is still on the in-
ner —classically chaotic— orbit. To a certain extent,
quantum mechanics protects the optomechanical system
against classical chaotic dynamics. Initially, the quantum
state cannot follow the intricate chaotic orbit curve be-
cause it occupies a finite part of phase space. Because of
phase space averaging, the chaotic motion is replaced by
simple oscillations at the fundamental system (i.e., can-
tilever) frequency. Later, the quantum trajectories move
to the second —classically simple periodic— orbit. At all
times, the chaotic classical dynamics is replaced by clearly
defined simple oscillations in the quantum regime. Notice
that we here discuss possible signatures of classical chaos
in the associated dissipative quantum dynamics and not
in quantities such as the level statistics that are defined
for conservative Hamiltonian systems only [25,26].

Conclusions. – In this paper we establish the
quantum-mechanical counterpart of the classical
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multistability of optomechanical systems. While clas-
sical multistability corresponds to the coexistence of
self-sustained oscillations at multiple amplitudes, quan-
tum multistability is a dynamical effect in which the
amplitude of oscillations changes over time. The change
can be detected with phase space techniques such as
the Wigner function, and analyzed quantitatively with
autocorrelation functions.

Quantum multistability is observed close to the classi-
cal limit. There, the quantum trajectories in the QSD
picture of dissipative dynamics are well localized in phase
space. Quantum multistability results from corrections
to the classical dynamics given by the noise terms in the
stochastic QSD equations of motion. The picture of quan-
tum trajectories also provides the link between the oscilla-
tory quantum dynamics and the classical orbits such that,
e.g., the oscillations in the autocorrelation functions can
be traced back to the classical self-sustained oscillations.

The time scale relevant for quantum multistability is
set by the quantum-classical scaling parameter σ. An in-
teresting goal is to obtain the time scale from the QSD
equations by quantifying the size of the noise term. This
is not an entirely trivial task, though, because the noise
term depends not directly on σ but on the deviation of
the quantum trajectory state from a coherent state.

An important aspect for experimental investigations of
quantum multistability is the robustness of the feature.
Quantum multistability manifests itself over an extended
period of time, is observable in autocorrelation functions
after the initial dynamics has evolved into a stable dynam-
ical pattern, and does not require specific system prepara-
tions. The experimental feasibility depends mainly on the
ability to tune the quantum-classical scaling parameter σ.
For the prototypical cantilever-cavity system σ is changed,
e.g., by simultaneous adjustment of the cantilever mass
and pump laser power (thus preserving the self-sustained
oscillations). The central experimental challenge is to
distinguish “quantum” multistability from the effects of
“classical” thermal noise, which requires that the temper-
ature be sufficiently low. The relevant dynamical energies
are larger than the energy separation of low-lying quantum
states, which allows for comparatively high tempera-
tures. Furthermore, variation of σ changes the quantum-
mechanical time scale while the thermal noise is not
affected. This might open up the possibility of observing
the crossover from classical to quantum mechanics directly
in the dynamical behaviour of an optomechanical system.
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Symmetry-breaking oscillations in membrane optomechanics
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We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical
system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork
bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-
cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking
fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis
of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that
fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by
following the route to chaos for the membrane dynamics.

DOI: 10.1103/PhysRevA.94.063860

I. INTRODUCTION

Optomechanical systems [1–4] show a variety of dynamical
patterns in the classical and quantum regimes [5,6]. Several
aspects of the classical nonlinear dynamics of these systems
have been studied theoretically and observed experimentally,
including self-sustained oscillations [7–10], multistability and
hysteresis [11], and chaotic [12–14] behavior.

A different line of inquiry concerns the modification of
the classical dynamics due to quantum effects [15]. The
general correspondence between the classical and quantum
dynamics of optomechanical systems and the specific fate
of self-sustained oscillations under the influence of quantum
noise [16] and phase space diffusion [17] have been addressed
in recent studies [18–20]. These studies require a clear picture
of the classical dynamical patterns to be able to identify the
influence of quantum effects.

In order to contribute to this picture we address in this
paper the nonlinear dynamics of a membrane inside a cavity
(see Fig. 1), with a focus on the self-sustained oscillations
that break the reflection symmetry of the specific setup
considered here. Our work is motivated by previous studies
of similar setups that addressed, e.g., the symmetry breaking
at zero detuning [21], the onset of chaotic motion [22], or
pattern formation and buckling phase transitions for a flexible
membrane [23,24]. We extend these studies along three lines.
First, we analyze the pitchfork and saddle-node bifurcations
related to symmetry breaking and hysteresis, which leads to a
clear characterization of the different transitions between the
symmetric and nonsymmetric situation. Second, we establish
a scaling relation for the bifurcations and fixed-point solutions
that allows for tuning the symmetry-breaking transitions to
different parameter regimes. Third, we introduce a new ansatz
for the self-sustained membrane oscillations and develop an
intuitive physical picture of symmetry-breaking oscillations
that is based on the power balance between optical and
mechanical degrees of freedom associated with this ansatz.
These results should help to observe static and dynamical
symmetry breaking in future experiments. The close relation
between our theoretical findings and the actual experiment is

*Corresponding author: alvermann@physik.uni-greifswald.de

established by the translation rules between model and real
physical parameters given below.

One specific result of our study with potential experimental
relevance is that the frequency of the self-sustained oscillations
is shifted significantly relative to the natural membrane
frequency. This is in contrast to the cantilever-cavity system
with one photon mode, where self-sustained oscillations
occur approximately at the cantilever frequency [10]. The
frequency shift, which can be determined experimentally
from the position of the optical sidebands, contains additional
information about system parameters such as the membrane
stiffness. At least in principle, mechanical parameters could
thus be obtained from optical frequency measurements.

II. THEORETICAL SETUP

The symmetric membrane-in-the-middle setup considered
here consists of a membrane with high reflectivity placed near
the cavity center (see Fig. 1). Two degenerate photon modes in
the left and right halves of the cavity contribute equally to the
radiation pressure acting on the membrane. Photon tunneling
through the membrane connects both photon modes, lifts their
degeneracy, and results in a quadratic dispersion of the optical
modes as a function of the membrane position [25–28].

For the theoretical analysis of this situation it is convenient
to work with dimensionless quantities (see Appendix A for a
summary), especially to measure time in units of the inverse
membrane frequency (�−1). Then, the classical equations of
motion read

ẋ = p, (1a)

ṗ = −x − �p − g(|aL|2 − |aR|2), (1b)

ȧL = [i� − ix − κ]aL − iJ aR − i, (1c)

ȧR = [i� + ix − κ]aR − iJ aL − i, (1d)

for the membrane position (x) and momentum (p) and
the photon field amplitudes in the left (aL) and right (aR)
cavities. These equations contain five dimensionless param-
eters: the laser-cavity detuning � = (�las − �cav)/�, cavity
decay rate κ = πc/(2FL�), mechanical damping � = 1/Qm,
membrane transmissivity J = eiϕ

√
2(1 − r) (c/L)/�, and ef-

fective radiation pressure g = (πc �cavP )/(m�5L3F ). These
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FIG. 1. The membrane-in-the-middle setup consists of a vibrat-
ing, partially reflective membrane placed in the center of a cavity,
which is pumped by an external laser through the left and right mirrors
with equal intensities.

parameters are obtained from the physical parameters of the
cavity (length L, frequency �cav, finesse F ), the membrane
(frequency �, mass m, quality factor Qm, reflectivity r),
and the laser (frequency �las, transmitted power P , phase
difference ϕ) as specified here and in Appendix A.

Note that the above equations of motion are valid for a
relative phase eiϕ = ±1 of the laser amplitude at the right and
left mirror, with J > 0 (J < 0) for equal (opposite) phase.
The laser power enters through the parameter g. For typical
experimental setups from the literature [4], we have g � 10
with significant optical losses (κ � 1) and small mechanical
damping (� � 10−4 � 1). Since the effective optomechanical
coupling g can be adjusted via the laser power, different
experimental implementations are conceivable to achieve
sufficiently large values of g. In the optomechanical setup
in Ref. [25], for example, a pump power on the order of
P ∼ 10−8 W is required if the cavity is driven with laser
light with frequency �las/2π ∼ 1014 Hz. However, possible
experimental realizations depend on the availability of highly
reflective membranes with very small J .

We now study the fixed-point bifurcations related to
symmetry breaking (Sec. III), the Hopf bifurcations leading
to self-sustained oscillations and the properties of these
oscillations at finite amplitudes (Sec. IV), before we follow the
route to chaos (Sec. V) and conclude immediately thereafter
(Sec. VI). The appendices collect additional information on the
derivation of the dimensionless equations of motion (Appendix
A), the stability analysis (Appendix B), and the finite amplitude
ansatz (Appendix C).

III. SYMMETRY BREAKING

The equations of motion (1) are invariant under the
replacement x �→ −x (with p �→ −p and swapping aL/R �→
aR/L), which defines the reflection symmetry of the system
with respect to the membrane position. The symmetry implies
the existence of a trivial fixed point x0 = 0, while symmetry
breaking results in additional nontrivial fixed points ±xi �= 0.

The fixed points are obtained from Eq. (1) as the solutions
with ẋ = ṗ = ȧL = ȧR = 0. Four nontrivial fixed points can
exist in addition to x0 = 0, namely,

x1/2 = ±
√

−γ + 2
√

f , (2a)

x3/4 = ±
√

−γ − 2
√

f , (2b)
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FIG. 2. Left panel: Supercritical pitchfork bifurcation for small
detuning (upper plot, for �/κ = 0), and subcritical pitchfork and
saddle-node bifurcation for large detuning (lower plot, for �/κ =
−3), both for J/κ = −1. Right panel: Diagram of bifurcations (at gp

and gs) and number of fixed points in the g-� plane, for J/κ = 0.
Small nonzero J/κ shifts, essentially, the boundary curves in the
plane (see, e.g., the dashed curves for J/κ = −0.5). Nontrivial fixed
points exist for � < −J .

where γ = κ2 + J 2 − �2 and f = −�2κ2 − g(� + J ).
These fixed points exist if the respective terms under the square
root are non-negative. As a consequence of the reflection
symmetry they occur in pairs ±xi with opposite sign. The
corresponding values for aL/R are

aL/R = � ± x + iκ + J

(i� − κ)2 + x2 + J 2
(3)

for all fixed points, with the + (−) sign for aL (aR).

A. Pitchfork bifurcation

As g is increased, the nontrivial fixed points appear through
a pitchfork bifurcation at

gp = − �2κ2

� + J
− 1

4

(κ2 + J 2 − �2)2

� + J
. (4)

For small detuning |�| �
√

κ2 + J 2 the bifurcation at gp

is a supercritical pitchfork bifurcation (see Fig. 2, left panel,
upper plot). For g < gp only the trivial fixed point x0 = 0
exists. For g > gp, the trivial fixed point becomes unstable and
the two stable fixed points x1, x2 appear. For large detuning
|�| �

√
κ2 + J 2 the bifurcation at gp is a subcritical pitchfork

bifurcation (see Fig. 2, left panel, lower plot), where the two
unstable fixed points x3, x4 exist together with the stable
trivial fixed point x0 for g < gp. The pitchfork bifurcation
is accompanied by a saddle-node bifurcation at

gs = − �2κ2

� + J
, (5)

which connects the unstable fixed points x3, x4 to the two
stable fixed points x1, x2. For gs < g < gp all five fixed points
coexist.

B. Scaling

Equations (2)–(5) are invariant under the scaling � �→ s�,
J �→ sJ , κ �→ sκ , x �→ sx, aL/R �→ (1/s)aL/R , gi �→ s3gi ,
for any s > 0. Therefore, the positions of the fixed points
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FIG. 3. Left panel: Boomerang fixed-point pattern as a function
of �, for fixed g/κ3 = 4, J/κ = −1. Right panel: Hysteresis of
fixed points for cyclic change of �/κ . The stable (solid curves) and
unstable (dashed curves) fixed points as drawn here are obtained for
small g (i.e., small scaling parameter s). At larger g, fixed points can
lose stability through Hopf bifurcations (cf. Sec. IV).

depend only on the appropriate ratios, e.g., J/κ , �/κ , and
g/κ3. The stability of the fixed points, however, depends on
the absolute values of the system parameters and changes with
s (see Sec. IV). The occurrence of nontrivial fixed points is
summarized in Fig. 2.

Note that for � = 0 only the supercritical pitchfork bifur-
cation occurs. In this situation symmetry breaking is formally
related to the super-radiant phase transition in the Dicke
model [21].

C. Boomerang pattern

Changing the laser-cavity detuning � instead of the
effective radiation pressure g allows for observation of the
supercritical and subcritical pitchfork bifurcation in succession
(see Fig. 3, left panel). The saddle-node bifurcation in the
resulting boomerang-like fixed point pattern can be observed
through the hysteresis that occurs when � is changed along a
cycle (see Fig. 3, right panel).

IV. SELF-SUSTAINED OSCILLATIONS

A. Hopf bifurcations

In the vicinity of the pitchfork and saddle-node bifurcations
the stability of fixed points changes according to the type
of the bifurcation. Away from the fixed-point bifurcations
additional dynamical Hopf bifurcations can occur, through
which potentially stable fixed points are replaced by oscillatory
orbits.

The stability of the fixed points is determined by the
stability matrix that is obtained from linearization of the
equations of motion (see Appendix B for explicit expressions).
Figure 4 shows the stability of fixed points according to the
linear analysis for the supercritical and subcritical pitchfork
bifurcation. Note that the stability changes under the s scaling
that leaves the fixed points invariant, such that we have to
specify the absolute value of, e.g., κ in Fig. 4.

Figure 5 shows the real part of the eigenvalues of the
stability matrix, following the fixed points x0 → x1 through
the supercritical pitchfork bifurcation at small |�|. In the
vicinity of gp we observe how one real eigenvalue touches
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FIG. 4. Stability characteristics for the supercritical (left panel,
�/κ = 0) and subcritical (right panel, �/κ = −1.65) pitchfork
bifurcation, for J/κ = −0.5 and κ = 1. Stable (unstable) fixed points
are plotted as solid (dashed) curves. The red numbers indicate the
pitchfork (1) and Hopf bifurcations (2), which can be distinguished
by the number of eigenvalues of the stability matrix that cross the
imaginary axis (upper panels).

the imaginary axis (Re λ = 0) at the bifurcation. At a certain
value g > gp a pair of complex conjugate eigenvalues (λ,
λ∗) crosses the imaginary axis, and a (supercritical) Hopf
bifurcation takes place. The frequency of the oscillations that
appear immediately after the Hopf bifurcation is given by the
imaginary parts of the eigenvalue pair.

The position of the Hopf bifurcation and the oscillation
frequency depend on the absolute parameter values, not only
the ratios J/κ etc., and thus change under the s scaling that
leaves the fixed point pattern invariant. Figure 5 shows both
quantities as a function of the absolute parameter values. We
note the significant shift of the oscillation frequency relative to
the natural membrane frequency (ω = 1) that occurs for some
parameter combinations.

B. Finite amplitude ansatz

Close to the Hopf bifurcation, for small amplitudes, the
frequency of the self-sustained oscillations follow from the
local analysis of the equations of motion via the stability matrix
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FIG. 5. Left panel: Real part of the six eigenvalues of the stability
matrix across the pitchfork bifurcation, for �/κ = 0, J/κ = −1 as
in Fig. 2, and κ = 1. Small numbers indicate the multiplicity of the
eigenvalues. At g ≈ 1.79 the fixed point x1 loses stability through a
Hopf bifurcation. Right panel: Position of the Hopf bifurcation (gh)
and frequency of the small amplitude oscillations (ω) as a function
of the absolute value of κ , for �/κ = 0, −1, −3.
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just presented. We now develop an analytical description to
understand the properties of the self-sustained oscillations also
at finite amplitudes, away from the Hopf bifurcation.

