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1 Summary

1.1 Introduction

This thesis contains studies on a special class of topological insulators, so called anoma-
lous Floquet topological insulators, which exclusively occur in periodically driven sys-
tems. At the boundary of an anomalous Floquet topological insulator, topologically
protected transport occurs even though all of the Floquet bands are topologically triv-
ial [1, 2]. This is in stark contrast to ordinary topological insulators of both static [3–10]
and Floquet type [11–14], where the topological invariants of the bulk bands completely
determine the chiral boundary states via the bulk-boundary correspondence [15–17]. In
anomalous Floquet topological insulators, the boundary states are instead character-
ized by bulk invariants that account for the full dynamical evolution of the Floquet
system [2].
In this thesis we focus on anomalous Floquet topological phases in two-dimensional

Floquet systems. Our contributions to this field are grouped into three sections (see
Fig. 1): topological invariants (Sec. 1.2), implementation (Sec. 1.3), and non-Hermitian
engineering (Sec. 1.4).
The central quantity that classifies two-dimensional anomalous Floquet topological

insulators in the absence of symmetries is the Z-valued W3 invariant [2, 18]. First,
we show that the W3 invariant can be expressed as a sum over all degeneracy points
of the propogator that occur during time evolution (article I). This generalizes a sim-
ilar expression introduced in Ref. [19]. To each degeneracy point, two integers are
assigned that account for the topological properties of the eigenvectors and eigenvalues
of the propagator. Second, we analyze symmetry-protected anomalous Floquet topo-
logical insulators with counterpropagating boundary states for which the W3 invariant
necessarily vanishes. We find that the degeneracy points of the propagator appear in
symmetric pairs that cancel in the expression of the W3 invariant. By counting only
one partner of each pair, symmetry-adapted Z2 invariants are deduced which correctly
predict the symmetry-protected boundary states (also article I). In this manner, the
construction introduced here enables a unified topological classification of anomalous
Floquet topological phases in terms of degeneracy points and the efficient computation
of the relevant topological invariants with the algorithm we developed in Ref. [20].
Anomalous Floquet topological phases can potentially occur in any Floquet lattice

model [21, 22], but the natural framework for their theoretical study as well as ex-
perimental realization are so called driving protocols [1, 2, 23–27]. A driving protocol
consists of a finite number of consecutive steps during which the Hamiltonian is con-
stant and pairwise coupling occurs between adjacent lattice sites. An anomalous Floquet
topological phase occurs when the steps are arranged such that the pairwise coupling
enforces closed trajectories in the bulk of the lattice, but chiral transport at the bound-
aries. Photonic lattices of evanescently coupled waveguides are well-suited to imple-
ment these protocols [28–32]. In photonic lattices, the pairwise coupling in each step is
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Figure 1: Illustration of the main results of this thesis. Left column: Degeneracy-point
expressions of the topological invariants. Central column: The universal
driving protocol (top) and its implementation in photonic waveguide lattices
(bottom). Right column: Non-Hermitian engineering of boundary transport.
Adapted from articles I, II, III, and VI.

realized by spatially periodic modulation of the interwaveguide distance through wave-
guide bending. Prior to our work, driving protocols for anomalous Floquet topological
phases without symmetries had been theoretically proposed [1, 2] and experimentally
realized [30, 31], but theoretical proposals for symmetry-protected anomalous Floquet
topological phases were still missing. Here, we construct a universal driving protocol for
symmetry-protected anomalous Floquet topological phases (article II). The construc-
tion is based on the analysis of the possible symmetry operators for a driving protocol
with only pairwise couplings. A unique feature of the time-reversal symmetric variant of
the universal driving protocol is the occurence of Kramers degenerate counterpropagat-
ing boundary states without fermionic spin 1/2 degrees of freedom. The experimental
implementation of the time-reversal symmetric protocol in photonic waveguide lattices
(article III) thus constitutes the first realization of a bosonic topological insulator with
fermionic time-reversal symmetry.
The waveguide bending introduces losses [30, 31], i.e. non-Hermiticity, into the pho-

tonic implementation of anomalous Floquet topological insulators. Therefore, the in-
fluence of non-Hermiticity on the topological properties of Floquet systems has to be
investigated. For static systems, the interplay between non-Hermiticity and topology
has been rapidly explored in the last few years [33–47]. New non-Hermitian topological
phases which arrise from imaginary and point gaps in the complex-valued spectrum [33–
35, 45–47] have been discovered and the topological classification of non-Hermitian static
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1.2 Topological invariants

systems has recently been established [34, 35]. For anomalous Floquet topological in-
sulators, the role of non-Hermiticity remained unexplored prior to our work. We find
that the interplay between non-Hermiticity and anomalous Floquet topological phases
provides a powerful tool to engineer the transport properties of the boundary states.
When non-Hermiticity is introduced at the boundary of an anomalous Floquet topolog-
ical insulator, the boundary states can spectrally detach from the bulk bands. During
this process, an imaginary gap opens between the bulk bands and boundary states. We
denote the spectral detachment and the ensuing possibilities to manipulate the spec-
trally detached boundary states as non-Hermitian boundary state engineering (article
IV). The versatility of boundary state engineering is demonstrated for the time-reversal
symmetric variant of the universal driving protocol, where it allows us to amplify the
boundary transport relative to the bulk motion and even suppress one of the two coun-
terpropagating boundary states. Beyond the amplification or attenuation of boundary
transport, the spectral detachment has another important consequence: The imaginary
gap provides topological protection for the detached boundary states. Consequently,
the detached boundary states no longer depend on the bulk topology. In particular,
the non-Hermitian boundary can be physically cut off from the bulk while retaining
its topological transport properties (article VI). The resulting one-dimensional chain
possesses a novel non-Hermitian Floquet topological phase which has no counterpart in
static or Hermitian systems. The transport signature of this phase is charge pumping
which is robustly quantized in the limit of large non-Hermiticity (article V). Note that
quantized charge pumping can also occur in Hermitian anomalous Floquet topological
insulators, but is restricted to fine-tuned parameter values [1, 2] and thus not robust.
Even in anomalous Floquet-Anderson insulators [48] (anomalous Floquet topological in-
sulators with an Anderson localized bulk), only the charge pumped over a large number
of driving periods is robustly quantized. In the present non-Hermitian setting, robustly
quantized charge pumping occurs in each individual driving cycle.
In total, this thesis explores the interplay between topology, symmetry, and non-

Hermiticity in the joint platform of two-dimensional Floquet systems. The (symmetry-
adapted) degeneracy-point expressions of the topological invariants, the universal driv-
ing protocol, and the concept of boundary state engineering constitute the central results
of this exploration.

1.2 Topological invariants

The starting point for all of our calculations is the propagator U(t), which is the solution
of the Schrödinger equation i∂tU(t) = H(t)U(t) for a two-dimensional lattice model.
At t = 0, the propagator reduces to the identity U(0) = 1. We assume that the Hamil-
tonian H(t) is Hermitian H†(t) = H(t) so that the propagator is a unitary operator
U †(t) = U−1(t) (this constraint will be dropped in Sec. 1.4). We further assume that
the Hamiltonian, and thus also the propagator, are invariant under lattice translations
so that we can utilize the Bloch Hamiltonian H(k, t) and Bloch propagator U(k, t) in
reciprocal space with the momentum k = (kx, ky). Finally, we assume that H(t) and
U(t) do not include nonlinearities and interactions. The role of disorder [48–50], inter-
action [51, 52], and non-linearity [53] in anomalous Floquet topological insulators will
not be discussed here.
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Figure 2: Dispersion of Floquet bands (black) and boundary states (orange) for an
ordinary Floquet topological phase (left panel) and an anomalous Flo-
quet topological phase, before (central panel) and after regularization (right
panel). Here, and in Figs. 4, 13, we show the states on one boundary of a
semi-infinite ribbon, and do not include the states on the opposite boundary.
Quasienergies are restricted to the Floquet-Brillouin zone ε ∈ [−π, π].

The spectral decomposition U(k, t) =
∑n

ν=1 ξ
ν |sν〉〈sν | contains the eigenvalues ξν ≡

ξν(k, t) and the corresponding eigenvectors sν ≡ sν(k, t) of the bulk spectrum. The
eigenvalues ξν(k, t) = e−iεν(k,t) form ν = 1, ..., n quasienergy bands εν(k, t) that are
defined up to multiples of 2π. In all of our examples, the number of bands n coincides
with the size of the unit cell.
The Bloch propagator U(k, t) provides the adequate platform for analysis of the bulk

topology, while information about the topologically protected boundary transport is
contained within the real space propagator U(t) for a finite or semi-infinite lattice with
boundaries. Both are connected through the bulk-boundary correspondence [18].
For a Floquet system with a time-periodic Hamiltonian H(t) = H(t+ T ), the eigen-

states of the Floquet propagator U(T ), which are often called Floquet states, provide
the natural basis of the Hilbert space. If the system is initialized in a Floquet state, it
will remain in this state during propagation [54]. Because of this property, many of the
concepts familiar from the theory of topological insulators with static Hamiltonians [3, 4]
can also be applied to Floquet topological insulators: Boundary states emerge in the
spectrum of U(T ) as dispersive chiral modes that traverse the quasienergy gaps be-
tween the Floquet bands εν(k, T ) (see Fig. 2 for examples). As long as the quasienergy
gaps do not close, the chiral boundary states cannot dissappear. In this way, they are
topologically protected.
In static systems, the topological invariants associated with the energy bands, Chern

numbers C [16, 55] or Kane-Mele KM invariants [17, 56, 57], uniquely determine the
number of chiral boundary states in each gap [15]. In Floquet systems, the invariants of
the Floquet bands can only predict the boundary states if the system is in an ordinary
topological phase. A Floquet system is in an ordinary topological phase if it possesses
at least one trivial gap with no chiral boundary states [11–14] as in the left panel
of Fig. 2, where the gap at ε = ±π is trivial. Here, the crucial difference between
static and Floquet systems is that the energy spectrum {E} of a time-independent
Hamiltonian lies on the real axis while the spectrum {e−iε(T )} of U(T ) lies on the unit
circle. The energy spectrum generically possesses a trivial gap at E = ±∞, but not so
the 2π-periodic quasienergies. Anomalous Floquet topological phases have no analogue
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1.2 Topological invariants

in static systems where only ordinary phases are possible.

Bulk-boundary correspondence in anomalous Floquet topological insulators In an
anomalous Floquet topological insulator, the invariants of the Floquet bands are all
zero, but the system still possesses chiral boundary states as in the middle panel of
Fig. 2. The number and chirality of the boundary states is necessarily the same in each
quasienergy gap.
The boundary states of an anomalous Floquet topological insulator are connected

with quantized charge pumping via regularization of the Floquet-Bloch propagator
U(k, T ). The Floquet-Bloch propagator is regularized if it reduces to the identity
U(k, T ) = 1 such that all Floquet bands are flattened to εν(k, T ) = 0 and the bulk
states are localized. Charge pumping at a boundary is quantified by

C̄ = 1/n

n∑

m=1

〈m|U †(T )(x̂−m)U(T )|m〉 , (1)

which measures the propagation distance of wave packets initially localized at individual
sites |m〉 of the boundary after they evolved into U(T )|m〉. Here, x̂ =

∑
m∈Zm |m〉〈m|

is the position operator parallel to the boundary. The propagation distance is averaged
over a unit cell. For an anomalous Floquet topological insulator with a regularized
Floquet-Bloch propagator, the transferred charge C̄ is quantized [18]. In other words,
particles at the boundary are pumped an integer number of sites along the boundary in
each driving cycle. In contrast to a Thouless charge pump [58], the driving is allowed
to be non-adiabatic here.
Eq. (1) coincides with the W3 invariant

W3[U ] =
1

8π2

∫ T

0

∫∫

B

tr
(
U−1(k, t)∂tU(k, t)

[
U−1(k, t)∂kxU(k, t), U−1(k, t)∂kyU(k, t)

])
dkxdkydt ,

(2)

which exclusively depends on the bulk topology. Here, [·, ·] denotes the commutator and
B the Brillouin zone. The identity C̄ = W3[U ] is derived in Refs. [2, 18]. The derivation
requires some alternative expressions of C̄, which can be found in the supplemental
material of article V. Note that the full time evolution 0 ≤ t ≤ T enters into Eq. (2).
The temporal periodicity U(k, 0) = U(k, T ) = 1 and Brillouin zone periodicity together
ensure that the W3 invariant is an integer [18, 20].
The boundary transport is not quantized if the Floquet bands are dispersive as in the

central panel of Fig. 2. Nevertheless, the chiral boundary states remain topologically
protected. In this case, the W3 invariant still allows us to predict the number of chiral
boundary states in each quasienergy gap by inserting the auxillary propagtor

Uε(k, t) =

{
U(k, 2t) if 0 ≤ t ≤ T/2 ,
exp ([2T − 2t] logε U(k, T )) if T/2 ≤ t ≤ T

(3)

into Eq. (2). The second half period of Eq. (3) deforms U(k, T ) continously to the
identity Uε(k, T ) = 1 without closing the quasienergy gap at ε (see the right panel
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1 Summary

of Fig. 2). For this purpose, the branch cut of the complex logaithm logε is placed
along the line from 0 through e−iε. The integer W3[Uε] thus gives the number of chiral
boundary states in the respective gap ε of U(k, T ) [2, 18].

In summary, the W3 invariant serves two complementary roles in anomalous Floquet
topological insulators: (i) If the Floquet propagator is regularized, a non-zeroW3 invari-
ant indicates quantized charge pumping at the boundary. (ii) If the Floquet propagator
is not regularized, the W3 invariant predicts the number of chiral boundary states in
each quasienergy gap. In the rest of this section, we focus on (ii). We return to the topic
of quantized charge pumping in the next two sections. In Sec. 1.3, we discuss how the
regularization of the Floquet propagator is achieved in practice. In Sec. 1.4, we show
that quantized charge pumping can be achieved even when the constraint U(k, T ) = 1

is violated, provided that the system is non-Hermitian.

Degeneracy point expression of the W3 invariant Our goal is to understand how the
bulk topology enters into W3[Uε]. Understanding this aspect of the W3 invariant will
allow us to generalize it to symmetry-protected anomalous Floquet topological phases.
For this purpose, we insert Uε(k, t) into Eq. (2) with U(k, t) given in its spectral

decomposition. After various manipulations (see Ref. [20] for the first part and article
I for the second part), we can express W3(ε) ≡W3[Uε] as

W3(ε) =

dp∑

i=1

n∑

ν=1

Nν(ε,di)C
ν(di) , (4)

which is a sum over all degeneracy points i = 1, ...,dp of U(k, t) that occur during
time evolution 0 ≤ t ≤ T . We assume in this expression that the bands εν(k, t) are
topologically trivial for t→ 0. The general case is given in Appendix A of article I.
In contrast to band invariants, which depend only on the eigenvectors, or winding

numbers [1], which depend only on the eigenvalues, the W3 invariant depends on both.
The integers Cν(di) encode the topological properties of the eigenvectors sν(k, t) of
U(k, t) in the vicinity of the degeneracy points. The integers Nν(ε,di) follow from the
quasienergies εν(k, t) and ensure that only the degeneracy points which are relevant for
the gap ε contribute to the sum.
A degeneracy point di = (ki, ti, εi) occurs whenever the quasienergies εν(ki, ti),

εµ(ki, ti) of two bands ν 6= µ differ by a multiple of 2π, such that e−iεν = e−iεµ = e−iεi

for two eigenvalues of U(ki, ti). With each degeneracy point, we can associate a
Chern number Cν(di) =

∮
S(di)

F να dSα, given as the integral of the Berry curvature
2πiF να(k, t) = εαβγ∂

β
(
sν(k, t)† ∂γsν(k, t)

)
over a small surface S(di) enclosing the de-

generacy point. Here, εαβγ denotes the antisymmetric Levi-Civita symbol and summa-
tion over repeated indices α, β, γ is implied. It is Cν(di) = −Cµ(di) 6= 0 only for the
bands ν, µ that touch in the degeneracy point.
The contribution from each degeneracy point is multiplied by the integer Nν(ε,di) =

d(εν(ki, ti)− ε)/(2π)e+ d(ε− εν(k, T ))/(2π)e that counts how often band ν crosses the
gap ε while it evolves from the degeneracy point at t = ti to its final position at t = T .
Here, d·e denotes the ceiling function. Since ε lies in a gap, Nν(ε,di) does not depend
on k.
In the situation sketched in Fig. 3, we have Nν(ε,di) = 1 (or Nν(ε,di) = 0) for the

6
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according to Eq. (4). Adapted from article I.

band directly below (or above) the gap ε. Here, W3(ε) is the sum over the degeneracy
points in the gap ε.
The bulk-boundary correspondence is expressed as follows in the degeneracy-point

picture: If a boundary is introduced into the system, say along the x-direction, a degen-
eracy point di gives rise to a chiral boundary state that appears immediately after ti at
momenta (ki)x and quasienergy εi. During the subsequent time-evolution, the bound-
ary state can disappear only if the same quasienergy gap closes at a second degeneracy
point dj with Cν(dj) = −Cν(di) at a later tj > ti. In this way, the system evolves to
t = T , with the number of boundary states in the gap ε given by W3(ε).
Eq. (4) generalizes another prominent expression of the W3 invariant which is based

on degeneracy points [19] (see article I). The main advantages of our expression are the
invariance of all quantities under 2π-shifts εν(·) 7→ εν(·)+2πmν , and that the algorithm
we developed in Ref. [20] allows for efficient computation of Eq. (4). The degeneracy-
point expression in Ref. [19] requires a specific choice of the quasienergies which is not
well-suited for numerical evaluation.

Invariants for symmetry-protected anomalous Floquet topological phases The rel-
evant symmetries for the topological classification of Floquet systems are time-reversal,
chiral, and particle-hole symmetry [59, 60]. In each case, the symmetry relations full-
filled by the Hamiltonian imply that the degeneracy points of the propagator appear
in symmetric pairs. In some cases, the contributions from these pairs cancel such that
W3(ε) = 0 while symmetry-protected boundary states emerge in the gap ε. We establish
the bulk-boundary correspondence for the symmetry-protected boundary states by in-
troducing Z2 invariants which count only one partner of each pair of degeneracy points,
in analogy to Ref. [19]. To avoid redundancy in our presentation, we give a detailed
account of the construction for time-reversal symmetry, but only a brief overview for
chiral and particle-hole symmetry.
The symmetry relation for time-reversal symmetry is

Htr(T − t) = ΘHtr(t)Θ
−1 , (5)

with an anti-unitary operator Θ for which Θ2 = ±1. Note that the anti-unitary operator
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row: Spectrum {e−iε(T )} on the unit circle. Black arcs indicate the (four-
or two-fold degenerate) Floquet bands, red arcs the gaps. Included are the
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that the left and right column are in an anomalous Floquet topological phase,
while the middle column is topologically trivial. Bottom row: Dispersion of
Floquet bands (solid) and boundary states (dashed). Adapted from article
II, which provides the parameters for this figure.

Θ = θK can be represented with a unitary operator θ and the complex conjugation
operator K. In this representation, θ has to satisfy θ∗θ = ±1. Since the sign of
Θ2 is commonly associated with the spin of the particles [5], we denote time-reversal
symmetry with Θ2 = 1 (Θ2 = −1) as bosonic (fermionic) time-reversal symmetry. The
symmetry relation (5) implies that the degeneracy points appear in pairs di = (ki, ti, εi),
d̂i = (−ki, ti, εi) with opposite sign of Cν(di) = −Cν(d̂i). Here, we have to use
the degeneracy points of a time-symmetrized propagator U?(t) which coincides with
the original propagator U(t) at t = T (see article I for details). The W3 invariant
consequently vanishes in each gap. Thus, we define a Z2 invariant

Wtr(ε) ≡
n∑

ν=1

dp/2∑

i=1

Nν(ε,di)C
ν(di) mod 2 , (6)

where the upper limit dp/2 in the sum over i indicates that exactly one degeneracy
point of each symmetric pair is included. The considerations leading to a bulk-boundary
correspondence are similar to those for the W3 invariant. A pair of degeneracy points
di, d̂i gives rise to two boundary states BI, BII with opposite chirality, which appear at
momenta (ki)x, −(ki)x. Their dispersion relations are connected by εI(kx) = εII(−kx).
For Θ2 = −1, the boundary states are Kramers degenerate [5, 17] at the invariant
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1.3 Implementation

momenta kx ≡ −kx, which prevents their mutual annihilation (see Fig. 4). They can
disappear only through the appearence of a second pair of degeneracy points which
is why the invariant is Z2-valued. For Θ2 = 1 there is no Kramers degeneracy and
the counterpropagating boundary states cancel, leading to the trivial boundary state in
Fig. 4. A non-zero value ofWtr(ε) implies the existence of a pair of symmetry-protected
boundary states with opposite chirality in the gap ε only for fermionic time-reversal
symmetry.
Eq. (5) is also invariant under shifts εν(·) 7→ εν(·) + 2πmν and thus a generalization

of the corresponding degeneracy point expression in Ref. [19]. Efficient computation of
the Z2 invariant is again possible with the algorithm in Ref. [20].
The symmetry relation for chiral symmetry is

Hch(T − t) = −ΓHch(t)Γ−1 (7)

with a unitary operator Γ. The symmetry relation (7) also implies that the degeneracy
points appear in pairs such that W3(ε) = −W3(−ε), especially W3(ε) = 0 for the
gaps ε = 0,±π. For conventional chiral symmetry, non-trivial boundary states cannot
emerge in these gaps [59–61]. To obtain symmetry-protected boundary states, chiral
symmetry must be realized as a bipartite even-odd sublattice symmetry [62–64], where
the operator Γ includes a minus sign on every second unit cell (see App. B in article I).
In that case, a Z2 invariant Wch can be constructed, in analogy to the case of fermionic
time-reversal symmetry (see Eq. (3) in article I).
The symmetry relation for particle-hole symmetry is

Hph(t) = −ΠHph(t)Π−1 , (8)

with an anti-unitary operator Π for which Π2 = ±1. For Π2 = −1, the symmetry
relation (8) implies that the degeneracy points occur in pairs di = (ki, ti, εi), d̂i =

(−ki, ti,−εi) with the same sign of Cν(di) = Cν(d̂i). Thus, we have W3(ε) = W3(−ε),
and in particular W3(ε) ∈ 2Z for the gaps ε = 0,±π where boundary states appear
in pairs εI(kx) = −εII(−kx) with the same chirality (see Fig. 4). Here, a symmetry-
adapted invariant is not required since theW3 invariant suffices to predict the boundary
states.
In addition to the paired degeneracy points, unpaired degeneracy points can occur

for Π2 = 1 which are pinned at the invariant momenta. They correspond to symmetry-
protected unpaired boundary states in the gaps ε = 0,±π. Here, a Z2 invariantWph can
be defined that connects the unpaired degeneracy points with the unpaired boundary
states (see Eq. (9) in article I).

1.3 Implementation

We now introduce driving protocols which possess anomalous Floquet topological phases
and discuss their experimental implementation in photonic waveguide lattices. We start
with the driving protocol proposed in Ref. [2] which is the minimal driving protocol for
an anomalous Floquet topological insulator with a non-zero W3 invariant. It provides
the basis for our construction of a universal driving protocol for symmetry-protected
anomalous Floquet topological phases.
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1 Summary

Minimal driving protcol The minimal driving protocol is implemented on a bipartite
square lattice with n = 2 lattice sites •, ◦ as sketched in Fig. 5(a). The time-periodic
Hamiltonian H(t + T ) = H(t) of the driving protocol cycles through four consecutive
steps during which the Hamiltonian is constant. In each step, adjacent sites of the
lattice are coupled in a pairwise manner. The parameter J ∈ R controls the coupling
strength, which is identical in each step.
The explicit expressions of the lattice Hamiltonians in each step can be deduced from

their graphical representation in Fig. 5(a), or found in the supplemental material of ar-
ticle III. For our purposes, the expressions are not important as all relevant information
is contained within the 2× 2 Hamiltonians

HJ = J

(
0 1

1 0

)
= Jσx , (9)

which describe the pairwise coupling between two sites in each of the four steps. The
associated propagator, for a step of duration δt, is UJ = exp(−iHJδt) = cos(Jδt) −
i sin(Jδt)σx. Here, and in the following, we set δt ≡ 1 for the duration of each step
such that the period T coincides with the number of steps in the driving protocol. The
propagator UJ is a periodic function of J . Since

UJ = (−1)lUJ+lπ (10)

for every l ∈ Z, we may restrict ourselves to the parameter range J ∈ [0, π).
Each site at the boundary of the lattice is isolated, i.e. uncoupled, in at least one

step of the protocol. For example, the • (◦) sites at the bottom boundary in Fig. 5(b)
are isolated in step 2 (4). Isolated sites are described by the trivial Hamiltonian His = 0

and propagator Uis = exp(−iHis) = 1. A wave packet which is initialized on an isolated
site remains localized on it for the duration of the respective step.
For each value of J , the spectrum of the Floquet-Bloch propagator consists of a two-

fold degenerate Floquet band centered around ε = 0 with a vanishing Chern number
(the central panel of Fig. 2 shows the case J = π/3). A topological phase transition
occurs at J = π/4 and J = 3π/4 where the quasienergy gap at ε = ±π closes. For
0 ≤ J < π/4 and 3π/4 < J < π, the W3 invariant vanishes, which indicates that the
system is topologically trivial. On the other hand, we haveW3 = 1 for π/4 < J < 3π/4.
This indicates that the driving protocol is in the anomalous Floquet topological phase.
The emergence of the anomalous Floquet topological phase becomes obvious for the

special value J = π/2, which we call perfect coupling. At perfect coupling, we have
UJ = −iσx. A full amplitude transfer occurs between coupled sites and the driving
protocol enforces the trajectories shown in Fig. 5(b). An excitation in the bulk moves
in a closed loop, but an excitation starting on, e.g., a • site at the bottom boundary
is transported two sites to the right. This corresponds to the quasienergy dispersions
εν(k, T ) = 0 for the Floquet bands and ε(k, T ) = π+k for the chiral boundary state on
the bottom boundary. The transferred charge at the boundaries is quantized, C̄ = 1,
in accordance with U(k, T ) = 1.
This is how regularization of the propagator, and thus quantized charge pumping, is

achieved in practice, by fine-tuning to perfect coupling. Alternatively, one could include
disorder which is strong enough to localize all bulk states, but also weak enough that
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Figure 5: (a) Sketch of the minimal driving protocol. (b) Patterns of motion on a
finite lattice during one cycle of the driving protocol at perfect coupling.
(c) The transferred charge C̄, evaluated for one of the boundaries in panel
(b). (d) Experimental realization in photonic waveguide lattices. Panel (d)
is adapted from Ref. [30].

the system remains topological. In that case, quantized transport also occurs for non-
perfect coupling in the anomalous Floquet topological phase, but only after averaging
over multiple driving periods [48]. Quantized charge pumping in each individual driving
period is only possible for perfect coupling, or with non-Hermiticity (see Sec. 1.4).
Here, without disorder, the bulk bands become dispersive and the boundary transport

continously decreases when we move away from perfect coupling [see Fig. 5(c)]. Note
that the topological phase transition at Jc = π/4 cannot be extracted from C̄, which
is non-zero even in the trivial phase. The transport that occurs for J < Jc is not
topologically protected. When accounting for disorder, the transferred charge drops to
zero below the phase transition [48].
The minimal driving protocol can be realized in photonic waveguide lattices [30, 31]

by exploiting the equivalence between the time-dependent Schrödinger equation and the
paraxial Helmholtz equation

i∂zψm(z) =
∑

k∈〈m〉
Jk,m(z)ψk(z) , (11)

here written in the tight-binding approximation. The propagation distance z [see
Fig. 5(d)] replaces the time argument t in the Schrödinger equation. The field amplitude
ψm(z) of the guided light mode in waveguide m interacts with its nearest neighbours
k ∈ 〈m〉 via the coupling Jk,m(z). The coupling strength can be modulated by increas-
ing or decreasing the distance between the waveguides. Fig. 5(d) illustrates how this
modulation is used to implement the driving protocol. At z = 0, the waveguides are
arranged such that Jk,m(z) = 0. The distance between the individual waveguides is
40 µm. As z increases, the distance is locally reduced in a pairwise manner such that
Jk,m(z) = J . In this way, the individual steps of the driving protocol are realized. For
perfect coupling, each step encompasses a propagation length of 10 mm. The current
experimental limit is around 20 consecutive steps due to waveguide losses (see Sec. 1.4).
The experimental techniques involved in the fabrication, excitation, and characteriza-
tion of the waveguide lattices will not be discussed here. The interested reader may
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1 Summary

consult Ref. [29].

Universal driving protocol On a bipartite square lattice, there are four distinct pat-
terns in which the adjacent lattice sites •, ◦ can be coupled in a pairwise manner.
The minimal driving protocol arranges these four pairwise coupling patterns in a cyclic
sequence to realize the anomalous Floquet topological phase.
Symmetry-protected anomalous Floquet topological phases require more complex

coupling patterns than a two-element unit cell can offer (see Appendix D in article
II). A square lattice with n = 4 lattice sites •, ◦, •, ◦ provides the necessary complexity.
This is our starting point for the construction of the universal driving protocol.
On this lattice, pairwise coupling of neighboring lattice sites can occur along three

directions: horizontal, vertical, and diagonal. This gives a total of 4 horizontal + 4

vertical + 12 diagonal = 20 possible coupling patterns, nine of which are depicted in
Fig. 6. We arrive at this number by excluding all diagonal coupling patterns in which
couplings “cross each other” on the lattice. Such patterns can not be easily implemented
in waveguide lattices. For the same reason, we do not consider long range couplings.
The coupling pattterns now have to be arranged in a non-trivial cyclical sequence

such that the symmetry relations for time-reversal (5), chiral (7), or particle-hole sym-
metry (8) are satisfied. In the following, we outline the core arguments that lead to
the proper arrangement of the coupling pattern. Detailed explanations can be found in
article II.
Each symmetry relation involves a transformation SH(t)S−1 of the Hamiltonian with

a translational-invariant unitary operator S. The symmetry relations can only be satis-
fied if the transformed Hamiltonian has the same structure as the original Hamiltonian,
and is again composed of pairwise couplings. Therefore, the operator S has to either
exchange lattice sites in a pairwise manner or act as an on-site operator. Otherwise,
the transformed Hamiltonian SH(t)S−1 would contain couplings between three or more
lattice sites.
An on-site operator S is not compatible with S∗S = −1 which is required for fermionic

time-reversal symmetry and particle-hole symmetry Π2 = −1. This leaves us with
the five possible symmetry operators S1, . . . , S5 shown in the top row of Fig. 7, not
counting rotations, reflections, or translations. These operators map every lattice site
onto exactly one other lattice site.
Each symmetry operator is compatible with the pairwise couplings shown in the

bottom row of Fig. 7. These couplings are mapped again to couplings between adjacent
sites in the transformation SH(t)S−1 with the respective symmetry operator. The
remaining pairwise couplings are mapped onto long-range couplings that do not occur
in the Hamiltonian, and must be excluded.

(a)

A↗C B↘D

(b)

C↗A D↘B

(c)

C↘A D↗B

(d)

A↘C B↗D

(e)

A↗C B↗D

(f)

C↗A D↗B

(g)

A↘C B↘D

(h)

C↘A D↘B

(i)

Figure 6: Nine examples of pairwise coupling patterns on a square lattice with four
distinct sites. Adapted from article II.
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1.3 Implementation

S1 S2 S3 S4 S5

Figure 7: Graphical representation of the five symmetry operators S1, . . . , S5. The
arrows in the top row indicate how each symmetry operator maps a site
onto one of its eight neighbors. The lines in the bottom row indicate the
compatible pairwise coupling terms. Adapted from article II.

The graph spanned by the compatible pairwise couplings in Fig. 7 is disconnected
for the operators S1, . . . , S4, such that propagation is restricted to a lower-dimensional
subset of the lattice and a two-dimensional topological phase is impossible. We are left
with the operator S5 for the construction of the universal driving protocol.
The operator S5 is incompatible with all vertical and horizontal coupling patterns, ex-

cept for the horizontal pattern (a) which is mapped onto itself by S5. Futher analysis of
the diagonal coupling patterns shows that a non-trivial driving protocol with fermionic
time-reversal symmetry [particle-hole symmetry Π2 = −1] must consist of the diagonal
patterns (b), (c), (d), (e) [(f), (g), (h), (i)] and the horizontal pattern (a). This leads to
the two variants of the universal driving protocol: the time-reversal symmetric protocol
in Fig. 8 and the particle-hole symmetric protocol in Fig. 9. We use a minimal set of
parameters ±J for the diagonal couplings in steps 1, 3, 4, 6 and ±J ′ for the horizontal
couplings in steps 2, 5. The signs are determined by the symmetry relations (5), (8)
with Θ = Π = S5K. Here, we set Θ2 = Π2 = −1 which leads to the signs as indicated
in Figs. 8, 9.
The two variants implement a Z2 anomalous Floquet topological phase with Kramers

degenerate counterpropagating boundary states, and a 2Z anomalous Floquet topolog-
ical phase with copropagating boundary states. In addition, Z2 topological phases with
non-zero Wch or Wph invariants can be enforced on the driving protocol in Fig. 8 by
rearranging the signs of the couplings J , J ′ (see article II).
Quantized charge pumping at the boundary and localization in the bulk occurs if we

set J = π/2 and J ′ = 0, which we also denote as perfect coupling. At perfect coupling,
the red and blue sublattices are decoupled and the time-reversal symmetric protocol
(particle-hole symmetric protocol) reduces to two inverse copies (two identical copies)
of the minimal driving protocol. The corresponding patterns of motion are shown in
Figs. 8, 9. In the time-reversal symmetric case, the boundary state on the red (blue)
sublattice moves in counter-clockwise (clockwise) direction along the lattice perimeter.
In the particle-hole symmetric case, both boundary states move in the same direction.
For non-perfect coupling, the Floquet band and boundary state dispersions of the two

protocols are shown in the left and right column of Fig. 4 together with the relevant
bulk invariants. The computation of these invariants becomes possible through the de-
generacy point expressions developed in the last section. Now with non-zero sublattice
coupling J ′, only the presence of fermionic time-reversal symmetry prevents the coun-
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J
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J
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J−J ′
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2 4 x

y

Figure 8: Left panel: Time-reversal symmetric variant of the universal driving protocol
with Θ2 = −1. Right panel: Patterns of motion during one cycle at perfect
coupling. The lattice comprises only entire unit cells (one unit cell is shown
as a gray rhomboid), such that the boundaries are compatible with the
symmetry operator S5. Adapted from article II.

J -J

J -J J ′ J -J

J -J
J ′

6

1

5 4
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y

Figure 9: Left panel: Particle-hole symmetric variant of the universal driving protocol
with Π2 = −1 Right panel: Patterns of motion during one cycle at perfect
coupling. Adapted from article II.

terpropagating boundary state from disappearing. Note that fermionic time-reversal
symmetry turns into bosonic time-reversal symmetry if we replace −J ′ in step 5 of
the time-reversal symmetric protocol with J ′. The counterpropagating boundary states
then cancel and we get a trivial phase, see the middle column of Fig. 4.

Significance of the time-reversal symmetric protocol Time-reversal symmetry in-
verts the direction of the spin. This property usually restricts the square of the time-
reversal symmetry operator to Θ2 = 1 for bosons and Θ2 = −1 for fermions [5]. In
agreement with this statement, Z2 topological insulators with fermionic time-reversal
symmetry had only been observed in fermionic systems [8–10] prior to our work. The
present spinless driving protocol circumvents this restriction by encoding the lattice
with a pseudo-spin 1/2. Specifically, we can associate the red and blue sublattice with
the up and down components of a spin 1/2 (see article III).
This idea is not new and has appeared in several works [65–70] which combine two

bosonic topological insulators with opposite chirality to implement counterpropagating
boundary states. The major distinction between these works, which are all based on
static systems, and our driving protocol is that we couple the two pseudo-spin states
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1.4 Non-Hermitian engineering

while retaining fermionic time-reversal symmetry. This requires a driving protocol be-
cause the opposite signs of the sublattice coupling ±J ′ in steps 2, 5 would cancel in a
static system.

Implementation in photonic latttices Negative couplings do not naturally occur in
waveguide lattices [71], but the periodicity (10) of the propagator allows us to shift any
negative coupling to a positive value. With only positive couplings, the time-reversal
symmetric protocol can be experimentally implemented in the exact same way as the
minimal driving protocol. The left panel of Fig. 10 shows the coupling patterns of the
six steps in a waveguide lattice. The experimental details are provided in article IV.
To demonstrate the symmetry protection of the counterpropagating boundary states

for non-zero J ′, light is injected at single sites on the blue (middle panel of Fig. 10)
and red (right panel of Fig. 10) sublattice at the boundaries. This predominantly
excites the clockwise and counter-clockwise moving boundary state, respectively. The
light propagates over three driving periods and traverses a corner of the lattice in the
process. Were it not for fermionic time-reversal symmetry, the boundary states would
be reflected at the corner, as in the case of bosonic time-reversal symmetry.
Eq. (5) relates forward propagation, i.e., propagation from the front to the back of

the waveguide structure [see Fig. 11(a)], to backward propagation [see Fig. 11(c)]. This
allows us to “measure” the time-reversal symmetry operator Θ and thus directly verify
the fermionic time-reversal symmetry of the photonic platform. For this purpose, an
input state is generated that spans two adjacent waveguides with the same amplitude
but a relative phase φ. The two sites are mapped onto each other by S5. The input state
is then injected at the front (back) and the output intensity distribution on the blue
sublattice Ib(φ) at the back (on the red sublattice Ĩr(φ) at the front) is measured as a
function of φ [see Fig. 11(b)]. The relation between forward and backward propagation
implies

Ĩr(φ) = Ib(π − φ) (12)

for the output intensities (see article III). The exchange of intensities between the two
sublattices follows from the action of S5 and applies to both bosonic and fermionic
time-reversal symmetry. The phase shift φ 7→ π−φ, however, appears if and only if the
system possesses fermionic time-reversal symmetry.

1.4 Non-Hermitian engineering

The Hermitian Hamiltonian HJ in Eq. (9) or equivalently the unitary propagator UJ ,
which were exclusively used in the last section to describe the pairwise coupling in the
driving protocols, omit an important property of the experimental platform: losses that
the waveguide bending incurs. In the waveguide lattice in Fig. 5, each step of the driving
protocol corresponds to a relative light amplitude loss of around 4% during propagation
for perfect coupling [30].
To account for these losses, HJ should be replaced with

HJ,γ =

(
−iγ J

J −iγ

)
, (13)
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Figure 10: Left Panel: Experimental realization of Fig. 8 in waveguide lattices. Cen-
tral and right panel: Output intensity distribution after light propagated
for three driving periods in the waveguide lattice with non-zero sublattice
coupling J ′. Gray circles indicate the waveguide positions. The initial ex-
citation site is marked in yellow. Adapted from article III, which provides
the parameters for this figure.
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output intensities for foward and backward propagation after one driving
period. The initial excitation is injected into the same two waveguides
for both forward and backward propagation. (b) The output intensity
distributions Ib(φ), Ĩr(φ) as functions of the relative phase φ between the
two input beams (solid lines: numerical calculations, dots: measured values
with error bars). Adapted from article III, which provides the parameters
for this figure.
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1.4 Non-Hermitian engineering

and UJ with UJ,γ = exp(−iHJ,γ) = (cos(J) − iσx sin(J))e−iγ . The parameter γ ∈ R
specifies the strength of the attenuation.
If the losses are the same on each site of the lattice, they amount to an imaginary

shift H(t) 7→ H(t) − iγ of the lattice Hamiltonian, which implies U(T ) 7→ e−γTU(T )

for the Floquet propagator of the driving protocol. Such an imaginary shift does not
change the physical properties of the system. Omitting the factor e−γT , which drops
out if we consider normalized intensities, of the form I(r) = |ψ(r)|2/maxr′ |ψ(r′)|2,
we recover Hermiticity. The waveguide lattices in Figs. 5, 10 were designed this way.
As a direct consequence, the Hamiltonian His for the isolated sites at the boundary is
set to His = −iγ. In other words, uncoupled waveguides must be bent in the exact
same manner as the coupled waveguides (see Fig. 12) to guarantee that the bulk and
boundary states accumulate the same losses during propagation.
Conversely, the losses of the boundary states can be manipulated independently of

the bulk losses if we set His = −iγis 6= −iγ for the losses γis of the isolated sites. The
natural choice here is to set γis = 0 which corresponds to straight waveguides in the
respective step of the protocol (see Fig. 12).
Consider now, e.g., the minimal driving protocol for this loss configuration. For

perfect coupling, bulk states will be attenuated by e−γT after one period, but the chiral
boundary states only by e−γT/2. The corresponding Floquet quasienergies, which are
now complex numbers, are εν(k, T ) = −iγT for the Floquet bands and ε(k, T ) =

π+k− iγT/2 for the chiral boundary state. Note that the real part of the quasienergies
is again defined only up to multiples of 2π. The boundary state is spectrally detached
from the bulk bands. An imaginary gap iΓ at Γ = −3γT/4 seperates the two. As
Fig. 13 shows, the detachement also occurs for non-perfect coupling.

