
Effective modeling of
charge-transferring atom-surface

collisions

I n a u g u r a l d i s s e r t a t i o n

zur

Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Universität Greifswald

vorgelegt von

Mathias Pamperin

geboren am 6. September 1986

in Grevesmühlen

Greifswald, 8. März 2019



Dekan: Prof. Dr. Werner Weitschies

1. Gutachter: PD Dr. Franz Xaver Bronold

2. Gutachter: Prof. Dr. Frithjof Anders

Tag der Promotion: 27. September 2019



Contents

1 Summary 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mixed-valence correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Ion-induced secondary electron emission . . . . . . . . . . . . . . . . . . 23

1.4 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Thesis Articles 39

2.1 Article I: Mixed-valence correlations in charge-transferring atom-surface

collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Article II: Many-body theory of the neutralization of strontium ions on

gold surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Article III: Ion-induced secondary electron emission from metal surfaces 67

Bibliography 89

Scientific Contributions 97

Declaration 99

Acknowledgement 101

III





1 Summary

1.1 Introduction

This thesis deals with charge-transferring atom-surface collisions. They are of cen-

tral interest in surface science [Bra89; Los90; Mod87a; New83; Win02; Yos86], a good

overview can be obtained from [Mon14; Rab94; Win07]. Their importance for plasma

science, for instance, arises mainly from the technical significance of secondary electron

emission from surfaces, which may occur, under certain circumstances, in the course of

a collision, see Fig. 1. They affect the modus operandi of low-temperature plasmas, for

example, in flat-panel displays and basic properties of a gas discharge like the electric

breakdown [Lie05] as well as the structure of the plasma sheath [Cam16; Lan15; Syd09;

Tac04]. Another important application is neutral gas heating of plasmas in thermonu-

clear fusion reactors such as ITER which utilizes surface-based production of negative

hydrogen ions [Kra08]. In addition to their importance for plasma science, many sur-

face diagnostics used in other areas such as secondary ion mass spectrometry [Cza91]

or metastable atom de-excitation spectroscopy [Har97] are based on charge-transferring

processes as well and allows one to gain insight into the constituents and structure of

a surface.

In principle, any number of charges may be involved in a particular charge-transferring

process. In practice, however, it is typically dominated by resonant and Auger pro-

cesses which involve one, respectively, two electrons as charges. The aforementioned

secondary electron emission, for example, is a by-product of an Auger process–in case

the emission is driven by the potential energy stored in the configuration of the incom-

ing ion–and was in the focus since the early studies dating back right to the beginnings

of modern condensed matter physics in the first half of the 20th century. Some most

notable studies to mention are [Cob44; Mas30; Oli30] where already the combination

of a resonant charge transfer followed by an Auger de-excitation is proposed. Also

notable is Shekhter [She37] who first outlined the Auger character. His work in turn

set the basis for Hagstrum [Hag53; Hag54] who pioneered, amongst other things, the

ion neutralization spectroscopy, see [Rab03] for an overview, as well as surface physics

in general, which was a mere niche topic before his contributions.

In contrast, the emission of secondary electrons from the surface may also be driven

by the projectile’s kinetic energy which is relevant in ion-surface scattering and sputter-

ing [Gna99; Sig92]. The importance of potential electron emission, however, increases

for lower projectile velocities and multiple charged ions which can store considerably

more potential energy [Aum07]. Low temperature plasmas operate typically in the

potential-driven regime due to kinetic energies of around ten electronvolts [Pie10].

Auger neutralization and de-excitation of ions/metastable species are thus the main

channels of secondary electron emission at plasma boundaries [Phe99]. Being that im-

portant for surface physics, it is not surprising that they have been already reviewed

several times in the last few decades [Bar94; Bra89; Los90; Mod87a; New83; Yos86]
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1 Summary

and also more recently [Mon14; Win02; Win07] and it is by now certain that the basic

mechanisms of secondary electron emission from solid surfaces have been identified.

γe

α

A+

A′ =

A
A∗

A+

A−


Fig. 1: Schematic representation of a positive ion A+ colliding with a surface with an

angle of incident α. This process may induce secondary electron emission γe
and/or change the configuration of the projectile.

Besides their great technological importance, charge-transferring atom-surface col-

lisions are also of fundamental interest. By coupling the local quantum system of a

projectile with its finite number of discrete electronic states to the large reservoir of

continuous electronic states of a surface, the scattering of a single atomic or molecular

projectile on a solid surface is a particular realization of a time-dependent quantum-

impurity system [Mer98; Sha96]. In solid-state physics the coupling of a local moment,

in the form of a local spin, in a metal to the itinerant electrons of the conduction

band is the archetypal quantum impurity system with well documented properties and

features [Ful91; Hew93]. One of these is the Kondo resonance, also referred to as

Abrikosov-Suhl resonance. It arises at the metal’s Fermi level and dissolves with in-

creasing temperature. These physical effects appear in other quantum systems with a

finite number of correlated internal states as well, if they are interacting with a reservoir

of external states. One example are semiconductor quantum dots coupled to metallic

leads [Agu03; Cha09; Pus04; Win94]. They allow to study local-moment physics in a

well-controlled setting by fine tuning many parameters, for instance, by means of a tun-

able gate voltage [Cro98] or adatoms [Ter09]. A potential technological application is a

single-electron transistor [Gol98a; Gol98b; Gra92]. Recent theoretical research [Coh11;

Lec14; Müh11; Ngh14] aimed for a better understanding of temporal changes to the

transport properties of quantum dots during the buildup and decay of local-moment

type correlations.

Experimentally, charge-transferring atom-surface collisions require quite a lot of effort

if one is interested in the intrinsic mechanisms of local-moment-type correlations or

seeks to make quantitative statements about the secondary electron coefficient. As a

result, only a handful of measured secondary electron coefficients exist. However, in

the future this could change with newly introduced techniques [Dak16; Mar15].

The availability is different for measured energy distributions of emitted secondary

electrons even though one has to note that the obtained spectra are in general–due

to technical reasons–unweighted and allow thus no conclusion about the strength of

the secondary electron coefficient. Over the years a variety of emission spectra were

measured [Lan03; Lan07; Ses87] with different projectile and surface combinations

such as helium ions scattering from aluminum [Hec98; Win93] or cesiated [Mül93] and

potassium-covered [Bre92b] tungsten surfaces for example. Beyond the measurement
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1.1 Introduction

of the secondary electron coefficient and energy distribution, a recent experiment by

He and Yarmoff provided strong, but indirect, evidence that the neutralization prob-

ability of a beam of strontium ions scattering on a clean gold surface is affected by

local-moment-type correlations [He10; He11] by measuring an unusual temperature

dependence of the neutralization probability of the strontium ions.

Theoretically, a charge-transferring atom-surface collision is quite a challenge to find

an efficient way to deal with the many-body scattering problem. Thus, many ap-

proaches [Bon16; Igl13; Mas09; Mon13; Mor98; Wan01] exist. Especially when it is

giving rise to a great variety of collision pathways such as during the scattering of he-

lium ions from aluminum surfaces [Caz98; Gar03; Igl14; Lor98; Som00]. The number

and type of reaction channels depends not only on the choice of the surface, but also

on the projectile. For instance, alkali ions [Mar93], respectively, helium ions [Lor94]

scattering on a copper surface are two very differing situations. Calculated emission

spectra of secondary electrons [Mod87b; Pro63] allow then for a stepwise interpretation

of the measured ones by adding channel by channel. Contrary to the low-temperature

plasma environment where the ions travel perpendicular towards the surface, many

atom-surface scattering experiments occur under grazing incident and occasionally with

higher kinetic energies. This results in high lateral velocities compared to the perpen-

dicular portion and has to be considered [Kim93; Sos03].

In this work, we theoretically investigate both aspects of charge-transferring atom-

surface collisions: local-moment-type correlations and emission of secondary electrons

from surfaces. Ideally, one chooses an approach that keeps as many electronic and

lattice degrees of freedom at an ab-initio level as possible. In practice, however, this

sophistication is hard to maintain. In this work, we do not aim to perform a description

from first principles [Gar03; Igl13; Mon13; Mor98] which could utilize density functional

theory or quantum-chemical techniques. Instead, we keep only the most important

degrees of freedom of the scattering process and use effective models for them. These are

basically the Anderson-impurity model [Baj07; Gol05; Kas87; Nak88; Onu96; Rom09]

leading to time-dependent Anderson-Newns Hamiltonians and Gadzuk’s semiempirical

approach [Gad09; Gad67a; Gad67b] to describe the projectile-target interaction from

classical image shifts. In direct comparison with the description from first principles,

the semiempirical approach offers a flexible basis for the modeling of a great variety

of projectile-target combinations. The addition of further effective models to increase

the general quality of the results is possible since the approach is very modular. The

clear physical interpretation of each effective model, as well as the requirement for

only a few and generally available parameters are further advantages of this approach.

Rewritten in terms of Coleman’s pseudo-particle operators [Col84; Kot86], the model

is then numerically analyzed. This is done within a non-crossing approximation for

the hybridization self-energies [Lan91; Nor93; Sha94a; Sha94b] which are utilized by

contour-ordered Green functions [Kad62; Kel64] for each relevant electronic state of

the projectile.

In the first part of this thesis we employ our strategy of effective models and analyze

the experiments of He and Yarmoff [He10; He11] from the outlined genuine many-

body theoretical point of view. They found strong evidence for a local moment-type

correlation that causes a non-monotonous temperature dependence of the neutralization

probability of strontium ions on gold surfaces: it first increases and then decreases with
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1 Summary

temperature. While the initial increase is most likely a combined thermal single-particle

and a correlated many-body effect, the decrease, however, could be the long sought

fingerprint for a transient mixed-valence resonance formed during an electron transfer

taking place between a surface and an atomic projectile [Mer98; Sha96]. We employ

the same strategy for magnesium where such evidence is not found.

In the second part we make extensive use of the projection technique which is an

essential part of the Anderson-Newns model and modify our semiempirical theory with

auxiliary bosons [Mar12] that essentially make the construction of any interaction and

atomic configuration possible. We apply our model to the multi-channel problem of

helium ions inducing secondary electron emission by scattering on metallic surfaces.

Depending on the metal and the collision parameters, different reaction channels like

Auger neutralization or resonant transfer followed by Auger de-excitation are open or

closed. An unbiased description of the collision therefore requires a theoretical model

that treats all channels equally and allows them to act simultaneously. This is ensured

by the just mentioned projection technique and the employment of auxiliary bosons.

In addition, the calculation of the secondary electron emission coefficient end energy

distribution requires that we introduce surface transmission functions. They abstract

the complex physical processes involved after a secondary electron is created but before

it is emitted from the surface.

The third part reveals details of our numerical schemes that we used in each scenario.

For strontium and magnesium we adapt the strategy of Shao and coworkers [Sha94a] for

calculating the two-time Green functions numerically exact to our particular modeling

of He and Yarmoff’s experiment. For helium, we describe in detail how we deal with the

different multidimensional integrations that arise for each transition matrix element of

each involved Auger process and give a general overview of our numerical approach.

1.2 Mixed-valence correlations

In this section we comment on Article I and Article II and use the opportunity to

give a general summary of our effective approach. The section is ordered as follows:

First, we recall the Kondo effect from solid-state physics. Second, we present Gadzuk’s

semiempirical approach which we use to describe and interpret He’s and Yarmoff’s ex-

periment [He10; He11] in terms of the afore recalled Kondo effect. Then, we construct

a suitable Anderson-Newns Hamiltonian by using the Anderson-impurity model, sum-

marize the quantum kinetic modus operandi and finally present some of our results of

Article I, Article II and a few unpublished ones.

Kondo effect The Kondo effect, named after Jun Kondo who developed the first

theoretical description [Kon64], is the unusual occurrence of a minimum in the elec-

trical resistivity at low temperatures in metals. It arises from spin-flip scattering of

itinerant conduction band electrons at local magnetic impurities. Kondo’s original ap-

proach was application of third order perturbation theory to take the alignment of the

scattering spin into account. This contributed an additional logarithmic term to the

electrical resistivity. Although the new term explained the measured minimum [Haa34],

it also diverges as the temperature approaches absolute zero. Other non-perturbative

techniques, such as the Bethe ansatz, were later used in the development of new, exact
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1.2 Mixed-valence correlations

and singularity-free models [And80; Vig80]. This search for better models is known

as the Kondo problem in solid-state physics and it is still an ongoing one due to the

high variety and complexity of many materials, such as rare-earth or actinide-metallic

compounds, generally known as heavy fermion systems [Lai18; Shi18], which commonly

require tailored approaches.

The local magnetic impurities are in general unpaired valence electrons of a finite

electronic system with a discrete energy distribution. Adatoms sticking on surfaces and

quantum dots with metallic leads are, thus, ideal realizations [Cro98; Ter09]. Depending

on the energies, three different regimes can be distinguished. In Fig. 2 they are shown

for a two level system. The shaded areas are occupied, the non-shaded areas unoccupied

electronic states of the metal’s conduction band. Filled (empty) dots mark occupied

(empty) levels of the impurity. The Fermi level is indicated by the thin horizontal line.

In the non-magnetic regime, also known as filled (I) and empty orbital (V) regime,

the local impurity acts like a crystallographic defect. Together with any other non-

magnetic defects of the lattice it contributes to the constant residual resistivity of the

metal. The magnetic case (III) is in fact the Kondo regime. The local impurity has

one unpaired spin and, hence, contributes fully to the Kondo effect. Scenario (II) and

(IV) show the mixed-valence regime where the electronic spin at the Fermi level is able

to transfer to and fro between metal and impurity, which results in a lower than unity

occurrence probability at the impurity. The total magnetic moment is, thus, lower than

in the Kondo, but higher than in the non-magnetic regime.

In addition, the strength of the coupling Γ between metal and impurity plays a

decisive role. For instance, if the difference between any discrete level and the Fermi

level is less than the corresponding coupling strength, the system is in the mixed-valence

regime. In terms of Sosolik and coworkers [Sos03], the system is then dominated by

coupling. For small surface temperatures TS a narrow resonance forms in the solid’s

density of states at the Fermi level. Its width is equal to the Kondo temperature

TK and, depending on the regime, it is either called Kondo (III) or mixed-valence (II

and IV) resonance. These states build up to shield the spin-flipping of the magnetic

impurity. This is the source of the Kondo effect [Ful91]. The mechanism breaks down

for TS & 4TK as lattice vibrations interfere with the screening and effectively weaken the

coupling between impurity and conduction band. This explains, however, the unusual

temperature dependence of the electrical resistivity [Hew93] at low temperatures. As a

final remark, strong coupling enhances Kondo-type effects [Sch66], as suitable electronic

conduction band and impurity moments pair stronger together and more easily form a

non-magnetic state.

Semi-empirical approach We now turn our attention to Gadzuk’s semiempirical

approach [Gad67a; Gad67b]. It combines the advantage of a clear physical picture

[Gad09] with comparably good qualitative results for separation lengths greater than

6–7 Bohr radii between surface and projectile [Bor95b]. It is based on image shifts for

the on-site variation of the projectile energy levels and on a golden rule calculation of

the level width, i.e. the hybridization induced coupling Γ of the energy levels, which

takes the non-orthogonality between surface states |~k〉 and projectile states |ψnlm〉 for

resonant charge transfer already into account.

For later purposes, we assume an effective two level system. It can be employed for
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1 Summary

I II III IV V

Fig. 2: Possible ground states for the Anderson model with two discrete levels. The

square marks the conduction band of the metal, the thin horizontal line the

Fermi level. Filled circles indicate the occupation of the corresponding level.

Due to Pauli principle, two filled levels cancel the local moment. Hence, one

can distinguish the non-magnetic (I and V), the mixed-valence (II and IV) and

the magnetic (III) regime.

any alkali and alkaline earth metal projectile, provided the s-valence orbital plays the

physically deciding role. Lower bound electrons of other shells contribute then only

to the screening of the atomic core’s charge. This alone allows us to model a wide

range of possible target-projectile combinations as effective two-level systems. Each

having two one-electron levels coupled to a continuum of states and an intra-atomic

Coulomb repulsion U acting between both levels, enabling thereby correlation induced

spin-flipping. Of course, if more than one shell has reactive levels this model has to

adapt.

Without any interaction between projectile and surface the upper of the two levels

εU coincides with the first ionization energy of the projectile I1. The lower level ε0 with

the second ionization energy I2. Polarization of the surface, however, let the ionization

levels shift upward,

εU (t) = −I1 +
e2

4|z(t)− zi|
, (1)

ε0(t) = −I2 +
3e2

4|z(t)− zi|
, (2)

with zi the position of the metal’s image plane measured from the crystallographic

ending at z = 0. The collision trajectory of the projectile

z(t) = zTP + v⊥|t| , (3)

with zTP the turning point and v⊥ the projectile’s velocity component perpendicular

to the surface describes the classical center-of-mass motion of the projectile. It is the

result of the trajectory approximation and is justified due to the high mass of the

projectile [Mod87a]. Small turning points introduce the need for corrections from first-

principles for the image shifts. However, we estimated them to not yet play a role for

strontium and magnesium ions scattered by a gold surface, the experimental situation

investigated by He and Yarmoff [He10; He11]. For the set of parameters used, we refer

to Article I and Article II.
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2+

−

2−

+
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z(t)− zi

ρ

z

r′

R

Fig. 3: Schematic representation of an ion (solid) inducing image charges (dashed)

in a metal surface. The residual valence electron of the ion (colored) interacts

with the projectile’s screened core, the core’s and its own image.

In Article II we offer an explanation of the strength and direction of the image shift

by introducing virtual processes of energy gain and loss. Similarly, the shifts can be

approximated by classical pictures [Gad09] as in Fig. 3 where a positive atomic core

and an electron induce image charges in the metal’s surface. The potential felt by the

electron (colored) is

V (z, ρ) = − e2

2R
+

2e2

r′
+ VC(r) , (4)

with the effective Coulomb potential VC(r), which includes the entirety of intra-atomic

exchange and interaction terms, R = 2z and r′ =
√(

z(t)− zi + z
)2

+ ρ2, if the electron

is at ~re = (z, ρ). Note that the charges are mirrored at the image plane at zi > 0 before

the crystallographic ending at z = 0. The effective Coulomb potential is in general

VC(r) ≥ 2e2/r since the atomic charge is only partly screened by the Z − 2 closer

bound electrons in lower lying orbitals [Cle63; Sla30]. Here, Z is the number of protons

in the projectile’s core. In addition, we can assume that the atomic radius of the

projectile is with RA ≈ 3 aB for magnesium and RA ≈ 4 aB for strontium [Cle67;

Sla64] much smaller than its distance to the surface’s image plane for the longest part

of the trajectory. The charge of the core’s image Zimage = −2, whose absolute value is

thus identical to the total screened charge of the atomic nucleus, not the effective one.

In this regime r � z(t)− zi is then true up to and near the turning point. In this case,

we can set z ≈ z(t)− zi as well as ρ ≈ 0 and approximate Eq. (4) with

V (r, t) =
3e2

4|z(t)− zi|
+ VC(r) . (5)

The corresponding time-dependent on-site energy can be calculated quantum mechan-

ically,

ε0(t) =

〈
ψ

∣∣∣∣ p22me
+ V (r, t)

∣∣∣∣ψ〉 , (6)
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where ψ are orthonormal eigenfunctions of the Coulomb problem. We then find that

the time-dependent part of Eq. (5) is identical to the image shift of Eq. (2) and that

I2 is completely determined by VC(r). As I1 and I2 are tabled [Cle74], we can simply

ignore the effective Coulomb potential. A similar derivation with an additional electron

outside the surface, thus, a total of two, leads to Eq. 1, the time-dependent on-site

energy of the upper level.

In contrast to the mechanism of virtual processes we applied in our articles, this

type of derivation of the image shift is substantially more involved in the mathematical

description and therefore offers the possibility of qualitative improvement by omitting

applied approximations. That being said, for small separation lengths, corrections

resulting from first-principles are probably more necessary [Mon14].

The collision of the projectile with the target rearranges the charges between them

via resonant charge transfer (RCT) and via various Auger processes which we outline

in the next section. The absolute value of the matrix-elements describing the transport

from the surface to the projectile V s→p
~k

(t) and vice-versa V p→s
~k

(t) must be equal. They

differ only in phase so that

V s→p
~k

(t) =
[
V p→s
~k

(t)
]∗
. (7)

The time-dependent Hamiltonian describing the interaction is H(t) = p2/2m+VS(t) +

VP (t) where VS(t) is the surface’s electronic potential including all polarization effects

and VP (t) the residual Coulomb potential of the projectile. Instead of calculating

the eigenfunctions for such a combined Hamiltonian, which is an extremely difficult

undertaking, Gadzuk assumed [Gad67a; Gad67b] two things:

The potential VS(t) is a perturbation for any projectile electron described by HP (t) =

p2/2me+VP (t) with eigenfunctions |ψ〉. Similarly, the potential VP (t) is a perturbation

for any surface electron described by HS(t) = p2/2me + VS(t) with eigenfunctions |~k〉.
In this semiclassical picture the electron may change its state from |~k〉 → |ψ〉 or from

|ψ〉 → |~k〉 if it is perturbed by the corresponding potential thereby switching its position

from the surface to the projectile or vice versa. In essence, that means that Eq. (7)

becomes

V~k(t) =
〈
~k
∣∣∣VS(t)

∣∣∣ψ〉+ γ =
[〈
ψ
∣∣∣VP (t)

∣∣∣~k〉+ γ′
]∗
, (8)

where the functions γ and γ′ arise as corrections from non-orthogonality between |~k〉
and |ψ〉. In general, the orthonormal basis of the complete Hilbert space can not be

formed by combining basis states of isolated Hilbert sub-spaces, which |~k〉 and |ψ〉
essentially are. However, Gadzuk showed [Gad67b] that the correction

γ′ =
∑
~k 6=~k′

〈
n
∣∣∣~k′〉〈~k′∣∣∣VP (t)

∣∣∣~k〉 !
= 0 , (9)

for Wannier-like functions |~k〉 and |~k′〉 and that it is independent of the actual form of

the intra-atomic Coulomb interactions encoded in VP (t).

We can thus very accurately calculate the matrix element by employing VP (t) as po-

tential, using tabled one-electron Roothaan-Hartree-Fock atomic wavefunctions [Cle74]

and choosing reasonable surface wavefunctions from an additional effective model. In

8



1.2 Mixed-valence correlations

practice, we ignore any lateral variation of the surface and employ wave functions of

a simple step potential ψ~k(~r) with depth V0 = φ + EF with φ the work function and

EF the Fermi energy of the metal. More details concerning the calculation of the ma-

trix elements can be found in Article I and Article II. Qualitative improvements are

possible by employing more sophisticated models such as the one from Jenning and

Jones [Jon84] although Kürpick and Thumm [Kür96] came to the conclusion that the

actual impact of such improvements is rather limited.

To actually interpret V~k(t), it is helpful to utilize Fermi’s golden rule [Dir27; Fer50]

to determine the strength of the coupling

Γεσ(t) = 2π
∑
~k

|V~kσ(t)|2δ(ε~kσ − ε) . (10)

Generally, Eq. 10 is interpreted as level width of the energy level ε, in our case ε0(t),

respectively, εU (t), or as inverse lifetime of the hybridized state.

Knowing the shifts and widths is crucial to choosing the right model. With this in

mind, we can now perform a preliminary discussion of He and Yarmoff’s experiment in

the following paragraph.

He and Yarmoff’s experiment He and Yarmoff’s experiment [He10; He11] was

carried out using positive gallium, magnesium and strontium ions as scattering pro-

jectiles. It was performed in vacuum where they positioned a cleaned polycrystalline

gold foil as target. The purity and work function of the foil were monitored by Auger

spectroscopy. The projectiles were produced and accelerated in a Colutron ion source

chamber by heating a gallium, magnesium or strontium metal in argon plasma. Neu-

tral projectiles were filtered out by electrostatically bending the beam. Time-of-flight

spectroscopy and a microchannel plate detector were used to analyze the scattered

projectiles. In Article I we perform a preliminary examination of the experiment for

magnesium and strontium. In Article II we carry out an in depth analysis for strontium.

We did only a very few preliminary investigations concerning gallium since its p-shell

valence electrons introduce complicated issues compared to magnesium and strontium,

which are both alkaline earth metals and have a completely filled s-valence orbital in

their ground state. As a result, their ground state has no magnetic moment, that of

gallium has one.

Fig. 4 shows the on-scale energetic situation for the magnesium 3s and strontium 5s

valence orbital in front of a gold surface during scattering. At the end of the trajectory,

the figure shows the expected final configurations of magnesium in the non-magnetic

and of strontium in the mixed-valence regime. However, the gold surface is bombarded

with positive ions and Mg+ as well as Sr+ carry a magnetic moment in a correlated

two-level system from the beginning until they neutralize. Thus, the question is not

whether a Kondo-type resonance manifests, as there will always temporarily occur one,

but whether it significantly influences the charge transfer. This only happens if the

system is in the mixed-valence regime for a while. Then, at least one electron level of the

projectile overlaps with the occurring resonance at the Fermi level at −φ electronvolts.

Thereby, the electron transport between surface and projectile is increased, see Fig. 5.

The better the Kondo-type resonance is sampled by the widths of the few level system,

the stronger the enhancement will be [Sha96]. In case of magnesium, we thus expect

9
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Fig. 4: Level shifts (solid) and widths (dotted) for magnesium (left) and strontium

(right) during the scattering process. The projectile starts at z = 20 aB on the

left, travels to the turning point at z = 5 aB and returns to its staring distance

on the right side. The Fermi level εF = −φ and U(z) is the intra-atomic

Coulomb interaction. The shaded area is the region of occupied electronic

conduction band states at T = 0 K. Full circles indicate occupation of the

corresponding level.

nearly no effect due to the resonance. The overlap is simply too small and occurs only

directly at the turning point. When a model description is chosen, one could thus, in

principle, ignore any resonance inducing on-site correlations. This is, however, not the

case for strontium. The overlap with the region of the Fermi level is very extensive, as

even the lower level ε0 overlaps more with it than the upper level εU for magnesium did.

Knowing this, we need, thus, a model capable of handling both levels simultaneously as

well as the intra-atomic Coulomb interaction, which is key for any on-site spin-flipping

event that causes the formation of Kondo-type resonances.

When the temperature increases, the Kondo resonance broadens and is better sam-

pled by small widths. This increases the neutral fraction [Sha96] in addition to any

thermal increase or decrease as, for example, shown by the blue curve on the right

side of Fig. 5 for low temperatures. The thermal behavior is dependent on the actual

position of the electron level of the projectile. If it is below the Fermi level when the

transport typically occurs, it decreases with temperature and increases otherwise. In

any case, when the resonance breaks down, the enhancement will end. The neutraliza-

tion probability thus decreases from a certain point on with temperature until it is on

the thermal level (total absence of any Kondo-type resonance). After the breakdown,

the neutral fraction is solely dominated by the thermal smearing of the Fermi edge. The

combined curve in a mixed-valence scenario may look like the curve in Fig. 5, which

resembles the measured one of He and Yarmoff [He10], but is very dependent on the

actual parameters of the system.

Likewise, the spectral density of the projectile should show a pronounced peak di-

rectly at the Fermi level caused by spin fluctuations for low temperatures, see left side

of Fig. 5. If the temperature is increased, the peak broadens at first, increasing thereby

transport due to better sampling of the peak [Sha96], but ultimately losing its spectral

weight to the actual positions (caused by charge fluctuations) of the energy levels. This

marks the transition from a coupling dominated system to an energy driven one [Sos03].

Only a system in the mixed-valence regime is able to feature the anomalous temper-

ature dependence. In the non-magnetic and magnetic scenario the Kondo resonance at
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Fig. 5: Left: Schematic representation of the mixed valence scenario. At low temper-

atures the emergent Kondo-type resonance in the density of states enhances

the transport into the projectile’s levels. Right: Schematic temperature de-

pendence of the neutral fraction.

the Fermi level does not hybridize, cf. Fig. 2, and is thus simply not sampled by any

of the atomic levels of the projectile.

Anderson impurity model As a prerequisite for our quantum kinetic analysis we

construct an Anderson-Newns Hamiltonian [Bra89; Los90; Mod87a; Yos86] for our

two level system. Note that this Hamiltonian needs to be time-dependent due to the

movement of the projectile which leads to time-dependent energy shifts and matrix

elements. As a result, common known approaches to the Kondo problem from solid

state physics, such as the Bethe ansatz [Hew93], can not be used. They were simply

designed for scenarios in equilibrium.

With the time-dependent energy shifts and single matrix elements at hand, the

Anderson-Newns Hamiltonian for a two level system interacting with a continuum of

states is

H(t) =
∑
σ

ε0(t) c
†
σcσ +

∑
~kσ

ε~kσ c
†
~kσ
c~kσ

+
1

2
U(t)

∑
σ

c†σcσc
†
−σc−σ

+
∑
~kσ

[
V~kσ(t) c†~kσ(P 0

σ + PU−σ)cσ + H.c.
]
. (11)

The c
(†)
σ annihilate (create) an electron with spin polarization σ = {↑, ↓} in the

valence orbital of the projectile that is the 3s shell for magnesium, respectively, the 5s

shell for strontium. In an analogous manner, c
(†)
~kσ

annihilates (creates) an electron with

spin polarization σ and momentum ~k in the conduction band of the metal.

The first term in conjunction with the third controls the correct order of filling

the two-level system. The first electron is always added with an energy of ε0(t). In

principle, the second one adds the same energy ε0(t) to the system. However, the third

term immediately adds U(t), so that the second electron is at εU(t) = ε0(t)+U(t). The

intra-atomic Coulomb interaction U(t) = εU(t)−ε0(t) and the level ε0(t) is filled before

11
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εU(t). Likewise εU(t) donates an electron to the conduction band (second term) via

charge transfer (last term) before ε0(t) does so. In addition, the spin can be arbitrarily

chosen when an electron is transfered from εU(t) to the surface’s conduction band as

they are indistinguishable. This correlation introduces the spin fluctuations that are

necessary for the Kondo-type resonance to occur and are only possible due to the third

term. Note that H.c. stands for the Hermitian conjugated, the reversed process in the

last term (in case of Eq. (11), charge transfer from the surface into one of the two

atomic levels).

In physical reality the intra-atomic Coulomb interaction is generally large. As Cole-

man [Col84] and Langreth and Nordlander [Lan91] pointed out, one usually employs

projection operators, here P 0
σ and PU−σ, which project non-fluctuating states out to

effect this scenario and we make extensive use of them in Article III. The disadvantage

is that the projected operators P 0
σc

(†)
σ and PU−σc

(†)
σ do not satisfy standard commu-

tation relations and that, thus, the conventional quantum kinetic analysis based on

diagrammatic expansion with Wick’s theorem [Wic50] is complicated.

Two options are feasible. First, one could ignore the intra-atomic Coulomb interac-

tion altogether. We henceforth call this option the U = 0 model. Here one does not

project but rather has a set of single levels interacting with the continuum but not with

each other. Within this model, the filling order of the electrons is neither controlled nor

does any correlation induced effect manifest in the numerical results due to the impos-

sibility of spin-flips. Note that to change Hamiltonian (11) to the U = 0 model one has

to set, obviously, U(t) = 0 and change one of the energies ε0(t) in the sum of the first

term to εU(t), in order to match the total ionization energy. This model may give ex-

cellent numerical results as long as certain conditions are met: Most importantly, none

of the levels is allowed to significantly reach into the region of the Fermi level of the

surface. Then one can be sure from the outset that no correlation-induced Kondo-type

resonance plays a significant role. Magnesium scattering from a gold surface would

thus be an ideal candidate, cf. Fig. 4. However, although the U = 0 model does allow

accurate numerical statements about the neutral fraction under certain conditions, it

can not predict anything depending on the actual spin alignment since those are hard

coded by the model.

The second more refined option is to apply Coleman’s pseudo-particle representation

[Col84; Kot86]. Then, we can express the projection operators as well as c
(†)
σ in terms of

pseudo-particle operators which obey fermion or boson commutation rules and thus can

be treated using standard field theory. For the time-dependent case, this approach was

first adapted by Langreth and Nordlander [Lan91] and was subsequently thoroughly

investigated by Shao [Sha94a; Sha94b] together with the former two. One has, again,

two ways to proceed. If one can identify one of the two levels as inactive or always

projected out, e.g. the upper level in the magnetic regime (III) or the lower level in

the non-magnetic regime (I) in Fig. 2, beforehand, one can apply U → ∞, sending

effectively the inactive level to plus or minus (by working with holes) infinity. Using

this U → ∞ model, one discards this way either a projectile configuration with two

valence electrons (plus infinity) or an empty one (minus infinity). Unfortunately, from

Fig. 4 we know that both valence levels of strontium reach with their width just to the

Fermi level of the gold surface. We can thus conclude that both mentioned discardable

configurations play a role and that we have to use a pseudo-particle representation

12



1.2 Mixed-valence correlations

which takes a finite U 6= 0 into account.

In Article I and Article II, we simply applied the pseudo-particle representation for

the ladder operators c
(†)
σ used by Shao and coworkers [Sha94b]. As we will discuss in

the next section, for Article III we had to develop a pseudo-particle representation for

an effective three-level system. The outlined approach in Article III is in principle the

same for an effective two-level system:

Without limiting the generality, one chooses any completeness that contains each of

the possible states of the two-level system. For example,

Q = |00〉〈00|+ |10〉〈10|+ |01〉〈01|+ |11〉〈11| = 1 (12)

works if we agree that the first entry of any given Fock-vector with occupancy number

basis accounts henceforth for a spin-up, the second for a spin-down electron. The first

term represents a double ionized projectile, i.e. Mg2+ or Sr2+, the second and third

term the positive ion Mg+ or Sr+ either with an unbound spin-up or spin-down electron

and the last term the neutral atom Mg0 or Sr0. The corresponding projection operators

P 0
↑ = |00〉〈00|+ |10〉〈10| ,
P 0
↓ = |00〉〈00|+ |01〉〈01| ,

PU↑ = |10〉〈10|+ |11〉〈11| ,
PU↓ = |01〉〈01|+ |11〉〈11| (13)

are the projection operators for RCT into the lower, respectively, the upper Ionization

level. Note that P 0
σ +PU−σ = 1 is a special case and does not apply in general. However,

conveniently it is, therefore, often omitted in Hamiltonian (11) or similar ones by many

authors (we did so in Article II) or, in case of U →∞, often c
(†)
σ is already the projected

operator P 0
σc

(†)
σ .

In the next step, we define that each physical configuration can be created by its

corresponding pseudo-particle operator,

|00〉 = e†|vac〉 , |10〉 = p†↑|vac〉 , |01〉 = p†↓|vac〉 , |11〉 = d†|vac〉 (14)

and analogously annihilated by e, pσ and d. Operators representing configurations

with an even number of electrons obey Bose statistics, that is e(†) and d(†), whereas p
(†)
σ

belonging to a configuration with an uneven number of electrons should obey Fermi

statistics. The pseudo-particle representation treats thus whole projectile configura-

tions as a single particle allowing thereby to add (remove) more than one electron with

a single application of an operator to (from) the projectile.