The starting point is the ansatz

x(t) = xc + A cos(ωt + ϑ) (6)

for a simple periodic membrane oscillation at amplitude A. In
contrast to the ansatz for the cantilever-cavity system with one-
photon mode [10,11], where self-sustained oscillations occur
at the natural cantilever frequency, the oscillation frequency
ω has to be included as a parameter in our ansatz, because in
general ω �= 1 already in the vicinity of the Hopf bifurcation.
The phase angle ϑ is arbitrary and set to ϑ = 0.

With the periodic ansatz (6) for the membrane position also
the optical modes follow a periodic motion, but additional
sidebands at multiples of ω occur. From the equations of
motion (1c) and (1d) we obtain the Fourier series

aL(t) = e−i(A/ω) sin ωt

∞∑
n=−∞

an
Leinωt ,

aR(t) = e+i(A/ω) sin ωt

∞∑
n=−∞

an
Reinωt , (7)

where the Fourier coefficients fulfill

an
L = Ĵn

(
A
ω

) + J
∑

m�=0 Ĵn−m

(
2A

ω

)
am

R

� − xc − nω + iκ
, (8a)

an
R = Ĵn

( − A
ω

) + J
∑

m�=0 Ĵn−m

(−2A
ω

)
am

L

� + xc − nω + iκ
(8b)

(see Appendix C for the derivation). For J = 0 both equations
decouple and directly give the Fourier coefficients in terms of
the Bessel functions Ĵn(·), but for J �= 0 a coupled system of
linear equations has to be solved. For small |J | this can be
done iteratively.

To determine the parameters xc, A, ω in the ansatz we have
to insert Eqs. (6) and (7) into the first two equations of motion
(1a) and (1b), which gives the conditions

xc = −g
∑
m

∣∣am
L

∣∣2 − ∣∣am
R

∣∣2
, (9a)

�ωA = −2g Im
∑
m

am
L

∗
am−1

L − am
R

∗
am−1

R , (9b)

A(1 − ω2) = −2g Re
∑
m

am
L

∗
am−1

L − am
R

∗
am−1

R . (9c)

The first condition follows from comparison of the Fourier
mode n = 0 on both sides of the equations; the other
two conditions follow for the Fourier modes n = ±1. The
contribution of the higher Fourier modes to the membrane
motion is negligible within the limits of validity of the ansatz,
and they do not give additional conditions.

For an intuitive physical interpretation of the three con-
ditions (9) we note that Eqs. (1a) and (1b) are equations of
motion of a driven harmonic oscillator, where the driving
force is the radiation pressure (∝ g). In this picture, Eq. (9a)
is a condition on the vanishing of the net force acting on the
oscillator over one oscillation period, which can be written

FIG. 6. Power balance P ∼ Prad − Pfric as a function of the
oscillation amplitude A and �/κ (g/κ3 = 1) or g/κ3 (�/κ = 1.4),
respectively, for J/κ = 0 (upper plots) and J/κ = −0.5 (lower
plots) with κ = 1. Stable periodic orbits obtained from the numerical
solution of Eq. (1) are included as blue dots.

as 0 = ∫ t+2π/ω

t
ṗ(t ′)dt ′. Condition (9b) is a condition on

the vanishing of the net change of the oscillator energy
E = (x2 + p2)/2 over one oscillation period, which can be
written as 0 = δE = ∫ t+2π/ω

t
x(t ′)ẋ(t ′) + p(t ′)ṗ(t ′)dt ′. This

allows us to interpret Eq. (9b) as the power balance

P = Prad − Pfric (10)

between the energy gain from the radiation pressure acting
on the membrane Prad = −gωA Im

∑
m am

L
∗am−1

L − am
R

∗am−1
R

and the average energy loss due to friction Pfric = �ω2A2/2.
These first two conditions are equivalent to those introduced
in Ref. [10] for the optomechanical system with one photon
mode.

The third new condition (9c) can be interpreted as a
condition on the net phase shift per oscillation period, i.e.,
as the condition that ϑ is constant in Eq. (6). It can be
written as 0 = ∫ t+2π/ω

t
[x(t ′) − xc]ṗ(t ′) + ẋ(t ′)p(t ′)dt ′. This

condition allows us to determine the oscillation frequency ω

in the ansatz. It would be missing if we considered a simpler
ansatz with fixed ω = 1.

The power balance P is plotted in Fig. 6. For these plots,
the oscillation shift xc and frequency ω have been determined
from the conditions (9a) and (9c), and then the power balance
P is computed as a function of the remaining free parameter
in the ansatz, the oscillation amplitude A. Periodic solutions
exist if condition (9b) is fulfilled, i.e., for P = 0. Stable orbits
exist if the frictional losses increase with the amplitude, i.e.,
for dP/dA < 0.
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FIG. 7. Oscillation frequency ω calculated from Eqs. (9) as a
function of the oscillation amplitude A for g/κ3 = 1 (top/bottom left),
�/κ = 0.5 (top right) and �/κ = 1.4 (bottom right) with κ = 1,
corresponding to the previous figure (upper plots: J/κ = 0, lower
plots: J/κ = −0.5).

C. Multistability

For each set of system parameters, i.e., moving parallel
to the vertical axis in Fig. 6, multiple solutions with P = 0
can be found from the ansatz. Among these, the solutions
with dP/dA < 0 correspond to stable orbits obtained from
numerical solution of the equations of motion (1) (blue dots in
Fig. 6). Our ansatz thus correctly predicts the the coexistence of
multiple stable periodic orbits at different amplitudes, i.e., the
multistability of self-sustained oscillations in the membrane-
in-the-middle setup.

D. Frequency renormalization

For most parameter combinations the oscillation frequency
is shifted significantly relative to the natural membrane
frequency (see Fig. 7), as we noted previously during the
analysis of the Hopf bifurcations. Allowing for ω �= 1 is crucial
to obtain the correct solutions from the ansatz, while a simpler
ansatz with fixed ω = 1 would fail (see Fig. 8). Since the
oscillation frequency ω appears in Eq. (7) for the optical modes
it can be observed directly in the optical spectrum (see Fig. 8),
which allows for an experimental measurement.

V. ROUTE TO CHAOS

Starting from the self-sustained oscillations the entire route
to chaos in optomechanical systems [13] can be observed also
for the membrane-in-the-middle setup. Figure 9 shows the
Feigenbaum cascade of period doubling bifurcations that lead
to chaos, starting from the nontrivial fixed point x1 after the
supercritical pitchfork bifurcation (cf. Fig. 2). The sequence
of period doubling bifurcations can be observed through the
appearance of additional sidebands in the optical spectrum
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FIG. 8. Left panel: Maximal and minimal oscillation amplitude
x = xc ± A obtained with the ansatz (6) from Eqs. (9) (dashed
red curve) in comparison to values obtained from direct solution
of the equations of motion (1) (solid black curve), for J/κ = 0,
�/κ = −0.5, and κ = 1. The upper panel shows the deviation of the
oscillation frequency from the bare membrane frequency (ω �= 1).
Also included are the wrong results obtained with a simplified ansatz
with fixed ω = 1 (dot-dashed blue curves). Right panel: Cantilever
position x(t) (bottom) and the optical spectrum of the left photon
mode (top) for g = 1.79, corresponding to the solution in the left
panels (circles).

(see upper panels in Fig. 9). Intricate patterns of intertwined
regular and chaotic motion replace the fixed point patterns at a
larger scale, as shown in Fig. 10 for the supercritical pitchfork
bifurcation and the boomerang pattern. It will probably be
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FIG. 9. Feigenbaum diagram starting at the upper fixed point after
the supercritical pitchfork bifurcation for �/κ = 0, J/κ = −0.5, and
κ = 1. Proceeding from fixed points (regime a) via simple oscillations
(regime b) and period doublings (regime c) finally results in chaos.
The different dynamical regimes can be distinguished in the optical
spectrum (upper panels, for the left cavity mode).
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hard to resolve details of these features in the experiment, but
it should be possible to measure the position of the first few
bifurcations accurately.

VI. CONCLUSIONS

A membrane inside a cavity with reflection symmetry
shows a variety of fixed-point bifurcations related to symmetry
breaking. In addition to symmetry breaking, self-sustained
oscillations appear for sufficient laser power. We here analyze
the Hopf bifurcations that lead to their existence and describe
their properties with a physically motivated ansatz for finite
amplitude oscillations. The ansatz extends the results obtained
for the cantilever-cavity system with one optical mode [10,11]
to the situation of two coupled optical modes and to oscillations
with variable frequency. The ansatz equations allow for
an intuitive interpretation in physical terms, and especially
the power balance proves useful for the prediction of the
oscillation amplitudes and frequencies.

In contrast to the cantilever-cavity system the frequency of
the self-sustained oscillations observed here differs from the
natural mechanical (i.e., membrane) frequency. An interesting
promise for future experiments is the indirect measurement of
mechanical system parameters, e.g., the membrane stiffness,
from the sidebands in the optical spectrum whose position is
determined by the frequency shift. However, a major challenge
for the experimental realization of the situation considered
in this paper is to achieve the regime of high membrane
reflectivity, i.e., small J .

In the present paper we focus specifically on the classical
dynamics resulting from symmetry-breaking bifurcations.
Certainly, the results reported here are only part of the
broader picture of the dynamics of the membrane-in-the-
middle system. The principal theoretical contribution of this
work, our ansatz for the self-sustained oscillations, can be
adapted to larger values of J , where the full dispersion of
the cavity modes has to be taken into account, and also to
situations without symmetry breaking, where the membrane is
not placed in the cavity center. Based on a modified ansatz the
present analysis extends to these scenarios, where dynamical
patterns similar to those discussed here can be observed and
which may be more easily realized in the experiment. These
extensions should be addressed in a future study. A more
speculative line of thought is to ask for the influence of

quantum effects, such as the breaking of symmetry due to
quantum fluctuations and noise, and the ensuing modifications
of the classical bifurcations.
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APPENDIX A: DERIVATION OF THE DIMENSIONLESS
EQUATIONS OF MOTION

We here summarize the relation between the standard
equations of motion for the membrane-in-the-middle setup
(cf. Fig. 1) given, e.g., in Ref. [26], and our dimensionless
Eqs. (1). Note that we require only the classical equations of
motion. The corresponding Hamiltonian can be constructed
according to, e.g., Refs. [29,30].

The equations of motion for the photon amplitudes in the
left (al) and right (ar ) half of the cavity, in a reference frame
rotating with the laser frequency, have the form

ȧL = [i� − iGx − κ]aL − iJ aR − iα, (A1a)

ȧR = [i� + iGx − κ]aR − iJ aL − σ iα, (A1b)

where � = �las − �cav is the detuning between the laser
frequency �las and the cavity frequency �cav = n(2πc)/(L/2)
(for the nth optical mode), and κ the cavity decay rate. In
the units chosen here, |aL/R|2 is the number of photons,
and ��cav|aL/R|2 is the energy per optical mode. G =
−∂�cav/∂x = �cav/(L/2) gives the change of the optical
frequency with membrane position x in the linear regime of
small x, which also determines the radiation pressure.

The parameter J , the membrane transmissivity, can be
determined from comparison of the position of the optical
resonances at ±√

J 2 + G2x2 (for κ = 0) to the quadratic
dispersion near x = 0 obtained from Maxwell’s equations
[26]. Note that this treatment is valid only in the limit of
small J .

The parameter α is related to the laser input power P

transmitted into the cavity. Especially at resonance we have
|α| = (κP/(2��cav))1/2, such that the energy per optical mode
is ��cav|α/κ|2 = P/(2κ), in accordance with the choice of κ

as the amplitude decay rate. The phase difference ϕ between
the laser in each half of the cavity is included through the
factor σ = eiϕ . In the present symmetric setup we consider
only phase differences ϕ = {0,π}, such that σ = ±1.

The equation of motion for the membrane position (x) has
the form

ẍ(t) = −�2x(t) − �ẋ(t) − �(G/m)(|aL|2 − |aR|2), (A2)

with the membrane frequency �, mass m, mechanical damping
�, and the radiation pressure ∝ G.

To obtain the dimensionless Eqs. (1), we now set x̄ =
(G/�)x, p̄ = (G/�2)ẋ, āL = (�/α)aL, āR = σ (�/α)aR,
measure time as t̄ = �t , and define the dimensionless pa-
rameters �̄ = �/�, κ̄ = κ/�, J̄ = σJ/�, �̄ = �/�, ḡ =
2�cavκP/(m�5L2). The relation between the dimensionless
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model parameters and the physical setup parameters is sum-
marized after Eq. (1). Note that � cancels in these equations, as
it must in the classical case. To simplify notation, the overline
¯ annotation is omitted in the main text.

APPENDIX B: FIXED POINT STABILITY

For the linear stability analysis we rewrite the equations of
motion (1) in terms of the quadratures xL/R = (1/2)(aL/R +
a∗

L/R), pL/R = (i/2)(a∗
L/R − aL/R) (defined without the usual

factor 1/
√

2) instead of the complex variables aL/R . We then
get the equations of motion

ẋ = p, (B1a)

ṗ = −x − �p − g
(
x2

L + p2
L − x2

R − p2
R

)
, (B1b)

ẋL = −(� − x)pL − κxL + JpR, (B1c)

ṗL = (� − x)xL − κpL − JxR − 1, (B1d)

ẋR = −(� + x)pR − κxR + JpL, (B1e)

ṗR = (� + x)xR − κpR − JxL − 1, (B1f)

for six real variables. The stability analysis of the fixed points
requires the Jacobi matrix of the right-hand side of these
equations, which is given by⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 −� −2gxL −2gpL +2gxR +2gpR

pL 0 −κ −� + x 0 J

−xL 0 � − x −κ −J 0
−pR 0 0 J −κ −� − x

xR 0 −J 0 � + x −κ

⎞
⎟⎟⎟⎟⎟⎟⎠

(B2)

with the respective fixed point values inserted. For the
quadratures, they are

xL/R = (� ± x + J )(−�2 + κ2 + x2 + J 2) − 2�κ2

(−�2 + κ2 + x2 + J 2)2 + 4�2κ2
,

pL/R = κ(−�2 + κ2 + x2 + J 2) + 2�κ(� ± x + J )

(−�2 + κ2 + x2 + J 2)2 + 4�2κ2
, (B3)

with the plus (or minus) sign for xL,pL (or xR,pR).

APPENDIX C: FOURIER SERIES SOLUTION FOR
THE FINITE AMPLITUDE ANSATZ

To solve the vector-valued linear differential equation

ẋ(t) = (A + f (t)B)x(t) + c (C1)

we write the solutions as

x(t) = eg(t)B y(t), (C2)

where ġ(t) = f (t). The vector y(t) has to fulfill the differential
equation

ẏ(t) = e−g(t)B A eg(t)B y(t) + e−g(t)Bc. (C3)

Unless the matrices A and B commute, this is a differential
equation with time-dependent parameters.