Non-Hermitian boundary state engineering We denote the process of spectrally de-
taching topological boundary states from the bulk bands as non-Hermitian bound-
ary state engineering (BSE). This intrinsically non-Hermitian effect can only occur in
anomalous Floquet topological insulators. To understand why, consider the spectrum
{e−iε(T )} of U(T ) for an ordinary and an anomalous topological phase as in Fig. 14. For
a Hermitian system, the spectrum of U(T ) lies on the unit circle. In ordinary phases, any
boundary state, viewed as a continuous curve k 7→ e−iε(T,k) parametrized by momentum
k, connects two different bulk bands. In contrast, the boundary states of an anomalous
Floquet topological insulator wind around the unit circle. In a non-Hermitian system,

γ
2

γ
2

γ
2

γ
2

γ
2

γ
2

J
HJ,γ =




−iγ J

J −iγ




His =
(

−iγ
)

His =
(

0
)

Figure 12: Left Panel: Idealized Hamiltonian of two coupled waveguides which in-
cludes the losses in the bending sections. Middle panel: Hamiltonian of
an uncoupled waveguide which is bent in the same manner as the coupled
waveguides. Right panel: Hamiltonian of an uncoupled straight waveguide.
Adapted from article IV.
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Figure 13: Bands and boundary states of the minimal driving protcol (with coupling
J = 1) in the Hermitian case (left panel) and after BSE (central and right
panel) with losses γ = 0.75, γis = 0. Adapted from article IV.

the spectrum of U can move away from the unit circle. Regular boundary states have
to remain attached to the bulk bands, since otherwise the continuous dependence on
momentum would be violated. Anomalous boundary states, however, can detach from
the bulk bands and thus be manipulated independently. This new freedom is exploited
in BSE.
Due to the invertibility of the propagator, which also holds in the non-Hermitian set-

ting, the spectrum cannot move through the origin. Therefore, an anomalous boundary
state, which winds around the origin, retains this property during BSE and remains
topologically protected as a non-contractible loop. Note that this topological protec-
tion is independent of the bulk topology. The detached boundary states are no longer
bound to the bulk-boundary correspondence. We will explore the implications of this
statements later.
In the minimal driving protocol, BSE enables the amplification of boundary trans-

port relative to bulk motion or vice versa. In the universal driving protocol, more
sophisticated manipulations become possible due to the interplay between BSE and the
symmetry protection. Here, we focus on the time-reversal symmetric variant of the pro-
tocol. Adaptation of our results to the particle-hole symmetric case is straightforward.
For notational simplicity, we assume uniform losses γ for the pairwise coupling in each

step of the time-reversal symmetric protocol (see article IV for more general considera-
tions). The two counterpropagating boundary states can be independently manipulated
by varying the losses of the isolated sites on the red (γris) or blue (γ

b
is) sublattice, respec-

tively. Upon the introduction of these non-Hermitian terms, the symmetry relation (5)

Re ε

Im ε

Hermitian non-Hermitian Hermitian non-Hermitian

or
din
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Figure 14: Conceptual sketch of the spectrum {e−iε(T )} ⊂ C\{0} of the Floquet prop-
agator in the Hermitian and non-Hermitian case, with bulk bands (black
dots) and boundary states (orange curves) for an ordinary and anomalous
topological phase. Adapted from article IV.
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(a) initial state (b) Hermitian (c) TRSt (d) TRS∗

Figure 15: Real-space propagation of an initial state prepared at the boundaries of
the time-reversal symmetric protocol, in the Hermitian case or after BSE.
Lightness encodes the wave function intensity I(r) = |ψ(r)|2 at each lattice
site, normalized to the maximum value. (a) Initial state. (b)–(d) States
after np = 15 periods of the driving protocol. Adapted from article IV,
which provides the parameters for this figure.

for time-reversal symmetry splits up into two separate relations (see article IV)

(TRSt) : θH(t)θ−1 = Ht(T − t) , (14a)

(TRS∗) : θH(t)θ−1 = H∗(T − t)− 2iγ . (14b)

Here, (·)t denotes transposition and we have θ = S5 with θ∗θ = −1. Clearly, both
relations agree for a Hermitian Hamiltonian with H∗(t) = Ht(t), γ = 0. To satisfy
Eq. (14), we have to set γris = γbis (γ

b
is = −γris + 2γ) for TRSt (TRS∗). BSE is possible in

both cases but leads to significantly different propagation properties. For TRSt, we can
set γris =b

is= 0 as in the minimal driving protocol such that the helical transport carried
by the two boundary states is amplified relative to the bulk motion [see Fig. 15(c)]. In
the TRS∗ case, setting, e.g., γris = 0 implies γbis = 2γ. Therefore, amplification of one
boundary state relative to bulk motion implies the suppression of the other boundary
state, leading to chiral boundary transport. A unique feature of BSE is that we can
individually choose, on each boundary of the lattice, which boundary state survives
propagation. In particular, we can induce chiral transport in the same direction on
opposite boundaries as in Fig. 15(d). Without BSE, this is strictly prohibited by the
bulk-boundary correspondence.

Breakdown of the bulk-boundary correspondence To demonstrate that the detached
boundary states are topologically protected irrespective of the bulk topology, we now
consider the minimal driving on an infinite horizontal strip [see Fig. 16(a)] with a bottom
and top boundary. BSE is applied exclusively to the bottom boundary such that only
the boundary state on the bottom boundary is spectrally detached from the bulk bands.
The breakdown of the bulk-boundary correspondence for this configuration is shown in

Fig. 17. We start with a non-zero W3 invariant at J = 1 (left panel). At the bulk phase
transition, J = π/4 (middle panel), the W3 invariant changes to zero and the boundary
state on the top boundary disappears as required by the bulk-boundary correspondence.
On the other hand, the detached boundary state on the bottom boundary persists.
Beyond the phase transition, at J = 0.7 (right panel), an additional boundary state is
created on the bottom boundary which has opposite chirality relative to the detached
boundary state. In a Hermitian system, these two counterpropagating boundary states
would cancel, in agreement with the trivial bulk topology. Here, the imaginary gap
prevents their mutual annihilation.
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Cutting off the non-Hermitian boundary Since the spectrally detached boundary
states no longer depend on the bulk topology, it stands to reason that the non-Hermitian
boundary retains the transport properties associated with anomalous Floquet topolog-
ical insulators when it is cut off from the rest of the lattice. In particular, quantized
charge pumping can be implemented on it. Verifying this claim will be the focus of the
rest of this thesis.
In Fig. 16(a), the spatial attachment or detachment of the bottom boundary is con-

trolled by the parameter α. For α = 0, the bottom boundary is cut off from the bulk
and can be regarded as a seperate one-dimensional chain. The resulting trajectories for
perfect coupling are shown in Fig. 16(c). Through the spatial detachment, additional
chiral modes (colored in green) emerge on both subsystems.
On the newly created Hermitian bottom boundary of the minimal driving proto-

col, conventional bulk-boundary correspondence is recovered (see Fig. 18). On the
non-Hermitian Floquet chain, two non-contractible loops k 7→ ε1,2(k, T ) with opposite
chirality ε1,2(k + 2π, T ) = ε1,2(k, T ) ± 2π appear in the Floquet spectrum that are
separated by an imaginary gap. Here, we observe a new topological phase that occurs
exclusively in non-Hermitian Floquet systems and lies outside the classification [34, 35]
for static non-Hermitian systems.

Non-Hermitian Floquet chains To study this topological phase, we introduce a simple
one-dimensional driving protocol which consists of two alternating steps with directional
pairwise coupling Je±γ [see Fig. 19(a)] between the n = 2 adjacent sites •, ◦. A
similiar model was recently implemented in plasmonic waveguide arrays [72]. For perfect
coupling, a state starting on a • (◦) site moves two sites to the right (left) and picks up
the amplitude factor e2γ (e−2γ).
The driving protocol features a topological phase transition at the critical value γc =

arcosh (1/ sin |J |). As shown in Fig. 19, the spectrum below the transition (|γ| < γc)
consists of a single contractible loop with periodicity k 7→ k + 4π. The contraction of
the loop is realized in the Hermitian limit γ → 0. At the transition (|γ| = γc), the
spectrum possesses an exceptional point [73, 74]. Starting from the exceptional point,
the spectrum splits into two non-contractible loops above the transition (|γ| > γc). The
loops occur with opposite chirality and are separated by an imaginary gap iΓ at Γ = 0.
The phases are distinguished by the Z-valued winding number

W (Γ) =
i

2π

∑

eΓ<|e−iεν (k,T )|

∫ π

−π
eiεν(k,T ) ∂ke

−iεν(k,T ) dk

=
1

2π

∑

Γ<Im εν(k,T )

[
Re εν(k, T )

]k=π

k=−π ,
(15)

which counts the number of non-contractible loops above the imaginary gap iΓ. A
non-contractible loop in clockwise direction contributes with a positive integer. In the
present model, we have W = 0 below the transition and W = 1 (W = −1) above the
transition for γ > 0 (γ < 0). We also get W = 1 for the detached boundary of the
minimal driving protocol in Fig. 18.
Hermitian chains, where loops cannot be separated by imaginary gaps, as well as static

non-Hermitian chains, which have only contractible loops, necessarily have winding
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Figure 16: (a) Minimal driving protocol on a semi-infinite strip along the x-axis, with
BSE only on the bottom boundary. The non-Hermitian parameter used for
the BSE can be found in article VI. Panel (b) [panel (c)] shows the patterns
of motion for perfect coupling and α = 1 (α = 0). Adapted from article VI.
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Figure 17: Spectrum {e−iε(T )} of Fig. 16 for α = 1, showing the breakdown of bulk-
boundary correspondence on the bottom boundary. We use a logarithmic
radial axis in all three panels. The color of the curves indicates the am-
plitude distribution of the eigenvectors on the red, blue, and gray colored
areas of the lattice in Fig. 16(b). The arrows indicate the chirality of the
loops. Adapted from article VI.
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Figure 18: Same as Fig. 17, now showing the spectra before (α = 1, left column) and
after (α = 0, central and right column) the bottom boundary has been cut
off. The color of the curves now indicates the amplitude distribution on
the colored areas of the lattice in Fig. 16(c) Adapted from article VI.
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Figure 19: (a) Driving protocol for a non-Hermitian Floquet chain with directional
coupling. (b-d) Spectrum of the driving protocol in (b) the trivial phase
(γ = 0.2), (c) at the phase transition (γ = γc ≈ 0.55), and (d) in the
non-trivial phase (γ = 0.6). We set J = π/3 in all panels. The exceptional
point at the phase transition is indicated by a pink dot. Adapted from
article V.

number W (Γ) = 0 for all Γ.
Since non-Hermitian Floquet chains with a non-zero winding number can be con-

structed from the boundaries of anomalous Floquet topological insulators, we expect
that they carry chiral transport. To quantify the transport, we again use Eq. (1). Note
that the transferred charge C̄ always vanishes in a Hermitian chain (see article V).
C̄ 6= 0 only becomes possible in a non-Hermitian chain. In the expression of C̄, the
propagation distance of each wave packet is now weighted by the non-conserved norm
〈m|U †(T )U(T )|m〉, which complicates the interpretation. After normalization C̄/Ξ̄2

with the average norm Ξ̄2 ∼ ∑n
m=1〈m|U †(T )U(T )|m〉 [see Eq. (19) in the supplemen-

tal material of article V for the full expression], we recover its original meaning as the
average propagation distance.
Fig. 20 shows that the normalized transferred charge C̄/Ξ̄2 continously increases

when we go from the trivial phase with W = 0 to the non-trivial phase with W = 1,
similiar to the two-dimensional case in Fig. 5. Again, the phase transition is not directly
observable in the functional dependence of C̄.
Probing transport by means of wave packet propagation, we observe a significant

difference between the two phases: While wave packets spread out during propagation
below the topological phase transition (row “(Fl<)” in Fig. 20), they propagate without
spreading above the phase transition (row “(Fl>)” in Fig. 20), where C̄/Ξ̄2 → 1.
To relate W and C̄, and thus transport and topology, the Floquet propagator must

be regularized in a slightly different manner than for anomalous Floquet topological
insulators. Here, the Floquet propagator is regularized if (i) the dominant eigenvalues
of the Floquet propagator have modulus one, (ii) the modulus of all other eigenvalues is
infinitesimally close to zero, and (iii) the eigenvectors are mutually orthogonal. If these
conditions are satisfied, we obtain the fundamental relation (see article V)

C̄ =
(reg)

W (Γ) , (16)

which guarantees quantized charge pumping.
Conceptually, regularization of the propagator corresponds to a continuous deforma-

tion of U(T, k) such that the eigenvalues e−iεν(k,T ) move towards the origin or towards
the unit circle, as illustrated in the left panel of Fig. 21. Physically, regularization

22



1.5 Conclusions

0 1
0

1 γc

γ

C̄
/
Ξ̄

2
(Fl <)

(Fl >)

final statesinitial states

1 100
nl

Figure 20: Left panel: Normalized transferred charge C̄/Ξ̄2, as a function of γ with
J = π/3. Right panel: Real-space propagation in the chain over np = 40
periods with J = π/3 and γ = 0.08, 1.5 from top to bottom. Adapted from
article V.
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Figure 21: Left panel: Regularization of the spectrum of the Floquet propagator. The
spectrum outside (inside) of the imaginary gap iΓ (dashed green) moves
to the unit circle (origin). Middle panel: Normalized transferred charge
C̄/Ξ̄2, for three different values of J . In all cases, C̄/Ξ̄2 → 1 in the non-
Hermitian limit γ →∞. Right panel: Real-space propagation of an initial
state, centered at site n = 0, over np = 20 periods. Shown is the final state
for γ = −∞,−1,−0.25, 0, 0.25, 1,∞ from top to bottom with J = π/3. In
the non-Hermitian limit, we observe quantized charge pumping. Adapted
from article V.

corresponds to the Hermitian limit γ → 0 below the phase transition, and the non-
Hermitian limit γ → ±∞ above the phase transition, where hopping in one direction is
fully suppressed.
In contrast to anomalous Floquet topological insulators, fine-tuning to perfect cou-

pling is not required for quantized charge pumping. In the limit γ → ±∞, only the
norm of the wave packets depends on the parameter J , which drops out after normal-
ization of C̄ (see the middle panel of Fig. 21). Exactly half of the wave packet (on either
the red or the blue sites in the right panel of Fig. 21) survives propagation and robustly
moves 2 sites in each driving period, even if we add disorder to the chain (see article
V).

1.5 Conclusions

In this thesis, we studied two-dimensional anomalous Floquet topological insulators
with a focus on symmetry and non-Hermiticity. We developed new degneracy-point
expressions for the relevant topological invariants of the propagator which generalize
the expressions given in Ref. [19]. The degeneracy-point expressions give an intuitive
understanding of the bulk-boundary correspondence and provide the basis for efficient
numerical evaluation of the invariants. They especially allowed us to verify that the uni-
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versal driving protocol proposed here supports symmetry-protected anomalous Floquet
topological phases.
An interesting property of the universal driving protocol, which was not explored in

this thesis, is that the symmetry-protection can be locally broken by omitting only the
red (or only the blue) lattice sites within a unit cell. In case of fermionic time-reversal
symmetry, backscattering is allowed in such a symmetry-breaking unit cell. Therefore,
the counterpropagating boundary state will be reflected at a symmetry-breaking unit
which is placed at the boundary of the lattice. This could be used to restrict the helical
transport to certain regions on the boundary.
The implementation of the time-reversal symmetric variant of the universal driving

protocol in waveguide lattices demonstrates that Z2 topological phases commonly asso-
ciated with fermionic condensed matter systems can also be realized in, e.g., photonic
systems. Conversely, properties commonly associated with photonic systems like non-
Hermitian gain and loss can now be combined with fermionic Z2 topological phases
through the common framework of the universal driving protocol.
This directly leads to boundary state engineering (BSE), which is probably the most

important result of this thesis. BSE and its direct consequences equip anomalous Flo-
quet topological insulators with unprecedented possibilities to control and manipulate
topological transport: Boundary states can be selectively amplified, the bulk is no
longer required for topological protection, and robustly quantized charge pumping can
be implemented on the boundaries even if they have been cut off from the rest of the
lattice. Let us emphasize here that the spatial detachment of the boundary is an option
offered by BSE, but not required for quantized charge pumping. Depending on the
desired application, one may choose to implement quantized charge pumping in a one-
dimensional chain, or rather at the boundary of a two-dimensional insulator. Which
approach will prove most convenient is a matter of future experimental research. In
this thesis, we focused on the potential implementation of BSE in photonic waveguides
because the bending losses provide a natural source of non-Hermiticity. Optical lattices
of ultracold atoms are another promising platform for BSE. Driving protocols [27] and
the manipulation of dissipation losses [75] are both possible within optical lattices.
On the theoretical side, an obvious route for future research is further studies on the

interplay between BSE and symmetries, e.g. by cutting off a boundary of the universal
driving protocol, after BSE has been applied, and exploring the transport properties
of the resulting chain for the two non-Hermitian flavors TRS∗, TRSt of time-reversal
symmetry. Inspection of Fig. 15 already tells us what we can expect. For TRS∗, we can
expect a Z topological phase with chiral transport. For TRSt, a Z2 topological phase
with helical transport should emerge, which will require a new topological invariant.
Another important question waiting to be explored is whether BSE is specific to two-
dimensional anomalous Floquet topological insulators or can be applied to any higher-
dimensional anomalous Floquet system.

24



2 Thesis articles

Author Contribution

Article I:
“Topological invariants for Floquet-Bloch systems with chiral, time-reversal, or particle-
hole symmetry”
B. Höckendorf, A. Alvermann and H. Fehske, Phys. Rev. B 97, 045140 (2018).
All authors discussed the scope of the work and the strategy of the calculation. B.
Höckendorf and A. Alvermann developed the theory and wrote the manuscript which
was edited by all authors.

Article II:
“Universal driving protocol for symmetry-protected Floquet topological phases”
B. Höckendorf, A. Alvermann and H. Fehske, Phys. Rev. B 99, 245102 (2019).
All authors discussed the scope of the work and the strategy of the calculation. B.
Höckendorf and A. Alvermann developed the theory and wrote the manuscript which
was edited by all authors.

Article III:
“Fermionic time-reversal symmetry in a photonic topological insulator ”
L. J. Maczewsky, B. Höckendorf, M. Kremer, T. Biesenthal, M. Heinrich, A. Alvermann,
H. Fehske and A. Szameit, Nat. Mater., (2020).
The theory was established by B. Höckendorf, A. Alvermann, and H. Fehske. The
sample design and lattice implementation was developed by L. Maczewsky, M. Heinrich
and A. Szameit. The characterisation of the lattice structure was carried out by L.
Maczewsky, M. Kremer and T. Biesenthal. The project was supervised by H. Fehske
and A. Szameit. All authors discussed the results and co-wrote the paper.

Article IV:
“Non-Hermitian Boundary State Engineering in Anomalous Floquet Topological Insula-
tors”
B. Höckendorf, A. Alvermann and H. Fehske, Phys. Rev. Lett. 123, 190403 (2019).
All authors discussed the scope of the work and the strategy of the calculation. B.
Höckendorf and A. Alvermann developed the theory and wrote the manuscript which
was edited by all authors.

25



2 Thesis articles

Article V:
“Non-Hermitian Floquet Chains as Topological Charge Pumps”
B. Höckendorf, A. Alvermann and H. Fehske, submitted to Phys. Rev. Lett.
All authors discussed the scope of the work and the strategy of the calculation. B.
Höckendorf and A. Alvermann developed the theory and wrote the manuscript which
was edited by all authors.

Article VI:
“Cutting off the non-Hermitian boundary from an anomalous Floquet topological insu-
lator ”
B. Höckendorf, A. Alvermann and H. Fehske, submitted to Europhys. Lett.
All authors discussed the scope of the work and the strategy of the calculation. B.
Höckendorf developed the theory and wrote the manuscript which was edited by all
authors.

Confirmed:

(Prof. Dr. Holger Fehske) Greifswald, 30.03.2020

(Bastian Höckendorf) Greifswald, 30.03.2020

26



PHYSICAL REVIEW B 97, 045140 (2018)

Topological invariants for Floquet-Bloch systems with chiral, time-reversal,
or particle-hole symmetry
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We introduce Z2-valued bulk invariants for symmetry-protected topological phases in 2 + 1-dimensional
driven quantum systems. These invariants adapt the W3 invariant, expressed as a sum over degeneracy points
of the propagator, to the respective symmetry class of the Floquet-Bloch Hamiltonian. The bulk-boundary
correspondence that holds for each invariant relates a nonzero value of the bulk invariant to the existence of
symmetry-protected topological boundary states. To demonstrate this correspondence we apply our invariants to
a chiral Harper, time-reversal Kane-Mele, and particle-hole symmetric graphene model with periodic driving,
where they successfully predict the appearance of boundary states that exist despite the trivial topological character
of the Floquet bands. Especially for particle-hole symmetry, the combination of the W3 and the Z2 invariants
allows us to distinguish between weak and strong topological phases.

DOI: 10.1103/PhysRevB.97.045140

I. INTRODUCTION

Topological states of matter [1–6] have become the subject
of intensive research activities over the past decade. More
recently, unconventional topological phases in periodically
driven systems [7–12] have moved into focus. Driving al-
lows for nontrivial topological phases even if each individual
Floquet band is topologically trivial. These phases cannot be
characterized by static invariants, such as the Chern numbers
of the Floquet bands, but only through invariants that depend
on the entire dynamical evolution of the system [11]. Irradiated
solid-state systems [13–15] and photonic crystals [16–19],
where the third spatial dimension represents the time axis,
are promising candidates for the realization of these new
topological phases.

The relevant topological invariant of driven 2+1-
dimensional systems is the W3 invariant of unitary maps
[11], which is evaluated for the Floquet-Bloch propagator
U (k,t) that solves the Schrödinger equation i∂tU (k,t) =
H (k,t)U (k,t) with a periodic Hamiltonian H (k,t + T ) =
H (k,t). The bulk-boundary correspondence for the W3 invari-
ant guarantees that the value of W3(ε) equals the number of
chiral boundary states in the gap around the quasienergy ε.

The situation changes again for driven systems with
additional symmetries. Symmetry-protected boundary states
appear in pairs of opposite chirality, such that the W3 invariant
can no longer characterize the nontrivial topological phases
[20–28]. Two questions arise immediately: Can the phases
be characterized by new invariants? Can these invariants be
computed for complicated Hamiltonians and Floquet-Bloch
propagators?

In this paper we try to answer both questions affirmatively
by deriving and evaluating Z2-valued bulk invariants for
Floquet-Bloch systems with chiral, time-reversal, or particle-

*Author to whom correspondence should be addressed:
alvermann@physik.uni-greifswald.de

hole symmetry. In each case, the symmetry is given by a
relation of the form H (k,t) = ±SH (k̂, ± t)S−1 for the time-
dependent Bloch Hamiltonian H (k,t), with a (anti)-unitary
operator S and an involution k �→ k̂ on the Brillouin zone B.
The symmetry relation implies a zero W3 invariant in certain
gaps, because the degeneracy points of U (k,t) that contribute
to W3(ε) occur in symmetric pairs and cancel. Conceptually,
the new symmetry-adapted invariants count only one partner
of each pair of degeneracy points. Since the result depends on
which partner is counted, the new invariants are Z2 valued.
Symmetry-protected topological boundary states appear in
gaps where the symmetry relation enforces W3(ε) = 0, but the
Z2 invariants are nonzero.

Topological invariants for Floquet-Bloch systems with and
without additional symmetries have been introduced before
[7,11,24–26,28,29], and our constructions resemble some of
them [24–26] in various aspects. However, most constructions
in the literature differ for each symmetry. One of our goals is to
show that the construction of invariants in terms of degeneracy
points of U (k,t) applies to each symmetry equally, with only
the obvious minimal modifications. In this way the construc-
tions described here constitute a unified approach to topolog-
ical invariants in Floquet-Bloch systems with symmetries.

Our presentation begins in Sec. II with the discussion of an
expression for the W3 invariant that is particularly well suited
for the following constructions, before the different invariants
for chiral, time-reversal, and particle-hole symmetry are intro-
duced in Sec. III. Section IV summarizes our conclusions, and
the appendixes (Appendix A to Appendix D) give details on
the derivations in the main text.

II. W3 INVARIANT AND DEGENERACY POINTS

The starting point for the construction of the Z2 invariants
is the expression,

W3(ε) =
n∑

ν=1

dp∑
i=1

Nν(ε,di) Cν(di), (1)

2469-9950/2018/97(4)/045140(11) 045140-1 ©2018 American Physical Society
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of the W3 invariant as a sum over all degeneracy points i =
1, . . . ,dp of the Floquet-Bloch propagator U (k,t) that occur
during time evolution 0 � t � T .

Equation (1) is a modified version of an expression forW3(ε)
given in Ref. [30]. As explained in Appendix A, which contains
a detailed derivation, it generalizes a similar expression intro-
duced in Ref. [25]. A unique feature of Eq. (1) is the invariance
of all quantities under general shifts ε(·) �→ ε(·) + 2πm of
the Floquet quasienergies, whereby the ambiguity of mapping
eigenvalues e−iε(·) of U (·) to quasienergies ε(·) is resolved from
the outset. For this reason, Eq. (1) is particularly convenient
for numerical evaluation, e.g., with the algorithm from Ref.
[30]. Note that for the sake of clarity of the main presentation
we assume in Eq. (1) that the bands are topologically trivial
for t → 0. The general case is given in Appendix A.

To evaluate Eq. (1), we must decompose U (k,t) =∑n
ν=1 e−iεν |sν〉〈sν | into bands ν = 1, . . . ,n with quasienergies

εν ≡ εν(k,t) and eigenvectors sν ≡ sν(k,t). Quasienergies are
measured in units of 1/T , and defined up to multiples of 2π .
We assume that the εν(k,t) are continuous functions. At t = T ,
εν(k,T ) agrees (modulo 2π ) with the Floquet quasienergy
derived from the eigenvalues of U (k,T ).

A degeneracy point di = (ki ,ti ,εi) occurs whenever the
quasienergies εν(ki ,ti), εμ(ki ,ti) of two bands ν �= μ differ
by a multiple of 2π , such that e−iεν = e−iεμ = e−iεi for
two eigenvalues of U (ki ,ti). With each degeneracy point,
we can associate the Chern numbers Cν(di) = ∮

S(di )
Fν

α dSα ,
given as the integral of the Berry curvature 2πiF ν

α (k,t) =
εαβγ ∂β(sν(k,t)† ∂γ sν(k,t)) over a small surface S(di) enclos-
ing the degeneracy point. It is Cν(di) = −Cμ(di) �= 0 only for
the bands ν,μ that touch in the degeneracy point.

The contribution from each degeneracy point is mul-
tiplied by the integer Nν(ε,di) = �(εν(ki ,ti) − ε)/(2π )	 +
�(ε − εν(k,T ))/(2π )	 that counts how often band ν crosses
the gap at ε while it evolves from the degeneracy point at
t = ti to its final position at t = T . Here, �·	 denotes rounding
up to the next integer. Since ε lies in a gap, Nν(ε,di) does not
depend on k.

Moving from one gap at ε to the next gap at ε′, both being
separated by band ν, the value of Nν(ε,di) changes by one,
such that W3(ε) changes by Cν = ∑dp

i=1 Cν
i (di). The value of

Cν is just the Chern number of band ν at t = T . Note that
when we move once through the quasienergy spectrum, letting
ε �→ ε + 2π , we change W3(ε) by

∑
ν Cν = 0.

In the situation sketched in Fig. 1, we have Nν(ε,di) = 1
(or Nν(ε,di) = 0) for the band directly below (or above) the
gap at ε. Here, where the bands of U (k,t) do not wind around
the circle independently, W3(ε) is simply the sum over the
degeneracy points in each gap.

III. Z2 INVARIANTS FOR FLOQUET-BLOCH SYSTEMS
WITH SYMMETRIES

For the construction of the new Z2 invariants we adapt
Eq. (1), essentially by including only half of the degeneracy
points in the summation. We will now, for each of the
three symmetries, introduce the respective invariant, formulate
the bulk-boundary correspondence between the invariant and
symmetry-protected topological boundary states, and present

FIG. 1. Schematic illustration of two Floquet-Bloch bands ν =
1,2, which touch in two degeneracy points i = a,b during the time
evolution from t = 0 to t = T . At each degeneracy point, the Chern
numbers of the bands and the W3 invariant change by the integer
C1

i (di) = −C2
i (di) according to Eq. (1). In the situation sketched here,

anomalous boundary states occur if C1
a = C2

b �= 0, such that the bands
are topologically trivial at t = T but W3 �= 0 in each gap.

an exemplary application to a Floquet-Bloch system with the
specific symmetry.

A. Chiral symmetry

The symmetry relation for chiral symmetry, realized as a
sublattice symmetry on a bipartite lattice, is

Hch(k,t) = −SHch(k + kπ ,T − t)S−1, (2)

with a unitary operator S, and a reciprocal lattice vector kπ

corresponding to the sublattice decomposition [e.g., kπ =
(π,π ) for a square lattice].

Note that the symmetry relation (2) differs from the standard
definition of chiral symmetry [27–29], which does not contain
the momentum shift kπ . The inclusion of the momentum shift
kπ is crucial for the existence of symmetry-protected boundary
states and of the Z2 invariant defined below. As detailed in
Appendix B, a Hamiltonian Hch(·) that fulfills Eq. (2) also
fulfills the standard chiral symmetry relation but possesses an
additional symmetry that protects the topological phases and
boundary states. Without the kπ shift, chiral symmetry does
not allow for the symmetry-protected boundary states observed
here [27–29].

Because of the T -t argument on the right-hand side, the
symmetry relation (2) does not extend to U (k,t) but only
to the time-symmetrized propagator U	(k,t) = U (k, 1

2 (t +
T )) U †(k, 1

2 (T − t)), for which it implies SU	(k + kπ ,t)S−1 =
U

†
	 (k,t). Therefore, degeneracy points of U	(·) occur in pairs

di = (ki ,ti ,εi), d̂i = (ki + kπ ,ti , − εi) with the opposite sign
of Cν(di) = −Cν(d̂i). The W3 invariant, computed from U	(·),
fulfills W3(−ε) = −W3(ε), especially W3(ε) = 0 for a gap at
ε = 0,π .

Note that U	(·) belongs to a family of propaga-
tors that are related to U (·) by the homotopy s �→
U (k,(1 − s)t + sT )U †(k,s(T − t)). For s = 0, we obtain the
original propagator U (·), for s = 1/2 the symmetrized prop-
agator U	(·). Since U	(·) is homotopic to U (·), with fixed
boundary values U	(k,0) = 1 and U	(k,T ) = U (k,T ), we
obtain the same result if W3(ε) is computed with the original
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propagator U (·). In this computation, however, the cancellation
of degeneracy points would not be obvious.

We now define a Z2 invariant, for ε = 0 or ε = π , via

Wch(ε) ≡
n∑

ν=1

dp/2∑
i=1

Nν(ε,di) Cν(di) mod 2, (3)

where the upper limit dp/2 in the sum over i indicates that
exactly one degeneracy point of each symmetric pair di , d̂i

is included. Depending on which points are included the sum
can differ by an even number, such that Wch(ε) ∈ Z2. Since the
degeneracy points in each pair are separated by kπ , a homotopy
of Hch(·) that respects chiral symmetry cannot annihilate the
degeneracy points. Therefore, Wch(ε) is invariant under such a
homotopy.

A nonzero value of Wch(ε) indicates that an odd number of
pairs of degeneracy points occur in the gap at ε during time
evolution from 0 to T . If a boundary is introduced into the
system, say along the x direction, the first pair of degeneracy
points di , d̂i gives rise to two boundary states BI, BII of
opposite chirality that appear immediately after ti at momenta
(ki)x , (ki + kπ )x . During the subsequent time evolution the
dispersion of these boundary states is related by εI(kx) =
−εII(kx + π ) due to chiral symmetry. Therefore, the boundary
states are protected: They cannot annihilate each other, because
the number of crossings through ε = 0,π is fixed by the
above relation. The pair of boundary states can disappear
only through the appearance of a second pair of degeneracy
points at a later tj > ti . In this way, each pair flips the value
of Wch(ε) and the number of symmetry-protected boundary
states in the respective gap. This consideration establishes
the bulk-boundary correspondence for chiral symmetry: A
nonzero bulk invariant Wch(ε) corresponds to the existence
of a pair of symmetry-protected boundary states with opposite
chirality in the gap at ε.

Chiral symmetry is realized in the extended Harper model
on a square lattice [22],

Hch(t) =
∑
ij

[Jx(t)(e2πiαj c
†
i+1,j cij + H.c.)

+ Jy(c†
i,j+1cij + H.c.)], (4)

provided that Jx(T − t) = Jx(t). The rational parameter α =
p/n controls the number n of Floquet bands. Note that the
(magnetic) unit cell of this model has one element in the x

direction and n elements in the y direction.
For the results in Fig. 2 we set Jx(t) = Jx,1 +

Jx,2 cos(2πt/T ), with α = 1/3,Jx,1 = 2,Jx,2 = 1,Jy = 2.
Since n is odd, chiral symmetry prevents the opening of a
gap at ε = 0. In the gap at ε = π , where W3(π ) = 0, a pair
of symmetry-protected boundary states exists in accordance
with the nonzero value of Wch(π ). Note for the interpretation
of Fig. 2 that according to the magnetic unit cell for α = 1/3
the two boundary states along the y axis can coexist at three
different quasienergies for a given ky , but indeed cross the gap
at ε = π only once with opposite chirality.

In summary, we see that Eq. (3) defines a Z2-valued bulk
invariant for chiral symmetry, which predicts the appearance
(or absence) of a symmetry-protected topological phase and
of the corresponding boundary states. A different Z2 invariant,

which is constructed for a finite system with absorbing bound-
aries, has been introduced in Ref. [26], where also the “weak”
or “strong” nature of topological phases with chiral symmetry
is addressed. To relate these results to our Z2 invariant we
include in Appendix B additional data for different boundary
orientations in the Harper model from Eq. (4).

B. Time-reversal symmetry

The symmetry relation for time-reversal symmetry of
fermionic particles is

Htr(k,t) = 
Htr(−k,T − t)
−1, (5)

with an antiunitary operator 
 for which 
2 = −1. The
symmetry relation (5) implies 
U	(−k,t)
−1 = U

†
	 (k,t),

again for the time-symmetrized propagator U	(·). Therefore,
degeneracy points of U	(k,t) occur in pairs di = (ki ,ti ,εi),
d̂i = (−ki ,ti ,εi) with the opposite sign of Cν(di) = −Cν(d̂i).
It is W3(ε) = 0 in each gap.

We now define a Z2 invariant,

Wtr(ε) ≡
2n∑

ν=1

dp/2∑
i=1

Nν(ε,di) Cν(di) mod 2, (6)

where again only one degeneracy point from each symmetric
pair is included in the sum.

Note that the bands of U	(·) appear in Kramers pairs [3]
which, if arranged in this specific order, fulfill ε2ν−1(−k,t) =
ε2ν(k,t). The two bands of each Kramers pair are degenerate
at the invariant momenta (IM) k ≡ −k (modulo a reciprocal
lattice vector). The Kramers degeneracy at the IM, which
is enforced by time-reversal symmetry for all t , must be
distinguished from the degeneracy points that contribute in
Eq. (6): These occur only at certain ti and involve two bands
from two different Kramers pairs.

The considerations leading to a bulk-boundary correspon-
dence are similar to those for chiral symmetry. Again, a
pair of degeneracy points di , d̂i gives rise to two boundary
states, which now appear at momenta (ki)x , −(ki)x . Their
dispersion relations are connected by εI(kx) = εII(−kx), with
Kramers degeneracy at the IM kx ≡ −kx . Because of 
2 =
−1 the boundary states are twofold degenerate at the IM,
which prevents their mutual annihilation. Continuing with the
reasoning as before, we conclude that a nonzero value of Wtr(ε)
implies the existence of a pair of symmetry-protected boundary
states with opposite chirality in the gap at ε.

If we move from one gap at ε to the next gap at ε′,
separated by a Kramers pair of bands 2ν − 1, 2ν, the value
of Wtr(ε) changes by Wtr(ε′) − Wtr(ε) ≡ ∑dp/2

i=1 (C2ν−1(di) +
C2ν(di)) mod 2. The right-hand side of this expression gives
just the Kane-Mele invariant [3] of the respective Kramers pair
(see Appendix C).

Time-reversal symmetry is realized in the extended Kane-
Mele model on a graphene lattice [31],

Htr(t) = J1(t)
∑
〈i,j〉

c
†
i cj + iJ2(t)

∑
〈〈i,j〉〉

νij c
†
i σzcj

+ λν

∑
i

ξic
†
i ci + iλR

∑
〈i,j〉

c
†
i (σ × dij )zcj , (7)
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FIG. 2. Bands and boundary states for the chiral model (4) at t = T . (Left panel) Diagrammatic representation of the Floquet bands
exp(−iεν(k,T )) on the circle S1 (indicated by thick arcs), with three gaps at quasienergies ε = ±π/4 and ε = π . Included are the Chern
numbers of each band, and the W3 and Wch invariants in each gap. (Central and right panels) Bands (solid) and boundary states (dashed/dotted)
on a semi-infinite strip along the x or y axis, as a function of momentum kx or ky . Dashed red (dotted blue) curves correspond to boundary
states on the top (bottom) boundary. In the right panel, we show only the gap at ε = π for better visibility. For both boundary orientations, one
pair of symmetry-protected topological boundary states exists in the gap at ε = π in accordance with Wch(π ) �= 0 in the left panel.

provided that J1,2(T − t) = J1,2(t). For the results in
Fig. 3 we set J1(t) = Ja + Jb cos(2πt/T ), J2(t) = Jc +
Jd cos(2πt/T ) with Ja = 0.9,Jb = 1.8,Jc = 0.6,Jd = 1.2,
and λν = 1.8,λR = 0.3. The Wtr invariant correctly predicts
the appearance of symmetry-protected boundary states in the
gaps at ε = 0 and ε = π , while the Kane-Mele invariants of
the Floquet bands and the W3 invariant vanish.

In summary, we see that Eq. (6) defines a Z2-valued bulk
invariant for time-reversal symmetry. The construction of this
invariant closely resembles the construction from Ref. [25],
to which it reduces under the additional conditions stated in
Appendix A for the W3 invariant. A different Z2 invariant
has been introduced in Ref. [24], which is based on the
original expression [11] for the W3 invariant and requires a
more complicated auxiliary construction [24,32] of a time-
symmetrized propagator.

C. Particle-hole symmetry

The symmetry relation for particle-hole symmetry of
fermionic particles is

Hph(k,t) = −�Hph(−k,t)�−1, (8)

with an antiunitary operator � for which �2 = 1. The sym-
metry relation (8) implies �U (−k,t)�−1 = U (k,t), for the
original propagator U (·). If degeneracy points of U (k,t) occur
in pairs di = (ki ,ti ,εi), d̂i = (−ki ,ti , − εi), they now occur
with the same sign of Cν(di) = Cν(d̂i). We can only conclude
W3(ε) = W3(−ε), and in contrast to chiral and time-reversal
symmetry the symmetry relation does not enforce W3(ε) = 0
in any gap.

Despite this difference, symmetry-protected boundary
states exist also for particle-hole symmetry, because the IM
k ≡ −k again have specific significance but play the opposite
role as in the case of time-reversal symmetry. There, 
2 = −1
forbids single unpaired boundary states at the IM, while here
�2 = 1 is compatible with their appearance. An unpaired
boundary state in the gaps at ε = 0,π , which is pinned at the
IM, is protected by particle-hole symmetry [26,33]. These
states are associated with unpaired degeneracy points of
U (k,t) at the IM.

Let the four IM in the 2 + 1-dimensional bulk system be
M0 = 0, M1 = b1/2, M2 = b2/2, M3 = (b1 + b2)/2, for two

primitive reciprocal lattice vectors b1, b2. If we introduce a
boundary along a primitive lattice vector a, with a · b1,2 ∈
{0,2π}, the four IM are projected onto two momenta ka = a ·
Mm ∈ {0,π}. Symmetry-protected boundary states, with dis-
persion relation ε(−ka) = −ε(ka), can exist at both momenta.

To capture this situation, we need a total of four Z2

invariants, defined for α = 0,π and ε = 0,π as

Wα
ph(ε) =

n∑
ν=1

∑
ki ∈ {Mm}
a · ki = α

Nν(ε,di) Cν(di) mod 2. (9)

In Eq. (9) only unpaired degeneracy points at the two IM Mm

with a · Mm = α contribute. Therefore, a nonzero Wph invari-
ant implies the existence of a symmetry-protected boundary
state that is pinned at the respective momentum ka = α. For
example, Wπ

ph(0) �= 0 corresponds to a symmetry-protected
boundary state with ε(ka = π ) = 0 in the gap at ε = 0. Note
that we assume here the absence of boundary states for t = 0
(but see Appendix D for an extended discussion).

The Wph invariants only count unpaired degeneracy points,
which necessarily occur at IM. The W3 invariant also counts
paired degeneracy points with opposite momenta ±ki that
occur away from the IM. Since paired degeneracy points
change the W3 invariant by an even number, we have W 0

ph(ε) +
Wπ

ph(ε) ≡ W3(ε) mod 2.
According to the summation in Eq. (9) the Wph invariants

depend on the boundary orientation given by a. Especially
if W3(ε) = 0 a “weak” topological phase can occur [33],
where two symmetry-protected boundary states exist on some
boundaries where W 0

ph = Wπ
ph = 1, but not on other boundaries

where W 0
ph = Wπ

ph = 0. If, on the other hand, W3(ε) �= 0 in
a “strong” topological phase, boundary states occur on each
boundary. Especially for odd W3(ε), we must have nonzero
Wph invariants for each boundary orientation, and thus a
symmetry-protected boundary state at either ka = 0 or ka = π .

Particle-hole symmetry is realized in the graphene lattice
model [7,26],

Hph(t) =
∑

r

3∑
l=1

Jl(t) c
†
B,rcA,r+δl

+ H.c., (10)

045140-4

2 Thesis articles

30



TOPOLOGICAL INVARIANTS FOR FLOQUET-BLOCH … PHYSICAL REVIEW B 97, 045140 (2018)

KM = 0

KM = 0

W
3
=

0
W

tr
=

1

W
3
=

0
W

tr
=

1
0 π 2π

kx

−π

0

π

ε

0 π 2π

ky

−π

0

π

ε

FIG. 3. Same as Fig. 2, now for the time-reversal model (7). (Left panel) Included are the Kane-Mele invariants (KM) of each Kramers
pair, and the W3 and Wtr invariants in the two gaps at ε = 0,π . (Central and right panels) Bands and boundary states on a semi-infinite strip
along the x and y axes. For both boundary configurations, one pair of symmetry-protected topological boundary states exists in the two gaps
in accordance with Wtr(ε) �= 0 in the left panel.

without further constraints on the Jl(t). The Jl(t) are period-
ically varied according to the protocol in Ref. [26]. For the
results in Fig. 4 we set Js,1 = −3π/2,Js,2 = −3π/2,Js,3 =
3π/2,Ju,1 = 0,Ju,2 = −1.2,Ju,3 = 0.9.

In Fig. 4 we recognize the weak topological phase just
discussed: On a zigzag boundary along a lattice vector a3, with
invariants W 0

ph(ε) = Wπ
ph(ε) �= 0, we observe in each gap two

symmetry-protected boundary states with opposite chirality at
momenta kz

3 = 0,π . On an armchair boundary along a nearest-
neighbor vector δ1, with invariants W 0

ph(ε) = Wπ
ph(ε) = 0, no

boundary states cross ε = 0 or ε = π . The Wph invariants,
together with the zero W3 invariant, correctly describe this
situation.

Note that for a hexagonal lattice, with three inequivalent
orientations for each boundary type, an exhaustive analysis is
significantly more complicated than suggested by Fig. 4. For
details we refer the reader to Appendix D.

In summary, we see that Eq. (9) defines fourZ2-valued bulk
invariants for particle-hole symmetry, which predict the ap-
pearance of symmetry-protected boundary states at ka = 0,π

in dependence on the boundary orientation. Since nonzero Wph

invariants are compatible with both W3(ε) = 0 and W3(ε) �= 0,
weak and strong topological phases can be distinguished. The
possible combinations of the four invariants for fixed W3(ε)
are given by the summation rule stated above. Different Z2

invariants have been introduced in Ref. [26], in the form of
scattering invariants for finite systems.

IV. CONCLUSIONS

The Z2 invariants introduced here allow for the classifi-
cation of topological phases in driven systems with chiral,
time-reversal, or particle-hole symmetry. In this way, they
complement the W3 invariant for driven systems without
additional symmetries. The Z2 invariants are related to previ-
ous constructions for symmetry-protected topological phases
[24–26,32], but they combine two substantial aspects. First,
they are bulk invariants of driven systems, and a bulk-boundary
correspondence holds for each invariant. Second, they are
given by simple and explicit expressions that involve the
(time-symmetrized) Floquet-Bloch propagator, but require no
complicated auxiliary constructions. Quite intuitively, the in-
variants are defined through counting of half of the degeneracy
points that appear in symmetric pairs. Note that the invariants
depend on the entire time evolution of U (k,t) over one period
0 � t � T , as required for driven systems with the possibility
of anomalous boundary states [7,11,24–26]. Once the degener-
acy points are known computation of the invariants according
to Eqs. (3), (6), and (9) is straightforward. Particularly efficient
computation of the Z2 invariants is possible with the algorithm
from Ref. [30].