To express Hamiltonian (11) in this pseudo-particle representation, we let the original

operators c
(†)
σ act on the completeness (12). Remember that c

(†)
↑ acts only on the first

and c
(†)
↓ only on the second entry of any given vector due to our previous agreement.

Then,

c†↑ = c†↑ ∗ 1 = |10〉〈00|+ |11〉〈01| , (15)

c↑ = c↑ ∗ 1 = |00〉〈10|+ |01〉〈11| , (16)

c†↓ = c†↓ ∗ 1 = |01〉〈00| − |11〉〈10| , (17)

c↓ = c↓ ∗ 1 = |00〉〈01| − |10〉〈11| , (18)
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1 Summary

where the minus sign in (17) and (18) is by definition to satisfy the anti-commutation

rules, in specific

[c†↑, c↓]+ = |10〉〈01| − |10〉〈01| !
= 0 ,

[c†↓, c↑]+ = |01〉〈10| − |01〉〈10| !
= 0 . (19)

Using Eq. (15)–(18), we can easily calculate any product of c
(†)
σ with c

(†)
σ′ or P 0

σ and

PU−σ appearing in Hamiltonian (11) algebraically. With respect to the pseudo-particle

operators (14), it becomes [Sha94b]

H(t) =
∑
σ

ε0(t) p
†
σpσ + [ε0(t) + εU (t)] d†d +

∑
~kσ

ε~kσ c
†
~kσ
c~kσ

+
∑
~kσ

[
V~kσ(t) c†~kσe

†pσ + H.c.
]

+
∑
~kσ

sgn(σ)
[
V~kσ(t) c†~kσd p

†
−σ + H.c.

]
. (20)

The Hamiltonian does not have an entry proportional to e†e since the associated energy

is equal to zero.

A constraint to the pseudo-states is obtained from the chosen completeness. In case

of completeness (12), we obtain directly

Q = e†e +
∑
σ

p†σpσ + d†d = 1 , (21)

by applying the pseudo-particle representation (14) to it. This ensures that only one

of the four pseudo-particle states is ever realized. Note, if we use a completeness

where only a subspace of states participates in the fluctuations, the completeness must

be projected onto that subspace before the pseudo-particle representation is applied.

However, the relationship between c
(†)
σ and the pseudo-particle states is always obtained

using the total unprojected completeness as this ensures that all Hermitian conjugated

processes transform correctly. Here all non-fluctuating states are intermediate and

disappear after carrying out all algebraic calculations. For more informations, see

Article III and the following section.

Quantum kinetics We employed the formalism developed by Langreth and Nordlan-

der [Lan91; Sha94a; Sha94b] to calculate the occurrence probability for each projectile

configuration. It is based on contour-ordered Green functions [Kad62; Kel64] and offers

the possibility to derive rate equations with different degrees of approximation. How-

ever, these are not presented here, but in the above-mentioned original publications as

well as in the appendix of Article II.

For the formalism to work, we need a contour-ordered Green function as propaga-

tor for each projectile configuration, one for the empty, single-, and double-occupied

projectiles, and one for the conduction band electrons of the metal surface,

iE(t, t′) =
〈
TC e(t) e†(t′)

〉
, (22)

iPσ(t, t′) =
〈
TC pσ(t) p†σ(t′)

〉
, (23)

iD(t, t′) =
〈
TC d(t) d†(t′)

〉
, (24)

iG~kσ(t, t′) =
〈
TC c~kσ(t) c†~kσ(t′)

〉
, (25)
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1.2 Mixed-valence correlations

where the time variables run over the complex Keldysh contour as shown in Fig. 6.

Their time arguments are thus complex. The operator TC orders all objects on the

contour. So Fig. 6 shows the case where t′ < t but an event occurs at t before an other

occurs at t′ because they happen on different branches of the contour. The operators

making up the Green functions evolve in time with the full Hamiltonian (20). The

statistical average with respect to the density matrix is marked by the brackets.

tt′ ∞−∞

time

Fig. 6: Keldysh contour in the complex time domain. The Green functions (22)–(25)

have time arguments t and t′ slightly above or below the real time axis unlike

their analytic pieces. The upper part of the contour runs from t = −∞ to

t =∞, the lower back to t = −∞.

Contrary to the Green functions (22)–(25), their analytic pieces have real time argu-

ments, making them much more convenient to use. The less- and greater-than Green

functions are given by

iH(t, t′) = ΘC(t− t′)H>(t, t′)∓ΘC(t′ − t)H<(t, t′) , (26)

where H is a placeholder for E, Pσ, D or G~kσ and where ΘC is the Heaviside function

defined on the complex Keldysh time contour. The upper sign is for fermionic (Pσ
and G~kσ) the lower sign for bosonic (E and D) Green functions. The advanced and

retarded Green functions can be constructed from them,

iHR(t, t′) = θ(t− t′)
[
H>(t, t′)±H<(t, t′)

]
, (27)

−iHA(t, t′) = θ(t′ − t)
[
H>(t, t′)±H<(t, t′)

]
, (28)

where the upper sign is again for fermionic the lower for bosonic functions. Note that

the retarded and advanced functions have to be projected onto the right subspace

Q = 1 enforced by the constraint (21). Also, HA(t, t′) = [HR(t′, t)]∗ applies due to

commutativity of complex numbers. Similarly, H≷(t, t′) = [H≷(t′, t)]∗ holds. The

Heaviside function θ is defined on the real time axis.

All the information we are interested in can be accessed through the analytical parts

of the pseudo-particle Green functions. This includes the occurrence probabilities for

any projectile configuration as well as all spectral information. Explicit rules for ob-

taining them can be found in Article II. Note that for the latter, knowledge about the

full solution of the two-time pseudo-particle Green functions is a prerequisite. For this

matter, this circumstance essentially prevents the use of a rate equation.

Out of convenience, we use atomic units. Length is thus measured in Bohr radii aB,

energy in Hartree EH, mass in electron mass me and ~ = 1. Note that the time scale
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of the scattering process is in the range of femtoseconds. Then, the Dyson equations,

which determine the pseudo-particle Green functions, are[
i
∂

∂t
− εH(t)

]
H<(t, t′) =

∫ ∞
−∞
dt̄ΣR

H(t, t̄ )H<(t̄, t′) +

∫ ∞
−∞

dt̄Σ<
H(t, t̄ )HA(t̄, t′) (29)

and [
i
∂

∂t
− εH(t)

]
HR(t, t′) = δ(t− t′) +

∫ ∞
−∞
dt̄ΣR

H(t, t̄ )HR(t̄, t′) . (30)

The analytic pieces of the self-energies Σ<
H(t, t′) and ΣR

H(t, t′) are obtained analogous

to Eq. (26)–(28). Depending on H the self-energy ΣH is either Σσ if H = Pσ, Πe if

H = E or ΠD if H = D. Likewise, εH is either ε0 for H = Pσ, or ε0 + εU for H = D.

In case of H = E, εH = 0 applies, since none of two possible electrons is present in the

valence shell.

The self-energies are the energies of the dressed pseudo-particles. They take changes

to the environment into account which are caused by the interaction of the pseudo-

particles with their system. For the self-energies at hand we use the so called non-

crossing approximation (NCA) which is self-consistent and captures all diagrams with

non-crossing propagators. It is a universally accepted approximation for heavy-Fermion

systems in solid state physics and is generally applicable for systems with strong cor-

relation compared to hybridization [Ful91; Hew93].

t t′

pσ pσ

e

c~kσ
t t′

p−σ p−σ

d

c~kσ

t t′

e e

pσ

c~kσ
t t′

d d

p−σ

c~kσ

Fig. 7: Self-energies of the pseudo-particles. Only propagators between t and t′ con-

tribute, the other ones display the correct connection. The dots represent the

transition matrix elements. Σσ(t, t′) is the sum of both top diagrams, Πe(t, t
′)

equals the bottom left and ΠD(t, t′) the bottom right diagram.

In Fig. 7 we present all NCA self-energy diagrams which arise from the interactions

encoded in Hamiltonian (20). Using standard diagrammatic rules [Lif81], any diagram

can be translated into an equation. For instance,

−iΠe(t, t
′) =− (i)2

∑
~kσ

V~kσ(t)V ∗~kσ(t′) iPσ(t, t′) iG~kσ(t′, t) , (31)
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1.2 Mixed-valence correlations

whose analytic pieces, using (26)–(28), are

Π≷
e (t, t′) =

∑
~kσ

V~kσ(t)V ∗~kσ(t′)P≷
σ (t, t′)G≶

~kσ
(t′, t) , (32)

ΠR
e (t, t′) =

∑
~kσ

V~kσ(t)V ∗~kσ(t′)PRσ (t, t′)G<~kσ(t′, t) . (33)

Normally, the NCA assumes that the surface states remain in thermal equilibrium.

This is justified if the interaction V~kσ(t) is short-lived and relatively weak. This allows

us to neglect any dressing for the bulk propagator and use

G≷
~kσ

(t, t′) = f≷(ε~kσ) e−iε~kσ(t−t
′) , (34)

with f< the Fermi-Dirac distribution function and f> = 1− f<.

Earlier, we introduced the level width (10), a measure of strength of the coupling.

As an approximation, the self-energies (32)–(33) can be expressed in proportion to the

level width by inserting the delta function δ(ε~kσ − ε) and adding an integration over ε.

Then,

2π
∑
~k

V ∗~kσ(t)V~kσ(t′) δ(ε~kσ − ε) '
√

Γεσ(t)Γεσ(t′) . (35)

For equal times, this approximation gives the correct result. For sufficiently unequal

times, large deviations can occur, which nevertheless play a minor role: V ∗~kσ(t)V~kσ(t′)
decreases exponentially with unequal times. In a time integration, the leading contri-

bution comes, thus, from the argument at equal times! The utility of this approach

becomes clear when we look at the second approximation we adopted. It concerns the

integration over ε we just introduced and exploits the exponential behavior of Γεσ(t)

even further. For example, for H = E, the ε-dependent part of the right hand side

of (30) can be approximated as follows:∫
dε

2π

√
Γεσ(t)Γεσ(t′) f<(ε) exp

[
− i
∫ t′

t
dτ(ε0(τ)− ε)

]
'
√

Γε0(t)σ(t)Γε0(t′)σ(t′)
∫

dε

2π
f<(ε) exp

[
− i
∫ t′

t
dτ(ε0(τ)− ε)

]
, (36)

which applies analogously to all other Dyson equations as well. We did not attempt

to derive this approximation mathematically by an asymptotic stationary-phase analy-

sis [Ble86]. Instead we adopted the qualitative, physics based reasoning of Langreth and

Nordlander [Lan91]. In principle, this is a semiclassical approximation (SCA) which

exploits that the action-type integral of the exponential function of Eq. (36),

S(t, t′) =

∫ t′

t
dτ(ε0(τ)− ε) , (37)

becomes minimal for

ε0(τ) = ε (38)
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at any time. This corresponds to the classical resonance condition of resonant charge

transfer. If (38) is met, the transfer is thus particularly efficient. Following Langreth’s

and Nordlander’s arguments, this sets the leading order of the oscillating integrand

to Γε0(t)σ(t). Hence, Γεσ(t) can be pulled outside the integrand by setting ε to ε0(t),

respectively εU (t) for other right hand sides in (29) and (30).

In concert, both approximation are numerically quite beneficial. Without any ap-

proximations, the ~k-sum on the left hand side of (35) has to be computed for three

changing variables, namely t, t′ and ε. Depending on the grid size, this may require

quite a lot of memory and computation time. The level widths Γε0σ(t) and ΓεUσ(t)

on the other hand depend only on one variable and omit, in addition, any imaginary

part which is presumably suppressed anyway by the strong oscillations of the residual

integrand [Lan91]. Much more important, however, is that the level widths offer an

intuitive physical interpretation and are easily visually comparable to each other. This

makes them a central component of our effective approach.

Temperature dependence of the neutral fraction The self-energies Σσ(t, t′),
Πe(t, t

′) and Πd(t, t
′) effectively couple the pseudo-particle Green functions with each

other. To calculate the temperature dependence of the neutral fraction, it is thus im-

perative to solve the Dyson equations (29) and (30) for each pseudo-state. Numerically,

this is done on a time-grid where one first calculates all retarded and afterwards all

less-than Green functions simultaneously. A much more detailed description concerning

the numerical scheme can be found in Article II and in the section after the next.

Knowing all pseudo-particle Green functions, the neutral fraction

αw = lim
t→∞

D<(t, t) . (39)

From a programming point of view, this, of course, means that the maximum time

tmax must be selected appropriately to allow D<(t, t) to equilibrate. The Fermi-Dirac

distribution function f<, introduced in (34), makes all pseudo-particle Green functions

dependent on the surface temperature TS. Therefore, the Dyson equations (29) and (30)

need to be redissolved for each individual temperature.

Fig. 8 shows our results from Article I and Article II. For the parameter set re-

quired for the calculation, we refer to these articles. The temperature dependence of

the neutral fraction for magnesium (left) is well within the stated error of He and

Yarmoff [He11]. The zoom reveals that the neutralization probability decreases very

weakly but monotonically with increasing temperature. Since the upper level εU (t) is

well below the Fermi-level at all times, see Fig. 4, this is indeed the expected behavior:

As the surface temperature TS increases, more and more hole excitation occur below

the Fermi-level in the conduction band of the gold surface. Statistically, less surface

states can release an electron to an empty projectile level that remains below the Fermi

level. For TS = 900 K this smearing is less than one tenth of one electronvolt. In direct

comparison to the Fermi energy EF = 5.53 eV and the work function φ = 5.1 eV this is

a small effect, which therefore can only cause a slight decrease of the neutral fraction

with temperature. There is no indication whatsoever that a possibly occurring Kondo-

type resonance is sampled at all by the projectile levels of magnesium. Considering

magnesium as a benchmark, we believe that our effective modeling provides excellent
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1.2 Mixed-valence correlations

results for the neutralization probability for other non-magnetic and magnetic scenarios

as well.
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Fig. 8: Temperature dependence of the neutralization probability α = nd(∞) for

magnesium (left panel) and strontium (right panel) ions after hitting a gold

surface. The experimental data is from [He11] for magnesium and [He10] for

strontium. For the set of parameters used, we refer to the articles.

The neutral fraction differs dramatically in a mixed-valence scenario, see the right

panel of Fig. 8. It shows our numerical results for strontium. Using the usual work

function of gold, φ = 5.1 eV, our approach obviously overestimates the neutralization

probability compared to the measured data of He and Yarmoff [He10]. However, it

is still of the correct order of magnitude which is not self-evident in terms of our

effective modeling. In addition, we also found a relatively strong negative temperature

dependence that extends over the entire range of considered temperatures. This is

a clear indication of the occurrence of a Kondo-type mixed-valence resonance at the

Fermi level: Remembering from Fig. 4 that the upper level εU (t) is already above the

Fermi level when its level width is strongest, one typically expects an increase of the

neutralization probability with temperature analogous to the decrease in the magnesium

scenario if any kind of occurring Kondo-type resonance is not sampled at all. This is

the case for the U = 0 model, see Fig. 8. Here, any kind of intra-atomic Coulomb

correlation U(t) is neglected on purpose which specifically eliminates the possibility of

electronic spin fluctuations on the projectile. These are, however, elementary to the

Kondo effect [Kon64]. As a consequence, no Kondo-type resonance will occur as we will

see in the next paragraph. In addition, the correlated U 6= 0 result is greatly enhanced

compared to U = 0 to a point where the strong increase of the neutralization probability

with temperature of the experiment can no longer be represented with our model. Most

certainly, either the energy shifts and, depending on them, the level widths need fine

tuning or, also likely, the NCA diagrammatic expansion for the self-energies in Fig. 7

has to be supplemented with higher order diagrams (vertex corrections), essentially

upgrading the expansion to the one-crossing approximation (OCA), see [Tos10] for a

qualitative comparison for quantum dots.

To give an impression, Fig. 9 shows the fourth order diagram for Πe(t, t
′) utilizing

the same diagrammatic rules as before. We performed, however, only preliminary

calculations so far. The increased complexity compared to the NCA, see Fig. 7, should

not be underestimated.

Apart from the smearing of the Fermi edge, the only reasonable interpretation of
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Fig. 9: One-crossing approximated self-energy Πe(t, t
′).

the decrease is that a mixed-valence resonance decays with temperature as described

earlier. In the paragraph after the next, we show that this occurs indeed.

The enhancement depends strongly on the difference between the crossing upper level

εU (t) and the Fermi level. For example, when the work function is slightly changed by

∆φ = 0.05 eV to φ = 5.15 eV, see Fig. 8, the enhancement is halved. In Article I we

used φ = 5.2 eV, with the result that the enhancement compared to the uncorrelated

U = 0 calculation is almost gone. As the work function increases, the relative distance

between the upper level εU (t) and the Fermi level increases, too. Due to less overlap

between them, this in turn leads to less sampling of the mixed-valence resonance by

the broadened level. The effect is so pronounced because a lot of spectral weight is

transferred to the resonance, as we will see in the following paragraph.

As a last note, at around TS = 800 K the negative slope ends and a slight posi-

tive temperature dependence of the neutralization probability becomes visible. This is

almost the maximum temperature used in the experiment. At this point the mixed-

valence resonance does not dissolve, as our numerical results in the paragraph after the

next show. The dwindling negative temperature dependence is rather superimposed by

the increasing positive temperature dependence caused by thermal excitations in the

conduction band of the surface. It would be very interesting to know if the experimen-

tally obtained neutralization probability possesses such behavior as well and if so, does

it agree with the results of the uncorrelated U = 0 model from this point on?

Projectile spectral densities The spectral densities for removing or adding a phys-

ical electron at time T with energy ω are defined by

ρ≷(ω, T ) =
1

2π

∑
σ

∫ ∞
−∞

dτ G≷
σ (T + τ/2, T − τ/2) eiωτ (40)

where T = (t + t′)/2 and τ = t − t′ are difference variables and G≷
σ (t, t′) the physical

electronic Green functions of the projectile. For U = 0, G≷
σ (t, t′) can be calculated

directly using the Dyson equations. For U 6= 0 on the other hand, the physical Green

functions must be constructed from the pseudo-particle ones we introduced earlier,

G<σ (t, t′) = P<σ (t, t′)eR(t′, t) +D<(t, t′)pR−σ(t′, t) , (41)

G>σ (t, t′) = pRσ (t, t′)E<(t′, t) + dR(t, t′)P<−σ(t′, t) , (42)

where HR(t, t′) = −iΘ(t − t′)hR(t, t′) has been used with HR(t, t′) and hR(t, t′) being

placeholders, see Article II for a detailed derivation.
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Fig. 10: Strontium projectile spectral densities summed over the two spin orienta-

tions at z = 5 aB and z = 7.5 aB of the outgoing branch of the trajectory.

The upper panels show the correlated (U 6= 0), the lower panels the uncorre-

lated (U = 0) case. The surface’s temperature TS = 400 K. The black lines

show the instantaneous, the orange ones the equilibrated spectral densities.

Solid/dashed lines give the occupied/total spectral densities. The surface’s

Fermi level is located at ω = 0 and the thin vertical lines indicate the instan-

taneous position of the energy levels.

In Fig. 10 we calculated the instantaneous (black curves) and equilibrated (orange

curves) spectral densities on the outgoing branch of the trajectory for strontium ions

scattering from a gold surface. The equilibrated ones were obtained by holding the

projectile in position until the occupancies equilibrated. In addition, the instantaneous

spectral densities ρ≷(ω, T ) are Wigner distributions in energy ω and time T which can

not be measured simultaneously. To deal with these quantum mechanical uncertainties,

Wigner distributions become negative in some regions of its defined space. This seems

to happen in Fig. 10 for both compared models. We can, however, not rule out the

Gibbs phenomenon [Gib98; Gib99; Wil48] from occurring during the numerical Fourier

transformation. The equilibrated results, though, speak against this possibility.

If one compares the spectral densities for strontium using both models (the U 6= 0

results are from Article II, the U = 0 ones are to date unpublished) in Fig. 10, two

things become obvious: First, clearly spectral weight is transfered to form a strong

mixed-valence resonance at the Fermi level at ω = 0 in the U 6= 0 scenario. Thus,

the U 6= 0 model works as intended and a Kondo-type resonance is indeed generated

by spin fluctuations. The resonance is not only formed directly at the turning point

(zTP = 5 aB), but in advance, resulting in a significant contribution to the neutralization

probability over a comparatively long period of time. Second, and a little more subtle,

the presence of a resonance actively reduces the portion of unoccupied states. The

number of total states (dashed lines) above the Fermi level (ω > 0) is reduced using the

U 6= 0 model compared to U = 0. These mostly unoccupied states are transferred to

the resonance at the Fermi level and recombined there, resulting in an increased number

of occupied states (solid lines). This can be observed for both presented separations

lengths in Fig. 10. The strength of the overlap between level width ΓεU (t)σ(t) and
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resonance governs the portion of occupied states of the resonance.

If, for some reason, the position of the Fermi level changes with respect to the energy

levels of the projectile (thin vertical dotted lines), the number of occupied states may

vary dramatically. This is due to the Lorentzian shape of the broadened level and the

resonance, which leads to an exponential dependence of the overlap between the two.

This is the reason why a very small increase in the work function as in Fig. 8 of just

∆φ = 0.05 eV is responsible for the loss of neutralization probability of at least 30 %.
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Fig. 11: Temperature dependence of the strontium projectile total spectral density

summed over the two spin orientations at z = 7.5 aB on the outgoing branch of

the trajectory. The upper panel shows the dynamic, the lower the equilibrated

scenario. The surface’s Fermi level is located at ω = 0 and the thin vertical

line indicates the instantaneous position of εU (t). We use the same set of

parameters as in Article I and Article II.

Temperature dependence of the projectile spectral densities According to

the literature on strongly correlated systems [Ful91; Hew93], the mixed-valence reso-

nances of the spectral densities we presented in the last paragraph should decay with

increasing temperature, causing thereby the negative temperature dependence of the

neutralization probability shown in Fig. 8. So far, we have not addressed this in any

publication. Our new results presented here, however, fit very well into the reasoning

of Article I and Article II.

When the resonance decays, we expect that spectral weight from the total spectral

density (dashed lines in previous paragraph) is transferred from the resonance to the

position of the energy levels of the projectile. In other words, spin fluctuations become

less import in favor of charge fluctuations [Ful91]. Using a strontium projectile, the

upper level εU (t) is actually above the Fermi level for the most reactive part of the flyby.

Therefore, a large portion of transferred weight represents newly unoccupied states

when the temperature increases which explains the negative temperature dependence

of the neutralization probability.

Fig. 11 shows the shape of the resonance for strontium at two different tempera-

tures, once for the dynamic (dyn.) and once for the equilibrated (eqm.) scenario, as

described in the last paragraph. As expected, the resonance dissipates with increasing
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1.3 Ion-induced secondary electron emission

temperature. In addition, spectral weight is transfered in the general direction of the

upper level εU (t) (vertical thin dotted line). The temperature dependence is, however,

much more pronounced, and the actual shape of the resonance more thinner, in the

equilibrated scenario where the projectile is held just in front of the surface. Using our

effective model, a high projectile velocity seems to suppress the overall temperature

dependence. It would be very interesting and also beneficial to repeat the experiments

of He and Yarmoff [He10; He11] at lower projectile velocities in order to clarify the

question of how the neutralization probability changes with temperature From our

theoretical results we expect it to become even more pronounced.

1.3 Ion-induced secondary electron emission

In this section we comment on Article III. The main goal was to provide an effective

model and a numerical scheme that allow quantitative statements about the secondary

electron emission coefficient γe and its energy spectrum γe(ε). In addition, we wanted

to reuse most of the concepts we discussed in the previous section as well. For the most

part, we succeeded. Nevertheless, there are some important differences and changes

which we will discuss below. Before we come to this, we briefly describe the physical

situation of the helium-metal system. We conclude this section with a few comments

on our numerical results.

Physical situation The helium-metal system was selected by us because of the rela-

tively high number of availably experimental data that is indispensable for comparison

with our results. That being said, the absolute number of measured and theoretical

secondary electron coefficients is nevertheless comparatively small, and only recently

were experiments proposed to change this [Dak16; Mar15].

The ionization energy needed to extract a single electron from the ground state of

a helium atom He0(1s2, 11S0) is about I11S0 ≈ 24.6 eV. This is more than a factor of

two greater than the typical binding energy of electrons in the conduction band of a

common metal [Ash76; Höl79]. Resonant charge transfer between the conduction band

of the target and the ground state level of the projectile can thus be excluded. Instead,

it is possible that He+(1s, 12S1/2) recombines directly into the ground state via Auger

neutralization (AN) as illustrated in Fig. 13. However, in the direct vicinity of the

surface edge, it is predicted [Mon14] that the first ionization level of the projectile will

hybridize with lower lying bands of the surface, thereby enabling resonant transfer of

electrons into the ground state.

This scenario is especially important for high projectile velocities perpendicular to

the surface, as they are usually accompanied by smaller turning points. With a perpen-

dicular velocity of the order of v⊥ ≈ 10 eV, the low temperature plasma-wall interface

(the plasma sheath) partly falls into this category [Pie10]. As already mentioned, the

experimental data collection is rather scarce. In general, experiments are performed

under grazing incidence and with small projectile velocities. In this thesis we will there-

fore discard the resonant charge transfer into the first ionization level. On the other

hand, there are excited helium states with ionization energies close to the Fermi level of

a typical metal (work function and Fermi energy are approximately five electronvolts).

From these states we choose He∗(1s2s, 21S0) and He∗(1s2s, 23S1) which have one of
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Fig. 12: On scale energetic representation of studied helium-metal systems. Note

that the energy levels corresponding to the He∗(1s2s) and He−(1s2s2) config-

urations are actually spin dependent and thus non-degenerate. The diagram

on the left compares the level widths of the level crossing the Fermi level

at zc for the helium-aluminum and strontium-gold system. For the helium-

aluminum system with an angle of incidence of α = 15◦ and a kinetic energy

of Ekin = 60 eV of the projectile, the shaded area shows the region where al-

ready 95 % of the reaction occurred on the incoming branch of the trajectory.

the largest ionization energies (I21S0 ≈ 4 eV and I23S1 ≈ 4.8 eV) of all possible excited

states. These levels are in some situations therefore capable of resonantly exchanging

charges with the target’s conduction band and serve as starting points for direct and

indirect Auger de-excitation (DAD and IAD) into the ground state, as shown in Fig. 13.

Note that the He∗(1s2p, x) configurations may be important in some scenarios [Igl13;

Igl14] but rates solely based on s-orbital wave functions tend to have a greater impact

on the outcome. The energy levels of these states shifts upward, as described in the

last section, see Eq. (1). The resonant charge transfer from the surface to one of these

metastable states may be either open or closed, i.e. the formation of excited helium

species by means of RCT can be effectively prevented by large work functions. To test

our model, we used a hypothetical metal (HM) that has a smaller work function than

usual, see Fig. 12 for an energetic true-to-scale representation and comparison of all

investigated helium-metal systems. In practice, cesiated [Des80; Mül93; Pap80] or K

and Li covered metal surfaces [Bre92a; Bre92b] provide, for instance, this flexibility.

However, this may also introduce new surface states which enable new reaction chan-

nels. Therefore, our hypothetical metal is used exclusively to test the interaction of all

considered channels of our model.

24



1.3 Ion-induced secondary electron emission

AN DAD IAD AuD

Fig. 13: Implemented Auger processes. From left to right: Auger neutralization (AN),

direct and indirect Auger de-excitation (DAD and IAD) and autodetach-

ment (AuD).

Looking at Fig. 12, excited states may become important for aluminum as well. The

He∗(1s2s, 23S1)-level starts just below the aluminum’s Fermi level and crosses it at

zc = 14.44 aB which is farer away than it was for strontium. We do not think that

Kondo-type physics play a significant role for this particular helium-metal combination:

First, the level width which potentially samples the Kondo-type resonance is about

a factor five smaller than its strontium counterpart, see lower left panel in Fig. 12

for comparison. This is due to the higher spatial extension of the 5s strontium wave

functions compared to their 2s helium versions, resulting overall in a smaller overlap

with the surface’s electronic wave functions for helium. And secondly, even if a mixed-

valence scenario enhances the generation of excited states, it is likely that its impact

on the neutralization probability is small due to the number of simultaneously acting

reaction channels. Due to its subtle role, we decided to neglect Kondo-type physics

and concentrate on the interplay of the numerous reaction channels. This decision

allowed us to approximate the set of pseudo-particle Dyson equations, cf. Eq. (29),

with Langreth and Nordlander’s approach to simple master equations [Lan91; Sha94a;

Sha94b] which essentially leads to a set of coupled rate equations.

He++M

AN

He+M+++e−

He∗+M+
SET

AD

He∗−+M++
SET

AuD

Fig. 14: Interplay of possible charge transfer processes during the collision of a He+ ion

with a metal surface. The charge of the metal M appears here just for charge

conservation purposes and is not part of the actual model.

It is possible that after one of the metastable states He∗(1s2s, 21S0) or He∗(1s2s, 23S1)

has been realized, yet another electron transfers resonantly into the 2s shell of the
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helium projectile. The corresponding affinity levels shift downwards, see Fig. 12. In

this process He∗−(1s2s2, 22S1/2) is generated. This state may decay independently from

the surface into the ground state. This is a process called autodetachment (AuD) and

is also schematically shown in Fig. 13. As we will see, this process leads to a very

distinct high energy feature in the spectrum of emitted secondary electrons.

To keep track, Fig. 14 summarizes the discussed reaction scheme. Note that from now

on we use single-electron transfer (SET) synonymously with resonant charge transfer

(RCT) to separate it more clearly from the Auger processes, which always involve two

electrons. Compared with the scenario outlined in the previous section, the added

number of levels, processes and states require an adjusted approach.

He+(1s)

1s

2s

He(1s2) He∗(1s2s)
ε2

He∗−(1s2s2)

ε1
ε0

Fig. 15: Representation of the five considered helium configurations.

Adjusted model The cornerstones of our effective model, as presented in the previ-

ous section, remain unchanged. This was also one of our main premises. The projectile

can be modeled by a three-level system with energies ε0, ε1 and ε2 as illustrated in

Fig. 15 if the 1s shell is assumed to be always at least occupied by, for instance, a

spin-up electron. The exact value of these energies depends on two things: on the

occupancy of the shells and on the sequence they were occupied. Another difficulty is

that the completeness of a three-level system is composed of nine states, of which only

the five in Fig. 15 are of interest. The representation in Fig. 14 is also exclusive. There-

fore, configurations other than those associated with each reaction can not participate

even if an electron in another configuration occupies an appropriate energy level. For

instance, He∗−(1s2s2) shall not be subject to DAD or IAD even though there are suit-

able electrons in the 2s shell. These points are accounted for by employing projection

operators

Pn0n1n2 = |n0n1n2〉〈n0n1n2| . (43)

They project any part of the Anderson-Newns Hamiltonian onto the desired subspace

of states |n0n1n2〉 of the three-level system with ni = 0, 1 electrons in the energy levels

ε0, ε1 and ε2. The energy that results from applying the projection operators to εi
is freely definable. Consistently applied, this technique zeros the weight of the four

non-participating excess-states in the completeness

Q =
∑
n0

∑
n1

∑
n2

|n0n1n2〉〈n0n1n2| = 1 . (44)

This makes the construction of even the most complicated reaction schemes possible,

as this can be used to describe intra-atomic Coulomb interactions, switches between
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1.3 Ion-induced secondary electron emission

ionization and affinity levels or non-degenerate energies. In practice, each term of

the Anderson-Newns-Hamiltonian must be complemented with a sum of projection

operators of the participating projectile configurations which makes the Hamiltonian

slightly more complicated. However, the projection operators vanish when a pseudo-

particle transformation is performed.

There are other minor changes to three of the effective descriptions in our previous

model. These can be found in detail in Article III. In short: i) We employed mod-

ified hydrogen wavefunctions instead of the tabulated Roothaan-Hartree-Fock wave-

functions provided by Clementi and Roetti [Cle74] due to lack of data for excited

states. ii) Since Gadzuk’s effective approach to the matrix elements [Gad67a; Gad67b]

does not take modifications of the step potential mimicking the surface by the Coulomb

potentials of the He+ ion into account, we added–inspired by Probst [Pro63] and Penn

and Apell [Pen90]–a semiclassical correction using the WKB approximation to the

wavefunction of the surface electron that fills the 1s shell of the He+ projectile dur-

ing AN and IAD. This usually enhances the transfer and brings it within reasonable

agreement with other methods and calculations [Lor96; Val05; Wan01]. iii) We take

gracing angles of incidence into account by replacing the Fermi-Dirac distribution with

the angle-averaged velocity-shifted distribution of Sosolik and coworkers [Sos03].

In addition to these three points, we neglected the issue of non-orthogonality [Val05]

between target and projectile wavefunctions in the effective Auger matrix elements.

In our estimation, see Article III, this should lead to deviations only in case of near

perpendicular incidence of the projectile. For grazing incidence on the other hand,

much of the charge transfer is completed before they come into effect, see Fig. 12.

Secondary electron emission Using the same reasoning as in the previous section,

each helium configuration in Fig. 15 can be defined by a pseudo-operator:

|000〉 = e†|vac〉 , |011〉 = d†|vac〉 , |100〉 = s†1↓|vac〉 ,
|010〉 = s†2↑|vac〉 , |001〉 = s†2↓|vac〉 . (45)

Again the pseudo-operators obey Fermi (Bose) statistics if the number of electrons of

the configuration is odd (even). Note, however, that the selected form of Fock state

omits the first 1s electron, as it is present in every configuration of the projectile. The

labeling is a reminder to the type of configuration of the three level system: (e)mpty,

(d)ouble and (s)-shell or (s)ingle with the index accounting the number of the shell.

If we employ the same reasoning as before, distinguish internal surface state excita-

tions c
(†)
~kσ

from external continuum ones c
(†)
~qσ , carefully project all interactions as outlined

above to the correct subspaces of (44) and include auxiliary Bose operators b
(†)
σ which

conserve the total energy of the Hamiltonian during the transitions between ionization

and affinity levels and is a technique that was already used in the description of charge-

transferring molecule-surface collisions [Mar12], the Anderson-Newns Hamiltonian in
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pseudo-particle representation becomes

H(t) = ε01s↓(t)s
†
1↓s1↓ +

∑
σ

ε∗2sσ(t)s†2σs2σ +
[
ε−2s↑(t) + ε−2s↓(t)

]
d†d +

∑
σ

ωσ(t)b†σbσ

+
∑
~kσ

ε~kσc
†
~kσ
c~kσ

+
∑
~qσ

ε~qσ(t)c†~qσc~qσ +
∑
~kσ

[
V SET
~kσ

(t)c†~kσe
†s2σ + H.c.