To proceed with the solution, assume that f (t) is a periodic
function without a constant term such that also g(t) is periodic,
say, g(t + 2π/ω) = g(t). Then, the Fourier expansions

e−g(t)B A eg(t)B =
∑

n

einωtXn,

e−g(t)Bc =
∑

n

einωtcn (C4)

give the equations

yn = 1

iωn − X0

⎛
⎝cn +

∑
m�=0

Xmyn−m

⎞
⎠ (C5)

for the Fourier coefficients in the expansion

y(t) =
∑

n

einωtyn. (C6)

Applied to the equations of motion (1c) and (1d), with

A =
(

i(� − xc) − κ −iJ

−iJ i(� + xc) − κ

)
, (C7)

B =
(−i 0

0 i

)
, c =

(−i

−i

)
, (C8)

and f (t) = A cos ωt according to the ansatz (6), we have

X0 =
(

i(� − xc) − κ 0
0 i(� + xc) − κ

)
, (C9)

Xm = −iJ

(
0 Ĵn

(
2A

ω

)
Ĵn

(−2A
ω

)
0

)
, (C10)

cn = −i

(
Ĵn

(
A
ω

)
Ĵn

(−A
ω

)
)

, (C11)

with the help of the Jacobi-Anger expansion

eiz sin ωt =
∞∑

n=−∞
Ĵn(z)einωt (C12)

for the Bessel functions Ĵn(·), and thus obtain the Fourier
coefficients in Eq. (8).

[1] T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[2] F. Marquardt and S. M. Girvin, Physics 2, 40 (2009).
[3] P. Meystre, Ann. Phys. (Berlin) 525, 215 (2013).
[4] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[5] G. Heinrich, J. G. E. Harris, and F. Marquardt, Phys. Rev. A 81,

011801 (2010).

[6] H. Wu, G. Heinrich, and F. Marquardt, New J. Phys. 15, 123022
(2013).

[7] H. Rokhsari, T. H. Kippenberg, T. Carmon, and K. J. Vahala,
Opt. Express 13, 5293 (2005).

[8] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer,
and K. J. Vahala, Phys. Rev. Lett. 95, 033901
(2005).

063860-7

Article II

39



C. WURL, A. ALVERMANN, AND H. FEHSKE PHYSICAL REVIEW A 94, 063860 (2016)

[9] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J.
Vahala, Phys. Rev. Lett. 94, 223902 (2005).

[10] F. Marquardt, J. G. E. Harris, and S. M. Girvin, Phys. Rev. Lett.
96, 103901 (2006).

[11] M. Ludwig, B. Kubala, and F. Marquardt, New J. Phys. 10,
095013 (2008).

[12] T. Carmon, M. C. Cross, and K. J. Vahala, Phys. Rev. Lett. 98,
167203 (2007).

[13] L. Bakemeier, A. Alvermann, and H. Fehske, Phys. Rev. Lett.
114, 013601 (2015).
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Light-sound interconversion in 
optomechanical Dirac materials
Christian Wurl & Holger Fehske

Analyzing the scattering and conversion process between photons and phonons coupled via radiation 
pressure in a circular quantum dot on a honeycomb array of optomechanical cells, we demonstrate 
the emergence of optomechanical Dirac physics. Specifically we prove the formation of polaritonic 
quasi-bound states inside the dot, and angle-dependent Klein tunneling of light and emission of sound, 
depending on the energy of the incident photon, the photon-phonon interaction strength, and the 
radius of the dot. We furthermore demonstrate that forward scattering of light or sound can almost 
switched off by an optically tuned Fano resonance; thereby the system may act as an optomechanical 
translator in a future photon-phonon based circuitry.

The rapidly emerging field of optomechanics, describing the mechanical effects of light, opens new prospects for 
exploring hybrid quantum-classical systems which raise fundamental questions concerning the interaction and 
entanglement between microscopic and macroscopic objects1–3, classical-optical communication in the course 
of quantum information processing and storage4–6, cooling of nanomechanical oscillators into their quantum 
ground state7–9, or the development of nonclassical correlations10, nonlinear dynamics, dynamical multistabilities 
and chaos11–15; for a recent review see ref. 16.

Going beyond the prototyp cavity-optomechanical system consisting of a Fabry-Perot cavity with a movable 
end mirror, the currently most promising platforms are optomechanical crystals or arrays17–22. These systems 
are engineered to co-localize and couple high-frequency (200-THz) photons and low-frequency (2-GHz) pho-
nons. The simultaneous confinement of optical and mechanical modes in a periodic structure greatly enhances 
the light-matter interaction. Then the next logical step would be the creation of ‘optomechanical metamaterials’ 
with an in situ tunable band structure, which–if adequately designed–should allow to mimic classical dynamical 
gauge fields23, Dirac physics24, optomechanical magnetic fields25, or topological phases of light and sound26, just 
as optical lattices filled with ultracold quantum gases27 and topological photonic crystals28. Because of the ease 
of optical excitation, photon-phonon interaction control (i.e., functionalization) and readout, artificial optom-
echanical structures should be promising building blocks of hybrid photon-phonon signal processing network 
architectures. Thereby the complimentary nature of photons and phonons regarding their interaction with the 
environment and their ability to transmit information over some distance will be of particular interest5.

Here, we study a basic transport phenomenon in planar optomechanical metamaterials, the phonon-affected 
photon transmission (reflection) through (by) a circular barrier, acting as a ‘qantum dot’, created optically on a 
honeycomb lattice. Figure 1 shows the ‘optomechanical graphene’ setup under consideration. Solving the scat-
tering problem for a plane photon wave injected by a probe laser, we discuss Dirac polariton formation, possible 
Klein tunneling and photon-phonon conversion triggered by the (barrier-laser) tunable interaction between the 
co-localized optical and mechanical modes in the quantum dot region. The scattering of a perpendicularly inci-
dent (plane) photon wave by a planar barrier has been investigated with a focus on Klein-tunneling24. Hence, to 
some degree, the present work can be understood as an extension of this study to the more complex quantum 
dot-array geometry, yielding a much richer angle-dependent scattering and photon-phonon conversion.

Theoretical modelling
To formulate the scattering problem we follow the standard approach of (i) linearizing the dynamics around 
the steady-state solution within the rotating-wave approximation in the red-detuned (Δ = ωL − ωcav<0) 
moderate-driving regime16 and (ii) adapting the single-valley Dirac-Hamiltonian within the continuum approxi-
mation, valid for sufficiently low energies and barrier potentials that are smooth on the scale of the lattice constant 
a but sharp on the scale of the de Broglie wavelength29. Furthermore, focusing on the scattering by the barrier 
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exclusively, we assume Δ = −Ω, and obtain (after the appropriate rescaling H → H/ħ − Ω) the optomechanical 
Dirac-Hamiltomian24,

δ τ σ τ=


 +



 ⋅ − Θ −H v v g R rk1

2
( ) ,

(1)z x

as a starting point (ħ = 1). Here, = +v v v( )o m
1
2

, δv = vo − vm, with vo/m as the velocities of the optical/mechanical 
modes, τ and σ are vectors of Pauli matrices, k(r) gives the wavevector (position vector) of the Dirac wave, R is 
the quantum-dot radius, and g parametrizes the photon-phonon coupling strength, cf. Fig. 1. The low-energy 
dispersion follows as

σ στ
δ

= + +τ σE v g vk k k( )
4

,
(2),

2
2

2

where τ = ±1 denote the two-fold degenerate, non-linear polariton branches with sublattice pseudospin σ = ±1. 
The eigenfunctions of (1) take the form ψ σ ε= +τ σ τ σ τ σg o mk, ( ), , ,  with normalization 
 ε= +τ σ τ σ

−g( ),
2

,
2 1/2, ετ,σ = voσk − Eτ,σ, and the bare (optical/mechanical) eigenstates o/m of τz. For g = 0, the 

bandstructure simplifies to two independent photonic and phononic Dirac cones, and the scattering problem can 
be solved as for a graphene quantum dot29–31.

We expand the incident photonic wave (in x direction), the transmitted wave inside the dot (ψ ψ ψ= ++ −
t t t) 

and the reflected wave ψ ψ ψ= +( )ref
o
ref

m
ref  in polar coordinates (l–quantum number of angular momentum):

∑ψ φ= =
=−∞

∞
+( ) o i k r o1

2
e 1

1 ( ) ,
(3)o

in ik x

l

l
l o

1 (1)o

Figure 1.  Setup considered in this work. Left part: Optomechanical graphene. Honeycomb array of 
optomechanical cells driven by a laser with frequency ωL. The co-localized cavity photon (ωcav) and phonon (Ω) 
modes interact (linearly) via radiation pressure tunable by the laser power16. Upper right part: Scattering 
geometry. An incident optical wave (ψo

in, energy E, wavevector k eo x) hits the quantum dot (radius R, photon-
phonon coupling g); as a result transmitted polaritonic (ψ ψ ψ= ++ −

t t t) and reflected (ψ ψ ψ= +ref
o
ref

m
ref ) 

waves appear (with wavevectors q± and ko/m), which–due to the symmetry of the problem–carry an angular 
momentum, i.e., their wavevectors have components in any planar direction29, 30. Lower right part: Schematic 
bandstructure. Without photon-phonon coupling the photon (orange) and phonon (black) Dirac cones 
(obtained in low-energy approximation) simply intersect. In the quantum dot region with g > 0, weakly non-
linear (photon-phonon) polariton bands (green) emerge. Here, solid (dashed) lines correspond to pseudospin 
σ = 1 (−1). Connecting lines between q+ and q− (ko and km) indicate that the corresponding states are 
superimposed. The dashed (solid) blue line gives the energy E (position-dependent profile of g). Model 
parameters: The continuum approximation is justified if k a1/  and R a. Moreover, we have to avoid any 
‘phonon lasing’ instabilities, i.e., the photon transfer element 2vo/3a has to be smaller than Ω/324. If so, the 
effects discussed in this paper should be experimentally accessible for Ω g/ 1. With a lattice constant 
a ~ 50 μm19, a photon [phonon] transfer element ~Ω/6 [Ω/60], and a membrane eigenfrequency 
Ω = −Δ ~ 10 MHz24, the photons [phonons] group velocity vo [vm] is about 103 m/s [102 m/s], and the 
optomechanical coupling g should not exceed 0.1 MHz. Then, R ~ 100a.
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For E > 0, we can take σ = +1 and distinguish the branches of the incident and reflected waves by τ = ±1. For the 
transmitted wave, where ε± = voσ±q± − E, E g  is possible and we denote the two polaritonic branches by + 
and −. Here, for E > g (E < g) σ± = 1 (τ± = −1), and states with different τ± = ±1 (σ± = ±1) are superimposed, 
see Fig. 1. In eqs (3–5) the eigenfunctions of the Dirac-Weyl Hamiltonian σ · k are
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(1)  = H[ ]l l

(3) (1)  are the Bessel [Hankel] function of the first kind (in the following we omit the upper 
index (1) of the Hankel functions). The continuity conditions at r = R give the reflection ro/m,l and transmission 
coefficients t±,l:
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In eq. (7), Zo,l = detA − igY, and
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Here, detA is obtained from eq. (10) when substituting Yl(+1) by Hl(+1) and multiplying by g. Note that the scatter-
ing coefficients are invariant under the transformation (E, g, R−1) → (γE, γg, γR−1) with γ ∈ . Furthermore, the 
reflection coefficients have upper bounds: |ro,l| ≤ 1 and ≤r v v/ /2m l o m, .

From the current density of the reflected waves in the far field,
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φ φ
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we obtain the scattering efficiency, that is, the scattering cross section divided by the geometric cross section, as

∑= .
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We note that in eqs (11), (12), and hereafter, l ≥ 0. The density ρ = ψ†ψ and the current j = ψ†sψ in- and outside 
the quantum dot region further specify the scattering.

Numerical results and discussion
Treating the scattering by the circular quantum dot region numerically, we adopt vm = 0.1vo and employ units 
such that vo = 1. Moreover, for the experimental reliable parameters quoted in the caption of Fig. 1, fixing g, 100a 
is a natural unit for the quantum dot radius R, where the number of cells (defects) enclosed in the quantum dot 
region is about 104R2. Due to the scale invariance of the scattering coefficients, in what follows all physical quan-
tities will be discussed in dependence on E/g and Rg.

Figure 2 displays the complex pattern of both the photonic Qo and phononic Qm contributions to the scattering 
efficiency in the E/g–Rg plane. When the photon hits the quantum dot it stimulates mechanical vibrations (pho-
nons) because of the optomechanical interaction. Then both scattered waves are inherently correlated. For ener-
gies of incident photon larger than the optomechanical coupling, Qo (Qm) reveals a very broad (narrow) ripple 
structure with maxima of high (rather low) intensity. Above ~E g/ 2 the phonon is hardly scattered, while the 
photon is still heavily influenced by the dot. This is because the phonon wave numbers take large values very 
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quickly, compared to those of the photon, simply because vm is smaller than vo by an order of magnitude. If the 
dispersion of the phonon is unaffected by g, the wave numbers inside and outside are almost identical and scatter-
ing disappears. The same, in principle, happens to the photon, but at much larger energies. In this limit, photon 
scattering resembles the scattering of ultrarelativistic Dirac particles, which are massless outside the dot and carry 
an effective mass = −m g v v v2/ ( )o o m

3  inside the quantum dot region (here, vo plays the role of vacuum ligth 
speed).

The situation becomes much more involved when the energy of the incident optical wave is smaller than the 
optomechanical coupling, see the right panels in Fig. 2 for E/g < 1. Let us first consider the case where the 
size-parameter ER is very small, i.e., the wavelengths 2π/ko/m are large compared to the quantum dot radius R. In 
Fig. 2 this corresponds to the region  .E g/ 0 01. Here, sharp scattering resonances occur at a sequence of equi-
distant radii. The left panel in Fig. 3 gives a closer look at this limiting behavior and demonstrates that in each case 
two resonances occur, in fact, symmetrically around a point where the phonon scattering vanishes while the 
photon scattering is small but finite (see inset). These resonances, numbered by ∈n , belong to the lowest pho-
tonic/phononic partial waves with l = 0. Expanding the phononic reflection coefficients (8) with respect to the 
small size-parameter ER, the phonon-scattering depletion points result as =Rg j v vl n o m, , where jl,n are the n-th 
zero of the Bessel function Jl. We note that here the phonon resonance peaks are larger than the photonic ones. Of 
course, such resonances also occur for the next higher partial wave with l = 1 at =Rg j v vn o m1, , but are not visible 
in Fig. 3 left on account of their tiny linewidth/intensity.

In case that the size-parameter ER ~ 1, the wavelengths 2π/ko/m are in the order of the dot radius R. In this 
regime, only the lowest partial waves will be excited to any appreciable extent, and the photonic [phononic] reso-
nances appear as bright spots [splitted stripes] at specific ‘points’ [lines] in the E/g-Rg plane, see Fig. 2. The linew-
idths get smaller for larger l, once one of the reflection coefficients ro,l (rm,l) reaches unity (their upper bound). The 
photonic resonances with even (odd) l are approximatively located at =Rg j v vn o m1(0), , where the phononic scat-
tering is perfectly suppressed. This is illustrated by the middle panel in Fig. 3: At .Rg 1 7 [case (i)], the l = 1 
photon mode is resonant and the scattering becomes purely photonic (i.e., the contribution of all phonon modes 
goes to zero). The phonon resonances of the l = 1 mode appear symmetrically about this photon resonance (at 
these points, on the other hand, the photonic contribution is significantly weakened). A similar scenario arises for 
the resonance of the l = 0 modes at .Rg 1 24 and .Rg 2 24. Vice versa, at certain radii the scattering becomes 
purely phononic, see, e.g., case (ii) where Rg = 1.566. This allows one to switch from entirely photon to phonon 
scattering just by varying the dot radius.

Figure 2.  Photonic/phononic scattering efficiency Qo/m in the E/g-Rg plane.