These aspects should make the Z2 invariants viable tools in
the analysis of driven systems with symmetries. For the three
generic models considered here, the invariants correctly predict
the appearance of symmetry-protected topological boundary
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FIG. 4. Same as Figs. 2 and 3, now for the particle-hole symmetric model (10). (Left panel) Included are the Chern numbers of each band,
and the W3 and Wph invariants in the two gaps at ε = 0,π . [Central (right) panel] Bands and boundary states on a semi-infinite strip with
boundaries along the a3 (or δ1) direction, as a function of the respective momentum kz

3 (or ka
1 ) parallel to the zigzag (or armchair) boundary.

In both gaps, symmetry-protected boundary states exist at kz
3 = 0,π (or are absent at ka

1 = 0,π ) in accordance with W 0
ph = Wπ

ph �= 0 for a3 (or
W 0

ph = Wπ
ph = 0 for δ1) in the left panel.
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states, even if the static invariants and the W3 invariant vanish.
Concerning the nature of these states, chiral and time-reversal
symmetry are set apart from particle-hole symmetry. In the
latter case, the existence of symmetry-protected states depends
on the orientation of the boundary, similar to the situation for
three-dimensional weak topological insulators [6] or quantum
Hall systems [34]. It will be interesting to study the different
impact of symmetries on topological phases, and on the
anomalous boundary states that are unique to driven systems, in
nature. One way towards realization of the proper symmetries
should be offered by photonic crystals [18,19].
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APPENDIX A: DERIVATION OF EXPRESSION Eq. (1) FOR
THE W3 INVARIANT

We here give the details of the derivation of Eq. (1). In
slightly different notation, Eqs. (3.18) and (5.4) in Ref. [30]
yield the expression,

W3(ε) = 1

2π

n∑
ν=1

[ ∫ T

0

∫∫
B

(∂αF ν
α (k,t))εν(k,t) dk1dk2dt

+
∫∫

B
Fν

3 (k,T )
(
i logε e−iεν (k,T ) − εν(k,T )

)
dk1dk2

+
∫∫

B
Fν

3 (k,0)εν(k,0) dk1dk2

]
, (A1)

for the W3 invariant from Ref. [11]. It is written as an integral
of the Berry curvature,

Fν
α (k,t) = 1

2π i
εαβγ ∂β

(
sν(k,t)† ∂γ sν(k,t)

)
, (A2)

which involves the eigenvectors sν(k,t) and the quasienergies
εν(k,t) of the different bands of the Floquet-Bloch propagator
U (k,t). Both quantities are obtained from diagonalization of
U (k,t) as

U (k,t) =
n∑

ν=1

e−iεν (k,t)|sν(k,t)〉〈sν(k,t)|. (A3)

For the above expression to make sense, we assume continuous
quasienergies εν(k,t).

In Eq. (A2), εαβγ is the antisymmetric Levi-Civita tensor,
the indices α, β, γ run over permutations of the parameters
k1,k2,t of U (·), and summation over repeated indices is
implied. In all expressions, e.g., for Fν

3 , we choose t as the
third coordinate. The integration is over one period 0 � t � T

and over the two-dimensional Brillouin zone B. The invariant
W3(ε) depends on the quasienergy ε within a gap through the
second term, the boundary term at t = T , where the branch cut
of the complex logarithm logε(·) is chosen along the line from
zero through e−iε .

The above expression, which is the starting point for the
construction of the algorithm in Ref. [30], is not fully suitable
for the present study because it is formulated with respect to an
absolute reference point ε = 0. Instead, we seek an expression
where all quantities are computed relative to the quasienergy
ε of the gap under consideration.

To obtain this expression, note that the divergence of the
Berry curvature Fν

α (k,t) is nonzero only [35] at a degeneracy
point di of U (k,t). At such a point, it is ∂αF ν

α (ki ,ti) =
Cν(di)δ(k − ki ,t − ti), where Cν(di) = ∮

S(di )
Fν

α dSα with a
small surface around di . The quantity Cν(di) is an integer,
which can be interpreted as the topological charge of the
degeneracy point in band ν (cf. Ref. [25]). The net charge of
a degeneracy point is zero, that is Cν(di) = −Cμ(di) for the
two bands μ, ν that touch at di .

We can now replace the first term in Eq. (A1) by a sum
over all degeneracy points i. Each degeneracy point gives a
contribution of the form,

Cν(di)(ε
ν(ki ,ti) + �i) + Cμ(di)(ε

μ(ki ,ti) + �i), (A4)

where we can include a shift �i that cancels because of
Cν(di) = −Cμ(di). We choose �i such that εν(ki ,ti) + �i =
�(εν(ki ,ti) − ε)/(2π )	, with the ceiling function �·	 (i.e.,
rounding up to the next integer). Then, it is also εμ(ki ,ti) +
�i = �(εμ(ki ,ti) − ε)/(2π )	 because at a degeneracy point
εν(ki ,ti) and εμ(ki ,ti) differ by a multiple of 2π .

For the second term in Eq. (A1), we note that the factor
involving the quasienergies does not depend on k when ε is in a
gap. Therefore, it can be pulled out of the integral. Evaluation of
the complex logarithm, with the branch cut at the right position,
gives

i logε e−iεν (k,T ) − εν(k,T )

2π
=

⌈
ε − εν(k,T )

2π

⌉
. (A5)

For the third term in Eq. (A1), we have similarly that εν(k,0)
does not depend on k and, because of U (k,0) = 1, is in fact a
multiple of 2π .

Now we can sum the contribution of all degeneracy points
to one band ν, and find

Cν − Cν
0 =

∫∫
B

Fν
3 (k,T ) − Fν

3 (k,0) dk1dk2 =
dp∑
i=1

Cν(di),

(A6)

where Cν = ∫∫
B

Fν
3 (k,T ) dk1dk2 and Cν

0 =∫∫
B

Fν
3 (k,0) dk1dk2 are the Chern numbers of band ν at

the final time t = T and initial time t = 0.
Putting everything together, we arrive at

W3(ε) =
n∑

ν=1

[ dp∑
i=1

Nν(ε,di)C
ν(di)

+
⌈

ε − εν(k,T ) + εν(k,0)

2π

⌉
Cν

0

]
, (A7)

with

Nν(ε,di) =
⌈

εν(ki ,ti) − ε

2π

⌉
+

⌈
ε − εν(k,T )

2π

⌉
. (A8)
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Note that these expressions are invariant under shifts εν(·) �→
εν(·) + 2πm of the quasienergies of a band by multiples of
2π , as it should. We can especially choose εν(k,0) = 0, if we
prefer, for example, as in Fig. 1 in the main text. For the sake of
brevity, we also drop the last term and set Cν

0 = 0 in the main
text, as if all bands were topologically trivial at t = 0.

One might want to note the similarity of Eq. (A7) to Eq. (4.4)
in Ref. [30], which is the basis of the algorithm presented there.
Owing to this similarity, evaluation of the above expression,
and also of theZ2 invariants defined in the main text, is possible
with that algorithm.

Let us finally remark that the expression for the W3 invariant
given in Eq. (9) of Ref. [25] can be recovered from our
Eq. (A7) if we adopt the same ordering of the Floquet bands
in a “natural quasienergy Brillouin zone.” Specifically, we
have to (a) set εν(k,0) = 0, (b) impose the ordering condition,
εν(k,t) � εν ′

(k,t) for ν < ν ′, and (c) assume that εn(k,t) −
ε1(k,t) � 2π .

Now suppose that the gap at ε separates Floquet bands
m, m + 1, that is εm(k,T ) < ε < εm+1(k,T ). In this case,
Eq. (A7) reduces to

W3(ε) =
m∑

ν=1

Cν +
n∑

ν=1

dp∑
i=1

⌈
εν(ki ,ti) − ε

2π

⌉
Cν(di). (A9)

In this expression, the contributions from a degeneracy point di

that occurs between two bands 1 � μ < μ + 1 � n, that is for
εμ(ki ,ti) = εμ+1(ki ,ti), cancel: The ceiling function �·	has the
same value for ν ∈ {μ,μ + 1}, but Cμ(di) = −Cμ+1(di). Only
the degeneracy points that occur between bands 1, n, which
fulfill ε1(ki ,ti) = εn(ki ,ti) − 2π , contribute: Now �·	 = 0 for
ν = 1, but �·	 = 1 for ν = n. In Ref. [25], these degeneracy
points are called “zone-edge singularities.” We thus obtain,
under the above assumptions, an expression of the form,

W3(ε) =
m∑

ν=1

Cν +
dp∑
i=1

Cn(di), (A10)

which is, up to notational differences, Eq. (9) from Ref. [25].
We can thus recognize this equation as a special case of the
more general Eq. (A7).

APPENDIX B: CHIRAL SYMMETRY WITH A
MOMENTUM SHIFT kπ

In Eq. (2) chiral symmetry is defined with a k �→ k + kπ

momentum shift, which differs from the standard definition in
the literature [27–29],

H̃ch(k,t) = −SH̃ch(k,T − t)S−1, (B1)

that does not involve a momentum shift.
The origin of the momentum shift in Eq. (2) is a bipartite

even-odd sublattice symmetry assumed there. Specifically, we
consider the original lattice, whose unit cells are enumerated by
two indices (i,j ), as being composed of the sublattices of even
(i + j ≡ 0 mod 2) and odd (i + j ≡ 1 mod 2) unit cells. If
the chiral symmetry operator includes an alternating sign flip
for every second unit cell of the lattice, say for the odd unit
cells, the sign flip translates into the shift k �→ k + kπ for the
Bloch Hamiltonian.

We can now consider the Bloch Hamiltonian for a 2 × 2
unit cell that comprises four unit cells of the original lat-
tice. If we enumerate these four unit cells in the obvious
way, say in the order (2i,2j ), (2i + 1,2j ), (2i,2j + 1), (2i +
1,2j + 1), the new Bloch Hamiltonian has the 4 × 4 block
form,

Ĥ (k,t) =

⎛
⎜⎝

Hloc Hx Hy Hd

Hx Hloc Hd Hy

Hy Hd Hloc Hx

Hd Hy Hx Hloc

⎞
⎟⎠. (B2)

It contains diagonal blocks Hloc ≡ Hloc(t) for terms within
a unit cell, and the off-diagonal blocks Hx/y ≡ Hx/y(k,t)
for hopping along the two lattice axes and Hd ≡ Hd (k,t)
for diagonal hopping. For a Hamiltonian with only nearest-
neighbor hopping, the blocks Hd ≡ 0 vanish. The equality
of the diagonal and off-diagonal blocks incorporated into
Eq. (B2) follows from the translational symmetry of the
original Hamiltonian. Note that we do not assume additional
geometric symmetries, and allow for Hx �= Hy .

The chiral symmetry operator for Ĥ (k,t),

Ŝ =

⎛
⎜⎝

S

−S

−S

S

⎞
⎟⎠, (B3)

is block diagonal. The plus and minus signs of the entries
correspond to the alternating sign flip on the even-odd sub-
lattice structure. If the original Hamiltonian H (k,t) satisfies
Eq. (2), we have ŜĤ (k,t)Ŝ−1 = −Ĥ (k,T − t) for the new
Hamiltonian. Therefore, Ĥ (k,t) fulfills the standard chiral
symmetry relation (B1).

To obtain Ĥ (k,t) we have considered only translations by
an even number of sites on the original lattice. Ĥ (k,t) inherits
additional symmetries from translations by an odd number of
sites. The two symmetry operators are

T̂x =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, T̂y =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠. (B4)

Since [T̂x,T̂y] = 0, only one of the two symmetry operators
is needed below. Note that if we want to interpret T̂x/y as a
translation on the original lattice some prefactors ∼eiki must be
included, but since the prefactors cancel trivially in all relations
we have dropped them here. We have [T̂x/y,Ĥ (k,t)] = 0, but
Ŝ T̂x/y Ŝ−1 = −T̂x/y .

The above relations carry over to the Floquet-Bloch propa-
gator Û (k,t) associated with Ĥ (k,t). We have SÛ	(k,t)S−1 =
Û

†
	 (k,t), and [T̂x/y,Û	(k,t)] = 0.
Now let us assume that |ψ〉 is an eigenstate of Û	(k,t),

to the quasienergy ε. The state |ζ 〉 = Ŝ|ψ〉 is an eigenstate
of Û	(k,t) to the negative quasienergy −ε. Now if ε = 0,π

the states |ψ〉, |ζ 〉 are degenerate. For the original Hamilto-
nian, with symmetry relation (2), degenerate quasienergies
occur at momenta k, k + kπ . For the Hamiltonian Ĥ , with
symmetry relation (B1), degeneracies occur at the same
momentum k.
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C = 4
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π

ε
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FIG. 5. Same as Fig. 2, now for the periodically kicked version of the Harper model (4) as in Ref. [26] with J̃x = π . (Left panel) Included
are the Chern numbers of each band, and the W3 and Wch invariants in each gap. (Central and right panel) Bands and boundary states on a
semi-infinite strip along the x and y axes. In the right panel, we show only the gap at ε = π for better visibility. For both boundary configurations,
one pair of symmetry-protected topological boundary states exists in the gap at ε = π in accordance with Wch(π ) �= 0 in the left panel.

For time-reversal symmetry, where a similar situation oc-
curs at the IM, Kramers’ theorem implies the orthogonality
of the two degenerate states, and thus the symmetry pro-
tection of the corresponding topological phases. For chiral
symmetry, the eigenstates can be classified by means of the
symmetry operator T̂x (or T̂y), as T̂x |ψ〉 = ±|ψ〉. Now |ζ 〉
is also an eigenstate of T̂x , with the negative eigenvalue
T̂x |ζ 〉 = ∓|ζ 〉. This observation implies the orthogonality
of |ψ〉 and |ζ 〉.

Therefore, the situation for chiral symmetry is, although
for different reasons, analogous to the situation for time-
reversal symmetry: In both cases symmetry-protected topo-
logical phases exist because degenerate states occur only
in orthogonal pairs. We repeat that without the momen-
tum shift kπ no such argument is possible, and we should
not expect that a symmetry-protected topological phase ex-
ists in 2 + 1-dimensional systems with that type of chiral
symmetry.

To support these findings with additional numerical evi-
dence we show in Figs. 5 and 6 invariants and boundary states
of the periodically kicked Harper model introduced in Ref. [26]
for the study of topological phases with chiral symmetry. This
model is equal to the Harper model of Eq. (4), now with the
time dependence Jx(t) = J̃x

∑∞
m=−∞ δ(t − mT/2).

In Fig. 5, with parameters α = 1/3, J̃x = π , Jy = π/3 that
correspond to the central panel of Fig. 1 in Ref. [26], we
observe one pair of boundary states with opposite chirality in

accordance with the nonzero value Wch(π ) of the Wch invariant.
This pair exists independently of the boundary orientation.
Note that in the gaps between ε = 0,π , which have no special
significance for chiral symmetry, the number of unpaired
boundary states is given by the W3 invariant.

Having changed the parameter J̃x to J̃x = 3/2π in Fig. 6,
which corresponds to the right panel of Fig. 1 in Ref. [26],
gaps have closed and reopened. The values of the invariants
have changed, and now Wch(π ) = 0. Since Wch(π ) is a Z2

invariant we expect an even number of pairs of boundary states
with opposite chirality. Indeed, we observe two pairs on a
boundary along the x axis (central panel), and zero pairs on a
boundary along the y axis (right panel). The two pairs are not
protected, and could be annihilated by variation of additional
model parameters [26].

These results agree with Ref. [26], and with our statements
in the main text. In particular, we observe the existence or
absence of symmetry-protected boundary states in dependence
on the value of the Z2 invariant Wch(ε), but independently of
the boundary orientation.

APPENDIX C: DEGENERACY POINTS AND THE
KANE-MELE INVARIANT

In the time-reversal symmetric case we can define an
effective Brillouin zone E such that either k ∈ E or −k ∈ E .
Then, the sum over half of the degeneracy points in Eq. (6) for

W
3
=

0
W

ch
=

0

W
3 =

1

W 3
=

−1

C
=
1

C
=
1

C = −2

−π 0 π

kx

−π

0

π

ε

−π 0 π

ky

3
4π

π

5
4π

ε

FIG. 6. Same as Fig. 5, now for J̃x = 3/2π . (Central panel) On a boundary along the x axis, two pairs of boundary states with opposite
chirality exist in the gap at ε = π . The two pairs are not symmetry protected and can annihilate each other. (Right panel) On a boundary along
the y axis, no boundary state crossing the gap at ε = π exists. For both boundary configurations, the number of boundary states (taken modulo 2)
agrees with the value Wch(π ) = 0 in the left panel.
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the Wtr invariant in the main text can be performed by counting
exactly the degeneracy points di with ki ∈ E . Including the
time coordinate, these degeneracy points lie in the box BX =
E × [0,T ].

Now consider a single Kramers pair of bands 2ν − 1,
2ν. The sum over all degeneracy points of this pair can be
written as

dp/2∑
i=1

C2ν−1(di) + C2ν(di)

=
∫∫∫
BX

∂αF 2ν−1
α (k,t) + ∂αF 2ν

α (k,t) dk1dk2dt.

(C1)

With Gauss’s theorem we can convert this integral into an
integral over the surface of the box BX , which is the union of
the two faces F0 = E × {0}, FT = E × {T } and the cylinder
C = ∂E × [0,T ] that contains the points on the boundary curve
∂E of E .

With Stokes’ theorem, the integral of the Berry curvature
F 2ν−1

α , F 2ν
α over C can be converted further into a line integral

of the Berry connection Aα,2ν−1, Aα,2ν−1 over the two curves
∂E × {0}, ∂E × {T }. Recall that in terms of the eigenvectors of
U	(·), it is Aα,ν(k,t) = 1

2πi
[sν(k,t)]†∂αsν(k,t). Since the Berry

connection is gauge dependent, we here have to impose a time-
reversal constraint on ∂E , namely,

s2ν−1(−k,t) = 
 s2ν(k,t),

s2ν(−k,t) = −
 s2ν−1(k,t),
(C2)

to obtain the Kane-Mele invariants in a manner analogously
to Ref. [36]. Note that the s(·) in this expression are the
eigenvectors of the time-symmetrized propagator U	(·), such
that the time argument t is unchanged while k is flipped.

We arrive at the relation (everything taken modulo two),

dp/2∑
i=1

C2ν−1(di) + C2ν(di)

≡
∫∫
E

F 2ν−1
α (k,T ) + F 2ν

α (k,T ) dk1dk2

−
∫

∂E
Aα,2ν−1(k,T ) + Aα,2ν(k,T ) dkα

−
∫∫
E

F 2ν−1
α (k,0) + F 2ν

α (k,0) dk1dk2

+
∫

∂E
Aα,2ν−1(k,0) + Aα,2ν(k,0) dkα

≡ KMν(T ) − KMν(0),

(C3)

and recognize [36] the Kane-Mele invariants KMν(0) and
KMν(T ) of the Kramers pair 2ν − 1, 2ν at t = 0 and t = T .
Therefore, the Kane-Mele invariants can be expressed as the
sum over half of the degeneracy points of each Kramers
pair. This observation justifies the corresponding statements
in the main text. For the sake of brevity of the presentation,
we there assume KMν(0) = 0, as if the Kramers pairs were
topologically trivial at t = 0.

δ1

δ2δ3 a1

a2

a3

b1

b2

b3 M0

M1

M2

M3

FIG. 7. Primitive lattice vectors ai and nearest-neighbor vectors
δi on a hexagonal lattice. Primitive lattice vectors point along the
direction of zigzag boundaries (dashed, along a1), and nearest-
neighbor vectors along the direction of armchair boundaries (dotted,
along δ3). Also shown are the primitive reciprocal lattice vectors
bi , together with red circles that indicate the IM M0, . . . M3 in the
Brillouin zone.

APPENDIX D: PARTICLE-HOLE SYMMETRIC
BOUNDARY STATES ON A HEXAGONAL LATTICE

For a hexagonal lattice as in Fig. 7, zigzag boundaries occur
along directions given by primitive lattice vectors a1, a2, a3.
Armchair boundaries occur along directions given by nearest-
neighbor vectors δ1, δ2, δ3. Note that the primitive translation
vector for an armchair boundary is 3δi . In contrast to, say, the
situation for a square lattice, both boundary types exist in three
inequivalent orientations. This necessitates the more detailed
analysis provided here.

To evaluate Eq. (9) for each boundary, we first need to
project the IM M1,M2,M3 onto the boundary direction (the
projection of M0 results in zero). For zigzag boundaries, we
have ai · Mi = 0, and ai · Mm = π for the remaining two IM
with m �= i. For armchair boundaries we obtain essentially the
same result: 3δi · Mi = 0, and 3δi · Mm = π for m �= i. Note
that all values are given modulo 2π . We recognize that for
each boundary orientation two IM will contribute in Eq. (9)
for given momentum ka = 0,π .

To evaluate Eq. (9) we further need to determine the
contribution Nν(ε,di) Cν(di) from unpaired degeneracy points
at each IM M0, . . . ,M3. For the model from Eq. (10), in
the situation of Fig. 4 and Figs. 8 and 9, these values
are given in Table I. They have been determined from the
propagator U (k,t) for 0 � t � T , using the algorithm from
Ref. [30].

With the information from Table I we can now immediately
evaluate Eq. (9). In the gap at ε = π we obtain the Wph invari-
ants given in the first column of Table II. Note that because
of W3(π ) = 0 we have W 0

ph(π ) = Wπ
ph(π ). Comparison with

Figs. 8 and 9, where the boundary states are shown explicitly,
confirms the correctness of the Wph invariants.
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−π
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FIG. 8. Initial boundary states of Hph(t = 0) (top row) and Floquet-Bloch boundaries states at t = T (bottom row) for the particle-hole
symmetric model (10), on zigzag boundaries along the lattice vectors a1, a2, a3 (from left to right). Shown are the energies E(kz

i ) or the
quasienergies ε(kz

i ) as a function of the respective momentum kz
1, kz

2, kz
3.

In the gap at ε = 0 another complication arises due to the
possibility of boundary states for t = 0. In the upper rows
of Figs. 8 and 9 we show the boundary spectrum of the
initial Hamiltonian Hph(t = 0), which is the starting point for
the subsequent evolution described by U (·). Depending on
the boundary orientation, Hph(t = 0) can possess a boundary
state at ε = 0. In the present situation, where Hph(t = 0) is
particle-hole and (as a real-valued Hamiltonian) time-reversal
symmetric, the dispersion of the boundary state is perfectly
flat. Recall that U (k,t), on the other hand, is not time-reversal
symmetric according to Eq. (5).

The initial boundary states must be included in Eq. (9), just
as we had to do for the W3 invariant in Eq. (A7) if the bands
are not topologically trivial at t = 0. Any initial boundary

state changes the corresponding Wph invariant by one, that is,
through counting modulo two, flips its value between zero and
one.

The number of initial boundary states N (t = 0) in Table II
can be taken from the upper rows in Figs. 8 and 9. The
contribution from the degeneracy points of U (k,t) is given in
the third column of this table. Summation of both numbers
now gives the Wph invariants for the gap at ε = 0. Note
that because of W3(0) = 0 we have again W 0

ph(0) = Wπ
ph(0).

Comparison with Figs. 8 and 9 confirms the correctness of the
Wph invariants, also in cases where initial boundary states have
to be taken into account.

In the main text, for Fig. 4, we have selected two boundaries
without initial boundary states (namely, the third column from

−π 0 π

ka1

−3

0

3

E

−π 0 π

ka2

−3

0

3

E

−π 0 π

ka3

−3

0

3

E

−π 0 π

ka1

−π

0

π

ε

−π 0 π

ka2

−π

0

π

ε

−π 0 π

ka3

−π

0

π

ε

FIG. 9. Same as Fig. 8, now for armchair boundaries along the nearest-neighbor vectors δ1, δ2, δ3, and momenta ka
1 , ka

2 , ka
3 .
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TABLE I. Values of Nν(ε,di) Cν(di) for Figs. 8 and 9.

ε M0 M1 M2 M3

0 0 0 1 1
π 0 0 1 1

Fig. 8 and the first column in Fig. 9), which allowed for a
straightforward discussion. With the present results for all
boundaries, we recognize the full complexity associated with
the “weak” topological phase.

For the gap at ε = π , initial boundary states do not play
a role [they simply do not exist outside of the spectrum
of Hph(t = 0)]. According to the 0-π pattern of the projec-
tions ai · Mm or δi · Mm, we expect that in a “weak” phase
symmetry-protected boundary states exist for two out of three
boundary orientations. This is true for both zigzag and armchair
boundaries in Figs. 8 and 9.

For the gap at ε = 0, the “two-out-of-three” rule does
not apply because of the initial boundary states. For arm-

TABLE II. Wph invariants for Figs. 8 and 9.

W
0,π
ph (π ) N (t = 0)

∑
NνCν W

0,π
ph (0)

a1 0 1 0 0
a2 1 0 1 1
a3 1 0 1 1
3δ1 0 0 0 0
3δ2 1 1 1 0
3δ3 1 1 1 0

chair boundaries, symmetry-protected boundary states do not
occur for any boundary orientation. For zigzag boundaries,
symmetry-protected boundary states occur for every boundary
orientation. We like to stress that this effect is not a simple
consequence of the different geometry of armchair and zigzag
boundaries. In particular, as Figs. 8 and 9 show, no immediate
relation between the appearance of boundary states at t = 0 and
at t = T exists. Unless one computes the full Wph invariants,
which keep track of the creation and annihilation of symmetry-
protected states during time evolution, the entire situation
remains obscure.
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We propose a universal driving protocol for the realization of symmetry-protected topological phases in
2 + 1-dimensional Floquet systems. Our proposal is based on the theoretical analysis of the possible symmetries
of a square lattice model with pairwise nearest-neighbor coupling terms. Among the eight possible symmetry
operators we identify the two relevant choices for topological phases with either time-reversal, chiral, or
particle-hole symmetry. From the corresponding symmetry conditions on the protocol parameters, we obtain
the universal driving protocol where each of the symmetries can be realized or broken individually. We
provide specific parameter values for the different cases, and demonstrate the existence of symmetry-protected
copropagating and counterpropagating topological boundary states. The driving protocol especially allows us
to switch between bosonic and fermionic time-reversal symmetry, and thus between a trivial and nontrivial
symmetry-protected topological phase, through continuous variation of a parameter.

DOI: 10.1103/PhysRevB.99.245102

I. INTRODUCTION

Topological phases have become a central topic of con-
densed matter research over the last few decades [1–6].
Recently, topological phases in periodically driven sys-
tems [7–13] have attracted increasing interest, including the
anomalous Floquet topological insulators that exhibit a non-
trivial topological phase although each of the individual Flo-
quet bands is topologically trivial [14]. Photonic lattices of
evanescently coupled waveguides are especially well suited
for the realization of these new topological phases [15,16]. In
photonic lattices, periodic driving is replaced by spatially pe-
riodic modulation of the interwaveguide distance, and thus of
the coupling between adjacent waveguides, such that one spa-
tial coordinate represents the time axis of a 2 + 1-dimensional
Floquet system [17,18]. In this way, direct implementation of
driving protocols for (anomalous) Floquet topological insula-
tors becomes possible [19,20].

In this paper, we propose a universal driving protocol
for symmetry-protected Floquet topological phases. Presently,
most of the theoretical proposals for the realization of such
phases [21–32] focus on solid state applications and utilize
mechanisms that are not well-suited for a photonic lattice im-
plementation, involving, e.g., spin degrees of freedom [25,30],
complicated driving schemes [26,27], or complex gauge po-
tentials [21–24,27]. The driving protocol proposed here, in
contrast, has minimal complexity: With only six steps per
period and simple pairwise couplings between adjacent sites
of a square lattice it can realize Floquet topological phases
with time-reversal, chiral, or particle-hole symmetry. Given
its minimal complexity, the protocol is not only of intrinsic
theoretical value, but allows for immediate experimental ob-
servation of these symmetry-protected topological phases in
photonic systems.

*Author to whom any correspondence should be addressed;
alvermann@physik.uni-greifswald.de

The starting point for our construction is the analysis of
the possible symmetry operators for a driving protocol with
only pairwise couplings. On a square lattice, eight distinct
symmetry operators have to be considered, but only two of
them can lead to driving protocols with symmetry-protected
topological phases.

The symmetry analysis provides us with the general
form of the driving protocol, which appears in two types:
a protocol A that supports time-reversal symmetry, and
a protocol B that supports particle-hole symmetry. These
two types of the universal driving protocol cover all four
symmetry combinations with nontrivial 2 + 1-dimensional
topological phases. To verify the universality of the pro-
tocol we provide specific parameter sets according to
the conditions enforced by the different symmetries. The
symmetry-protected Floquet topological phases realized with
these parameters are analyzed by means of symmetry-
adapted topological bulk invariants [25,26,32], and trans-
port via counterpropagating boundary states is demonstrated
numerically.

The structure of the paper is as follows. In Sec. II, we define
the square lattice model that is the basis of the present study. In
Sec. III, we identify the eight types of symmetry operators that
are compatible with the assumptions made in the construction
of the square lattice model, analyze which of these operators
can be used to implement time-reversal, chiral, or particle-
hole symmetry, and determine the resulting constraints on
the driving protocol. The universal driving protocol is then
introduced and investigated in Secs. IV–VII, once with a focus
on time-reversal symmetry (protocol A in Secs. V and VI),
once for particle-hole symmetry (protocol B in Sec. VII). We
conclude in Sec. VIII. The appendices detail the pseudospin
interpretation of our construction (Appendix A), explore the
differences between parallel and antiparallel diagonal cou-
plings (Appendixes B and C), and explain why a universal
driving protocol with a two-site unit cell should not exist
(Appendix D).
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A B

C D

A→B C→D

(a)

A↗C B↘D

(b)

C↗A D↘B

(c)

C↘A D↗B

(d)

A↘C B↗D

(e)

A↗C B↗D

(f)

A↘C D↘B

(g)

A→B D→C

(h)

FIG. 1. Eight examples of patterns of compatible pairwise couplings in the square lattice model. The couplings are indicated by lines
between adjacent sites. The labels below each pattern follow the notation in the text, with the four sites A (filled red), B (filled blue), C (open
red), and D (open blue) as shown in the leftmost pattern.

II. SQUARE LATTICE MODEL

For the construction of the driving protocol, we start with
a square lattice with a four-element unit cell, which is the
minimal choice for the realization of topological phases with,
e.g., time-reversal symmetry (see Appendix D for the case of a
two-element unit cell). The lattice sites are located at positions
r = iax + jay + δs, with i, j ∈ Z and s ∈ {A, B,C, D}. Here,
ax = (2, 0)t , ay = (0, 2)t are the primitive vectors of lattice
translations, and δA = (0, 0)t , δB = (1, 0)t , δC = (1, 1)t , δD =
(2, 1)t enumerate the four sites in the unit cell (see Fig. 1).
This enumeration is purely a matter of convention, but the
present choice will prove useful later. All vectors are mea-
sured as multiples of some unspecified unit of length.

On the square lattice, pairwise coupling of neighbor-
ing lattice sites can occur along four directions: hori-
zontal [δ→ = (1, 0)], vertical [δ↑ = (0, 1)], diagonal [δ↗ =
(1, 1)], and antidiagonal [δ↘ = (1,−1)]. This gives 4 × 4 =
16 translational invariant pairwise coupling terms t̂s◦s′ =∑

r=iax+ jay
|r + δs + δ◦〉〈r + δs|, with s ∈ {A, B,C, D} and

◦ ∈ {↘,→,↗,↑}. In essence, t̂s◦s′ moves a particle (repre-
senting, e.g., light in a waveguide) from sites of type s along
direction ◦ to sites of type s′. The Hermitian conjugate t̂†

s◦s′
operates in the opposite direction, from s′ to s. Note that s′
is determined by s and ◦, and included for notational clarity
only. In addition to the pairwise coupling terms, there are four
on-site terms n̂s = ∑

r=iax+ jay
|r + δs〉〈r + δs|, which involve

a single type s of lattice sites.
Note that we do not use the language of second quanti-

zation but the simpler bra-ket notation. In particular, we do
not fix the particle statistics, as encoded by the (anti) com-
mutation relations of creation and annihilation operators in
second quantization, and consider both fermionic and bosonic
symmetries for the driving protocol.

The general square lattice Hamiltonian reads

H (t ) =
∑

s ∈ {A, B,C, D}
◦ ∈ {↘, →,↗, ↑}

Js◦s′ (t ) t̂s◦s′ + Js◦s′ (t )∗ t̂†
s◦s′

+
∑

s∈{A,B,C,D}
�s(t ) n̂s . (1)

It includes 4 × 4 + 4 = 20 time-dependent parameters Js◦s′ (t )
(for pairwise couplings) and �s(t ) (for on-site potentials). All
parameters, and so H (t ) itself, will be periodic in time, with
period T .

In the Hamiltonian (1), not all parameter combinations are
admissible. Instead, we impose a compatibility constraint on

the pairwise couplings: terms that involve the same lattice site
cannot occur together at the same time. Therefore Js◦s′ (t ) �=
0 requires Jp•p′ (t ) = 0 for any other coupling with {p, p′} ∩
{s, s′} �= ∅. Note that this compatibility condition is fulfilled
precisely if the two operators t̂s◦s′ , t̂p•p′ commute. A further
restriction concerns pairwise couplings that “cross each other”
on the lattice, which occurs only for diagonal couplings. For
example, JA↗C (t ), JD↘B(t ) cannot both be nonzero at the same
t . The on-site potentials �s(t ) are not restricted, and can occur
together with any pairwise coupling.

The combination of compatible pairwise couplings gives a
total of 12 diagonal + 4 horizontal + 4 vertical = 20 coupling
patterns, eight of which are depicted in Fig. 1. For every
coupling pattern, at most two parameters Js◦s′ (t ) of the Hamil-
tonian are nonzero. The driving protocol will consist of a
cyclic sequence of these coupling patterns, which are selected
according to the symmetry analysis in the next section.

In the introduction, we have motivated the universal driving
protocol also with the possibility of a photonic lattice imple-
mentation. In such an implementation, lattice sites correspond
to waveguides. Since coupling of waveguides is achieved
by reducing their distance locally [18], spatially complex
coupling patterns are not easily realized experimentally and
thus should be avoided in the driving protocol. This includes
the coupling of more than two or of nonadjacent waveguides,
and results in the constraints imposed on the Hamiltonian
above.

III. SYMMETRY OPERATORS AND
SYMMETRY CONDITIONS

The symmetry relations of time-reversal, chiral, and
particle-hole symmetry, as specified further below, involve
a transformation SH (t )S−1 of the Hamiltonian with a
translational-invariant operator S. The symmetry relations
can only hold if the transformed Hamiltonian has the same
structure as the original Hamiltonian, and is again composed
only of pairwise couplings and on-site potentials.

This observation restricts the possible symmetry operators
S in a similar way to the coupling patterns in Fig. 1. In partic-
ular, every operator can only be composed of nonoverlapping
pairwise terms t̂s◦s′ or on-site terms n̂s. Otherwise, with over-
lapping terms, the transformed Hamiltonian SH (t )S−1 would
contain couplings between three or more lattice sites. We do
not, however, have the restriction that pairwise terms cannot
cross.
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FIG. 2. Graphical representation of the eight symmetry operators S1, . . . , S8 for the Hamiltonian (1). The arrows in the upper row indicate
how each symmetry operator maps a site onto itself, or onto one of its eight neighbors. The lines in the lower row indicate the compatible
pairwise coupling terms.

In total, there are the eight possible symmetry operators
S1, . . . , S8 shown in Fig. 2, not counting rotations, reflections,
or translations. These operators map every lattice site onto
exactly one other lattice site, either the same (e.g., for S1) or a
different one (e.g., for S8).

Each symmetry operator is compatible with the pairwise
couplings shown in the lower half of Fig. 2. Exactly these cou-
plings are mapped again to couplings between adjacent sites
in the transformation SH (t )S−1 with the respective symmetry
operator. The remaining pairwise couplings are mapped onto
coupling terms that do not occur in the Hamiltonian, and must
be excluded.

Two observations are immediate. First, if the graph
spanned by the compatible pairwise couplings in Fig. 2 is
disconnected, such that propagation is restricted to a lower-
dimensional subset of the lattice, nontrivial 2 + 1-dimensional
topological phases cannot exist. The symmetry operators S5

and S7 restrict propagation to quasi-one-dimensional stripes,
S4 and S6 to finite regions. Only the operators S1, S2, S3,
S8 allow for propagation on the entire two-dimensional lat-
tice. Second, among these four operators, S1, S2, S3 involve
isolated on-site terms n̂s. Such terms necessarily square to
(ξ n̂s)(ξ n̂s)∗ = |ξ |2n̂s for any ξ ∈ C, which is incompatible
with nonunitary symmetries that require SS∗ = −1 (e.g.,
fermionic time-reversal symmetry with �2 = −1). These two
observations leave us with the operator S8 for the construction
of the universal driving protocol. Note that S8 is compatible
with the symmetry operator S1, which will allow us to imple-
ment an additional particle-hole symmetry once the protocol
has been constructed with S8.

The unitary operators S1 and S8 can be specified by two
2 × 2 unitary matrices σ , τ in the form

S1,8 = σAA n̂A + σBB n̂B + σBA t̂A→B + σAB t̂†
A→B

+ τCC n̂C + τDD n̂D + τDC t̂C→D + τCD t̂†
C→D , (2)

where σ , τ have only diagonal (for S1) or only off-diagonal
(for S8) entries. The mnemonic form of this equation is

“S1,8 =
(|A〉

|B〉
)

· σ

(〈A|
〈B|

)
+

(|C〉
|D〉

)
· τ

(〈C|
〈D|

)
” . (3)

This expression suggests a pseudospin interpretation of the
“red” and “blue” sublattice structure depicted in Figs. 1 and 2,

which is detailed in Appendix A. For the following consider-
ations, this interpretation is not needed.

The operator S8 is compatible with ten pairwise coupling
terms, as depicted in Fig. 2, and all diagonal terms n̂s. These
fourteen terms change according to Table I under a transfor-
mation with the operator S1 or S8. These transformation rules,
together with the symmetry conditions specified next, deter-
mine the constraints on the parameters of the Hamiltonian for
the respective symmetry, and thus the structure of the driving
protocol.

Inspection of Figs. 1 and 2 shows how a transformation
with the symmetry operators S1 and S8 affects different cou-
pling patterns. The symmetry operator S1 maps every pattern
onto itself. For horizontal couplings, the symmetry operator
S8 leaves pattern (a) invariant but is not compatible with
pattern (h). The remaining two horizontal patterns not shown
in Fig. 1, as well as all four patterns with vertical couplings,
are also incompatible with S8. For patterns with perpendic-
ular diagonal couplings, S8 swaps patterns (b) ↔ (e) and
(c) ↔ (d). For patterns with parallel diagonal couplings, S8

leaves pattern (f) invariant while pattern (g) is mapped onto

TABLE I. Transformation T �→ S1T S−1
1 and T �→ S8T S−1

8 of the
fourteen terms T used in the construction of the driving protocol.

T S1T S−1
1 S8T S−1

8

t̂A→B σ ∗
AAσBB t̂A→B σ ∗

BAσAB t̂†
A→B

t̂C→D τ ∗
CCτDD t̂C→D τ ∗

DCτCD t̂†
C→D

t̂A↗C σ ∗
AAτCC t̂A↗C σ ∗

BAτDC t̂B↗D

t̂A↘C σ ∗
AAτCC t̂A↘C σ ∗

BAτDC t̂B↘D

t̂C↗A σAAτ ∗
CC t̂C↗A σBAτ ∗

DC t̂D↗B

t̂C↘A σAAτ ∗
CC t̂C↘A σBAτ ∗

DC t̂D↘B

t̂B↗D σ ∗
BBτDD t̂B↗D σ ∗

ABτCD t̂A↗C

t̂B↘D σ ∗
BBτDD t̂B↘D σ ∗

ABτCD t̂A↘C

t̂D↗B σBBτ ∗
DD t̂D↗B σABτ ∗

CD t̂C↗A

t̂D↘B σBBτ ∗
DD t̂D↘B σABτ ∗

CD t̂C↘A

n̂A n̂A n̂B

n̂B n̂B n̂A

n̂C n̂C n̂D

n̂D n̂D n̂C
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TABLE II. Conditions on pairwise couplings and on-site potentials for time-reversal, chiral, and particle-hole symmetry, which follow
from Eqs. (4), (6), and (8) and the corresponding choice of the S8 or S1 operator. The top and bottom row of each segment of the table must be
identical. The sign in the first two relations for time-reversal and particle-hole symmetry with � = KS8 coincides with the sign of the relations
�2 = ±1, �2 = ±1. Note that we allow for Js◦s′ (t ) ∈ C but, due to Hermiticity of the Hamiltonian, have �s(t ) ∈ R.

time-reversal symmetry

JA→B(T − t ) JC→D(T − t ) JB↗D(T − t ) JB↘D(T − t ) JD↗B(T − t ) JD↘B(T − t ) �B(T − t ) �D(T − t )
±JA→B(t ) ±JC→D(t ) J∗

A↗C (t ) J∗
A↘C (t ) J∗

C↗A(t ) J∗
C↘A(t ) �A(t ) �C (t )

chiral symmetry

JA→B(T − t ) JC→D(T − t ) JB↗D(T − t ) JB↘D(T − t ) JD↗B(T − t ) JD↘B(T − t ) �B(T − t ) �D(T − t )
J∗

A→B(t ) J∗
C→D(t ) −JA↗C (t ) JA↘C (t ) −JC↗A(t ) JC↘A(t ) −�A(t ) −�C (t )

particle-hole symmetry with � = KS1

JA→B(t ) JC→D(t ) Js↗s′ (t ) Js↘s′ (t ) �A(t ) �B(t ) �C (t ) �D(t )
J∗

A→B(t ) J∗
C→D(t ) J∗

s↗s′ (t ) J∗
s↘s′ (t ) 0 0 0 0

particle-hole symmetry with � = KS8

JA→B(t ) JC→D(t ) JB↗D(t ) JB↘D(t ) JD↗B(t ) JD↘B(t ) �B(t ) �D(t )
∓JA→B(t ) ∓JC→D(t ) −J∗

A↗C (t ) −J∗
A↘C (t ) −J∗

C↗A(t ) −J∗
C↘A(t ) −�A(t ) −�C (t )

a different pattern with parallel couplings (cf. Appendix B).
Note that this behavior concerns only the geometric structure
of the coupling patterns. For the mapping of the coupling
parameters, Table I has to be consulted.

A. Time-reversal symmetry

The symmetry relation for time-reversal symmetry is

Htr (T − t ) = �Htr (t )�−1 , (4)

with an antiunitary symmetry operator � for which �2 =
±1. For our purposes, the operator � can be written in the
form � = KS8, with the unitary symmetry operator S8 from
the previous section and complex conjugation K . Then, the
condition �2 = ±1 is equivalent to σ ∗σ = τ ∗τ = ±1.

For fermionic time-reversal symmetry with �2 = −1, the
only choice is σ = ασy and τ = βσy, with the Pauli matrix
σy and two phases α, β ∈ C, |α| = |β| = 1. Without loss of
generality, we set α = β = 1 such that the transformation of
(anti)diagonal couplings in Table I involves the same sign. The
relevant operator S8 thus is

S8 = i(t̂A→B − t̂†
A→B) + i(t̂C→D − t̂†

C→D) , (5)

that is σAB = −σBA = τCD = −τDC = −i. Note that the opera-
tor does not involve on-site terms n̂s. The resulting conditions
on the parameters of the Hamiltonian following from Eq. (4)
are given in Table II. For bosonic time-reversal symmetry with
�2 = 1, we must have σ ∗σ = τ ∗τ = 1, and choose σ = τ =
σx with the Pauli matrix σx.