]
−
∑
~kσ

[
sgn(σ)V SET

~kσ
(t)c†~kσb

†
σs
†
2−σd + H.c.

]
+
∑
~q

[
V AuD
~q c†~q↑s

†
1↓d + H.c.

]
+
∑
~k~k′σ

[
V DAD
~k~k′σ

(t)c†~k′σs
†
1↓c~kσs2↓ + H.c.

]
+
∑
~k~qσ

[
V IAD
~k~qσ

(t)c†~qσs
†
1↓c~k↓s2σ + H.c.

]
+

∑
~k1~k2~k′σ

[
V AN
~k1~k2~k′σ

(t)c†~k′σs
†
1↓e c~k1↓

c~k2σ
+ H.c.

]
. (46)

Thanks to the pseudo-particle representation, the physical meaning is particularly easy

to grasp. For instance, the last term describes Auger neutralization: two internal

electronic surface states as well as the empty projectile configuration, that is He+, are

annihilated altogether and at the same time, the ground state He0 is generated by s†1↓
along with a surface state.

Knowing the Hamiltonian, we can analyze it within the same quantum-kinetic ap-

proach [Lan91; Sha94a; Sha94b] as before. This includes a set of pseudo-particle Green

functions determined by Dyson equations and non-crossing approximated self-energies.

This time, however, the Dyson equations can be simplified to a linear set of coupled

ordinary first order differential equations due to negligible influence of the Kondo effect.

In such a case the Dyson equation can be evaluated within a saddle-point approximation

which utilizes that the various two-time functions are peaked around the time-diagonal.

This is equivalent to Langreth and Nordlander’s simple master equation (SME) [Lan91].

For the ground state, for example, one obtains the rate equation

d

dt
ng(t) = Γ<AN(t)n+(t) + Γ<IAD↑(t)n↑(t)

+
[
Γ<IAD↓(t) + Γ<DAD↓(t)

]
n↓(t) + Γ<AuD n−(t) (47)

where ng(t), n+(t), n↑(t), n↓(t) and n−(t) denote, respectively, the instantaneous occur-

rence probability of the ground state, the positive ion, the triplet and singlet metastable

state and the negative ion. The rates Γ≷
...(t) were constructed in the style of the golden

rule [Fer50]. For example,

Γ<AN(t) = 2π
∑

~k1~k2~k′σ

|V AN
~k1~k2~k′σ

(t)|2ρ~k1~k2~k′σ(t) (48)

with

ρ~k1~k2~k′σ(t) = f<(ε~k1↓)f
<(ε~k2σ)f>(ε~k′σ) δ(ε01s↓(t)− ε~k1↓ − ε~k2σ + ε~k′σ) (49)

is a representative of Auger-type rates. Similarly, single-electron transfer rates are akin

to

Γ≷
SET,σ(t) = 2π f≷(ε∗2sσ(t))

∑
~kσ

|V SET
~kσ

(t)|2δ(ε∗2sσ(t)− ε~k) . (50)
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1.3 Ion-induced secondary electron emission

The rate equation (47) makes it particularly easy to deduce a differential equation

for the probability of emitting a secondary electron with energy ε at time t since every

process in Fig. 14 that ends with the occurrence of the ground state of helium also

generates an excited electron. It reads

d

dt
γe(ε, t) = Γ̄<AN(ε, t)n+(t) + Γ̄<IAD↑(ε, t)n↑(t)

+
[
Γ̄<IAD↓(ε, t) + Γ̄<DAD↓(ε, t)

]
n↓(t) + Γ̄<AuD(ε)n−(t) . (51)

Due to their relationship, rate equation (47) and (51) share the same general structure.

However, the spectrally resolved rates Γ̄≷
...(ε, t) have been modified [Bar94; Feu76] to

take transmission conditions into account since not all excited electrons can leave the

surface. Otherwise they are the same as in Eq. (48), except that the |~k|-integration of

the excited electron was not carried out. More details are given in Article III.

The emission spectrum of secondary electrons is obtained by solving Eq. (51) and

γe(ε) = lim
t→∞

γe(ε, t) . (52)

The secondary electron emission coefficient, also known as γ-coefficient, is obtained by

integrating the spectrum (52) over all energies,

γe =

∫
γe(ε) dε . (53)

It is thus the total probability that an electron is emitted at all from the surface.

In Fig. 16 we compare our results based on eqs. (51) and (52) with experimental data.

For tungsten the data comes from Müller and coworkers [Mül93] and from Lancaster and

coworkers [Lan03] for aluminum and copper. For technical reasons, measured spectra

are generally not normalized to the γ-coefficient, as shown in Eq. (53). In principle,

this summarizes the experimental problems: The secondary electron emission spectra

have been readily accessible for decades, the γ-coefficients not. However, Müller and

coworkers give an educated estimate of γexpe = 0.22. For tungsten we could therefore

compare absolute numbers, but not for aluminum and copper, since the experimentalists

did not provide any coefficients and presented their spectra in arbitrary units with no

way to normalize the area enclosed by the emission spectra according to Eq. 53.

As far as the high-energy side of the spectrum is of concern, the agreement between

our numerical result obtained from Eq. (51) and (52) (solid line) and the experimental

data turns out quite satisfactory for tungsten. The low-energy side, however, deviates

drastically. The reason is this: the model lacks an effective description of relaxing

surface processes for excited electrons, e.g. scattering cascades [Lan07; Pro63], and of

higher order Auger processes with more than two electrons [Bre92b]. In Fig. 16 the

energy distribution of the missing processes (dashed line) was guessed by us to give the

best combined (dotted line) result. In our opinion, most of the low-energy secondary

electrons come from cascade processes, since three-electron Auger processes should have

significantly smaller amplitudes in the spectral density than an Auger process with two

electrons.

For aluminum and copper, we opt for another strategy, which is only an option

due to the good high-energy agreement of the theoretical and experimental data for
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Fig. 16: Spectral density of secondary electrons emitted from various surfaces hit by

a positive helium ion.

tungsten. Assuming that the ratio of experimental and theoretical γ-coefficients for

each metal is nearly constant, we can predict the experimental coefficients and use

them to weight the measured spectra for comparison. The reason for this is that the

contribution of the unknown, missing low energy process should be nearly identical for

similar metals. In case of tungsten, we calculated γtheoe = 0.12 for the parameters of

the experiment. The ratio r = γtheoe /γexpe for tungsten is then roughly one-half. The

aluminum and copper emission spectra of Lancaster et al are then scaled by setting∫
dεγtheoe (ε, t→∞)/

∫
dεγexpe (ε) = r, where r is ratio obtained from the tungsten data

of Müller et al and from us. In principle, this trick can only be applied to tungsten-

like surfaces (work function of about five electronvolts), as a more general statement

still lacks experimental and theoretical data. Applied to copper in Fig. 16, however, it

provides a good high-energy match between experimental and theoretical data. Using

this method, we estimated γexpe = 0.19 for copper. For aluminum the high-energy tail

of the spectrum does not match as good as for the former two metals. The smaller

work function in conjunction with a large Fermi energy lead to broad spectrum for

the electron emitted by the Auger neutralization process. In addition, indirect Auger

de-excitation is enabled by the small work function although it provides only a small

number of secondary electrons between 15 and 20 eV. The estimated experimental

value is γexpe = 0.18. Using our scaling approach, the height of the emission spectra

does not match nor does a flat low-energy shoulder appear in the experimental data.

This suggests that the low-energy and high-energy process spectra strongly overlap as

indicated by the dashed line to form the shape of the total spectrum.

The most important process of Fig. 14 for tungsten, copper and aluminum is Auger

neutralization (AN). Only in the spectrum of aluminum we find faint features which

we attributed to indirect Auger de-excitation (IAD). To demonstrate how the rest of

the processes in Fig. 14 may affect the secondary electron emission, we constructed
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a hypothetical metal HM which has a smaller than usual work function of φ = 3 eV

and EF = 9 eV. The small work function allows the formation of all excited states

and thus opens all channels. Decomposing the spectrum into its originating processes,

the low-energy tail of the spectrum is dominated by Auger neutralization, whereas

the high-energy tail with its steep cut-off is due to combined Auger de-excitation,

with emphasize on direct Auger de-excitation. An additional faint peak is added by

autodetachment above the main feature of the spectrum. However, its position is not

the expected one [Bor95a; Hem91]. Our analysis showed that the position of the peak

is most sensitive to the effective model of the level shifts. Surprisingly, this is not the

case with the other Auger processes, but certainly for resonant charge transfer. In our

opinion, this should be addressed as one of the first points in an extension of our model.

1.4 Numerical schemes

Two-time Green functions To solve the pseudo-particle Green functions (22)–(24)

numerically exact, we adapt the approach of Shao and his colleagues [Sha94a] to the

U 6= 0 scenario. This adds two more Green functions D<(t, t′) and DR(t, t′) to their

discretization strategy. To do this, we summarize their approach in a general way using

our placeholder-notation from Eq. (26)–(30). The first step is to discretize the Dyson

equations (29) and (30) using the trapezoidal rule to calculate the integral on the right

hand side,

∫ b

a
f(x) ≈ ∆

N∑
k=1

ckf(xk) (54)

with ∆ = (b − a)/N and ck = 1 − δ1k/2 − δNk/2 as well as for solving the differential

equation,

yn+1 = yn +
∆

2

(
f(tn+1, yn+1) + f(tn, yn)

)
. (55)

Using the placeholder-notation as in Eq. (26)–(30), we set HR(t, t′) = −iΘ(t−t′)h(t, t′)
and ΣR

H(t, t′) = −iΘ(t − t′)σH(t, t′). In addition, we factorize the energy εH(t) in

Eq. (29) and (30) as outlined in Article II and mark factorized functions with a dash.

We find

H̄<
m+1,n = H̄<

mn −
∆2

2

m+1∑
i=m

i∑
j=0

cj σ̄H,ij H̄
<
jn +

∆2

2

m+1∑
i=m

n∑
j=0

cj Σ<
H,ij hjn (56)

for the less-than Dyson equation (29) and

h̄m+1,n = h̄mn −
∆2

2

m+1∑
i=m

i∑
j=n

cj σ̄H,ij h̄jn (57)
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for the retarded Dyson equation (30). The sums of Eq. (56) can be manipulated and

rearranged so that each new approximation H̄<
m+1,n and Σ̄<

H,m+1,n is on the left side,

(
1 +

∆2

4
σ̄H,m+1,m+1

)
H̄<
m+1,n −

∆2

4
Σ̄<
H,m+1,n =

(
1− ∆2

4
σ̄<H,mn

)
H̄<
m,n +

∆2

4
Σ̄H,mn

+
∆2

2

m+1∑
i=m

n−1∑
j=0

(
1− δj0

2

)(
Σ̄<
H,ij h̄jn − σ̄H,ij

[
H̄<
]∗
nj

)
− ∆2

2

m+1∑
i=m

i−1∑
j=n

σ̄H,ij H̄
<
jn (58)

and the same can be done for Eq. (57) with respect to h̄m+1,n and σ̄H,m+1,n,

(
1 +

∆2

4
σ̄m+1,m+1

)
h̄m+1,n =

(
1− ∆2

4
σ̄mm

)
h̄mn −

∆2

2

m+1∑
i=m

i−1∑
j=n

(
1− δjn

2

)
σ̄H,ij h̄jn .

(59)

Eq. (59) can be readily solved with h̄mm = 1 as starting condition. With the known

main diagonal hmm, we calculate all the non-diagonal elements in the adjacent diagonal

and repeat this with the next adjacent diagonal until all elements of the lower or upper

triangular matrix are known. The other half of the matrix is obtained by hmn = h∗nm,

which follows from HR(t, t′) = [HA(t′, t)]∗.
For Eq. (58) this is not so easy, because the left hand side still depends on Σ<

H,m+1,n

which is proportional to yet another pseudo-particle Green function. We can, however,

write down Eq. (58) for every pseudo-particle Green function and arrange them like

Am+1,n · ~H<
m+1,n = ~Cm,n (60)

where ~H<
m+1,n is a vector of all pseudo-particle Green functions, ~Cm,n the right hand

sides of Eq. (58) and Am+1,n is a 4 × 4 non-orthogonal matrix. The system of linear

equations can be solved algebraically, leading to very long expressions that are best

treated with an alert mind. These, however, determine all pseudo-particle Green func-

tions at the current position. Contrary to the retarded case, only the starting conditions

H<
00 are known a priori. Thus, the calculation scheme differs and we calculate H̄<

mn line

by line starting at (0, 0) until all elements of the upper or lower triangular matrix are

known. This way, we automatically calculate all needed H<
mn for the next line. The

other half is then obtained similar to hmn by H<
mn = [H<

nm]∗.
We used effective grid-sizes of up to 3000× 3000 of which, however, only half of the

entries must be allocated and calculated as outlined above. In practice, we found that

the values of the end point H<
max,max are surprisingly robust against a reduction of

the grid size and converge more rapidly than intermediate grid points which makes a

calculation at several different temperatures more feasible as outlined in Article II.

Secondary electron emission In terms of programming, quite different challenges

had to be mastered in order to calculate the secondary electron emission. This is, of

course, partly due to our modified modeling, which approximates the Dyson equations

by rate equations. On the other hand, our model now also contains four new different

physical processes, each with its own requirements. For one, the computational effort is

thereby completely shifted to the calculation of the rates Γ≷
.... The high dimensionality
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of up to ten dimensions (Auger neutralization: three times a separate ~k-space as well

as a time variable) of the Auger matrix elements makes this task a particular difficult

one. In the following we give thus some insight into our approach and explain some of

our decisions in greater detail than in Article III.

V AN
~k1~k2~k′

(t)

|V AN
k1k2k′

(t)|2

Γ<AN(t)

Γ̄<AN(t) Γ̄<AN(ε, t)

V SET
~k

(t)

|V SET
k (t)|2

Γ≷
SET(t)

Γ<SET(t) > 0 ?

V DAD
~k~k′

(t)

|V DAD
kk′ (t)|2

Γ<DAD(t)

Γ̄<DAD(t) Γ̄<DAD(ε, t)

V IAD
~k~q

(t) |V IAD
~k~q

(t)|2

Γ<IAD(t)

Γ̄<IAD(t) Γ̄<IAD(ε, t)

V AuD
~q

|V AuD
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Γ<AuD

Γ̄<AuD Γ̄<AuD(ε)

ODE
solver

ng(t),n+(t),n↑(t),n↓(t),n−(t), γe(t), γe(ε, t)

Fig. 17: Representation of the numerical scheme.

Fig. 17 gives an overview of all steps in the calculation. Except for indirect Auger

de-excitation, the analytically calculated matrix elements V AN
~k1~k2~k′

(t), V DAD
~k~k′

(t), V AuD
~q

and V SET
~k

(t) are the starting points of the numerical calculation, shown on top in

Fig. 17. We used the method of lateral Fourier transformation to calculate them in all

our articles. A brief description of this otherwise lengthy and tedious calculation can be

found in Article II. For DAD, the analytical V DAD
~k~k′

(t) contains a singularity with which

our code had problems. We found that in our integration routine, it is best practice to

zero the matrix element within the singularity.

Analytical calculation of the matrix element can not be done with indirect Auger

de-excitation due to the special dependencies of the wave functions. Therefore,

V IAD
~k~qσ

(t) =

∫
d3r

∫
d3r′ ψ∗1↓(~r − ~rp(t))ψ∗~qσ(~r ′ − ~rp(t))

e2

|~r − ~r ′|ψ2σ(~r ′ − ~rp(t))ψ~k↓(~r)
(61)

has to be calculated numerically. This is accomplished by a MPI (massage passing

interface) parallelized Monte Carlo (MC) Vegas [Lep78] routine integrating the six-

dimensional vector-space spanned by ~r and ~r′ for a small number of discrete different

times. The routine makes 105 calls to the integrand and up to 10 iterations to achieve

convergence. The electronic wavefunctions of the projectile ψnσ(~r), the one of the

surface electron ψ~kσ(~r) as well as the one of the free electron ψ~qσ(~r) are supplied

in analytical form as outlined in section 1.3 and in Article III. The position vector
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~rp(t) = z(t)~ez. Assuming we calculate V IAD
~k~qσ

(t) on a discrete ~k-~q-t-grid with edge

length n = 10, then 107 grid points have to be calculated. For a single discrete point

in time, this calculation takes about 18 hours for 48 cores with a fast HPC (high-

performance computing) cluster. However, since the contribution of the indirect Auger

excitation to the total number of secondary electrons is very small [Wan01], which

we also observe, the time-consuming calculation of this particular matrix element can

generally be completely omitted.

Knowing the matrix elements, we integrate over all solid angles of the ~k-vectors of

the square of their absolute value for any number of different times on the same branch

before or after the turning point. As a representative,

|V AN
k1k2k′(t)|2 =

∫
dΩ1

∫
dΩ2

∫
dΩ′ |V AN

~k1~k2~k′
(t)|2 . (62)

The reasoning behind this is that Eq. (62) and its analogs is absolute mirror symmetrical

in time as long as the trajectory of the projectile z(t) is equally symmetrical. In case of

IAD this step is not performed. The integration is again performed by means of a MPI

parallelized MC Vegas routine. For AN, the routine does 107 calls to the integrand,

for DAD 5 · 106 and 105 for SET and AuD. Again, the routine does a maximum of 10

iterations to achieve convergence, which is usually achieved much earlier. In terms of

numerical quality, these settings have proven to be optimal in operation and testing.

The efficiency is greatly increased by not mapping Eq. (62) and its analogs for the

entire residual wavenumber space. Extending the classical k-limits set by the conserva-

tion of energy by about 30% to take the quantum character into account suffices. The

advantage of not integrating over the entire k-space at once is that we can manipulate

Eq. 49 and its analogues to our heart’s content and reuse our previously calculated and

saved data. The condition is that V0 = EF + Φ and ε...nσ(t → −∞) remain constant.

In practice, k-grid sizes of up to 10× 10× 30 for AN and 20× 20 for DAD were used

to produce the spectra in Fig. 16. However, reasonable results can already be achieved

with fewer points. Decisive for the good quality of the spectra is to choose enough

discrete different time points and to position them wisely. For the spectra in Fig. 16,

we used 13 exponentially ordered different discrete times on a single branch in such a

way that there is a better time resolution near the turning point. Using a HPC clus-

ter with moderate processing power (a fast communication between nodes as well as

hyper-threading does actually also play a role), the calculation takes around 68 hours

for AN on 96 cores, 40 hours for DAD on 96 cores and less than an hour for SET on

16 cores. However, using a faster cluster that was not available at that time would

significantly reduce computation time. As a compromise, relatively good results can

also be found with smaller grid sizes, which reduces the calculation time accordingly.

In the next step, we calculate the rates Γ≷
...(t), modified rates Γ̄<...(t) and modified

energy-resolved Auger rates Γ̄<...(ε, t) using again a MPI parallelized MC Vegas routine.

For this to work in conjunction with the now discrete residual matrix elements Eq. (62)

and its analogs, we use multidimensional linear interpolation in the residual k-space.

This works amazingly well and the introduced numerical error should be small, since

Eq. (62) and its analogs are very smooth. Of course, in the energy-resolved version we

do without the integration of the wavenumber of the excited electron and, in addition,

apply surface transmission conditions for the excited electron. These are outlined in
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detail in Article III. The same surface transmission functions modify Γ̄<...(t) as well. In

terms of calculation time, this step is usually much faster than the previous one. For

AN it is around half an hour, for DAD it is 3 hours and for IAD it takes 15 minutes

using the same clusters as before. This does not apply to SET and AuD, since k and

q are set to the correct energy by us.

A word of advice: We recommend to check whether metastable helium configura-

tions are actually formed before calculating a DAD, IAD, or AuD rate, since these

processes use these configurations as a starting point. This is the case when one of the

Γ<SET(t) > 0. In addition, the AuD process is independent of the surface material. It

therefore makes sense to perform the calculation only once and use its result whenever

the situation requires it.

The now calculated rates are then fed to a solver for ordinary differential equa-

tions (ODE) which solves Eq. (47) and its analogs as well as Eq. (51). For this, the

solver must be able to interpolate between the different discrete times and excitation

energies. We tried several techniques like Akima-interpolation [Aki70], splines [Boo78]

as well as linear interpolation. In the end it turned out that it is much more important

to assume that all Auger rates are exponential in time. This is usually the case in

our examined scenarios as we show in Article III. Then, we can easily interpolate the

logarithms of the Auger rates linearly and transform the result back without loosing

much precision due to using only a select few discrete time points. On the other hand,

the interpolation between different discrete excitation energies ε has no such obstacles.

For SET and AuD this is not a problem. The computation is fast enough to eas-

ily calculate Γ≷
SET(t) at a thousand different discrete times and simply use Akima-

interpolation. In addition, it might even be wrong, since the SET rates may not be

exponential near the turning point, see Article III. Using our model as it is, the AuD

rates are not time-dependent as all dependencies cancel out. Thus, a single calculation

suffices. However, corrections resulting from the non-orthogonality of the wavefunc-

tions and an improved description of the level shifts should change this. In this case,

a similar approach to SET should be used. Also, the energy dependence of Γ<AuD(ε) is

problematic from a numerical point of view, as it is simply a Dirac delta function peak

at a specified energy. To avoid sampling problems, we approximated the delta function

by a Lorentz curve,

Γ̄<AuD(ε) = Γ̄<AuD δ(ε
∗
2s↑ − ε01s↓ + ε−2s↓ − ε)

≈ 1

π

(Γ̄<AuD)2

(Γ̄<AuD)2 + (ε∗2s↑ − ε01s↓ + ε−2s↓ − ε)2
(63)

with ε∗2s↑, ε
0
1s↓ and ε−2s↓ being the shifted projectile energy levels for t→ −∞, because

the time dependencies cancel each other out.

We employed the explicit embedded Runge-Kutta Cash-Karp routine provided by the

GNU scientific library as ODE solver. It does several things. First, it simply solves the

rate equation (47) and its analogs of the other helium configurations. At the same time

Eq. (51) is solved for a number of interpolated different discrete excitation energies,

whereby the spectrum is obtained. Also, Eq. (51) is solved in its energy integrated
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form,

d

dt
γe(t) = Γ̄<AN(t)n+(t) + Γ̄<IAD↑(t)n↑(t)

+
[
Γ̄<IAD↓(t) + Γ̄<DAD↓(t)

]
n↓(t) + Γ̄<AuD n−(t) , (64)

providing the γ-coefficient. For safety reasons, we check each time whether the γ-

coefficient of Eq. (64) is identical to the coefficient obtained by integrating the calculated

spectrum of Eq. (51) with the trapezoidal rule. There are usually only small deviations,

which are presumably caused by the interpolation between the different discrete excited

energies ε in combination with the ODE solver. Since the corresponding numeric is

simpler, Eq. (64) definitely gives the more accurate result for the γ-coefficient. As a

correction for the representation of the spectra, the thus-obtained γ-coefficient can be

used as a weight. However, this is usually a subtle one.

The completeness Eq. (44) leads to the additional constraint

n+ + n↓ + n↑ + n− + ng = 1 (65)

which is usually fulfilled automatically. However, propagation of errors might introduce

deviations from Eq. (65). These are critical immediately after the turning point and

can completely ruin the result. To counteract this we enforce Eq. (65) artificially by

re-weighting the sum of occupation probabilities back to unity. In addition, we enforce

that the occupation probabilities n... stay physical, thus, assume only values between

zero and unity. We pay for this rough intervention with an increased number of time

steps of the ODE solver in order to minimize additional errors. Nevertheless, the

calculation of the occupation probabilities, the γ-coefficient and the secondary electron

emission spectrum is only a matter of minutes on a single core, if the rates Γ≷
...(t), Γ̄≷

...(t)

and Γ̄≷
...(ε, t) are already known.

1.5 Conclusions

In this thesis, we demonstrated the possibilities and capabilities of an effective semiem-

pirical Anderson-Newns model description for charge-transferring atom-surface colli-

sions between several types of projectiles and surfaces and analyzed it within the generic

quantum kinetic approach set by Langreth, Nordlander and Shao [Lan91; Sha94a;

Sha94b].

The model is very flexible and can be used for any projectile-surface combination.

The metal surface is described with a step potential and is determined only with two

parameters, the work function and the Fermi energy. By adapting these two parameters,

any particular crystallographic orientation of the target can also be taken into account.

In particular, the model does not rely on ideal surfaces, which are in no way available

for complex experimental situations such as the plasma-wall interface. The projectile

on the other hand is described by a time-dependent few-level system and parameterized

with ionization energies and electron affinities. The decisive factor is that the physically

relevant levels are identified beforehand. With the help of projection operators and

auxiliary bosons [Mar12] any number of levels can be modeled in principle.

Accompanying these are supported by several other models, such as for energy shifts

and matrix elements, which combined provide a flexible tool for describing charge-

transferring atom-surface collisions. This subdivision into several separate submodels

36



1.5 Conclusions

makes it possible, in particular, to describe some aspects in more detail or to adapt to a

different physical situation without starting from scratch. For example, for helium ions

scattering on metal surfaces, the most time-consuming aspect of the calculation is by far

the calculation of the matrix elements. Although Gadzuk’s matrix elements [Gad67a;

Gad67b] provide an appealing physical description, they do not always match the qual-

ity of other, more advanced methods, such as those found in ab initio density functional

theory. Now, the advantage of our chosen approach is that one can immediately replace

them without any disadvantage, assuming one already undertook the task of obtaining

alternative ones. This also applies to all other aspects of our description and to new

ones as well.

In the first part we used the model to investigate the charge-transferring collisions

between magnesium and strontium projectiles and a gold target and subsequently ana-

lyzed the experiments of He and Yarmoff [He10; He11] with our newly obtained insight

from a many-body theoretical point of view which indicated that they have indeed seen

for the first time a mixed-valence resonance affecting the final charge state of the stron-

tium projectile. For this we described both projectiles with a two-level system, used

Roothaan-Hartree-Fock wavefunctions for their electronic states and calculated the pro-

jectile Green functions on a two-dimensional time grid. Unfortunately, for strontium

the model is insufficient to quantitatively simulate the measured neutralization prob-

ability, which initially increases and then decreases with temperature. The calculated

neutralization probability is, however, of the correct order of magnitude, shows a weak

negative temperature dependence and is greatly enhanced compared to the uncorre-

lated model. Our further analysis of the spectral densities revealed that the strontium

gold system is indeed in a mixed-valence situation and that the enhancement is induced

by correlations. In addition, we found the mixed-valence resonance to diminish with

increasing temperature. Qualitatively, these are all indications that support He and

Yarmoff’s interpretation of their data in terms of the mixed-valence scenario. Con-

versely, it can be assumed that these do not occur for magnesium and gold, since a

Kondo-type resonance simply can not influence the collision in this case. Therefore,

the excellent quantitative agreement in that case can be seen as reference point for the

model.

In the second part we employed the model to calculate the probability with which a

secondary electron excites due to the neutralization of a positive helium ion on differ-

ent metal surfaces. We model the helium projectile using a three-level system which

takes excited and negative states into account. The wavefunctions of the projectile

were approximated by us by employing screened 1s and 2s hydrogen wavefunctions

which enable partial analytic calculation for processes associated with excited states.

This downgrade from the Roothaan-Hartree-Fock wavefunctions is justified, as in most

helium–metal scenarios the dominant rate is the one for Auger neutralization, where de-

viations between the two variant wavefunctions are negligible. In addition, we included

semiclassical WKB corrections in the Auger matrix elements which take the tunneling

of the surface electron filling the hole in the 1s shell into account and employed pro-

jection operators and auxiliary bosons that are essential for an efficient handling of the

few-level system in the first place. In combination, they allow one to take occupation

dependent energy levels into account and ensure conservation of energy during config-

uration switches. In principle, this could allow an unlimited number of processes to act
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simultaneously and in an unbiased way.

For helium, correlations do not play a crucial role, as they did before for strontium.

We took advantage of this and used a saddle point approximation to derive a set of cou-

pled rate equations for the occurrence probabilities, bypassing thereby the calculation

of Green functions on a two-dimensional time grid. We did, however, calculate energy

distributed spectra of the secondary electron emission and compared them to measured

ones. The high-energy branches of the spectra match very well, the low-energy ones

do not, presumably due to unimplemented processes that still need to be identified.

Since secondary electron emission coefficients–or short γ-coefficients–are rarely mea-

sured, we had only one reference value and found our coefficient a factor of two too

small due the unknown and unconsidered process. However, we concluded that the

ratio between the emission processes should be nearly constant if the work functions

between different surfaces do not differ too much. On this basis, we were able to weight

other measured spectra and predict their γ-coefficient, which is otherwise rarely done

by experimentalists, as this is a real technological challenge.

The quality of the individual submodels basically determines the overall quality. But

depending on the physical scenario, other priorities for improvement must be chosen.

For strontium, this should be the one-crossing approximation as it has been already

developed for the equilibrium Kondo effect or any other approach that captures the

instantaneous energy scales with the required precision. For Helium, on the other hand,

first priority should be to work on corrections to the level shifts in order to improve the

quality of any processes involving an excited state or to identify and include a model

for the unknown low-energy process, depending on whether one is more interested in

the high- or low-energy processes. The presented effective and semiempirical model is

readily able to accommodate these and any other modification as flexibility was one of

our main goals in mind.
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Abstract
Motivated by experimental evidence (He and Yarmoff 2010 Phys. Rev. Lett. 105 176806) for a
mixed-valence state to occur in the neutralization of strontium ions on gold surfaces we analyze
this type of charge-transferring atom–surface collision from a many-body theoretical point of
view using quantum-kinetic equations together with a pseudo-particle representation for the
electronic configurations of the atomic projectile. Particular attention is paid to the temperature
dependence of the neutralization probability which—experimentally—seems to signal mixed-
valence-type correlations affecting the charge-transfer between the gold surface and the
strontium projectile. We also investigate the neutralization of magnesium ions on a gold surface
which shows no evidence for a mixed-valence state. Whereas for magnesium excellent
agreement between theory and experiment could be obtained, for strontium we could not
reproduce the experimental data. Our results indicate mixed-valence correlations to be in
principle present, but for the model mimicking most closely the experimental situation they are
not strong enough to affect the neutralization process quantitatively.

Keywords: mixed-valence correlations, charge-transfer, atom–surface collision

(Some figures may appear in colour only in the online journal)

1. Introduction

Charge-exchange between an atomic projectile and a surface
plays a central role in surface science [1–6]. Many surface
diagnostics, for instance, secondary ion mass spectrometry [7]
or meta-stable atom de-excitation spectroscopy [8] utilize
surface-based charge-transfer processes. The same holds for
plasma science. Surface-based production of negative
hydrogen ions, for instance, is currently considered as a pre-
stage process in neutral gas heating of fusion plasmas [9]. The
operation modii of low-temperature gas discharges [10],
which are main work horses in many surface modification and
semiconductor industries, depend on secondary electron
emission from the plasma walls and thus also on surface-
based charge-transfer processes.

Besides their great technological importance, charge-
transferring atom–surface collisions are however also of
fundamental interest. This type of collision couples a local
quantum system with a finite number of discrete states—the
projectile—to a large reservoir with a continuum of states—
the target. Irrespective of the coupling between the two, either
due to tunneling or due to Auger-type Coulomb interaction,

charge-transferring atom–surface collisions are thus perfect
realizations of time-dependent quantum impurity systems
[11, 12]. By a judicious choice of the projectile-target com-
bination as well as the collision parameters Kondo-type fea-
tures [13] are thus expected as in any other quantum impurity
system [14–17].

Indeed a recent experiment by He and Yarmoff [18, 19]
provides strong evidence for electron correlations affecting
the neutralization of positively charged strontium ions on gold
surfaces. The fingerprint of correlations could be the experi-
mentally found negative temperature dependence of the
neutralization probability. It may arise [11, 12] from ther-
mally excited conduction band holes occupying the strongly
renormalized 5s1 configuration of the projectile which effec-
tively stabilizes the impinging ion and reduces thereby the
neutralization probability. The purpose of the present work is
to analyze the He–Yarmoff experiment [18, 19] from a gen-
uine many-body theoretical point of view, following the
seminal work of Nordlander and coworkers [11, 20–23] as
well as Merino and Marston [12] and to provide theoretical
support for the interpretation of the experiment in terms of a
mixed-valence scenario.
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We couch—as usual—the theoretical description of the
charge-transferring atom–surface collision in a time-depen-
dent Anderson impurity model [3–6, 24–30]. The parameters
of the model are critical. To be as realistic as possible without
performing an expensive ab initio analysis of the ion–surface
interaction we employ for the calculation of the model para-
meters Gadzuk’s semi-empirical approach [31, 32] based on
image charges and Hartree–Fock wave functions for the
projectile states [33]. The time-dependent Anderson model,
written in terms of pseudo-operators [34, 35] for the projectile
states, is then subjected to a full quantum-kinetic analysis
using contour-ordered Green functions [36, 37] and a non-
crossing approximation for the hybridization self-energies as
originally proposed by Nordlander and coworkers
[11, 20–23].

We apply the formalism to analyze, respectively, the
neutralization of a strontium and a magnesium ion on a gold
surface. For the Mg:Au system, which shows no evidence for
mixed-valence correlations affecting the charge-transfer
between the surface and the projectile, we find excellent
agreement between theory and experiment. For the Sr:Au
system, in contrast, we could reproduce only the correct order
of magnitude of the neutralization probability. Its temperature
dependence could not be reproduced. Our modeling shows
however that a mixed-valence scenario could in principle be
at work. For the material parameters best suited for the
description of the Sr:Au system they are however not strong
enough to affect the neutralization probability also
quantitatively.

The outline of our presentation is as follows. In the next
section we describe the time-dependent Anderson model
explaining in particular how we obtained the parameters
characterizing it. Section 3 concerns the quantum kinetics and
presents the set of coupled two-time integro-differential
equations which have to be solved for determining the
probabilities with which the various charge states of the
projectile occur. They form the basis for the analysis of the
temperature dependence of the neutralization probability.
Numerical results for a strontium as well as a magnesium ion
hitting a gold surface are presented, discussed, and compared
to experimental data in section 4. Concluding remarks are
given in section 5.

2. Model

When an atomic projectile approaches a surface its energy
levels shift and broaden due to direct and exchange Coulomb
interactions with the surface. Since the target and the pro-
jectile are composite objects the calculation of these shifts and
broadenings from first principles is a complicated problem
[38]. We follow therefore Gadzuk’s semi-empirical approach
[31, 32]. From our previous work on secondary electron
emission due to de-excitation of meta-stable nitrogen mole-
cules on metal [39] and dielectric [40, 41] surfaces we expect
the approach to give reasonable estimates for the level widths
as well as the level positions for distances from the surface
larger than a few Bohr radii. In addition, the approach has a

clear physical picture behind it and is thus intuitively very
appealing.