Figure 3.  Left: scattering efficiency for photons (orange) and phonons (black) in dependence on Rg. Here, 
E/g = 0.001, i.e., the size-parameter ER 1. For n = 2, Qm vanishes at .Rg 1 75, whereas Qo stays finite (see 
inset). Middle: photonic (orange) and phononic (black) reflection coefficients with l = 0 (dashed) and l = 1 
(solid) in dependence on Rg, where E/g = 0.158, i.e., the size-parameter ER 1. For better comparison, the 
phononic coefficients were divided by their upper bound vo/4vm. Rigth: photonic (orange) and phononic (black) 
scattering efficiency at E/g = 0.5; now ER 1. The cases Rg = 1.671, Rg = 1.566 and Rg = 6.78 are marked by (i), 
(ii), and (iii), respectively.
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If the size-parameter increases further, the situation changes again. Now even higher partial waves will be 
excited. In this regime, the photon scattering efficiency is always a larger than the phononic one. Approximating 
the resonance points by the zeros of the Bessel function is no longer possible; as a result both Qo, Qm > 0, cf. Fig. 3 
right. In the extreme limit ER 1, however, phonon scattering is negligibly small and does not have to be 
considered.

Having discussed the global scattering efficiency of the quantum dot, let us now analyze the spatial resolution 
of the wave transmisson and reflection. We start by investigating the scattering characteristics, specified by the 
probability density ρ = ψ†ψ and current density ψ ψ= ˆ†j j , in the near field, see Fig. 4. In the quantum dot region 
polaritons (mixed photon-phonon states) are formed. For very small size-parameters ER 1 and energies 
E/g < 1, the polariton density inside the dot becomes

Figure 4.  Scattering characteristics in the near field. Shown are the probability density ρ = ψ†ψ (left) and the 
current density σψ ψ= †j  for l = 0 (right; the circle marks the quantum dot), where ψ = ψt inside and 
ψ = ψin + ψref outside the dot. Results correspond to the resonances n = 1 and n = 2 given by Fig. 3 (left) and we 
have chosen R = 0.754 for n = 1 and R = 1.732 for n = 2 (with g = 1), where Qo = Qm (crossing of black and 
orange lines in the inset of the left panel in Fig. 3).

Figure 5.  Photonic (jo) and phononic (jm) angle-resolved far-field current [top] and first two photonic (orange) 
and phononic (black) reflection coefficients with l = 0 (dashed) and l = 1 (solid) [bottom] in dependence of E/g 
for the cases (i) and (ii) in the middle panel of Fig. 3. Again the phononic reflection coefficients |rm|2 are divided 
by vo/4vm. Arrows mark the energy E/g = 0.158 used in the middle panel of Fig. 3.
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Obviously, ρ is radially symmetric (we have used that → =±q q g v v/ o m  for E → 0). For resonant scattering 
the polariton density increases dramatically inside the dot, indicating a spatial and temporal ‘trapping’ of 
photon-phonon bound state, cf. Fig. 4, left panels. The resonance of the lowest partial wave l = 0 confines the 
‘quasiparticle’ about r = 0, while resonances with higher l > 0 (not shown) give rise to ring-like structures close to 
the dot boundary related to ‘whispering gallery modes’.

The current density inside the dot is given by
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The panels right in Fig. 4 show that the incident wave is fed into vortices which trap the polariton. For l = 0, 
two vortices arise for the n = 1 mode. Further vortices occur on the symmetry axis when n increases. In general, 
the vortex pattern of the l-th mode is dominated by 2(2l + 1) vortices which give rise to 2l + 1 preferred scattering 
directions in the far field for n = 1 (see below)29. We note that a very similar vortex pattern (scattering charac-
teristics) arises for moderate size-parameters ER ~ 1, e.g., for the cases (i) and (ii) in the middle panel of Fig. 3.

The current density of the reflected waves in the far field given by eq. (11) exhibits the already mentioned 
cosinusoidal angle distribution with maxima at φ = l′π/(2l + 1) where l′ ∈ {0, …, ± l}. Consequently, if the l = 0 
mode is resonant, only forward scattering takes place, whereas resonaces belonging to higher modes scatter the 
light respectively sound into different directions. This is illustrated by Fig. 5 (upper panels), for the far-field cur-
rents jo/m of a specific quantum dot system that preferably suppresses either the phonon [case(i)] or the photon 
[case(ii)] scattering [cf. Fig. 3, middle]. Accordingly, when the photonic partial wave with l = 1 becomes resonant, 
we observe three preferred scattering directions with equal intensity (left upper panel). Though a similar distribu-
tion results for the phononic resonance, now the forward scattering is somewhat enhanced as the lower l = 0 
mode substantially contributes (right upper panel). Note that both waves will never be scattered in the angle range 
φ π±  due to absence of backscattering. Most interestingly, the constructive and destructive interference 
between a resonant l mode and the off-resonant l = 0 mode can lead to a Fano resonance32 that for its part may 
cause a depletion of Klein tunneling, i.e., a suppression of forward scattering29. In this way, the interference 
between the first two photonic and phononic partial waves depicted in the lower panels of Fig. 5 give rise to Fano 
resonances, which are reflected in the almost vanishing currents jo/m at certain ratios E/g(φ), even for φ = 0 (see 
upper panels). Varying the energy of the incident wave therefore allows to control the scattering into pure photon 
or phonon waves, having preferred directions of propagation, with or without forward scattering.

For larger size-parameters, ER > 1, where many partial waves may become resonant [e.g., case (iii) in Fig. 3 
(right)], a rather complex structure of the far-field currents evolves. The two left panels in Fig. 6 display the ratio 
jo/jm in the Rg–φ plane and gives a polar plot of the light/sound emission. The figure corroborates the use of the 
considered setup as an optomechanical switch or light-sound translator. Finally, when ER 1 and the extent of 
the quantum dot is much greater than the wavelengths, the scattering shows features known from ray optics [cf. 
Fig. 6, middle right]. Such size parameters can only be realized by very large R, i.e., by a large number of cells (of 
the order of 108) enclosed in the quantum dot region. The excitation of a large number of partial waves and their 
interference results in a caustics-like pattern of the transmitted wave inside the quantum dot and, most strikingly, 
the circular optomechanical barrier acts as a lens, focusing the light beam in forward direction, whereas the 

Figure 6.  Left: angle-resolved ratio of photonic (jo) and phononic (jm) currents in the far field depending on Rg. 
Middle left: polar plot of the photonic (orange) and phononic (black) far-field currents (arbitrary units) for case 
(iii) of Fig. 3 [right panel] (marked by the vertical blue dashed line in the left panel). The phononic current was 
multiplied by a factor of four. Middle right: probability density ρ inside and outside the quantum dot. Right: 
photonic (orange) and phononic (black) currents in the far-field for R = 150 (g = 1), E = 0.5, i.e., the size-
parameter ER 1.
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sound propagation is depleted [cf. Fig. 6, right]. The far-field currents strongly oscillate when φ becomes finite, 
whereby the phonon contribution is on average much smaller than those of the photon.

To sum up, we have demonstrated Dirac physics in an optomechanical setting. Solving–within Dirac-Weyl 
theory–the problem of light scattering by circular barriers in artificial graphene composed of tunable optome-
chanical cells, we show that large quantum dots enable photon lensing, while small dots trigger the formation of 
polariton (photon-phonon) states which cause a spatial and temporal trapping of the incident wave in vortex-like 
structures, and a subsequent direction-dependent re-emittance of light and sound. In the latter case (quantum 
regime), the quantum dot can be used to entangle photons and phonons and convert light to sound waves and 
vice versa. Equally important, the forward scattering and Klein tunneling of photons could switched off for small 
dots by optically tuning a Fano resonance arising from the interference between resonant scattering and the 
background partition. In this way optomechanical cells might be utilized to transfer, store, translate and process 
information in (quantum) optical communications, or simply to realize a coherent interface between photons 
and phonons.
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Abstract. We study the interconversion between photons and phonons
coupled via radiation pressure in artificial Dirac materials realized by
a honeycomb array of optomechanical cells. In particular we analyze
the chiral tunneling of (photon-phonon) polaritons through an oscillat-
ing planar barrier. While a static barrier accommodates constructively
interfering optical or mechanical waves leading to photon or phonon
transmission, an oscillating barrier allows for inelastic scattering that
causes sideband excitations and interference effects which, in turn, may
suppress or revive the light-sound interconversion.

Introduction. In optomechanical graphene, that is, a honeycomb array of optome-
chanical cells driven by a laser with frequency ωl, co-localized cavity photon (eigenfre-
quency ωo) and phonon (eigenfrequency ωm) modes interact (linearly) via radiation
pressure. The latter is tunable by the laser power. Recently, the scattering and conver-
sion process between photons and phonons, triggered by static laser-induced planar [1]
and circular quantum barriers [2], has been worked out within an effective Dirac-Weyl
theory, and the emergence of optomechanical Dirac physics has been demonstrated.
Because of the chiral nature of the quasiparticles, having a Dirac-like bandstruc-
ture, the transport phenomena show similarities to those of low-energy electrons in
graphene, but are more subtle due the photon-phonon coupling in the barrier, lead-
ing to the formation of polariton (photon-phonon) states. Moreover, for perpendicular
incidence of the photon wave, Klein tunneling appears, that is, the unimpeded trans-
mission of the particle regardless of the height or width of the barrier. Interestingly,
in the limit of low photon energies or high coupling strengths, when the barrier acts
as a kind of Fabry Pérot interferometer, a perfect interconversion between photons
and phonons takes place, as a result of a constructive interference of standing optical
and mechanical waves respectively.

In this contribution, we extend these investigations by analyzing the passage of
Dirac-Weyl quasiparticles in optomechanical graphene through a harmonically oscil-
lating (driven) potential barrier, i.e., we consider the significant case where the energy
is not conserved. To this end, we solve the time-periodic scattering problem for a per-
pendicularly impinging plane photon wave of energy E (injected by a probe laser),
and discuss how a quantum barrier that oscillates in time with frequency Ω affects
the tunneling process. Since Klein tunneling persists for oscillating barriers due to the

a e-mail: wurl@physik.uni-greifswald.de
b e-mail: fehske@physik.uni-greifswald.de
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conservation of helicity, we expect that the transport through the barrier is mainly
determined by the conversion rate between photons and phonons.

Theoretical approach. For sufficiently low energies, if the barrier is smooth on the
lattice scale but sharp on the de Broglie wavelength, umklapp scattering is suppressed
and the continuum approximation applies. Then, the system under consideration can
be described by the optomechanical Dirac-Weyl Hamiltonian

H =

(
v +

1

2
δv τz

)
σ · k − g (x, t) τx , (1)

given in units of ~ after rescaling H → H − ~ωm [1,2]. Here, v = (vo + vm)/2,
δv = vo − vm, with vo,m as the Fermi velocities of the optical/mechanical modes, τ
and σ are Pauli matrices, k (r) gives the wavevector (position vector) of the Dirac
wave, and g (x, t) parametrizes the time-dependent photon-phonon coupling. Note
that the single-valley Dirac-Hamiltonian (1) is obtained within the rotating-wave
approximation, i.e., in a frame rotating with the laser frequency, in the red detuned
moderate-driving regime, ∆ = ωl − ωo = −ωm. In order to make the scattering
inelastic, we assume that the laser amplitude is modulated by a frequency much
smaller than the eigenfrequency of the laser and the mechanical mode, Ω � ωl, ωm

(otherwise the rotating-wave approximation is not granted). Furthermore, to stay
within the continuum approximation, Ω should be much smaller than the typical
mechanical hopping in the array, i.e. Ω � 2vm/3a with a as the lattice constant [1].
Then the coupling strength within the barrier of width w is given by

g (x, t) = [g0 + g1 cos (Ωt)] [Θ (x)−Θ (x− w)] , (2)

where g0,1 is assumed to be constant and g1 ≤ g0.
For the tunneling problem, we consider the incoming photon to be in a plane wave

state at energy E and use the time-independent eigensolutions of (1) for x < 0, ψin ∼
|o〉 exp(ikox − iEt), with ko,m = E/vo,m being the optical/mechanical wavenumber
and |o,m〉 the bare optical/mechanical eigenstate of τz. In case of perpendicular
photon incidence and a barrier potential that is translational invariant in y-direction,
the scattering problem becomes one-dimensional. Then, the helicity, σx · kx/|kx|, is a
conserved quantity with eigenvalue +1 (this quantum number is therefore omitted in
the following). For this reason no reflected waves appear and Klein-tunneling takes
place. As a result of the optomechanical coupling, behind the barrier x > w, the
transmitted wave consists of optical and mechanical modes ψt = ψt;o+ψt;m, ψt;o,m ∼∑

n t
o,m
n |o,m〉 exp(iko,mn x− iEnt). Here, energy states with En = E+nΩ and ko,mn =

En/vo,m, n ∈ Z, are superimposed, since the oscillating barrier can give (take) energy
to (away from) photons and phonons. The wave inside the barrier is ψb = ψb;++ψb;−,

ψb;± ∼ ∑
n,n′ b±n [co;±nn′ |o〉 + cm;±

nn′ |m〉]exp(iq±n x − iEn−n′t), with Fourier coefficients

co,m;±
nn′ and wavenumbers q±n obtained from Floquet theory [3,4]. It matches with the

incident and transmitted wavefunction at the boundaries, which defines an infinite
system of coupled linear equations for the scattering coefficients to,mn and b±n . From
its numerical solution we obtain the current density of the transmitted wave:

jt;o,m (x/vo,m − t) = vo,m
∑

n,n′

(to,mn′ )∗to,mn exp [i (n− n′)Ω (x/vo,m − t)] . (3)

Then the equation of continuity gives the time-averaged transmission probability

T
o/m

= (vo,m/vo)
∑

n |to,mn |2, with T
o

+ T
m

= 1 (no backscattering). Because there

are no phonon waves impinging on the barrier, the transmission probability Tm can
be understood as photon-phonon conversion probability.
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Results. In what follows, we adopt vm = 0.1vo and employ units such that
vo = 1. Moreover, since the scattering problem is invariant under the transforma-
tion [E, g0,1, Ω,w

−1]→ γ[E, g0,1, Ω,w
−1] with γ ∈ R, we use units such that Ω = 1.