B. Chiral symmetry

The symmetry relation for chiral symmetry is

Hch(T − t ) = −
Hch(t )
−1 (6)

with a unitary operator 
 and, by convention, 
2 = 1. Note
that, in difference to unitarily-realized symmetries, this re-
lation contains a minus sign: the Hamiltonian anticommutes
with 
.

In the universal driving protocol, which will be constructed
based on the symmetry operator S8, chiral symmetry can be

implemented either by means of S1 or S8. Here, we deliber-
ately choose the operator S8 because of its overall significance
in the present constructions.

In order to obtain a symmetry-protected phase, chiral
symmetry must be realized as a bipartite even-odd sublattice
symmetry, where the operator 
 includes a minus sign on
every second unit cell [27,32]. With this alternating sign, we
have


 =

⎡
⎢⎢⎢⎣

∑
r = ia1 + ja2

s ∈ {A, B,C, D}

(−1)i+ j |r + δs〉〈r + δs|

⎤
⎥⎥⎥⎦S8 (7)

as a modification of the translational-invariant operator S8.
The alternating sign depends on our choice of the unit cell
of the square lattice, which here consists of the sites A, B, C,
and D in Fig. 1. This is the natural choice when dealing with
the symmetry operator S8.

The condition 
2 = 1 is equivalent to S2
8 = 1, that is σ 2 =

τ 2 = 1, since the alternating sign cancels. As for fermionic
time-reversal symmetry, we choose σ = τ = σy with the Pauli
matrix σy. Note that this choice gives 
2 = 1 here, but �2 =
−1 for time-reversal symmetry due to the antiunitarity of �.
The resulting conditions on the parameters of the Hamiltonian
following from Eq. (6) are again given in Table II.

C. Particle-hole symmetry

The symmetry relation for particle-hole symmetry is

Hph(t ) = −�Hph(t )�−1 , (8)

with an antiunitary operator � for which �2 = ±1. Note that
the same time argument t appears on both sides of the relation.

For �2 = 1, use of the operator S8 (with σ = τ = σx)
forbids the appearance of horizontal pairwise couplings A →
B and C → D in the driving protocol according to the con-
straints listed in Tab. II. Then, the lattice decouples into
two independent (“red” and “blue”) sublattices. To avoid this
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situation, we use the operator S1 for particle-hole symmetry
with �2 = 1.

We now choose σ = −τ = σz with the Pauli matrix σz,
such that

S1 = nA − nB − nC + nD , (9)

or σAA = −σBB = −τCC = τDD = 1. The resulting conditions
on the parameters of the Hamiltonian following from Eq. (8),
especially �s(t ) = 0 for all on-site potentials, are given in
Table II.

For �2 = −1, we have to use the operator S8 according
to the analysis in Sec. III. We can choose σ = τ = σy as
for fermionic time-reversal symmetry. Now, however, the
symmetry relation (8) contains the same time argument. The
resulting conditions on the parameters of the Hamiltonian are
again given in Table II.

IV. UNIVERSAL DRIVING PROTOCOL: PRINCIPAL
CONSIDERATIONS

The driving protocols considered here consist of n consec-
utive steps during which the Hamiltonian is constant. Since
we can always multiply the Hamiltonian in one step by a
number proportional to the step length, we can assume that
all steps have equal length δt = T/n, where T is the period of
the driving protocol.

Due to the constraints imposed on the Hamiltonian in
Sec. II, each step of the driving protocol is given by one
pattern of compatible pairwise couplings, several of which
are shown in Fig. 1. While there remains some ambiguity in
the construction of the protocol, the selection of the coupling
patterns, and their arrangement into the n-step sequence, has
to be carried out according to the symmetry analysis from
Sec. III. In particular, only coupling patterns that are com-
patible with the symmetry operator S8 can be chosen in the
construction.

The principal distinction between the two protocols that
will be introduced in Secs. V and VII arises from the
time argument in the symmetry relations (4) and (8). For
time-reversal symmetry, where different time arguments t
and T − t appear on either sides of the symmetry rela-
tion (4), in principal any pattern “(p)” compatible with S8

can be used in the protocol if its counterpart “S8 (p) S−1
8 ”

appears at T − t . Exploration of the different combina-
tions quickly shows that only the four patterns (b)–(e) with
perpendicular diagonal couplings give rise to a nontriv-
ial driving protocol with a small number of steps. In
fact, it is not surprising that perpendicular couplings
should be used since the protocol has to support counter-
propagating boundary states for time-reversal symmetry (see
also Appendix B). Therefore the driving protocol for time-
reversal symmetry (“protocol A”) will be constructed out
of the four patterns (b)–(e) in Fig. 1 with perpendicu-
lar diagonal couplings, in combination with the horizontal
pattern (a).

For particle-hole symmetry, where the same time argument
t appears on both sides of the symmetry relation (8), only
patterns that are mapped onto themselves by S8 can be used.
Therefore the driving protocol for particle-hole symmetry
(“protocol B”) will be constructed out of patterns with par-
allel diagonal couplings (pattern (f) in Fig. 1, or patterns

(f1)–(f4) in Fig. 12 in the Appendix), in combination with the
horizontal pattern (a).

V. UNIVERSAL DRIVING PROTOCOL A:
TIME-REVERSAL SYMMETRY

A. Construction of the protocol

According to the previous section, we construct the driving
protocol A for time-reversal symmetry out of the four perpen-
dicular diagonal coupling patterns (b)–(e) from Fig. 1. How
these patterns should be arranged into a sequence can now
be deduced from the mappings induced by the operator S8.
If we start the sequence with, say, pattern (b), the sequence
has to end with pattern (e) since S8 swaps (b) ↔ (e). If the
second step in the sequence is pattern (c), the penultimate
step in the sequence must be pattern (d) since S8 swaps (c) ↔
(d). Therefore only two different four-step sequences qualify
for driving protocol A: (b) → (c) → (d) → (e) and (b) →
(d) → (c) → (e). Starting with different patterns results in
equivalent sequences.

In these two four-step sequences, the “red” and “blue”
sublattice of the square lattice remain decoupled, as can be
deduced from Fig. 1. Therefore a horizontal (or, equivalently,
vertical) coupling pattern has to be added to the sequence.
The only pattern of this type compatible with S8 is pattern
(a) in Fig. 1. In order to allow for time-reversal or chiral
symmetry, pattern (a) has to appear in symmetric position in
the sequence: (i) as the central step 3 of a five-step sequence,
(ii) as steps 1, 6 or (iii) steps 2, 4 of a six-step sequence.
Taking into account that according to Table I fermionic time-
reversal symmetry changes the sign of the parameters JA→B,
JC→D of pattern (a), only the last possibility (iii) results in a
nontrivial addition to the sequence.

To summarize, we have the two variants of driving pro-
tocol A shown in Fig. 3. The protocol is constructed out of
the first five coupling patterns in Fig. 1, and according to
our construction will be able to support either time-reversal,
chiral, or particle-hole symmetry. In each step, the coupling
patterns can be combined with arbitrary on-site potentials
�s(t ) without changing the structure of the driving protocol or
violating the constraints on the Hamiltonian. This gives a total
of 6 × (2 + 4) = 36 parameters, which are further restricted
by the conditions in Table II if the respective symmetry is
enforced.

B. Perfect coupling

“Perfect coupling” denotes the situation where all on-site
potentials �s ≡ 0, and the pairwise couplings in a given step
are either both Js◦s′ ≡ 0 or |Js◦s′ | ≡ Jp, with Jp = π/(2 δt )
(here, for six steps, Jp = 3π/T ). The sign of the Js◦s′ param-
eters must be chosen according to Table II for the respective
symmetry.

At perfect coupling, pairwise coupling fully transfers the
amplitude on one lattice site to an adjacent lattice site. The
driving protocol reduces to a sequence of jumps that follow
the geometric shapes of the coupling patterns.

The resulting patterns of motion for the two variants of
driving protocol A are shown in Fig. 4. The difference between
the two variants is only the coupling in the horizontal steps
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FIG. 3. Two variants of the driving protocol A, which consist of a cyclic six-step sequence of the first five coupling patterns (a)—(e) from
Fig. 1. (Left) In this variant, the protocol consists of the sequence (b) → (a) → (c) → (d) → (a) → (e). (Right) In this variant, the protocol
consists of the sequence (b) → (a) → (d) → (c) → (a) → (e). As shown in the text, both variants are equivalent.

2 and 5, which is equal to ±Jp for the “left” variant and
equal to zero for the “right” variant. A particle in the bulk
moves in a closed loop, while a particle at the boundary is
transported by two sites in one cycle. The direction of motion
depends on the starting site (“red” or “blue”). This pattern
of motion gives rise to a nontrivial topological phase, and to
a symmetry-protected pair of boundary states with opposite
chirality.

Note that when we introduce boundaries, either here or for
Figs. 5–9 below, we always choose boundaries that do not sep-
arate sites within one unit cell, and thus are compatible with
the symmetry operators S1 and S8. As in Fig. 4, boundaries
along the x direction (y direction) are parallel to the translation
vector ax (ay).

For perfect coupling, scattering between boundary states
with opposite chirality is strictly forbidden by the construction
of the protocol, rather than by a topological constraint. In
particular, a state starting on a “red” (“blue”) site always
ends up on a “red” (“blue”) site after a full cycle. Fully
developed symmetry-protected phases require general param-
eters in the driving protocol, and will be studied in the next
section.

C. Equivalence of driving protocols

The patterns of motion in Fig. 4 suggest that the two
variants of the driving protocol A are in fact equivalent. As we
show now, the equivalence holds not only at perfect coupling
but in general.

The Floquet propagator U (T ), over one period of the
driving protocol, is a simple product

U (T ) = U6U5U4U3U2U1 (10)

of the Floquet propagators Uk = exp[−iδtHk] for each of the
steps k = 1, . . . , 6, with constant Hamiltonian H (t ) ≡ Hk for
(k − 1)δt � t � kδt in step k.

Now let S = t̂A→B + t̂†
A→B + t̂C→D + t̂†

C→D be the unitary
operator that swaps the “red” and “blue” sublattice (we have
S = S+ and S2 = 1). In fact, S is a special case of the sym-
metry operator S8, and S = −iU2 = −iU5 at perfect coupling
JA→B = JC→D = Jp.

Inserting S into the Floquet propagator, we have the alter-
native expression

U (T ) = U6 (U5S†) (SU4S†) (SU3S†) (SU2)U1 . (11)

x

y

x

y

FIG. 4. Patterns of motion during one cycle of driving protocol A at perfect coupling, on a finite lattice of 6 × 4 unit cells (one unit cell is
shown as a gray rhomboid). The lattice comprises only entire unit cells, such that the boundaries are compatible with the symmetry operators
S1 and S8. The left and right panel correspond to the two variants of the protocol in Fig. 3. For the “left” variant, the coupling in the horizontal
steps 2, 5 is equal to ±Jp, for the “right” variant it is equal to zero.
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−π 0 π

kx,y

−π

0

π

ε

−π 0 π

kx,y

−π

0

π

ε

FIG. 5. Dispersion of bulk (solid) and boundary (dashed) states
for perfect coupling with fermionic time-reversal (left) or chiral
(right) symmetry. Parameter values can be deduced from the corre-
sponding columns in Table III, setting J = Jp and � = 0. Here and
in Figs. 6–8. we show the states on one boundary of a semi-infinite
ribbon, and do not include the states on the opposite boundary.

Since S swaps the “red” and “blue” sublattice, it effectively
exchanges steps 3 and 4. On the other hand, the product
SU2 can be combined into a horizontal coupling step 2 with
modified parameters, as in

S U2

[
JA→B

JC→D

]
= −iU2

[
JA→B − Jp

JC→D − Jp

]
, (12)

where we include the coupling parameters explicitly.
Therefore the Floquet propagator U (T ), over one driving

period of the protocol, is identical (up to a sign (−i)2 = −1)
for both variants if the parameters of the horizontal coupling
steps 2, 5 are modified by ±Jp according to the above trans-
formation. Especially at perfect coupling, the parameters are
either Jp (“left” variant) or zero (“right” variant), as in Fig. 4.

Note that the “right” variant in Fig. 4 has a close connec-
tion to the driving protocol from Ref. [14], which realizes
Floquet topological insulators without additional symmetries.
Essentially, two copies of this protocol have to be combined
to obtain our driving protocol with symmetries. The details
of the combination, as well as the conditions on the protocol
parameters, follow from the symmetry analysis provided here.

D. Equivalence of coupling steps

Similar to the entire driving protocol, also the individual
steps can be written in different equivalent ways. To see how,
assume that the Hamiltonian in one step of duration δt is of
the form Hstep = J (t̂s◦s′ + t̂†

s◦s′ ) + �(n̂s − n̂s′ ), with J,� ∈ R.
The propagator for this step evaluates to

Ustep(J,�) = exp[−i δt Hstep]

= cos(δt ξ ) 1 − i
sin(δt ξ )

ξ
Hstep ,

(13)

with ξ = (J2 + �2)1/2. Essentially, this propagator is an
SU(2) rotation.

The right-hand side of Eq. (13) is periodic in the quantity
ξ . Therefore

Ustep(J,�) = (−1)m Ustep(αmJ, αm�) (14)

for every αm = 1 + (2mJp)/(J2 + �2)1/2 with m ∈ Z.
This relation becomes especially clear for � = 0,

where Ustep(J, 0) = (−1)m Ustep(J + 2mJp, 0). In particular,
for perfect coupling |J| = Jp = π/(2 δt ), where U (±Jp, 0) =
∓i(t̂s◦s′ + t̂†

s◦s′ ), negative and positive couplings J = ±Jp are
equivalent.

The equivalence of coupling steps with different param-
eters has important consequences, both conceptually (see
Sec. VI B) as well as practically for a photonic lattice im-
plementation. Implementation of negative couplings between
waveguides is a challenging procedure [33], but depending
on the symmetry negative couplings cannot be avoided in
the driving protocol (cf. Table II). Fortunately, any negative
coupling J<0 can be replaced by an equivalent positive cou-
pling αmJ from Eq. (14). This argument shows that negative
couplings are not a principal obstacle against a photonic lattice
implementation of the universal driving protocol.

VI. SYMMETRY-PROTECTED FLOQUET
TOPOLOGICAL PHASES

In 2 + 1 dimensions [28], fermionic time-reversal symme-
try (�2 = −1) leads to a symmetry-protected Z2 topologi-
cal phase with counterpropagating boundary states. Bosonic
time-reversal symmetry (�2 = 1) does not lead to a nontrivial
topological phase. Particle-hole symmetry with �2 = 1 al-
lows for generic Chern insulators without additional symme-
try protection, while particle-hole symmetry with �2 = −1
features a 2Z topological phase with an even number of
copropagating chiral boundary states.

TABLE III. Parameter sets for driving protocol A with time-
reversal (TRS), chiral (CS), or particle-hole symmetry (PHS). TRS
and CS have the two free parameters J , �. PHS with �2 = 1 has
two free parameters J , J ′. Perfect coupling corresponds to � = 0 and
J = J ′ = Jp, where Jp = 3π/T for a six-step protocol. Unspecified
parameters are zero, and the sign in step 5 of the TRS column is +
for bosonic and—for fermionic time-reversal symmetry. In Figs. 6–9,
we use the values of �, J, J ′ specified under “this work.”

TRS CS PHS �2 = 1

step 1 JA↗C = Jp JA↗C = Jp JA↗C = Jp

JB↘D = Jp JB↘D = Jp JB↘D = Jp

�A = �B = � �B = −�

�C = �D = −� �D = �

step 2 JA→B = J JA→B = J JA→B = J
JC→D = J JC→D = J JC→D = J

step 3 JC↗A = Jp JC↗A = Jp JC↗A = Jp

JD↘B = Jp JD↘B = Jp JD↘B = Jp

�A = �B = �

�C = �D = −�

step 4 JC↘A = Jp JC↘A = Jp JC↘A = Jp

JD↗B = Jp JD↗B = −Jp JD↗B = −Jp

�A = �B = �

�C = �D = −�

step 5 JA→B = ±J JA→B = J JA→B = J ′

JC→D = ±J JC→D = J JC→D = J ′

step 6 JA↘C = Jp JA↘C = Jp JA↘C = Jp

JB↗D = Jp JB↗D = −Jp JB↗D = −Jp

�A = �B = � �A = �

�C = �D = −� �C = −�

this J = 2π/T J = 2π/T J = 2π/T
work � = 3/T � = 9/T J ′ = π/T
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The symmetry-protected Z2 phase with fermionic time-
reversal symmetry is realized in the driving protocol A. Since
this constitutes the most interesting situation, we start with an
extended discussion of topological phases and boundary states
in this protocol. The 2Z phase with particle-hole symmetry
will be discussed after the introduction of protocol B in
Sec. VII.

At perfect coupling, the driving protocol A realizes a non-
trivial topological phase with counterpropagating boundary
states that follow the patterns of motion in Fig. 4. The bulk
bands and boundary state dispersions are shown in Fig. 5,
where we plot the Floquet quasienergies ε as a function of
momentum kx or ky along a boundary in x or y direction.
The quasienergies are computed from the eigenvalues e−iε of
the Floquet propagator after one driving period. At perfect
coupling, the bulk bands are flat at ε = 0 and a gap exists
at ε = π . The boundary states have linear dispersion, which
does not depend on the orientation of the boundary. Due
to symmetry, they occur in pairs of opposite chirality. Fur-
thermore, with zero potential �s ≡ 0, time-reversal or chiral
symmetry appears together with particle-hole symmetry.

To realize symmetry-protected Floquet topological phases
away from perfect coupling, we use the parameter values
listed in Table III. Of the 36 parameters of the protocol, at
most 28 parameters are assigned nonzero values. Steps 2 and
5 do not involve on-site potentials, and all parameters are real.
It is straightforward to check that the three parameter sets
fulfill either the conditions of time-reversal, chiral, or particle-
hole symmetry in Table II. Each set depends on two free
parameters, and includes the perfect coupling case in Fig. 5.
For the remainder of this section, we use the parameters listed
under “this work” and the “left” variant of driving protocol A
in Fig. 3.

A. Time-reversal symmetry

In Fig. 6, we show the Floquet bands and boundary states
for fermionic and bosonic time-reversal symmetry. Both cases
differ only by the sign of the parameters in step 5 of the driving
protocol (cf. Table III), such that the gap is either at ε = π

(fermionic) or ε = 0 (bosonic).
For fermionic time-reversal symmetry (top row in Fig. 6),

two boundary states with opposite chirality traverse the gap.
The crossing of the boundary states at the invariant momen-
tum kx,y = 0 is protected by Kramers degeneracy. Since the
two boundary states are mapped onto each other by the sym-
metry operator S8, they can be described as helical boundary
states in the pseudospin interpretation of the driving protocol
given in Appendix A.

Because of time-reversal symmetry, the boundary states
have to appear in pairs of opposite chirality. In this situation,
the W3 invariant [14], which counts the net chirality of bound-
ary states in a gap of a Floquet system, necessarily vanishes.
Therefore the topological phase observed here is not protected
against general deformations of the Floquet Hamiltonian, but
only against deformations that preserve time-reversal symme-
try.

To characterize this symmetry-protected topological phase,
we can compute the relevant Z2-valued bulk invari-
ant [25,26,32]. In the present situation, we get a nonzero
invariant (Wtr �= 0 in the notation of Ref. [32], computed with
the algorithm from Ref. [34]). This confirms that the driving
protocol indeed supports a nontrivial time-reversal symmetric
topological phase, with a pair of counterpropagating boundary
states.

Additionally, we find that the Kane-Mele invari-
ants [3,35,36] of the individual Floquet bands are zero. We
recognize the signature of an anomalous Floquet topological

FIG. 6. Floquet bands and boundary states for fermionic (top row) and bosonic (bottom row) time-reversal symmetry, using the parameters
from Table III. (Left column) Blue arcs indicate the (fourfold degenerate) Floquet bands, red arcs the gaps. Quasienergies ε are plotted on
the circle ε �→ e−iε. Included are the respective (Kane-Mele KM or Chern number C) invariants of the bands, and the Wtr invariant or the W3

invariant associated with the gap. (Central and right columns) Floquet bands (solid) and boundary state dispersion (dashed), as a function of
momentum kx or ky for a boundary along the x or y direction.
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FIG. 7. Switching between bosonic (left and central) and
fermionic (central and right) time-reversal symmetry through con-
tinuous variation of the parameter δ (see text). The panels show the
boundary state dispersion. The protocol parameters for the negative
and positive δ = ±π/T used here agree with Fig. 6.

phase [14,26], which exists although all Floquet bands are
topologically trivial.

For bosonic time-reversal symmetry (bottom row in Fig. 6),
the W3 invariant still has to be zero. Now, however, crossing of
the boundary states is not protected by Kramers degeneracy.
The boundary states do not have to traverse the gap and can
be deformed continuously to merge with the Floquet bands,
without breaking the symmetry. Consequently, the system is
topologically trivial.

B. Continuous switching between fermionic and bosonic
time-reversal symmetry

Since fermionic and bosonic time-reversal symmetry differ
by the sign of the parameters in step 5 of the driving protocol,
they are realized in separate regions of the parameter space.
Especially at perfect coupling (J = ±Jp), the conditions for
fermionic or bosonic time-reversal symmetry in Table II are
mutually exclusive. However, considering the argument in
Sec. V D, the cases J = Jp and J = −Jp are in fact equivalent.
The Floquet propagators in both cases differ only by a minus
sign, which shifts the quasienergies by π but affects neither
the topological invariants nor the existence of boundary states.

Building on this observation, we can switch continuously
between fermionic and bosonic time-reversal symmetry: Set

JA→B = JC→D = Jp − |δ| in step 2 and JA→B = JC→D = Jp +
δ in step 5. For δ � 0, the driving protocol has bosonic time-
reversal symmetry. For δ � 0, the parameter value Jp + δ in
step 5 is equivalent to the parameter value Jp + δ − 2Jp =
−(Jp − |δ|), up to a minus sign of the Floquet propagator.
The driving protocol has fermionic time-reversal symmetry.
At perfect coupling δ = 0 in steps 2 and 5, both fermionic and
bosonic time-reversal symmetry are realized simultaneously.

In Fig. 7, we show the change of the boundary state
dispersion if the parameter δ is varied through δ = 0, and we
switch continuously from bosonic to fermionic time-reversal
symmetry. Note that since the propagator acquires a minus
sign for δ>0, if compared to Fig. 6, the position of the gap
remains at ε = 0. Because of time-reversal symmetry, the
boundary dispersion is invariant under the mapping kx �→
−kx. While the boundary states are separated for δ<0, they
are gapless for δ>0. Only in the latter parameter regime, the
crossing at the invariant momentum kx = 0 is protected by
Kramers degeneracy. In this way, continuous variation of δ

switches between a trivial (bosonic) and nontrivial (fermionic)
time-reversal symmetric topological phase, without the bulk
gap closing at δ = 0.

C. Chiral and particle-hole symmetry

In Fig. 8, we show the Floquet bands and boundary
states for chiral and particle-hole symmetry, with two gaps
at quasienergies ε = 0, π . For both symmetries, we are inter-
ested in “weak” topological phases, where protected boundary
states occur in the gap, but transport in real space is not
necessarily topologically protected.

For chiral symmetry, the W3 invariant has to be zero in both
gaps (at ε = 0, π ). Similar to time-reversal symmetry, this
implies that the boundary states are not stable under general
deformations of the Floquet Hamiltonian. However, with the
alternating sign of Eq. (6), chiral symmetry gives rise to a
symmetry-protected Z2 phase that is visible in the dispersion
ε(kx,y) of boundary states in momentum space [27,32]. The
reason is that the dispersion fulfills the constraint ε(kx,y +
π ) ≡ −ε(kx,y) mod 2π , such that chiral symmetry protects

FIG. 8. Same as Fig. 6, now for chiral (top) and particle-hole symmetry (bottom) and parameters from Table III. The relevant bulk invariants
are here the Chern numbers C of the Floquet bands, and the symmetry-adapted Wch and W α

ph invariants from Ref. [32].
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the crossings of ε(kx,y) through the quasienergy ε = 0 or
ε = π . The crossings have to occur in pairs that are separated
by momentum π (see Appendix B of Ref. [32] for an extended
argument). Note that inclusion of the alternating sign in the
symmetry relation (6) is essential for this momentum-space
protection, otherwise chiral symmetry does not protect any
nontrivial phase [28,29,31].

In Fig. 8, exactly two crossings exist in each gap and on
each boundary, which agrees with the nonzero value Wch �= 0
of the Z2-valued invariant Wch that is adapted to chiral sym-
metry [32]. The above momentum-space constraint on ε(kx,y)
does not enforce that the boundary states traverse the band
gap. Therefore the chiral symmetric phase seen here does
not necessarily exhibit counterpropagating boundary states
with opposite chirality, and with the concomitant transport
properties.

For particle-hole symmetry with �2 = 1, topological
phases are still characterized by the Chern number or, for
Floquet systems, the W3 invariant. Weak topological phases,
where the number of boundary states depends on the boundary
orientation [27], arise for vanishing W3 invariant. Several
Z2-valued invariants W α

ph are required in this situation [32].
In Fig. 8, all W α

ph invariants are nonzero and boundary states
exist in each gap and on each (x or y) boundary. Particle-hole
symmetry does not enforce a zero W3 invariant, but here it is
W3 = 0 in Fig. 8, such that the net chirality of the boundary
states in each gap is zero.

Similar to chiral symmetry, in these weak phases the
appearance of boundary states in momentum space does not
imply topologically protected transport in real space. In Fig. 8,
the boundary state dispersion is perfectly flat on the boundary
in y direction while the bulk bands are dispersive (this is
a particular property of the parameter set in Table III, not
of particle-hole symmetry). In this situation, states propagate
along the y direction only in the bulk but not on the boundary.

In contrast to time-reversal symmetry, which requires the
Kane-Mele invariant of the Floquet bands, the Chern number
remains a relevant invariant for chiral and particle-hole sym-
metry. In Fig. 8, the Chern numbers of all Floquet bands are
zero. Therefore the boundary states observed here belong to
anomalous Floquet topological phases, and appear although
the individual Floquet bands are topologically trivial.

D. Propagation of boundary states

In Fig. 9, we show the real-space propagation of boundary
states in the vicinity of a corner. At t = 0, an initial state is
prepared either on a “red” A site of the horizontal boundary in
the x direction or on a “blue” B site of the vertical boundary
in the y direction, and then observed after three (t = 3T ) and
eight (t = 8T ) periods of the driving protocol A.

Since the parameter values in Table III are sufficiently
close to perfect coupling such that the essential patterns of
motion from Fig. 4 still survive, the “red” (or “blue”) state
propagates mainly counterclockwise (or clockwise). Note that
the amplitude at the boundary decreases over time since
the state propagates partially into the bulk. Also, since the
boundary state dispersion is not perfectly linear (see Figs. 6
and 8), the state is distributed over several lattice sites at later
propagation times.

FIG. 9. Propagation of boundary states in the vicinity of a cor-
ner, starting from a “red” A site or a “blue” B site. Open black
circles indicate the lattice sites. Shown is the (squared) wave func-
tion amplitude, with colors according to the two color bars, after
zero (t = 0), three (t = 3T ), or eight cycles (t = 8T ) of driving
protocol A.
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FIG. 10. (Left) Six-step driving protocol B for particle-hole symmetry �2 = −1. (Central) Patterns of motion during one cycle at perfect
coupling. (Right) Floquet bands and boundary states for the set of parameters from Table IV.

As soon as the state hits the corner, it either propagates
around the corner without backscattering (for fermionic time-
reversal symmetry), or is partially (for chiral symmetry) or
totally (for particle-hole symmetry) reflected. This behavior
can be attributed to the different nature of the (weak) topo-
logical phases for the different symmetries: For fermionic
time-reversal symmetry, transport is topologically protected.
For chiral symmetry, the boundary states are still protected in
momentum space but the dispersion along the y boundary does
not traverse the band gap, which leads to partial reflection. For
particle-hole symmetry, the boundary state dispersion along
the y direction is perfectly flat, which leads to total reflection
of states starting on the x boundary. States on the y boundary
stay within one unit cell, moving back and forth between the
initial B site and the adjacent A site with each period of the
driving protocol.

VII. UNIVERSAL DRIVING PROTOCOL B:
PARTICLE-HOLE SYMMETRY

For particle-hole symmetry with �2 = −1, again the sym-
metry operator S8 has to be used for construction of the driving
protocol. Now, the symmetry relation (8) contains the same
time argument on both sides, and according to Sec. IV, we
have to use the parallel diagonal coupling patterns (f1)–(f4)
from Fig. 12 in Appendix B.

TABLE IV. Similar to Tab. III, parameter set for driving protocol
B with particle-hole symmetry �2 = −1. In Fig. 10, we use the
values of the free parameters �, J, and J ′ specified under “this
work.”

PHS �2 = −1

step 1 JA↗C = Jp step 4 JC↗A = Jp

JB↗D = −Jp JD↗B = −Jp

�A = �D = � �A = �D = �

�B = �C = −� �B = �C = −�

step 2 JA→B = J step 5 JA→B = J ′

JC→D = J JC→D = J ′

step 3 JC↘A = Jp step 6 JA↘C = Jp

JD↘B = −Jp JB↘D = −Jp

�A = �D = � �A = �D = �

�B = �C = −� �B = �C = −�

this J = 2π/T J ′ = π/T
work � = 3/T

Repetition of the procedure from Sec. V leads to the driving
protocol B in Fig. 10. The considerations from Sec. V C can
be adapted to construct two variants of the protocol, and the
strategy from Sec. V D allows for replacement of negative by
positive couplings.

The patterns of motion for perfect coupling (Js◦s′ = Jp in
steps 1, 3, 4, 6 and Js◦s′ = 0 in steps 2 and 5) are shown in
the central panel of Fig. 10. Comparison with Fig. 4 shows
that now states on the “red” and “blue” sublattice propagate
in the same direction. This explains, quite intuitively, why
parallel (perpendicular) diagonal coupling patterns are used
for particle-hole (time-reversal) symmetry with copropagating
(counterpropagating) boundary states.

For the general case, we use the parameter values in
Table IV. The corresponding Floquet bands and boundary
states are shown in the right panel of Fig. 10. Two bound-
ary states with the same chirality exist in the two gaps at
quasienergies ε = 0 and ε = π . This phase is characterized by
the conventional Chern number C and W3 invariant, which are
restricted to even values (2Z) by the particle-hole symmetry.
In accordance with the appearance of two copropagating
boundary states, we have W3 = 2 for both gaps. Consequently,
we have C = 0 for the individual Floquet bands, which is
the signature of an anomalous Floquet topological phase with
C = 0 but W3 �= 0.

VIII. CONCLUSIONS

The universal driving protocol introduced in the present
paper allows for the realization of Floquet topological phases
with time-reversal, chiral, or particle-hole symmetry. Switch-
ing between the different symmetries only requires adjustment
of a few parameters, or the replacement of parallel (proto-
col B) with perpendicular (protocol A) diagonal couplings.
The general structure of the driving protocol, which follows
from the analysis of the possible symmetry operators for the
underlying square lattice Hamiltonian, remains unchanged.
In fact, if we allow for coupling of three or more lattice
sites, the two types A and B of the universal driving protocol
are continuously connected, and appear as special cases of
the slightly generalized universal driving model depicted in
Appendix C.

Due to the minimal complexity of the universal driving
protocol, which is a result of the constraints accounted for
in its construction, it is not only of theoretical value but
can be implemented by extension of previous experimental
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b1

b2

FIG. 11. The square lattice can be viewed as a centered square
lattice, or the union of a “red” and “blue” square lattice.

work [19,20]. Reference [37] documents the photonic lattice
implementation of the driving protocol with fermionic time-
reversal symmetry, and reports the observation of a topo-
logical phase with scatter-free counterpropagating boundary
states. These states are protected by the fermionic time-
reversal symmetry prescribed by the protocol, even though the
underlying photonic system is of bosonic nature.

A novel aspect yet to be explored in more detail is the
possibility of switching between fermionic and bosonic time-
reversal symmetry by continuous variation of a parameter.
Normally, without symmetries, switching between nontrivial
and trivial topological phases requires that a gap closes and
reopens. The driving protocol allows us to switch between
a nontrivial and trivial symmetry-protected topological phase
without directly affecting the topological nature of the sys-
tem (the gap stays open), and without breaking time-reversal
symmetry. Instead, only the type of time-reversal symmetry
changes, and that even in a continuous manner.
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APPENDIX A: PSEUDOSPIN INTERPRETATION

The pseudospin interpretation of the “red” and “blue”
sublattice structure depicted in Figs. 1–4 is suggested by the
geometric structure of the operator S8 in Fig. 2. A natural way
to represent the pseudospin is to understand the original lattice
as a centered square lattice (see Fig. 11), and associate the
“red” (“blue”) sublattice with the “up” (“down”) component
of a spin 1

2 .
Technically, the pseudospin interpretation is obtained

through a Hilbert space isomorphism IS , which is defined by

the mapping

IS |ib1 + jb2〉 ⊗ |↑〉 = |ib1 + jb2〉 ,

IS |ib1 + jb2〉 ⊗ |↓〉 = |ib1 + jb2 + ex〉 ,
(A1)

for i, j ∈ Z. Here, b1 = (1,−1)t , b2 = (1, 1)t are the trans-
lation vectors of the centered square lattice, and ex =
(1, 0)t , ey = (0, 1)t the unit vectors of the original square
lattice. In terms of the vectors ax, ay, δs used in Sec. II, we
have

IS |ib1 + jb2〉 ⊗ |S〉 = |� i+ j
2 �ax + � j−i

2 �ay + δs〉 , (A2)

where �·� denotes the floor function (rounding down to the
next integer), and s is chosen according to

S =↑ S =↓
i + j even s = A s = B
i + j odd s = C s = D

(A3)

Within the pseudospin interpretation, diagonal pairwise
couplings correspond to translations along the vectors
b1 and b2 that preserve the pseudospin, as in

(IS
−1t̂A↗CIS ) |ib1 + jb2〉 ⊗ |↑〉 = |(i + 1)b1 + jb2〉 ⊗ |↑〉,

(IS
−1t̂A↗CIS ) |ib1 + jb2〉 ⊗ |↓〉 = 0. (A4)

The horizontal coupling pattern (a) in Fig. 1, which appears in
steps 2 and 5 of the universal driving protocol, corresponds to
a spin transformation

IS
−1(t̂A→B + t̂†

A→B + t̂C→D + t̂†
C→D)IS = σx (A5)

with the Pauli matrix σx that preserves the i, j index of the
centered square lattice. Note that here the parameters JA→B,
JC→D of the two pairwise couplings are equal (cf. Table III).
The remaining horizontal and vertical couplings, which are
not compatible with the symmetry operator S8, have no such
simple representation.

The operator S8 itself allows for a simple representation
if the matrices σ , τ in Eq. (2) are given by a common 2 × 2
matrix �, i.e., σ = τ = �. Then, we simple have

IS
−1 S8 IS = � . (A6)

At least for fermionic time-reversal symmetry, this form of S8

is mandatory (with � = σy), up to phase factors in σ , τ . Note
that these phase factors could be absorbed into the mapping
IS , preserving the simple form of S8 even in the general case.

The pseudospin interpretation of the square lattice allows
us to reuse familiar notions such as “helicity” of boundary
states in the present context. Conversely, the existence of this
interpretation, as well as the precise form of the mapping

FIG. 12. The eight coupling patterns with parallel diagonal pairwise couplings. Patterns (f1) and (g1) correspond to patterns (f) and (g) in
Fig. 1.
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IS of the (pseudo) spin onto the square lattice, is a natural
consequence of the symmetry analysis provided in the present
paper.

APPENDIX B: PARALLEL DIAGONAL COUPLINGS

On the square lattice with a four-element unit cell, 4 × 4 =
16 diagonal coupling patterns exist in total. Four of them
contain pairwise couplings that cross each other, and are not
allowed due to the constraints imposed in Sec. II. Out of the
allowed twelve patterns, the four perpendicular diagonal cou-
pling patterns (b)–(e) in Fig. 1 constitute the main steps of the
driving protocol A with time-reversal symmetry from Sec. V.
Out of the remaining eight parallel diagonal coupling patterns
depicted in Fig. 12, patterns (f1)–(f4) constitute the main
steps of the driving protocol B with particle-hole symmetry
in Sec. VII. The latter choice is mandatory, because only
these patterns are mapped onto themselves by the symmetry
operator S8, while patterns (g1) ↔ (g2) and (g3) ↔ (g4) are
swapped.

That leaves open the question why the parallel diagonal
coupling patterns are not used for the driving protocol A with
time-reversal symmetry. Intuitively, this question is answered
by comparison of the patterns of motion in Figs. 4 and 10:
parallel diagonal couplings give rise to copropagating states,
while time-reversal symmetry requires counterpropagating
states, hence the perpendicular diagonal coupling patterns.

For a more exhaustive argument, consider the situation that
the driving protocol should support time-reversal symmetry,
but has to be composed only out of parallel diagonal coupling
patterns. We can then try to repeat the construction from
Sec. V A and focus on the two central steps, e.g., steps 3, 4 in
a six-step protocol. These two steps must be exchanged under
a mapping with S8.

If the two steps involve patterns (f1)–(f4), they are mapped
onto each other by S8, and can be combined into a single
step. In this way, nothing is gained for the construction of
the driving protocol. If the two steps involve patterns (g1)–
(g4), possible combinations are pattern (g1) followed by
pattern (g2), or patterns (g3) followed by pattern (g4), etc.
Visual inspection of these patterns in Fig. 12 shows that such

6
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2 4

FIG. 13. A universal driving protocol that contains protocol A
(right variant in Fig. 3) and protocol B, but violates the constraints
from Sec. II.

FIG. 14. Pairwise couplings (solid lines) on a square lattice with
a two-element (a filled and an open circle) unit cell, and two choices
for translation symmetry.

combinations transport states by two lattice sites in diagonal
direction, but not on a closed loop as required for our driving
protocol (see Fig. 4). Nothing is gained for the construction of
the driving protocol in this way, either.

We conclude that a driving protocol with time-reversal
symmetry has to use the perpendicular diagonal coupling
patterns (b)–(e) from Fig. 1, instead of the parallel diagonal
coupling patterns (f1)–(g4) from Fig. 12.

APPENDIX C: JOINT A AND B DRIVING PROTOCOL

In the main text, the two types A (in Fig. 3) and B (in
Fig. 10) of the driving protocol appear as disjoint cases,
with either perpendicular or parallel diagonal couplings. In
fact, both types of the protocol are just special cases of
the combined driving protocol shown in Fig. 13. However,
continuous interpolation between protocol A and protocol B
requires inclusion of couplings between three or more lattice
sites, as is evident from the zigzag “blue” couplings in Fig. 13.
The inclusion of such couplings is perfectly valid, unless we
impose the very restrictive constraints of Sec. II. Only because
of these constraints, we had to discuss protocol A and protocol
B separately in the main text.

APPENDIX D: PROTOCOLS WITH
A TWO-SITE UNIT CELL

Translational symmetry on a square lattice with a two-
element unit cell can be implemented in two ways (see
Fig. 14): either with primitive translation vectors ax = (2, 0),
ay = (1, 1) (left panel), or ax = (2, 0), ay = (1, 0) (right
panel). With the constraint that pairwise couplings are allowed
only between neighboring lattice sites, only the couplings

FIG. 15. Options for a symmetry operator for fermionic time-
reversal symmetry on the square lattice from Fig. 14 (top row) and
the compatible pairwise couplings (bottom row).
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depicted in Fig. 14 are possible. In the two cases, either
(anti)diagonal (left panel) or vertical (right panel) coupling
terms are forbidden.

A symmetry analysis in the spirit of Sec. III leaves us with
only three options for a symmetry operator that could be used
to implement fermionic time-reversal symmetry (see Fig. 15).

For all options, the pairwise couplings compatible with the
symmetry do not connect the entire lattice. We conclude
that, under the constraints imposed here, a nontrivial 2 + 1-
dimensional topological phase with time-reversal symmetry
cannot be realized with a two-element unit cell, but requires
at least a four-element unit cell.
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Since their original theoretical proposals1,2, topological insu-
lators (TIs) have been experimentally investigated in a large 
number of different platforms and materials3–15. Remarkably, 

solid-state TIs prohibit electrons from traversing their interior, 
while simultaneously supporting chiral surface currents that are 
protected by fermionic time-reversal symmetry (TRS)3,4,6. Due to 
this symmetry, pairs of counter-propagating edge states exist, while 
scattering between them is strongly suppressed. As a result, a TI’s 
surface may be highly conductive while the bulk remains insulat-
ing. This phase of a material can be characterized by an appropriate 
topological invariant1,2, which is specific to fermionic (electronic) 
systems and closely related to fermionic TRS. Therefore, one would 
not expect bosonic systems to be able to accommodate such a TI 
phase with its unique feature of counter-propagating unidirectional 
edge states16.

Nevertheless, bosonic systems are still able to exhibit topologi-
cal phases by breaking the TRS. These so-called Chern-type17,18 or 
driven anomalous TIs19, as depicted in Fig. 1a, feature unidirec-
tional, robust edge transport in only one specific direction. They are 
characterized by an integer-valued topological invariant, indicated 
by Z

I
. Such systems have been reported across a broad range of phys-

ical platforms, such as microwave systems5, photonic lattices7,20,21, 
matter waves22, acoustics10 and even mechanical waves11.

Recently, several works demonstrated the superposition of two 
TIs with opposite chirality8,11,23–26 (see Fig. 1b), each of which can 
independently support edge states that, in the combined system, 
happen to be counter-propagating with respect to one another. 
The absence of a physical coupling mechanism then prevents the 
scattering of these counter-propagating states into each other. 
Such systems are topologically characterized by two independent 
Z
I
 invariants, and therefore realize a topological phase denoted by 

Zþ Z
I

. Any non-zero coupling between the subsystems of these 
bipartite lattices destroys the topological protection and reduces the 
arrangement to a conventional insulator, regardless of bosonic TRS 
or its absence (see Fig. 1c). However, despite the presence of a sub-
system coupling (for example, a Rashba term1), a topological phase 

can exist, protected by a fermionic TRS27. This is the case in a fer-
mionic (electronic) TI, where the counter-propagating edge states 
cannot scatter into each other (see Fig. 1d). This different topology 
is characterized by a Z2

I
 invariant1, which displays counter-propa-

gating topological edge states. Due to their reliance on fermionic 
TRS, these systems are typically restricted to solid-state physics.

Our approach overcomes this limitation, as it is capable of enforc-
ing effectively fermionic behaviour in photonic systems despite their 
inherently bosonic character. Taking inspiration from solid-state Z2

I
 

TIs1,2,28, where the desired topological properties originate from the 
fermionic spin degree of freedom, we exploit the bipartite substruc-
ture of the underlying photonic lattice to encode a pseudo-spin 1/2, 
and design a driving protocol that implements effective fermionic 
TRS (corresponds to Fig. 1d). We experimentally realize this type of 
lattice in photonic waveguide arrays, directly observe the resulting 
counter-propagating edge states and confirm the presence of fermi-
onic TRS in the system by interferometric measurements.