The essence of the model is illustrated in figure 1. It
shows for the particular case of a strontium ion hitting a gold
surface the energy levels of the projectile closest to the Fermi
energy of the target. Quite generally, for alkaline-earth (AE)
ions the first and the second ionization levels are most
important. Identifying the positive ion (AE+) with a singly
occupied impurity and the neutral atom (AE0) with a doubly
occupied impurity, the projectile can be modelled as a non-
degenerate, asymmetric Anderson model with on-site ener-
gies

z I
e

z z
( )

4
, (1)U

i
1

2

ε = − +
−

z I
e

z z
( )

3

4
, (2)

i
0 2

2

ε = − +
−

where I 01 > and I 02 > are, respectively, the first and second
ionization energy far away from the surface while zi is the
distance of the metal’s image plane from its crystallographic
ending at z = 0. The on-site Coulomb repulsion U(z) would be
the difference of the two energies. Table 1 summarizes the
material parameters required for the modeling of the
neutralization of strontium and magnesium ions on a gold
surface.

Figure 1. Illustration of the time-dependent quantum impurity model
used for the description of the charge-transferring scattering of a Sr+

ion on a gold surface. The two ionization energies, t( )Uε and t( )0ε ,
standing for the projectiles’ 5s2 and 5s1 configuration, respectively,
shift due to the image interaction with the surface. Far away from the
surface the two energies merge, respectively, with the first I( )1 and
the second (I2) ionization energy of a strontium atom. The image
interaction also leads to a hybridization of the Sr states with the
conduction band states of the surface which is characterized by a
step potential at z = 0 whose depth is the sum of the work function

0Φ > and the Fermi energy E 0F > . For simplicity the broadening
is not shown. Indicated however is the trajectory z(t) of the ion.
Important points along the trajectory are z0, the turning point, and zc,
the point where the first ionization level crosses the Fermi energy.
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The z-dependent shifts of the ionization levels can be
obtained as the energy gain of a virtual process moving the
configuration under consideration from the actual position z to
z = ∞, reducing its electron occupancy by one, and then
moving it back to position z, taking into account in both
moves—if present—image interactions due to the charge state
of the final and initial configurations with the metal [42]. For
the upper level, Uε , that is, the 5s2 configuration the cycle is

eAE AE AE→ + →+ − +, whereas for the lower level, 0ε ,
that is, the 5s1 configuration the cycle is

eAE AE AE2 2→ + →+ + − +.
To set up the Hamiltonian we also need the wave func-

tions for the projectile states. For the upper level we use the
(ns) Hartree–Fock wave function of an AE atom while for the
lower level we use the (ns) Hartree–Fock wave function of an
AE+ ion. According to Clementi and Roetti [33] both can be
written in the form

( )r Y c N r e( , ) (3)
j

N

j j
n C r

HF 00

1

1j j∑ψ θ ϕ⃗ = ⃗
=

− − ⃗

with c n C, ,j j j, and Nj tabulated parameters and Y ( , )00 θ ϕ the
spherical harmonics with m l 0= = .

For simplicity we assume the projectile to approach the
surface from z = ∞ on a perpendicular trajectory

z t z v t( ) , (4)0= +

with the turning point z0 reached at time t = 0 and v the
velocity of the projectile. The lateral motion of the projectile
is thus ignored. To be consistent with this simple trajectory
we also neglect the lateral variation of the potential
characterizing the metal surface. The electrons of the metal
are thus simply described in terms of a potential step at z = 0
with depth V E0 FΦ−∣ ∣ = + , where 0Φ > is the work
function of the metal and E 0F > is its Fermi energy
measured from the bottom of the conduction band (see
table 1), leading to

( )
m

k k k V
2

, (5)k
e

x y z
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2 2 2
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}
( ) ( )r
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−

for the energies and wave functions of the conduction band
electrons; L is the spatial width of the step (drops out in the

final expressions) and

R
k

k

i

i
, (7)k

z k

z k
z

z

z

κ

κ
=

+

−

T
k

k

2i

i
, (8)k

z

z k
z

zκ
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−

with m V k2 ( )k e z
*

0
2 2

z κ = − are the reflection and
transmission coefficients of the potential step.

While the projectile is on its trajectory its ionization
levels hybridize with the conduction band. The matrix ele-
ment for this process is given by [31, 32]

( )( )V t r r
Ze

r r t
r r t( ) d

( )
( ) , (9)k

z k
p

p
0

3 *
2

HF∫ ψ ψ= ⃗
⃗ − ⃗

⃗ − ⃗⃗
>

⃗

where the potential between the two wave functions is the
residual Coulomb interaction of the valence electron with the
core of the projectile located at r t z t e( ) ( )p z⃗ = ⃗ . The matrix
element can be transformed to a level width

( )t V t t( ) 2 ( ) ( ) (10)t

k

k k( )
2∑Γ π δ ε ε= −ε

⃗
⃗ ⃗

which is an important quantity. The charge Z in equation (9)
is the charge of the nucleus screened by all the electrons of
the projectile except of the valence electron under considera-
tion. For the hybridization of the lower level, the second
ionization level, Z = 2 while for the hybridization of the upper
level, the first ionization level, Z s2= − , where s = 0.35 is

Table 1. Material parameters for magnesium, strontium and gold: I1 and I2 are the first and the second ionization energy, Z1 and Z2 are the
effective charges to be used in the calculation of the hybridization matrix element (viz: equation (9)), Φ is the work function, EF the Fermi
energy, zi the position of the image plane in front of the surface, and me

* is the effective mass of an electron.

I1(eV) Z1 I2(eV) Z2 Φ(eV) EF(eV) zi(a.u.) m me e
*

Sr 5.7 1.65 11.0 2 – – – –

Mg 7.65 1.65 15.04 2 – – – –

Au – – – – 5.1–5.2 5.53 1.0 1.1

Figure 2. Level widths as obtained from equation (10) for the Mg:Au
(solid lines) and the Sr:Au (dashed lines) system.
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Slater’s shielding constant due to the second electron in the s-
valence shell [43].

In figure 2 we show the level widths calculated from
equation (10) with t( )ε set, respectively, to t( )Uε and t( )0ε ,
for magnesium and strontium using the parameters of table 1.
Most probably we overestimate the widths close to the sur-
face. To what extent, however, only precise calculations of
the kind performed for alkaline ions by Nordlander and Tully
can show [38].

Using Coleman’s pseudo-particle representation [34, 35]
for the projectile configurations illustrated in figure 3, the
Hamiltonian describing the interaction of an AE projectile
with a metal surface can be written as [23]

[ ]H t t p p t t d d

c c V t c e p

V t c d p

( ) ( ) ( ) ( )
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σ σ

σ
σ σ

σ
σ σ

⃗
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⃗
⃗ ⃗

⃗
⃗ ⃗ −

with e†, d†, and p†
σ denoting, respectively, the creation

operators for an empty (AE2+), a doubly occupied (AE0), and
a singly occupied (AE+) projectile. Since the projectile can be
only in either one of these configurations, the Hamiltonian has
to be constrained by [34, 35]

Q p p d d e e 1. (12)† † † † † †∑= + + =
σ

σ σ

This completes the description of the model. Combined with
measured projectile velocities the model describes the charge-
transfer responsible for the neutralization of AE ions on noble
metal surfaces.

3. Quantum kinetics

To calculate the neutralization probability for the AE ion
hitting the metal surface we follow Nordlander and coworkers

[11, 20–23] and set up quantum-kinetic equations for contour-
ordered Green functions [36, 37] describing the empty, sin-
gly, and doubly occupied projectile. We denote these func-
tions, respectively, by E t t( , )′ , P t t( , )′σ , and D t t( , )′ and write
their analytic pieces in the form

( ) ( )

( ) ( )

H t t t t

t t H t t

, i

exp i d¯ ¯ ¯ , , (13)
t

t

R
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( ) ( ) ( )H t t t t H t t, exp i d¯ ¯ ¯ , , (14)
t
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⎤
⎦⎥∫ ε′ = − ′≷

′
≷

where H t t( , )′ can be any of the three Green functions and
t( )ε is, depending on the Green function, either identically 0,
t( )0ε , or t t( ) ( )U0ε ϵ+ .
Using this notation and calculating the self-energies eΠ ,

0,Σ σ , U,Σ σ , and dΠ in the non-crossing approximation dia-
grammatically shown in figure 4 leads after application of the
Langreth–Wilkins rules [44] and the projection to the Q = 1
subspace [16, 20] to [22, 23]
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Figure 3. Possible configurations of the AE projectile. Solid and
dashed arrows indicate, respectively, spin-reversed states which are
energetically degenerate. The quantities ñσ , nd, and ne are,
respectively, the (pseudo) probabilities with which the AE+, the
AE ,0 and the AE2+ configuration occur.

Figure 4. Self-energies in the non-crossing approximation. Straight
dashed lines denote bare Green functions for the conduction band
electrons. The other lines indicate renormalized Green functions for
the singly occupied (p), the empty (e), and the doubly occupied (d)
AE projectile. Filled bullets stand for the hybridization matrix
element V t( )k ⃗ . Diagrams (a) and (b) give, respectively, the self-
energies 0,Σ σ and U,Σ σ for the Green function Pσ . The self-energies

eΠ and dΠ for the Green functions E and D, respectively, are shown
in (c) and (d).
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and

( ) ( ) ( ) ( )
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with

( )K t t t t f t t¯ ( , ) ( ) ¯ ( , ) (21)( )t t( )Γ Γ′ = ′ ′ε ε ε ε
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′
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and
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t
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⎦⎥∫ ε′ = + − ′ε

≷
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where f t f t( ) 1 ( )= −< > is the Fourier transform of the
Fermi function f ( )ε< defined by

f t f t( )
d

2
( ) exp [ i ]. (23)∫ ε

π
ε ε= −< <

The function K t t¯ ( , )′ε
≷ , which contains the temperature

dependence, entails an approximate momentum summation.
From the diagrams shown in figure 4 one initially obtains

( )
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∫ ε
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Γ Γ ε

ε
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× − − ′

ε ε
≷ ≷

with an energy integration extending over the range of the
conduction band and t( )Γε given by equation (10) with t( )ε
replaced by the integration variable ε. To avoid the
numerically costly energy integration Nordlander and co-
workers employed two different approximations: in [22] they
replaced t( )Γε by an average over the energy range of the
conduction band while in [23] they replaced it by t( )t( )Γε with

t( )ε set to t( )0ε or t( )Uε depending on which state is
considered in the hybridization self-energy. Using the latter
leads to

( ) ( )K t t t t f t t( , ) ( ) (25)( )t t( )Γ Γ′ ≃ ′ − ′ε ε ε
≷

′
≷

and eventually to K t t¯ ( , )′ε
≷ as given in equation (21). The

subscript ε indicates now not an integration variable but the
functional dependence on t( )ε . We employ this form but keep

in mind that it is an approximation to the non-crossing self-
energies.

The instantaneous (pseudo) occurrence probabilities for
the projectile configurations AE2+, AE+, and AE0 are then
given by

n t E t t( ) ¯ ( , ), (26)e = <

n t P t t˜ ( ) ¯ ( , ), (27)=σ σ
<

n t D t t( ) ¯ ( , ), (28)d = <

respectively, where we refer to all of them as (pseudo)
occurrence probabilities also strictly speaking nd and ne are
true ones and only ñσ is a pseudo occurrence probability in
the sense that the true probability with which the AE+

configuration occurs is n n n˜ d= +σ σ [23]. Sometimes we
will also refer to ne, ñσ , and nd simply as (pseudo)
occupancies. For the AE ion the probability for neutralization
at the surface (wall recombination) is the probability for
double occupancy after the completion of the trajectory, that
is

n ( ), (29)w dα = ∞

subject to the initial conditions n n( ) ( ) 0d e−∞ = −∞ = and
ñ ( ) ,1 2δ−∞ =σ σ .

We solve the two coupled sets of integro-differential
equations (15)–(17) and (18)–(20) on a two-dimensional time
grid setting

E t t P t t D t t¯ ( , ) ¯ ( , ) ¯ ( , ) 1 (30)R R R= = =σ

for the retarded Green functions and

E n( , ) ( ) 0, (31)e−∞ −∞ = −∞ =<

P n( , ) ˜ ( ) , (32),1 2δ−∞ −∞ = −∞ =σ σ σ
<

D n( , ) ( ) 0 (33)d−∞ −∞ = −∞ =<

Figure 5. Sketch of the domains in the t t(¯̄, ¯) plane over which
equations (15)–(20) have to be integrated subject to the boundary
conditions (30)–(33), respectively, in order to determine the retarded
and less-than Green functions at t t( , )′ . The triangular (rectangular)
region denotes the domain required for the calculation of the retarded
(less-than) Green functions.
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for the less-than Green functions using basically the same
numerical strategy as Shao and coworkers [22, 23].

Due to the intertwining of the time integrations the
integration domains for the retarded Green functions are tri-
angular whereas for the less-than Green function they are
rectangular as shown in figure 5. The size of the time-grid as
well as the discretization depend on the velocity of the pro-
jectile and the maximum distance it has from the surface. For
the He–Yarmoff experiment the velocities are on the order of
0.01 in atomic units. The maximum distance from which the
ion starts its journey can be taken to be 20 Bohr radii. At this
distance the coupling between the surface and the ion is
vanishingly small. We empirically found the algorithm to
converge for a N × N grid with N = 1000–3000. Since the
Green functions are complex the computations are time and
memory consuming.

4. Results

We now analyze the He–Yarmoff experiment [18, 19]
quantitatively from a many-body theoretical point of view.
For that purpose we combine the model developed in
section 2 with the quantum-kinetics described in section 3.
Besides the parameters given in table 1 we also need the
velocity of the projectile. In general, the velocity will be

different on the in- and outgoing branch of the trajectory. The
outgoing branch, however, determines the final charge state of
the projectile. We take therefore—for both branches—the
normal component of the experimentally measured post-col-
lision velocity. If not noted otherwise all quantities are in
atomic units, that is, energies are measured in Hartrees and
lengths in Bohr radii.

First, we discuss the Mg:Au system. In figure 6 we show
the time-dependence of the broadened ionization levels, Uε
and 0ε , together with the instantaneous (pseudo) occurrence

probabilities n n˜ 1 2, d± , and ne for the Mg+, the Mg0, and the

Mg2+ configuration, respectively. Negative and positive times
denote the in- and outcoming branch of the trajectory. The
velocity v = 0.024 and the surface temperature T 400 Ks = .
Initially, the projectile is in the Mg+ configuration, that is, the
lower level 0ε , representing single occupancy, is occupied
while the upper level Uε , representing double occupancy, and

thus the Mg0 configuration, is empty. While the projectile is
on its way through the trajectory the ionization levels shift
and broaden. As a result the occupancies change. The neu-
tralization probability is then the probability for double
occupancy at the end of the trajectory.

For the particular case of the Mg:Au system the first
ionization level, Uε , that is, the level which has to accept an
electron in order to neutralize the ion, is below the Fermi
energy of the metal throughout the whole trajectory. The
broadening is also rather weak. It only leaks for a very short
time span above the Fermi energy. As a result, the magnesium
ion can efficiently soak in a second electron while the electron
already present due to the initial condition is basically frozen
in the second ionization level. The electron captured from the
metal has moreover a strong tendency to stay on the pro-
jectile. It only has a chance to leave it in the short time span
where the instantaneous broadening t( )UΓ is larger than
E t( )UF ε∣ − ∣. The neutralization probability is thus expected
to be close to unity. Indeed, we find for the situation shown in
figure 6 n ( ) 0.965w dα = ∞ = (solid bullet in figure 6).

Figure 6. Upper panel: energy level diagram for the Mg:Au system
at T 400s = K as a function of time. The projectile starts at t 600= −
and z z 20max= = with velocity v = 0.024, reaches at t = 0 the
turning point z z 50= = , and approaches at t = 600 again zmax. The
ionization levels (solid lines) are broadened according to U U0, 0,ϵ Γ±
(dashed lines) with U0,Γ as shown in figure 2. Lower panel:
instantaneous (pseudo) occurrence probabilities along the trajectory
for the Mg+, the Mg0, and the Mg2+ configurations. Initially, at time
t 600= − , the projectile is in the Mg+ configuration. The
neutralization probability in this particular case is

n (600) 0.965w dα = = (solid bullet).

Figure 7. Temperature dependence of the neutralization probability
n ( )w dα = ∞ for a Mg+ ion hitting with v = 0.024 a gold surface. The

turning point z 50 = . Also shown are experimental data from [19].
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The temperature dependence of wα is shown in figure 7.
In accordance with experiment we find wα essentially to be
independent of temperature. This is expected because both
ionization levels, Uε and 0ε , are below the Fermi energy and
their broadening is too small to allow a charge-transfer from
the projectile to empty conduction band states of the surface.
Notice, the excellent agreement between theory and experi-
ment indicating that the semi-empirical model we developed
in section 2 captures the essential features of the charge-
transfer pretty well.

After the successful description of the Mg:Au system let
us now turn to the Sr:Au system. In figure 8 we again plot as a
function of time the broadened ionization levels and the
(pseudo) occurrence probabilities for the three configurations
of the projectile. As it was the case for Mg:Au, the config-
uration of the projectile, which initially was in the config-
uration representing single occupancy, changes along the
trajectory. The changes are however more subtle.

The reason is the level structure. In contrast to the Mg:Au
system, the ionization levels are now closer to the Fermi
energy of the surface. The first ionization level Uε even
crosses the Fermi energy with far reaching consequences. The
part of the trajectory where Uε is below the Fermi energy, that
is, the region where the neutral atom would be energetically
favored, the broadening is very small, indicating negligible

charge-transfer from the metal to the ion and hence a stabi-
lization of the ion due to lack of coupling. When the broad-
ening and thus the coupling is large Uε is above the Fermi
level. In this part of the trajectory the ion is energetically
stabilized. The first ionization level of strontium can capture
an electron from the metal only in the time span where
E t t( ) ( )U UF ε Γ∣ − ∣ < . The neutralization probability of a
strontium ion should be thus much smaller than the one for a
magnesium ion. Indeed we find n ( ) 0.046w dα = ∞ = which
is much smaller than unity (solid bullet in figure 8).

Due to the shift and broadening of the first ionization
level Uε it is clear that a strontium ion cannot as efficiently
neutralize on a gold surface as a magnesium ion. This sets the
scale of wα . In addition, and in great contrast to magnesium,
the second ionization level 0ε is however also close to the
Fermi energy. In those parts of the trajectory for which
E t t( ) ( )F 0 0ε Γ∣ − ∣ < it can affect the charge-transfer between
the metal and the projectile. In fact, taken by itself, it should
stabilize the ion and hence decrease the neutralization prob-
ability [12]. Qualitatively, this can be understood from a
density of states argument. From the upper panel of figure 8
we can infer that the broadened second ionization level is cut
by the Fermi energy in the upper half of its local density of
states. Hence, close to the surface holes start to occupy the
second ionization level at energies where the local density of
states is higher than at the energies where electrons are
transferred. Increasing temperature enhances thus the ten-
dency of electron loss from the second ionization level.
Without interference from the first ionization level the neu-
tralization probability should thus go down with temperature.

That the second ionization level of Sr comes close to the
Fermi energy of Au most probably led He and Yarmoff
[18, 19] to suggest that the neutralization of strontium ions on
gold surfaces is dominated by electron correlations. Indeed
the experimentally found negative temperature dependence of

wα above T 600 Ks = seems to support their conclusion.
However, the temperature dependence of wα we obtain and

Figure 8. Upper panel: energy level diagram for the Sr:Au system at
Ts = 400 K as a function of time. The projectile starts at t 1120= −
and z z 20max= = with velocity v = 0.0134, reaches at t = 0 the
turning point z z 50= = , and approaches at t = 1120 again z zmax= .
The levels (solid lines) are broadened according to U U0, 0,ϵ Γ±
(dashed lines) with U0,Γ as shown in figure 2. Lower panel:
instantaneous (pseudo) occurrence probabilities along the trajectory
for the Sr+, the Sr0, and the Sr2+ configurations. Initially, at time
t 1120= − , the projectile is in the Sr+ configuration. The
neutralization probability in this particular case is

n (1120) 0.046w dα = = (solid bullet).

Figure 9. Temperature dependence of the neutralization probability
n ( )w dα = ∞ for a Sr+ ion hitting with v = 0.0134 a gold surface. The

turning point z 50 = . Also shown are experimental data from [19].
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which we plot in figure 9, does not show this behavior, at
least, for the material parameters of table 1 and the experi-
mentally measured post-collision velocity. The reason for the
discrepancy between the measured and the calculated data is
unclear. The material parameters seem to be reasonable since
the theoretical results have the correct order of magnitude. It
could be however that the temperature-induced transfer of
holes to the second ionization level is overcompensated by
the electron-transfer to the first ionization level. In the region
where charge-transfer is strongest the two ionization levels
overlap. The absence of energy separation together with the
conditional temporal weighting due to the dynamics of the
collision process makes it very hard to tell a priori which
process will win and manifest itself in the measured neu-
tralization probability.

So far, the discussion of the data left out the possibility of
a correlation-induced sharp resonance in the vicinity of the
Fermi energy, that is, the key feature of Kondo-type physics.
The numerical results seem to suggest that either there is no
resonance or it does not affect the neutralization process.
However, from the data itself we cannot determine which one
is the case. We can thus not decide whether the Sr:Au system
is in a correlated regime or not and hence whether an inter-
pretation of the experimental data in terms of a mixed-valence
scenario is in principle plausible or has to be dismissed. A
rigorous way to decide this would be to calculate the
instantaneous spectral functions for the projectile and to look
for sharp resonances in the vicinity of the Fermi energy. This
is beyond the scope of the present work.

To get at least a qualitative idea about in what regime the
strontium projectile might be along its trajectory we plot in
figure 10, following Merino and Marston, [12] Haldane’s
scaling invariant, [45]

U
log , (34)0

*

0
0

0

0

⎛
⎝⎜

⎞
⎠⎟

ε
Δ

ε
Δ
π Δ

= +

as a function of time travelled along the outgoing branch of
the trajectory. In the perturbative regime which is strictly
applicable only far away from the surface 0

*ε can be
interpreted as the renormalized second ionization level and

20 0Δ Γ= [23]. For 10
*

0ε Δ∣ ∣ < the projectile is likely to be
in the mixed-valence regime [12]. Since 0

*ε comes very close
to the Fermi energy holes are expected to transfer in the
mixed-valence regime very efficiently to the projectile.
In situations where the projectile stays sufficiently long in
the mixed-valence regime before 0

*ε crosses the Fermi energy
double occupancy and hence the neutralization probability
should be suppressed with increasing temperature.

As can be seen in figure 10 close enough to the surface
the strontium projectile is indeed in the mixed-valence
regime. For the material parameters given in table 1 and the
experimental value for the projectile velocity the time-span
however is rather short. Most probably this is the reason why
we do not see any reduction of wα with temperature for the
parameters we think to be best suited for the Sr:Au system.
Since the experimental data are unambiguous, this indicates
perhaps the need for a precise first-principle calculation of the
model parameters. Alternative interpretations of the experi-
mental results can however not be ruled out.

5. Conclusions

Motivated by claims that the neutralization of strontium ions
on gold surfaces is affected by electron correlations we set up
a semi-empirical model for charge-transferring collisions
between AE projectiles and noble metal surfaces. The surface
is simply modelled by a step potential while the projectile is
modelled by its two highest ionization levels which couple to
the surface via Gadzuk’s image-potential-based projectile-
surface interaction. To calculate the neutralization probability
we employed a pseudo-particle representation of the pro-
jectile’s charge states and quantum-kinetic equations for the
retarded and less-than Green functions of the projectile as
initially suggested by Nordlander, Shao and Langreth.
Besides the non-crossing approximation for the self-energies
and an approximate momentum summation no further
approximations are made. The quantum-kinetic equations are
numerically solved on a two-dimensional time-grid using
essentially the same strategy as Shao and coworkers.

The absolute values for the neutralization probability we
obtain are in good agreement with experimental data, espe-
cially for the Mg:Au system, but also for the Sr:Au system,
although for the latter we could not reproduce the temperature
dependence of the neutralization probability. Our calculations
can thus not decide whether the He–Yarmoff experiment can
be interpreted in terms of a mixed-valence scenario. From the
instantaneous values of Haldane’s scaling invariant we see
however that the Sr:Au system could be in the mixed-valence
regime. The mechanism for a negative temperature depen-
dence, that is, the possibility of efficiently transferring holes
to the second ionization level, is thus in principle present. For
the material parameters however most appropriate for Sr:Au

Figure 10. Renormalized ( 0
*ε ) and bare ( 0ε ) second ionization level

measured from the Fermi energy as a function of time traveled along
the outgoing branch of the trajectory for the Sr:Au system with
v = 0.0134 and T 400 Ks = . Also shown as a function of time is the
scaling invariant 0

* 0ε Δ . In the region for which 10
* 0ε Δ∣ ∣ < the

system is likely to be in the mixed-valence region. The material
parameters are as given in table 1 and v = 0.0134.

8

Phys. Scr. T165 (2015) 014008 M Pamperin et al

2 Thesis Articles

48



the negative temperature dependence arising from this chan-
nel seems to be overcompensated by the positive temperature
dependence of the electron-transfer to the first ionization
level. To prove that He and Yarmoff have indeed seen—for
the first time—mixed-valence correlations affecting charge-
transfer between an ion and a surface requires therefore fur-
ther theoretical work.
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Many-body theory of the neutralization of strontium ions on gold surfaces
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Motivated by experimental evidence for mixed-valence correlations affecting the neutralization of strontium
ions on gold surfaces, we set up an Anderson-Newns model for the Sr:Au system and calculate the neutralization
probability α as a function of temperature. We employ quantum-kinetic equations for the projectile Green
functions in the finite-U noncrossing approximation. Our results for α agree reasonably well with the experimental
data as far as the overall order of magnitude is concerned, showing in particular the correlation-induced
enhancement of α. The experimentally found nonmonotonous temperature dependence, however, could not
be reproduced. Instead of an initially increasing and then decreasing α, we find over the whole temperature range
only a weak negative temperature dependence. It arises, however, clearly from a mixed-valence resonance in the
projectile’s spectral density and thus supports qualitatively the interpretation of the experimental data in terms of
a mixed-valence scenario.

DOI: 10.1103/PhysRevB.91.035440 PACS number(s): 34.35.+a, 79.20.Rf, 72.10.Fk

I. INTRODUCTION

Charge-transferring atom-surface collisions [1–9] are of
great technological interest in surface science. The complex
process of neutral gas heating in fusion plasmas [10], for
instance, starts with the surface-based conversion of neutral hy-
drogen atoms to negatively charged ions. The operation modii
of low-temperature plasmas used, for instance, in flat panel
displays or in surface modification devices depend strongly
on secondary electrons originating from the substrate due to
impact of ions and radicals and thus also on surface-based
charge-transfer processes [11]. Many surface diagnostics,
finally, for instance, ion neutralization spectroscopy [12] and
metastable atom deexcitation spectroscopy [13] utilize charge-
transfer processes to gain information about the constituents
of the surface. At the same time, however, charge-transferring
atom-surface collisions are of fundamental interest as well
because they are particular realizations of a quantum-impurity
system out of equilibrium.

The archetypical quantum impurity is a local spin (more
generally, a local moment) in a metal coupled to the itiner-
ant electrons of the conduction band. Its well-documented
properties [14,15], arising from an emerging resonance at
the Fermi energy of the metal, are however also present in
other quantum systems with a finite number of correlated
internal states interacting via tunneling with a reservoir of
external states. In particular, semiconductor quantum dots
coupled to metallic leads are ideal platforms for studying
local-moment physics in a well-controlled setting [16–23].
By a suitable time-dependent gating the dot can be driven
out of equilibrium. Of particular recent theoretical interest
are the temporal buildup and/or decay of local-moment-type
correlations and how they affect the electron transport through
these devices [24–27]. As pointed out a long time ago by
Shao and co-workers [28] as well as Merino and Marston
[29], similar transient correlations should also occur in charge-
transferring atom-surface collisions where the projectile with
its finite number of electron states mimics the quantum dot
while the target with its continuum of states replaces the lead.

A recent experiment by He and Yarmoff indeed provided
strong evidence for local-moment-type correlations to affect

the neutralization probability of strontium ions on gold sur-
faces [30,31]. They found a nonmonotonous temperature de-
pendence of the neutralization probability which first increases
and then decreases with temperature. The initial increase with
temperature is most probably a thermal single-particle effect,
but the latter could be the long-sought fingerprint for a transient
mixed-valence resonance formed during an electron transfer
from a surface to an atomic projectile [28,29].

In this work, following the lead of Nordlander and co-
workers [28,32–34] as well as Merino and Marston [29], we
analyze He and Yarmoff’s experiment [30,31] from a many-
body theoretical point of view. In particular, we test the claim
that the negative temperature dependence at high temperatures
arises from the local moment of the unpaired electron in the
5s shell of the approaching ion. For that purpose we first
set up, as usual for the description of charge-transferring
atom-surface collisions, an Anderson-Newns Hamiltonian
[5–9,35–41]. To obtain its single-particle matrix elements,
we employ Hartree-Fock wave functions for the strontium
projectile [42], a step-potential description for the gold target,
and Gadzuk’s semiempirical construction [43–45] for the
projectile-target interaction. The model rewritten in terms of
Coleman’s pseudoparticle operators [46,47] is then analyzed
within the finite-U noncrossing approximation employing
contour-ordered Green functions [48,49] as originally sug-
gested by Nordlander and co-workers [28,32–34]. Aside from
the instantaneous occupancies and the neutralization probabil-
ity we also calculate the instantaneous spectral densities. The
latter are of particular interest because if the interpretation of
the experimental findings in terms of a mixed-valence scenario
is correct, the projectile’s spectral density should feature a
transient resonance at the target’s Fermi energy.

For the material parameters best suited for the Sr:Au
system, we find neutralization probabilities slightly above
the experimental data but still of the correct order of mag-
nitude indicating that the single-particle matrix elements of
the Anderson-Newns model are sufficiently close to reality.
Moreover, for the model without correlations the neutralization
probabilities turn out to be too small, showing that agreement
with experiment can be only achieved due to the correlation-
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induced enhancement of the neutralization probability. We
also find a transient resonance in the instantaneous spectral
densities hinting mixed-valence correlations to be present in
certain parts of the collision trajectory. The nonmonotonous
temperature dependence of the neutralization probability, how-
ever, could not be reproduced. Instead, we find the resonance
to lead only to a weak negative temperature dependence over
the whole temperature range.

Due to lack of data for comparison, we cannot judge the
validity of the single-particle parametrization we developed for
the Sr:Au system. At the moment, it is the most realistic one.
We attribute therefore the failure of the present calculation
to reproduce the temperature anomaly of the neutralization
probability while having at the same time mixed-valence
features in the instantaneous spectral densities primarily to the
finite-U noncrossing approximation which seems to be unable
to capture the instantaneous energy scales with the required
precision. A quantitative description of the experiment has thus
to be based either on the dynamical 1/N expansion initially
used by Merino and Marston [29], equation of motions for
the correlation functions of the physical degrees of freedom
instead of the pseudoparticles [39], or on the one-crossing
approximation as it has been developed for the equilibrium
Kondo effect [50–54]. Numerically, this will be rather demand-
ing. But demonstrating that He and Yarmoff have indeed seen
local-moment physics in a charge-transferring atom-surface
collision may well be worth the effort.

The paper is organized as follows. In the next section,
we introduce the Anderson-Newns model, its parametrization
for the Sr:Au system, and its representation in terms of
pseudoparticle operators. In Sec. III, we recapitulate briefly the
quantum kinetics of the Anderson-Newns model as pioneered
by Nordlander and co-workers. Basic definitions and the main
steps of the derivation of the set of Dyson equations for
the analytic pieces of the projectile Green functions within
the finite-U noncrossing approximation, which is the set
of equations to be numerically solved, can be found in an
appendix to make the paper self-contained. Numerical results
are presented, discussed, and compared to the experimental
data in Sec. IV and concluding remarks with an outlook are
given in Sec. V.

II. MODEL

The interaction of an atomic projectile with a surface
is a complicated many-body process. Within the adiabatic
approximation, which treats the center-of-mass motion of
the projectile along the collision trajectory classically [8],
it leads to a position- and hence time-dependent broadening
and shifting of the projectile’s energy levels. The adiabatic
modification of the atomic energy levels as a function of
distance can be calculated from first principles [55–59]. As
in our previous work on secondary electron emission from
metallic [60] and dielectric [61,62] surfaces, we employ,
however, Gadzuk’s semiempirical approach [43,44], based
on classical image shifts and a golden rule calculation of
the level widths, which not only provides a very appealing
physical picture of the interaction process [45], but produces
for distances larger than a few Bohr radii also reasonable level
widths and shifts [57–59].

Indeed, first-principles investigations of Auger neutraliza-
tion of helium ions on aluminum surfaces by Monreal and
co-workers [58,59] showed that for distances larger than five
Bohr radii the level shift follows the classical image shift. Only
for shorter distances chemical interactions lead to a substantial
deviation between the two. Borisov and Wille [57], on the other
hand, found the level width of hydrogen ions approaching an
aluminum surface to be for distances larger than five Bohr radii
also not too far off the widths obtained from Gadzuk’s golden
rule calculation, that is, the widths are perhaps off by a factor 2.
The reason most probably is Gadzuk’s ingenious choice of the
tunneling matrix element (see below) which takes care of the
nonorthogonality of the projectile and target states [44]. Since
the turning point of the strontium ion is sufficiently far away
from the first atomic layer, we estimate it to be around five
Bohr radii, we expect Gadzuk’s semiempirical approach to
also provide a reasonable parametrization of the Sr:Au system
investigated by He and Yarmoff [30,31]. The corrections due
to chemical interactions between the strontium projectile and
the gold surface, occurring at shorter distances and included in
first-principles approaches [55–59], should not yet play a role.

We now set up Gadzuk’s approach step by step [43,44]. For
the charge-transfer process we are interested in, the first two
ionization levels of the strontium projectile are most important.
They are closest to the Fermi energy of the gold target and may
hence accept or donate an electron. In terms of the Anderson-
Newns model, the two levels constitute, respectively, the upper
and lower charge-transfer level. The difference of the two can
thus be identified with the time-dependent onsite Coulomb
repulsion. Figure 1 schematically shows the essence of the
Anderson-Newns model for the Sr:Au system. The energy

E

z
zTP zc

Φ

EF

5s1

εU (t)
5s2

ε0(t)

I2I1

Sr+Au
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FIG. 1. Illustration of the time-dependent charge-transferring
scattering of a Sr+ ion on a gold surface. Far from the surface, the
two ionization energies ε0(t) and εU (t) are equal to the first two
ionization energies of a strontium atom and represent the projectile’s
5s1 and 5s2 configurations. They shift upward due to the image
interaction of the projectile with the surface. For simplicity, not shown
is the hybridization between the projectile and surface states as the
projectile closes its distance to the surface which is idealized by a
step potential whose depth is the sum of the work function � > 0 and
the Fermi energy EF > 0. The energies are on scale and the points
indicated along the trajectory z(t) are zTP, the turning point, and zc,
the point where the first ionization level crosses the Fermi energy.
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levels are on scale. Mathematically, the onsite energies are
given by

εU (t) = −I1 + e2

4|z(t) − zi | , (1)

ε0(t) = −I2 + 3e2

4|z(t) − zi | , (2)

where I1 > 0 and I2 > 0 are the first and second ionization
energies far from the surface and zi is the distance of the
metal’s image plane from its crystallographic ending at z = 0.
For simplicity, the projectile is assumed to approach the surface
perpendicularly along the trajectory

z(t) = zTP + v |t | , (3)

where zTP is the turning point and v is the velocity.
The shift of the onsite energies with time can be interpreted

as the negative of the energy gain of a virtual process which
moves the configuration under consideration from the actual
position z to z = ∞, reduces its electron occupancy by one,
and then moves it back to its former position z, taking into
account in both moves possible image interactions due to the
initial and final charge states of the projectile with the metal
[9].