For a static barrier, g1 = 0, we can analytically calculate the transmission proba-
bility of the mechanical mode,

Tm
st = [1 + (ko)2v2o (vo − vm)

2
/
(
4vmvog

2
0

)
]−1 sin2

(
(q+st − q−st)w/2

)
, (4)

with wavenumbers q±st obtained from the static energy dispersion [2]. Since T o
st =

1 − Tm
st , in Fig. 1 (upper panels) only Tm

st is plotted in the E/g0-wg0 plane. As a
result of the optomechanical coupling, the incoming photon can be converted into
phonons, i.e., Tm

st > 0. For energies larger than the barrier height (right panel), Tm
st

reveals a stripe structure with low intensity, where for E/g0 & 2 the photon-phonon
conversion is strongly suppressed since vm � vo [2]. For energies smaller than the
barrier height (left panel), the stripes in Tm

st are much more pronounced, especially
in the limit of small energies (high coupling strengths) E/g0 → 0. Then the two po-
laritonic waves inside the barrier have antiparallel wavenumbers ±g0/

√
vovm = ±qst

and interfere in such a way, that the wave function simplifies to ψb ∝ cos(qstx)g0 |o〉+
ivoqst sin(qstx) |m〉. In this way, in a semiclassical perspective, the barrier acts as a
kind of Fabry-Pérot interferometer accomodating standing optical and mechanical
waves respectively. If the optical (mechanical) wave interferes constructively with it-
self, the transmission becomes purely photonic (phononic), Tm

st = 0 (Tm
st = 1), where

the resonance condition is wg0 =
√
vovmnπ/2 ' 0.5n with n even (odd) natural

number.
An oscillating barrier may cause inelastic scattering by excitation of states with

energies shifted by multiples of the oscillation frequency, En = E+nΩ. In addition to

Fig. 1. Transmission probability of the phonon in the E/g0-wg0 plane for a static barrier
(g1 = 0; top panels) and for an oscillating barrier (g1 = 0.073Ω, g0 = 0.287Ω; Ω/g0 ≈ 3.48;
bottom panels). The transmission probability of the photon is T o

st = 1−Tm
st (T

o
= 1−Tm

).
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Fig. 2. (Color online) Floquet quasienergies ε± as a function of wavenumber q for the
parameter values of Fig. 1, lower panels. The quasienergies are defined in such a way that
they coincide with the energy dispersion of the static case for q → 0. Avoided crossings occur
between ε± and ε∓ ±Ω (further quasienergy bands are marked in grey).
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ε± as a function of q for the cases (i) and (ii) of Fig. 2. Drawn in are the energies of the central
band E0 and the first sideband E1 (red lines). Marked are wavenumbers q = q0,1, for which
ε±(q) = E0,1. For comparison the two polariton branches of the dispersion of the static case,
E∓(q) (solid) and E±(q) ∓ Ω (dashed), are shown (brown) with wavenumber qst. Avoided
crossings appear in the vicinity of points, where the two static polariton branches cross each
other. (b) Transmission probability for optical/mechanical central bands n = 0 (red/black)
and first excited optical sideband n = ±1 (orange) as a function of wg0 (here, |tmn |2 is multi-
plied by vm/vo). (c) Fourier spectrum of F [|tmn=0|2](q) [for comparison the Fourier spectrum
of Tm

st is included (brown line)]. (d) Time evolution of the optical/mechanical current density
jt;o,m (red/black) and the corresponding time-averaged current density (dashed) at x = w
for wg0 = 2.346 [crossing of red and orange lines (b)]. In all panels, g0 = 0.287Ω, g1 = 0.073Ω
(corresponding to E/g0 = 10−3 in Fig. 1).
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the central band, sidebands now yield a significant contribution to the transmission
of polaritons. The number of sidebands involved in the tunneling process is mainly
determined by the ratio g1/Ω. Even for weak couplings g1 (high oscillation frequencies
Ω), i.e., in the antiadiabatic limit g1/Ω � 1, the transmission pattern of Tm

st is
modified by a few sidebands only, see Fig. 1 (lower panels). At very low photon
energies, E/g0 � 1, for certain widths of the barrier the transmission becomes purely
photonic. By contrast, at photon energies close to resonance, E ∼ Ω (in Fig. 1 at
E/g0 ≈ 3.48), the transmission of phonons may be significantly increased.

To elucidate the underlying mechanism, Fig. 2 shows the quasienergies obtained
from Floquet theory as a function of q for the parameters used in Fig. 1. Due to the
optical and mechanical degrees of freedom, the quasienergies are two-fold degener-
ate. This leads to avoided crossings, appearing at energies E = 0 and E = ±Ω for
the considered value of g0, which are the reason for the drastic modification of the
transmission pattern that becomes visible in the lower panels of Fig. 1. The avoided
crossings are displayed in Fig. 3 (a) in more detail, together with the energy dispersion
for the static case. We observe that the oscillating barrier influences the scattering
process the greater the wavenumbers q0,1 deviate from the static wavenumbers qst.
The difference is largest in the vicinity of the avoided crossings. As a result, for an
incoming photon with energy E ' 0, the entire transmission by the optical and me-
chanical central bands is transferred to the first optical sidebands n = ±1 (periodically
in wg0); see Fig. 3 (b) and lower left panel in Fig. 1 at E/g0 = 10−3. Since the sit-
uation is symmetric for the given parameter values, the wavenumbers obtained from
the two quasienergies ε± have equal magnitudes but are antiparallel to each other, cf.
Fig. 3 (a). Consequently, the interference of the central band and the sideband leads
to standing optical and mechanical waves of different frequency. This becomes visible
in the Fourier transform F [|tm0 |2](q), see Fig. 3 (c). The interference effects are also
reflected in the periodic time-evolution of the probability current density shown in
Fig. 3 (d). This is most strikingly demonstrated by the photonic current (red solid
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line), which disappears periodically because of destructive interference. The higher
harmonic with frequency 2Ω is due to the interference of the sidebands n = ±1.

A similar scenario arises for a photon at resonance energy E = Ω (in Fig. 1
at E/g0 ≈ 3.48). Whereas for a static barrier, g1 = 0, the transmission becomes
almost purely photonic [cf. Fig. 1, upper right panel] a small perturbation g1 =
0.073Ω is sufficient to excite the sideband n = −1 [see Fig. 4 (a)]. Again, interference
of the central bands and the sidebands leads to periodic transmission probabilities
as a function of wg0, especially for the mechanical sideband, see Fig. 4 (b). The
Fourier transformation of the mechanical mode depicted in Fig. 4 (c) reveals which
wavenumbers are involved in the scattering process. Just as for the photon current
in Fig. 3 (d), the interference of the mechanical side and central band leads to the
suppression of the current density of the phonon periodically in time, see Fig. 4 (d).

Conclusions. In optomechanical Dirac materials scattering of plane photon waves
by laser-induced oscillating planar barriers becomes inelastic. Finite transmission
probabilites for the optical and mechanical sidebands lead to a suppression or re-
vivial of light-sound interconversion for photon energies close to multiple integers of
the oscillation frequency. Using parameter values of recent experiments [1,5], these ef-
fects will appear even for weak couplings with oscillation frequencies of about 0.5MHz.
Therefore, our work could be of particular interest for future (quantum) optical appli-
cations, especially for the experimental realization of an interface between microwave
photons and phonons using laser barriers. It would be desirable to extend this study
to more realistic quantum-dot geometries. This will be the subject of future work.
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The inelastic scattering and conversion process between photons and phonons by laser-driven quantum dots is
analyzed for a honeycomb array of optomechanical cells. Using Floquet theory for an effective two-level system,
we solve the related time-dependent scattering problem, beyond the standard rotating-wave approximation
approach, for a plane Dirac-photon wave hitting a cylindrical oscillating barrier that couples the radiation field
to the vibrational degrees of freedom. We demonstrate different scattering regimes and discuss the formation
of polaritonic quasiparticles. We show that sideband-scattering becomes important when the energies of the
sidebands are located in the vicinity of avoided crossings of the quasienergy bands. The interference of Floquet
states belonging to different sidebands causes a mixing of long-wavelength (quantum) and short-wavelength
(quasiclassical) behavior, making it possible to use the oscillating quantum dot as a kind of transistor for light
and sound. We comment under which conditions the setup can be utilized to observe zitterbewegung.
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I. INTRODUCTION18

Optomechanical systems realizing the interaction between19

light and matter on the micro- and macroscale [1] enjoy con-20

tinued interest since they allow for the study of fundamental21

questions concerning, e.g., the cooling of nanomechanical22

oscillators into the quantum ground state [2–4], nonlinear23

phenomena on the route from classical [5,6] to quantum24

behavior [7–9], and even entanglement [10,11] and (quantum)25

information processing [12–15]. Regarding the latter one, op-26

tomechanical crystals or arrays [16–19] have gained particular27

attention as they accommodate (strongly) coupled collective28

modes [20–22], and therefore can be utilized for the transport,29

storage, and transduction of photons and phonons [23–27].30

A promising building block for hybrid photon-phonon31

signal processing architectures is provided by planar optome-32

chanical metamaterials. Their optically tunable, polaritonlike33

band structure enables versatile and easy to implement appli-34

cations of artificial optomechanical gauge fields [28–30] and35

topological phases of light and sound [31]. In this context,36

the emergence of Dirac physics was demonstrated for low-37

energy photons and phonons in “optomechanical graphene,”38

that is, a honeycomb array of optomechanical cells [32]. In39

these systems ultrarelativistic transport phenomena such as40

Klein tunneling appear, because of the chiral nature of the41

quasiparticles and their Dirac-like band structure, just as for42

Dirac electrons in graphene. Moreover, the radiation pressure43

that induces the coupling between photons and phonons in-44

side the optomechanical barrier can be easily tuned by the45

laser power and may cause the formation of (photon-phonon)46

polariton states mixing photonic and phononic contribution.47

Circular barriers are of special interest because they are easier48

to implement experimentally than infinite planar barriers and49

*wurl@physik.uni-greifswald.de
†fehske@physik.uni-greifswald.de

show a richer scattering behavior due to their finite size. In 50

particular such optomechanical “quantum dots” may cause the 51

spatial and temporal trapping, Veselago lensing, a depletion 52

of Klein tunneling, and angle-dependent interconversion of 53

photons and phonons [33]. 54

Since transport of Dirac quasiparticles is extremely energy- 55

sensitive, external time-dependent fields may produce inter- 56

esting effects. This has been demonstrated for the photon- 57

assisted transport in graphene-based nanostructures [34], 58

where planar and circular electromagnetic potentials, oscil- 59

lating with frequency �, give rise to inelastic scattering pro- 60

cesses by exchanging energy quanta nh̄� with the oscillating 61

field. Thereby, the excitation into and interference between 62

sideband states may cause the suppression of (Klein) tunnel- 63

ing, Floquet-Fano resonances, as well as highly anisotropic 64

angle-resolved transmission and emission of the quasiparti- 65

cles [35–40]. Also the relevance to zitterbewegung (ZB) has 66

been addressed within the Tien-Gordon setup [41]. 67

As stressed already, inside the optomechanical barrier po- 68

laritonic quasiparticles will form. They can be treated ef- 69

fectively as two-level systems. Then, modulating the cou- 70

pling strength in a time-periodic way, the system mimics 71

a two-level system driven by a linear polarized laser field. 72

Within Floquet theory, it was shown that such systems exhibit 73

strongly enhanced transmission probabilities between the two 74

levels whenever avoided crossings occur in the quasienergy 75

bands [42–44]. This immediately raises the question how 76

Floquet-driven barriers affect the two-level scattering pro- 77

cess in optomechanical metamaterials. For planar oscillating 78

barriers we found that the finite transmission probabilities 79

for the sidebands might suppress or revive the light-sound 80

interconversion when the energy of the incident photon is 81

close to multiples of the oscillation frequency [45]. 82

Motivated by these findings, in the present paper we study 83

the inelastic scattering and conversion process between pho- 84

tons and phonons triggered by periodically oscillating quan- 85

tum dots, imprinted optically in optomechanical graphene. 86
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FIG. 1. Sketch of the scattering setup. Injected by a probe laser,
an incident optical wave with energy E > 0 and wave vector ko =
koex hits a laser-driven quantum dot of radius R. Inside the dot,
the photon-phonon coupling is g = g0 − 2g1 cos (�t ). As a result,
reflected optical and mechanical waves appear with wave vectors
ko/m (kn=0 ≡ k), in the central band with energy E, and in the
sidebands with energies En = E + nh̄�, where n = ±1, ±2, .... The
reflected waves are directed away from the dot and carry an angular
momentum. Since the dot allows for the conversion between light
and sound, mechanical waves appear outside the dot even though the
coupling vanishes here. Note that the figure is not true to scale and,
since vo > vm, the photon-phonon wave vectors ko/m

n = |En|/h̄vo/m

are not equal in magnitude.

Figure 1 illustrates the setup under consideration. The paper87

is organized as follows. Section II presents our model and88

outlines the theoretical approach, based on Floquet theory89

for an effective two-level system. The solution of the related90

time-dependent scattering problem is explicitly given. A more91

detailed presentation of the (numerical) implementation of our92

Floquet approach can be found in the appendix. In Sec. III,93

after briefly recapitulating previous findings for the static94

quantum dot, we discuss the numerical results obtained for95

the oscillating quantum dot in the whole range of system pa-96

rameters. The relevance for observing ZB is also considered.97

Our main conclusions can be found in Sec. IV.98

II. THEORETICAL APPROACH99

A. Model100

In optomechanical graphene, driven by a laser with fre-101

quency ωlas, co-localized cavity photon (eigenfrequency ωo)102

and phonon (eigenfrequency ωm) modes interact via radiation103

pressure. For sufficiently low energies and barrier potentials104

that are smooth on the scale of the lattice constant but sharp on105

the scale of the de Broglie wavelength (i.e., the size of the dot106

is much bigger than the lattice spacing in the optomechanical107

array), the continuum approximation applies [46]. Then the108

system can be described by the optomechanical Dirac-Weyl109

Hamiltonian [32],110

H = (
v + 1

2δv τz

)
σ · k − g(r, t )τx. (1)

In Eq. (1), the model Hamiltonian is written in units of h̄,111

after rescaling H → H − h̄ωm. Here, v = (vo + vm)/2, δv =112

vo − vm, with vo/m as the Fermi velocity of the optical or113

mechanical mode, τ and σ are Pauli spin matrices, k (r)114

gives the wave vector (position vector) of the Dirac wave, and115

g(r, t ) parametrizes the time-dependent photon-phonon cou-116

pling strength. On the other hand, when the laser continuously117

drives a certain region of the honeycomb lattice, a quantum 118

barrier with time-independent coupling strength g0 is created. 119

We note that the above single-valley Hamiltonian is ob- 120

tained after linearizing the dynamics around the steady-state 121

solution and taking advantage of the rotating-wave approxi- 122

mation (RWA) in the red detuned moderate-driving regime, 123

� = ωlas − ωo = −ωm [32]. To account for inelastic scatter- 124

ing, we assume the laser amplitude to be modulated with a 125

frequency much smaller than the frequencies of both the laser 126

and mechanical modes, � � ωlas, ωm (otherwise the RWA is 127

not granted). Furthermore, � should be much smaller than the 128

mechanical hopping in the array, i.e., � < 2vm/3a with a as 129

the lattice constant (otherwise the continuum approximation is 130

not granted) [32]. Then, using polar coordinates, the photon- 131

phonon coupling in the quantum dot region with radius R 132

takes the form, 133

g(r, t ) = [g0 − 2g1 cos (�t )]�(R − r ), (2)

where g0 > 0 and g1 < 0, and g0,1 are assumed to be constant. 134

Furthermore, in order to ensure a laser amplitude greater than 135

zero, 2|g1| � g0. In what follows, for the sake of simplicity, 136

the potential barrier (2) is assumed to be infinitely sharp. 137

Numerical studies have shown that a more realistic steep but 138

rounded barrier will influence the results little (due to the 139

small Umklapp scattering) [32]. 140

At this point we should mention that the Hamiltonian 141

(1), derived for the linear regime within the RWA, takes 142

into account dissipation effects in an effective way [1,32]. 143

Accordingly, the quasiparticles described by the model (1) 144

propagate as undamped optical and mechanical excitations on 145

the honeycomb lattice. As shown in Ref. [32] the main effect 146

of dissipation would be the decay of the field amplitudes. 147

For the same reason, the barrier is described by the optome- 148

chanical coupling strength g (being proportional to the laser 149

amplitude) and not by the single-photon coupling rate. 150

Inside the quantum dot, where the photon-phonon coupling 151

is finite, the polariton quasiparticle states are superpositions 152

of optical and mechanical eigenstates of τz. Given the 153

time-periodic coupling (2), the polariton states can be treated 154

as periodically driven two-level systems. A similar approach 155

is widely used in quantum optics (Rabi model), e.g., in 156

order to model atoms or superconducting qubits driven by 157

a semiclassical, linearly polarized laser field (see Ref. [47] 158

and references cited therein). There it is convenient to obtain 159

the time-dependent solutions within the RWA, which is 160

justified for laser frequencies close to the transition frequency 161

between the two energy levels of the state. In view of 162

solving the scattering problem, however, the RWA cannot 163

be applied because the wave number k, which enters the 164

transition frequency between the two polariton states, δvk/2 165

in (1), changes as a result of inelastic scattering processes. 166

Therefore we make use of the Floquet formalism to find 167

the time-dependent solutions of our scattering problem. The 168

Floquet formalism is described, e.g., in Refs. [44,47,48]; for 169

its application to two-level systems see Refs. [42,43,49]. 170

B. Formulation of the Floquet scattering problem 171

Treating the inelastic scattering problem we look for 172

solutions |ψ (t )〉 of the time-dependent Dirac equation 173

i(∂/∂t ) |ψ (t )〉 = H |ψ (t )〉. Since the Hamiltonian is time 174
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periodic, according to Floquet’s theorem [50], we write175