Theoretical model
To establish the desired topological phase, we subject the couplings 
in a discrete lattice to a time-dependent modulation scheme, called 
a driving protocol. This driving protocol is implemented across two 
intertwined sublattices (marked with either red (R) or blue (B) sites 
in Fig. 2a), which correspond to the ‘up’ and ‘down’ states of the fer-
mionic (pseudo-) spin 1/2. A full driving cycle comprises a sequence 
of six individual steps, each of which couples two different nearest-
neighbour sites as indicated by the solid lines in Fig. 2a. These steps 
represent two fundamental types of operation28,29: steps 1, 3, 4 and 
6 realize spin-preserving translations through interactions between 
sites of the same sublattice, whereas steps 2 and 5 manifest spin rota-
tions by bringing sites from different sublattices into contact. The 
symmetric placement of these inter-sublattice couplings within the 
overall driving period is crucial for the desired TRS. In these two 
steps, partial hopping represents general spin rotations, whereas a 
spin flip corresponds to a total exchange of populations between 
the sublattices.

Fermionic time-reversal symmetry in a photonic 
topological insulator
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For the sake of brevity, the explicit formulation of the associated 
lattice Hamiltonian H(t) has been relegated to the Supplementary 
Information. Here, we will instead highlight its fundamental prop-
erties: being of the Floquet type, the Hamiltonian is periodic in 
time, H(t + T) = H(t), with the driving period T. Moreover, H(t) 
obeys the fermionic TRS relation

ΘHðtÞΘ�1 ¼ HðT � tÞ ð1Þ

where Θ is an anti-unitary operator with Θ2 = −1. Note that TRS 
inverts the direction of time, that is t ↦ −t, which is equivalent to 

t ↦ T − t for the time-periodic Hamiltonian30. In the (pseudo-) spin 
interpretation of the two sublattices, we have Θ ¼ σy K

I
, with the 

Pauli matrix σy and the operator K
I
 that represents complex conjuga-

tion. This symmetry brings about Kramers degeneracy and, in turn, 
the desired counter-propagating photonic edge states and their 
topological protection. Note that the considered effective (Floquet) 
fermionic TRS should be distinguished from the pseudo TRS, which 
is implemented by combining a crystal symmetry with bosonic 
TRS and therefore is instantaneous but not local31,32. Floquet TRS 
depends on a full driving cycle (that is, a temporal unit cell). In this 
non-instantaneous fashion, we can establish topologically protected 
counter-propagating edge states even in the general case of coupled 
subsystems. To understand the basic mechanism behind the driving 
protocol, Fig. 2b illustrates the evolution of single-site excitations 
in the spin flip case. Note how, depending on the initially excited 
sublattice, the sequence of alternating nearest-neighbour couplings 
prescribed by the driving protocol gives rise to two distinct edge 
states, moving either counter-clockwise (red arrow) or clockwise 
(blue arrow). By contrast, all excitations in the bulk of the lattice fol-
low closed loops such that no transport occurs. In the spin flip case, 
the red/blue sublattices are still uncoupled. The crucial feature of 
our driving protocol, which clearly distinguishes it from previously 
realized Chern-type bosonic insulators, is that TRS-protected edge 
states are preserved even with coupling between the two sublattices, 
that is, in the general spin rotation case (see Fig. 2d). This situation 
can no longer be described as the independent propagation in two 
uncoupled Chern insulators (with Zþ Z

I
 topological phases), but 

requires a finer topological characterization.

Topological characterization
Neither the Chern number C (ref. 33) nor the Kane–Mele Z2

I
 

invariant νKM (refs. 1,34) is an appropriate topological invariant 
for Floquet systems35. Instead, the existence of Floquet topologi-
cal phases is linked to the W

I
 invariant19. The W

I
 invariant counts 

the net topological charge of degeneracy points of the propagator 
UðtÞ ¼ T expð�i

R t
0HðτÞ dτÞ

I
 (T
I
 denotes time-ordering, and ℏ is set 

to one)32,36,37. With fermionic TRS, the topological charges cancel 
and the W

I
 invariant vanishes even if the Floquet system supports 

edge states, just as the Chern number in a conventional Z2
I

 insulator 
does. Instead, Floquet topological phases with fermionic TRS are 
characterized by a Z2

I
 invariant νTR

I
 (refs. 28,32,37), which is related 

to the Kane–Mele invariant in a similar way as the W
I

 invariant is 
related to the Chern number (a detailed overview is given in the 
Supplementary Information). The Z2

I
 photonic TI introduced in 

this work exhibits an anomalous (C ¼ νKM ¼ 0
I

) topological phase35 
with counter-propagating edge states (νTR ¼ 1

I
). This phase is pro-

tected by fermionic TRS, and would be absent without TRS, since 
W ¼ 0
I

 (a detailed consideration of this statement is provided in the 
Supplementary Information).

Observation of counter-propagating edge modes
As a testbed for the practical implementation and experimental 
verification of our protocol, we chose an optical platform: lattices 
of evanescently coupled laser-written waveguides38. Light evolves 
in these structures according to the paraxial Helmholtz equation, 
which reads,

i
d
dz

ψmðzÞ ¼ ϵmðzÞψmðzÞ þ
X

k2hmi
ck;mðzÞψkðzÞ ð2Þ

in the tight-binding approximation. Here, ϵm(z) is the on-site poten-
tial of waveguide m, ψm represents the field amplitude of its guided 
mode, ck,m(z) denotes the coupling to the nearest neighbour k and 
the propagation distance z serves as the evolution coordinate. In 
the summation, 〈m〉 denotes the nearest neighbours of the mth 
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Fig. 1 | Conceptual idea. a, A topological Chern insulator supports 
topologically protected chiral edge states (marked red and blue, 
respectively), whose energies lie between the two bulk bands (marked 
grey in the band diagrams). The real-space propagation is indicated by red 
and blue arrows around the perimeter of the schematic two-dimensional 
systems. b, The non-interacting superposition of two Chern insulators 
from a form a Zþ Z

I
 TI that supports two independent sets (red, blue) 

of chiral edge states. c, Upon the introduction of any sublattice coupling, 
a band gap is opened, such that the topological phase, and with it the 
unidirectional character of the edge states, vanishes. Regardless of bosonic 
TRS or its absence, any non-zero coupling yields a conventional insulator. 
d, By contrast, coupled Chern insulators that obey fermionic TRS exhibit 
topologically protected counter-propagating edge states. We experimentally 
realize such a topological Z2

I
 insulator in a photonic (that is, bosonic) system.
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waveguide. Since equation (2) is mathematically equivalent to the 
Schrödinger equation, where the propagation distance acts as the 
time coordinate in our setting7, the longitudinal modulation of 
the waveguide structure can mimic the temporal evolution of a 
Hamiltonian. This enables the implementation of a time-dependent 
Hamiltonian with a static photonic system20,21. It is in this sense that 
we adopt temporal terminology such as ‘driving protocol’ or ‘period’ 
for the description of our concept and its implementation.

In the system under consideration, the values of the couplings 
ck,m(z) differ in each step of the full sequence: as illustrated in Fig. 2a,  
interactions have to be avoided except for steps that necessitate  
hopping between two given waveguides. For simplicity, we refer to 
the couplings and potentials in step j as c(j) and ϵ(j). The purpose of 
the potentials ϵ(j) is to explicitly break particle–hole and chiral sym-
metry (see the Supplementary Information). The structure depicted 
in Fig. 2c schematically presents our experimental realization of 
the driving protocol. Here, a single unit cell is shown in a trans-
verse cross-section. Each waveguide corresponds to one lattice site. 
The discrete coupling steps are implemented by regions of reduced 
separation between the waveguides, where the desired amount of 
evanescent coupling occurs. For our experiments, we fabricated a 
lattice spanning four by three unit cells in the x−y plane and three 
driving cycles along the z direction. In real-world units, the unit 
cell transversely extends over a2 = 80 × 80 μm2 (see Fig. 2b), and 
T = 4.44 cm along the propagation direction z. Further details of the 
fabrication, in particular the explicit values of the couplings c(j) and 
potentials ϵ(j), are given in the Methods section.

Our samples were characterized by recording the output inten-
sity distributions resulting from single-site excitations after three 
driving periods (see Fig. 3a,b). In the spin flip case, where the bulk 
bands exhibit no dispersion (Fig. 3c), we observe an edge state mov-
ing clockwise (in blue) and another one moving counter-clockwise 
(in red) as shown in Fig. 3d,e. (Extended sets of experimental 
images are provided in the Supplementary Information.) These 
states follow the patterns of motion from Fig. 2b. Crucially for our 

demonstration of a Z2
I

 photonic TI, the edge states survive in the 
general spin rotation case, where they remain protected by fermi-
onic TRS against the coupling between the two sublattices. Note 
that the bulk bands have acquired some dispersion (Fig. 3f–h). The 
experimental data shown in Fig. 3d,e,g,h exhibit cross-correlation 
similarities of 0.9687, 0.9334, 0.9147 and 0.9196, respectively, with 
respect to the theoretical simulations. Additionally, we investigated 
the robustness of these edge states theoretically and experimentally. 
In particular, the stability of the chiral edge channels has been con-
firmed by our analysis of symmetry restrictions and perturbed exci-
tations (see Supplementary Information).

Direct measurement of TrS
Whereas the observation of such protected counter-propagating 
edge states is already a strong indication of Kramers degeneracy, a 
direct demonstration of fermionic TRS is within the scope of this 
experiment. Our line of reasoning relies on the fact that via TRS, 
forward propagation through the waveguides (in the positive z 
direction) is linked to backward propagation (along −z). It should 
be emphasized that backward propagation by itself is not identical 
to time reversal, which cannot be achieved by merely exciting the 
opposite end of the sample. However, if the system obeys fermionic 
TRS ðΘ ¼ σyKÞ

I
, the backward propagator ~UðTÞ

I
 is related to the pre-

viously defined forward propagator U(T) via ~UðTÞ ¼ σyUðTÞσ�1
y

I
 

(the tilde denotes quantities related to backward propagation). The 
mathematical details behind this argument are provided in the 
Supplementary Information.

Now consider the output states ψoutðϕÞj i ¼ UðTÞ ψ inðϕÞj i
I

 and 
~ψoutðϕÞj i ¼ ~UðTÞ ψ inðϕÞj i
I

 that evolve from either forward or back-
ward propagation of an input state ψ inðϕÞj i

I
. In our experiments, a 

suitable input state ψ inðϕÞj i
I

 spanning two adjacent (‘red’ and ‘blue’) 
waveguides with the same amplitude but a relative phase ϕ is syn-
thesized with a spatial light modulator (SLM) as illustrated in Fig. 4.  
Note that the same corresponding waveguides are excited in 
both forward and backward propagation (see Fig. 4a,c). For both 
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edge modes (shown in front in blue and red) cross the band gap and intersect at the invariant momentum ky = 0 as a consequence of Kramers degeneracy.
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directions, we extract an intensity distribution from the observed 
output states ψoutðϕÞj i

I
, ~ψoutðϕÞj i
I

, either on the blue or red sublattice 
(IBðϕÞ
I

 or ~IRðϕÞ
I

, respectively), and track their dependence on the 
relative phase ϕ of the input state. The relation between the forward 
and backward propagator given above then readily translates into

~I
RðϕÞ ¼ IBðπ� ϕÞ ð3Þ

for the output intensities. Notably, this expression is unique to 
fermionic TRS (see the Supplementary Information for a detailed 
discussion). As our experiment indeed faithfully reproduces the 
characteristic phase shift ϕ7!π � ϕ

I
 as well as the exchange of  

intensities between the two sublattices predicted by equation (3) 
(see Fig. 4b), it unequivocally confirms the presence of fermionic 
TRS in our system.

Conclusion and outlook
In summary, we have shown that fermionic TRS can be effectively 
realized even in an intrinsically bosonic system. The resulting struc-
ture is described by a Z2

I
-type topological invariant and, as such, 

exhibits counter-propagating chiral edge states that are topologically 
protected by Kramers degeneracy. While we chose an optical platform 
for our proof of principle, the presented protocol is general and can be 
readily adopted in any bosonic wave system. In this vein, we expect 
the experimental realization of a photonic system with fermionic TRS 
to stimulate fruitful theoretical and experimental efforts to illumi-
nate the role of Z2

I
-type invariants in bosonic topological systems in 

greater detail. There are various fascinating questions waiting to be 
explored by experiments. One is the impact of interactions and non-
linearity or the quantum many-body regime on topological phases in 
systems with fermionic TRS, as topology in experimentally available 
condensed matter systems is considered to be intrinsically a linear 
single-particle effect39. Another is the role of TRS in non-Hermitian 
topological systems40, including but not limited to those with parity–
time (PT

I
) symmetry41,42, which promise even broader opportunities 

for the manipulation of edge states. Equally intriguing is the potential 
interplay with supersymmetric notions, since these notions describe 
a global symmetry that became accessible only recently in photonic 
systems43,44. The answers to these questions, and many more, are now 
within the reach of experiment.
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Fig. 4 | experimental verification of fermionic TrS. a, Excitation and measurement scheme for forward propagation. The lattice is excited at two sites 
corresponding to different sublattices (indicated by red and blue circles in the upper panel) by two beams with a relative phase ϕ. The intensity of all blue 
sublattice sites is measured (marked by blue circles in the lower panel). b, Dependence of the sublattice population on the relative phase of a dual-site 
excitation (solid lines, numerical calculations; dots, measured values with error bars). The comparison between forward and backward propagation confirms 
the predicted characteristic phase shift between the behaviour of the output intensities in the red and blue sublattices, respectively. The horizontal error 
bars represent the uncertainty associated with the beam preparation, whereas the vertical error bars take the fabrication deviations of the lattice into 
account. c, Excitation and measurement scheme for backward propagation. The lattice is identically excited at the same lattice sites (compare with a). The 
intensity of all red sublattice sites is measured (marked by red circles in the lower panel). d, Schematic of the experimental setup. The light from a HeNe 
laser, collimated by a microscope objective and a lens, illuminates an SLM. The SLM synthesizes two phase-shifted beams, which are subsequently rescaled 
by a 4f-setup and another microscope objective and imaged onto the sample. The resulting output intensity distributions are recorded by a CCD camera via 
a third microscopic objective.
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Methods
Sample fabrication. The waveguide lattices used in our experiments were 
fabricated by means of the femtosecond-laser direct-writing technique38. Pulses 
from a Ti:sapphire amplifier system (Coherent Mira 900/RegA 9000, wavelength 
800 nm, repetition rate 100 kHz, pulse energy 250 nJ) are focused into the 
bulk of a fused silica wafer (Corning 7980, dimensions 1 × 20 × 150 mm3) by 
means of a ×20 microscopy objective (numerical aperature, 0.35). A three-axis 
positioning system (Aerotech ALS 130) was used to inscribe extended lines of 
permanent refractive index modifications on the order of 7 × 10−4 by translating 
the sample with respect to the focal spot. At the probe wavelength of 633 nm, 
these waveguides exhibit a mode field diameter of 10.4 μm × 8 μm and anisotropic 
coupling in the x−y plane. The discrete hopping steps were implemented via 
dedicated directional couplers (length 6 mm) connected by sinusoidal fan-in/
fan-out branches mediating the transitions (length 1.4 mm) of subsequent steps. 
Moreover, we made use of the fact that the trajectories of these transition sections 
can readily be fashioned with precisely defined differences in their overall optical 
path lengths, which in turn allows propagating light to accumulate the same 
additional phases that a detuned coupler would produce. In this vein, we are able 
to selectively include diagonal terms in the discrete Hamiltonian without having 
to physically change the on-site potential. The spin flip case was achieved with a 
coupling separation of 11.6 μm (diagonal interactions, c(1,3,4,6) = 3π∕T) and 10.9 μm 
(horizontal interactions, c(2,5) = 3π∕T). The spin rotation case was in turn realized 
with separations of 11.6 μm, 12.5 μm and 10.2 μm for c(1,3,4,6) = 5π∕2T, c(2) = 2π∕T 
and c(5) = 4π∕T, respectively, and an effective on-site potential ϵ(1,3,4,6) = 3∕2T. The 
lattice for the probing of the TRS was manufactured with only one driving period 
and the parameters c(1,3,4,6) = 9π∕4T, c(2) = 2π∕T, c(5) = 4π∕T and ϵ(1,3,4,6) = 4∕T. The 
suppression of undesirable interactions was ensured by increasing the waveguide 
separation to 40 μm in the inert regions.

Probing the lattice dynamics. The samples were illuminated by 633-nm light 
from a helium–neon laser (Melles Griot, 35 mW). For the demonstration of the 
counter-propagating modes, a single lattice site was excited with a ×10 microscope 
objective (numerical aperature 0.25). Another ×10 microscope objective was 
used to image the output facet onto a CCD camera (Basler Aviator). The recorded 
images were post-processed to reduce noise and filtered to extract the actual modal 
intensities while reducing the influence of background light.

The two-site excitations for the verification of TRS were synthesized by means 
of a spatial light modulator (Hamamatsu LCOS-SLM X0468-02) with a holographic 
pattern comprising two separated Fresnel lenses. Additionally, these patterns were 
offset to impart a relative phase onto these two beams. A 4f-setup (focal lengths 
1,000 mm and 125 mm) and a ×20 microscope objective (numerical aperature 0.40) 
served to scale down the beam diameters and separation to excite two adjacent 
waveguides. The resulting output intensity distributions were similarly recorded 
and post-processed to extract the data plotted in Fig. 4b. Note that to achieve a non-
zero contrast from the sine/cosine-shaped intensity-phase dependences, coupling 
steps 1, 3, 4 and 6 necessarily require non-zero diagonal entries in the Hamiltonian. 
In line with the approach described above, these were implemented via geometric 
path differences of 9.6 μm (transitions from step 1 → 2 and 2 → 3) and 9.9 μm (4 → 5 
and 5 → 6), which would in the conventional realization correspond to a detuning 
of 4∕T within the couplers of steps 1, 2, 3 and 4.

Numerical calculations. The band structures in Figs. 2 and 3 were obtained by 
diagonalizing the Floquet–Bloch propagator U(k,T) after one driving period T, which 
provides the quasi-energies ε as a function of momentum kx and ky. The propagator 
U(k,T) was calculated numerically with the Bloch Hamiltonian H(k, t) of the driving 
protocol in momentum space (the explicit expression for H(k, t) is given in the 
Supplementary Information). To derive the dispersion of the edge states in Figs. 2 
and 3, the Floquet propagator on a semi-infinite ribbon was computed as a function 
of momentum kx or ky parallel to the edges. The width of the ribbon was chosen as 
15 unit cells, and only the edge states on one edge of the ribbon were included in the 
figures. Further details on the ribbon geometry are provided in the Supplementary 
Information. For the numerical results in Fig. 4b (solid curves for IBðϕÞ;~IRðϕÞ

I
)  

the Floquet propagators U(T) of forward and ~UðTÞ
I

 of backward propagation 
were obtained from the lattice Hamiltonian H(t) of the driving protocol on a finite 
lattice with 4 × 3 unit cells in the x–y plane, as in Figs. 2 and 3. In all computations, 
the parameters c(j) and ϵ(j) of the driving protocol have been set to the relevant 
experimental values specified previously for the spin rotation case (for Figs. 2d and 3f) 
and spin flip case (for Fig. 3c), or for the probing of TRS (for Fig. 4b).
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I Experimental techniques

I.1 Implementation of on-site potentials

While the femtosecond laser inscription technique is capable of directly and pre-
cisely modulating the e�ective index of the fabricated waveguides via the exposure
parameters (pulse energy, writing velocity) [1], we followed a di�erent approach
in this work to selectively implement diagonal terms in the discrete Hamiltonian.
Instead of writing detuned couplers, i.e., evanescently interacting waveguides with
di�erent e�ective refractive indices, we designed the trajectories of the transition
sections between subsequent steps such that precisely de�ned di�erences in their
overall optical path lengths allow propagating light to accumulate the same addi-
tional phases that physically detuned couplers would produce (see Fig. S1). In this
vein, our method separates the couplings terms from the detunigs/on-site terms,
since one is realized during the steps, while the other implementation occurs in
between (see Fig. S2). The technique is of particular importance for the veri�ca-
tion of time reversal symmetry (TRS), since in order to obtain a non-zero contrast
of the sine/cosine shaped intensity-phase-dependences, coupling steps 1, 3, 4 and
6 necessarily require detuning via non-zero diagonal entries of the Hamiltonian.
In line with the approach described above, these were implemented via geometric
path di�erences of 9.6 µm (transitions from step 1 → 2 and 2 → 3) and 9.9 µm
(4 → 5 and 5 → 6), which would in the conventional realisation correspond to a
detuning of 4/T within the couplers of steps 1, 2, 3 and 4 (see Fig. S2).

Figure S1: Three dimensional representation of a unit cell (red/blue) of
the implemented waveguide structure. The unit cell is embedded in the surround-
ing waveguides (grey). The coupling regions are highlighted by semi-transparent
ribbons. The di�erent path lengths of the waveguides between the coupling regions
are visible.
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Figure S2: Implementation of the on-site potential. The discrete driving
protocol of Fig. 2a of the main text is combined with trajectories of the waveguides
between the hopping steps. The trajectories are marked by the red and blue
arrows. The length of these arrows corresponds to the optical path length of the
light guided by the waveguides. The asymmetric path lengths are clearly visible
in the transitions from step 1→ 2 and 2→ 3.
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I.2 Estimation of the experimental data correlation

The experimental data, which we presented in Fig. 3d,e,g,h of the main text,
can be compared to theoretical simulations of the proposed driving protocol. The
experimental images are mapped into a 8× 6 matrix, by integrating over the area
of the lattice sites. We determine the image normalized cross-correlation of the
simulations and these reduced experimental data [2] (using σ = 2, since our edge
typically has the size of 1 − 2 lattice sites). The extracted values, given in the
main text, demonstrate the excellent agreement of experiment and theory.

I.3 Additional edge state measurements

As further evidence for the predicted edge state behaviour in our system, Fig. S4
and Fig. S5 show the output intensity pro�les for additional single-site excita-
tions beyond the ones shown in Fig. 3. Note that the spin �ip case (Fig. S4) is
characterised both by chiral edge transport (panels a/e, b/f), as well as a �at
bulk band (Fig. 3c). The latter is responsible for the localised bulk excitations
(panels c/g and d/h). The more general spin-rotation case (Fig. S5) continues to
support the edge states. However, owing to the non-zero curvature of their trajec-
tories through the band diagram (Fig. 3f), these edge states exhibit non-uniform
transverse (along the edge) velocities. As a result, edge state excitations remain
decoupled from the bulk, but are subject to a certain degree of dispersive broad-
ening(along the edge) as they propagate along the edges. Due to the rhomboidal
unit cell, some lattice sites belong to the edge, yet are not in direct contact with
the environment. Figure S3 explicitly displays the edge location for clockwise and
counterclockwise edge states.

Figure S3: Edge locations. The black arrows pointing out the path of light
during one driving period in the spin �ip case. The colored background indicates
the lattices sites which belong to the edge for a clockwise and b counterclockwise
moving edge states, respectively.
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Figure S4: Additional data for the spin-�ip case. Shown are the output in-
tensity distributions resulting from excitations of the orange-outlined lattice sites
after three full driving periods. The e�ective wave packet trajectories are indicated
by blue and red arrows for clockwise and counter-clockwise propagation, respec-
tively. a,b, Edge excitations exhibit chiral transport, c,d, bulk excitations remain
e�ectively localised after each driving period. e�h Corresponding numerical simu-
lations. In comparsion with the simulations a,b,c,d the experimental data e,f ,g,h
coincide to 0.9093, 0.9966, 0.9903, 0.9919, respectively (based on [2]).
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Figure S5: Additional data for the spin-rotation case. Shown are the output
intensity distributions resulting from edge excitations of the orange-outlined lattice
sites after three full driving periods. The e�ective wave packet trajectories are
indicated by blue and red arrows for clockwise and counter-clockwise propagation,
respectively. The edge states associated with both sublattices R (panels a,b)
and B (panels c,d) now exhibit non-uniform transverse velocities, as indicated
by a certain amount of wave packet broadening. e�h Corresponding numerical
simulations. In comparsion with the simulations a,b,c,d the experimental data
e,f ,g,h coincide to 0.9345, 0.8111, 0.9321, 0.8917, respectively (based on [2]).
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II Theory

II.1 Construction of the driving protocol

Our construction of a driving protocol with fermionic time-reversal symmetry
(TRS) follows the conceptual idea depicted in Fig. S6. The driving protocol is
based on the square lattice model proposed in Ref. [3], which combines the four
elementary coupling patterns between adjacent lattice sites de�ned in Fig. S7. To
denote these patterns in the real-space Hamiltonian H(t) of the driving protocol,
we use the shorthand graphical notation

, , , (SI.1)

introduced in Fig. S7. Similarly, we write

−

−

+

+

=
∑

k,l

(−1)k+l|k, l〉〈k, l| (SI.2)

for a term with alternating on-site potentials. In this notation, the ket vector
|k, l〉, for k, l ∈ Z, denotes the state at the kth and lth lattice site in horizontal
and vertical direction, respectively. Lattice sites with even k+ l are identi�ed with
�lled circles, sites with odd k + l with hollow circles.

Σx

Σx

duplicate combine

transplant cut

Figure S6: Construction of the driving protocol with TRS: Two copies (�red� and
�blue�) of a driving protocol with opposite chirality are combined into a centred
square lattice. The red/blue sublattice structure can be associated with a pseudo-
spin 1/2, where two neighbouring lattice sites are paired (�green� oval). After
rotation by 45◦, this construction gives the protocol depicted in Fig. 2 in the main
text.

7

Article III

67



=
∑
k,l

|2k+1,2l〉〈2k,2l|+H.c.

=
∑
k,l

|2k,2l+1〉〈2k,2l|+H.c.

=
∑
k,l

|2k−1,2l〉〈2k,2l|+H.c.

=
∑
k,l

|2k,2l−1〉〈2k,2l|+H.c.

Figure S7: Shorthand graphical notation for the four elementary coupling patterns
on the square lattice.
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If the four coupling patterns are arranged in a periodic sequence, as in the model
from Ref. [3], the resulting driving protocol implements a Floquet topological
insulator with chiral edges states, but non-trivial symmetries cannot be enforced
without modi�cation of the protocol [4].

Therefore, to construct a driving protocol with TRS, we duplicate the previous
non-symmetric model and combine the two copies, as shown in Fig. S6. One copy
is the mirror image of the other, such that they implement opposite chirality for
states on equivalent lattice sites. For the theoretical analysis, it is convenient to
associate the two copies with a pseudo-spin 1/2, where we identify the �red� and
�blue� sublattice of the centred square lattice in Fig. S6 with the �up� spin state |↑〉
and �down� spin state |↓〉, respectively. In this way, the coupling patterns become
associated with the two spin directions. We have, for example,

↑ =
∑

k,l

|2k + 1, 2l〉〈2k, 2l| ⊗ |↑〉〈↑|+ H.c. , (SI.3)

↓ =
∑

k,l

|2k + 1, 2l〉〈2k, 2l| ⊗ |↓〉〈↓|+ H.c. , (SI.4)

and similarly

↓
−

−

+

+

=
∑

k,l

(−1)k+l|k, l〉〈k, l| ⊗ |↓〉〈↓|+ H.c. (SI.5)

for the potential terms. These terms preserve the pseudo-spin direction, as ex-
pressed by the projections |↑〉〈↑| = 1

2
(1 + σz) and |↓〉〈↓| = 1

2
(1− σz).

To connect the two pseudo-spin directions, or sublattices, steps with a pseudo-
spin transformation

σx = |↑〉〈↓|+ |↓〉〈↑| , (SI.6)

need to be included in the driving protocol. In order to preserve TRS, these steps
have to appear pairwise in symmetric position, in our case as steps 2 and 5 of the
protocol.

The entire construction results in the driving protocol speci�ed by the time-
dependent Hamiltonian

H(t) = Hj , for
(
n+ j−1

6

)
T ≤ t <

(
n+ j

6

)
T with n ∈ N , (SI.7)

where the Hamiltonians Hj of each step j ∈ {1, . . . , 6} are listed in Tab. S1.
By construction, the Hamiltonian is Hermitian and periodic, H(t + T ) = H(t).
Each period consists of six steps of equal duration T/6. Steps 1, 3, 4 and 6
leave the pseudo-spin unchanged, while steps 2, 5 involve a pseudo-spin rotation.
To allow for breaking of particle-hole and chiral symmetry, steps 1, 3, 4 and 6
contain additional on-site potentials. In summary, the driving protocol has ten
parameters: six couplings c(j), for j ∈ {1, . . . , 6}, and four on-site potentials ε(j),
for j ∈ {1, 3, 4, 6}. All parameters, hence also the entire Hamiltonian, are real-
valued. The Hamiltonian in Eq. (SI.7) has been used in all numerical calculations
presented in this work, and is the basis of the experimental implementation.

From this Hamiltonian, the Floquet propagator

U(T ) = U6 U5 U4 U3 U2 U1 (SI.8)
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Table S1: Hamiltonian H(t) of the driving protocol in pseudo-spin representation,
using the graphical notation from Fig. S7.

Driving protocol H(t)

Step 1: 0 ≤ t < 1
6T H1 = c(1)

(
↑ + ↓

)
+ ε(1)


 ↑
−

−

+

+

+ ↓
−

−

+

+



Step 2: 1
6T ≤ t < 2

6T H2 = c(2) 1⊗ σx

Step 3: 2
6T ≤ t < 3

6T H3 = c(3)

(
↑ + ↓

)
+ ε(3)


 ↑
−

−

+

+

+ ↓
−

−

+

+



Step 4: 3
6T ≤ t < 4

6T H4 = c(4)

(
↑ + ↓

)
+ ε(4)


 ↑
−

−

+

+

+ ↓
−

−

+

+



Step 5: 4
6T ≤ t < 5

6T H5 = c(5) 1⊗ σx

Step 6: 5
6T ≤ t < T H6 = c(6)

(
↑ + ↓

)
+ ε(6)


 ↑
−

−

+

+

+ ↓
−

−

+

+



is obtained, where the six propagators for each step are de�ned by Uj = exp
(
−

iHjT/6
)
. For full coupling (c(j) = ±3π/T , ε(j) = 0) the Floquet propagator in

the bulk is trivial (U(T ) = ±1). Especially, steps 2 and 5 correspond to a spin
�ip U2,5 = ±iσx and thus transplant states from one to the other pseudo-spin
direction (see Fig. S6). The introduction of edges gives rise to pairs of edge states
with opposite chirality, which move along the trajectories depicted in Fig. 2b in
the main text. Note that an edge must result from a cut that preserves TRS, and
does not separate lattice sites that are paired in the pseudo-spin (or red and blue
sublattice) representation (see last panel in Fig. S6).

From the real-space Hamiltonian H(t), one obtains the Bloch-Hamiltonian
H(k, t) in momentum space given in Table S2. With this Hamiltonian, computa-
tion of the bulk band structures in Fig. 2d and Fig. S8 (below) is straightforward.

Pseudo-spin to lattice mapping As mentioned before, we map the up spin
state |↑〉 onto the �red� and the down spin state |↓〉 onto the �blue� sublattice
to obtain a pure lattice model without pseudo-spin degrees of freedom, which is
suitable for a photonic waveguide implementation. Now, the ket vector |k, l, R/B〉
carries the sublattice information R/B in addition to the lattice site position k, l,
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Table S2: Same as Tab. S1, now for the Bloch Hamiltonian H(k, t) of the driving
protocol. We use the abbreviations k1 = (a/2)(kx + ky) and k2 = (a/2)(−kx + ky),
with the quasi-momentum k = (kx, ky)

t given in the x, y coordinates of Fig. 2b in
the main text.

Driving protocol H(k, t)

Step 1: 0 ≤ t < 1
6T H1(k) =

(
ε(1) c(1)eik1

c(1)e−ik1 −ε(1)
)
⊗ |↑〉〈↑|+

(
ε(1) c(1)e−ik2

c(1)eik2 −ε(1)
)
⊗ |↓〉〈↓|

Step 2: 1
6T ≤ t < 2

6T H2(k) = c(2) 12 ⊗ σx

Step 3: 2
6T ≤ t < 3

6T H3(k) =

(
ε(3) c(3)e−ik1

c(3)eik1 −ε(3)
)
⊗ |↑〉〈↑|+

(
ε(3) c(1)eik2

c(3)e−ik2 −ε(3)
)
⊗ |↓〉〈↓|

Step 4: 3
6T ≤ t < 4

6T H4(k) =

(
ε(4) c(4)eik2

c(4)e−ik2 −ε(4)
)
⊗ |↑〉〈↑|+

(
ε(4) c(4)e−ik1

c(4)eik1 −ε(4)
)
⊗ |↓〉〈↓|

Step 5: 4
6T ≤ t < 5

6T H5(k) = c(5) 12 ⊗ σx

Step 6: 5
6T ≤ t < T H6(k) =

(
ε(6) c(6)e−ik2

c(6)eik2 −ε(6)
)
⊗ |↑〉〈↑|+

(
ε(6) c(6)eik1

c(6)e−ik1 −ε(6)
)
⊗ |↓〉〈↓|

and the coupling and potential terms read,

R =
∑

k,l

|2k + 1, 2l, R〉〈2k, 2l, R|+ H.c. , (SI.9)

B =
∑

k,l

|2k + 1, 2l, B〉〈2k, 2l, B|+ H.c. , (SI.10)

or

B

−

−

+

+

=
∑

k,l

(−1)k+l|k, l, B〉〈k, l, B|+ H.c. , (SI.11)

and similarly for the remaining terms. The pseudo-spin transformation σx in steps
2 and 5 is replaced by the operator

' Σx =
∑

k,l

|k, l, R〉〈k, l, B|+ H.c. , (SI.12)

which swaps the red and blue sublattice (see Fig. S6). In this way, we obtain the
Hamiltonian of the pure lattice model speci�ed explicitly in Table S3.

II.2 Time-reversal symmetry

TRS is de�ned by the relation

ΘH(t)Θ−1 = H(T − t) (SI.13)
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Table S3: Hamiltonian H(t) of the driving protocol in �red� and �blue� sublattice
representation of the pseudo-spin.

Driving protocol H(t)

Step 1: 0 ≤ t < 1
6T H1 = c(1)

(
R + B

)
+ ε(1)


 R

−

−

+

+

+ B

−

−

+

+



Step 2: 1
6T ≤ t < 2

6T H2 = c(2)

Step 3: 2
6T ≤ t < 3

6T H3 = c(3)

(
R + B

)
+ ε(3)


 R

−

−

+

+

+ B

−

−

+

+



Step 4: 3
6T ≤ t < 4

6T H4 = c(4)

(
R + B

)
+ ε(4)


 R

−

−

+

+

+ B

−

−

+

+



Step 5: 4
6T ≤ t < 5

6T H5 = c(5)

Step 6: 5
6T ≤ t < T H6 = c(6)

(
R + B

)
+ ε(6)


 R

−

−

+

+

+ B

−

−

+

+



(cf. Eq. (1) in the main text), where Θ is an anti-unitary operator with Θ2 = 1

for bosonic TRS and Θ2 = −1 for fermionic TRS.
For fermionic TRS we choose Θ = σy K, with the second Pauli matrix σy and

the operator of complex conjugation K. Then, the symmetry relation (SI.13) reads

σyH(t)σ−1y = H(T − t)∗ (SI.14)

(and we have σ−1y = σy). Note that the operator σy only acts on the pseudo-spin
degrees of freedom of H(t).

The transformation of terms in the Hamiltonian H(t) is straightforward, for

example, σy ↑ σ−1y = ↓ , or generally

σy|↑〉〈↑|σ−1y = |↓〉〈↓| . (SI.15)

On the other hand, we have σy σx σ
−1
y = −σx for the spin �ip σx. Therefore, the

driving protocol obeys the relation (SI.14) if and only if the conditions

c(1) = c(6) , c(3) = c(4) , ε(1) = ε(6) , ε(3) = ε(4) , c(2) = −c(5) (SI.16)

are ful�lled. Then, we have

ΘHjΘ
−1 = H7−j (j = 1, . . . , 6) (SI.17)
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for each of the steps, or equivalently

σyHjσ
−1
y = H7−j (j = 1, . . . , 6) (SI.18)

since all Hj are real-valued. If all parameters are non-zero, the protocol does not
possess additional particle-hole or chiral symmetry, see Sec. II.4.

For the present work, we choose the parameters (spin �ip case)

c(1,2,3,4,6) = 3π/T , c(5) = −3π/T , ε(1,3,4,6) = 0 , (SI.19)

and (spin rotation case)

c(1,3,4,6) = 5π/(2T ) , ε(1,3,4,6) = 3/(2T ) ,

c(2) = 2π/T , c(5) = −2π/T .
(SI.20)

II.3 Negative coupling

The condition (SI.16) implies that either the coupling c(2) in step 2 or c(5) in step
5 has to be negative, unless trivially c(2) = c(5) = 0. Negative couplings can indeed
be implemented experimentally [5,6], but we decided to circumvent the additional
complexity involved in their implementation. To avoid negative couplings, we
make the following observation: In steps 2,5 of the driving protocol, of duration
δt (here δt = T/6) and with the spin matrix c(2,5)σx, we have

exp
(
−iδt c(2,5)σx

)
= exp

[
inπσx − iδt

(nπ
δt

+ c(2,5)
)
σx

]
(SI.21)

= (−1)n exp
[
−iδt

(nπ
δt

+ c(2,5)
)
σx

]
(SI.22)

for every n ∈ Z. Therefore, negative couplings c(2,5) < 0 in these steps can be
replaced by positive couplings nπ

δt
+ c(2,5) > 0 for su�ciently large n, without

changing the driving protocol implemented in the experiment. For odd n, the
modi�ed protocol contains an irrelevant global phase.

In the experiment (cf. Methods section), we realise the parameters (spin �ip
case)

c(1,2,3,4,5,6) = 3π/T , ε(1,3,4,6) = 0 , (SI.23)

and (spin rotation case)

c(1,3,4,6) = 5π/(2T ) , ε(1,3,4,6) = 3/(2T ) ,

c(2) = 2π/T , c(5) = 4π/T ,
(SI.24)

having replaced the negative coupling c(5) by the positive value c(5) + 6π/T in step
5 of the driving protocol. Due the global phase introduced by this replacement the
Floquet quasi-energies are shifted by ε 7→ ε+ π/T , but the real space propagation
remains unchanged.
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II.4 Particle-hole and chiral symmetry

Particle-hole symmetry is de�ned by the relation

ΠH(t)Π−1 = −H(t) , (SI.25)

where Π is an anti-unitary operator for which Π2 = ±1. Note that the same time
argument t appears on both sides of the relation, so the symmetry relation maps
each step of the driving protocol

ΠHjΠ
−1 = −Hj (j = 1, . . . , 6) (SI.26)

onto itself.
While particle-hole symmetry with Π2 = −1 would require a modi�ed version

of our driving protocol [7], particle-hole symmetry with Π2 = 1 is satis�ed if the
on-site potentials are set to zero. To see this, we choose

Π =
(

↑
−

−

+

+

− ↓
−

−

+

+ )
K . (SI.27)

The coupling terms in the Hamiltonian transform as

Π ↑ Π−1 = − ↑ , Π ↓ Π−1 = − ↓ , or ΠσxΠ
−1 = −σx . (SI.28)

Comparision with Eq. (SI.26) indiactes that all of them trivially satisfy particle-
hole symmetry without any restriction on the values of c(j). On the other hand,
we have

Π ↑
−

−

+

+

Π−1 = ↑
−

−

+

+

, and Π ↓
−

−

+

+

Π−1 = ↓
−

−

+

+

(SI.29)

for the on-site terms. Therefore, the driving protocol full�lls the symmetry rela-
tion (SI.26) if and only if the on-site potentials ε(j) = 0 vanish. In the present
work, we want to exclusively probe the e�ects that fermionic time-reversal sym-
metry has on the driving protocols. For this reason, we include on-site terms to
break particle-hole symmetry.

Since the driving protocol has time-reversal symmetry, but no particle-hole
symmetry, the product of the two, which is chiral symmetry, is also broken [8].

II.5 Bulk invariants and symmetry-protected topological phases

In order to clearly separate the four topological invariants discussed in the main
text, Chern number C, Kane-Mele invariant νKM, Floquet winding numberW and
Floquet TRS invariant νTR, we give an overview of their de�nition and relevance for
(symmetry-protected) topological edge states. For a brief summary, see Tab. S4.

II.5.1 Chern number C
The topological classi�cation of time-independent systems without additional sym-
metries employs the integer-valued Chern number [15]

C =
1

2πi

∫

BZ

dk2∇k × 〈ψ|∇k|ψ〉 . (SI.30)
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Table S4: Overview of the discussed topological invariants.

Invariant System type Values Occurrence This work

C Static No symmetry Z [9, 10] C = 0

νKM Static Fermionic TRS Z2 [11, 12] νKM = 0

W Floquet No symmetry Z [13, 14] W = 0

νTR Floquet Fermionic TRS Z2 This work νTR = 1

The abbreviation BZ denotes integration over the entire Brillouin zone. The value
of the Chern number corresponds to the net-chirality of edge states. When evalu-
ated for the individual bands of a Floquet system, the Chern number is calculated
from the eigenvectors |ψ(k)〉 of the Floquet-Bloch propagator U(k, T ). In Floquet
systems, it usually fails to correctly predict the number of edge states [3,16] due to
the periodicity of the quasi-energy. For the numerical computation of the Chern
number, we use the algorithm from Ref. [17].

II.5.2 Kane-Mele invariant νKM

The topological classi�cation of time-independent systems with fermionic TRS
employs the Z2-valued Kane-Mele invariant [18]

νKM =
1

2πi

[∫

BZ1/2

dk2 (∇k × 〈ψ|∇k|ψ〉)−
∫

∂BZ1/2

dk 〈ψ|∇k|ψ〉
]

mod 2 .

(SI.31)
The abbreviations BZ1/2 or ∂BZ1/2 now denote integration over half of the Brillouin
zone or over its boundary, respectively. A non-zero value of this invariant implies
the existence of a pair of symmetry-protected edge states with opposite chirality.
Again, when evaluated for the individual bands of a Floquet system, the Kane-
Mele invariant is calculated from the eigenvectors of the Floquet-Bloch propagator.
Now, symmetry-protected edge states can appear even when the Kane-Mele invari-
ant is zero [4, 19, 20], which is indeed the case for our driving protocol. For the
numerical computation of the Kane-Mele invariant, we use the algorithm from
Ref. [21].

II.5.3 Winding Number W
The topological classi�cation of Floquet systems without additional symmetries
employs the integer-valued winding number [3]

W(ε) =
1

8π2

∫ T

0

dt

∫

BZ

dk2 Tr
(
U †ε∂tUε

[
U †ε∂kxUε, U

†
ε∂kyUε

])
. (SI.32)

This invariant counts the net-chirality of edge states in the band gap at quasi-
energy ε. Conceptually, it replaces the Chern number of time-independent systems
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as the relevant invariant for Floquet systems. The modi�ed propagator Uε(k, t) is
constructed from the Floquet-Bloch propagator U(k, t) as follows:

Uε(k, t) =

{
U(k, 2t) if 0 ≤ t ≤ T

2

Vε(k, 2T − 2t) if T
2
< t ≤ T

,

where Vε(k, t) = exp(t logε U(k, T )). The branch cut of the complex logarithm is
chosen along the line from zero to exp(−iεT ), i.e., the eigenvalues of i logε U(k, T )
are elements of the interval (Tε− 2π, Tε].