For the upper level εU (z), corresponding to the first
ionization level, this means shifting the charge-neutral 5s2

configuration from z to z = ∞, turning it into a single-charged
5s1 configuration, which is then moved back to z. In the first
leg, no image shift occurs while in the second one the image
shift is −e2/4|z − zi |. The net energy gain of the whole process
is therefore −e2/4|z − zi | leading to a shift of the upper onsite
level of +e2/4|z − zi |. Similarly, for the lower level ε0(z),
which is the second ionization level, one imagines moving a
5s1 configuration from z to z = ∞ and then a 5s0 configuration
from z = ∞ back to z. In both moves, image shifts occur
adding up to −3e2/4|z − zi | because the energy pay in the
first half of the trip is due to a single-charged projectile, while
the energy gain on the return trip arises from a double-charged
one. The shift of the lower onsite level is thus +3e2/4|z − zi |.

Aside from the onsite energies we also need the hybridiza-
tion matrix elements which depend on projectile and metal
wave functions. Ignoring the lateral variation of the surface
potential, we take for the latter simply the wave functions
of a step potential with depth V0 = −� − EF where � > 0
and EF > 0 are the work function and the Fermi energy of
the surface, respectively, measured as illustrated in Fig. 1.
Hence, the energies and wave functions for the conduction
band electrons are

ε�k = �2

2m∗
e

(
k2
x + k2

y + k2
z

) − |V0| , (4)

ψ�k(�r) = 1

L3/2
ei(kxx+kyy){�(z)Tkz

e−κzz

+ �(−z)
[
eikzz + Rkz

e−ikzz
]}

, (5)

where L is the spatial width of the step, which drops out in the
final expressions, and

Tkz
= 2ikz

ikz − κz

, Rkz
= ikz + κz

ikz − κz

, (6)

with κz = √
2me(|V0| − k2

z )/�2 are, respectively, the transmis-
sion and reflection coefficients of the step potential. More
sophisticated surface potentials are conceivable, but from the
work of Kürpick and Thumm [63] we expect the final result
for the neutralization probability to depend not too strongly on
the choice of the surface potential.

For the calculation of the hybridization matrix element, we
also need 5s wave functions for the neutral and single-charged
projectile. Both are radially symmetric and in the Hartree-Fock
approximation can be written in the general form

ψHF(�r) =
N∑

j=1

cjNj√
4π

|�r |nj −1
e−Cj |�r | (7)

with N , cj , Nj , nj , and Cj tabulated parameters [42].
The transfer of an electron between the target and the

projectile is a rearrangement collision. According to Gadzuk
[43,44], the matrix element for this process which is also the
hybridization matrix element of the Anderson-Newns model
is given by

V�k(t) =
∫

z>0
d3r ψ∗

�k (�r)
Ze2

|�r − �rp(t)|ψHF(�r − �rp(t)), (8)

where the potential between the two wave functions is the
Coulomb interaction of the transferring electron with the
core of the projectile located at �rp(t) = z(t)�ez. This choice of
the matrix element takes into account the nonorthogonality of
the projectile and target states [44]. The charge of the core Ze

is screened by the residual valence electrons of the projectile,
that is, for the lower level Z = Z2 = 2 while for the upper level
Z = Z1 = 2 − s with s = 0.35 the Slater shielding constant
for a 5s electron [64]. Material parameters required for the
modeling of the Sr:Au system are listed in Table I.

The multidimensional integral (8) can be analytically
reduced to a one-dimensional integral by a lateral Fourier trans-
formation of the product of the residual Coulomb interaction
with the Hartree-Fock projectile wave function. The resulting
sum contains modified Bessel functions of the second kind Kα

[65]. Transforming formally back and reversing the order of
integration yields after successively integrating first along the

TABLE I. Material parameters for strontium and gold: I1 and I2

are the first and the second ionization energies, Z1 and Z2 are the
effective charges to be used in the calculation of the hybridization
matrix element [viz., Eq. (8)], � is the work function, EF the Fermi
energy, zi the position of the image plane in front of the surface for
which we take a typical value, and m∗

e is the effective mass of an
electron in the conduction band of gold.

I1 (eV) Z1 I2 (eV) Z2 � (eV) EF (eV) zi (a.u.) m∗
e/me

Sr 5.7 1.65 11.0 2
Au 5.1 5.53 1.0 1.1
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x, y and then along the px , py directions

V�k(t) =
√

2
Ze2

L3/2
T ∗

kz
(θ,φ)

N∑
j=1

(nj −1)/2∑
n=0

(−1)ncjNjC
nj −1−2n

j

× (
C2

j + k2
x + k2

y

)−(nj −1/2−n)/2
Anj n

×
∫ ∞

0
dz e−κzz |z − zp(t)|nj −1/2−n

× Knj −1/2−n

(|z − zp(t)|
√

C2
j + k2

x + k2
y

)
, (9)

where

Anj n =

⎛
⎜⎜⎜⎝

1 0 0
1 0 0
1 1 0
1 3 0
1 6 3

⎞
⎟⎟⎟⎠ (10)

are numerical coefficients (nj ∈ {1, . . . ,5} and n = 0,1,2 for
5s functions [42]) and T ∗

kz
is the complex conjugate of Tkz

.
Inserting the matrix element (9) into the golden rule

expression for the transition rate gives the level width

�ε(t)(t) = 2π

�
∑

�k
|V�k(t)|2δ(ε(t) − ε�k). (11)

It is an important quantity characterizing the strength of the
charge transfer. Turning the momentum summation into an
integral eliminates the width L of the step potential. The
integrals have to be done numerically and lead due primarily
to the modified Bessel functions to level widths exponentially
decreasing with distance as it is generally expected.

In Fig. 2, we show the widths of the first two ionization
levels of the strontium projectile hitting a gold surface as
obtained from Eq. (11) by setting ε(t) to εU (t) and ε0(t),
respectively, and using the material parameters given in Table I.
To demonstrate that the widths we get are of the correct order
of magnitude, we also plot the width of a rubidium 5s level in
front of an aluminum surface and compare it with the width
obtained by Nordlander and Tully using a complex scaling
technique [56]. In qualitative agreement with Borisov and
Wille’s investigation [57] of Gadzuk’s approach, our rubidium
width is a factor 2–3 too small for z > 7aB and a factor 2
too large for z = 5aB . Between 7aB and 9aB , however, the
widths fortuitously agree with each other. The same trend we
found for the other alkaline-metal combinations investigated
by Nordlander and Tully [56]. From this comparison we
expect the widths of the strontium levels to be of the correct
order of magnitude for intermediate distances between 5aB

and 12aB . This is the range required for the description
of the collision process we are interested in. For smaller
and larger distances, the semiempirical approach breaks
down and should be replaced by quantum-chemical methods
[55–59].

With the single-particle matrix elements at hand, the
Anderson-Newns Hamiltonian [5–8,35–41] describing the
charge transfer between the strontium ion and the gold surface

10-6

10-5

10-4

10-3

10-2

10-1

100

 5  7  9  11  13  15

Γ 
[a

.u
.]

z [a.u.]

εU

ε0

Rb:Al; complex scaling
Rb:Al; golden rule

FIG. 2. Widths of the first (εU ) and second (ε0) ionization levels
of a strontium projectile approaching a gold surface as computed
from Eq. (11) on the basis of Hartree-Fock wave functions for the
projectile and simple step-potential wave functions for the target.
Atomic units are used, that is, energy is measured in hartrees and
length in Bohr radii. Data are shown only for distances larger than
5 Bohr radii, which is the turning point of the collision trajectory.
The width of a rubidium 5s level is also shown and contrasted with
the width obtained for that level by Nordlander and Tully using the
complex-scaling approach [56]. Notice, in contrast to Nordlander and
Tully’s Eq. (4.1) [56], our widths (11) contain a factor 2π and not a
factor π . For the comparison, we corrected for this difference.

is given by

H (t) =
∑

σ

ε0(t)c†σ cσ +
∑
�kσ

ε�kc
†
�kσ

c�kσ

+ 1

2
[εU (t) − ε0(t)]

∑
σ

c†σ cσ c
†
−σ c−σ

+
∑
�kσ

[V�k(t)c†�kσ
cσ + H.c]. (12)

with c†σ creating an electron with spin polarization σ in the
5s shell of strontium and c

†
�kσ

creating an electron with spin

polarization σ and momentum �k in the conduction band of the
gold surface. Using Coleman’s pseudoparticle representation
[46,47]

cσ = e†pσ + p
†
−σ d , (13)

c†σ = e p†
σ + p−σ d† (14)

with e†, p†
σ , and d† creating, respectively, an empty (Sr2+), a

single-occupied (Sr+) and a double-occupied (Sr0) strontium
projectile (see Fig. 3), the Hamiltonian becomes [33]

H (t) =
∑

σ

ε0(t)p†
σpσ + [ε0(t) + εU (t)]d†d

+
∑
�kσ

ε�kc
†
�kσ

c�kσ
+

∑
�kσ

[V�k(t)c†�kσ
e†pσ + H.c.]

+
∑
�kσ

[V�k(t)c†�kσ
d p

†
−σ + H.c.], (15)
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npσ nd ne

εU

ε0

FIG. 3. Coleman’s pseudoparticle representation for the stron-
tium projectile. Shown are the occupancies of the two ionization
levels ε0 and εU . The two single-occupied configurations npσ

contain
an electron only in the second ionization level. In the double-occupied
state nd both ionization levels are occupied by electrons with opposite
spin, whereas in the empty configuration none of the ionization levels
are occupied.

where the pseudoparticle operators obey the constraint

Q =
∑

σ

p†
σpσ + d†d + e†e = 1 (16)

since only one of the four possible projectile configurations
can be ever realized.

III. QUANTUM KINETICS

To calculate the probability for the neutralization of a
strontium ion on a gold surface, we employ the formalism
developed by Nordlander and co-workers. The formalism,
based on contour-ordered Green functions [48,49], has been
developed in a series of papers [28,32–34]. However, the
finite-U equations, which we have to adopt and solve for
the Sr:Au system, can be found only in the book edited by
Rabalais [33], which may no longer by easily accessible. It is
thus helpful to briefly summarize the finite-U quantum kinetics
as it is applied to the problem at hand. Basic definitions and
the main steps of the derivation of the most relevant equations
can be found in the Appendix.

The central objects of the formalism are the contour-ordered
Green functions for the empty, single-, and double-occupied
projectiles. They are denoted, respectively, by E(t,t ′), Pσ (t,t ′),
and D(t,t ′). The analytic pieces of these functions can be
factorized (� = 1)

H R(t,t ′) = −i�(t − t ′) exp

(
−i

∫ t

t ′
dt̄ ε(t̄)

)
H̄ R(t,t ′), (17)

H≷(t,t ′) = exp

(
−i

∫ t

t ′
dt̄ ε(t̄)

)
H̄≷(t,t ′), (18)

where H (t,t ′) can be any of the three Green functions
and ε(t) is either identical to zero, ε0(t), or ε0(t) + εU (t),
depending on the function. The superscripts R, <, and >

stand for, respectively, retarded, less-than, and greater-than
Green functions.

Using this notation and the noncrossing self-energies
diagrammatically shown in Fig. 4 gives after a projection
to the Q = 1 subspace [18,22,34] and an application of the
Langreth-Wilkins rules [66] the equations of motion for the

t t

k, σ

pσ

t t

k, σ

p−σ

t t

k, σ

e

t t

k,−σ

d

FIG. 4. Self-energies in the noncrossing approximation. Wavy,
dashed, and double-dashed lines denote, respectively, fully dressed
propagators for the empty (e), the single-occupied (p), and the double-
occupied (d) configurations. The solid line is the bare Green function
for the electrons of the surface. Starting at the left upper corner and
proceeding clockwise, the diagrams denote, respectively, the self-
energies �0,σ �U,σ , �d , and �e for the Green functions Pσ , D,
and E.

analytic pieces of the Green functions:

∂

∂t
ĒR(t,t ′) = −

∑
σ

∫ t

t ′
dt̄ K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)ĒR(t̄ ,t ′), (19)

∂

∂t
P̄ R

σ (t,t ′) = −
∫ t

t ′
dt̄ K̄>

ε0
(t,t̄)ĒR(t,t̄)P̄ R

σ (t̄ ,t ′)

−
∫ t

t ′
dt̄ K̄<

εU
(t̄ ,t)D̄R(t,t̄)P̄ R

σ (t̄ ,t ′), (20)

∂

∂t
D̄R(t,t ′) = −

∑
σ

∫ t

t ′
dt̄ K̄>

εU
(t,t̄)P̄ R

−σ (t,t̄)D̄R(t̄ ,t ′), (21)

and

∂

∂t
Ē<(t,t ′) =

∑
σ

∫ t ′

−∞
dt̄ K̄>

ε0
(t̄ ,t)P̄ <

σ (t,t̄)[ĒR(t ′,t̄)]∗

−
∑

σ

∫ t

−∞
dt̄K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)Ē<(t̄ ,t ′), (22)

∂

∂t
P̄ <

σ (t,t ′) =
∫ t ′

−∞
dt̄ K̄<

ε0
(t,t̄)Ē<(t,t̄)

[
P̄ R

σ (t ′,t̄)
]∗

+
∫ t ′

−∞
dt̄ K̄>

εU
(t̄ ,t)D̄<(t,t̄)

[
P̄ R

σ (t ′,t̄)
]∗

−
∫ t

−∞
dt̄ K̄>

ε0
(t,t̄)ĒR(t,t̄)P̄ <

σ (t̄ ,t ′)

−
∫ t

−∞
dt̄ K̄<

εU
(t̄ ,t)D̄R(t,t̄)P̄ <

σ (t̄ ,t ′), (23)

∂

∂t
D̄<(t,t ′) =

∑
σ

∫ t ′

−∞
dt̄ K̄<

εU
(t,t̄)P̄ <

−σ (t,t̄)[D̄R(t ′,t̄)]∗

−
∑

σ

∫ t

−∞
dt̄ K̄>

εU
(t,t̄)P̄ R

−σ (t,t̄)D̄<(t̄ ,t ′) (24)
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with

K̄≷
ε (t,t ′) = √

�ε(t)(t)�ε(t ′)(t ′)f̄ ≷
ε (t,t ′) (25)

and

f̄ ≷
ε (t,t ′) = exp

[
i

∫ t

t ′
dt̄ ε(t̄)

]
f ≷(t − t ′), (26)

where ε(t) is either ε0(t) or εU (t) and f <(t) = 1 − f >(t) is
the Fourier transform of the Fermi function f <(ε) defined by

f <(t) =
∫

dε

2π
f <(ε) exp [−iεt] (27)

with the energy integration taken over the conduction band.
The temperature dependence, which is of main interest, is
contained in the integral kernels K̄

≷
ε (t,t ′) defined by Eq. (25).

In the Appendix, where the details of the derivation of
Eqs. (19)–(24) can be found, we explain how these functions
enter the formalism.

The initial conditions for Eqs. (19)–(24) depend on the
particular scattering process and how it is modeled. In our
case, the initial conditions are

ĒR(t,t) = P̄ R
σ (t,t) = D̄R(t,t) = 1, (28)

and

E<(−∞,−∞) = ne(−∞) = 0, (29)

P <
σ (−∞,−∞) = npσ

(−∞) = δσ,1/2, (30)

D<(−∞,−∞) = nd (−∞) = 0. (31)

Once the equations of motions are solved on a two-
dimensional time grid, the instantaneous (pseudo)occurrence
probabilities for the Sr2+, Sr+, and Sr0 configurations are
simply given by the equal-time Green functions

ne(t) = Ē<(t,t), (32)

npσ
(t) = P̄ <

σ (t,t), (33)

nd (t) = D̄<(t,t). (34)

Hence, in the notation of pseudoparticles, the neutralization
probability

α = nd (∞), (35)

that is, it is the probability of double occupancy after
completion of the trajectory.

Nordlander and co-workers [28,32–34] also derived master
equations for the occurrence probabilities by approximating
the time integrals in the Dyson equations for the Green func-
tions. Depending on the level of sophistication they obtained
what they called simple master equations and generalized
master equations. In the Appendix we state the two sets of
master equations arising from Eqs. (19)–(24) by adapting this
strategy. The reduction of the set of Dyson equations to a
set of master equations utilizes the fact that the functions
f̄

≷
ε (t,t̄) localize the self-energies around the time diagonal.

Thus, provided the Green functions vary not too strongly, they
can be put in front of the time integrals. Mathematically, this
leads to the constraint [34]

R0,U (z) =
∣∣∣∣vα0,U (z) − 2�ε0,εU

(z)

ε0,U (z) − εF

∣∣∣∣ � 1, (36)

where v is the projectile velocity. The functions α0,U (z) are
defined by requiring �0,U (z) = �0,U exp[−α0,U (z)z] which
leads to nearly constant values for α0,U verifying thereby the
exponential dependence of our level widths. For the upper
level, the inequality obviously breaks down at the z = zc

where it crosses the Fermi energy. As shown by Langreth and
Nordlander [34], the master equations can still be used at this
point if essentially no charge is transferred during the time span
the level crosses the Fermi energy. This leads to an additional
criterion at z = zc. In the next section, we will see, however,
that for the upper level of the Sr:Au system investigated by
He and Yarmoff [30,31], the constraint (36) is violated not
only at z = zc but for almost the whole trajectory. Hence, in
order to analyze the correlation-driven local-moment physics
possibly at work in this experiment, the solutions of the full
quantum-kinetic equations are needed.

The physical Green functions G
≶
σ needed for the calculation

of the instantaneous spectral densities can be constructed from
the standard definition of the less-than and greater-than Green
functions [48] by replacing the original electron operators cσ

and c†σ by pseudoparticle operators according to Eqs. (13) and
(14), neglecting vertex corrections, and projecting onto the
physical subspace Q = 1. Thus, G<

σ (t,t ′) = 〈c†σ (t ′)cσ (t)〉, for
instance, becomes

G<
σ (t,t ′) = 〈p†

σ (t ′)e(t ′)e†(t)pσ (t)〉
+ 〈d†(t ′)p−σ (t ′)p†

−σ (t)d(t)〉, (37)

which upon employing ER(t,t ′) = −iθ (t − t ′)eR(t,t ′) and
P R

σ (t,t ′) = −iθ (t − t ′)pR
σ (t,t ′) reduces to

G<
σ (t,t ′) = P <

σ (t,t ′)
[
eR(t ′,t) + E<(t ′,t)

]
+ D<(t,t ′)

[
pR

−σ (t ′,t) − P <
−σ (t ′,t)

]
, (38)

where the products P <
σ (t,t ′)E<(t ′,t) and D<(t,t ′)P <

−σ (t ′,t) are
of order Q2 and must thus be projected out to yield

G<
σ (t,t ′) = P <

σ (t,t ′)eR(t ′,t) + D<(t,t ′)pR
−σ (t ′,t). (39)

A similar calculation leads to

G>
σ (t,t ′) = pR

σ (t,t ′)E<(t ′,t) + dR(t,t ′)P <
−σ (t ′,t), (40)

where DR(t,t ′) = −iθ (t − t ′)dR(t,t ′) has been used. Note, in
the derivation of the formulas for the physical Green functions
we introduced Green functions eR, pR

σ , and dR, which, in
contrast to the Green functions defined in Eq. (17) are retarded
Green functions with only the Heaviside function split off but
the phase factor arising from the onsite energies still included.

The spectral densities for removing or adding at time T a
physical electron with energy ω can be obtained from Eqs. (39)
and (40) by using difference variables T = (t + t ′)/2 and τ =
t − t ′. A Fourier transformation with respect to τ = t − t ′
yields

ρ≶
σ (ω,T ) = 1

2π

∫ ∞

−∞
dτ G≶

σ (T + τ/2,T − τ/2) eiωτ . (41)

The normalization of the spectral densities∫ ∞

−∞
dω ρ<

σ (ω,T ) = npσ
(T ) + nd (T ), (42)
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t

t

<

R

FIG. 5. Sketch of the numerical scheme used to solve the double-
time equations of motion (19)–(24). The triangle marks the region in
the two-dimensional time grid in which the entries of retarded Green
functions have to be known in order to calculate retarded Green
functions at the point indicated by the bullet. Likewise, the rectangle
marks the region in which the entries of (retarded and less-than) Green
functions are required in order to compute less-than Green functions
at the point indicated by the bullet.

∫ ∞

−∞
dω ρ>

σ (ω,T ) = np−σ
(T ) + ne(T ) (43)

is given by the instantaneous occupation of the projectile with
a physical electron or a physical hole, respectively, written in
terms of the occurrence probabilities introduced above. This
follows directly from the equal-time limit of Eqs. (39) and (40)
by using eR(t,t) = dR(t,t) = pR

σ (t,t) = 1.
At the end of this section, let us say a few words about

the numerics required to solve the two-dimensional integro-
differential equations (19)–(24). The discretization strategy
proposed by Shao and co-workers [32] for U = ∞ can be
also employed for finite U . The main difference is that two
more Green functions have to be calculated on the time grid:
D̄R and D̄<. The particular structure of the time integrals
leads to the numerical strategy shown in Fig. 5. First, the
retarded Green functions are calculated, starting from the time
diagonal where their values are simply set to unity because of
the initial condition and then working through the grid points
which are on lines parallel to the time diagonal. To compute
retarded Green functions at (t,t ′), only the points in the dark
triangle depicted in Fig. 5 have to be sampled. The calculation
of the less-than Green functions requires a slightly different
scheme. Here, the computation first proceeds in the t and then
in the t ′ direction, starting from (−tmax,−tmax) where the initial
condition can be employed and redoing this until one arrives at
the desired grid point. Only grid points in the bright rectangular
region of Fig. 5 contribute then to the calculation of less-than
functions at the point (t,t ′).

The computations are time and memory consuming. We
employ grid sizes of up to 3000 × 3000. Taking advantage of
the symmetry of the Green functions, the Green functions in the

upper half of the grid can be obtained from the Green functions
of the lower half by complex conjugation which reduces
memory space and number of calculations by one-half. Even
then, however, the calculation of one trajectory requires on a
2000 × 2000 time grid including the computation of the level
widths eight hours of processing time and 400 Mb memory
on a single core. To obtain the temperature dependence of the
neutralization probability, we let the projectile run through the
trajectory for 50 different temperatures. Fortunately, the final
charge state is surprisingly robust against a reduction of the
size of the time grid. Empirically, we found the neutralization
probability (but not necessarily the occurrence probabilities at
intermediate times) to be converged already for a 1000 × 1000
time grid. A run for a single temperature requires then only
half an hour, making an investigation of the temperature
dependence of the neutralization process feasible.

IV. RESULTS

We now present numerical results. Aside from the material
parameters listed in Table I which should be quite realistic for
the Sr:Au system investigated by He and Yarmoff, we need the
turning point zTP and the velocity v of the strontium projectile.
The radius of a strontium atom is around 2.2 Å. It is thus
very unlikely for the strontium projectile to come closer to the
surface than 4–5 Bohr radii. In atomic units, measuring length
in Bohr radii and energy in hartrees, which we use below if not
indicated otherwise, we set therefore zTP = 5. For the velocity,
we take the experimentally determined post-collision velocity
for the whole trajectory since it is known that due to loss of
memory [40] the outgoing branch determines the final charge
state of the projectile. In atomic units, v = 0.134 [31].

First, we investigate if the He-Yarmoff experiment [30,31]
can be described by the numerically less demanding master
equations (either the simple or the generalized set, see
Appendix). As pointed out in the previous section, the master
equations should provide a reasonable description of the
charge transfer if R0,U (z) � 1. In Fig. 6, we plot R0,U (z)
for v = 0.0134 and the level widths and energies obtained
in Sec. II. For the second ionization level ε0 master equations
could be in fact used all the way down to z ≈ 6. For the first
ionization level εU master equations break down not only at
the point where the level crosses the Fermi energy, but also
close to the turning point, where the level width turns out
to be too large, and far away from the surface, where the
projectile velocity is too high for the master equations to be
applicable. Only in a narrow interval around z ≈ 9, where the
high velocity is compensated by the level broadening leading
to a small numerator in Eq. (36), RU is small enough to justify
master equations also for εU . Since the two ionization levels
are coupled and the charge transfer occurs not only in the
narrow range where master equations are applicable to both
levels this implies that neither the simple nor the generalized
master equations can be used to analyze the Sr:Au system
investigated by He and Yarmoff. Instead, the full double-time
quantum kinetics has to be implemented.

Let us now trace, based on the numerical solution of the
double-time Dyson equations, for a fixed surface temperature
Ts = 400 K important physical quantities while the projectile
is on its way through the trajectory. Figure 7 shows in
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FIG. 6. The constraints R0 and RU as a function of z for the Sr:Au
system investigated by He and Yarmoff [30,31]. The approximations
reducing the double-time quantum kinetics of the Dyson equations to
either a set of simple or generalized master equations (see Appendix)
are valid only for R0,U � 1. Hence, for ε0 master equations could be
used for z > 6. But, for εU master equations break down for almost the
whole trajectory except for the narrow interval around z ≈ 9 where
the vanishing of the numerator in Eq. (36) leads to small values
for RU . The peak in RU around z ≈ 12 signals the point where εU

crosses the Fermi energy.

the upper panel the shift and broadening of the ionization levels
εU and ε0 while the middle panel depicts the instantaneous
occurrence probabilities ne, np±1/2 , and nd for the Sr2+, Sr+,
and Sr0 configurations, respectively. The projectile starts at
z = 20 on the left, moves along the incoming branch towards
the turning point z = 5 from which it returns on the outgoing
branch again to the distance z = 20. The strontium projectile
starts in the Sr+ configuration. Thus, only the ε0 level is
occupied while the εU level is empty. During the collision,
both levels shift upward and broaden. The upper level crosses
the Fermi energy at z = zc ≈ 12. In the course of the collision,
the occupation probabilities change and the projectile has a
certain chance to be at the end in a different charge state than
initially. For the run plotted in Fig. 7 the probability for double
occupancy at the end, that is, the probability for neutralization
is α = nd (20) = 0.185. For comparison, we show in the lower
panel the instantaneous occupation of εU as it is obtained when
only this level is kept in the modeling, that is, for a single-level,
uncorrelated U = 0 model. In this case, the neutralization
probability α = 0.01, that is, one order of magnitude smaller.

The physics behind the results shown in Fig. 7 is as follows.
Let us first focus on the first ionization level. Initially, εU is
below the Fermi energy. Hence, energetically, not the ionic Sr+

but the neutral Sr0 configuration is actually favored. However,
as can be seen from the vanishing broadening of the level,
far away from the surface charge transfer is negligible. The
approaching ion is thus initially stabilized due to lack of
coupling. When the coupling becomes stronger for smaller
distances εU crosses, however, the Fermi energy. The ion
is then energetically stabilized. Roughly speaking, the first
ionization level has a chance to capture an electron from the
metal only when |EF − εU (t)| < �U (t); in the notation of
Sosolik and co-workers, the Sr:Au system is in the coupling-
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FIG. 7. Instantaneous physical quantities along the trajectory.
The strontium projectile starts on the left as an ion at a distance
z = 20 with a velocity v = 0.0134, reaches the turning point at
zTP = 5, and approaches z = 20 again thereafter on the right.
(a) Energy-level diagram. Both levels (solid lines) are broadened
according to ε ± � (dashed lines) with the instantaneous � shown in
Fig. 2. (b) Occurrence probabilities at Ts = 400 K for Sr+ (dashed
and dashed-dotted lines), Sr0 (solid line), and Sr2+ (dotted line) as
obtained from the finite-U model. The neutralization probability in
this case is α = nd (20) = 0.185. (c) Occurrence probability of Sr0

as obtained from the uncorrelated U = 0 model which keeps only
the first ionization level, that is, the upper onsite energy εU . In this
case the α = 0.01. For other surface temperatures Ts the results look
similar.

dominated regime [67]. From the upper panel in Fig. 7, we
see that this is the case only for a very small portion of
the trajectory, close to the turning point. As a result, the
neutralization probability α should be in any case much smaller
than unity as indeed it is. Due to the thermal broadening
of the target’s Fermi edge, the efficiency of electron capture
into the first ionization level increases with temperature. Thus,
if this was the only process involved in the charge transfer, the
neutralization probability should monotonously increase with
temperature, contrary to the experimental data which initially
increase and then decrease (see below). The charge transfer
must be thus more involved. Indeed, as can be seen in the
upper panel in Fig. 7, the second ionization level ε0 comes
also close to the Fermi energy. In those parts of the trajectory
where |EF − ε0(t)| < �0(t), it is thus conceivable that the
electron initially occupying ε0 may leave the projectile. That
is, holes may transfer from the surface to the second ionization
level thereby compensating the electron transfer into the first.
The hole transfer, absent in the uncorrelated U = 0 model,
tendentiously favors the ion with increasing temperature and
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should by itself lead to a neutralization probability decreasing
with temperature.

That during the collision the ionization levels of strontium
come so close to the Fermi energy of the gold target, with the
first one crossing it and the second one coming so close to
it to enable hole transfer, led He and Yarmoff to suggest that
the neutralization process is driven by electron correlations.
The experimentally found negative temperature dependence
of α above Ts = 600 K strengthened their conclusion. It
agrees qualitatively with what Merino and Marston predicted
theoretically on the basis of a correlated-electron model for
the neutralization of calcium ions on copper surfaces [29]. The
work of Shao and co-workers [28] suggested moreover that
the negative temperature dependence of α is caused by a
mixed-valence resonance transiently formed in the course of
the collision.

After these qualitative remarks, we now discuss the
temperature dependence of the neutralization probability
quantitatively. In Fig. 8, we show the experimental data of He
and Yarmoff [31] and compare it with our theoretical results.
For the parameters of Table I, the theoretical neutralization
probability (solid line) turns out a bit too large but it is still
of the correct order of magnitude indicating that the material
parameters as well as the procedures for calculating the level
widths are reasonable. In contrast to the experimental data we
find, however, over the whole temperature range only a weak
negative temperature dependence. Also plotted in Fig. 8 is
the temperature dependence of the neutralization probability
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FIG. 8. Temperature dependence of the neutralization probability
α = nd (20) for a Sr+ ion hitting with v = 0.0134 a gold surface.
The turning point zTP = 5. Also shown are the data of He and
Yarmoff [31]. The solid and long-dashed lines are for the finite-U and
the uncorrelated U = 0 model, respectively, showing that correlations
enhance the neutralization probability to the experimental order of
magnitude. By moving the turning point farther away from the
surface, we could make the results for U �= 0 to overlap with the
experimental data. However, we do not use zTP as a fit parameter for
reasons explained in the main text. The nonmonotonous temperature
dependence of the experimental data cannot be reproduced regardless
of the value of the turning point. The dashed-dotted and the dotted
lines are the neutralization probabilities arising, respectively, from
the numerical solution of the set of simple or the set of generalized
master equations given in the Appendix.

arising from the uncorrelated U = 0 model (long-dashed line)
and, for completeness, the one obtained from the numerical
solution of either the set of simple (dashed-dotted line) or the
set of generalized master equations (dotted lines) listed at the
end of the Appendix.

Clearly, without correlations the neutralization probability
is too small indicating that correlations play an important role
in the charge transfer from the gold target to the strontium
projectile. The chosen turning point zTP = 5 is in fact most
favorable for the uncorrelated model. In reality, the turning
point may be farther away from the surface. A larger value
of zTP leads, however, to smaller neutralization probabilities.
Hence, the results for the uncorrelated model would be
pushed farther away from the experimental data, while the
results for the correlated model would come closer to it. We
hesitate, however, to use zTP as a fit parameter because of
the shortcomings of the finite-U noncrossing approximation
discussed in the next section.

The neutralization probabilities arising from the master
equations are also much smaller than those obtained from
the full quantum kinetics. Decreasing the turning point would
push them of course closer to the experimental data (without
reproducing the nonmonotonous temperature dependence).
However, the numerical values for R0,U (z) shown in Fig. 6
indicate that the approximations leading to the master equa-
tions cannot be justified. Hence, the results for α obtained from
the master equations should not be artificially pushed towards
experimental data by manipulating the turning point. Instead,
one should, if at all, try to push the correlated U �= 0 data
closer to the experimental data by changing the parameters of
the Sr:Au system within physically sensible bounds.

Any attempt, however, to improve the theoretical data
by changing the material parameters and hence the single-
particle matrix elements of the Anderson-Newns Hamiltonian
was unsuccessful. A slight increase of the metal’s work
function from φ = 5.1 to 5.15 eV, for instance, decreased
the neutralization rate but eliminated at the same time the
weak negative temperature dependence. Decreasing the work
function from φ = 5.1 to 5.05 eV, on the other hand, increased
the theoretical neutralization rate but did also not lead to
a stronger negative temperature dependence let alone to a
nonmonotonous one. Changing the turning point zTP affects
the neutralization probability as indicated in the previous
paragraph but again wipes out the weak negative temperature
dependence. The effect of the Doppler broadening [3,67,68]
we did not investigate. We take all this as an indication that
the correlation effects encoded in the finite-U noncrossing ap-
proximation are too fragile. Going beyond this approximation
is thus unavoidable.

Another observation should be mentioned. The starting
point z = 20 can be relatively freely chosen. If it is closer
to the surface, the slopes of the instantaneous occurrence
probabilities in Fig. 7 are steeper so that there is hardly
any difference in the probabilities at the turning point and
no difference at the end of the trajectory. As a result, the
final neutralization probability is independent of the precise
starting conditions. The loss of memory in charge-transferring
atom-surface collisions has been also found by Onufriev and
Marston [40]. It justifies using the precollision velocity for the
whole trajectory.
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In the region where charge transfer is strongest, the two
ionization levels overlap. The absence of energy separation
together with the conditional temporal weighting due to the
dynamics of the collision process makes it very hard to tell a
priori whether electron or hole transfer dominates the outcome
of the collision. Simply changing the matrix elements of
the Anderson-Newns model in the hope to reproduce the
experimentally found temperature anomaly is pointless as
we have indeed seen. Even more so, since the hypothesized
electron correlations of the local-moment type strongly distort
the projectile’s density of states in the vicinity of the target’s
Fermi energy. Any attempt to guess the projectile’s final charge
state on the basis of the single-particle quantities shown in
the upper panel of Fig. 7 has thus to fail. In order to see
whether the weak negative temperature dependence of α is
already a qualitative hint for a mixed-valence scenario to be at
work in the neutralization of strontium ions on gold surfaces,
we calculated therefore the instantaneous spectral densities
for the projectile. If local-moment physics is present, these
functions should feature transient resonances at the target’s
Fermi energy.