the time-dependent solution as |ψ (t )〉 = e−iεt |ε(t )〉 with176

quasienergy ε and the time-periodic Floquet state |ε(t )〉 =177

|ε(t + T )〉, where T = 2π/�. For constructing the latter we178

use the eigensolutions in the absence of the oscillating barrier179

[32,33], which are given as |τ 〉 |σ, k〉. Here, |σ, k〉 is the eigen-180

vector of the single-particle Dirac-Weyl Hamiltonian H = σ k181

with eigenvalue σ |k| and sublattice pseudospin σ = ±1 (in182

this notation σ acts as a band index). The polariton state is183

formed according to |τ 〉 = N τ (g0 |o〉 + γ τ |m〉), where τ =184

±1 denotes the polariton pseudospin, and |o/m〉 are the bare185

optical and mechanical eigenstates of τz (the factors N τ and186

γ τ are given in the appendix). Expanding the Floquet state in187

a Fourier series,188

|ε(t )〉 =
∑

p

∑
τ=±

cτ
p |τ 〉 |σ, k〉 eip�t , p ∈ Z, (3)

the two polariton states with τ = ±1 have to be superimposed189

because of the optomechanical coupling in τ space. Inserting190

the ansatz (3) into the time-dependent Dirac equation yields191

the Floquet eigenvalue equation (FEE) F c = εc, where c is192

the vector containing the Fourier coefficients cτ
p, and F is the193

Floquet matrix having eigenvalues ε. The Floquet matrix and194

the FEE in component form are given in the appendix; see195

Eq. (A5) and Eq. (A1), respectively. In general, an analytical196

solution of the FEE does not exist [47]. This is in contrast197

to the scattering of graphene electrons by time-periodic gate-198

defined potential barriers, for which the diagonal potential in199

sublattice space allows one to integrate the Dirac equation200

[34,36,40,41]. We therefore determine the solutions of the201

FEE numerically; see appendix.202

Let us take another look at the Floquet-scattering setup203

depicted in Fig. 1. Since the oscillating quantum dot gives204

(takes) energy to (away from) photons and phonons in the205

form of multiple integers of the oscillation frequency, En =206

E + n� (n ∈ Z), the scattering is inelastic. This implies that207

the wave functions have to be expressed as superpositions208

of states with energies En. This is certainly unproblematic209

outside the dot, where the coupling is zero and we can use210

the unperturbed eigensolutions. The transmitted wave inside211

the dot, however, is composed of Floquet states according212

to Eq. (3). On that account the wave numbers q (±)
n and the213

Fourier coefficients cτ,(±)
p,n at each energy En = ε(±) have to214

be determined by numerical diagonalization of the Floquet215

matrix F . Note that the index (±) appears because the216

quasienergies are twofold degenerate owing to the polariton217

pseudospin τ .218

C. Solution of the Floquet scattering problem219

For this purpose, we expand the plane wave state of the220

incoming photon in polar coordinates,221

|ψin〉 = 1√
2

(
1

1

)
eikox |o〉 e−iEt

=
∑
n,l

δn0 φ
(1)
n,l

(
ko
nr

) |o〉 e−iEnt , (4)

where l ∈ Z is the quantum number referring to the angular222

momentum. The reflected (scattered) wave consists of optical223

and mechanical modes, |ψr〉 = |ψr;o〉 + |ψr;m〉 (cf. Fig. 1), 224

with 225

|ψr;o/m〉 =
∑
n,l

√
vo

vo/m

r
o/m

n,l φ
(3)
n,l

(
ko/m
n r

) |o/m〉 e−iEnt . (5)

Here, r
o/m

n,l are the optical and mechanical reflection coef- 226

ficients. According to Eq. (3), the transmitted wave |ψt 〉 = 227

|ψt ;(+)〉 + |ψt ;(−)〉 reads 228

|ψt ;(±)〉 =
∑
n,l

t
(±)
n,l φ

(1)
n,l

(
q (±)

n r
)∑

p

∑
τ=±

cτ,(±)
p,n |τ 〉(±)

n e−iEn−pt ,

(6)

where t
(±)
n,l are the transmission coefficients. The Fourier coef- 229

ficients and wave numbers used in Eq. (6) are extracted from 230

the Floquet approach outlined in the appendix. For the wave 231

functions (4)–(6) we have used the eigenfunctions 〈r|σ, k〉 of 232

the Dirac-Weyl Hamiltonian [40,51,52], 233

φ
(1,3)
n,l (knr ) = 1√

2
il+1

(
−iZ (1,3)

l (knr )eilϕ

σnZ (1,3)
l+1 (knr )ei(l+1)ϕ

)
, (7)

where Z (1) = Jl and Z (3) = Hl denotes the Bessel function 234

and Hankel function, respectively. To ensure that the group 235

velocity of the reflected wave is directed away from the 236

quantum dot (as it should be for an outgoing wave), the sign 237

of the energy determines which kind of Hankel function is 238

used: Hl = Jl + iσ out
n Yl (Yl is the Neumann function). Here, 239

σ out
n = sgn(En) is the “band index” outside the quantum dot. 240

Its presence in the Hankel function ensures that the refractive 241

indices are negative for negative energies, meaning that the 242

wave vector is directed opposite the propagation direction of 243

the particle. For the transmitted wave inside the dot, σ ins
n = 244

±1 for En ≷ ±g0, and σ ins(±)
n = ±1 for −g0 � En � g0. 245

Matching the wave functions at r = R yields the equations 246

for the transmission coefficients: 247

δp0W
o
p,l =

∑
n

∑
τ=±

t
(τ )
n,l f

(τ )
n−p,nX

o,(τ )
n,p,l, (8a)

0 =
∑

n

∑
τ=±

t
(τ )
n,l h

(τ )
n−p,nX

m,(τ )
n,p,l . (8b)

The reflection coefficients can be obtained from 248

ro
p,l =

∑
n

∑
τ=±

t
(τ )
n,l f

(τ )
n−p,n

Z (1)
l

(
q (τ )

n R
)

Z (3)
l

(
ko
pR

) − δp0
Z (1)

l

(
ko
pR

)
Z (3)

l

(
ko
pR

) , (9a)

rm
p,l =

∑
n

∑
τ=±

t
(τ )
n,l h

(τ )
n−p,n

Z (1)
l

(
q (τ )

n R
)

Z (3)
l

(
km
p R

) . (9b)

Here, we have used the abbreviations, 249

Wo
p,l = Z (1)

l

(
ko
pR

)
Z (3)

l+1

(
ko
pR

) − Z (1)
l+1

(
ko
pR

)
Z (3)

l

(
ko
pR

)
,

(10a)

X
o/m,(τ )
n,p,l = σ out

p Z (1)
l

(
q (τ )

n R
)
Z (3)

l+1

(
ko/m
p R

)
− σ ins(τ )

n Z (1)
l+1

(
q (τ )

n R
)
Z (3)

l

(
ko/m
p R

)
, (10b)
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and250

f
(τ )
n−p,n =

∑
τ ′

c
τ ′,(τ )
n−p,nN τ ′,(τ )

n g0, (11a)

h
(τ )
n−p,n =

∑
τ ′

c
τ ′,(τ )
n−p,nN τ ′,(τ )

n γ τ ′,(τ )
n . (11b)

When solving the infinite-dimensional coupled linear system251

(8) numerically, we raise the dimension of the coefficient252

(scattering) matrix until convergence is reached. This is most253

challenging for large g1 or small �, since the dimension of the254

scattering matrix is mainly determined by the ratio |g1|/� (cf.255

appendix).256

The inelastic scattering and conversion process between257

photons and phonons is characterized by the scattering effi-258

ciency Qo/m(r, t ), that is, the scattering cross section divided259

by the geometric cross section. It consists of a time-averaged260

part,261

Q
o/m =

∑
n

∞∑
l=0

Q
o/m

n,l =
∑

n

∞∑
l=0

4

k
o/m
n R

∣∣ro/m

n,l

∣∣2
, (12)

and a time-dependent part (to simplify the notation, we omit262

the index out in σ out
n ),263

Q̃o/m(r, t ) =
∑
n<n′

∞∑
l=0

(−1)l
4√

k
o/m
n k

o/m

n′ R

× 2Re
{(

r
o/m

n′,l
)∗

r
o/m

n,l i
1
2 (σn′−σn ) ei(n−n′ )�ϑo/m}

.

(13)

Here, ϑo/m = r/vo/m − t denotes the time-retarded phase fac-264

tor. In Eqs. (12) and (13), and hereafter, l � 0. The quantities265

Q
o/m

n,l in Eq. (12) represent the scattering contributions of the266

partial wave l and the sideband n. In the far field, the scattering267

efficiency is obtained from the radial component of the cur-268

rent density of the reflected wave, (1/2R)
∫

j
r;o/m
r (r, t )rdϕ269

[33,40,51,52]270

j r;o/m
r (r, t ) =

∑
n,n′

∑
l,l′

4vo

π

√
k

o/m
n k

o/m

n′ r

(
r

o/m

n′,l′
)∗

r
o/m

n,l

× il−l′ i
1
2 (σn′−σn )i (l+l′ )sgn(σn′−σn )+(l′−l)sgn(σn′+σn )

× {cos[(l + l′ + 1)ϕ]

+ cos[(l − l′)ϕ]}ei(n−n′ )�ϑo/m

, (14)

which characterizes the angular scattering. In the near field,271

the scattering is further specified by the probability density272

ρ = 〈ψ |ψ〉, with |ψ〉 = |ψin〉 + |ψr〉 outside and |ψ〉 = |ψt 〉273

inside the quantum dot. Note that in the far field, the optical274

or mechanical part of the probability density of the reflected275

wave 〈ψr |ψr〉 becomes equal to the current density (14)276

except for a constant factor vo/m. Furthermore, defining the277

scattering efficiency by the cross section, only the incident278

current of the photon was used, since no phonon incident279

currents exist (cf. Fig. 1). Therefore, the scattering efficiency280

of the phonon Qm can be understood as an interconversion281

rate between photons and phonons, which we can define as282

Qm/Qo.283
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FIG. 2. Different scattering regimes for the static quantum dot in
dependence on the strength parameter Rg0 and the size parameter
ER. The latter determines the maximum angular momentum lmax

being possible in the scattering. The energy-coupling ratio E/g0

switches between the optomechanical (E/g0 � 1) and the pure op-
tical regime (E/g0 � 1), where the optomechanical (optical) regime
is characterized by the interconversion rate Qm/Qo ∼ 1 (� 1).
Depending on these parameter ratios the static dot acts as a (i)
resonant scatterer in the quantum regime, (ii) strong reflector, (iii)
weak reflector, or (iv) weak scatterer. On the axis of abscissae the
first resonance point derived from the resonance condition (15) with
l = 0 is marked.

III. NUMERICAL RESULTS 284

Since the scattering problem worked out in the 285

preceding section is invariant under the transformation 286

[E, g0,1,�, R−1] → γ [E, g0,1,�, R−1] with γ ∈ R, we 287

rescale the equations of motion such that � = 1 [45]. We 288

set vo = 10vm and furthermore employ units such that 289

vo = h̄ = 1 [32,33,45]. Then, the rescaled variables are 290

dimensionless and related to the unscaled variables (marked 291

by ˆ ) according to E = Ê/(h̄�), g0,1 = ĝ0,1/�, R = R̂�/vo, 292

k = k̂vo/�. The phase factor is measured in units of �, 293

ϑo/m = ϑ̂o/m�. According to the experimental parameters 294

given in Ref. [17] the effects discussed in this paper should be 295

observable for oscillation frequencies � ∼ 0.5 MHz � ωlas, 296

where we have assumed a laser-enhanced optomechanical 297

coupling strength ĝ0 ∼ 0.1 MHz with 2|ĝ1| � ĝ0. Then, 298

without violating the continuum approximation, the energies 299

of the photon and the phonon are in the order of h̄ωm 300

(microwaves) with excitation energies n� ∼ MHz � ωm 301

for the sidebands. The typical size of the quantum dot 302

radius is 100a with lattice constant a ∼ 50 μm. Using these 303

parameters the photon tunneling rate J between two sites [32] 304

has to be made small by design: J = 2vo/3a ∼ 10−2ωm. 305

A. Static quantum dot 306

The scattering problem of the static dot (g1 = 0) has been 307

analyzed in previous work [33]. Depending on the strength 308

parameter Rg0 and the size parameter ER, different scattering 309

regimes occur. They can be characterized by the scattering 310

efficiency; see Fig. 2. This schematic figure is taken as a 311
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starting point, helping us to classify the different parameter312

regimes and expected physical phenomena in the theoretical313

discussion below.314

Comparing the scattering regimes of our optomechanical315

quantum dot (Fig. 2) with those of electrons in graphene scat-316

tered by gate-defined quantum dots (cf. Fig. 3 in Ref. [53]),317

strong similarities could be identified, which perhaps is not318

surprising in view of the close relation between both Hamil-319

tonians. The most crucial difference is the nondiagonal op-320

tomechanical coupling, which allows the quantum dot to321

translate light into sound. The interconversion rate Qm/Qo
322

is determined by the energy-coupling ratio E/g0 (see Fig. 3323

in [33]) and discriminates between the optomechanical and324

purely optical regimes (dashed line in Fig. 2). For E/g0 � 1,325

i.e., in the resonant scattering (quantum) regime, the size326

parameter is small for not too large radii (ER � 1), so the327

excitation of the first partial waves leads to sharp resonances328

in the scattering efficiency of the photon, and of the phonon329

accordingly. The resonance condition is330

Rg0 = √
vovmjl,i , (15)

where jl,i denotes the ith zero of the Bessel function Jl with331

i = 0, 1, 2, ... (the onset of the resonant scattering regime is332

marked by an arrow in Fig. 2). Resonances are featured by333

quasibound states in the quantum dot and preferred scattering334

directions in the far field (cf. Fig. 4 in [33]). Increasing E/g0335

the phonon is hardly scattered and the scattering becomes336

weaker. In the limit E/g0 � 1, the scattering becomes purely337

photonic because vo � vm. At such high photon energies the338

scattering of the phonons disappears since the corresponding339

refractive index is almost one. At the same time more and340

more partial waves will be excited, which leads to a richer341

angular distribution of the radiation characteristics and the342

possibility of Fano resonances (cf. Figs. 5 and 6 in [33]).343

At very large size parameters, ER � 1, the wavelengths will344

be much smaller than the radius of the quantum dot and the345

quasiclassical regime is entered. There, for E/g0 < 1, the346

quantum dot may act as a polaritonic Veselago lens with347

negative refractive indices, focusing the light beam in forward348

direction.349

B. Oscillating quantum dot350

As already mentioned above, an oscillating quantum dot351

causes inelastic scattering via sideband excitations En = E +352

n� for both photons and phonons. Hence, besides the an-353

gular momentum l, the sideband-energy quantum number n354

becomes important. Accordingly the scattering regimes are355

no longer determined by ER and E/g0, but by effective size356

parameters EnR and effective energy-coupling ratios En/g0.357

The number of sidebands involved in the scattering is mainly358

determined by the ratio |g1|/�. This means, discussing the359

physical behavior of our setup, an additional parameter comes360

into play. To avoid that the sideband-excitation energies be-361

come too large and the continuum approximation is no longer362

justified possibly, in particular for the phonon with vm �363

vo, we restrict ourselves to values of g0 and |g1|/2 smaller364

than �/2.365

Before analyzing the scattering problem in detail, we366

want to make a general remark concerning our Floquet state367

0 0.25 0.5g0

-2

-1

0

1

2

E
c,±
p p=0

p=1

p=-1

...
...