Alternatively, the winding number W may be expressed as the sum

W(ε) =

p∑

i=1

Ni(ε)Ĉi (SI.33)

over all degeneracy points i = 1, ..., p of the Floquet-Bloch propagator U(k, t)
that occur during time-evolution [19, 20]. To each degeneracy point, we assign a
topological charge Ĉi, given as a Chern number, and a weight factor Ni(ε) that
ensures that only the degeneracy points in the gap ε contribute to the sum. Now,
the Chern numbers Ĉi and weight factors Ni(ε) are calculated from the eigenvectors
and eigenvalues of the Floquet-Bloch propagator U(k, t) for all 0 ≤ t ≤ T . For the
numerical evaluation of the W-invariant, we use the algorithm from Ref. [22].

II.5.4 TRS invariant νTR

In Floquet systems with fermionic TRS, the degeneracy points of the Bloch prop-
agator appear in pairs with opposite topological charge, and cancel each other in
the expression for the W-invariant (SI.33). The appropriate Z2-valued invariant
for these systems [19,20],

νTR(ε) =

p/2∑

i=1

Ni(ε)Ĉi mod 2 , (SI.34)

counts only one partner of each symmetric pair of degeneracy points, as indicated
by the upper summation limit p/2. A non-zero value of νTR(ε) implies the exis-
tence of symmetry-protected edge states with opposite chirality in the band gap at
quasi-energy ε. Conceptually, this invariant serves the same role for Floquet sys-
tems as the Kane-Mele invariant for time-independent systems. For the numerical
evaluation of the νTR-invariant, we use the algorithm from Ref. [22].

II.6 Topological consideration of a ribbon geometry

In a �nite sample, symmetry-protected topological phases manifest themselves
through chiral edge states. In our experiment, as well as in the numerical simula-
tions, the edges of the sample run along either −45◦ (�x-axis�) or +45◦ (�y-axis�)
on the centred square lattice, as indicated in Fig. 3 and Fig. S6. Note that the
edges have to preserve TRS and thus may not separate lattice sites that are paired
in the pseudo-spin representation.
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Figure S8: Floquet bands and symmetry-protected counter-propagating topolog-
ical edge states for the spin �ip (left panel) and spin rotation (central and right
panel) case. Included are the values of the Kane-Mele invariant of the Floquet
bands and the νTR-invariant in the central gap.

Figure S8 shows the edge states on a semi-in�nite ribbon, together with the Floquet
bands of the bulk, using the parameters of our driving protocol in Eq. (SI.23) (spin
�ip case) or Eq. (SI.24) (spin rotation case). In Fig. S8, the ribbon is 15 unit cells
wide, and we only show the edge states on one of the two edges. Numerically,
the edge states and bulk bands are computed from diagonalisation of the Floquet
propagator on the ribbon after one driving period T , evaluated as a function of
the momentum kx/y parallel to the edges along the x-axis or y-axis. Note that
we include the shift ε 7→ ε + π/T of Floquet quasi-energies that appears through
the replacement c(5) 7→ c(5) + 6π/T of the negative parameter c(5) by a positive
value as we switch from the parameters in Eqs. (SI.20), (SI.19) to the experimental
parameters in Eqs. (SI.24), (SI.23) (see Sec. II.3). Accordingly, the gap appears
at quasi-energy ε = 0.

Through the bulk-edge correspondence the existence of chiral edge states co-
incides with a non-zero value of the respective bulk invariants, as collected in
Sec. II.5. The present situation is characterised by the values listed in Table S4.
Since C = 0 andW = 0 by TRS, edge states have to appear in counter-propagating
pairs. Since νKM = 0 but νTR 6= 0 an odd number of counter-propagating pairs of
edge states has to be present in the gap between the Floquet bands. Note that
this combination of invariants corresponds to an anomalous Floquet topological
phase [3, 16].

Counter-propagating edge states are indeed observed in Fig. S8 (here, a single
pair). In both cases, the edge states exist independently of the direction of the
edge, as required for (symmetry-protected) topological states. In the spin �ip case,
the Floquet bands are perfectly �at and the dispersion of the edge states is linear.
Changing the parameters of the driving protocol from the spin �ip to the spin
rotation case, the Floquet bands acquire dispersion but the topological invariants
do not change since the gap does not close. Alternatively, we could note that the
number of crossings of the edge state dispersion at the invariant momenta kx,y =
0, π/a, and hence the number of counter-propagating edge states, is protected by
TRS through Kramers degeneracy. Indeed, these two viewpoints are equivalent
due to the bulk-edge correspondence. The pair of counter-propagating edge states
observed here in momentum space gives rise to the propagating modes observed
in real space in the experiment (see Figs. 3, S4, S5).
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II.7 Probing fermionic time-reversal symmetry

To check the TRS relation (SI.13) experimentally, we reverse the sample as de-
scribed in the main text. As we derive now, this allows us to probe fermionic and
bosonic TRS.

Reversing the sample does not correspond to reversing time, but to reversing
the order of steps of the driving protocol. Therefore, if the forward propagator is
given by Eq. (SI.8), the backward propagator is

Ũ(T ) = U1 U2 U3 U4 U5 U6 . (SI.35)

Here, we consider only one period of the driving protocol. Generalisation to several
periods is straightforward.

In the present situation, a general TRS operator can be written as Θ = σK,
with a unitary spin-1/2 matrix σ such that σσ∗ = ±12. For such a general operator,
the TRS relation (SI.13) is valid if and only if

σHjσ
−1 = H7−j (j = 1, . . . , 6) (SI.36)

for the Hamiltonians Hj of each step (cf. Eqs. (SI.17), (SI.18)). Here, we use that
the Hj are real-valued in our driving protocol, which allows us to drop the complex
conjugation K. Equivalently, we have

σUjσ
−1 = exp

(
− i(T/6)σHjσ

−1) (SI.37)

= exp
(
− i(T/6)H7−j

)
= U7−j (SI.38)

for the propagators Uj = exp
(
−iHjT/6

)
of each step. Therefore, the TRS relation

for the backward propagator reads

σU(T )σ−1 =
(
σU6σ

−1) · · ·
(
σU1σ

−1) = U1 · · · U6 = Ũ(T ) . (SI.39)

Now suppose we use in the experiment the input state

|ψin(φ)〉 = |k0, l0,R〉+ eiφ|k0, l0,B〉 , (SI.40)

with �nite amplitude on an adjacent red (R) and blue (B) site and a relative
phase φ. If the state propagates through the sample, with forward propagation
illustrated in Fig. 4a, the intensities of the waveguides measured at the output
facet are given by the state

|ψout(φ)〉 = U(T )|ψin(φ)〉 =
∑

k,l

(
ψk,l,R(φ)|k, l,R〉+ ψk,l,B(φ)|k, l,B〉

)
. (SI.41)

The amplitudes ψk,l,R/B(φ) occurring here could be computed with the Hamiltonian
H(t). Summing over the red or blue sites, respectively, we obtain the output
intensities

IR(φ) =
∑

k,l

|ψk,l,R(φ)|2 , IB(φ) =
∑

k,l

|ψk,l,B(φ)|2 , (SI.42)
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Figure S9: Probing the output intensities from Fig. 4b for fermionic TRS with
σ = σy (panel a) or bosonic TRS with σ = σz (panel b). According to Table S5,
it should hold ĨR(φ) = IB(π− φ) in case a and ĨB(φ) = IB(π + φ) in case b if the
respective TRS is realised. Clearly, the relation for case a is satis�ed but for case
b is not.

shown in Fig. 4b and Fig. S9.
If, alternatively, the input state propagates through the reversed sample, i.e.

with backward propagation illustrated in Fig. 4c, the output is given by the state

|ψ̃out(φ)〉 = Ũ(T )|ψin(φ)〉 = ΣU(T )Σ−1|ψin(φ)〉 , (SI.43)

now with di�erent output intensities ĨR(φ), ĨB(φ). The operator Σ that appears
here is the mapping of the pseudo-spin operator σ onto the red/blue sublattice
structure of the waveguide implementation (cf. Eq. (SI.12)). In bra-ket notation,
it is

Σ =
∑

k,l

(
σ↑↑|k, l,R〉〈k, l,R|+ σ↓↑|k, l,B〉〈k, l,R|+ (SI.44)

σ↑↓|k, l,R〉〈k, l,B|+ σ↓↓|k, l,B〉〈k, l,B|
)

(SI.45)

for

σ =

(
σ↑↑ σ↑↓
σ↓↑ σ↓↓

)
. (SI.46)

From Eq. (SI.43) we see that the relation between the output intensities IR(φ),
IB(φ) for forward propagation and ĨR(φ), ĨB(φ) for backward propagation depends
entirely on the operator σ that determines Σ. Conversely, if the relation between
the output intensities is known from the experiment, the possible choices of σ can
be deduced.

The relevant possibilities are listed in Table S5. Note that a global phase of
the operator σ drops out of the TRS relation (SI.13) due to complex conjugation,
and is therefore not included in the table. For example, with σ ≡ σy we have

Σ ≡ Σy =
∑

k,l

(
i|k, l,B〉〈k, l,R| − i|k, l,R〉〈k, l,B|

)
, (SI.47)
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Table S5: Relation between output intensities in forward and backward propaga-
tion for the four relevant choices of the operator σ in the general TRS relation.

σ ĨR(φ) ĨB(φ)

1 IR(φ) IB(φ)
σx IB(φ) IR(φ)
σy IB(π − φ) IR(π − φ)
σz IR(π + φ) IB(π + φ)

and thus
Σ−1y |ψin(φ)〉 = −ieiφ|ψin(−φ+ π)〉 (SI.48)

for the input state while, according to Eq. (SI.43),

|ψ̃out(φ)〉 = −ieiφΣy|ψout(−φ+ π)〉 (SI.49)

= eiφ
∑

k,l

(
ψk,l,R(−φ+ π)|k, l,B〉 − ψk,l,B(−φ+ π)|k, l,R〉

)

for the output state. The phases ±eiφ drop out, but the output intensities on
the red and blue sublattice are swapped by Σy. Therefore, we get the relations
ĨR(φ) = IB(−φ+ π), ĨB(φ) = IR(−φ+ π) given in Table S5.

Now, the type of TRS realised by the driving protocol can be determined
conclusively from the experimental data in Fig. 4b in the main text. In the ex-
perimental data we observe that (i) the output intensities on the red and blue
sublattice are swapped and (ii) a phase shift φ 7→ ±φ + π occurs when revers-
ing the probe. Observation (i) rules out all possibilities for TRS apart from the
choices σ = σx or σ = σy, which are the only operators with purely o�-diagonal
elements as required for the swapping of intensities. Observation (ii) rules out all
possibilities for TRS apart from the choices σ = σy or σ = σz, which are the only
operators leading to a phase shift φ 7→ ±φ + π. In combination, we are left with
the choice σ = σy of fermionic TRS.

For a �nal check of fermionic TRS, the experimental data are reproduced in
Fig. S9 in direct correspondence to the relations from Table S5. Note that we have
IR(φ) = 1 − IB(φ) and ĨR(φ) = 1 − ĨB(φ) for the normalised output intensities,
such that the data in Fig. 4b fully determine the four functions entering these
relations. Fig. S9 clearly shows that (only) the choice σ = σy is compatible with
the experimental data: Within the limit of experimental uncertainties, we have
ĨR(φ) = IB(π−φ) (hence also ĨB(φ) = IR(π−φ) for normalised output intensities).
Therefore, probing fermionic TRS results in a positive result: The experimental
data for the output intensities are compatible with � and only with � fermionic TRS.
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III Stability of the Z2 topological insulator

III.1 Experimental study of multi wavelength excitation

The coupling coe�cient of evanescently coupled waveguides depends crucially
on the excitation wavelength [1]. All of the samples discussed in this work are
designed at an operation wavelength of 633 nm. By using a white light laser
source (NKT SuperK Extreme) and a narrow wavelength �lter (Photon ETC
LLTF-SR-VIS-HP8), we are able to excite the structures in the wavelength range
600− 670 nm. Hence, perturbing the photonic structure around the designed op-
erating wavelength. We study the in�uence of the wavelength on two edge states
at the lower x-edge of our structure, one clockwise and one counterclockwise (see
Fig. S10a). When operated at an o�-design wavelength (as shown for 626 nm in
Fig. S10b), the e�ciency with which the protocol con�nes light to the chiral edge
channels systematically drops, and a certain fraction of the initial excitation can
escape to the bulk. Nevertheless, more than 70 % con�nement is achieved over a
range of 20 nm (see Fig. S10c), corresponding to a bandwidth of more than 3 %
of the carrier wavelength 633 nm. For comparison, the well established C-band
in infrared telecommunications (1530−1565 nm) spans approximately 2.3 % of its
carrier wavelength [23]. This is another indication that the underlying topology
indeed provides robustness to the counterpropagating edge states.

Figure S10: Probing the stability of the edge states by exciting the lattice
with o�-design wavelength. a, Evolution of a counterclockwise moving edge
state after three driving periods at designed wavelength 633 nm. b, Edge state of
the same lattice at the same single site excitation, for a wavelength of 626 nm. The
intensity is spread over the edge, but remains at the edge. c, Intensity ratio of light
at the edge (orange encircled region in a) as a function of the excitation wavelength.
The blue/red data points indicate the excitation of a clockwise/counter-clockwise
moving edge state, respectively. The grey bar indicates the region, where more
than 70 % remains con�ned at the edge. The error bars are estimated by using the
signal-to-noise ratio of the experimental image.
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III.2 Bandstructure analysis under the in�uence of speci�c

perturbations

The key ingredient for the Z2 topological insulator is the presence of fermionic
TRS. If this symmetry is broken, the topological protection is lost, as illustrated
in the bottom left panel of Fig. 1 in the main text. In order to highlight how
such symmetry breaking a�ects the topological phase of our system (compare
Fig. 3 in the main text), we change the system parameters and either preserve
(see Figs. S11a,b) or break (see Figs. S11c,d) fermionic TRS. Since our driving
protocol mainly depends on two parameters, the coupling and the detuning, we
illustrate the e�ects of symmetry preservation/breaking for both cases. We choose
the parameters in accordance to the experimental realisation (see Eq. (SI.20)) and
add changes in steps one and six.

Figure S11: Analysis of the stability of the Z2 topological insulator with counter-
propagating edge states under changes that preserve or break fermionic TRS. The
band structure shows the stability of edge states under a, a symmetric o�set in
the coupling and b a symmetric o�set in the detuning, which are both changes
that preserve the symmetry. If the c coupling or d detuning is changed only in
step one of the driving protocol, which breaks any TRS symmetry, a gap (marked
in gray) is visible in the edge state dispersion.
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In order to preserve fermionic TRS it is crucial that parameter changes are sym-
metric with respect to the steps of the driving protocol (see Eq. (SI.16)). The
resulting band structures are displayed in Figs. S11a,b, where we add a constant
o�set to the coupling

c(1) → c(1) +
π

T
and c(6) → c(6) +

π

T
, (SI.50)

as shown in Fig. S11a, or a constant o�set to the detuning (see Fig. S11b)

ε(1) → ε(1) +
3

T
and ε(6) → ε(6) +

3

T
. (SI.51)

Here, the counter-propagating edge states are still present, due to the protection
by fermionic TRS.

In order to break fermionic TRS symmetry we change the parameters only in
the �rst step, hence destroying any TRS. The resulting e�ect on the edge states
is displayed in Figs. S11c,d, where we add a constant o�set to the coupling in the
�rst step

c(1) → c(1) +
π

T
, (SI.52)

as shown in Fig. S11c, or to the detuning in the �rst step (see Fig. S11d)

ε(1) → ε(1) +
3

T
. (SI.53)

Now, the edge states do no longer traverse the band gap (emphasised by a gray
box), but return into the band they originated from. Hence, they do not give
rise to scatter-free transport anymore, which is a direct consequence of the loss
of symmetry protection. As expected, the Z2 topological phase with counter-
propagating edge states is only protected as long as the fermionic TRS is preserved.
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Non-Hermitian Boundary State Engineering in Anomalous Floquet
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In Hermitian topological systems, the bulk-boundary correspondence strictly constrains boundary
transport to values determined by the topological properties of the bulk. We demonstrate that this constraint
can be lifted in non-Hermitian Floquet insulators. Provided that the insulator supports an anomalous
topological phase, non-Hermiticity allows us to modify the boundary states independently of the bulk,
without sacrificing their topological nature. We explore the ensuing possibilities for a Floquet topological
insulator with non-Hermitian time-reversal symmetry, where the helical transport via counterpropagating
boundary states can be tailored in ways that overcome the constraints imposed by Hermiticity. Non-
Hermitian boundary state engineering specifically enables the enhancement of boundary transport relative
to bulk motion, helical transport with a preferred direction, and chiral transport in the same direction on
opposite boundaries. We explain the experimental relevance of our findings for the example of photonic
waveguide lattices.

DOI: 10.1103/PhysRevLett.123.190403

Topological states of matter have proven to be a research
topic where fundamental theoretical insights lead almost
inevitably to state-of-the-art practical applications [1–3]. A
key feature of topological systems is directional transport
via chiral boundary states, which is protected by topologi-
cal invariants and thus impervious to the imperfections of
real-world implementations [4–8]. In combination with
fundamental symmetries [9–12], especially time-reversal
symmetry (TRS) in topological insulators [13,14], topo-
logy even protects bidirectional helical transport via coun-
terpropagating boundary states [6,15]. Such symmetry-
protected topological phases emerge in a variety of physical
systems [16–25], where they give rise to a wide spectrum of
experimentally observable phenomena [26–30]. The recent
discovery of anomalous topological phases in periodically
driven (i.e., Floquet) insulators demonstrates the singular
relevance of topological concepts also in systems far from
equilibrium [31–36].
Only very recently has the notion of topological phases

been extended to non-Hermitian systems [37–39]. The
perception of the role of topology in this context is still
changing rapidly through theoretical investigation and
classification [40–50] as well as experimental exploration
[29,51–54] of non-Hermitian topological phases, which
includes investigation of the interplay of non-Hermiticity
and Floquet dynamics [55,56]. Intriguingly, topology is
expected to protect transport even against damping and
dissipation [46].
In the present Letter we introduce the topological

concept of boundary state engineering (BSE) that combines
the specific aspects of non-Hermitian and anomalous

Floquet topological phases, and has no counterpart in
systems with a Hermitian or static Hamiltonian. The
concept underlying BSE is illustrated in Fig. 1, where
we sketch the spectrum of the Floquet propagator
U≡ UðTÞ, obtained as the solution of the Schrödinger
equation i∂tUðtÞ ¼ HðtÞUðtÞ after one period of a time-
periodic Hamiltonian HðtÞ ¼ Hðtþ TÞ.
For a Hermitian system, with real Floquet quasienergies

ε, the spectrum fe−iεg of U lies on the unit circle [57]. In
regular topological phases, as they appear in systems with a
static Hamiltonian, any boundary state, viewed as a
continuous curve k ↦ e−iεðkÞ parametrized by momentum
k, connects two different bulk bands. Anomalous Floquet
topological phases, in contrast, possess boundary states that
wind around the unit circle [32]. Thinking in terms of the
quasienergy ε, this possibility results from the periodic-
ity ε ↦ εþ 2π.
In a non-Hermitian system, the spectrum of U can move

away from the unit circle. Regular boundary states have to
remain attached to the bulk bands, since otherwise the
continuous dependence on momentum would be violated.

FIG. 1. Conceptual sketch of the spectrum fe−iεg ⊂ C of the
Floquet propagator in the Hermitian and non-Hermitian case,
with bulk bands (green dots) and boundary states (orange curves)
of a regular and anomalous topological phase.
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Anomalous boundary states, however, can detach from the
bulk bands and thus be manipulated independently. This
new freedom is exploited in BSE.
BSE is indeed a topological concept: Since the propa-

gator U is invertible, its spectrum cannot move through the
origin, and the winding number is preserved. Therefore, an
anomalous boundary state, which winds around the origin,
retains this property during non-Hermitian BSE and
remains topologically protected.
From our discussion it is evident that BSE requires the

combination of non-Hermiticity with anomalous Floquet
topological phases. Non-Hermiticity arises naturally in
optical settings such as photonic waveguide systems
[29], since coupling involves losses due to the bending
of the waveguides (see Fig. 2). The idealized Hamiltonian
for the symmetric coupling of two lossy waveguides,

HB ¼
�
−iγ J
J −iγ

�
; ð1Þ

involves a coupling parameter J and damping γ. The
associated propagator UB ¼ exp½−iHB�, over a time step
δt≡ 1, is an SU(2) rotation, modified by the attenuation
(γ > 0) or amplification (γ < 0) factor e−γ. At perfect
coupling J ¼ π=2 we have UB ¼ −ie−γσ̂x, with the
Pauli matrix σ̂x. Amplitude is swapped between the two
coupled sites, but changes as e−γ .
Regarding the experimental relevance of our theoretical

considerations, it is useful to allow for a shift σðtÞ ∈ C of
the Hamiltonian, where we map HðtÞ ↦ HðtÞ þ σðtÞ, and
thus U ↦ ΓU with Γ ¼ exp½−i R T

0 σðtÞdt�. Through the
shift, loss and gain become relative terms, and weak loss
can be interpreted as (pseudo) gain relative to strong loss.
The physical content of HðtÞ or U remains unchanged:
measuring normalized intensities, of the form IðrÞ ¼
jψðrÞj2=maxr0 jψðr0Þj2, the factor Γ in U cancels.
Concerning the second aspect of BSE, the anomalous

Floquet topological phases, we resort to the idea of a
driving protocol [32]. To critically assess the potential of
BSE in complex situations, we will use a driving protocol
with fermionic TRS that supports counterpropagating
boundary states. This protocol belongs to a class of
universal protocols for symmetry-protected topological
phases, which are investigated in Ref. [25].
One period of the protocol concatenates n ¼ 6 steps, as

given in Fig. 3 in a pictorial representation. The protocol
takes place on a (finite or infinite) square lattice, which is
composed of a red and blue sublattice. Because of

fermionic TRS, the Hamiltonian obeys the relation
SHðtÞS−1 ¼ HðT − tÞ�, with a unitary symmetry operator
S that fulfills SS� ¼ −1 [10]. Here, it is S ¼ σ̂y ⊗ σ̂y if we
identify the “red” and “blue” sublattice with the up and
down component of a pseudospin ½.
Fermionic TRS is essential for the Z2 phases of

topological insulators [13]. As can be seen in Fig. 3, the
driving protocol indeed supports a symmetry-protected Z2

topological phase, with counterpropagating boundary
states whose intersection at momentum k ¼ 0 is protected
by Kramers degeneracy. This phase is an anomalous
Floquet phase, since the boundary states connect the same
bulk band at quasienergies separated by 2π. This phase has
been explored experimentally in Ref. [15].
In general, the driving protocol supports topological

phases on a continuous parameter manifold. Here, we
consider a minimal parameter set, with the two parameters
J (for diagonal couplings in steps 1,3,4,6) and J0 (for
horizontal couplings in steps 2,5). We use J ¼ 1.5, J0 ¼ 0.4
in all plots. The minus sign�J0 between steps 2,5 shown in
Fig. 3 is required for fermionic TRS, but negative couplings
can be replaced by positive couplings to facilitate the
experimental implementation [15].
Since the Z2 phase in Fig. 3 is an anomalous topological

phase, it is a candidate for BSE. To understand the
possibilities arising in this situation we first address the
analytically tractable case of perfect coupling (J ¼ π=2,
J0 ¼ 0), before returning to general parameters.
At perfect coupling, the red and blue sublattice are

decoupled (since J0 ¼ 0). As depicted in Fig. 4, states in the
bulk move in a circular clockwise (counterclockwise) orbit
on the red (blue) sublattice. At a boundary, which in Fig. 4
is oriented horizontally with respect to Fig. 3 and lies at the
bottom of the (half-infinite) lattice, states propagate
either to the right (red sublattice) or the left (blue sub-
lattice). The propagation direction does not depend on the
precise position of the boundary but is prescribed by the

FIG. 2. Idealized Hamiltonians for an uncoupled (HA) and two
coupled (HB) lossy waveguides, as they might appear in the
experimental realization of a non-Hermitian driving protocol.

FIG. 3. Driving protocol for a Floquet insulator with TRS: Six
steps of alternating interactions (left) between neighboring lattice
sites (representing, e.g., photonic waveguides) lead to a Z2

topological phase with counterpropagating boundary states (bot-
tom right), which is protected by fermionic TRS with the
symmetry operator S≡ σ̂y ⊗ σ̂y (top right).
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bulk-boundary correspondence. Here, with counterpropa-
gating boundary states, transport is protected by topology
and fermionic TRS.
According to these patterns of motion, perfect coupling

gives rise to a fourfold degenerate dispersionless bulk band
at quasienergy ε ¼ 0, and two counterpropagating boun-
dary states with linear dispersion εrðkÞ ¼ π þ k, εbðkÞ ¼
π − k. As has been seen in Fig. 3, these features survive
qualitatively for general parameters.
Non-Hermiticity is now introduced into the driving

protocol in the following way. In the bulk, we assume
uniform losses (as in theHB configuration in Fig. 2) for the
diagonal couplings of the red (losses with γr) or blue (losses
with γb) sublattice in steps 1,3,4,6. The bulk bands thus
acquire imaginary quasienergies

ιr ¼ −4γr; ιb ¼ −4γb: ð2Þ
Here and below, a ι variable denotes the imaginary part
ι≡ Im ε of a quasienergy. Positive (negative) ι implies gain
(loss) according to e−iεt ¼ eιt × e−itRe ε. For the horizontal
couplings in steps 2,5 we may assume identical losses,
which can be absorbed into the shift of the Hamiltonian and
will not be listed explicitly.
At the boundaries, losses γ̆r, γ̆b occur at the isolated sites

that, in the respective step of the protocol, do not couple to
other sites (as in the HA configuration in Fig. 2). For
example, consider the state starting at a “filled red” site in
the central top panel in Fig. 4. Through one period of the
protocol, this state moves by two sites in steps 1,3
(incurring bulk losses −2γr), and remains at an isolated
red site during steps 4,6 (incurring boundary losses −2γ̆r).
Working out the respective patterns for all four states
depicted in the top row of Fig. 4, we see that the boundary
states acquire imaginary quasienergies

ῐr ¼ ιr=2 − 2γ̆r; ῐb ¼ ιb=2 − 2γ̆b: ð3Þ
Free choice of the four loss parameters γr, γb, γ̆r, γ̆b

allows for free placement of boundary states relative to the

bulk, as we had anticipated with the concept of BSE
introduced in Fig. 1. In particular, the boundary states are
detached from the bulk bands if ιr ≠ ῐr or ιb ≠ ῐb.
The free assignment of losses γ (or imaginary parts ι) is

not compatible with TRS. To restore TRS, we can now
impose two independent conditions in extension of the
Hermitian case, namely

ðTRS�Þ∶ SHðtÞS−1 ¼ HðT − tÞ� þ ξ�ðtÞ; ð4aÞ

ðTRStÞ∶ SHðtÞS−1 ¼ HðT − tÞt þ ξtðtÞ: ð4bÞ

In comparison to, e.g., Ref. [39], these conditions incor-
porate the shift of the Hamiltonian through the functions
ξ�ðtÞ ¼ σðtÞ − σðT − tÞ�, ξtðtÞ ¼ σðtÞ − σðT − tÞ. For a
constant shift σðtÞ≡ σ, we have ξ� ≡ i Im σ and ξt ≡ 0.
Similar to the coupling parameters J, J0, where fermionic

TRS requires a minus sign between steps 2,5, non-
Hermitian TRS imposes constraints

ðTRS�Þ∶ γr þ γb ¼ γ̆b þ γ̆r; ð5aÞ

ðTRStÞ∶ γr ¼ γb; γ̆b ¼ γ̆r; ð5bÞ

on the loss parameters, which are equivalent to

ðTRS�Þ∶ ιr þ ιb ¼ ῐb þ ῐr; ð6aÞ

ðTRStÞ∶ ιr ¼ ιb; ῐb ¼ ῐr: ð6bÞ

Note that TRSt, but not TRS�, implies equal damping of
counterpropagating boundary states.
While in a uniform system the parameters γr;b can be

assumed to be identical throughout the bulk, it is essential
for BSE that the losses γ̆r;b may very well depend on the
boundary. For the schematic plot in the lower part of Fig. 4,
we consider an infinite horizontal strip with different losses
at the “top” (γ̆⊓r , γ̆⊓b ) and “bottom” (γ̆⊔r , γ̆⊔b ) boundary. The
central part of this plot, along the γ� and γt abscissa, uses a
parametrization that results in

ðTRS�Þ∶ ιr;b ¼ −4γ�; ð7aÞ

ῐ⊔r ¼ ῐ⊓b ¼ −2γ�; ῐ⊓r ¼ ῐ⊔b ¼ −6γ�; ð7bÞ

ðTRStÞ∶ ιr;b ¼ −4γt; ῐ⊓r;b ¼ ῐ⊔r;b ¼ −2γt ð7cÞ

for the bulk and boundary states. TRS� or TRSt symmetry
is preserved for all values of the respective parameter γ� or
γt, and bulk motion is suppressed in favor of boundary
transport for γ�;t > 0. The remaining figures will use this
parametrization of the infinite horizontal strip.
General assignment of losses allows for more complex

manipulation of boundary states, as schematically depicted
along the “general parameters” abscissae. As long as TRS
is preserved, the ι values in Fig. 4 obey the relations of

FIG. 4. Top row: motion at perfect coupling in the bulk (left)
and at two boundaries (center and right), starting from a site
marked with a cross (×). Lower panel: schematic plot of the
imaginary quasienergy ι≡ Imε [relative to ῑ ¼ −2ðγr þ γbÞ] for
the parametrization in Eq. (7) and with general parameters. The
plot shows the values in the bulk (filled rectangles) and on two
different boundaries (marked with ⊔, ⊓), colored according to the
starting site as in the top row.
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Eq. (6). Without TRS, boundary states can be manipulated
freely and independently on each boundary, as shown
towards the left axis of the plot.
The schematic plot in Fig. 4 illustrates a few particularly

noteworthy features of BSE. First, without TRS, the
damping of bulk and boundary states can be chosen entirely
freely. Second, even with TRS, the damping of boundary
states relative to bulk states can be chosen freely, sup-
pressing or enhancing either boundary transport or bulk
motion. Third, the properties of boundary transport are not
dictated by the properties of the bulk, as a strict bulk-
boundary correspondence would demand. For example at
the right axis of the plot, boundary transport occurs
predominantly via red states, opposite to the predominant
motion in the bulk via blue states.
In the general situation, away from perfect coupling,

both the real and imaginary part of the quasienergies
depend on momentum. TRS implies the constraints (see
Supplemental Material [58] for a detailed derivation)

ðTRS�;tÞ∶ RefεðkÞg ¼ Refεð−kÞg; ð8aÞ

ðTRS�Þ∶ ImfεðkÞg ¼ −Imfεð−kÞg þ 2Imσ; ð8bÞ

ðTRStÞ∶ ImfεðkÞg ¼ Imfεð−kÞg ð8cÞ

on the quasienergy spectrum fεðkÞg at momentum k,
which generalize Eq. (6). Here, Eq. (8b) includes an
imaginary shift, which drops out of Eq. (8c).
In Fig. 5, we observe the Kramers-like crossing of

Re εðkÞ according to Eq. (8a). For TRSt the two boundary
states have to cross at the same Im εðkÞ and are thus truly
degenerate, while for TRS� they are separated by their
imaginary part. This difference suggests that in the first
case TRSt is required to protect the boundary states, while
in the second case they are robust against breaking of
TRS�. Indeed, if we break TRS by adding detunings (see
Supplemental Material [58] for details on TRS breaking

and preserving detunings), we observe an avoided crossing
in Fig. 5 only for broken TRSt but not for broken TRS�.
Evidently, when counterpropagating boundary states

have been separated via BSE, TRS is no longer required
for their protection. However, now a preferred direction of
transport exists due to the different damping of the
boundary states. Only if the damping is equal, as in the
TRSt case in Fig. 5, true bidirectional transport without a
preferred direction can be observed. In this scenario, TRS is
still required for the protection of transport.
The new freedom introduced by BSE is thus twofold: It

allows us to modify boundary transport relative to the bulk
motion, and to selectively modify transport on different
boundaries. Figure 6 provides a visual demonstration of the
potential of such modifications. The point of reference is
the Hermitian case in Fig. 6(b), with bidirectional helical
transport via symmetry-protected counterpropagating
boundary states (cf. Fig. 3). When protected by TRSt,
the counterpropagating boundary states survive the tran-
sition into the non-Hermitian regime, but now BSE allows
us to suppress bulk motion in favor of boundary transport
[Fig. 6(c)]. In the TRS� case, we can additionally suppress
either one of the two states on each boundary, which we do
in such a way that transport on opposite boundaries takes
place in the same (and not opposite) direction [Fig. 6(d)].
Such modifications are a unique feature of BSE: In a
Hermitian system, they are prohibited by the bulk-
boundary correspondence, while in a non-Floquet system
boundary states remain attached to the bulk bands

FIG. 5. Floquet quasienergy εðkÞ as a function of momentum k,
with and without TRS as indicated, and non-Hermitian losses
γt;� ¼ 1.2 according to Eq. (7). Boundary states (on a “bottom”
boundary) are shown in orange (as in Fig. 3). The gray circle
indicates the Kramers-like degeneracy for TRSt.

(a) (b)

(c)

(e)

(f)

(d)

FIG. 6. Real-space propagation of an initial state prepared at the
boundaries of a semi-infinite strip (height 30 sites), in the
Hermitian case (b) or with non-Hermitian losses γt;� ¼ 0.1
according to Eq. (7) (c)–(f). Lightness encodes the wave function
intensity IðrÞ ¼ jψðrÞj2 at each lattice site, normalized to the
maximum value. (b)–(d) States after 15 periods of the driving
protocol. (e),(f) States after 45 periods, with a partly serrated
boundary and additional disorder that preserves or breaks TRS.
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(cf. Fig. 1) and thus cannot be selectively amplified or
suppressed.
To assess the full extent of topological protection in the

present situation we have to examine the robustness of
transport for imperfect boundaries and under the influence
of disorder. In Figs. 6(e) and 6(f) we use serrated bounda-
ries, and include disorder that preserves (breaks) TRS in the
lower (upper) half of each strip. Disorder is both spatial and
temporal; the exact form is specified in the Supplemental
Material [58]. The disorder strength amounts to 0.2, or
≈13% of the coupling J.
In Fig. 6(e), TRSt indeed protects the scatter-free

bidirectional boundary transport, while breaking TRSt

leads to visible backscattering. In Fig. 6(f), even disorder
that breaks TRS� does not lead to appreciable backscatter-
ing because of the suppression of one of the two boundary
states. Effectively, this situation realizes chiral transport
with a preferred direction, which, in contrast to helical
bidirectional transport, is protected by topology but does no
longer require TRS.
In conclusion, BSE opens up new avenues to control

topological transport in non-Hermitian Floquet systems. In
conjunction with fermionic TRS to protect counterpropa-
gating boundary states, BSE enables the selective enhance-
ment of individual topological transport channels, and thus
the effective manipulation of (bi)directional boundary
transport. The potential for applications is immediate,
and photonic waveguides, which are intrinsically non-
Hermitian systems, are a natural platform to explore this
potential. Experiments should also investigate the robust-
ness of the different transport phenomena described here,
thereby extending our analysis of the influence of disorder
and symmetry breaking. Not least, the surprising new
possibilities of BSE highlight the importance of further
theoretical research regarding the status of topological
invariants and the bulk-boundary correspondence in non-
Hermitian Floquet systems.
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The supplemental material contains (i) a detailed derivation of Eq. (8) in the main text, (ii)
the explicit specification of the non-Hermitian driving protocol, (iii) the explicit constraints on the
protocol parameters from time-reversal symmetry, (iv) the specification of detunings and disorder
to break time-reversal symmetry in Figs. 5, 6 in the main text, and (v) three additional examples
of non-Hermitian boundary state engineering, including the application to the Kane-Mele model.

I. TIME-REVERSAL SYMMETRY
AND ITS CONSEQUENCES

The standard relation for time-reversal symmetry
(TRS) reads SHS−1 = H∗ = Ht for a static Hamil-
tonian, with a unitary operator S. One can distinguish
bosonic TRS with SS∗ = 1 from fermionic TRS with
SS∗ = −1. The TRS relations generalizes to

SH(t)S−1 = H(T − t)∗ = H(T − t)t (1)

for a Floquet system with period T , where H(t + T ) =
H(t). This relation generalizes even further for a non-
Hermitian Floquet system, where we have the two sepa-
rate relations [1]

(TRS∗) : SH(t)S−1 = H(T − t)∗ , (2a)

(TRSt) : SH(t)S−1 = H(T − t)t . (2b)

Clearly, both relations agree for a Hermitian Hamiltonian
with H(t)∗ = H(t)t.

TRS implies relations on the propagator U(t) that
lead, eventually, to the relations in Eq. (8) in the main
text. To obtain these relations it is useful to consider the
symmetrized propagator

U?(t) = U
(T + t

2
,
T − t

2

)
. (3)

It is U?(0) = 1 and U?(T ) = U(T ). By applying S · · ·S−1
on both sides of the equation of motion

2i ∂tU?(t) = H
(T + t

2

)
U?(t) + U?(t)H

(T − t
2

)
, (4)

replacing terms according to the symmetry relations (2),
and using the additional equations of motion

−2i ∂tU?(t)
−1 = H

(T − t
2

)
U?(t)

−1

+ U?(t)
−1H

(T + t

2

)
, (5a)

2i ∂tU?(t)
t = U?(t)

tH
(T + t

2

)t

+ H
(T − t

2

)t
U?(t)

t , (5b)

we see that

(TRS∗) : SU?(t)S
−1 = (U?(t)

−1)∗ , (6a)

(TRSt) : SU?(t)S
−1 = U?(t)

t . (6b)

Therefore, we have

(TRS∗) : SUS−1 = (U−1)∗ , (7a)

(TRSt) : SUS−1 = U t (7b)

for the Floquet propagator U ≡ U(T ) = U?(T ).
The TRS relations (2) are somewhat too restrictive

for non-Hermitian systems, where we want to be able
to freely interpret the meaning of “gain” and “loss” in
relative terms. A simple modification suffices to achieve
that freedom, namely, we allow for a (time-dependent)
shift σ(t) ∈ C of the Hamiltonian

H(t) 7→ H(t) + σ(t) (8)

and demand that the modified TRS relations are invari-
ant under such shifts. Replacing H(t) by H(t) + σ(t) in
Eq. (2), these modified relations are obtained as

(TRS∗) : SH(t)S−1 = H(T − t)∗ + ξ∗(t) , (9a)

(TRSt) : SH(t)S−1 = H(T − t)t + ξt(t) , (9b)

with arbitrary complex valued functions ξ∗(t), ξt(t) ∈ C
that fulfill ξ∗(T − t) = −ξ∗(t)∗ and ξt(T − t) = −ξt(t).
These functions are related to the specific shift σ(t) in-
troduced in Eq. (8) through

(TRS∗) : ξ∗(t) = σ(t)− σ(T − t)∗ , (10a)

(TRSt) : ξt(t) = σ(t)− σ(T − t) . (10b)

If H(t) is modified by the shift in Eq. (8), the Floquet
propagator is modified as

U 7→ ΓU (11)

with the scalar factor

Γ = exp
(
− i

∫ T

0

σ(t) dt
)
. (12)
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2

With this modification, the TRS relations for the Floquet
propagator read

(TRS∗) : SUS−1 = (ΓΓ∗U∗)−1 , (13a)

(TRSt) : SUS−1 = U t (13b)

in generalization of Eq. (7). Note that the scalar factor
Γ drops out of the TRSt relation.

Both the complex conjugation in TRS∗ and the trans-
position in TRSt map momentum k 7→ −k. Therefore,
the above relations give

(TRS∗) : SU(k, T )S−1 = (ΓΓ∗ U(−k, T )∗)−1 , (14a)

(TRSt) : SU(k, T )S−1 = U(−k, T )t . (14b)

for the Floquet-Bloch propagator U(k, T ) that depends
also on momentum k.

Thinking in term of the Floquet quasienergy ε = i log λ
to eigenvalue λ = e−iε of U , we have that Re ε is pre-
served but Im ε changes sign under the mapping λ 7→
(λ∗)−1. From this, we immediately obtain the rela-
tions on the spectrum of the Floquet-Bloch propagator
in Eq. (8) in the main text.

For a driving protocol with discrete steps k = 1, . . . , n,
where the propagator of each step is Uk = exp[−iHkδt]
for the time step δt = T/n, the above TRS relations can
be stated more explicitly. With a shift

Hk 7→ Hk + σk (15)

in the k-th step, and the associated scalar factor Γk =
e−iσkδt, we have

(TRS∗) : SUkS
−1 = (ΓkΓ∗n−k+1 U

∗
n−k+1)−1 , (16a)

(TRSt) : SUkS
−1 = (Γn−k+1/Γk)U tn−k+1 , (16b)

for the propagators Uk of each step. If we multiply these
equations for all n steps, we see again that the propaga-
tor U ≡ U(T ) = Un · · ·U1 of one period of the driving
protocol obeys the relations (13), now with Γ = Γ1 · · ·Γn.

II. EXPLICIT FORM OF THE
NON-HERMITIAN DRIVING PROTOCOL

In the general case, the six-step protocol has 6×2×22 =
48 complex parameters. Hermiticity reduces the number
to 24 real and 12 complex parameters, which have been
tabulated in Ref. [2] together with the constraints result-
ing from (fermionic or bosonic) TRS.

For the present study, we choose a restricted set of pa-
rameters, with two coupling parameters (J for diagonal
couplings and J ′ for horizontal couplings), two parame-
ters for uniform losses in the bulk (γr for red and γb for
blue sites) and individual losses for isolated boundary
sites (γ̆r, γ̆b for each boundary).

Specifically, the bulk Hamiltonian has the following
form, using a graphic notation that agrees with Fig. 3
in the main text:

Step 1: diagonal couplings
(
• ↙
↗ ◦

)

1

=

(
−iγr J

J −iγr

)
(17)

(
• ↖
↘ ◦

)

1

=

(
−iγb J

J −iγb

)
(18)

Step 2: horizontal couplings
(
• ←
→ •

)

2

=

(
−iγh J ′

J ′ −iγh

)
(19)

(
◦ ←
→ ◦

)

2

=

(
−iγh J ′

J ′ −iγh

)
(20)

Step 3: diagonal couplings
(
• ↘
↖ ◦

)

3

=

(
−iγr J

J −iγr

)
(21)

(
• ↗
↙ ◦

)

3

=

(
−iγb J

J −iγb

)
(22)

Step 4: diagonal couplings
(
• ↗
↙ ◦

)

4

=

(
−iγr J

J −iγr

)
(23)

(
• ↘
↖ ◦

)

4

=

(
−iγb J

J −iγb

)
(24)

Step 5: horizontal couplings
(
• ←
→ •

)

5

=

(
−iγh −J ′

−J ′ −iγh

)
(25)

(
◦ ←
→ ◦

)

5

=

(
−iγh −J ′

−J ′ −iγh

)
(26)

Step 6: diagonal couplings
(
• ↖
↘ ◦

)

6

=

(
−iγr J

J −iγr

)
(27)

(
• ↙
↗ ◦

)

6

=

(
−iγb J

J −iγb

)
(28)
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A

B

1 2

FIG. 1. Sketch of an imperfect “bottom boundary”.