In Fig. 9, we present for a selected set of distances along
the outgoing branch of the trajectory and for Ts = 400 K the
instantaneous spectral densities summed over the two spin
orientations. The occupied part of the spectral densities (solid
black lines), that is, the spectrally resolved probability for
removing a physical electron, as well as the total spectral

densities (dashed black lines), which, in addition, contain also
the spectrally resolved probability for adding an electron,
are shown. For orientation we also plot the equilibrated
spectral densities (solid and dashed orange lines) which we
obtained by fixing the widths and energetic positions of
the levels to the values at that particular distance and then
letting the system evolve in time up to the point where it
reaches a quasistationary state. The negative values of the
instantaneous spectral densities close to and at the turning
point should not be interpreted too literally. First, we cannot
rule out that in the numerical Fourier transformation the
Gibbs phenomenon occurs although the results for the equili-
brated spectral densities speak against it. Second, and most
importantly, the instantaneous spectral densities ρ

≶
σ (ω,T )

are Wigner distributions in energy ω and time T . These
two quantities, however, cannot be measured simultaneously.
Usually, Wigner distributions deal with quantum-mechanical
uncertainties by becoming negative in some regions of the
space in which they are defined [69]. Integrated over energy,
that is, the zeroth-order moments of the Wigner distributions
ρ

≶
σ (ω,T ) give, however, always the correct occupancies at

the particular time as can be easily checked by a comparison
with the data obtained from the integration of the equations of
motion.

Let us start with Fig. 9(a) which shows the spectral densities
at the closest encounter. The overlapping ionization levels are
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FIG. 9. (Color online) Projectile spectral densities summed over the two spin orientations, respectively, at z = 5.0, 5.5, 6.0, 6.5, 7.0, and
7.5 on the outgoing branch of the trajectory [panels (a) to (f)] for a Sr+ ion hitting with v = 0.0134 a gold surface at temperature Ts = 400 K.
For other surface temperatures in the range relevant for the experiment, the spectral functions look qualitatively similar. The black lines
correspond to the instantaneous spectral densities at the given positions with the solid lines denoting the occupied and the dashed lines the total
spectral densities. The vertical dotted lines indicate the instantaneous positions of the onsite energies ε0 and εU while the orange lines give
the equilibrated occupied (solid lines) and total (dashed lines) spectral densities at the corresponding positions. The target’s Fermi energy is
located at ω = 0.
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very broad at this point leading, however, to a spectral density
which due to electronic correlations is enhanced at the Fermi
energy ω = 0. The uncorrelated model would not give this
enhancement. Moving outwards [Figs. 9(b)–9(f)], the spectral
densities change, because of the decreasing widths and the
shifting of the ionization levels, developing in addition to
the resonance at ω = 0 features in the vicinity of the two
instantaneous ionization levels which are indicated by the
two vertical dotted lines. Although the additional structure due
to the upper ionization level is only a high-energy shoulder to
the peak at ω = 0, the spectral densities develop the shape
expected from a quantum impurity: two charge-transfer peaks
and a resonance at the Fermi energy. This can be most
clearly seen in Fig. 9(f). Since close to the surface the upper
charge-transfer peak merges more or less with the peak at the
Fermi energy to form a mixed-valence resonance, the Sr:Au
system is in the mixed-valence regime.

The dominating spectral feature at all the distances shown in
Fig. 9 is the enhancement at the target’s Fermi energy. Despite
the quantitative discrepancies between the measured and the
computed neutralization probabilities, our theoretical results
for the spectral densities suggest, for realistic single-particle
parameters and without any fit parameter, that local-moment
physics is present in the Sr:Au system and may thus control the
neutralization of Sr+ on Au surfaces as anticipated by He and
Yarmoff [31]. More specifically, from Fig. 7 we read off that
most of the charge transfer occurs between the turning point
zTP = 5 and the crossing point zc ≈ 12, whereas from Fig. 9
we see that for these distances the Sr:Au system develops at
the Fermi energy of the Au target a mixed-valence resonance
with a high-energy tail varying on the scale of the thermal
energy. The weak negative temperature dependence we obtain
for α is thus due to the mixed-valence resonance in the
projectile’s spectral density in accordance with what Merino
and Marston predicted for the correlated Ca:Cu system [29].
The comparison in Fig. 8 with the results obtained from the
uncorrelated U = 0 model suggests moreover that it is also the
mixed-valence resonance which enhances the neutralization
probabilities to the experimentally found order of magnitude.

Obviously, our results support He and Yarmoff’s mixed-
valence scenario [30,31] only qualitatively but not quantita-
tively. Either the transient local-moment correlations are too
weak, occur at the wrong distance, or are simply too short
lived. It requires further theoretical work to tell which one of
these possibilities applies.

V. CONCLUSIONS

We presented a realistically parametrized Anderson-Newns
model for charge-transferring collisions between a strontium
projectile and a gold target and used the model to analyze
from a many-body theoretical point of view the experiment of
He and Yarmoff [30,31] which indicated that in this type of
surface collision, a mixed-valence resonance affects the final
charge state of the projectile.

In contrast to the measured neutralization probability
which initially increases and then decreases with tempera-
ture, the computed data show only the correlation-induced
enhancement, making the calculated neutralization probability
of the correct order of magnitude, and a weak negative

temperature dependence. The analysis of the projectile’s
instantaneous spectral densities revealed, however, that both
the enhancement and the negative temperature dependence
arise from a mixed-valence resonance at the target’s Fermi
energy in qualitative agreement with what Merino and Marston
found for the Ca:Cu system [29], which is another projectile-
target combination which could display local-moment physics.
Thus, qualitatively, our results support He and Yarmoff’s
interpretation of their data in terms of a mixed-valence
resonance.

We followed the theoretical approach of Nordlander and
co-workers [28,32–34]. It is based on the noncrossing ap-
proximation for Anderson-impurity–type models and contour-
ordered Green functions. That we do not find the anomalous
temperature dependence of the neutralization probability
while having a transient mixed-valence resonance in the
instantaneous spectral densities could have two reasons. First,
the accuracy of the semiempirical estimates we developed for
the single-particle matrix elements of the Anderson-Newns
Hamiltonian may be not enough. The shift of the two ionization
levels was obtained from classical considerations based on
image charges while the width of the levels was computed
from Hartree-Fock and step-potential wave functions. Ab initio
calculations or measurements of these two quantities would
be very helpful, in particular, for distances close to the
turning point. Second, the finite-U noncrossing approximation
most probably does not yield the correct energy scale of the
resonance transiently formed at the Fermi energy of the target.
Indeed, for finite U the noncrossing approximation does not
self-consistently sum up all leading terms in 1/N where N = 2
is the degeneracy of the 5s level. In equilibrium, it is known
that the noncrossing approximation underestimates due to this
inconsistency the width of the Kondo resonance considerable
[54]. Systematically summing up all diagrams to leading
order by the one-crossing approximation [50–54] remedies
this shortcoming as does the dynamical 1/N approximation
used by Merino and Marston [29] and equation-of-motion
approaches working directly with the physical Green functions
defining the spectral densities [39]. It should be also noted that
the temperature anomaly occurs over an interval of only 600 K
corresponding to an energy interval �E ≈ 0.002 in atomic
units. The spectral features in the vicinity of the Fermi energy
which drive the anomaly have thus to be known with an energy
resolution better than 10−3.

Specifically, our results for the spectral densities make
us adhere to the mixed-valence scenario. Aside from the
above-mentioned improvements on the theoretical side, further
experimental analysis would be, however, also required to
clarify the issue. The velocity dependence of the effect,
for instance, would be of great interest because it is the
projectile velocity which determines whether the instanta-
neous correlations get frozen in and manifest themselves
in the final charge state of the projectile. We would thus
expect the experimentally observed temperature anomaly to
depend strongly on the projectile’s velocity. Changing the work
function and the collision geometry would be also of interest.
The former manipulates the point where the upper ionization
level crosses the target’s Fermi energy, whereas the latter
changes the effective temperature via Doppler broadening. The
temperature anomaly of the neutralization probability should
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hence also depend on the work function of the surface and the
angle of incident.

It may be easier to realize local-moment physics in electri-
cally biased semiconductor nanostructures but demonstrating
it to be also present in charge-transferring atom-surface
collisions may open up avenues for further research which
are not yet anticipated. The Sr:Au system investigated by He
and Yarmoff may well be a very promising candidate.
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APPENDIX

In this Appendix, we lay out the basic definitions and
notations we used in setting up the quantum kinetic equations
(19)–(24) of Sec. III. The equations have been originally
derived by Shao and co-workers [33]. As in our previous work
on the deexcitation of metastable molecules at surfaces [61],
we stay as closely as possible to the notation of Nordlander and
co-workers [32–34] and deviate from it only when it improves
the readability of the equations.

Contour-ordered Green functions [48,49] describing the
empty, the single-occupied, and the double-occupied projec-
tiles

iE(t,t ′) = 〈TC e(t) e†(t ′)〉, (A1)

iPσ (t,t ′) = 〈TC pσ (t) p†
σ (t ′)〉, (A2)

iD(t,t ′) = 〈TC d(t) d†(t ′)〉, (A3)

as well as metal electrons

iG�k,σ (t,t ′) = 〈TC c�k,σ
(t) c

†
�k,σ

(t ′)〉, (A4)

where the brackets denote the statistical average with respect to
the initial density matrix, constitute the basis of the formalism.
The functions D and E are bosonic propagators while Pσ

and G�k,σ are fermionic. For any of the four Green functions
listed above, the analytic pieces, that is, the less-than and the
greater-than functions, are given by

iH (t,t ′) = �C(t − t ′) H>(t,t ′) ∓ �C(t ′ − t) H<(t,t ′), (A5)

where H stands for E, Pσ , D, or G�k,σ and �C is the Heaviside
function defined on the complex time contour. The upper sign
holds for fermionic and the lower sign for bosonic Green
functions. As usual, the corresponding retarded functions read
as

iHR(t,t ′) = θ (t − t ′)[H>(t,t ′) ± H<(t,t ′)], (A6)

where again the upper (lower) sign holds for fermionic
(bosonic) functions and θ is now the Heaviside function on
the real-time axis.

Similarly, the self-energies �σ , �e, and �d for the single-
occupied, the empty, and the double-occupied projectiles can

be split into analytic pieces which in turn give rise to retarded
self-energies

i�R
σ (t,t ′) = θ (t − t ′)[�>

σ (t,t ′) + �<
σ (t,t ′)], (A7)

i�R
e,d(t,t ′) = θ (t − t ′)[�>

e,d(t,t ′) − �<
e,d(t,t ′)]. (A8)

Within the noncrossing approximation, the metal electrons are
undressed. Hence, below G�k,σ is always the bare propagator
and no self-energy has to be specified for the metal electrons
[28,32–34].

On the real-time axis the analytic pieces of the Green
function obey the set of Dyson equations (� = 1):

i
∂

∂t
ER(t,t ′) = δ(t − t ′) +

∫ ∞

−∞
dt̄ �R

e (t,t̄)ER(t̄ ,t ′), (A9)

[
i

∂

∂t
− ε0(t)

]
P R

σ (t,t ′) = δ(t − t ′) +
∫ ∞

−∞
dt̄ �R

σ (t,t̄)P R
σ (t̄ ,t ′),

(A10)[
i

∂

∂t
− ε0(t) − εU (t)

]
DR(t,t ′)

= δ(t − t ′) +
∫ ∞

−∞
dt̄ �R

d (t̄ ,t)DR(t̄ ,t ′), (A11)

i
∂

∂t
E<(t,t ′)

=
∫ ∞

−∞
dt̄ �R

e (t,t̄)E<(t̄ ,t ′) +
∫ ∞

−∞
dt̄ �<

e (t,t̄)EA(t̄ ,t ′),

(A12)[
i

∂

∂t
− ε0(t)

]
P <

σ (t,t ′)

=
∫ ∞

−∞
dt̄ �R

σ (t,t̄)P <
σ (t̄ ,t ′) +

∫ ∞

−∞
dt̄ �<

σ (t,t̄)P A
σ (t̄ ,t ′),

(A13)[
i

∂

∂t
− ε0(t) − εU (t)

]
D<(t,t ′)

=
∫ ∞

−∞
dt̄ �R

d (t,t̄)D<(t̄ ,t ′) +
∫ ∞

−∞
dt̄ �<

d (t,t̄)DA(t̄ ,t ′).

(A14)

The self-energies in the noncrossing approximation are
shown in Fig. 4, where the self-energy �σ for the single-
occupied projectile is split into two pieces �σ,0 and �σ,U ,
depending on whether the empty or the double-occupied state
appears as a virtual state. Applying standard diagrammatic
rules [70] together with the Langreth-Wilkins rules [66] given
in our notation in Ref. [61] yields after projection to the Q = 1
subspace [18,22,34] the following mathematical expressions
for the analytic pieces of the self-energies:

�
≷
d (t,t ′) =

∑
σ

∫
dε

2π
K≷

ε (t,t ′)P ≷
−σ (t,t ′), (A15)

�R
d (t,t ′) =

∑
σ

∫
dε

2π
K>

ε (t,t ′)P R
−σ (t,t ′), (A16)
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�≷
e (t,t ′) =

∑
σ

∫
dε

2π
K≶

ε (t ′,t)P ≷
σ (t,t ′), (A17)

�R
e (t,t ′) =

∑
σ

∫
dε

2π
K<

ε (t ′,t)P R
σ (t,t ′), (A18)

�
≷
σ,0(t,t ′) =

∫
dε

2π
K≷

ε (t,t ′)E≷(t,t ′), (A19)

�R
σ,0(t,t ′) =

∫
dε

2π
K>

ε (t,t ′)ER(t,t ′), (A20)

�
≷
σ,U (t,t ′) =

∫
dε

2π
K≶

ε (t ′,t)D≷(t,t ′), (A21)

�R
σ,U (t,t ′) =

∫
dε

2π
K<

ε (t ′,t)DR(t,t ′) (A22)

with

K≷
ε (t,t ′) =

√
�ε(t)�ε(t ′)f ≷(ε)e−iε(t−t ′), (A23)

where ε is an energy variable to be integrated over.
In obtaining the self-energies we took advantage of the

fact that the propagator of the metal electrons is undressed
and spin independent. As a result, �σ,0 and �σ,U (and thus
�σ ) are independent of the electron spin. Furthermore, we
assumed the tunneling matrix element V�k(t) to factorize in
the variables t and �k. In our case, this is approximately true
since the strongest time dependence in Eq. (9) comes from the
modified Bessel function Kα giving rise to a nearly exponential
time dependence of V�k(t). The function

�ε(t,t ′) = 2π
∑

�k
V�k(t)V ∗

�k (t ′)δ(ε − ε�k) (A24)

initially appearing in the self-energies can thus be approxi-
mately rewritten as [32,34]

�ε(t,t ′) �
√

�ε(t)�ε(t ′) (A25)

with �ε(t) defined by Eq. (11) leading eventually to the
expressions for the self-energies given above.

Inserting the self-energies (A15)–(A22) into the Dyson
equations (A9)–(A14) and rewriting the equations in terms
of the reduced Green functions defined by Eqs. (17) and (18)
yields after an approximate ε integration Eqs. (19)–(24) of
Sec. III.

Due to the approximate ε integration, the functions K̄
≷
ε (t,t ′)

enter the formalism. In the definition (25) of these functions
the subscript ε denotes not an energy variable, but the
functional dependence on ε(t). To see this, consider the Dyson
equation (A9). In terms of reduced Green functions it reads as

∂t Ē
R(t,t ′) = −

∑
σ

∫ t

t ′
dt̄

∫
dε

2π

√
�ε(t)�ε(t̄)f <(ε)

× exp

[
−i

∫ t

t̄

dτ (ε0(τ ) − ε)

]
P̄ R

σ (t,t̄)ĒR(t̄ ,t ′)

(A26)

� −
∑

σ

∫ t

t ′
dt̄

√
�ε0(t)(t)�ε0(t̄)(t̄)f

<(t̄ − t)

× exp

[
−i

∫ t

t̄

dτ ε0(τ )

]
P̄ R

σ (t,t̄)ĒR(t̄ ,t ′) (A27)

= −
∑

σ

∫ t

t ′
dt̄

√
�ε0(t)(t)�ε0(t̄)(t̄)f̄

<
ε0

(t̄ ,t)

× P̄ R
σ (t,t̄)ĒR(t̄ ,t ′) (A28)

= −
∑

σ

∫ t

t ′
dt̄K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)ĒR(t̄ ,t ′) (A29)

with K̄<
ε0

(t̄ ,t) as defined in Eq. (25). The step from the first to
the second line involves the approximate ε integration resulting
in the Fourier transformation of the Fermi function and in
fixing the energy variables of the level widths as indicated. We
did not attempt to derive it mathematically by an asymptotic
stationary-phase analysis [71]. Instead, we followed Shao
and co-workers [33] and adopted a qualitative, physics-based
reasoning. It yields the very intuitive equation (A27) and
reduces moreover the numerical effort considerably because
it is no longer necessary to perform at each time-grid point
(t,t ′) an ε integration. Alternatively, �ε(t) could be replaced in
(A26) by an average over the energy range of the conduction
band and then put in front of the ε integral [32]. But, this seems
to be even more ad hoc.

Similar manipulations can be performed for the other Dyson
equations. At the end, one obtains Eqs. (19)–(24) of Sec. III.
The equations are identical to the ones given by Shao and
co-workers in the book edited by Rabalais [33] if, as we did,
the pseudoparticle operator pσ is taken to be fermionic.

The kinetic equations (19)–(24) are a complicated set
of two-dimensional integrodifferential equations. Nordlander
and co-workers [32–34] showed, however, that in situations
where the functions f̄

≷
ε (t,t̄) and hence the self-energies are

sufficiently peaked at t = t̄ the Dyson equations for the
less-than Green functions can be reduced to master equations
for the occurrence probabilities which are numerically less
expensive. Depending on whether retarded Green functions
are taken at equal times and hence pushed in front of the time
integrals or not, two sets of master equations can be derived:
the simple and the generalized master equations [32–34].
Applying this reasoning to Eqs. (19)–(24) yields at the level
where retarded Green functions are taken at equal times a set
of simple master equations

d

dt
ne(t) = −2�0(t)f <(ε0(t))ne(t) + �0(t)

× f >(ε0(t))
(
np1/2 (t) + np−1/2 (t)

)
, (A30)

d

dt
npσ

(t) = −(
�0(t)f >(ε0(t)) + �U (t)f <(εU (t))

)
npσ

(t)

+�0(t)f <(ε0(t))ne(t) + �U (t)f >(εU (t))nd (t),

(A31)

d

dt
nd (t) = −2�U (t)f >(εU (t))nd (t)

+�U (t)f <(εU (t))
(
np1/2 (t) + np−1/2 (t)

)
, (A32)
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and at the advanced level, where retarded Green functions are kept nondiagonal in time, a set of generalized master equations

d

dt
ne(t) = −2ne(t)

∑
σ

∫ t

−∞
dt̄ Im

(
K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)
) + 2

∑
σ

npσ
(t)

∫ t

−∞
dt̄ Im

(
K̄>

ε0
(t̄ ,t)[ĒR(t,t̄)]∗

)
, (A33)

d

dt
npσ

(t) = −2npσ
(t)

∫ t

−∞
dt̄ Im

(
K̄>

ε0
(t,t̄)ĒR(t,t̄) + K̄<

εU
(t̄ ,t)D̄R(t,t̄)

)

+2ne(t)
∫ t

−∞
dt̄ Im

(
K̄<

ε0
(t,t̄)

[
P̄ R

σ (t,t̄)
]∗) + 2nd (t)

∫ t

−∞
dt̄ Im

(
K̄>

εU
(t̄ ,t)

[
P̄ R

σ (t,t̄)
]∗)

, (A34)

d

dt
nd (t) = −2nd (t)

∑
σ

∫ t

−∞
dt̄ Im

(
K̄>

εU
(t,t̄)P̄ R

σ (t,t̄)
) + 2

∑
σ

npσ
(t)

∫ t

−∞
dt̄ Im

(
K̄<

εU
(t,t̄)[D̄R(t,t̄)]∗

)
(A35)

with occurrence probabilities ne(t), npσ
(t), and nd (t) as defined in Eqs. (32)–(34). The retarded Green functions required in the

generalized master equations can be obtained by utilizing the localization of f̄
≷
ε (t,t̄) around the time diagonal also in the Dyson

equations for the retarded Green functions. As a result, one obtains

ĒR(t,t ′) = exp

[
−

∑
σ

∫ t

t ′
dτ

∫ τ

t ′
dt̄ K̄<

ε0
(t̄ ,τ )P̄ R

σ (τ,t̄)

]
, (A36)

P̄ R
σ (t,t ′) = exp

[
−

∫ t

t ′
dτ

∫ τ

t ′
dt̄

(
K̄>

ε0
(τ,t̄)ĒR(τ,t̄) + K̄<

εU
(t̄ ,τ )D̄R(τ,t̄)

)]
, (A37)

D̄R(t,t ′) = exp

[
−

∑
σ

∫ t

t ′
dτ

∫ τ

t ′
dt̄ K̄>

εU
(τ,t̄)P̄ R

−σ (τ,t̄)

]
. (A38)

A rigorous determination of the range of validity of
these equations by asymptotic techniques [71] is complicated
because the functions f̄

≷
ε (t,t̄) are not only localized around

the time diagonal, but also strongly oscillating. Simple saddle-
point arguments are thus not sufficient but have to be aug-
mented by a stationary-phase analysis. Analyzing moreover
the whole set of Dyson equations by these techniques seems
to be impractical. Langreth and Nordlander [34] investigated

therefore the validity of the approximations empirically and
developed qualitative criteria which have to be satisfied for
master equations to provide a reasonable description of the
charge transfer between the projectile and the target surface.
As shown in Sec. IV, the basic constraint (36) they developed
is not satisfied for the Sr:Au system investigated by He
and Yarmoff [30,31]. The full double-time quantum-kinetic
equations have thus to be solved to analyze this experiment.
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Abstract
Using a helium ion hitting various metal surfaces as a model system, we describe a general
quantum-kinetic approach for calculating ion-induced secondary electron emission spectra at
impact energies where the emission is driven by the internal potential energy of the ion. It is
based on an effective model of the Anderson−Newns-type for the subset of electronic states of
the ion−surface system most strongly affected by the collision. Central to our approach is a
pseudo-particle representation for the electronic configurations of the projectile which enables
us, by combining it with two additional auxiliary bosons, to describe in a single Hamiltonian
emission channels involving electronic configurations with different internal potential energies.
It is thus possible to treat Auger neutralization of the ion on an equal footing with Auger de-
excitation of temporarily formed radicals and/or negative ions. From the Dyson equations for
the projectile propagators and an approximate evaluation of the self-energies, rate equations are
obtained for the probabilities with which the projectile configurations occur and an electron is
emitted in the course of the collision. Encouraging numerical results, especially for the helium
−tungsten system, indicate the potential of our approach.

Keywords: secondary electron emission, ion scattering from surfaces, charge-transferring atom-
surface collisions

1. Introduction

In low-temperature gas discharges, secondary electron emis-
sion from the walls confining the plasma is an important
surface collision process caused by atomic constituents of the
plasma hitting the wall [1]. Known since the early days of
gaseous electronics [2], it has moved into the focus of interest
again quite recently. For instance, it has been shown that the
ionization dynamics [3, 4], the electron power absorption [5],
and a number of other quantities and processes [6] in capa-
citively coupled discharges depend significantly on the sec-
ondary electron emission coefficient—that is, the probability
with which an electron is released in the course of an atom
−surface collision. It has also been demonstrated that the
structure of the plasma sheath is strongly affected by sec-
ondary electron emission [7–10]. The impact energies are
typically in the range where electron emission is driven by the
internal potential energy stored in the electronic configuration
of the projectile. Auger neutralization of ions and/or Auger
de-excitation of metastable species are thus the main channels
of secondary electron emission [11]. Ion- and radical-induced

secondary electron emission can thus be distinguished,
depending on the initial state of the projectile. Since the
processes are also of interest for themselves as well as of
importance for various kinds of surface diagnostics—for
instance, secondary ion mass spectroscopy [12] or metastable
atom de-excitation spectroscopy [13]—Auger and related
charge-transfer processes have been reviewed several times
[14–22] since the early studies [23–28] dating back to the
very beginning of modern condensed matter physics. There
can thus be no doubt that the basic mechanisms of secondary
electron emission from surfaces have by now been identified.

Although the principles of secondary electron emission
are known, it is still a great challenge to measure or to cal-
culate secondary electron emission spectra, even for free-
standing surfaces not in contact with a plasma. Experimen-
tally, it requires sophisticated instrumentation [16, 29–38],
whereas theoretically, the challenge is to find an efficient way
to deal with a many-body scattering problem giving rise to a
great variety of collision pathways [39–54]. It is thus not
surprising that the data base for secondary electron emission
is rather sparse, especially for materials used as walls in
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laboratory gas discharges. There have been only a few
experimental efforts devoted to measuring secondary electron
emission coefficients specifically for such materials [55, 56].

To illustrate the complexity of the physics involved, we
show in figure 1 the collision channels which may be open
when a positive helium ion hits a metal surface and releases
an electron. Besides Auger neutralization of the positive ion
itself, there is a sequence of single-electron transfers possible,
leading to neutral and negatively charged metastable states
which may Auger de-excite or autodetach to the helium
ground state, thereby also releasing an electron. Which one of
the three channels dominates depends on the collision para-
meters and the metal. An unbiased description of the collision
thus requires a theoretical model capable of treating all
channels having a chance to be involved in the electron
emission simultaneously. To present such a theory is the
purpose of this work.

We do not attempt a description from first principles
[40–42, 44, 45, 48]. Instead, we use an Anderson−Newns
−Hamiltonian for the subset of electronic degrees of freedom
which are dominantly involved in the collision process.
Combined with Gadzuk’s semiempirical approach [57, 58] of
determining the matrix elements of this Hamiltonian from
classical image shifts, it yields a rather flexible basis for the
modeling of a great variety of projectile−target combinations.
We consider this type of effective modeling—ultimately
requiring only a few parameters with a clear physical inter-
pretation—particularly appropriate for describing secondary
electron emission from plasma walls, which are often not well
characterized microscopically and thus not amenable to more
sophisticated modeling. Local correlations on the projectile
can be taken into account by a projection operator and
pseudo-particle technique pioneered by Langreth et al
[59–61]. Combining this with additional auxiliary bosons to
accommodate the energy defects between different electronic

configurations of the projectile leads to a Hamiltonian con-
taining as many projectile configurations as one wishes to
include and at the same time is amenable to a quantum-kinetic
analysis [59–61]. Ultimately, it leads to rate equations for the
probabilities with which the electronic configurations of the
projectile occur and an electron is emitted in the course of
the collision. We employed this approach previously to
describe electron emission from metal and dielectric surfaces
due to the de-excitation of metastable nitrogen molecules
[62–64] and to the neutralization of positive strontium
and magnesium ions at gold surfaces [65, 66]. In this work,
we apply it to a positive helium ion hitting various metal
surfaces. Confronted with experimental data [30, 35], the
approach turns out to yield secondary electron emission
coefficients of the correct order of magnitude, and might even
be able to produce the correct shape of the emission spectrum
if it were augmented by scattering processes [29, 36, 38]—
which we so far, however, have not included in the model.

The outline of the remainder of the paper is as follows. In
the next section, we set up the Anderson−Newns model for
the emission channels shown in figure 1. Besides explaining
how the matrix elements of the Hamiltonian are obtained
from Gadzuk’s reasonings, we also give the details of the
projection operator and pseudo-particle technique which
enables us to encode into a single Hamiltonian electronic
configurations with different internal potential energies.
Section 3 together with an appendix describes the quantum-
kinetic derivation of the rate equations for the probabilities
with which the various electronic configurations of the pro-
jectile are realized in the collision and an electron is emitted.
Numerical results are presented in section 4, and concluding
remarks summarize and assess our approach in section 5.

2. Model

When an atomic projectile approaches a surface, direct and
exchange Coulomb interactions take place between their
individual constituents leading to a modification of the pro-
jectile’s and target’s electronic structure. In some cases, this
may cause a redistribution of electrons between them,
accompanied perhaps by the emission of an electron. Since
the projectile and the target are composite systems, to analyze
these processes theoretically is a complicated many-body
problem. It can be approached either with first-principles
methods [40–42, 44, 45, 48], ideally containing the full
electronic structure of the target and the projectile, or with
model Hamiltonians focusing only on the subset of electronic
states which are actively involved in the collision—as pio-
neered by Gadzuk [57, 58]. The former is computationally
very expensive. In addition, it requires a rather complete
characterization of the structure and chemical composition of
the surface. Working atom-by-atom, ab initio methods have
to know precisely which atom is sitting where. For plasma-
exposed surfaces, this information is not available in most
cases. It is thus better not to rely on it at all and—following
the second approach—to construct instead an effective
Hamiltonian for that part of the electronic structure which is

Figure 1. Schematic representation of possible charge transfer
processes which may take place during a collision of a He+ ion with
a metal surface, depending on the occupancies of the electronic
states, their coupling, and the collision dynamics. The ion may
capture electrons from the metal M by single-electron transfer (SET),
changing its configuration from He+(1s) to He 1s2s*( ) or even to
He 1s2s2*-( ), if two sequential SET processes occur. SET processes
may, however, also work in the other direction—that is, the
projectile may also lose electrons. Autodetachment (AuD) may lead
to an electron loss and a reconfiguration of He 1s2s2*-( ) to He 1s2( ).
In addition, Auger neutralization (AN) and Auger de-excitation
(AD) due to the Coulomb interaction between two electrons may
take place, pushing the projectile to its ground-state configuration
He 1s2( ) and thereby also releasing an electron. The charge state of
the metal M is indicated to emphasize the charge-transfer taking
place due to the various processes.

2

Plasma Sources Sci. Technol. 27 (2018) 084003 M Pamperin et al

2 Thesis Articles

68



expected to be foremostly involved in the collision process.
Physical considerations may then be invoked to parameterize
the model by a few quantities which are easily available and
at the same time have a clear physical meaning.

The particular approach we employ is based on an
Anderson−Newns-type effective Hamiltonian. Following
Gadzuk [57, 58] it uses classical image charges to mimic the
long-range exchange interactions (polarization interactions)
and a multi-channel scattering theory to account in the matrix
elements for single-electron transfer for the non-orthogonality
of the target and projectile wavefunctions. The non-ortho-
gonality of the wavefunctions is also an issue in the Auger
channels [44]. Taking it into account, however, makes the
calculation of the Auger matrix elements even more compli-
cated than it already is. In the model presented below, we
therefore ignore the non-orthogonality of the wavefunctions
in the Auger matrix elements, assuming implicitly that it is
less important than the tunneling of the metal wavefunction
through the potential barrier, arising from the overlap of the
ion and surface potentials, which we take into account. The
good agreement of the rate we get for Auger neutralization
with the rate given by Wang et al [46], as well as with the rate
obtained by an approach based in part on first principles [44],
supports this assumption. What speaks against it is the too
large ion survival probability we obtain for large angles of
incidence. However, the reason for this is most probably the
neglect of single-electron transfer from deeper lying levels of
the surface (core levels) to the 1s shell. It is beyond the scope
of the present work to include this process as well.

To furnish the formalism with wavefunctions, simple
models are used for the surface potential and the electronic
structure of the projectile—parameterized, however, such that
it reproduces measured ionization energies and electron
affinities. From our previous work on the de-excitation of
metastable nitrogen molecules on surfaces [62–64] and the
neutralization of alkaline-earth ions on gold surfaces [65, 66],
we expect this type of modeling also to provide reasonable
matrix elements for the Anderson−Newns Hamiltonian
describing ion-induced electron ejection from metal surfaces.

2.1. Electronic configurations and energy levels

To analyze the chain of processes outlined in figure 1, we
consider the following electronic configurations for the He
projectile: He+(1s), He 1s0 2( ), He 1s2s*( ), and He 1s2s2*-( ).
Without loss of generality, we assume the electron of the
He 1s+( ) ion to have spin up. This leaves us with two non-
degenerate metastable levels He 1s2s*( ), a triplet 2 S3

1 and a
singlet 21S0 with, respectively, a spin-up and spin-down
electron in the 2s shell. The term symbols for the positive ion
and the ground-state atom are 12S1/2 and 11S0. We also
consider the negative ion He 1s2s2*-( ) arising from either one
of the metastable states. In both cases, the term symbol is
22S1/2 because the two electrons in the 2s shell have anti-
parallel spin. This is the lowest lying negatively charged state,
and known to act as an intermediary in surface-induced spin-
flip collisions [67, 68]. It may thus also play a role in sec-
ondary electron emission. In principle, there are of course

additional configurations possible. For instance, the meta-
stable state He 1s2p*( ) could also be involved. We expect it,
however, to be less important for the collision we consider
because p orbitals lead to smaller matrix elements and thus to
smaller transition rates.