p=-2

Floquet resonance

1
3

2

Symmetric

+_

FIG. 3. Crossing energies (CE) according to Eq. (16). Note
that in some cases CE with different p coincide (such situation is
marked by points). Symmetric Floquet-resonant scattering occurs
at g0 = �

√
vovm/(vo + vm) � 0.287�. Circles designate particular

energy-coupling ratios: (1) E/g0 = 10−4 (E � 0), (2) E/g0 � 3.48
(E = 10−3g0 + 1� � �), and (3) E/g0 � 0.31 (E = 0.123� at
g0 = 0.394�). They correspond to different scattering regimes of the
static dot in Fig. 2: (1) → (i), (2) → (iii), (3) → (ii).

approach. In the main, scattering is determined by the re- 368

fractive indices, that is to say by the different wave numbers 369

inside and outside the scattering region. If the wave numbers 370

inside and outside the quantum dot are the same, scattering 371

disappears. The other way around, strong scattering takes 372

place for large differences between the wave numbers belong- 373

ing to the static and nonstatic cases. Clearly the deviation is 374

greater the larger the value of the coupling |g1|. Furthermore, 375

inspecting the quasienergies as a function of the wave number 376

ε(q ), one finds the most significant deviations close to the 377

avoided crossings (see Fig. 12 in the appendix). Such avoided 378

crossings appear when two energy bands of the static case 379

with different value of τ , and maybe shifted by �, cross each 380

other. For g0 � �/2, these crossing energies (CE) are 381

Ec,±
p = ± p′

|p′|
v̄

δv

√
(p′�)2 − 4g2

0 ± �

4
[1 + (−1)p

′+1], (16)

with p′ = p for ±p � 1 and p′ = p ∓ 1 for ±p � 0, where 382

p ∈ Z. Again, the polariton degree of freedom of the CE is 383

marked by the index ±. Figure 3 shows the CE depending 384

on g0. Since the influence of the oscillating barrier on the 385

scattering is greatest for E ∼ Ec,±
p , the further discussion 386

follows these cases marked in Fig. 3, and the subsections are 387

numbered accordingly. 388

1. Symmetric Floquet-resonant scattering close by E � 0 389

For g0 = �
√

vovm/(vo + vm) and an incident photon en- 390

ergy close to the neutrality point, E � 0 [case (1) in Fig. 3], 391

the static dot is a resonant scatterer (quantum regime) which 392

makes light-sound conversion possible [regime (i) in Fig. 2]. 393

Since the CE with p = ±1 are shifted by ±� with respect 394

to the p = 0 CE and the energies En are also shifted by 395

multiples of � among themselves, we call the scattering 396
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FIG. 4. Scattering efficiency at weak coupling, |g1| � �. To
realize symmetric Floquet resonance for E � 0 [case (1) in Fig. 3]
we set E = 10−4g0 � 0, g0 = �

√
vovm/(vo + vm) � 0.287�, and

|g1| = 0.02� [except for (c)]. (a) Time-averaged scattering ef-
ficiency of the photon (red/gray) and the phonon (black), with
resonance points i = 0, 1, ... of the static quantum dot for l = 0
according to Eq. (15) (blue numbers). (b) Different contributions
to the scattering efficiency of (a). (c) Enlarged scattering efficiency
close to i = 5 for (i) g1 = 0, (ii) |g1| = 2 × 10−3�, (iii) |g1| =
5 × 10−3�, and (iv) |g1| = 0.02�. (d) Time-averaged scattering
efficiency (dashed) and time evolution of the scattering efficiency at
i = 5, corresponding to case (iv) in (c) (here Qm is multiplied by a
factor of 100).

“Floquet resonant.” We find that different CE with p = 0397

cross at E = 0, which entails antiparallel wave vectors of398

equal magnitudes inside the dot (see Fig. 12 in the appendix).399

In principle, the same argumentation applies to the sideband400

energies E±n, which is why we call this situation “symmetric.”401

Weak photon-phonon coupling. Figure 4 contrasts the402

(time-averaged) scattering efficiency of the photon and the403

phonon at weak couplings, i.e., in the (antiadiabatic) limit404

2|g1| � �. Obviously, the scattering efficiency of the static405

dot, with its resonances of the lowest partial wave l = 0,406

is retained to a certain extent [see Fig. 4(a)]. The reso-407

nances of the static dot can be related to minima in the408

scattering efficiency (i = 6, 7, ...). Most notably, at certain409

points (i = 5, 16, ...) the scattering is off resonant, with the410

result that light-sound interconversion is strongly suppressed411

(Q
m
/Q

o � 1). Although not shown here, the positions of off-412

resonances are moving closer together, and towards smaller413

values of Rg0, if g1 is increased. This can be ascribed to a414

Fabry-Pérot interference between waves with different wave415

numbers inside the dot [45].416

Figure 4(b) gives the individual contributions to the total417

scattering efficiency depicted in Fig. 4(a). Whereas in the418

static case the scattering is determined by the central band n =419

0, for finite values of g1 the sidebands n = ±1 are involved420

[sidebands with |n| > 1 (not shown) play a minor role only].421

Due to the symmetry of the problem for E → 0, the n =422

±1 sideband contributions are equal in magnitude; |ro/m

n=1,l| �423

|ro/m

n=−1,l|. We find that for these sidebands only the lowest424

partial wave with l = 0 is excited, although the effective size425

parameter might suggest the opposite: En=±1R � ±�R � 1. 426

We will come back to that later. We further observe that the 427

sidebands have large impact on the scattering, even though 428

the coupling is weak. This applies in particular to the off- 429

resonance situation i = 5, where the scattering is dominated 430

by the sidebands for both photons and phonons. Apparently 431

the occurrence of off-resonances featured by weak scattering 432

efficiency are a direct consequence of the presence of side- 433

bands. Since the effective energy-coupling ratio of the central 434

band En=0/g0 � 0 and the sidebands |En=±1|/g0 � 3.48 lie 435

within different scattering regimes (cf. Fig. 2), their interplay 436

may lead to a partial transition from the resonant scattering 437

regime to the weak reflection regime [(i)–(iii) in Fig. 2], 438

accompanied by a suppression and revival of light-sound 439

interconversion. 440

To monitor how the scattering resonance of the static 441

dot gradually dissolves and is replaced by an off-resonance, 442

Fig. 4(c) displays the time-averaged scattering efficiency in 443

the vicinity of resonance point i = 5 for different values 444

of g1. The resonance of the static dot [case (i)] is widely 445

weakened for a small perturbation already [cases (ii) and 446

(iii)], particularly for the mechanical mode. We note that the 447

scattering resonance is characterized by two resonance peaks, 448

occurring symmetrically about the resonance point [33]. At 449

even larger values of g1 the resonance almost vanishes and 450

the scattering becomes weak and purely photonic [case (iv)]. 451

In Fig. 4(d) the time-dependent scattering efficiency is 452

depicted at the off-resonance (i = 5). According to Eq. (13), 453

the sideband (n = ±1) interference entails a periodic time 454

dependence of the scattering efficiency with frequency 2�. 455

As a result the quantum dot switches between purely photonic 456

and phononic emission. In a certain sense, this time-periodic 457

oscillation is related to ZB (but see the discussion below) [41]. 458

In Fig. 5 the time-retarded and periodic emission of light 459

and sound by the oscillating quantum dot is illustrated by 460

means of the probability density at t = 0 (top) and the time- 461

dependent far-field current density according to Eq. (14) at 462

r = R (bottom) for parameters of Fig. 4(d). The time peri- 463

odicity of the scattering efficiency displayed in Fig. 4(d) is 464

due to the constructive and destructive interference of the 465

reflected wave functions for the sidebands n = ±1 and gives 466

reason to the ring structure with wavelength λo/m = πvo/m/� 467

in the probability density. For the photon density the incoming 468

wave function covers this periodicity farther away from the 469

dot where the wavelength is twice as large. Inside the dot the 470

probability density is significantly enhanced, for both photons 471

and phonons, which can be related to the excitation of the 472

l = 0 mode [33]. Obviously, the dot captures the incident 473

photon and partly converts it into phonons, and emits both 474

particle waves (periodically in time) predominantly in forward 475

direction afterwards. In the far field, this gives rise to a time- 476

periodic current density. The absence of backscattering at ϕ = 477

π , related to Klein tunneling, is caused by the conservation of 478

helicity at perpendicular incidence [32,33] and is observed for 479

time-dependent planar barriers as well [45]. 480

Moderate photon-phonon coupling. Figure 6 shows the 481

contributions to the time-averaged scattering efficiency of the 482

photon in this case, where 2|g1| � 0.1�. Again only the l = 0 483

mode is noticeably excited. We find that scattering is still 484

dominated by the sidebands with n = ±1; the contributions 485
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FIG. 5. Time-retarded scattering characteristics for the same
parameter values as used in Fig. 4(d). Shown are the optical (red,
top left) and mechanical (black, top right) parts of the probability
density ρ = 〈ψ |ψ〉 inside and outside the quantum dot (marked by
the blue circle) at t = 0, as well as the angle-resolved time evolution
of the far-field current density j according to Eq. (14) (bottom)
at r = R. For reasons of symmetry the angle dependence of the
optical (mechanical) mode is given only for ϕ � 0 (ϕ � 0). Note
that the ring structure occurring in the photon probability density
also exists in the phonon density, but is hard to resolve due to the
small wavelength of the phonon wave (vm = vo/10) (the additional
structures in the phonon density arise due to undesirable aliasing
effects).

of the sidebands n = ±2 are rather small and are comparable486

with those of the central band n = 0; see Fig. 6(a). Sideband487

contributions with |n| > 2 are negligible. The situation does488

not change much for the relatively large coupling used in489

Fig. 6(b). The minor significance of sidebands with |n| > 1490

is obvious by looking at the CE in Fig. 3: Since the sideband491

energies En = E + n� � n� do not match any CE for n > 1,492

these sidebands become important only at very large g1, when493

the influence of the closest CE is large enough. Figure 6494

furthermore shows that off-resonances are still present and get495
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FIG. 6. Scattering contributions Q
o

n,l=0 [colored (thicker) lines]
at moderate couplings |g1| = 0.05� (a) and |g1| = 0.14� (b). Other
parameter values are the same as in Fig. 4 for the symmetric Floquet-
resonant situation with E � 0 [case (1) in Fig. 3]. In addition, the
time-averaged scattering efficiency of the phonon is depicted [black
(thin) line].

closer for the higher coupling. This is again due to interference 496

of waves with different wave numbers inside the dot. Hence 497

the concomitant suppression of the light-sound interconver- 498

sion at the off-resonances (Q
m
/Q

o � 1) takes place also in 499

the weak resonant reflection regime. 500

Relation to zitterbewegung. In a nutshell, ZB means the 501

rapid and tiny fluctuations of the expectation value of the 502

particle position (velocity) about the average path due to 503

interference of positive and negative energy states. Although 504

the effect has never been observed for a free electron due 505

to the largeness of its rest energy, gapless metamaterials as 506

(optomechanical) graphene with its Dirac-like quasiparticles 507

provide a promising platform to observe ZB [41,54–57]. Let 508

us briefly discuss the conditions under which ZB might be 509

observable in our setup (for the moment, we set vo/m = 1). 510

In the absence of an oscillating barrier, g = 0, ZB may 511

show up in the expectation value of the velocity opera- 512

tor v = σ . Consider a general wave packet for the op- 513

tical or the mechanical mode, respectively, given at t = 514

0 as the superposition of plane wave states with posi- 515

tive (σ = +1) and negative energy states (σ = −1): |ψ〉 = 516

(1/
√

2)
∑

σ

∫
aσ (k, ϕ) |σ, k〉 d2k. Here, aσ (k, ϕ) is the prob- 517

ability amplitude in k space. Straightforward calculation in the 518

Heisenberg picture yields 〈v〉 (t ) = 〈v〉av + 〈v〉ZB (t ) where 519

〈v〉av = er
1
2

∑
σ σ

∫
d2k|aσ (k)|2 is the average velocity of a 520

free, ultrarelativistic particle in polar coordinates and 521

〈v〉ZB (t ) = −eϕRe

{∫
d2k [a+(k, ϕ)]∗a−(k, ϕ)

× [sin(2kt ) − i cos(2kt )]

}
(17)

represents the ZB term. Equation (17) clearly shows that the 522

interference of states with positive and negative energy is a 523

condition for the occurrence of ZB. In addition, since the 524

velocity operator σ does not act in k space 〈σ ′, k′|σ |σ, k〉 ∼ 525

δ(k − k′), for observing ZB, states with different helicity have 526

to be superimposed, i.e., the propagation directions of the 527

states with positive and negative energy must be antiparallel. 528

Our results suggest that the setup considered here repre- 529

sents a realistic opportunity to observe ZB in optomechanics. 530

Looking at the reflected wave function (5), the energetic 531

condition for ZB can be quite simply fulfilled in the case 532

of a symmetric Floquet resonance for photon energies at the 533

neutrality point [see Fig. 4(b)]. Here, sideband states with 534

positive (En=+1 � +�) and negative (En=−1 � −�) energy 535

can be symmetrically excited for both the photon and the 536

phonon, whereby the central-band state (E � 0) fortunately 537

is de-excited. The resulting ZB frequency of 2� can be made 538

small by tuning the optomechanical coupling via the laser 539

power (� ∼ g ∼ 1 MHz by our estimates), which should be 540

advantageous in view of an experimental implementation, just 541

as the simple optical readout. 542

We argue that the other condition can easily be fulfilled by 543

a setup where two optomechanical barriers (circular or planar) 544

hit by photon waves from opposite directions, generated by 545

the probe laser after passing a beam splitter. Then, in the 546

space between the two barriers, where the reflected waves 547

of either barrier interfere, ZB should be able to form (this is 548

not the case for only one barrier, where the reflected waves 549
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FIG. 7. Time-averaged scattering efficiency (top panel) of the
photon [red (gray)] and the phonon (black) and optical scattering
contributions of different partial waves (lower panels) at weak cou-
plings, where |g1| = 5 × 10−3� in (a) and |g1| = 0.02� in (b). In
the top panels the scattering efficiencies of the static dot are included
[turquoise (thicker) line]. The scattering contribution of the phonon
for the sideband n = −1 with l = 0 is denoted by the blue line. To
realize a symmetric Floquet resonance at E � � [case (2) in Fig. 3],
we choose E = 10−3g0 + �, g0 = �

√
vovm/(vo + vm) � 0.287�.