For consistency, we have included losses γh also for
the horizontal steps 2 and 5. Since these affect all sites
equally, they can be absorbed in the shift H(t) + σ(t) of
the Hamiltonian, and are thus redundant.

Isolated boundary sites, i.e., lattice sites that are not
coupled in one step of the driving protocol, incur individ-
ual losses specified by the parameters γ̆r and γ̆b for red
and blue sites. Isolated sites occur only at boundaries,
and the set of isolated sites changes during the six steps
of the protocol. In the situation of Fig. 1, which shows an
imperfect “bottom” boundary in generalization of Fig. 4
in the main text, the “filled red” site A is isolated in steps
4 and 6, and the “hollow blue” site B is isolated only in
step 4. This statement about lattice sites should not be
confused with a statement about states starting at the
respective site. A state starting at site A is a boundary
state that (at perfect coupling) moves to site 1 and 2 in
one and two cycles of the driving protocol. A state start-
ing at site B is a bulk state that (still at perfect coupling)
returns to site B in every cycle of the protocol.

Note that with TRS, a boundary has to be compatible
with the symmetry operator S = σ̂y ⊗ σ̂y introduced in
Fig. 3 in the main text. For example, if a “filled red” site
is included also the “filled blue” site to the right must
be included, as indicated by the grey ovals in Fig. 1.
This implies that in steps 2 and 5, all boundary sites are
coupled through the horizontal couplings ±J ′, such that
individual losses do not occur.

In principle, the individual losses can differ for each iso-
lated boundary site, restricted only by the corresponding
TRS constraints. In the present study, we only consider
the possibility of different losses on different boundaries.

III. PARAMETER CONSTRAINTS FROM
TIME-REVERSAL SYMMETRY

The constraints on parameter values resulting from
TRS can be obtained along the lines of Ref. [2], extended
to the non-Hermitian case. For example, using the graph-
ical notation of the previous section to denote the cou-
pling parameters, we have with the symmetry operator
S = σ̂y ⊗ σ̂y that

S

(
• ↙
↗ ◦

)

1

S−1 =

(
• ↙
↗ ◦

)
TRS
=

(
• ↙
↗ ◦

)

6

(29)

relating the parameters of “red” diagonal couplings in
step 1 to the “blue” diagonal couplings in step 6, but

S

(
• ←
→ •

)

2

S−1 =

(
• −(→)

−(←) •

)
TRS
=

(
• ←
→ •

)

5

,

(30)
which explains the minus sign between the horizontal
couplings ±J ′ in step 2 and step 5.

From these transformations it is straightforward to ob-
tain the constraints required for TRS. In the general case,
say with

(
• ↙
↗ ◦

)

1

=

(
Ar1 Br1

Cr1 Dr1

)
(31)

for the diagonal coupling of red sites in step 1 and

(
• ↙
↗ ◦

)

6

=

(
Ab6 Bb6

Cb6 Db6

)
(32)

for the diagonal coupling of blue sites in step 6, the TRS
constraints on the eight parameters Ar1, . . . , Db6 are

(TRS∗) : Ar1 = A∗b6 + σ1 − σ∗6 , Br1 = B∗b6 , (33a)
Cr1 = C∗b6 , Dr1 = D∗b6 + σ1 − σ∗6 , (33b)

(TRSt) : Ar1 = Ab6 + σ1 − σ6 , Br1 = Cb6 , (33c)
Cr1 = Bb6 , Dr1 = Db6 + σ1 − σ6 . (33d)

On the other hand, with
(
• ←
→ •

)

2

=

(
Af2 Bf2
Cf2 Df2

)
(34)

for the horizontal coupling of the filled sites in step 2 and
(
• ←
→ •

)

5

=

(
Af5 Bf5
Cf5 Df5

)
(35)

for the horizontal coupling of the filled sites in step 5, the
TRS constraints are

(TRS∗) : Af2 = A∗f5 + σ2 − σ∗5 , Bf2 = −C∗f5 , (36a)

Cf2 = −B∗f6 , Df2 = D∗f5 + σ2 − σ∗5 , (36b)

(TRSt) : Af2 = Af5 + σ2 − σ5 , Bf2 = −Bf5 , (36c)
Cf2 = −Cf5 , Df2 = Df5 + σ2 − σ5 . (36d)

Analogous constraints are obtained for all other pa-
rameters. In total, TRS introduces 24 constraints on the
48 complex parameters of the general protocol. For the
Hermitian protocol, this number reduces to exactly the
12 + 6 constraints for the 24 + 12 real and complex pa-
rameters that have been listed in Ref. [2].

For the restricted set of parameters in Eqs. (17)–(28)
used in the present study, where Ar1 = −iγr, Br1 =
J etc., we immediately identify the TRS constraints in
Eq. (5) in the main text.
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IV. DETUNINGS AND DISORDER

With the minimal set of parameters used for the non-
Hermitian driving protocol in the present study, diag-
onal (i.e., on-site) terms in the Hamiltonian arise from
losses and are purely imaginary, e.g., −iγr,−iγb as listed
in Eqs. (17)–(28). For Figs. 5, 6 we add real diagonal
terms to the Hamiltonian that account for local poten-
tials or fields. In a photonic waveguide system, these
terms account for detunings that arise from variations in
the optical path length of the different waveguides.

In the translational invariant situation, we have four
parameters ∆k, . . . ,∆

′′′
k ∈ R in each step k = 1, . . . , 6 of

the driving protocol, corresponding to the four different
types of sites. Graphically, we may write the detuning
term as

(
◦ ◦

• •

)

k

=

(
∆′k ∆′′′k

∆k ∆′′k

)
. (37)

As before, constraints are required to preserve TRS.
Here, the symmetry operator S gives (cf. Fig. 3)

S

(
◦ ◦

• •

)

k

S−1 =

(
◦ ◦

• •

)
TRS
=

(
◦ ◦

• •

)

n−k+1

,

(38)
relating the detunings in steps 1↔ 6, 2↔ 5, and 3↔ 4.
Since the detunings are real, TRS∗ and TRSt give the
same constraints.

For constant detunings ∆k ≡ ∆ etc., TRS requires
∆ = ∆′′ and ∆′ = ∆′′′. In other words, TRS preserving
detunings have the form

(
◦ ◦

• •

)
=

(
∆′ ∆′

∆ ∆

)
, (39)

with two remaining parameters ∆,∆′ ∈ R. In Fig. 5 in
the main text, constant detunings

(
◦ ◦

• •

)

k

≡
( −∆ ∆

∆ −∆

)
(40)

with ∆ = 0.5 are used to break TRSt or TRS∗.
For the real-space propagation in panels (E), (F) in

Fig. 6 in the main text, spatial and temporal disorder
is included through randomly fluctuating detunings. For
each site r and step k the respective detuning parameter
∆r
k is independently drawn from a uniform probability

distribution in the interval [−δ, δ], here with δ = 0.2.
This gives the TRS-breaking disorder used in the upper
half of panels (E), (F).

To preserve TRS, we enforce the constraints of Eq. (38)
locally, for each pair of sites ( ◦ ◦ ) or ( • • ) that is
mapped onto itself by the symmetry operator S, and
for each period of the driving protocol. Apart from
these constraints, the detunings still fluctuate randomly
in space and time. In particular, they change with each
step and period of the driving protocol. This gives the
TRS-preserving disorder used in the lower half of panels
(E), (F).

step 1 J step 2 J

step 4 J step 3 J

FIG. 2. Sketch of the four central steps of the driving protocol
from Ref. [3], depicted in a way that highlights the connection
to the TR symmetric driving protocol in the main text [2].
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FIG. 3. Left panel: Anomalous Floquet topological phase
in the driving protocol from Ref. [3] (with coupling J = 1).
Central and right panel: Bulk and boundary states after BSE
(with bulk losses γ = 0.75).

V. ADDITIONAL EXAMPLES FOR
NON-HERMITIAN BOUNDARY STATE

ENGINEERING

To demonstrate the concept of non-Hermitian bound-
ary state engineering (BSE) in the main text, we choose
the TR symmetric driving protocol because it combines
experimental relevance with a number of novel transport
scenarios. Being a general concept, BSE applies to any
system that supports an anomalous Floquet topological
phase. Here, we demonstrate the general applicability of
BSE with three additional examples.

A. Driving protocols without fermionic
time-reversal symmetry

The first example is the driving protocol from Ref. [3].
As the sketch in Fig. 2 illustrates, the TR symmetric pro-
tocol in the main text essentially comprises two interwo-
ven copies of this protocol, with additional provisions to
guarantee TRS and allow for coupling between the “red”
and “blue” sublattice (for details of the construction, see
Ref. [2]). The present protocol, which by itself does not
possess (fermionic) TRS, features an anomalous Floquet
topological phase with a single chiral boundary state (left
panel in Fig. 3), instead of the counterpropagating states
of the TR symmetric protocol (Fig. 3 in the main text).

To apply BSE to this protocol, we simply introduce
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step 1 J step 2 J

step 3 J

FIG. 4. Sketch of the three central steps of the driving pro-
tocol from Ref. [4] acting on a hexagonal lattice.
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Hermitian after BSE

FIG. 5. Left panel: Anomalous Floquet topological phase
in the driving protocol from Ref. [4] (with coupling J = 1.3).
Central and right panel: Bulk and boundary states after BSE
(with bulk losses γ = 0.4).

uniform losses in the bulk (γ), excluding the boundary
sites (of course, more complex variants are possible). In
accordance with the BSE concept, we can thus manipu-
late the imaginary quasienergies of the bulk and bound-
ary states relative to each other, and let the boundary
states detach from the bulk bands (central and right
panel in Fig. 3). Here, however, with only a single chiral
state per boundary, the potential of BSE is more limited
in comparison to what is demonstrated in the main text:
Still, boundary transport can be amplified or suppressed
relative to bulk motion (Fig. 3 shows amplification), but
manipulation of the direction of boundary transport as
in Fig. 6 in the main text is no longer possible. This
explains why we choose the more complicated TR sym-
metric driving protocol as our primary example.

As the second example, we consider the related driving
protocol from Ref. [4], which takes place on a hexagonal
instead of square lattice (see Fig. 4). BSE proceeds ex-
actly as before, assigning uniform losses to the bulk (γ)
but not the boundary sites, and allows for complete de-
tachment of boundary from bulk states, or for any other
suitable manipulation (see Fig. 5).

B. Driven Kane-Mele model

The third example is a periodically driven Kane-Mele
model, which has been considered, e.g., in the context of

γ↑
γ↓

γ↑
γ↓

γ↑
γ↓

γ↑
γ↓

FIG. 6. Assignment of boundary losses for BSE in the driven
Kane-Mele model, for a zigzag boundary of the hexagonal
lattice. Spin-dependent losses γ↑, γ↓ are introduced on every
second boundary site, as indicated by the arrows.

cold atomic systems [5]. This example does not belong to
the category of driving protocols with discrete steps, but
features a continuous time dependence. The Hamiltonian

HKM(t) =(J1 + J2 cos(ωt))
∑

〈ij〉
c†i cj + λν

∑

i

ξic
†
i ci

+ i(λSO,1 + λSO,2 cos(ωt))
∑

〈〈ij〉〉
νijc

†
iσzcj

(41)
extends the celebrated Kane-Mele model [6] with a pe-
riodic modulation of the hopping (∝ J2) and spin-orbit
coupling (∝ λSO,2). The driven Kane-Mele model still
possesses fermionic TRS, and supports an anomalous Z2

topological Floquet phase (left panel in Fig. 7). The
anomalous nature of this phase is not obvious from the
quasienergy plot in Fig. 7, but is corroborated by the
vanishing Z2 invariant of the Floquet bands.

To apply BSE we introduce boundary losses, similar
to the examples of the driving protocols. For a zigzag
boundary, a minimal assignment is shown in Fig. 6, se-
lecting sites with a large amplitude of the boundary
state wave function. The boundary losses γ↑, γ↓ depend
on the spin degree of freedom in the Kane-Mele model.
To preserve TRS, it must γ↑ = γ↓ = γt for TRSt and
γ↑ = −γ↓ = γ∗ for TRS∗.

The central and right panel in Fig. 7 show how BSE
allows us to detach the boundary states from the bulk
bands, in exact analogy to the result for the driving
protocols. The topological preservation and the conse-
quences of TRS could now be discussed along the lines
established in the main text for the TR symmetric proto-
col. Note that after BSE, the real part of the quasienergy
dispersion of the boundary states visibly crosses the bulk
bands and connects at the ±π quasienergy (which nicely
shows the anomalous nature of this phase). This appar-
ent crossing, which we also observe in Fig. 5 in the main
text, becomes possible since BSE separates the imagi-
nary part of the boundary states and bulk bands. In
the complex plane (recall Fig. 1 in the main text), the
quasienergy dispersions are fully separated and do not
cross.
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FIG. 7. Left panel: Anomalous Floquet topological Z2-
phase in the driven Kane-Mele model, with counterpropa-
gating states on a zigzag boundary. Model parameters are
J1 = J2 = 1, λν = 0.3, λSO,1 = 0.25, λSO,2 = 0.5,
T = 2π/ω = 1.5. Central and right panel: Bulk and bound-
ary states after BSE, with TRSt and TRS∗ symmetry (for
γt,∗ = −1.25, see text).
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Non-Hermitian Floquet Chains as Topological Charge Pumps

Bastian Höckendorf, Andreas Alvermann,∗ and Holger Fehske
Institut für Physik, Universität Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany

We show that non-Hermiticity enables topological phases with unidirectional transport in one-
dimensional Floquet chains. The topological signatures of these phases are non-contractible loops in
the spectrum of the Floquet propagator that are separated by an imaginary gap. Such loops occur
exclusively in non-Hermitian Floquet systems. We define the corresponding topological invariant as
the winding number of the Floquet propagator relative to the imaginary gap. To relate topology
to transport, we first introduce the concept of regularized dynamics of non-Hermitian chains, and
then establish that the charge transferred over one period equals the winding number. We illustrate
these theoretical findings with a Floquet chain that features a topological phase transition. In the
non-trivial phase, this chain acts as a topological charge pump which, in fundamental difference to
the situation for static or Hermitian chains, implements quantized unidirectional transport.

Quantum Hall systems [1, 2] and topological insula-
tors [3, 4] are manifestations of a fundamental connection
between topology and transport. Topological transport
is characterized by two properties: It is quantized and
robust [5, 6]. Ultimately, quantization and robustness
are consequences of the bulk-boundary correspondence,
which relates transport via chiral (or helical) bound-
ary states to the topological properties of an insulating
bulk [2, 3]. Importantly, topological transport requires
boundary or surface states. One-dimensional systems can
exhibit non-trivial topology [7, 8], but do not support ro-
bust transport without additional assumptions [9–11].

Recent research has shown that non-Hermiticity con-
siderably extends this picture [12–16]. While the new
non-Hermitian topological phases, with imaginary and
point gaps in addition to the real gaps of the Hermi-
tian case [17–19], have been classified for static systems,
conclusive results on non-Hermitian topological trans-
port are still rare. Even the status of a non-Hermitian
bulk-boundary correspondence remains debatable, since
boundary transport can be modified outside of the con-
straints the correspondence imposes on Hermitian sys-
tems [20–23]. Notably, non-Hermiticity is not a theoreti-
cal construct but appears naturally in, e.g., acoustics [24],
electronics [25], or optics and photonics [26–30].

The subject of this work is topological transport in
one-dimensional non-Hermitian chains. We show that,
contrary to the Hermitian case, these chains can act
as topological charge pumps if—but only if—we con-
sider Floquet chains with a time-periodic Hamiltonian
H(t+T ) = H(t). To obtain this result we identify a topo-
logical phase that occurs exclusively in non-Hermitian
Floquet systems, and lies outside of the established clas-
sification [17–19] for static non-Hermitian systems.

An overview of the different topological scenarios for
non-Hermitian chains is given in Fig. 1, using simple
generic models as illustrative examples. We start with
the standard non-Hermitian chain (St) with directional
hopping [17, 25]. In all examples, the parameter J
specifies the strength, the parameter γ the direction-
ality of hopping. As a function of momentum k, the

Jeγ

Je−γ

(St) (Sp) (Fl)

4J cosh γ

4J
sin

h
γ

ReE

Im
E iΓ

G

ReE

Im
E

−π π

iΓ

Re ε

Im
ε

FIG. 1. Conceptual overview of the topological scenarios for
non-Hermitian chains. Left column: The dispersion of a static
chain (St) with directional nearest-neighbor hopping is an el-
liptical loop in the complex energy plane. Central column:
By splitting the hopping spatially, the chain (Sp) supports
two loops separated by a real (G) and imaginary (iΓ) line
gap. Right column: By splitting the hopping temporally, the
Floquet chain (Fl) supports loops that traverse the complex
quasienergy zone with its ε 7→ ε+ 2π periodicity.

spectrum E(k) = J(e−ik+γ + eik−γ) of the Hamiltonian
H = J

∑
n∈Z e

γ |n+1〉〈n|+e−γ |n〉〈n+1| is an ellipse with
real (imaginary) semi-axis 2J cosh γ (2J sinh γ). The el-
liptical loop k 7→ E(k) is contractible, and thus topolog-
ically trivial. Non-trivial topology can be enforced with
a point gap inside of the loop [17–19], but a point gap
will not provide us with a notion of topological trans-
port. Splitting the hopping spatially, as in the chain
(Sp), doubles the unit cell such that the spectrum con-
tains two elliptical loops. These loops can be separated
with a staggered potential ±∆ ∈ C, leading to a real (G)
or imaginary (iΓ) line gap, but remain contractible.

The situation changes qualitatively if we split the hop-
ping temporally to obtain the Floquet chain (Fl). One
period (length T ≡ 1) in this chain comprises two al-
ternating directional hopping steps, with Hamiltonian
H(1) = J

∑
n∈Z e

γ |2n + 1〉〈2n| + e−γ |2n〉〈2n + 1| in the
first and H(2) = J

∑
n∈Z e

γ |2n〉〈2n−1|+e−γ |2n−1〉〈2n|
in the second half-period. For a Floquet chain, we must
consider quasienergies ε(k) which, in contrast to the en-
ergies E(k) of a static chain, are determined only up to
multiples of 2π. The multi-valuedness allows for the two
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FIG. 2. Top row: Spectrum of the (Floquet) propagator
for the chains (Sp), (Fl) from Fig. 1. Only the Floquet chain
(Fl) can exhibit non-contractible loops with non-zero winding
number. Bottom row: Topological phase transition in the
Floquet chain (Fl) with J = π/3. The transition at γ = γc ≈
0.55 (central panel) separates the trivial (γ = 0.2, left panel)
from the non-trivial (γ = 0.6, right panel) phase.

loops k 7→ ε1,2(k) of the Floquet chain (Fl) in Fig. 1,
which wrap around the quasienergy zone and thus are
non-contractible. Note that the loops appear with oppo-
site chirality ε1,2(k + 2π) = ε1,2(k) ± 2π. We will now
identify these non-contractible loops as the signatures of
the topological phase of a non-Hermitian Floquet chain,
and later also as the origin of topological transport.

To illustrate the specific topology of the one-
dimensional non-Hermitian setting we consider the spec-
trum of the Floquet-Bloch propagator Û(k) ≡ U(T, k)
(see Fig. 2), which is the solution of the Schrödinger equa-
tion i∂tU(t, k) = H(t, k)U(t, k) after one period t = T .
The eigenvalues ξm(k) = e−iεm(k) of Û(k) lie in the punc-
tured complex plane C \ {0}. Exclusion of the origin
results from invertibility U(t)−1 = U(−t) of the propa-
gator, which also holds in the non-Hermitian setting.

Note that static chains can be embedded into the Flo-
quet picture by choosing an artificial period T . Since the
Floquet propagator of a static chain is U = exp(−iTH),
quasienergies and energies are in one-to-one correspon-
dence εm(k) ≡ TEm(k) mod 2π for sufficiently small T ,
as long as ReEm(k) ∈ (−π/T, π/T ).

Fig. 2 provides us with three topological insights.
First, non-contractible loops of a Floquet chain wind
around the origin. Conceptually, the origin serves as a
natural point gap for the Floquet propagator (but not
for the Hamiltonian). Second, an imaginary gap iΓ par-
titions the spectrum into an inner and outer part, sep-
arated by the circle φ 7→ e−iφ+Γ. A non-trivial imagi-
nary gap requires a non-Hermitian Hamiltonian, where
the spectrum of the propagator is not restricted to the
unit circle by unitarity. Third, a real gap G, which cor-
responds to a radial line r 7→ re−iG (r ∈ R+), prohibits
non-contractible loops and implies trivial topology.

We here observe a fundamental difference between
static and Floquet chains. For static chains (without
symmetries), real and imaginary gaps are equivalent via
multiplication H 7→ iH of the Hamiltonian by the imagi-
nary unit i. For Floquet chains, real and imaginary gaps
are strictly inequivalent. In consequence, non-Hermitian
Floquet chains can support topological phases that do
not appear in static chains.

Translating the topological concepts of Fig. 2 into an
invariant, we are led to the Z-valued winding number

W (Γ) =
i

2π

∑

eΓ<|ξm|

∫ π

−π
ξm(k)−1 ∂kξm(k) dk

=
1

2π

∑

Γ<Im εm

[
Re εm(k)

]k=π

k=−π .

(1)

W (Γ) is defined with respect to an imaginary gap iΓ.
Only eigenvalues ξm(k) outside (or quasienergies εm(k)
above) the gap contribute. A non-contractible loop in
clockwise direction contributes with a positive integer.
Note that we normalize the Brillouin zone to k ∈ (−π, π],
independently of the size of the unit cell.

The trivial imaginary gap Γ = −∞, where the entire
spectrum of U contributes, gives the total winding num-
ber W (−∞) = 0. This result follows because the spec-
trum of U cannot move through the origin, such that
non-contractible loops appear with opposite chirality.

Hermitian chains, where loops cannot be separated by
imaginary gaps, as well as static non-Hermitian chains,
which have only contractible loops, necessarily have zero
winding number W (Γ) = 0 for all Γ.

In contrast, non-zero winding numbers are possible
in non-Hermitian Floquet chains. The chain (Fl) fea-
tures a topological phase transition at the critical value
γc = arcosh (1/ sin |J |) (see the supplemental material
(SM) for a derivation from the eigenvalues of the Floquet
propagator). As shown in Fig. 2, the spectrum below the
transition (|γ| < γc) consists of a single loop with peri-
odicity k 7→ k + 4π. The winding number is zero. At
the transition (|γ| = γc), the spectrum possesses an ex-
ceptional point at k = 0. Starting from the exceptional
point, the spectrum splits into two loops above the tran-
sition (|γ| > γc). The loops occur with opposite chirality,
and are separated by an imaginary gap iΓ at Γ = 0. The
associated winding number is non-zero, with W (Γ) = 1
for γ > 0 (as in Fig. 2) and W (Γ) = −1 for γ < 0.

Although the appearance of non-contractible loops in
the spectrum of the propagator is reminiscent of the
anomalous phase of two-dimensional Hermitian Floquet
insulators [31–40], the topological phase observed here
is specific to one-dimensional non-Hermitian Floquet
chains. Formally, it requires a non-trivial imaginary gap.
Physically, the non-contractible loops that appear here
are not associated with boundary states as in the Floquet
insulator, but with the spectrum of the infinite chain.
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The second major aspect of non-Hermitian chains is
transport, which can be quantified with the charge

C(n) = trZ (U†[Pn, U ]) (2)

transferred over one period through a fictitious layer be-
tween sites n − 1 and n from the left to the right of the
chain (see the SM for a derivation). Here, Pn is the pro-
jection onto sites i ≥ n, that is Pn|i〉 = |i〉 for i ≥ n and
Pn|i〉 = 0 for i < n. Eq. (2) generalizes standard expres-
sions (e.g., [41]) for C(n) to the non-Hermitian setting.

Note that the transferred charge can be measured by
real-space propagation of wave packets, which could be
the method of choice, e.g., in photonic waveguide sys-
tems. In wave packet propagation, the transferred charge
gives the average propagation distance, weighted by the
norm of the propagated wave packets, which can deviate
from unity in the non-Hermitian setting (see the SM).

For a Hermitian chain, evaluation of the trace shows
that the total charge transfer is C(n) = 0. This is only
true in dimension one: The analogous expression in two
dimensions gives the charge transferred by chiral bound-
ary states, which, of course, can be non-zero [41, 42].

For a non-Hermitian chain, whether static or Floquet,
C(n) 6= 0 becomes possible (see Fig. 3). However, allow-
ing for non-Hermiticity involves intrinsic complications
for the physical interpretation of (topological) trans-
port. First, current is no longer conserved but a charge
c(n) = 〈n|[U,U†]|n〉 can accumulate at site n. To get rid
of the resulting site dependence of C(n), we average the
transferred charge C̄ = (1/L)

∑L−1
n=0 C(n) over a unit cell

of L sites of a translationally invariant chain.
We can now derive the momentum space expression

C̄ = i
2π

∫ π
−π trL

(
Û†(k) ∂kÛ(k)

)
dk, where the trace trL

runs over the unit cell (see the SM). The second compli-
cation in comparison to the Hermitian setting is that this
expression depends explicitly on the eigenvectors of Û(k),
and is not invariant under unitary transformations. This
is not an artefact of the derivation, but a fundamental
consequence of the fact that non-Hermiticity allows for
non-orthogonal eigenvectors of Û(k).

If, however, the eigenvectors of Û(k) are orthogonal
(a requirement equivalent to the normality condition
[Û(k), Û(k)†] = 0 known from linear algebra [43]),

C̄ =
(orth)

i

2π

L∑

m=1

∫ π

−π
ξm(k)∗ ∂kξm(k) dk (3)

is given entirely in terms of the eigenvalues ξm(k) of Û(k).
This equation will allow us to proceed towards a formu-
lation of non-Hermitian topological transport. Note that
it has a geometric interpretation as the area (with orien-
tation) enclosed by the eigenvalue loops k 7→ ξm(k).

Fig. 3 shows that, without further provisions, the
transferred charge C̄ does not reveal much about the
possible topological nature of transport in the chains

0 1
0

1
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γ

C̄
/
Ξ

2

0 1
0

1
(Fl) γc

γ

C̄
/
Ξ

2

(Sp)

(Fl <)

(Fl >)

final statesinitial states

1 100
nl

FIG. 3. Top row: Transferred charge C̄ in the chains (Sp),
(Fl), as a function of γ (with J = π/3,∆ = 3i). The curve is
normalized with the spectral radius Ξ = maxξ |ξ|. Hermiticity
(at γ = 0) enforces C̄ = 0. Bottom row: Probing transport
with wave packet propagation in the chains (Sp), (Fl) (with
γ = 0.8, 0.09, 1.5 from top to bottom, and np = 40 periods).

(Sp), (Fl) . However, probing transport by means of
wave packet propagation we observe a significant differ-
ence: While wave packets usually spread out during prop-
agation, they propagate almost without spreading in the
Floquet chain (Fl) above the topological phase transition
(row “(Fl>)” in Fig. 3), where C̄ → 1.

To strictly relate transport and topology, we have to in-
troduce the concept of regularized dynamics (RD) of non-
Hermitian chains. For RD we demand that (i) the domi-
nant eigenvalues of the Floquet propagator have modulus
one, (ii) the modulus of all other eigenvalues is infinitesi-
mally close to zero, and (iii) the eigenvectors are mutually
orthogonal. Then, Eq. (3) can be used. Since ξ∗ = ξ−1

for |ξ| = 1, this equation reduces to Eq. (1) for the wind-
ing number, if W (Γ) is computed for an imaginary gap
−∞ < Γ < 0, that separates the eigenvalues with mod-
ulus zero (Im ε → −∞) from those with modulus one
(Im ε = 0). We thus obtain the fundamental relation

C̄ =
(RD)

W (Γ) (4)

between transport and topology in non-Hermitian chains
with RD. In particular, the transferred charge C̄ is quan-
tized, and vanishes in a static chain where W (Γ) = 0.

It remains to assess whether RD of non-Hermitian
chains is an artificial construction or a relevant concept.
First, it should not be surprising that some assumptions
are required for a quantitative relation between transport
and topology [11]—the same being true also for Hermi-
tian Floquet insulators where a condition Û(k) ≡ 1 is
imposed [32]. The RD of non-Hermitian Floquet chains
differs from previous regularization concepts in so far as
(i) RD applies to the Floquet propagator, not to a static
Hamiltonian [19], (ii) RD requires an imaginary gap iΓ
instead of a real gap of a unitary Floquet propagator [32].

For a non-Hermitian chain, RD can be achieved either
(i) through regularization of the propagator, or (ii) as a
physical limit in parameter regimes with strong damp-
ing. Regularization of the propagator corresponds to a
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FIG. 4. Top row: In the RD limit the spectrum of the
propagator outside (inside) of the imaginary gap iΓ moves to
the unit circle (origin). Bottom row: Transferred charge C̄,
for various hopping J = π/2, π/3, π/8, as one approaches the
RD limit in the static chain (Sp) (for Im ∆, γ−1 →∞) or the
Floquet chain (Fl) (for γ →∞). In this limit, C̄ = W (Γ).

continuous deformation of Û(k) such that the eigenvalues
ξm(k) move in- or outwards to the origin or the unit cir-
cle, as illustrated in Fig. 4. As a technical complication
of the non-Hermitian setting, also the eigenvectors of the
propagator have to be deformed. Regarding topological
properties, details of the regularization procedure are not
relevant, as long as the imaginary gap iΓ stays open dur-
ing the deformation such that the winding number does
not change (two techniques are described in the SM).

As a physical limit, RD is realized in parameter regimes
where strong damping suppresses some eigenvalues of the
Floquet propagator, while the dominant states incur uni-
form loss or gain. We can drop a factor Ξ = maxξ |ξ|, in
order to normalize Û(k) with a uniform imaginary shift
of H, such that the dominant states have zero loss. For
the static chain (Sp), RD is achieved for example in the
limit γ → 0, Im ∆ → ∞ (shown in Fig. 4). With the in-
terpretation of Eq. (3) as an area it is evident that C̄ → 0
in the RD limit, in accordance with the fundamental re-
lation (4). Note that absence of transport is compati-
ble with a point gap, which can enforce non-contractible
eigenvalue loops but does not prevent minimization of
the enclosed area by continuous deformation.

For the Floquet chain (Fl), RD is realized in the limit
γ → 0, or γ → ±∞ (shown in Fig. 4). For γ → 0,
we end up below the topological phase transition, with a
trivial gap Γ = −∞. This results in a unitary propagator
without directed transport (C̄ = 0 = W (Γ)). For γ →
±∞, we end up above the topological phase transition.
One non-contractible eigenvalue loop k 7→ e∓ik survives
on the unit circle. This eigenvalue loop encloses the circle
area ±2π, such that Eq. (3) gives C̄ = ±1 = W (Γ) in
accordance with the fundamental relation (4).

While quantization of transport in the RD limit follows
from Eq. (4), robustness occurs in two ways. First, we

−40 −20 0 20 40

2np

(A)

(B)

(C)

+∞

γ

−∞

δ

δ

n

0 0.5 1 1.5
0

1
δ = 0.75

δ = 0

γC̄
/Ξ

2

FIG. 5. The Floquet chain (Fl) as a charge pump: Shown
is a wave packet, centered initially at site n = 0, after prop-
agation over np = 20 periods. Panel (A): Propagation for
γ = −∞,−1,−0.25, 0, 0.25, 1,∞ from top to bottom (with
J = π/3). Panel (B): Propagation in the RD limit γ → ∞,
for disorder δ = 0, 0.25, 0.5, 0.75 from top to bottom (with
J = π/3). Inset: Charge C̄ transferred per period. Panel
(C): Propagation at J = π/2, γ = 0, with δ as in panel (B).

note that C̄ does not depend on the remaining free model
parameters (in Fig. 4, the hopping J). Importantly, RD
does not require fine-tuning of the system to a point in
parameter space, but is realized on a parameter manifold
where transport and topology are invariant.

Second, Fig. (5) probes the robustness of transport in
the chain (Fl) via wave packet propagation. Panel (A)
shows propagation in the translationally invariant chain.
In the RD limit γ → ±∞, half of the wave packet (on ei-
ther blue or red sites) survives propagation. Over np
periods, the wave packet moves without spreading by
2 C̄np sites, with C̄ = ±1. Disorder in panel (B), with
hoppings chosen randomly per bond from the interval
[J(1− δ), J(1 + δ)], does not affect transport in the RD
limit, which is thus revealed to be truly robust. Note that
the wave packets depends on disorder even for γ → ∞,
but the averaged charge C̄ does not (see inset). Quite
differently, panel (C) shows that fine-tuning to ‘perfect
coupling’ (J = π/2, γ = 0), with distinct propagation in
the ordered chain, does not survive addition of disorder.

In conclusion, we present a theory of topology and
transport in non-Hermitian chains. While transport can
occur in any non-Hermitian chain, only Floquet chains
allow for non-trivial topology and can act as topological
charge pumps with quantized and robust transport. This
observation implies that non-Hermitian Floquet systems
possess topological phases with interesting transport or
dynamical properties that are not realized in static or
Hermitian systems. Therefore, future research on non-
Hermitian systems should focus increasingly on the re-
lation between topology and transport. Certainly, fur-
ther investigation of situations with disorder, defects, or
interfaces is required especially with a view towards the
experiment. Already the present theory opens up new av-
enues for experiments on non-Hermitian topological sys-
tems using, e.g., photonic waveguides or electric circuits
to implement Floquet instead of static non-Hermitian
chains [25]. Very recent evidence for the relevance of
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the theoretical concepts developed here is provided by
the observation of quantized non-Hermitian transport in
a non-adiabatic Floquet chain realized with plasmonic
waveguide arrays [44].
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The supplemental material (i) derives different expressions for the transferred charge C(n) and C̄
and explains the computation by means of wave packet propagation, (ii) computes the transferred
charge in the three chains (St), (Sp), (Fl) and the topological phase transition in the Floquet chain
(Fl), and (iii) introduces regularization procedures for the propagator.

THE TRANSFERRED CHARGE

The transferred charge C(n) measures the net amount
of charge moving from the left part (sites i < n) to the
right part (sites i ≥ n) of a chain.

A wave function initially localized at site |i〉 evolves
into |Ψi〉 = U |i〉, where the propagator U is given in real
space, e.g., as the Floquet propagator U(T ). For a wave
function starting in the left part of the chain, the amount
of charge transferred to the right is

∑
j≥n |〈j|Ψi〉|2. For a

wave function starting in the right part of the chain, the
amount of charge transferred to the left is

∑
j<n |〈j|Ψi〉|2,

and has to be counted with a minus sign. Therefore, the
contribution of |Ψi〉 to C(n) is

C(n)|i =

{ ∑
j≥n |〈j|Ψi〉|2 for i < n ,

−∑j<n |〈j|Ψi〉|2 for i ≥ n .
(1)

Summing over all initial sites gives the transferred charge

C(n) =
∑

i∈Z
C(n)|i =

∑

i<n
j≥n

|〈j|Ψi〉|2 −
∑

i≥n
j<n

|〈j|Ψi〉|2

=
∑

i∈Z
〈i|U†PnU(1− Pn)− U†(1− Pn)UPn|i〉

=
∑

i∈Z
〈i|U†PnU − U†UPn|i〉

= trZ (U†[Pn, U ]) ,

(2)

where the projection Pn gives Pn|i〉 = Θ(i − n)|i〉 with
Θ(x) = 1 for x ≥ 0, Θ(x) = 0 for x < 0. The trace is
trZA =

∑
i∈Z〈i|A|i〉. This gives Eq. (2) in the main text.

Eq. (2) generalizes the expressions for the Hermitian
case (see, e.g., Eq. (3.3) in Ref. [1]) to the non-Hermitian
setting. Note that the operator U†[Pn, U ] in the trace is
not Hermitian, but C(n) ∈ R follows from the first line.

Similarly, we find the charge accumulated at site n as

c(n) =
∑

i∈Z
i 6=n

|〈n|Ψi〉|2 −
∑

i∈Z
i6=n

|〈i|Ψn〉|2

= 〈n|[U,U†]|n〉 ,
(3)

the difference of charge moving to site n and charge mov-
ing away from site n.

The accumulated charge gives the difference between
C(n) at different sites. We have, for n ≥ m,

C(m)− C(n) =
∑

i∈Z
C(m)|i − C(n)i

=
∑

i<m
j≥m

|〈j|Ψi〉|2 −
∑

i≥m
j<m

|〈j|Ψi〉|2

−
∑

i<n
j≥n

|〈j|Ψi〉|2 +
∑

i≥n
j<n

|〈j|Ψi〉|2

=
n−1∑

l=m

c(l) ,

(4)

which expresses the conservation of charge, even in the
non-Hermitian setting. Hermiticity or regularized dy-
namics (RD), where [U,U†] = 0, implies c(n) = 0 and
thus C(m) = C(n).

The translationally invariant case

Assume that H, and thus also U , is invariant under
translations by L sites, that is Um+L,n+L = Umn for
the matrix elements Umn = 〈m|U |n〉 of the propagator.
Translational invariance implies C(n)|i = C(n + L)|i+L,
in the notation of Eq. (1).

The charge C̄, averaged over a unit cell, is

C̄ =
1

L

L−1∑

n=0

C(n) =
1

L

L−1∑

n=0

∑

i∈Z
C(n)|i

=
1

L

L−1∑

n=0

L−1∑

i=0

∑

m∈Z
C(n)|i+mL

=
1

L

L−1∑

n=0

L−1∑

i=0

∑

m∈Z
C(n−mL)|i

=
1

L

L−1∑

i=0

∑

n∈Z
C(n)|i =

1

L

L−1∑

i=0

C̄|i ,

(5)

where we replace i→ i+mL in line two, n−mL→ n in
line four, and use translational invariance in line three.
In the last line, we introduce the abbreviation

C̄|i =
∑

n∈Z
C(n)|i . (6)
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Note that translational invariance has allowed us to ex-
change the summation 0 ≤ n < L, i ∈ Z with the sum-
mation n ∈ Z, 0 ≤ i < L.

Inserting Eq. (1) into Eq. (6) and rearranging summa-
tions we get

C̄|i =
∑

n>i

∑

j≥n
〈j|Ψi〉|2 −

∑

n≤i

∑

j<n

〈j|Ψi〉|2

=
∑

j>i

(j − i)〈j|Ψi〉|2 −
∑

j<i

(i− j)〈j|Ψi〉|2

=
∑

j∈Z
(j − i) |〈j|Ψi〉|2 = 〈Ψi|x̂− i|Ψi〉 ,

(7)

where x̂ =
∑
j∈Z j|j〉〈j| is the position operator. In other

words, C̄|i is the propagation distance of a wave packet
initially localized at site i. Therefore, C̄ is the average
propagation distance.

Note that in the non-Hermitian setting the norm of a
wave function is not conserved, such that the propagation
distance in Eq. (7) is weighted by different 〈Ψi|Ψi〉.

Momentum space expressions

We define the Fourier transform as

Ûmn(k) =
∑

l∈Z
e−i(k/L)(m+lL−n) Um+lL,n , (8)

which is an L × L matrix with indices m,n ∈ L :=
{0, . . . , L − 1}, parametrized by momentum k. The in-
verse Fourier transform is

Umn =
1

2π

∫ π

−π
ei(k/L)(m−n) Û[m]L,[n]L(k) dk , (9)

where [m]L, [n]L ∈ L denotes the remainder after division
by L.

A standard Fourier computation with Eq. (9) gives

〈n|U†(x̂− n)U |n〉 =

iL

2π

L−1∑

m=0

∫ π

−π
Û†[n]L,m

(k) ∂kÛm,[n]L(k) dk (10)

for the interplay between the Fourier transform and the
position operator x̂.

Using this expression together with Eqs. (5), (7) im-
mediately gives

C̄ =
i

2π

∫ π

−π
trL
(
Û†(k) ∂kÛ(k)

)
dk . (11)

Here, trLA =
∑L−1
n=0 Ann sums over the indices of the

Fourier transform, which correspond to the L sites of a
unit cell. This is the expression given on page 3 in the
main text.

Note that the Fourier transform in Eq. (8) is 2π-
periodic only up to phase factors. We have Û(k + 2π) =
G(2π)Û(k)G†(2π), where G(k) is a diagonal unitary ma-
trix with entries Gnn = exp(−ikn/L). By this relation,
the spectrum of Û(k) is 2π-periodic. Only 2π-periodicity
of the spectrum, not of the Fourier transform, is required
in the main text.

The alternative definition

Û (alt)
mn (k) =

∑

l∈Z
e−ikl Um+lL,n , (12)

where the factor e−ikl is constant within a unit cell,
is 2π-periodic. The two Fourier transforms (8), (12)
are connected by the unitary transformation Û(k) =
G(k)Û (alt)(k)G(k)†, such that the spectrum of the
Floquet-Bloch propagator is independent of the choice
of the Fourier transform. Use of Û (alt)

mn (k) would require
replacing Eq. (11) by a more complicated expression that
includes the matrix G(k). This is why we prefer to work
with Ûmn(k).

We stress that, in contrast to the Hermitian case,
Eq. (11) is not invariant under k-dependent unitary
transformations. If we replace Û(k) by Q(k)Û(k)Q(k)†,
Eq. (11) changes into

C̄ =
i

2π

∫ π

−π
trL
(
Û†(k)∂kÛ(k)

+ [Û(k), Û(k)†]Q(k)†∂kQ(k)
) (13)

(we have used (∂kQ(k)†)Q(k) = −Q(k)†∂kQ(k) for uni-
tary Q(k)). Through the additional term in the sec-
ond line, C̄ depends explicitly on the eigenvectors of
Û(k). Therefore, we cannot diagonalize Û(k) and ex-
press Eq. (11) entirely in terms of its eigenvalues. This
complication is intrinsic to the non-Hermitian setting.

If, however, [Û(k), Û†(k)] = 0, the additional term
drops out of Eq. (13). This condition is known from lin-
ear algebra [2], where it defines a normal matrix. Under
this condition we can diagonalize the propagator with a
unitary transformation as in the Hermitian case, write
Û(k) = Q(k)D(k)Q(k)† with a diagonal matrix D(k)
that contains the eigenvalues ξ1(k), . . . , ξL(k) of Û(k),
and arrive at

C̄ =
i

2π

L∑

m=1

∫ π

−π
ξm(k)∗ ∂kξm(k) dk . (14)

This is Eq. (3) in the main text. It does not depend on
the choice of the Fourier transform.

Since C̄ ∈ R, we can rewrite this equation as

C̄ = − 1

2π

L∑

m=1

∫ π

−π
Im
(
ξm(k)∗ ∂kξm(k)

)
dk , (15)

which suggests the geometric interpretation that the
transferred charge C̄ is the area in the ξ-plane enclosed
by the eigenvalue loops k 7→ ξm(k). The sign of C̄ is such
that a clockwise loop gives a positive contribution.
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Regularized dynamics

The transferred charge C̄ is not invariant under (imag-
inary) shifts of the Hamiltonian H 7→ H + s, where
U(T ) 7→ eTsU(T ), hence C̄ 7→ C̄ + e2T Im s. Therefore,
it is useful to consider the normalized transferred charge
C̄/Ξ2, with an appropriate normalization factor Ξ. We
set Ξ = maxξ |ξ| to the maximal modulus of the eigen-
values ξ of U , i.e., the spectral radius (normalization for
disordered chains is addressed in the next subsection).
In this way, the dominant eigenvalue of the normalized
propagator U/Ξ has modulus one. This is the normal-
ization chosen in the main text to define the RD limit,
where the ‘surviving’ loops should have zero gain or loss.