Far away from the surface, the projectile configurations
are characterized by a discrete set of energies representing the
ionization energies or electron affinities depending on whe-
ther the configurations are electrically neutral, positive, or
negative. For the reaction scheme shown in figure 1 we
need the single-electron ionization energies He 1s ,1 S0 2 1

0 ( ),
He 1s2s,2 S1

0* ( ), and He 1s2s,2 S3
1* ( ), that is, the thresholds of the

first ionization continua of the helium configurations given in
the subscripts, as well as the single-electron affinities

He 1s2s,2 S1
0* ( ) and He 1s2s,2 S3

1* ( ), where the subscripts indicate
again the configurations the energies belong to. How these
(positive) energies relate to the vacuum level is shown in
figure 2, together with the processes they are involved
in. While the projectile approaches the surface, the energy
levels shift. Assuming a polarization-induced image charge

Figure 2. On scale representation of the electronic states involved in
the neutralization of a sHe 1+( ) ion on an Al 100( ) surface due to the
processes introduced and discussed in figure 1. The situation shown
corresponds to the case where projectile and target are infinitely far
apart. Polarization-induced shifts of the ionization energies,

He 1s ,1 S0 2 1
0 ( ), He 1s2s,2 S1

0* ( ), and He 1s2s,2 S3
1* ( ) and the electron affinities

He 1s2s,2 S1
0* ( ) and He 1s2s,2 S3

1* ( ) encoded in equations (1)–(5) are not
shown. The shaded region on the left indicates the occupied states of
the conduction band of the Al(100) surface, the label ‘x’ in the
ionization and affinity levels of the metastable configuration stands
for either the triplet or the singlet term symbol, and the color-coded
arrows give the transitions involved in secondary electron emission
due to Auger neutralization (AN, blue), direct and indirect Auger de-
excitation (DAD, yellow; IAD, red), and autodetachment (AuD,
orange), where the latter two take place only after single-electron
transfers (SET, green) have occurred.
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interaction to be responsible for the shifts, the ionization
levels move upward in energy whereas affinity levels move
downwards [22]. Close to the surface, short-range interactions
may modify the shifts [48]. The processes we are interested in
occur, however, sufficiently far away from the surface that
short-range interactions are not yet important. To take all this
into account, we define five time-dependent single-electron
energy levels,

t
e

z t z4
, 1s1

0
He 1s ,1 S

2

i

0 2 1
0e = - +

-( )
( ( ) )

( )( )

t
e

z t z4
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2

i

1
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* *e = - +
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2
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3
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z t z4
, 4s2 He 1s2s,2 S

2
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1
0*e = - -

-
- ( )
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e

z t z4
, 5s2 He 1s2s,2 S

2
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3
1*e = - -

-
- ( )

( ( ) )
( )( )

with the subscript indicating the shell and the spin of the
electron and the time-dependence arising from the collision
trajectory,

z t z v t , 6TP= + ^( ) ∣ ∣ ( )

where v̂ is the projectile’s velocity component perpendicular
to the surface and zTP is the turning point of the trajectory.
The energy levels(1)–(5) are thus time-dependent ionization
energies and electron affinities. Note that z(t) describes the
classical center-of-mass motion of the projectile resulting
from the trajectory approximation [20], which is justified
because of the large mass of the projectile. The turning point
zTP is usually a few Bohr radii before the crystallographic
ending of the surface. It arises from short-range repulsive
forces. Our choice for zTP, which in general depends on the
projectile and the target, is guided by the calculations of
Lancaster et al [30] showing that the neutralization of He+

ions at impact energies Ekin⊥<60 eV, which is also the
upper limit in the gracing incident experiments with which we
compare our results, takes typically place 2–5 aB in front of
the surface, where aB denotes the Bohr radius. We can thus
chose z 2.27 aTP B= , as suggested by Modinos and Easa [54],
without affecting the charge-transfer too much. Indeed our
final results are rather robust against changes in zTP up to

a 2B . The position of the image plane zi, appearing in
(1)–(5), is used as a fitting parameter but it should be around
1 2aB- [69].

In addition to the energy levels of the projectile, we also
need the energy ke s

 of an electron in the conduction band of
the metal and the energy tqe s ( ) of an unbound electron at
position z(t) in front of the surface. Modeling the metal, as in
our previous work [62–66], by a three-dimensional step
potential,

V z V z 7S 0q= - -( ) ( ) ( )

with depth V0=EF+f, where EF>0 is the Fermi energy
of the metal and f>0 the work function,

k

m
V

2
8k

2 2

e
0*


e = -s


 ( )

with me* the effective mass of an electron in the conduction
band of the metal. Assuming moreover a plane wave for the
wavefunction of an unbound electron in front of the surface,
its energy is given by

t
q

m

e

z t z2 4
, 9q

2 2

e

2

i


e = -

-
s


 ( )

( ( ) )
( )

where the second term takes the interaction of the electron
with its image into account.

Since by assumption the 1s shell is always occupied by a
spin-up electron, we in effect model the projectile by a three-
level system with energies ε0, ε1, and ε2 as illustrated in
figure 3. An important feature of the model is that the energies
depend on the occupancy of the levels and—in the case of the
negative ion configurations—on the way the occupancy was
built up. To take this into account, we employ operators

P n n n n n n 10n n n 0 1 2 0 1 20 1 2 = ñá∣ ∣ ( )

projecting onto states n n n0 1 2ñ∣ of the three-level system con-
taining ni=0, 1 electrons in the energy levels εi. Defining

P t t , 11s100 0 1
0e e= ( ) ( ) ( )

P t t , 12s010 1 2*e e= ( ) ( ) ( )

P t t , 13s001 2 2*e e= ( ) ( ) ( )

P t t , 14s011 1 2e e= 
-( ) ( ) ( )

P t t 15s011 2 2e e= 
-( ) ( ) ( )

with projections to the remaining states required for com-
pleteness

Q n n n n n n 1 16
n n n

0 1 2 0 1 2

0 1 2

ååå= ñá =∣ ∣ ( )

Figure 3. Electronic configurations of the He projectile included into
our modeling. As indicated on the left, the lowest two levels stand
for the 1s shell and the upper two for the 2s shell. Since the 1s shell
is by assumption always occupied by a spin-up electron, only the
energy levels ε0, ε1, and ε2 are of interest. The ground state arises if
ε0 is occupied by a spin-down electron, the metastable triplet
(singlet) state if ε1 (ε2) is occupied by a spin-up (spin-down)
electron, and the negative ion state if ε1 and ε2 are occupied,
respectively, by a spin-up and a spin-down electron. Depending on
the occupancy and the way it is realized, the energy levels ε1 and ε2
take on different numerical values. This can be organized with
projection operators. Two auxiliary bosons finally allow switching as
required between the configurations.
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to be zero, it is possible to adjust ε0, ε1, and ε2 to the internal
energetics of the projectile configurations involved in the
atom−surface collision we want to model. The operator Q
defined in(16) will also be required in the quantum-kinetic
approach described in the section 3.

2.2. Wavefunctions and matrix elements

To set up the Anderson−Newns Hamiltonian for the charge-
transferring atom−surface collision processes we are inter-
ested in, we require a series of matrix elements. Their
calculation is based on a particular choice of wavefunctions,
which we now describe.

As in our previous work [65], the electronic states of the
metal are the wavefunctions rky s

 ( ) of the step potential(7).
For k m V2z e 0

2* < , they describe bound electrons

whereas for k m V2z e 0
2* > , they contain a transmitted

and a reflected wave. From the work of Kürpick and Thumm
[70], we would expect little change had we used other
wavefunctions for the surface—based, for instance, on the
Jennings−Jones−Weinert potential [71] instead of the
potential step. For the states of the projectile’s 1s and 2s shell,
we take hydrogen wavefunctions r1y s

( ) and r2y s
( ) with

effective charges Zeff adjusted to reproduce the ionization
energies and electron affinities, He 1s ,1 S0 2 1

0 ( ), He 1s2s,2 S1
0* ( ),

He 1s2s,2 S3
1* ( ), He 1s2s,2 S1

0* ( ), and He 1s2s,2 S3
1* ( ). For the 1s shell,

the modified hydrogen wavefunction is in excellent agree-
ment with the Roothaan−Hartree–Fock 1s wavefunction for
the helium ground state given by Clementi and Roetti [72].
To estimate the quality of the wavefunction for the 2s shell we
compared it—due to lack of Roothaan−Hartree–Fock calcu-
lations for excited helium states—with the Roothaan−Har-
tree–Fock 2s wavefunction of the lithium ground state [72].
As expected, the agreement is not as good as for the 1s shell.
Since, however, we found charge-transfer for the metals we
investigated to be dominated by Auger neutralization, which
involves only the 1s shell, we did not attempt to improve the
wavefunction for the 2s shell. The projectile’s continuum
states are—as mentioned above—approximated by plane
waves rqy s

 ( ). Thereby, we ignore distortions of the wave-
functions due to the core potential of the projectile, turning
plane waves into Coulomb waves. It is only an issue for
Auger de-excitation and autodetachment—which we found,
however, not to be the dominant scattering channels. We did
not, therefore, include this complication.

Having wavefunctions, we can construct matrix elements
for the processes shown in figure 2. Denoting the position of
the projectile by r t z t ep z=

 ( ) ( ) with z(t) defined in(6) and
following Gadzuk [57, 58] as well as our earlier work
[63, 65, 66], we obtain

V t r r
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for the matrix element controlling single-electron transfer
between the conduction band of the surface and the ioniz-
ation/affinity levels of the projectile originating from its 2s

shell,
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for the matrix element driving Auger neutralization into the
ground state, that is, the 1s shell of the projectile, and
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for the direct and indirect Auger de-excitation, respectively,
involving the projectile’s 1s and 2s shells. Finally, the matrix
element for autodetachment reads

V r r r r

e

r r
r r

d d

. 21

q q
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In contrast to the other matrix elements, it is—within our
model—independent of time (that is, independent of the
distance z(t)) since it describes a local interaction acting at the
instantaneous position of the projectile.

Although the assumptions about the wavefunctions used
in(17)–(21) are strong, we stick to it because they allow us to
pursue the calculation of the matrix elements to a large extent
analytically by means of lateral Fourier transformation, which
in turn substantially reduces the numerical effort (which is
still large) when it comes to the solution of the kinetic
equations. To estimate the validity of our approach, we
compare our results with experimental data. As we will see,
the agreement is sufficiently good to suggest that the
approximate matrix elements we use are not too far away
from the exact matrix elements (which we do not, however,
know). Our matrix elements contain a number of parameters,
which we list in table 1. As indicated in the caption of the
table we use parameters from different sources. If the para-
meters were given directly for the experiments we compare
our data with, we took these values. This was the case for the
work functions of copper and aluminum and for the affinity
levels. The rest of the parameters we collected from data
tables. The effective charge Zeff and the position of the image
plane zi were determined as stated above.

An important additional aspect affecting Auger neu-
tralization and indirect Auger de-excitation into the projectile
ground state is the enhancement of the wavefunction of the
surface electron which fills the hole in the 1s shell of the
projectile. It arises from the modification of the step potential
mimicking the surface by the Coulomb potentials of the He+
ion and its image and the image potential of the electron. In
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effect, the step potential(7) becomes a potential barrier,

V z V z z t z, 22S S q= -( ) ( ( )) ( ) ( )

with
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as shown in figure 4, through which the surface electron can
tunnel. Following Propst [38] and Penn and Apell [76], we
take this into account by a semiclassical correction to the
electron’s wavefunction using the WKB approximation. The

z-dependence of the wavefunction of a metal electron with
k m V2z e 0

2* < is given by

z t z texp , . 24k ky eµ Ds s
 ( ( )) ( ( ( ))) ( )

For the step potential,

z t z t, 25k zstep e kD =s
( ( )) ( ) ( )

with k m Vi 2z z
2

e 0
2* k = - . Using the WKB method to

account for the tunneling of the electron through the barrier
(see figure 4),
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( ( )) the turning points of the under-
the-barrier motion of the electron. Neglecting in(23) the
image potential of the metal electron—that is, the third term
—z z t,k0 e s

( ( )) can be determined analytically, leading to the
dashed black line in figure 4. By numerical integration, we
then find the adjustment ratio,
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which depends only weakly on k

. Hence, by replacing κz in

equation (25) by

t t , 28z zadjustk k= D( ) ( ) ( )

we approximately take into account the tunneling-induced
enhancement of the metal electron wavefunction at the pro-
jectile position z(t), as illustrated in figure 4. The assumptions
made in the calculation of(27) hold as long as ke s

 is below
the Fermi energy EF. This is, however, the case—since the
electron filling the 1s shell in an Auger process originates
from an occupied state of the conduction band of the surface.
In section 4, we will see that the WKB correction brings the
transition rate for Auger neutralization we obtain in very good
agreement with the rate given by Wang et al [46]. It is based
on the work of Lorente and Monreal [51], and has been also
used by others [30, 48]. It is, moreover, in reasonable
agreement with calculations based in part on first principles
for the distances we are interested in [44].

Table 1. Material parameters used in our calculations. The energies  and  denote ionization and affinity levels of the indicated helium
configurations [68, 73], Zeff is the effective charge used in the hydrogen-like wavefunctions r1y


( ) and r2y


s ( ) (required for the calculation

of the matrix elements) to reproduce these energies, zi is the position of the image plane, and f, EF, and me* are the work function, the Fermi
energy, and the effective mass of an electron in the conduction band of the metal surface [28, 30, 65, 74, 75].

 [eV] [eV] Zeff zi[aB] f[eV] EF[eV] m me e*

He 1 S1
0( ) 24.587 5 — 1.68 — — — —

He 2 S3
1*( ) 4.767 8 — 1.18 — — — —

He 2 S1
0*( ) 3.971 6 — 1.08 — — — —

He 2 S3
1*( ) — 1.25 0.61 — — — —

He 2 S1
0*( ) — 0.45 0.36 — — — —

W(110) — — — 1.3 5.22 6.4 1.1
Cu(100) — — — 1.3 5.1 7 1.1
Al(100) — — — 1.5 4.25 11.7 1.1
HM — — — 1.3 3 9 1.1

Figure 4. Illustration of the ion-induced modification of the step
potential used for the surface. The ion, at position z=z(t), creates a
potential barrier Vs(z, z(t)) through which an electron from the
conduction band can tunnel. The under-the-barrier motion occurs

between the turning points z=0 and z z k t,0=


( ). Approximating
the latter by the black dashed line simplifies the numerical treatment
without losing accuracy below the Fermi energy EF which is the
energy range of interest. The enhancement of the wavefunction for
the metal electron filling in an Auger process the projectile’s 1s shell
at the position of the ion is qualitatively indicated by the solid and
dashed orange lines.
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2.3. Hamiltonian

We now have everything needed to begin the construction of
the Hamiltonian for the processes outlined in figure 1. With
the energy shifts and matrix elements given above it reads
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where the fermionic operators ci
(†) annihilate (create) an

electron in the level εi with the spin as indicated in figure 3.
Likewise the fermionic operators c

ks
(†) and cqs

(†) annihilate
(create), respectively, an electron with spin σ in the conduc-
tion band of the target surface or the continuum of the pro-
jectile. The projection operators as defined in(10) guarantee
that each individual term is projected onto that subspace of
the three-level system representing its physical domain of
applicability. For instance, the term describing Auger neu-
tralization (fifth last term) must contain a factor P000+P100

because it involves only the positive ion and the ground state
—that is, in the notation of the three-level system, the states
000ñ∣ and 100ñ∣ .

An essential aspect of our approach is that it allows one
to treat electronic configurations of the projectile with defects
in their internal energies. More specifically, the numerical
value of the energy level ε2 depends on the occupancy of the
three-level system. In case ε1 and ε2 are occupied, ε2 denotes
an affinity level of either He 1s2s, 2 S1

0*( ) or He 1s2s, 2 S3
1*( )

whereas in the case 1e is empty, ε2 stands for the ionization
level of either He 1s2s, 2 S1

0*( ) or He 1s2s, 2 S3
1*( ). To switch

between ionization and affinity levels, we introduce two
auxiliary bosons b

(†) and b
(†) with energy

t t t , 30s s2 2*w e e= -s s s-
-

-( ) ( ) ( ) ( )

where ,s =   labels the complementary spin orientation of
the electron in the 2s shell of the two configurations between
which the boson is expected to switch. With this trick [64], all
processes encoded in the Hamiltonian conserve energy irre-
spective of whether a negative ion or a metastable config-
uration is involved.

The Hamiltonian(29) is rather involved, but the physical
meaning of the various terms is almost self-explanatory. For
instance, the first term describes the ionization and affinity
levels of the projectile, while the next three denote the aux-
iliary bosons, the continuum of surface states, and the con-
tinuum of the projectile. The following four terms are the
single-electron transfers into and out of the metastable
ionization and affinity levels. Auger neutralization of
the positive ion, direct Auger de-excitation of the metastable
singlet configuration, indirect Auger de-excitation of the
metastable triplet and singlet configurations, and the auto-
detachment of the negative ion are given by the last five
terms. Note that due to the Pauli principle, direct Auger de-
excitation is only possible for the singlet metastable state (see
figures 3 and 2). Hence, it affects only the levels ε2 and ε0.
Indirect Auger de-excitation, in contrast, is not restricted in
such a way.

Working directly with the Hamiltonian(29) is cumber-
some, because it is not suited for a diagrammatic analysis—
which on the other hand is a powerful tool to derive kinetic
equations as shown by Langreth et al [59–61]. We therefore
rewrite the states making up the projection operators in terms
of pseudo-particle operators e†, d†and sns

† defined by

e d s

s s

000 vac , 011 vac , 100 vac ,

010 vac , 001 vac . 31

1

2 2

ñ = ñ ñ = ñ ñ = ñ

ñ= ñ ñ = ñ


 

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

† † †

† †

Hence, e†, d†, s1
† , s2

† , and s2
† create, respectively, the positive

ion, the negative ion, the ground state, the triplet metastable
state, and the singlet metastable state. The statistics of the
operators is fixed by the Fermi statistics of the operators ci

(†)

and physical considerations [64]. Since the positive and
negative ion represented, respectively, by 000ñ∣ and 011ñ∣
contain an odd number of electrons, because of the spin-up
electron always present in the 1s shell, but not explicitly
included in the three-level system (see figure 3), the operators
e(†) and d (†) should be endorsed with Fermi statistics. The
ground state and the metastable configurations, 100ñ∣ , 010ñ∣ ,
and 001ñ∣ , on the other hand, carry an even number of elec-
trons. Hence, it is natural to endorse the operators s1

(†), s2
(†),

and s2
(†) with Bose statistics.
The relation between the operators c0, c1, and c2, which

are single-electron operators, and the pseudo-particle opera-
tors defined in(31), which create many-electron states—that
is, whole electronic configurations—is found by letting the
former act on the completeness relation(16). The result is

c c 1 000 100 010 110

001 101 011 111 , 32
0 0= * = ñá - ñá

- ñá + ñá
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

c c 1 100 000 110 010

101 001 111 011 , 33
0 0= * = ñá - ñá

- ñá + ñá
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

† †
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c c 1 000 010 100 110

001 011 101 111 , 34
1 1= * = ñá + ñá

- ñá - ñá
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

c c 1 010 000 110 100

011 001 111 101 , 35
1 1= * = ñá + ñá

- ñá - ñá
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

† †

c c 1 000 001 100 101

010 011 110 111 , 36
2 2= * = ñá + ñá

+ ñá + ñá
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

c c 1 001 000 101 100

011 010 111 110 , 37
2 2= * = ñá + ñá

+ ñá + ñá
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

† †

where the minus signs guarantee the fulfilment of the anti-
commutation relations. Inserting(32)–(37) into(29), carrying
out all projections, and lastly making replacements of the sort

e s000 100 1ñá ∣ ∣ † , we finally obtain the Anderson—Newns
Hamiltonian in pseudo-particle representation:

H t t s s t s s

t t d d t b b

c c t c c

V t c e s

V t c b s d

V t c s e c c

V t c s c s
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H.c.
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The physical meaning of the various terms of the Hamiltonian
is now particularly transparent. Consider, for instance, the
fourth last term. It describes Auger neutralization (and its
reverse, which has to be included to make the Hamiltonian
Hermitian) and hence the creation/annihilation of the pro-
jectile ground state and a secondary electron by simulta-
neously annihilating/creating a positive ion and two metal
electrons. Likewise the last term describes autodetachment
(and its reverse)—that is, the creation/annihilation of the
ground state by annihilation/creation of the negative ion due
to creating/annihilating an electron in the continuum of the
projectile. In the next section, we will use this Hamiltonian to
determine the probabilities with which the various projectile
configurations appear and an electron is emitted in the course
of the atom−surface collision.

3. Quantum kinetics

With the electronic configurations of the He projectile enco-
ded in an effective three-level system holding either no, one,
or two electrons with the spin polarizations given in figure 3,
we can now calculate the probability with which an electron is

emitted via Auger neutralization or the sequence of single-
electron transfers leading to Auger de-excitation or auto-
detachment as shown in figure 1. For that purpose we use the
quantum-kinetic method which rests in our case on the con-
tour-ordered Green functions [77, 78],

E t t T e t e ti , , 39¢ = á ¢ ñ( ) ( ) ( ) ( )†

S t t T s t s ti , , 401 1 1¢ = á ¢ ñ  ( ) ( ) ( ) ( )†

S t t T s t s ti , , 412 2 2¢ = á ¢ ñs s s( ) ( ) ( ) ( )†

D t t T d t d ti , , 42¢ = á ¢ ñ( ) ( ) ( ) ( )†

G t t T c t c ti , , 43q q q¢ = á ¢ ñs s s
  ( ) ( ) ( ) ( )†

G t t T c t c ti , , 44k k k¢ = á ¢ ñs s s
  ( ) ( ) ( ) ( )†

B t t T b t b ti , , 45¢ = á ¢ ñs s s( ) ( ) ( ) ( )†

where the time variables run over the Keldysh contour shown
in figure 5. The first four functions describe the positive ion,
the ground state, the two metastable states, and the negative
ion, while the last three apply, respectively, to an unbound
electron in the projectile’s continuum, the electrons in the
conduction band of the target surface, and the auxiliary
bosons. The operators making up the Green functions evolve
in time with the full Hamiltonian(38) and the brackets denote
the statistical average with respect to the initial density matrix
describing one-auxiliary-boson states, surface electrons in
thermal equilibrium, and an empty projectile—that is, a
positive ion.

Following the work of Langreth et al [59–61] we use
Dyson equations for these functions to derive a set of
equations for the occurrence probabilities/occupancies of the
bound projectile states—that is, the affinity and ionization
levels. Introducing the self-energies t t,eP ¢( ), t t,1S ¢( ),

t t,2S ¢s( ), and t t,dP ¢( ) for the Green functions E t ti , ¢( ),
S t ti ,1 ¢( ), S t ti ,2 ¢s ( ), and D t ti , ¢( ), we obtain ( 1 = in this
section and the two appendices)

t
n t tE t t t t

tE t t t t

d

d
2 Im d , ,

2 Im d , , , 46

R

R

e

e

ò

ò

= P

- P

+
-¥

¥
<

-¥

¥
<

( ) ¯ (¯ ) ( ¯)

¯ ( ¯) (¯ ) ( )

Figure 5. Keldysh contour in the complex time domain running
infinitesimally above and below the real-time axis from t = -¥ to
t = +¥ and back. The time variables t and t¢ of the contour-ordered
Green functions(39)–(45) and the self-energies associated with them
vary along this contour. To obtain the analytic pieces of these
functions—denoted by less-than, greater-than, and retarded—an
analytic continuation to the real-time axis is performed after the
time-ordering along the contour has been taken into account. This is
equivalent to Keldysh’s matrix notation for the Green functions [77].
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for the time evolution of the probabilities ne(t), ng(t), n ts ( ),
and n t-( ) with which, respectively, the positive ion, the
ground state, the two metastable states (s =  denoting the
triplet and s =  the singlet), and the negative ion occur.

Equations (46)–(49) are exact but of course not closed in
terms of the occurrence probabilities. To proceed, we set up
the self-energies in the non-crossing approximation, use the
fact that the matrix elements(17)–(21) factorize approxi-
mately in functions of t and the set of k


vectors, and finally

apply the semiclassical approximation to(46)–(49) developed
by Langreth et al [59–61] which in essence is a saddle-point
integration in time.

In order to get an impression about how the self-energies
look, we show in figure 6 the contribution to the self-energy

t t,s1S ¢( ), entering the Dyson equation of the ground-state
propagator S t ti ,1 ¢( ), which arises from the Auger neu-
tralization. There are also contributions to t t,s1S ¢( ) due to
direct and indirect Auger de-excitation as well as auto-
detachment. They are given in appendix A together with
the other self-energies entering equations (46)–(49) and
some details concerning their calculation. Using standard
diagrammatic rules [79] the diagram shown in figure 6
translates to

t t V t V t

E t t G t t G t t G t t

i , i

i , i , i , i , . 50
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k k k

k k k k k k

k k k
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The time variables run over the (Keldysh) contour, that is,
from t = -¥ to t = +¥ and back as shown in figure 5.
Application of the Langreth−Wilkins rules [80] with a sub-
sequent projection to the subspace encoded in the complete-
ness relation(16) yields the analytic pieces of the self-
energies, where the time variables are now taken from the
real-time axis,
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with the superscripts ,> <, and R indicating the less-than,
greater-than, and retarded pieces of the self-energy(50). In
accordance with the non-crossing approximation the surface
electrons are propagated by the undressed Green function,

G t t f, e . 53
k k

t ti k
  e¢ =
s s

e- - ¢s  ( ) ( ) ( )( )

Only the propagators applying to the ionization and affinity
levels of the projectile, E t ti , ¢( ), S t ti ,1 ¢( ), S t ti ,2 ¢s ( ), and
D t ti , ¢( ) are modified by self-energies.

Due to the approximate factorization of the time and
momentum dependencies of the matrix elements, it is possible
to express the self-energies by functions arising from the
application of the golden rule to the respective interaction
terms in the Hamiltonian. The physical meaning of the
functions is that of a (partial) level width. Since they even-
tually determine the rates entering the rate equations for the
occurrence probabilities given below, we list the functions—
however, without derivation (which is quite lengthy). An
exemplary calculation is presented in appendix B.

Single-electron processes are characterized by

t V t t2 , 54
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k s k
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** åp d e eG = -e s s ss 
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while Auger processes are encoded in
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Figure 6. Diagrammatic representation of the self-energy due to
Auger neutralization, t t,s1

ANS ¢ ( ), entering the Dyson equation for the
ground-state propagator S t ti ,1 ¢( ) in the non-crossing approx-
imation. The dashed and wavy lines are the dressed propagators of
the ground state and positive ion, whereas the solid lines mark the
undressed propagators for surface electrons. Standard diagrammatic
rules [79] can be applied to diagrams of this type if one keeps in
mind that time integrations/variables run over the Keldysh contour
[77, 78]. Details can be found in our previous work [62–65].

9

Plasma Sources Sci. Technol. 27 (2018) 084003 M Pamperin et al

Article III

75



t f f

t t , 61
kk k k

s s k k1
0

2*

r e e

d e e e e

=

´ - - +
s s s

s s

¢
< >

¢

  ¢

   

 

( ) ( ) ( )
( ( ) ( ) ) ( )

t f f t

t t t , 62

kq k q

s s k q1
0

2*

r e e

d e e e e

=

´ - - +
s s

s s

<


>

 

   

 

( ) ( ) ( ( ))

( ( ) ( ) ( )) ( )

g t t t t ,

63
q q s s s q1

0
2 2*r e d e e e e= - - +s s

>
  -

-
  ( ) ( ( ) ( ) ( ) ( ))

( )

where on the rhs of the last equation s =  or  depending on
whether the negative ion is formed out of He 1s2s, 2 S1

0*( ) or
He 1s2s, 2 S3

1*( ). Note that, in contrast to the other level width
functions, ΓAuD does not depend on time, since the matrix
element Vq

 is independent of time and the time dependencies
of the energies in the delta function contained in qr  cancel.

To get these expressions, we used the arguments Lan-
greth and Nordlander [59] developed for simplifying self-
energies due to single-electron transfer with the exception that
in the level widths arising from Auger and autodetachment
processes the distribution functions for the surface and con-
tinuum electrons, f k

 e s
( ) and g qe>


( ), are not separated out

from the summations in momentum space. The functions
f<(ε) and f>(ε)=1−f<(ε) encode, respectively, initially
occupied and empty states of the conduction band of the
metal. Hence, f<(ε) is the Fermi–Dirac distribution function
at temperature Ts of the surface. The distribution function for
an electron in the continuum of the projectile g 1qe =>


( ) for

0qe >
 and equal to zero otherwise.

The saddle-point integration in time uses the fact that the
Green functions lead to self-energies which are strongly peaked
at equal times. In effect, the time variables of the projectile
Green functions (including the ones entering the self-energies)
on the rhs of equations (46)–(49) are set to equal times once the
time integrations are carried out. Identifying less-than functions
at equal times with occurrence probabilities/occupancies and
realizing that retarded functions at equal times are simply equal
to unity in the time intervals where they do not vanish, we
obtain the rate equations

which are, due to the completeness(16), subject to the
constraint

n n n n n 1. 65g+ + + + =+   - ( )

The compliance of(65) can be easily verified by noting

t
n n n n n

d

d
0, 66g+ + + + =+   -( ) ( )

and summing each column of(64), which results in the
nullifying of the rates. Thus, constraint(65) is fulfilled. Also
note, with respect to the diagonal of the coefficient matrix
in(64), the entries in the lower triangle comprise only less-than
rates ...G< whereas in the upper triangle only greater-than rates

...G> appear. Besides having no entries of greater Auger rates

ANG> , DADG 
> , IADG 

> , IADG 
> , and AuDG> the matrix is symmetric.

For the interpretation and numerical solution of(64) we
apply to the rates the adiabatic approximation. The rates
in(64) can then be expressed by the level width functions.
For the single-electron transfers the adiabatic approximation
yields [59]

t t f t , 67s2s2
**

  eG = Gs e ss
( ) ( ) ( ( )) ( )

t t f t 68s, 2s2
  eG = Gs e s-

-
s

-( ) ( ) ( ( )) ( )

with t
s2
*Ge s

( ) and t
s2

Ge s
- ( ) as defined in(54) and(55) respec-

tively. The Auger and autodetachment transition rates reduce
in the adiabatic approximation simply to the level width
functions given in equations (56)–(59). Hence,

t t , 69AN ANG = G< ( ) ( ) ( )
t t , 70DAD DADG = G

<
( ) ( ) ( )

t t , 71IAD IADG = Gs s
< ( ) ( ) ( )

. 72AuD AuDG = G< ( )

At this point, one clearly sees that in the derivation of the
level widths due to Auger and autodetachment processes, we
did not factorize out the distribution functions as was the case
in the derivation of the level widths due to single-electron
transfers. As a result, the distribution functions for the metal
electron appear in front of the width functions in(67)
and(68) but not in(69)–(72), where they are contained in the
width functions themselves.

A particular characteristic of the adiabatic rates, in con-
trast to the quantum-kinetic rates coming out directly from the
saddle-point approximation to(46)–(49) as discussed in
appendix A, is that they are positive semidefinite. With the
adiabatic rates, equation (64) can thus be interpreted
straightforwardly: the lower triangle describes the gain of the

projectile configurations by the processes entering this part of
the matrix. In terms of figure 1, the lower triangle encodes the
transitions from left to right and from top to bottom, starting
with the positive ion which is the initial configuration. The
diagonal of the matrix gives the losses of the configurations.
In contrast to the lower triangle, the upper triangle describes
indirect gains for the configurations. It encodes the transitions
in figure 1 from right to left. Moving from bottom to top is not
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allowed energetically. Should it have been, the last column of
the matrix would be filled with greater-than Auger rates.

With the rate equation (64) it is now particularly easy to
write down a differential equation for the probability of
emitting a secondary electron. Every process outlined in
figure 1 that leads to the occurrence of the ground state
He 1s , 1 S0 2 1

0( ) generates an excited electron (see figure 2).
Thus, the rate equation for the probability to emit a secondary
electron at time t with energy ε is

t
t n t t n t t

n t t t

n t t

d

d
, , ,

, ,

, . 73

e AN IAD

IAD DAD

AuD

g e e e

e e

e

= G + G

+ G + G

+ G

+
<

 
<

 
<


<

-
<

( ) ( ) ¯ ( ) ( ) ¯ ( )

( )[ ¯ ( ) ¯ ( )]

( ) ¯ ( ) ( )

It has the same structure as the rate equation for the ground
state. The spectrally resolved rates t,... eG<¯ ( ) entering this
equation are essentially the ones given in(69)–(72) except
that the integration over the magnitude of the wave vector k



of the excited electron is not carried out and that the condi-
tions for escaping from the surface have to be taken into
account [17]. The reason is the following: an excited electron
becomes a secondary electron only if it is also able to escape
from the location where it is generated. If it is created on-site
due to autodetachment or indirect Auger de-excitation, the
electron has to overcome its image potential V z ti =( ( ))
e z t z42

i-( ( ) ) requiring, in the spirit of the escape cone
model [81], qz>0 and

V z tarccos , 74max
iq q e e< =( ) ( ( )) ( )

where θ is the angle between q

and the outward surface

normal. The q

-integration in t,AuD, IAD eG< ( ) is thus cropped

leading to modified rates which we denote in(73) by
t,AuD, IAD eG<¯ ( ). In case the electron is generated inside the

solid surface, that is, by Auger neutralization or direct Auger
de-excitation, the escape of the electron is also affected by
scattering processes. Assuming elastic scattering to be most
important, the electron arrives isotropically at the interface
leading to the rates t t, ,AN, DAD AN, DADe e eG = G< <¯ ( ) ( ) ( ) with

V

V

1

2
1 , 750

0
 e

e
= -

+

⎛
⎝⎜

⎞
⎠⎟( ) ( )

the surface transmission function [17].

Solving(73), the energy spectrum of the emitted sec-
ondary electron is obtained from

t, , 76e eg e g e= ¥( ) ( ) ( )

and the probability that an electron gets emitted at all—that is,
the secondary electron emission coefficient (γ–coefficient)—
follows by integration over all energies:

td , . 77e eòg e g e= ¥( ) ( )

In order to compare our results with experiments, we
apply one more modification. Surface scattering experiments
typically occur under conditions of grazing incidence
[16, 35]. The lateral velocity vP of the projectile is thus very
large. To account in our calculations for the smearing of the
metal electron’s Fermi–Dirac distribution induced by the
lateral motion of the projectile, in addition to the thermal
smearing of the distribution function due to the surface
temperature Ts, we replaced, for the numerical calculations,
the function f<(ε) in the formulas given above by an angle-
averaged velocity-shifted distribution [31],

f v,
ln 1 e ln 1 e

2
78

e
bd

=
+ - +b e f d b e f d

<
- + - - + +

( ) ( ) ( )

( )

( ) ( )

with f the work function of the surface, β=1/kBTs, and
δ=kFvP, where kF is the surface’s Fermi wave number. From
the projectile’s perspective the velocity smearing populates
surface states above the Fermi energy thereby potentially
strengthening charge-transfer processes from the metal to the
He metastable states, which, due to image shifting, turn out to
be well above the Fermi energy.

Let us finally say a few words about the numerics we
have applied. The calculation of the level widths (54)–(59)
requires at least a two-dimensional integration over the
solid angle of k


or q

and at worst, in the case of Auger

neutralization, an integration in nine dimensions. In the case
of indirect Auger de-excitation, an additional six-dimensional
numerical integration must be performed over r


and r ¢


, since

the method of lateral Fourier transformation, unlike for the
other channels, does not lead to an analytic result. The inte-
grations are done by a MPI parallelized Monte Carlo Vegas
code [82] for a discrete number of different times. To obtain
the matrix elements at times in between, we used multi-
dimensional-linear interpolation. The same strategy was used
for the additional integrals of the indirect Auger de-excitation.
Because of the multidimensionality, using more advanced
interpolation methods, e.g. splines, would be a difficult
undertaking, not necessarily leading to better results. In
addition, an interpolation of the time-arguments of the
rates(67)–(71) is necessary to solve the rate equation (64).
Here, when interpolating, we take advantage of the fact that
the rates are almost exponential, which greatly improves the
results. To solve the rate equation (64), finally, we employed
the explicit embedded Runge−Kutta Cash−Karp method also
provided by the GNU scientific library. We have put impor-
tance on a reasonable error propagation resulting in a relative
numerical error of the calculated occurrence/occupation
probabilities of less than 10−4.