have the same helicity). A detailed analytical and numerical550

analysis of a suchlike extended (much more complicated)551

scattering problem is beyond the scope of the present work552

and is therefore postponed to a forthcoming study.553

2. Symmetric Floquet-resonant scattering close by E � �554

Next we investigate the scattering of a photon with energy555

E � �, according to case (2) in Fig. 3. Since the energy-556

coupling ratio E/g0 � 3.48, the static quantum dot now acts557

as a weak reflector with almost no light-sound interconversion558

[regime (iii) in Fig. 2]. As before, the scattering by the oscillat-559

ing dot is Floquet-resonant and the situation is, in some sense,560

symmetric as the energies with n = 0,−1,−2 match the CE561

perfectly and the wave numbers obtained from E±n have equal562

magnitudes. Since E �= 0 the sideband contributions are no563

longer symmetric with respect to n → −n.564

In Fig. 7 the time-averaged scattering efficiency of the565

photon and the phonon is depicted together with the scattering566

contributions of the photon for two (weak) couplings (2|g1| �567

�). The scattering is determined by the central band and568

the sidebands n = −1,−2; other sidebands play no role as569

their energies do not lie in the range of the CE (cf. Fig. 3).570

For the mechanical mode only the n = −1 contribution is571

shown because this is the only one that modifies the scattering572

efficiency substantially. Note that the size parameter ER takes573

on large values very quickly, which is why exclusively the574

contributions of the first partial waves were considered.575

While the scattering efficiency essentially follows those576

of the static dot, it features some very sharp resonances [see577

Fig. 7(a)]. The central band contribution n = 0 indicates that578
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FIG. 8. Time-averaged scattering efficiency of the photon [red
(gray)] and the phonon (black) slightly away from the symmetric
Floquet resonance at E = 0.928�, g0 = 0.3�, and |g1| = 0.1�. For
comparison, the corresponding scattering efficiencies of the static dot
are shown (turquoise).

these spikes originate from resonances of the partial waves 579

(15) as they will also occur for a static quantum dot at 580

zero photon energy in the resonant scattering regime. Not 581

surprisingly, the resonant scattering regime is also reflected in 582

the sideband contribution n = −1, where the effective energy- 583

coupling ratio En=−1/g0 � 0. Here, only the lowest partial 584

wave l = 0 is resonant, while higher partial waves are not 585

excited due to the smallness of the effective size parameter, 586

En=−1R � 1. The situation changes for the sideband n = 587

−2, where the effective size parameter becomes large again, 588

En=−2R � 1. 589

Increasing the coupling strength in the weak-coupling 590

regime, the resonances broaden [compare Figs. 7(b) and 7(a)], 591

and especially the low-frequency part in the functional depen- 592

dence of Q(Rg0) markedly deviates from that of the static 593

dot. Both effects can be attributed to larger deviations of the 594

Floquet wave numbers from those of the static problem when 595

g1 is growing. Again off-resonances occur, which becomes 596

particularly clear for the n = −1 sideband contribution [see 597

Fig. 7(b)]. This signal is very similar to that one obtained in 598

Fig. 4(b), where the same value of g1 was used. The reason 599

is that the effective energy-coupling ratio of the sideband is 600

equal to that of a photon with energy at the neutrality point, 601

En=−1/g0 � 0. This means that not only for E � 0 but also 602

for E � � the interplay between sideband and central band 603

excitations causes a partial transition from the weak reflector 604

regime to the resonant scattering regime [from (iii) to (i) in 605

Fig. 2], leading to the formation of a photon-dominated weak 606

resonant scattering regime. 607

The scattering efficiency at moderate coupling strengths, 608

slightly away from the symmetric Floquet resonance condi- 609

tion, reveals another interesting result. Figure 8 shows that in 610

this case the scattering is no longer photon dominated (differ- 611

ent from Fig. 7). So while the static dot acts as a weak reflector 612

for photons with almost no light-sound interconversion, the 613

scattering efficiency of the phonon now becomes comparable 614

with that in the weak scattering regime. 615

3. Floquet-resonant scattering without symmetry 616

Finally, we discuss the scattering by the oscillating quan- 617

tum dot for a situation without symmetry. For that we assume 618

E � 0.12� and g0 � 0.39�, according to case (3) in Fig. 3. 619
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FIG. 9. Time-averaged scattering efficiency at Floquet resonance
without symmetry [case (3) in Fig. 3]. Here E � 0.12� and g0 �
0.39�.

Then the energy-coupling ratio E/g0 � 0.31, and the static620

dot acts as a strong reflector with angle-dependent light-sound621

interconversion [regime (ii) in Fig. 2]. The scattering is again622

Floquet-resonant.623

Figure 9 displays the time-averaged scattering efficiency of624

the photon and the phonon for weak and moderate coupling625

strength. Since the size parameter ER � 1, the scattering626

efficiency of the static dot features resonances of the first627

partial waves, showing up as broad peaks. The oscillating628

dot weakens the resonances in the scattering efficiency of the629

photon as well as the light-sound interconversion rate. This630

effect becomes more pronounced at higher coupling strengths,631

and is accompanied by off-resonances for the phonon.632

Figure 10(a) gives the (relevant) photon contributions to633

the scattering efficiency at weak coupling. The phononic634

contributions are not shown because the phonon scattering635

efficiency is determined by the central band only. The side-636

band n = −1 has a significant influence on the scattering637

efficiency as En=−1 matches the CE (cf. Fig. 3). Since the cor-638

responding effective energy-coupling ratio |En=−1|/g0 � 2.3,639

the interference of states of the sideband and the central band640

leads to the hybridization of the weak and the strong reflector641

regime of the static dot [regimes (iii) and (ii) in Fig. 2], which642

gives the explanation for the weakening of resonances and643

of the light-sound interconversion rate in Fig. 9. We further644

observe, that only the first partial waves are excited for the645

sideband, although the effective size parameter is significantly646

larger, |En=−1|R > En=0R. The same effect occurs for the647

case of symmetric Floquet-resonant scattering at E � 0 in648
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FIG. 10. (a) Scattering contributions to Q
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given in Fig. 9 for
|g1| = 0.025�. (b) Enlarged area near Rg0 = 2.
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FIG. 11. Polar plot of the current density of the optical reflected
wave in the far field according to Eq. (14) at the time t/2π = 0.61
(a), t/2π = 1.2 (b), and t/2π = 1.33 (c) for r = R. Parameter
values are the same as in Fig. 10 with Rg0 � 2 (dashed line).

Fig. 4. It seems that the size parameter ER determines the 649

maximum number of partial waves lmax which are involved 650

in the scattering, whereas the effective size parameter En�=0R 651

determines the maximum number of partial waves for the 652

sidebands with the constraint lmax
n�=0 � lmax (this applies also 653

to the Floquet scattering problem in graphene [40]). This is 654

reasonable, since the scattered waves with their effective size 655

parameters merely represent the system’s response, whereas 656

the incident wave and its interaction with the quantum dot 657

represent the initial condition of scattering. 658

Figure 10(b) enlarges the area of Fig. 10(a) where the 659

scattering contributions of different angular momentum l 660

and different energy n are of comparable magnitude. While 661

the angular momentum defines the angle dependence of the 662

radiation, the energy determines their time dependence [cf. 663

Eq. (14)]. Interference has a lasting effect on the (angle- and 664

time-dependent) radiation characteristics. This is illustrated in 665

Fig. 11. At different points in time the interference causes 666

either (a) forward scattering due to the l = 0 mode, (b) 667

scattering in several directions due to the l = 1 mode, or (c) 668

the absence of forward scattering (Fano resonance) due to the 669

interference of the l = 0 and l = 1 modes [33]. In this way, the 670

oscillating quantum dot might act as a time-dependent photon 671

transistor. 672

IV. CONCLUSIONS 673

The main goal of this work was to examine the time- 674

dependent scattering of twofold degenerate Dirac-Weyl quasi- 675

particles by laser-driven quantum dots in optomechanical 676

graphene. The setup considered models the propagation and 677

interconversion of light and sound on a honeycomb array 678

of optomechanical cells, structured by circular, oscillating 679

(photon-phonon-coupling) barriers. 680

As our investigations have shown, the temporal modulation 681

(�) of the photon-phonon coupling in the quantum dot region 682

(R) tremendously influences the quasiparticle transport. Here, 683

unlike the energy-conserving case of a static quantum dot 684

where the scattering is essentially determined by the ratio 685

between the energy of the incident photon wave and the 686

coupling strength of the barrier, inelastic scattering gives rise 687

to the excitation of sideband states with energies En = E + 688

nh̄�. Their interference causes a mixing of long-wavelength 689

(quantum) and short-wavelength (quasiclassical) regimes. The 690
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number of sidebands involved is greater the larger (smaller)691

the amplitude (frequency) of the barrier oscillation. This af-692

fects also the effective size parameters EnR, which determine693

the angular momentum contributions involved in the scat-694

tering process. The consequence is a time-periodic, strongly695

angle-dependent emission of light and sound (with Fano696

resonances), analogous to electron transport through driven697

graphene quantum dots. In this way, the optomechanical698

quantum dot acts as a time-dependent converter for photons699

and phonons.700

Analyzing the underlying, effective two-level system701

within Floquet theory, it was shown that avoided crossings702

in the quasienergy band structure are of particular impor-703

tance. More specifically, when the (sideband) energy lies in704

the vicinity of an avoided crossing (Floquet resonance), the705

influence of the barrier is most prominent since the wave706

numbers determining the scattering process most deviate from707

those of the static dot. Then even a small oscillation amplitude708

may significantly affect the scattering, up to the point where709

the light-sound interconversion is suppressed and revived710

in the course of interference of waves with different wave711

numbers.712

The results presented in this work should have impact713

on both fundamental problems such as the observation of714

zitterbewegung and potential applications based on quantum-715

optical, laser-driven optomechanical metamaterials being suit-716

able for the transport, storage, and transduction of photons and717

phonons. In this context, a more realistic description of op-718

tomechanical systems beyond the continuum approximation,719

which ideally involves wave-packet dynamics and dissipation,720

is highly desirable, as well as more in-depth studies about721

the role of time-dependent (synthetically generated) magnetic722

fields [31].723
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APPENDIX: IMPLEMENTATION OF THE 727

FLOQUET APPROACH 728

Inserting the Floquet state (3) into the time-dependent 729

Dirac equation yields the Floquet eigenvalue equation: 730∑
p

∑
τ=±

{
cτ
p

(
Eτ,σ + p�

) |τ 〉 δpp′

+ g1

∑
τ ′=±

cτ
pατ

τ ′ |τ ′〉 (
δp+1,p′ + δp−1,p′

)}

= ε
∑

p

∑
τ=±

cτ
p |τ 〉 δpp′ , p′ ∈ Z, (A1)

where 731

Eτ = vσq + στ

√
g2

0 + δv2q2/4 (A2)

is the energy dispersion of the time-independent problem for 732

wave number q, and 733

ατ
+ = N τ

N +
g2

0 − γ τγ +

g0(γ + − γ −)
= −τα−τ

− , (A3)

with the normalization factor, 734

N τ = 1/

√
g2

0 + (γ τ )2, γ τ = voσq − Eτ . (A4)

Based on Eq. (A1) we define the vector of Fourier compo- 735

nents, c = (. . . , c+
−1, c

−
−1, c

+
0 , c−

0 , c+
1 , c−

1 , . . .)T, and the (Her- 736

mitian) Floquet matrix, 737

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

E+
−1 0 g1α

+
+ g1α

−
+ 0 0

0 E−
−1 g1α

+
− g1α

−
− 0 0

g1α
+
+ g1α

−
+ E+ 0 g1α

+
+ g1α

−
+

g1α
+
− g1α

−
− 0 E− g1α

+
− g1α

−
−

0 0 g1α
+
+ g1α

−
+ E+

+1 0

0 0 g1α
+
− g1α

−
− 0 E−

+1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

for Eτ
n = Eτ + n�. We fix � = 1, which is justified due to738

the scale invariance of the scattering problem. The quasiener-739

gies ε in F c = εc are obtained as the eigenvalues of the740

Floquet matrix (A5) and depend on the two barrier param-741

eters g0, g1, as well as on wave number q. The pseudospin742

projection σ = ±1 leads only to a change in the sign of743

the quasienergies and is determined by the sign of the wave744

number. As a consequence of the polariton degree of freedom745

τ = ±1, the static dispersion (A2) is twofold degenerate.746

Accordingly, the quasienergies are twofold degenerate, too, 747

which is reflected in the block-diagonal form of F and is 748

marked by the index (±) hereinafter. Diagonalization yields 749

a pair of quasienergies ε(±)(q ) with Fourier vectors c(±)(q ) 750

for each q. Other pairs of quasienergies ε(±)(q ) + n� are also 751

eigensolutions of Eq. (A5), but in principle they all contain 752

the same information about the time dependence. 753

According to Eq. (6), the eigensolutions of F are needed to 754

construct the transmitted wave function inside the dot. Since 755
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FIG. 12. Quasienergies ε(±) + n�, n ∈ Z, obtained as eigenval-
ues of the Floquet matrix (A5) for |g1| = 0.14� as a function of
the wave number q (using σ = ±1 for positive and negative values
of q). Inserted are also the energies En = E + n� of the central
band n = 0 and the sidebands n = ±1 (blue horizontal lines) for
E = 0 and static coupling g0 = 0.287�, corresponding to the case
of symmetric Floquet resonance close by E � 0 (see discussion in
Sec. III B 1 of the main text). The proper pair of quasienergies ε(±)

(solid lines) that has to be used for the scattering problem is that
which coincides with the dispersion of the static case at q → 0. The
wave numbers used for the scattering problem are determined by
the zeros of En − ε(±)(q ) and are marked exemplary for the cases
n = 0, 1 in the lower panels (i) and (ii). For comparison the polariton
branches of the energy dispersion of the static case, E∓(q ) (solid)
and E±(q ) ∓ � (dashed), are shown (brown thin lines). Since E = 0,
the wave numbers reveal the symmetry q

(±)
−n = −q (∓)

n .

the oscillating barrier shifts the energy E of the incoming756

wave, En = E + n�, the quasienergies are fixed: ε(±)(q ) =757

En. The zeros of ε(±)(q ) − En yield the wave numbers q (±)
n ,758

and hence the Fourier vectors c(±)
n can be calculated. Do-759

ing this it makes sense to connect the considered pair of760

quasienergies with the energy dispersion in the static case761

for q → 0: ε(±)(q → 0) = E±(q → 0). We note that when762

using the Floquet approach the specific geometry of the barrier763

only enters the scattering matrix via Eqs. (8) and (9) (e.g., the764

results for a planar barrier are given in [45]).765

Figure 12 dislays the highly symmetric situation that766

evolves in the numerical work for the Floquet resonance at767

photon energy E � 0 discussed in the main text. By tracking768

the quasienergies in dependence of q, the condition ε(±)(q ) =769

En defines the wave numbers q (±)
n (and Fourier vectors) that770

have to be used for the barrier wave function (crossings of771

the blue horizontal lines with the quasienergies); see panels772

(i) and (ii) for n = 0, 1. Deviations of the wave numbers q773

from those of the dispersion of the static case (obtained from774

crossings of the horizontal lines with the brown thin lines in775

lower panels of Fig. 12) arise due to the avoided crossings. 776

Obviously, these deviations are largest in the vicinity of the 777

points where the two polariton branches of the static disper- 778

sion cross each other. The corresponding crossing energies are 779

given by Eq. (16). Of course, the influence of the oscillating 780

barrier on the scattering is most prominent for energies En 781

near a crossing energy. There even small couplings |g1| � � 782

significantly modify the scattering (cf. Figs. 3, 6, and 8). 783

We finally note that at larger |q| values the quasienergies 784

are less affected by the barrier; for |q| � 1 the quasienergy 785

and the dispersion of free quasiparticles merge. This can be 786

used to implement truncation criteria for the number of side- 787

bands nmax which will have to be considered in the numerical 788

work. Taking into account that 2|g1| � g0, we found that 789

dimF � 2 + 4(x − 1) with x = 2(1 + 10 × 4|g1|) serves as a 790

good estimate for numerical convergence of the quasienergies 791

ε(±) as well as for those of the scattering coefficients. Then the 792

maximum number of sidebands used in the numerics should 793

be at least nmax = x/2, i.e., nmax � 1 + 10 × 4|g1|. 794
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