4. Results

In this section we present numerical results calculated for the
material parameters listed in table 1. We use atomic units
measuring length in Bohr radii and energy in Hartrees. The
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surface is assumed to be at room temperature, leading to a
thermal broadening of the Fermi–Dirac distribution which is
much less than the velocity-induced smearing. In the calcu-
lations, we therefore used (78) in the limit T 0s .

We start the discussion with figure 7, where we plot the
transition rates entering the rate equation (64) for a
He 1s, 1 S2

1 2
+( ) ion hitting an aluminum surface with

Ekin=60 eV and angle of incidence α=15°. The upper
panel shows the Auger rates whereas the rates due to single-
electron transfer are shown in the lower panel. To demon-
strate the importance of the WKB correction to the Auger
rates, we plot in the upper panel tANG< ( ) calculated with and
without it. Clearly, the WKB correction to the metal wave-
function has a dramatic effect. It increases tANG< ( ) by two
orders of magnitude. A comparison with the results from
other groups, discussed in the next paragraph, indicates that
the WKB correction is essential for producing the correct
order of magnitude. The WKB correction is also important for

indirect Auger de-excitation. Due to lack of data, however,
we cannot compare it with other results. Before discussing the
reliability of the rates, a few general remarks are in order. The
rates for indirect Auger de-excitation and Auger neutraliza-
tion decrease with distance whereas the rate for direct Auger
de-excitation remains almost constant. This is simply because
it is a transition between two ionization levels which shift
more or less identically. In this respect, it resembles the rate
for autodetachment ΓAuD, which is exactly a constant within
our model and moreover independent of the target surface.
Comparing the Auger rates with the rates for single-electron
transfer (plotted in the lower panel) shows that Auger rates
are in general smaller, implying that the latter dominate the
former in situations where both are possible. The spin-
dependence of the rates arises primarily from the energy
difference of the singlet and triplet ionization/affinity levels.
The closer the levels to the vacuum level, the more extended
is the wavefunction of the surface electron taking part in the
process leading to a larger matrix element and hence trans-
ition rate. For the same reason, ,

G s- decreases near the
turning point.

To estimate the quality of our WKB-modified rate for
Auger neutralization we compare it in figure 8 with the rate
given by Wang et al [46]. It is essentially an extension of the
Auger neutralization rate worked out by Lorente and Monreal
[51] to distances z 2aB< and well established [30, 48]. The
agreement for z z 2.27aTP B> = is almost perfect, although
the two rates are obtained by different methods. Additional

Figure 7. Transition rates(67)–(71) entering(64) for a
He 1s, 1 S2

1 2
+( ) ion hitting an aluminum surface with E 60 eVkin =

and angle of incidence α=15°. The turning point zTP=2.27 is
indicated by the thin vertical lines. The upper panel shows the rates
for autodetachment ΓAuD (dotted black) and the Auger processes,

DADG 
< (dashed black ), IADG 

< (dash-dotted orange), and IADG 
<

(dash-dotted blue). The latter two turn out to be almost identical, but
this must not always be the case. In addition, ANG< is shown with
(solid blue) and without (dashed blue) WKB correction. Including it
increases ANG< by two orders of magnitude, causing it to coincide in
the intervals most relevant for the charge transfer we discuss with the
rates obtained by other means (see figure 8 and discussion in main
text). The lower panel presents the rates due to single-electron
transfer: G

< (dotted orange), G
> (dash-dotted orange), G

> (dashed-
dotted blue), ,G- 

< (solid orange), ,G- 
< (solid blue), ,G- 

> (dashed
orange), and ,G- 

> (dashed blue). The rate G
< is not shown. It is less

than 10−10 and thus negligible.

Figure 8. Comparison of the WKB-correct Auger neutralization rate
with the rates obtained by Wang et al [46] and Valdés et al [44]. The
collision parameters are the same as in figure 7, the surface is
Al(100), and the turning point zTP=2.27 is indicated by the vertical
line. For distances z3.5, where we shall find 95% of the reaction
to take place for an angle of incidence of 15°, the agreement is rather
good although the rates have been obtained by different methods
using different approximations. Close to the turning point our rate
(and that of Wang et al) is about a factor of two too large compared
to the rate of Valdés et al, which is based in part on first principles.
As far as our rate is concerned, we take this as an indication that non-
orthogonality corrections (which we neglect) are already sizeable at
z  3.5. The percentiles of the reaction change with angle of
incidence. For perpendicular incidence, the 95% line is closer to the
turning point. The neglect of the corrections thus becomes more
important in this case.
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support for our rate (and hence also for that of Wang et al)
stems from the comparison with the rate obtained by Valdés
et al [44] using an approach based in part on first principles.
At distances at which Auger neutralization is expected to take
place, there is an astonishingly good agreement between the
three rates, indicating that the three approaches contain the
essential physics operating at these distance. Hence, they
differ only in aspects becoming important at high impact
energies, when the projectile gets closer to the target or may
even penetrate it, as can be seen by the deviations at short
distances. Since the model assumptions are the same for the
other rates we calculate, we expect them also to be of the
correct order of magnitude for z 2aB —that is, at distances
for which charge-transfer takes place at moderate impact
energies.

Having calculated the transition rates, we can solve the
rate equation for the instantaneous occurrence probabilities
n t n t n t, ,+  ( ) ( ) ( ), n−(t), and ng(t), applying respectively to
the positive ion, the triplet and singlet metastable state, the
negative ion, and the ground state. Figure 9 shows results for
these quantities for a He 1s, 1 S2

1 2
+( ) ion hitting different

surfaces at different angles of incident and different kinetic
energies. The abscissas show the separation of the projectile
from the surface. Starting on the left at a distance z=40, it
moves along the incoming branch of the trajectory towards
the turning point zTP=2.27, indicated by the thin vertical

line, where it is specularly reflected to move back to the
distance z=40 along the outgoing branch of the trajectory
shown on the right. The kinetic energy of the projectile was
set to Ekin=50 eV [W(110)], Ekin=25 eV [Cu(100)], and
Ekin=60 eV [Al(100)], which are the kinetic energies at
which the electron emission spectra have been determined
experimentally for these metals [30, 35]. Below, we will
compare the calculated spectra with the experimentally
measured ones. We also studied a hypothetical metal, termed
‘HM’, with EF=9 eV and f=3 eV to make all processes
outlined in figure 1 work in concert for an ion with
Ekin=50 eV and α=5°. In case of tungsten and copper, the
work functions, f=5.22 eV (tungsten) and f=5.1 eV
(copper), are too large to enable resonant single-electron
transfer into the metastable states He 1s2s, 2 S1

0*( ) and
He 1s2s, 2 S3

1*( ). Hence, ultimately, only the ground state
He 1s , 1 S0 2 1

0( ) becomes occupied via Auger neutralization,
with probability unity for tungsten and near unity for copper.
The ion is thus very efficiently neutralized at both surfaces.
For copper, however, the positive ion has a slim chance to
survive. Its occurrence probability at the end of the collision
n t 0.004¥ »+ ( ) . The secondary electron emission prob-
ability, the γ-coefficient, is for both cases around 0.1.
Analyzing the two cases a bit deeper one realizes that the
larger angle of incidence makes the projectile hit the copper

Figure 9. Instantaneous probabilities for electron emission and the occurrence of the various electronic configurations of the He projectile,
which was initially in the He 1s, 1 S2

1 2
+( ) configuration, obtained from(64) using the transition rates defined in equations (67)–(68). The

species for which no data are shown do not affect the charge transfer. Their occurrence probabilities are less than 10−5 and thus negligible.
The kinetic energy of the initial He+ ion scattering off the different surfaces is Ekin=50 eV [W(110)], E 25 eVkin = [Cu(100)],
Ekin=60 eV [Al(100)], and Ekin=50 eV [HM]. The turning point zTP=2.27 is indicated by the thin vertical line in the middle of the plots,
and the inset in the lower right panel provides an enlarged look on the incoming branch in front of the turning point.
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surface with a much larger perpendicular kinetic energy.
Since the major part of the reaction still takes place for dis-
tances z<10, the interaction time for copper is much shorter
than for tungsten. This may be the reason for the ion to sur-
vive the collision, albeit only with a very small probability.

For an aluminum surface, the work function is low
enough also to allow the formation of the He 1s2s, 2 S3

1*( )
configuration on the incoming branch of the trajectory. Its
occurrence probability n t( ) rises to sizeable values around
z=10 (double-dot-dashed line in the lower left panel of
figure 9). Secondary electron emission due to the indirect
Auger de-excitation it enables is, however, very weak. We
find only one percent of the total emission probability to be
due to this process, consistent with the statement of Wang
et al [46] that it is negligible. As can be seen in the lower left
panel of figure 9, secondary electron emission due to indirect
Auger de-excitation becomes small compared to emission due
to Auger neutralization because its starting point, the meta-
stable states, are most of the time much less probable than the
positive ion, the starting point for Auger neutralization.
Hence, although the rates for indirect Auger de-excitation and
Auger neutralization are of the same order of magnitude,
differing only by a factor two (see figure 7), the efficiency of
the two processes is very different due to the collision
dynamics. Iglesias-García and coworkers [40], in contrast,
report on the importance of single-electron transfer, and hence
the formation of metastable states, for the neutralization of a
helium ion at an aluminum surface. The noticeable temporary
occurrence probability we find for He 1s2s, 2 S3

1*( ) seems to
support their view. However, its role for the outcome of the
collision process is very sensitive to the position of the Fermi
energy and the shift of the ionization level He 1s2s,2 S3

1* ( )
encoded in equation (5). In our case, we find that, in the end,
He 1s2s, 2 S3

1*( ) plays a subdominant role. Further investiga-
tions are required to clarify the issue, taking improved models
for the electronic structure of the surface and the polarization-
induced level shifts into account.

The situation we termed ‘HM’ was constructed to
demonstrate the interplay of all channels outlined in figure 1.
For this case, the instantaneous occupancies shown in the
lower right panel of figure 9 and its inset are more involved.
During the approach of the projectile to the surface, both
metastable states—He 1s2s, 2 S1

0*( ) and He 1s2s, 2 S3
1*( )—

become occupied, enabling thereby direct (from the singlet
configuration) and indirect (from the singlet and triplet con-
figurations) Auger de-excitation, in addition to Auger neu-
tralization. The occurrence probability of the positive ion
drops accordingly. At z 4» before the turning point n+(t)
reaches a local minimum but starts to rise again for a brief
amount of time before it drops to very small values. At the
same time, the probability for He 1s2s, 2 S1

0*( ) decreases after
reaching its maximum. Having only an ionization energy of
around 3.9 eVHe 1s2s,2 S1

0* »( ) , the drop is due to the image-
shift encoded in(2), which pushes the ionization level above
the Fermi energy, thereby turning the weak gain due to single-
electron transfer off and the strong electron loss due to the
process on. In addition, there is a strong loss due to direct
Auger de-excitation. The triplet configuration He 1s2s, 2 S3

1*( )

is affected similarly, albeit at a later time due to the greater
ionization energy and the lack of strong direct Auger de-
excitation (which is absent because of the Pauli principle).
When the electron transfers from the metastable states back to
the surface via single-electron transfer, the positive ion is
restored. Hence, the occurrence probability for the positive
ion rises again near the surface, allowing for a revival of the
Auger neutralization. As a result, the occurrence probability
ng(t) jumps close to the surface to near unity. The affinity
levels, of course, shift along with the ionization levels. If they
approach the Fermi energy from above, a negative ion
becomes possible. Hence, for a very short time interval, when
the occurrence probabilities for the two metastable config-
urations are already decreasing, a negative ion is formed. It
decays nearly instantly, however, because of single-electron
transfer and autodetachment.

In all four cases depicted in figure 9, the outgoing branch
lacks complex behavior. For the chosen angles of incidence
and kinetic energies, the ground state is always formed very
efficiently along the incoming branch. Since the ground state
is not subject to a loss channel, it cannot be destroyed. The
constraint(65), which has to be satisfied at any instant of
time, ensures then that the other configurations vanish as soon
as the ground state appears with probability near unity. At the
end of the collision, the ground state configuration dominates.
Only for copper do we find a noticeable probability of also
detecting a positive ion in the end. Although the other con-
figurations ultimately have vanishingly small probabilities,
they may nevertheless affect the outcome of the collision by
their presence at intermediate times.

Only those probabilities at the end of the collision are
experimentally accessible. Let us thus investigate their
dependence on impact energy and angle of incidence.
Figure 10 shows, for the same impact energies as in figure 9,
the angle dependence of the probabilities for detecting the
configurations included into our model at the end of the
collision, as well as for emitting an electron. The results for
tungsten and copper are again very similar. At small angles,
essentially only the ground state is formed, because Auger
neutralization is the dominant process. As the angle increases,
the kinetic energy perpendicular to the surface also increases,
lowering thereby the interaction time for all channels. This
leads to a steady increase of the occurrence probability for the
positive ion, although it remains much smaller for all angles
than the probability for the ground state. The ion survival
probability is largest for perpendicular incidence, which is
also most relevant for plasma applications. For tungsten, we
obtain around 0.3, which is two orders of magnitude too large
compared to the experimental data Hagstrum [83] found long
ago. But survival probabilities on the order of 10−3 are typical
(see for, instance, figure 26 in [14]). Moving the turning point
closer to the surface reduces the survival probability, but not
by two orders of magnitude. It is not possible to push this
number to the correct order of magnitude by simply adjusting
model parameters. We expect the neglect of single-electron
transfer to the 1s shell to be responsible for the too large
survival probability at perpendicular incidence. The impact
energy of the He 1s, 1 S2

1 2
+( ) projectile is highest in this case,
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leading to the closest encounter with the surface, where sin-
gle-electron transfer from core levels may already become
important. To include it is, however, beyond the scope of the
present work. In addition, non-orthogonality corrections to
the Auger rates may also become an issue for perpendicular
incidence.

The final probabilities for aluminum and the hypothetical
metal, shown in the lower two panels, also behave similarly.
The main difference from tungsten and copper is the forma-
tion of the metastable triplet state He 1s2s, 2 S3

1*( ). This forms
on the incoming branch of the trajectory because the lowering
of the work function enables single-electron transfer into the
metastable state and the shortening of the interaction time
reduces the electron transfer back to the metal which, in
effect, leads to a freezing-in of the metastable state. For the
hypothetical case, the occurrence probability for the meta-
stable triplet state is even larger than that for the positive ion,
indicating that at intermediate times the singlet metastable
state as well as the negative ion state may also have played an
active role in the collision.

We now turn to the energy spectrum of the emitted
electron. In figure 11, we present results based on
equations (73) and (76) together with experimental data for
tungsten from Müller et al [35] and copper and aluminum
from Lancaster et al [30]. Only the former group gives also an
estimate for the total emission probability—that is, the

γ-coefficient. As far as the data for tungsten are concerned,
we can thus compare absolute numbers. For copper and
aluminum, this is not possible since no value for the γ-coef-
ficient was given by the experimentalists. In addition, the area
embraced by the measured emission spectra, which would
give the emission coefficient according to(77), cannot be
used either, because the experimental data are presented in
arbitrary units.

Müller et al estimate 0.22e
expg = for a He 1s, 1 S2

1 2
+( )

ion hitting a tungsten surface with Ekin=50 eV and α=5°.
We weighted their emission spectrum according to(77) to
match this number. A comparison of the weighted exper-
imental spectrum with our data is shown in figure 11. The
agreement is quite satisfying, particularly as far as the high-
energy side of the spectrum is concerned. The high-energy
cut-off and the maximum of the emission spectrum match
quite well, indicating that our approach may be able to esti-
mate at least the order of magnitude of secondary electron
emission in cases where no experimental data are available.
At low energies, experimental and theoretical data deviate.
The theoretical secondary electron emission coefficient

0.12e
theog = is thus roughly only one-half of the experimental

estimate. The reason is the following: we did not include
processes relaxing the energy of the excited electron.
Scattering cascades [29, 38] and higher-order Auger pro-
cesses [36] involving more than two electrons are often

Figure 10. Final probabilities γe, n+, ng, and n↑ for electron emission and the occurrence of the He 1s, 1 S2
1 2

+( ), He 1s , 1 S0 2 1
0( ), and

He 1s2s, 2 S3
1*( ) configurations as a function of the angle of incidence. The kinetic energy of the helium projectile is Ekin=50 eV [W(110)],

Ekin=25 eV [Cu(100)], Ekin=60 eV [Al(100)], and Ekin=50 eV [HM]. Only the positive ion, the ground state, and the triplet metastable
state occur at the end of the collision with a noticeable probability. Negative ion and singlet metastable state are only temporarily formed. At
the end of the collision, their occurrence probabilities are vanishingly small.
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attributed for this. Since the physical origin is not yet quite
clear, we did not consider it for the purpose of this work. Our
energy spectrum for the secondary electron leaving the
tungsten surface is entirely due to Auger neutralization; the
other channels of figure 1 are energetically closed. Without
scattering cascades and higher-order Auger processes inclu-
ded, it applies only to the high-energy side of the spectrum.
There, however, the agreement is rather good.

The good match of the theoretical and experimental
emission spectra for tungsten at high energies suggests a way
to scale the data of Lancaster et al such that they can be
compared to the calculated spectra. An important con-
sequence of the scaling is that we can then also estimate the γ-
coefficients for copper and aluminum. The ratio
r e

theo
e
expg g= of the theoretical and experimental secondary

electron emission coefficients for tungsten is roughly one-half
because of the neglect of scattering cascades and higher-order
Auger processes. Assuming that both types of process are
essentially the same for the metals under discussion, we also
scale the emission spectra of Lancaster et al in this manner.
Hence, we set E E t E E rd , de e

expò òg g¥ =( ) ( ) , where r is
the ratio obtained from the tungsten data. The scaling pro-
vides an absolute scale to the experimental data and hence
also the γ-coefficients.

As can be seen from figure 11, applying the scaling to the
data for copper leads at high energies to a good agreement

again between the experimental and theoretical emission
spectra. As for tungsten, the high-energy side of the spectrum
is determined largely by Auger neutralization. From the
calculation, we obtain for copper 0.1e

theog = , producing
0.19e

expg » . For aluminum, the matching of the high-energy
tails is not as good. The small work function and the large
Fermi energy lead in this case to a broad spectrum for the
electron emitted by Auger neutralization. In addition, the low
work function enables indirect Auger de-excitation, although
it provides only a small number of secondary electrons
between 15 and 20 eV. For aluminum, our approach yields

0.09e
theog = , a bit lower than for tungsten and copper. The

estimate for the experimental value is thus 0.18e
expg » . For

aluminum, the theoretically obtained emission spectrum does
not even match the measured data at high energies. In the case
of tungsten and copper, the processes leading to electron
emission at lower energies are well separated from electron
emission due to Auger neutralization. The latter leads to a
maximum at the high-energy side, while the former produces
a flat low-energy shoulder. The experimental data for alu-
minum feature, in contrast, a single asymmetric emission
peak, suggesting that Auger neutralization and the low-energy
processes strongly overlap. It is thus clear that the scaling
deduced from the tungsten data necessarily produces a max-
imum in the experimental data for aluminum which is above
the maximum of the calculated spectrum. In order to achieve

Figure 11. Energy spectrum of the emitted electron once the collision is completed. The kinetic energy of the initial He+ ion is Ekin=50 eV
[W(110)], Ekin=25 eV [Cu(100)], Ekin=60 eV [Al(100)], and Ekin=50 eV [HM]. The experimental data for tungsten [35] are weighted
to the electron emission coefficient γexpe =0.22 found experimentally. For the aluminum and copper data [30] this was not possible because
no estimates are given for the γ-coefficients. The weighting of the experimental data for copper and aluminum was thus performed using the
tungsten data, as described in the main text. We then obtain γexpe ≈0.19 and γexpe ≈0.18 for copper and aluminum respectively.
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better agreement between theory and experiment, the mod-
eling has thus also to include the processes leading to electron
emission at low energies. This is, however, beyond the scope
of the present work.

The analysis of the experimental emission spectra indi-
cates that Auger neutralization is by far the most important
process listed in figure 1. In the spectra, we find no features
which could be attributed to Auger de-excitation or auto-
detachment. To demonstrate how these processes may in
principle affect secondary electron emission, we therefore
constructed the hypothetical metal termed ‘HM’. Its second-
ary electron emission spectrum is shown in the lower right
panel of figure 11. With the processes of figure 1 simulta-
neously active, the emission spectrum becomes asymmetric.
Decomposing the spectrum into the contributions originating
from Auger neutralization, direct and indirect Auger de-
excitation, and autodetachment shows that Auger de-excita-
tion is responsible for the steep high-energy cut-off whereas
Auger neutralization gives rise to the low-energy tail of the
emission spectrum. Autodetachment adds only a faint peak
above the main feature. Our model is, however, not able to get
the autodetachment peak at the energy expected from other
studies [67, 68]. This is most probably due to the incomple-
teness of the level shifts. In addition to the shifts induced by
the image interaction, there are contributions arising from the
non-orthogonality of the surface and projectile states. To
include them was, however, also beyond the scope of the
present work.

5. Conclusions

In this work, we have presented a generic quantum-kinetic
approach for calculating the probability with which a sec-
ondary electron arises due to the neutralization of a positive
ion on a surface, as well as the energy with which it emerges.
Focusing on impact energies where the internal potential
energy of the projectile drives the emission, and taking a
He 1s, 1 S2

1 2
+( ) ion hitting a metal surface as an example, we

showed that the approach is able to treat the three main
emission channels which may be open in this energy range on
an equal footing: Auger neutralization to the projectile’s
ground state, single-electron transfers to excited (metastable)
states followed either by indirect/direct Auger de-excitation,
in case the states are neutral, or autodetachment in case the
states are negatively charged.

The approach is based on a semiempirical Anderson
−Newns model. It describes the projectile with a time-
dependent few-level system and the target surface with a step
potential. Parameterizing the few-level system and the step
potential by experimental values for the energy levels
involved (work function, Fermi energy, electron affinities,
and ionization energies), and employing models for energy
shifts and approximate wavefunctions of the correct sym-
metry for the calculation of matrix elements, it provides a
flexible tool for describing charge-transferring atom−surface
collisions. It can be applied to any projectile−target combi-
nation. In particular, it is not restricted to ideal surfaces or to a

particular crystallographic orientation of the surface. Both can
be taken into account by a suitable choice of the work
function and the Fermi energy. To implement an Anderson
−Newns model for a charge-transferring atom−surface col-
lision it is thus necessary (i) to identify the ionization and
affinity levels which may become active in the charge trans-
fer, (ii) to parameterize and furnish the model as described
above, and (iii) to calculate the matrix elements. After the
model is constructed, the analysis of the charge−transfer
proceeds in a canonical manner using the quantum-kinetic
framework of contour-ordered Green functions. An advantage
of the approach is thus that it separates the quantum kinetics
of charge-transfer from the many-body theoretical description
of the non-interacting projectile and target. The latter is
simply encoded in the matrix elements of the model Hamil-
tonian serving as the starting point to the former. Had the
matrix elements been obtained by a different method—for
instance, by an ab initio density functional approach—the
quantum kinetics would be the same.

To model the helium projectile, we constructed an
effective three-level system. It represents the ground state
He 1s , 1 S0 2 1

0( ), the singlet and triplet metastable states,
He 1s2s, 2 S1

0*( ) and He 1s2s, 2 S3
1*( ), and the negative ion

He 1s2s , 2 S2 2
1 2*-( ). The ionization and affinity levels asso-

ciated with these states shift while the projectile approaches
and retreats from the surface. The energies of the three levels
are thus time-dependent. We mimic these dependencies by
polarization-induced image shifts. At short distances, cor-
rections to the shifts occur due to the non-orthogonality of the
surface and target wavefunctions. Since, in the situations we
have studied, the charge transfer occurs preferentially at
relatively large distances from the surface, we did not include
the corrections in the present work. Discrepancies we found
between calculated and measured data indicate, however, that
they have to be included in the future. The matrix elements
coupling the projectile and the target also depend on time. To
obtain numerical values for these, we approximated the
electron wavefunctions of the surface by the wavefunctions of
the step potential and the electron wavefunctions of the
helium projectile by screened 1s and 2s hydrogen wave-
functions. A comparison with helium and lithium Roothaan
−Hartree–Fock wavefunctions indicated that this approx-
imation, which enables at least in part an analytical treatment
of the matrix elements, is justified. In fact, it turns out that the
rate for Auger neutralization we obtain from the hydrogen-
like wavefunction for the projectile’s 1s shell and the wave-
functions of the step potential is in good agreement with the
rate obtained by an investigation based at least in part on
ab initiomethods, if the tunneling of the surface electron
filling the hole in the 1s shell is taken into account semi-
classically with a WKB correction. We included the correc-
tions in the other Auger matrix elements, where tunneling
through the barrier takes place, as well. We thus expect them
also to be of the correct order of magnitude.

Essential for an efficient handling of the few-level system
is the use of projection operators and auxiliary boson(s). The
projection operators allow one to account, within the same
few-level system, for projectile states with different internal
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energies–assigning different energies to the levels depending
on the occupancy and hence the configuration represented–
while the auxiliary boson(s) allow switching between the
configurations as required by the interactions included in the
Hamiltonian without violating energy conservation. For the
helium projectile, two auxiliary bosons are needed. Other
projectiles may require more than two. Applying the techni-
que to the helium projectile enabled us to treat Auger neu-
tralization, Auger de-excitation, and autodetachment on an
equal footing. For the quantum-kinetic analysis of the col-
lision dynamics, the projection operators are rewritten in
terms of pseudo-particle operators. It is then straightforward
—using standard techniques of many-body theory—to set up
the quantum-kinetic approach from which the rate equation is
obtained for the probabilities with which the projectile con-
figurations occur and an electron is emitted in the course of
the collision.

The rate equation follows from a saddle-point approx-
imation to the equations of motion for the occurrence prob-
abilities in the non-crossing approximation, which is
sufficient because we do not expect Kondo-type correlations
to occur on the projectile under typical plasma conditions. In
addition to these approximations, we postulated an approx-
imate factorization of the t and k


-dependence of the matrix

elements to stabilize and speed-up the numerics. At the
moment, due to the absence of exact expressions for the
transition rates, its validity cannot be verified. However, the
final results for the occurrence probabilities and the secondary
electron emission coefficient compare favorably with mea-
sured data, with differences attributable to physical processes
not included in the modeling, suggesting that the factorization
is not too critical.

The numerical solution of the rate equations showed that
the occurrence probabilities for the projectile configurations
are determined along the incoming branch of the collision
trajectory. On the outgoing branch, they essentially do not
change anymore. This is the case because there is no channel
leading from the ground state He 1s , 1 S0 2 1

0( ) back to any of
the other configurations considered in the model. The angle
dependencies of the final occurrence and electron emission
probabilities show that for perpendicular incidence—the case
most relevant for plasma walls—the projectile has a small
chance of returning as a positive ion after having induced a
secondary electron. However, due to the neglect of single-
electron transfer from deeper lying levels of the surface to the
1s shell, we found the ion survival probability two orders of
magnitude too large compared to experimental values. The γ-
coefficient we obtained is much better. It is only a factor two
too small compared to experimental data (where available).
The discrepancy arises from the neglect of higher-order Auger
processes and/or scattering cascades. That these processes are
important, we deduced from an analysis of the emission
spectra. At high energies, the spectra we obtained compare
favorably with experimental data from different groups,
especially for tungsten. The mismatch is at low energies
where one expects higher-order Auger processes and/or
inelastic scattering cascades to affect the emission spectra.
Using the ratio of the calculated and measured secondary

electron emission coefficients for tungsten, we tried to
quantify the contribution of the neglected processes to the
secondary electron emission coefficient. We found that they
roughly lead to its doubling. We also used the ratio to scale
the measured emission spectra for copper and aluminum,
which were given in arbitrary units. As a result, we could also
estimate the secondary electron emission coefficient for these
two metals. The results obtained are quite reasonable, indi-
cating that our approach may have the potential not only for
qualitative studies of ion-induced secondary electron emis-
sion, but also for producing quantitative data, giving at least
estimates of the correct order of magnitude. Although we
included all three possible emission channels, for the metals
investigated, Auger neutralization turned out to be always the
dominant one for electron emission—the work functions
being simply too large for an efficient direct/indirect Auger
de-excitation to take place.

For plasma applications, a compact formula for the
secondary electron emission coefficient would be very
useful. It is, however, unlikely to exist due to the com-
plexity of charge-transferring atom−surface collisions and
their non-universality. What could be hoped for instead is a
semiempirical description of the charge-transfer processes,
adjustable to various situations of interest. Based on the
results presented in this work, we identify four main issues
which have to be tackled in order to achieve such a
description, as follows. (i) Non-orthogonality corrections to
the level shifts and Auger rates at short projectile-target
separations should be included. This is particularly impor-
tant for processes involving metastable configurations of the
projectile. (ii) Single-electron transfer from deeper lying
states of the surface to the projectile’s ground state should
be taken into account. This is important for obtaining rea-
listic values for the ion survival probability. (iii) Energy
loss of the escaping electron due to scattering cascades and
higher-order Auger processes should be considered in order
to obtain the energy spectrum of the emitted electron also
correct at low energies. (iv) Accurate, numerically efficient
approximation schemes should be developed for the high-
dimensional integrals defining the transition rates in terms
of the matrix elements.

Additional issues—which we consider, however, less
critical because they can be overcome at the expense of
additional numerical burden, without changing the organiza-
tion of the calculation—are the use of (effective) hydrogen
wavefunctions for the projectile and the potential step for the
surface potential. The former can be replaced by other
wavefunctions of quantum-chemistry; if not available for the
considered projectile they have to be worked out—while the
latter can be replaced by another potential (which most
probably implies, however, a numerical construction of the
surface wavefunctions). Our results suggest, however, that the
gain due to these modifications is most probably small. One
has to address the three main issues to make a significant step
forward.

Not all materials presently used as plasma walls require
the simultaneous inclusion of Auger neutralization, Auger de-
excitation, and autodetachment. But having a formalism
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capable of doing this will enable exploration of the possibility
of engineering the spectrum of the emitted electron by judi-
ciously modifying the surface, opening-up or closing-down
thereby one or the other channel. With this goal in mind, we
have developed the multi-channel approach for calculating
secondary electron emission coefficients and spectra descri-
bed in this work.
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Appendix A. Self-energies

In this appendix, the self-energies from which we calculate
the rates (67)–(72) are listed. The self-energies, implicitly
defined in(46)–(49), are all constructed in the non-crossing
approximation as suggested by Langreth et al [59–61]. It
contains the leading contributions of the second-order (in the
interaction matrix elements) self-energies renormalizing the
Green functions of the projectile. First order corrections are
absent. Vertex renormalizations (diagrams with crossed lines)
are ignored, but they are relevant only in situations where
Kondo-type correlations [84] occur. For surfaces in contact
with a plasma, we do not expect this.

The fermionic self-energies t t,e,dP ¢( ), belonging to the
fermionic propagators E t t, ¢( ) and D t t, ¢( ), respectively apply
to the empty and doubly filled configurations, that is, the
positive and negative ion. Likewise the bosonic self-energies

t t,nS ¢s( ), belonging to the bosonic propagators S t t,n ¢s ( ),
apply to the configurations with a single electron—that is, the
ground state and the metastable states. In the expressions to
follow, the sums in the various terms indicate their physical
origin: Sums over k


are contributions due to single-electron

transfer; sums over kk ¢
 

due to direct Auger de-excitation;
sums over kq

 
due to indirect Auger de-excitation; sums over

q

due to autodetachment; and sums over k k k1 2 ¢

  
due to Auger

neutralization. Using Langreth−Wilkins rules [80], the
greater-than and less-than self-energies obtained from dia-
grams of the type shown in figure 6 are
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The retarded self-energies, which we also need, can be
obtained from these expressions using the identity

iH t t t t H t t H t t, , , , A5R q¢ = - ¢ ¢  ¢> <( ) ( )[ ( ) ( )] ( )

where the minus sign applies to bosons. As explained by
Langreth et al [59–61] by applying(A5) to the self-energies
listed above it has to be kept in mind that retarded
Green functions are of order Q0, while less-than and
greater-than Green functions are of order Q1, where Q
defined in(16) is the projector accounting for the
completeness of the projectile states. Hence, by construct-
ing the retarded self-energies via (A5) only terms which
ultimately lead to contributions ∝Q0 should be kept. The
result is
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where the physical origin of the various terms can again be
identified by the type of the sum.

Appendix B. Auger level widths

In this appendix, we indicate the main steps leading to the rate
tANG< ( ) in equation (64). The other rates in this equation can

be obtained similarly.
As pointed out by Langreth et al [59–61] the essential

step for obtaining(64) is to note that the self-energies are
peaked around the time-diagonal. Hence, the time integrals
in(46)–(49) effectively set the time variables in the Green
functions E t t, ¢( ), D t t, ¢( ), and S t t,n ¢s ( )—applying to the
affinity and ionization levels of the projectile—to equal times
(semiclassical approximation). Under the time integral
of(46), for instance, the function iE t t,<( ¯) can be replaced by
n+(t), while the function iE t t,R ( ¯) reduces to unity for t t> ¯
and vanishes otherwise. As a result of the semiclassical
approximation, the quantum-kinetic equations (46)–(49)
reduce to(64)—with rates, however, not yet in a form
numerically tractable.

For a numerical treatment of(64), the rates have to be
simplified. Taking Auger neutralization as an example, we
now explain the main steps of the simplification. The Auger
rate initially appearing in(64) follows from the self-
energy(51). It reads
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a function which can be simplified on noting that the time and
momentum dependencies of the Auger matrix elements
V tk k k1 2 s¢
   ( ) and V tk k k1 2 s¢

   (¯) approximately factorize. As for
single-electron transfer processes [59–61], we can thus
approximately write
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is essentially the level width introduced in(56) except that the
energy ε is not yet pinned to s1

0e . This is accomplished by the
time integration. Indeed, inserting(B4) into(B2) and apply-
ing again a saddle-point approximation, we obtain
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where the last line, when the time integration is carried out,
yields t tAN ANG = G< ( ) ( ). The main gain numerically is that for
ΓAN(t) given by(69) it is only necessary to calculate the
squared modulus of the Auger matrix element at the time also
appearing in the rate equation (64) whereas in(B1) the matrix
element has also to be determined for all times past the
actual time.

For single-electron transfer processes, Langreth et al
[59–61] investigated the range of validity of the simplified
rates in great detail. It depends on a number of conditions
which are almost never rigorously satisfied. The original rates
dropping out from equations (46)–(49) are, however,
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numerically too expensive to handle. From a practical point of
view, the simplification described in this appendix seems to
be unavoidable in producing numerical data. It has to be
applied to all the rates of equation (64).
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