RD as defined in the main text requires that the eigen-
vectors of U (or Û(k)) are orthogonal and the eigenvalues
fulfill |ξ|2 = |ξ|, i.e., have modulus zero or one. These
conditions are equivalent to the statement that U is a
normal operator (orthogonal eigenvectors) and a partial
isometry (|ξ| ∈ {0, 1}), that is, P = U†U = UU† and P
is a projection (P 2 = P ). This generalizes the Hermi-
tian case, where U is unitary and P = 1. Note that the
statement (UU†)2 = UU† is equivalent to U†UU† = U†.

How the RD conditions allow one to relate transport
and topology is explored in the main text. The RD con-
ditions can also be motivated if we consider the trans-
ferred charge as a function C̄(t) of time, or as a function
C̄(np) of periods np in a Floquet chain, and ask for the
persistent current given by the limit limt→∞ C̄(t)/t or
limnp→∞ C̄(np)/np. For a (topological) charge pump the
persistent current should be non-zero.

This leads us to ask for the conditions under which

C̄(np) = np C̄ (16)

holds. This equation is generally not true. For example,
we have

C̄(2) =
i

2π

∫ π

−π
trL
(
Û†

2
∂k
(
Û2
))

dk

=
i

2π

∫ π

−π
trL
((
Û Û†

2
+ Û†

2
Û
)
∂kÛ

)
dk

(17)

from Eq. (11), if we replace Û ≡ U(T, k) by U(2T, k) =
Û2. To make progress towards Eq. (16) we have to

relate the operator expression Û Û†
2

+ Û†
2
Û to 2Û†.

Without aiming for a mathematically strict statement
we note that if Û†Û = Û Û† we have Û Û†

2
+ Û†

2
Û =

2Û†Û Û†, and we obtain the desired relation if addition-
ally Û†Û Û† = Û†. These are precisely the RD conditions
formulated above.

That, conversely, RD implies Eq. (16) is obvious with
Eq. (14) (which can be used here), if ξm(k) is replaced
by ξm(k)np and one uses |ξm(k)| = 1 for the eigenvalue
loops that contribute in this equation.

Therefore, in the RD limit, a non-zero charge trans-
fer C̄ 6= 0 corresponds to a non-zero persistent current
limnp→∞ C̄(np)/np = C̄, which is given by the relation
C̄ = W (Γ) between transport and topology.

Measuring the transferred charge by wave packet
propagation

The transferred charge C(n) or C̄ can be computed
or measured also with real-space wave packet propaga-
tion. The principal procedure is to prepare a wave packet
|ψ(0)〉 = |i〉 at a single site i of the chain, let it evolve in
time to |Ψi〉 = |ψ(T )〉 = U |ψ(0)〉, and then determine the
quantity C(n)|i in Eq. (1) or the quantity C̄i in Eq. (7).
For C(n) the contribution from wave packets for all sites
of the chain has to be summed, but C(n)|i will be negli-
gible for |i − n| � 1. Owing to translational invariance,
the averaged charge C̄ can be obtained exactly from the
propagation of only L individual wave packets, prepared
at the sites i ∈ {0, . . . , L − 1} of the unit cell. Experi-
mentally, this procedure requires preparation of a wave
packet at a single site, and measurement of the weight
of the propagated wave packet at multiple sites. This is
possible, e.g., in experiments using photonic waveguide
lattices [3, 4].

In other situations one may wish for a more relaxed
approach that does not require preparation of a wave
packet at a single site. A practical way is to measure
the persistent current of a Floquet chain close to the RD
limit: let a wave packet |ψ〉 propagate over np ≥ 1 peri-
ods to |Ψ〉 = Unp |ψ〉, measure the propagation distance
∆x = (〈Ψ|x̂|Ψ〉− 〈ψ|x̂|ψ〉)/〈Ψ|Ψ〉, appropriately normal-
ized by 〈Ψ|Ψ〉, and approximate the transferred charge
by C̄ ≈ ∆x/np. If the width of the initial wave packet
is small compared to the propagation distance, but still
large enough to average over multiple sites of the chain,
this will give a good approximation of C̄ for a (topologi-
cal) charge pump. Sampling over multiple wave packets
is possible.

Wave packet propagation remains applicable in a
disordered chain, where the momentum space expres-
sions (11), (14) cannot be used. We can still define the
transferred charge C̄ as an average

C̄(wp) = lim
n→∞

1

2n+ 1

n∑

i=−n
C̄i , (18)

now over the entire chain instead of only one unit cell.
In this context, one has to reconsider the meaning of

normalization, since the normalization factor Ξ can no
longer be easily set to the spectral radius of the (Floquet-
Bloch) propagator. Instead, we can also consider an av-
erage

(
Ξ̄(wp)

)2
= η lim

n→∞
1

2n+ 1

n∑

i=−n
〈Ψi|Ψi〉 , (19)

2 Thesis articles

106



4

over the norm of wave packets |Ψi〉 = U |i〉 starting from
all sites of the chain. This expression for Ξ̄(wp) contains
a prefactor η that has to be determined from compari-
son with the previous normalization for a chain without
disorder. Reverting to momentum space, we find

lim
n→∞

1

2n+ 1

n∑

i=−n
〈Ψi|Ψi〉 =

1

2πL

L∑

m=1

∫ π

−π
|ξm(k)|2 dk

(20)
for a unit cell of L sites. In the RD limit, we thus have(
Ξ̄(wp)

)2
= η(NΓ/L)Ξ2 in comparison to the previous

factor Ξ = maxξ |ξ|, where NΓ is the number of ‘surviv-
ing’ eigenvalue loops above the imaginary gap. There-
fore, we set η = L/NΓ. For the chains (Sp), (Fl), with
L = 2, NΓ = 1, this means η = 2. In this way, the ex-
pressions for a disordered chain agree with the previous
expressions for a chain without disorder at least in the
RD limit. A difference persists away from this limit, and
other ways of normalization are certainly possible.

Eqs. (18), (19) are used to compute the transferred
charge for the inset of Fig. 5 in the main text. Explicit
expressions are given in Eqs. (46), (47).

THE THREE CHAINS (St), (Sp), (Fl)

To specify the Hamiltonians of the three chains (St),
(Sp), (Fl) we use the usual bra-ket notation, where |n〉
denotes the state at site n ∈ Z. For the chains (Sp), (Fl),
we identify ‘filled’ sites • in Fig. 1 in the main text with
even n, and ‘open’ sites ◦ with odd n.

The static chain (St)

The Hamiltonian of the chain (St),

HSt = J
∑

n∈Z

(
eγ |n+ 1〉〈n|+ e−γ |n〉〈n+ 1|

)
, (21)

includes directional hopping between nearest neighbors.
For γ > 0 (γ < 0) hopping to the right (left) is en-
hanced. The Hamiltonian is Hermitian only for γ = 0,
when it reduces to that of a tight-binding chain with non-
directional hopping.

The Hamiltonian HSt is invariant under translations
by L = 1 sites, and has a scalar Bloch Hamiltonian

ĤSt(k) = J(e−ik+γ + eik−γ) . (22)

This gives the elliptical energy loop ESt(k) ≡ ĤSt(k)
shown in Fig. 1 in the main text. Note that we can also
write ESt(k) = 2J(cosh γ cos k − i sinh γ sin k).

(St): Transferred charge

The Hamiltonian HSt, and thus also the propagator
USt(t) = exp(−itHSt), satisfies the prerequisite [U†, U ] =
0 of Eq. (14). We thus compute, with ξ(k) = e−itESt(k),

C̄ =
i

2π

∫ π

−π
ξ(k)∗ ∂kξ(k) dk

=
t

2π

∫ π

−π
∂kESt(k)e2t ImESt(k) dk

= −2Jt cosh γ

2π

∫ π

−π
sin k e4Jt sinh γ sin k dk

(23)

Using the integral representation of the Bessel func-
tions [5] we get

C̄ = 2Jt cosh γ I1(4Jt sinh γ) , (24)

with the modified Bessel function I1(·). We have C̄ = 0
in the Hermitian case γ = 0 (as it must), but the non-
Hermitian case γ 6= 0 allows for C̄ 6= 0.

(St): Regularized dynamics

The spectrum ESt(k) of the Hamiltonian ĤSt(k) con-
sists of a single loop. In the RD limit, the loop should
have constant imaginary part, corresponding to constant
magnitude |ξ| = et ImE of the eigenvalues of the corre-
sponding propagator U(t). The only way to achieve this
is to set γ = 0, recovering a Hermitian chain (possibly
with a uniform complex shift of the Hamiltonian). There-
fore, C̄ = 0 in the RD limit.

The static chain (Sp)

The chain (Sp) essentially consists of two identical
copies of the chain (St), placed either on the ‘filled’ or
‘open’ sites. To separate the two copies, we include a
staggered potential ∆ ∈ C. To couple the two copies,
we can allow for hopping λ ∈ R between the ‘filled’ and
‘open’ sites (although not particularly relevant for the
present investigation). This results in the Hamiltonian

HSp = J
∑

n∈Z

(
eγ |n+ 2〉〈n|+ e−γ |n〉〈n+ 2|

)

+∆
∑

n∈Z

(
|2n〉〈2n| − |2n+ 1〉〈2n+ 1|

)

+λ
∑

n∈Z

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)
,

(25)

with translational invariance by L = 2 sites.
The corresponding 2× 2 Bloch Hamiltonian is

ĤSp(k) =

(
ESt(k) + ∆ 2λ cos(k/2)
2λ cos(k/2) ESt(k)−∆

)
, (26)
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with eigenvalues

ESp(k) = ESt(k)±
√

4λ2 cos2(k/2) + ∆2 . (27)

For sufficiently large ∆ this gives two separated energy
loops (for Re ∆ = λ = 0, the condition is | Im ∆| >
2|J sinh γ|), as sketched in Fig. 1 in the main text. We
use ∆ = 3i and λ = 0.5 in Fig. 3 in the main text.

Note that we normalize the Brillouin zone to the in-
terval k ∈ (−π, π], independently of the size of the unit
cell (hence the factor k/2 in Eqs. (26), (27)). The eigen-
values ESp(k) are 2π-periodic, while ĤSp(k) acquires an
irrelevant phase (cf. the Fourier transform in Eq. (8)).

(Sp):Transferred charge

For λ = 0 the chain (Sp) consists of two copies of the
chain (St), such that the transferred charge

C̄ = 4Jt cosh γ cosh(2t Im ∆) I1(4Jt sinh γ) (28)

is the weighted sum of twice Eq. (23), with weighting
factors e±2t Im ∆ derived from the imaginary part of the
staggered potential ∆. For λ 6= 0 the analytic computa-
tion of C̄ becomes tedious, and will not be pursued here.
Numerical data are given in Figs. 3, 4 in the main text.

(Sp):Regularized dynamics

Just as for the chain (St), the RD limit in the chain
(Sp) requires γ = 0, such that C̄ = 0. Now, however,
we can separate loops with the staggered potential ∆.
A trivial RD limit is obtained for ∆ = 0, reducing the
chain to a Hermitian chain. In the non-trivial RD limit
| Im ∆| → ∞, there exists one loop below and one loop
above the imaginary gap at Γ = 0. This is the situation
sketched in Fig. 4 in the main text. Still, we have C̄ = 0.

The Floquet chain (Fl)

The Hamiltonian of the Floquet chain (Fl)

HFl(t) =





2

T
H

(1)
Fl if np ≤ t/T < np + 1

2 ,

2

T
H

(2)
Fl if np + 1

2 ≤ t/T < np + 1

(29)

consists of the two alternating steps

H
(1)
Fl = J

∑

n∈Z

(
eγ |2n+ 1〉〈2n|+ e−γ |2n〉〈2n+ 1|

)
, (30a)

H
(2)
Fl = J

∑

n∈Z

(
eγ |2n〉〈2n− 1|+ e−γ |2n− 1〉〈2n|

)
(30b)

in each period (np ∈ Z) of length T . As for the chain (Sp),
HFl(t) is invariant under translations by L = 2 sites.

Note that we use T = 1 throughout the present
manuscript, both to obtain quasienergies εm from eigen-
values ξm via the relation ξm = e−iεmT ≡ e−iεm , as well
as to interpret static chains as Floquet chains with an
artifical period T . We do however keep the symbol T
wherever suitable to remind us of the meaning of the
respective variable, e.g., we write U(T ) instead of U(1).

The Floquet propagator UFl ≡ UFl(T ) in real space is

UFl = e−iH
(2)
Fl T/2e−iH

(1)
Fl T/2

= c2
∑

n∈Z
|n〉〈n|

− s2
∑

n∈Z

(
e2γ |2n+ 2〉〈2n|+ e−2γ |2n− 1〉〈2n+ 1|

)

− isc
∑

n∈Z

(
eγ |2n+ 1〉〈2n|+ e−γ |2n〉〈2n+ 1|

)

− isc
∑

n∈Z

(
eγ |2n〉〈2n− 1|+ e−γ |2n− 1〉〈2n|

)
,

(31)
with the abbrevations c ≡ cos J , s ≡ sin J . The Floquet-
Bloch propagator in momentum space is

ÛFl(k) =

(
c2 − s2e−ik+2γ −2isc cos(k/2 + iγ)

−2isc cos(k/2 + iγ) c2 − s2eik−2γ

)
,

(32)
with eigenvalues

ξ1,2(k) = 1− 2s2 cos2(k/2 + iγ)

± 2s cos(k/2 + iγ)
√
s2 cos2(k/2 + iγ)− 1 .

(33)
From the eigenvalues we obtain the quasienergies ε1,2(k)
via the relation ξ1,2(k) = e−iε1,2(k). Eigenvalues and
quasienergies are shown in Fig. 1.

(Fl): Topological phase transition

The topological phase transition in the chain (Fl) oc-
curs when the square root in Eq. (33) vanishes, which
happens for γ = ±γc with the critical value

γc = arcosh(1/ sin |J |) . (34)

The spectrum of ÛFl(k) consists of a single loop for |γ| <
γc, and of two loops for |γ| > γc (see Fig. 1). The loops
are separated by an imaginary gap at Γ = 0, and have
(necessarily) opposite winding number. Note that at the
transition, the spectrum possesses an exceptional point
at momentum k = 0 (and ξ1 = ξ2 = −1).

(Fl): Transferred charge

The Floquet-Bloch propagator from Eq. (32) does not
satisfy the prerequisite [Û†Fl, ÛFl] of Eq. (14), and we have
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FIG. 1. Topological phase transition in the Floquet chain (Fl)
with J = π/3, as already shown in Fig. 2 in the main text.
The top row shows the real part Re ε1,2(k) of the quasiener-
gies, which have been omitted in the main text. The bottom
row shows the spectrum of eigenvalues ξ1,2(k). The pink dots
in the central panels indicate the exceptional point at the
transition.

to use Eq. (11) to obtain the transferred charge

C̄ = 2s4 sinh 4γ + 2s2c2 sinh 2γ , (35)

reusing the previous abbreviations c ≡ cos J , s ≡ sin J .
In the Hermitian case γ = 0, we have C̄ = 0.

The normalization factor

Ξ = 1 + 2s2 sinh2 γ + 2|s sinh γ|
√

1 + s2 sinh2 γ (36)

is obtained from the dominant eigenvalue at k = π (see
Eq. (33)). Combining the expression for C̄ and Ξ we
obtain an explicit expression for the normalized charge
transfer plotted in Figs. (3), (4) in the main text.

(Fl): Regularized dynamics

Just as the static chains (St), (Sp), the Floquet chain
(Fl) has the trivial RD limit γ = 0 of a Hermitian chain,
where C̄ = 0. In addition, there is the non-trivial RD
limit |γ| → ∞.

For large |γ| � γc, the spectrum consists of two loops
ξ1,2(k) ∼ −s2e±(ik−2γ), separated by an imaginary gap
iΓ at Γ = 0. We have Ξ ∼ s2e2|γ|. Being above the
topological phase transition, the winding number isW =
sgn γ 6= 0. The (normalized) transferred charge is

C̄/Ξ2 =
2 sinh 4γ

e4|γ| +O(e−|γ|) , (37)

which converges to W in the limit |γ| → ∞. As expected
from the general arguments, the transferred charge in
the RD limit is quantized, equal to the winding number,

and does not depend on the remaining model parameters
(here, the hopping J). This behavior is depicted in Fig. 4
in the main text.

The propagator in the RD limit can be expressed in
terms of the right (S+) and left (S−) shift operator

S+ =
∑

n∈Z
|2n+2〉〈2n| , S− =

∑

n∈Z
|2n−1〉〈2n+1| . (38)

These operators shift wave packets exactly by two sites.
S+ acts only on even sites (‘filled’ sites • in Fig. 1, blue
sites in Figs. 3, 5 in the main text), S− on odd sites
(‘open’ or red sites ◦).

Shift operators are prototypical examples of charge
pumps. Having non-zero winding number, they cannot
be realized individually by continuous time propagation
(which leaves the total winding number, summed over
all states, invariant and equal to the initial value zero,
cf. main text), but have to appear in pairs. Especially a
simple shift operator

∑
n∈Z |n+ 1〉〈n| cannot be realized

by continuous time evolution.
In the RD limit of the Floquet chain, the normalized

propagator −UFl/Ξ (with an additional minus sign) con-
verges to S+ for γ →∞, and to S− for γ → −∞. Here,
the ‘missing’ shift operator S− or S+ is asymptotically
suppressed by the strong damping ∼ e−4|γ| relative to the
other operator S+ or S− that survives in the RD limit.

(Fl): Perfect coupling

All expressions for the chain (Fl) simplify in the case of
perfect coupling J = π/2. The name ‘perfect coupling’
expresses the fact that amplitude is transferred perfectly
between adjacent sites in each step, which is equivalent
to the condition c ≡ cos J = 0 in Eq. (31).

At perfect coupling, the spectrum of ÛFl(k) consists of
two perfectly circular loops ξ1,2(k) = −e±(ik−2γ). Note
that γc = 0: Away from the Hermitian case, the Floquet
chain (Fl) at perfect coupling is always in a non-trivial
topological phase.

The Floquet propagator in real space (see Eq. (31))
is a weighted sum UFl = −e2γS+ − e−2γS− of the right
and left shift operator S+, S−, even away from the RD
limit. In the RD limit, only one of the two shift operators
survives, repeating the result given earlier for general J .

The transferred charge is

C̄/Ξ2 =
2 sinh 4γ

e4|γ| (39)

for all γ (cf. Eq. (37)).

(Fl): Disordered chain

For Fig. 5 in the main text we add disorder to the
hopping. One can also include random detunings, and
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replace the two steps in Eq. (30) with

H
(1)
Fl =

∑

n∈Z
J (a)
n eγ |2n+ 1〉〈2n|

+J (b)
n e−γ |2n〉〈2n+ 1|+ ∆(1)

n |n〉〈n| ,
(40a)

H
(2)
Fl =

∑

n∈Z
J (c)
n eγ |2n〉〈2n− 1|

+J (d)
n e−γ |2n− 1〉〈2n|+ ∆(2)

n |n〉〈n| ,
(40b)

where the J (a)
n , ..., J

(d)
n are drawn independently and uni-

formly from the interval [J(1−δ), J(1+δ)], with relative
disorder strength δ just as in the main text, and the
∆

(1)
n ,∆

(2)
n from [−∆,∆].

The RD limit |γ| → ∞ of this disordered Floquet chain
can be analyzed completely through a purely algebraic
but rather lengthy computation of the Floquet propa-
gator that we cannot repeat here. The central result is
that also in the disordered chain directional hopping sup-
presses one direction of propagation in favor of the other.

The limit γ →∞ of the normalized propagator −UFl/Ξ
(still Ξ = s2e2γ) results in a disordered shift operator

S+ =
∑

n∈Z
ζn|2n+ 2〉〈2n| , (41)

where the ζn are random variables of the same magni-
tude (ζn ≈ 1 for small δ). For δ = 0, we recover the
result ζn = 1 of the ordered Floquet chain (see Eq. (38)).
Analogously, a left shift is obtained for γ → −∞.

The action of the disorderd shift operator on wave
packets is seen in Fig. 5, panel (B) in the main text, which
essentially shows (S+)np |ψ〉 for an initial Gaussian wave
packet on ≈ 5 sites. The amplitude at individual sites
depends on the ζn, and thus is random, but the entire
wave packet propagates without spreading.

For a slightly simplified disordered Floquet chain even
the transferred charge can be calculated explicitly, us-
ing Eqs. (18), (19) derived from wave packet propaga-
tion. To simplify, we drop the detunings (∆(1,2)

n ≡ 0),
and use equal disordered hopping (J (a)

n = J
(b)
n ≡ J

(1)
n ,

J
(c)
n = J

(d)
n ≡ J

(2)
n ) in each step. Then, the wave func-

tions |Ψi〉 = UFl|i〉 are given by

|Ψ2i〉 = −i cos J
(1)
i sin J

(2)
i e−γ |2i− 1〉

+ cos J
(1)
i cos J

(2)
i |2i〉

−i sinJ
(1)
i cos J

(2)
i+1 e

γ |2i+ 1〉
− sin J

(1)
i sin J

(2)
i+1 e

2γ |2i+ 2〉 ,

|Ψ2i+1〉 = − sin J
(1)
i sin J

(2)
i e−2γ |2i− 1〉

−i sin J
(1)
i cos J

(2)
i e−γ |2i〉

+ cos J
(1)
i cos J

(2)
i+1|2i+ 1〉

−i cos J
(1)
i sin J

(2)
i+1e

γ |2i+ 2〉 .

(42)

We thus have

〈Ψ2i|Ψ2i〉 = cos2 J
(1)
i sin2 J

(2)
i e−2γ

+ cos2 J
(1)
i cos2 J

(2)
i

+ sin2 J
(1)
i cos2 J

(2)
i+1e

2γ

+ sin2 J
(1)
i sin2 J

(2)
i+1e

4γ ,

〈Ψ2i+1|Ψ2i+1〉 = sin2 J
(1)
i sin2 J

(2)
i e−4γ

+ sin2 J
(1)
i cos2 J

(2)
i e−2γ

+ cos2 J
(1)
i cos2 J

(2)
i+1

+ cos2 J
(1)
i sin2 J

(2)
i+1e

2γ ,

(43)

and

〈Ψ2i|x̂− 2i|Ψ2i〉 = − cos2 J
(1)
i sin2 J

(2)
i e−2γ

+ sin2 J
(1)
i cos2 J

(2)
i+1e

2γ + 2 sin2 J
(1)
i sin2 J

(2)
i+1e

4γ ,

〈Ψ2i+1|x̂− (2i+ 1)|Ψ2i+1〉 = −2 sin2 J
(1)
i sin2 J

(2)
i e−4γ

− sin2 J
(1)
i cos2 J

(2)
i e−2γ + cos2 J

(1)
i sin2 J

(2)
i+1e

2γ .

(44)

To proceed, we require the averages of the cos2, sin2 terms
over the uniform probability distribution of the J (1)

n , J
(2)
n ,

c2 ≡ cos2 Ji =
1

2
(1− ζ) + ζ cos2 J ,

s2 ≡ sin2 Ji =
1

2
(1− ζ) + ζ sin2 J ,

(45)

where ζ = sinc(2Jδ) with the sinc-function (with sincx =
(sinx)/x for x 6= 0).

Therefore, the quantities in Eqs. (18), (19) are

C̄(wp) =
1

2

(
〈Ψ2i|x̂− 2i|Ψ2i〉+ 〈Ψ2i+1|x̂− (2i+ 1)|Ψ2i+1〉

)

= 2(s2)2 sinh 4γ + 2(s2)(c2) sinh 2γ

(46)

and, using the prefactor η = 2 = L/NΓ for the chain (Fl)
(see the discussion after Eq. (19)),

(
Ξ̄(wp)

)2
= η

1

2

(
〈Ψ2i|Ψ2i〉+ 〈Ψ2i+1|Ψ2i+1〉

)

= 2(s2)2 cosh 4γ + 4(s2)(c2) cosh 2γ + 2(c2)2 .

(47)

The averages from Eq. (45) could now be inserted, to ob-
tain the normalized transferred charge C̄(wp)/

(
Ξ̄(wp)

)2 of
a disordered Floquet chain. In the RD limit |γ| → ∞,
only the first term in the numerator and denominator sur-
vives, and we recover the result C̄(wp)/

(
Ξ̄(wp)

)2
= sgn γ of

topological transport also with disorder. For γ →∞, the
parameters of the disordered shift operator from Eq. (41)
are given by ζn = sin J

(1)
n sin J

(2)
n / sin2 J . For δ = 0 we

recover the result ζn ≡ 1 of the ordered chain (Fl).
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REGULARIZATION OF THE PROPAGATOR

In this section all matrices depend on momentum k,
and we take it for granted that matrix functions k 7→
Û(k) etc. are at least continuous. We also demand 2π-
periodicity of such functions, but only up to phase fac-
tors, similar to the behavior of the Fourier transform in
Eq. (8). In the following equations, we occasionally drop
the k-dependence to allow for simpler notation.

Regularization starts with a Floquet-Bloch propagator
Û(k) with imaginary gap iΓ. For a unit cell of L sites,
Û(k) is an L×L matrix. If the eigenspace to eigenvalues
|ξm(k)| > eΓ outside of the imaginary gap has dimension
l, with 1 ≤ l ≤ L, the eigenspace to eigenvalues |ξm(k)| <
eΓ inside of the imaginary gap has dimension L− l. Note
that l does not depend on k.

We first consider the case that the eigenvectors of the
propagator are already orthogonal before regularization,
that is [Û , Û†] = 0 (this is the case, e.g., for the static
chains (St), (Sp), but not for the Floquet chain (Fl)).
Then, regularization deforms only the eigenvalues of Û .

To implement the deformation, diagonalize Û(k) with
a unitary transformation Q(k), such that Û(k) =
Q(k)D(k)Q(k)† with a diagonal matrix D(k) that con-
tains the eigenvalues ξ1(k), . . . , ξL(k) of Û(k). The de-
formation of the propagator is given by

Ŭ(s) = QfΓ(D, s)Q† , (48)

with the function

fΓ(z, s) =





(1− s)z if |z| < eΓ ,
(

1− s+
s

|z|
)
z if |z| > eΓ .

(49)

We have fΓ(z, 0) = z, and fΓ(z, 1) = 0 for |z| < eΓ but
fΓ(z, 1) = z/|z| for |z| > eΓ. Ŭ(s) does not depend on
the choice of the transformation Q, and we are justified
to write directly Ŭ(s) = fΓ(Û , s).

With this definition, Ŭ(0) = Û , while the eigenval-
ues of fΓ(D, 1), hence of Ŭ(1), have modulus zero or
one. Furthermore, eigenvalues move radially towards the
unit circle or the origin such that an imaginary gap stays
open during the deformation from Ŭ(0) to Ŭ(1). This
completes regularization in this situation.

In the general case [Û , Û†] 6= 0, also the eigenvectors
of Û must be deformed during regularization. One ap-
proach is to use the Schur decomposition [2], where we
write the propagator as Û(k) = Q(k)A(k)Q(k)† with uni-
tary Q(k) and triangular A(k). One reason to use the
Schur decomposition is that, e.g., the spectral decompo-
sition fails to exist at exceptional points.

Write A(k) = D(k) + N(k), where the diagonal part
D(k) contains the eigenvalues of Û(k), and N(k) is
strictly upper triangular. Note that N(k) is zero if and
only if [Û , Û†] = 0.

Now we define the continuous deformation

A(s) = fΓ(D, s) + (1− s)N (50)

for 0 ≤ s ≤ 1. This deformation still moves the eigenval-
ues on the diagonal of A radially towards the unit circle
or the origin, and sends the triangular part N above the
diagonal to zero such that [A(1), A(1)†] = 0. Reinserting
into the Schur decomposition gives a continuous defor-
mation of Û(k) to a regularized propagator.

The problem with using the Schur decomposition is
that the deformation of A(k) depends explicitly on N ,
and is not invariant under unitary transformations. Con-
ceptually, for N 6= 0 the deformation in Eq. (50) involves
a specific choice how the eigenvectors of A(k) (equiva-
lently, of Û(k)) are made orthogonal during regulariza-
tion. Since the Schur decomposition is not unique, it
can happen that N(0) 6= N(2π). Then, the Schur-based
regularization can fail to preserve the 2π-periodicity of
Û(k), even if required only up to phase factors.

Incidentally, for the present examples with l = L− l =
1, this problem does not arise. Here, the Schur decompo-
sition is unique (up to phase factors) since the imaginary
gap separates the one-dimensional eigenspaces for all k.

We shall briefly introduce an alternative approach to
regularization that avoids the complications of the Schur
decomposition. Let P>(k) denote the projection onto the
eigenspace to eigenvalues |ξ(k)| > eΓ outside of the imag-
inary gap, and P<(k) the projection onto the eigenspace
to eigenvalues |ξ(k)| < eΓ inside of the imaginary gap.
Note that we cannot assume that the projections are or-
thogonal, unless Û is normal.

Using the projections, split Û(k) as

Û(k) = P>ÛP> + P<ÛP<

= Û> + Û< .
(51)

We now deform Û> to a partial isometry, and let Û< → 0.
By assumption, Û> is a matrix with rank l. Therefore,

it can be written in the form

Û> = QBQ† , (52)

where Q is a L× l matrix with orthogonal columns (such
that Q†Q = 1l), and B an l× l matrix. The spectrum of
B is equal to the non-zero spectrum of Û>, in particular,
B has full rank l.

Note that here no problem arises since we do not as-
sume a specific form of B as we did in the Schur decom-
position for the matrix A. The functions k 7→ Q(k), B(k)
can always be chosen with periodicity 2π.

Now we use a polar decomposition [2]

B = RS , (53)

with a unitary l×l matrix R and a Hermitian and positive
definite l × l matrix S (the latter is guaranteed since B
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has full rank l). Using the polar decomposition, which is
unique for full rank B, avoids the complications arising
from the non-uniqueness of the Schur decomposition.

Since S is positive definite, we can write S = eX with
Hermitian X, and define a continuous deformation

Ŭ(s) = QRe(1−s)XQ† + g(s)Û< (54)

of Û with parameter s ∈ [0, 1]. Here, g(s) is a (largely
arbitrary) function with g(s) > 0, g(0) = 1, and g(1) = 0.

The map s 7→ Ŭ(s) is a continuous deformation of
the propagator, such that Ŭ(1) = QRQ† is a regularized
propagator. Since the smallest eigenvalue of the matrix
QRe(1−s)XQ† is bounded away from zero for 0 ≤ s ≤
1, we can always achieve that an imaginary gap stays
open during the deformation by letting g(s) approach
zero sufficiently fast.

Note that the deformation (54) does not move eigen-

values along radial lines as the previous deformation (50)
did, unless Û is normal and we can choose a diagonal B
in Eq. (52). We recall that, regarding topological proper-
ties, details of the regularization procedure are irrelevant.
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Cutting off the non-Hermitian boundary from an anomalous
Floquet topological insulator
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PACS 05.60.Gg – Quantum transport

Abstract –In two-dimensional anomalous Floquet insulators, chiral boundary states can spec-
trally detach from the bulk bands through non-Hermitian boundary state engineering. We show
that this spectral detachment enables spatial detachment: The non-Hermitian boundary can be
physically cut off from the bulk while retaining its topological transport properties. The result-
ing one-dimensional chain is identified as a non-Hermitian Floquet chain with non-zero winding
number. Through the spatial detachment, the conventional bulk-boundary correspondence is re-
covered in the anomalous Floquet insulator. We demonstrate our theoretical findings for the
standard model of an anomalous Floquet insulator and discuss their experimental relevance.

The cornerstone of topological band theory is the bulk-
boundary correspondence which provides a fundamental
connection between the insulating bulk and chiral bound-
aries of a topological insulator [1–6]. Quantized transport
emerges at a boundary via chiral boundary states if and
only if the boundary is attached to a topologically non-
trivial bulk. Since the transport is exclusively determined
by the bulk topology, it is impervious to boundary de-
formations. This provides robustness but also serves as a
fundamental restriction. Suppose we tried to extract a chi-
ral boundary state from a topological insulator by cutting
off one of its boundaries. Any such attempt would nec-
essarily fail. In agreement with the bulk-boundary corre-
spondence, the chiral boundary state would move towards
the newly created boundary of the topological insulator.
On the cut off boundary, chiral transport would no longer
occur.

In this work, we demonstrate that the boundary of
a two-dimensional anomalous Floquet insulator can re-
tain its topological transport properties when it is cut
off, provided that its boundary states are spectrally de-
tached from the bulk bands. Before we explain our idea in
greater detail, let us briefly review its three essential in-
gredients: anomalous Floquet insulators, non-Hermitian
Floquet chains, and non-Hermitian boundary state engi-
neering (BSE).

(a)bastian.hoeckendorf@uni-greifswald.de

In anomalous Floquet insulators [7–18], each of the in-
dividual Floquet bands is topologically trivial. Neverthe-
less, non-trivial topology emerges through the dynamical
evolution of the system, resulting in a non-zero W3 in-
variant [8, 9]. The signature of this topological phase is
found in the spectrum of the Floquet-Bloch propagator
Û(k) ≡ U(T, k), which is the solution of the Schrödinger
equation i∂tU(t, k) = H(t, k)U(t, k) after one period of a
time-periodic Bloch Hamiltonian H(t, k) = H(t + T, k).
Here, we impose a strip geometry, as in the top row of
Fig. 1, such that k denotes the momentum parallel to the
boundaries of the strip. The spectrum {e−iε(k)} of Û(k)
with the real-valued Floquet quasienergies ε(k) lies on the
unit circle. The boundary states of an anomalous Floquet
insulator form non-contractible chiral loops k 7→ e−iε(k)

that wind around the unit circle (see the first panel in
the bottom row of Fig. 1). Loops with opposite chiral-
ity, belonging to boundary states on opposite boundaries,
do not cancel each other because the boundary states are
spatially separated by the bulk.

One-dimensional non-Hermitian Floquet chains are dis-
tinguished from static or Hermitian chains by their capa-
bility to realize topological transport through quantized
charge pumping [19, 20]. The bulk states of these chains
appear as non-contractible loops with opposite chirality in
the now complex-valued quasienergy spectrum, in analogy
to the boundary states of anomalous Floquet insulators.
Here, cancellation of the loops is avoided through spectral
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Fig. 1: Blueprint for the construction of a one-dimensional
non-Hermitian Floquet chain with non-zero winding number
W from the boundary of an anomalous Floquet insulator with
non-zero W3 invariant. In the bottom row, the bulk bands of
the insulator are indicated by thick gray arcs and the arrows
indicate the chirality of the loops, which is extracted from the
functional dependence k 7→ e−iε(k) of the spectrum.

separation in the form of an imaginary gap iΓ (see the last
panel in the bottom row of Fig. 1). The direction of chi-
ral transport is determined by the non-contractible loops
above the imaginary gap. This situation is classified by
the Z-valued winding number [19]

W (Γ) =
i

2π

∑

eΓ<|e−iεj |

∫ π

−π
eiεj(k) ∂ke

−iεj(k) dk , (1)

which simply counts the chirality of the non-contractible
loops above the imaginary gap. By definition, the winding
number can only change when the imaginary gap closes.
For the trivial imaginary gap Γ = −∞, we obtain the total
chiralityW (−∞) = 0 of the spectrum, which is necessarily
zero due to the invertibility of the propagator [19].

BSE [21] establishes a connection between anomalous
Floquet insulators and non-Hermitian Floquet chains.
This connection provides the basis for our analysis. BSE
denotes a process in which non-Hermiticity is used to spec-
trally detach the boundary states of an anomalous Flo-
quet insulator from the bulk bands. Consider now, e.g.,
the configuration in the central panel of the top row of
Fig. 1 where BSE is applied to the bottom boundary of an
anomalous Floquet insulator. Since an imaginary gap sep-
arates the boundary state on the bottom boundary from
the rest of the quasienergy spectrum, the two-dimensional
system is no longer just described by a non-zero W3 in-
variant, but also by a non-zero winding number W .

The non-Hermitian boundary can now be cut off by set-
ting all couplings between it and the bulk to zero, as in
the right panel of the top row of Fig. 1. On the newly cre-
ated Hermitian bottom boundary of the anomalous Flo-
quet insulator, a chiral boundary state emerges in accor-
dance with the bulk-boundary correspondence. At the
same time, an additional chiral mode with opposite chi-
rality is created on the cut off boundary since the total

J

step 1

J

iγ iγ

step 2

J

step 3

J

iγ iγ

step 4

αJ

αJ

1 3

3 1

1

2

3

4
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1 3 3 1

1 3

3 1

1

2

3

4

(a)

(b)

(c)

Fig. 2: (a) Driving protocol of an anomalous Floquet insulator
on a semi-infinite strip along the x-axis, with pairwise coupling
between adjacent lattice sites (filled and open circles). Panel
(b) [panel (c)] shows the patterns of motion during one cycle
of the driving protocol for perfect coupling, γ > 0 and α = 1
(α = 0).

chirality W (−∞) must remain zero. Due to the BSE, this
additional mode is separated from the original boundary
state by an imaginary gap. The winding number of the
cut off boundary is non-zero. The cut off boundary has
become a non-Hermitian Floquet chain.

We demonstrate our findings for the standard model [8]
of an anomalous Floquet insulator which is sketched in
Fig. 2(a). The 2 + 1-dimensional driving protocol is im-
plemented on a square lattice with lattice sites • (filled
circles) and ◦ (open circles). We enforce translational
invariance along the x-axis and open boundary condi-
tions along the y-axis such that the lattice possesses a
top and bottom boundary. The number of sites between
the two boundaries is indexed by the parameter Ny [see
Fig. 2(b)]. The time-periodic Bloch HamiltonianH(t, k) of
the driving protocol, with momentum k along the x-axis,
cycles through four consecutive steps H(1)(k), ...,H(4)(k)
of duration δt = T/4, each of which couples two dif-
ferent adjacent sites of the lattice. The propagators of
each step are U (i)(k) = exp(−iδtH(i)(k)) and the Floquet-
Bloch propagator of the full driving protocol is given by
Û(k) = U (4)(k) · · · U (1)(k).

To specify the Hamiltonians of the individual steps, we
use standard bra-ket notation, where |•, ny〉 (|◦, ny〉) de-
notes the Bloch state of a particle on the • (◦) sites in
the ny-th layer between the bottom and top boundary
with ny = 1, ..., Ny. To avoid notational clutter, we omit
the explicit momentum dependence |•, ny〉 ≡ |•, ny, k〉,
|◦, ny〉 ≡ |◦, ny, k〉 of the Bloch states. With these con-
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ventions, the four steps are expressed as

H(1)(k) =

J

δt

Ny∑

ny=1

(
e−ik/2|◦, ny〉〈•, ny|+ eik/2|•, ny〉〈◦, ny|

)
, (2a)

H(2)(k) =
J

δt

Ny∑

ny=3

(
|◦, ny〉〈•, ny−1|+ |•, ny−1〉〈◦, ny|

)

+
αJ

δt

(
|◦, 2〉〈•, 1|+ |•, 1〉〈◦, 2|

)
+ i

γ

δt
|◦, 1〉〈◦, 1| , (2b)

H(3)(k) = S(k)H(1)(k)S−1(k) , (2c)

H(4)(k) = S(k)H(2)(k)S−1(k) . (2d)

The symmetry operator S(k) =
∑Ny

ny=1(|◦, ny〉〈•, ny| +

|•, ny〉〈◦, ny|) exchanges the two types of sites. Note
that we normalize the Brillouin zone to the interval k ∈
[−π, π). The three parameters J , γ, and α control the cou-
pling strength, the spectral attachment/detachment of the
boundary state on the bottom boundary, and the spatial
attachment/detachment of the bottom boundary, respec-
tively.

We first focus on the case α = 1, where the bottom
boundary is fully attached to the rest of the lattice. The
pairwise coupling between two sites in each of the four
steps is effectively described by the 2×2 Hermitian Hamil-
tonian

HJ =
J

δt

(
0 1
1 0

)
=
J

δt
σx . (3)

The associated propagator UJ = exp(−iδtHJ) = cos(J)−
i sin(J)σx, of a time step, is a periodic function of J . Since
UJ = (−1)mUJ+mπ for every m ∈ Z, we may restrict
ourselves to the parameter range J ∈ [0, π). For 0 ≤ J <
π/4 and 3π/4 < J < π, the W3 invariant vanishes, which
indicates that the system is topologically trivial. On the
other hand, the W3 invariant is non-zero for π/4 < J <
3π/4. This indicates that the system is in the anomalous
Floquet topological phase, which makes it a candidate for
BSE.

The simplest way to facilitate the BSE is to implement
gain or loss on the isolated boundary sites that, in the
respective step of the protocol, do not couple to other
sites [21]. Here, we place a non-Hermitian imaginary po-
tential iγ/δt onto the isolated sites in steps 2 [see Eq. (2b)]
and 4 [see Eq. (2d)] at the bottom boundary. For γ > 0,
the imaginary potential corresponds to gain and for γ < 0
to loss. Note that the remaining lattice, including the top
boundary, is Hermitian.

For the special value J = π/2, which we call perfect
coupling, we have UJ = −iσx. A full amplitude transfer
occurs between coupled sites and the driving protocol en-
forces the trajectories shown in Fig. 2(b). An excitation
in the bulk moves in a closed loop, while an excitation
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Fig. 3: Top row: Spectrum of the Floquet-Bloch propagator
for the driving protocol in Fig. 2 with Ny = 20 sites between
the bottom and top boundary and α = 1, γ = 1.8. The bulk
phase transition at J = π/4 (central panel) separates the phase
with a non-trivial (left panel) and trivial bulk (right panel).
Note that we use a logarithmic radial axis in all panels. The
color of the curves indicates the amplitude distribution of the
eigenfunctions on the red, blue, and gray colored area of the
lattice in Fig. 2(b). Bottom row: Amplitude distribution of
the eigenfunctions ψ(k) of Û(k) at k = 0 as a function of ny

for the eigenvalues marked with an × in the top row.

starting on a • site (◦ site) at the bottom (top) boundary
is transported two sites to the right (left). This pattern of
motion gives rise to boundary states on the bottom and
top boundary with opposite chirality. The chiral bound-
ary state on the bottom boundary gets amplified (atten-
uated) by a factor e2γ for γ > 0 (γ < 0). All other exci-
tations have constant amplitude. This corresponds to the
quasienergy dispersions ε(k) = 0 for the bulk band and
ε(k) = π + k + 2iγ [ε(k) = π − k] for the chiral boundary
state on the bottom [top] boundary. We have W (Γ) = 1
for γ > 0 and W (Γ) = −1 for γ < 0 with the imaginary
gap iΓ at Γ = γ.

For sufficiently large values of |γ|, the boundary state
on the bottom boundary remains detached from the rest
of the spectrum for any non-perfect but non-zero cou-
pling even if the W3 invariant vanishes. We here observe
the breakdown of the bulk-boundary correspondence. No-
tably, the breakdown is restricted to the non-Hermitian
bottom boundary. Fig. 3 demonstrates this phenomenon.
At J = 1 (left panels), theW3 invariant and winding num-
ber W are both non-zero. At J = π/4 (middle panels),
the topological phase transition occurs and the W3 invari-
ant changes to zero. The imaginary gap, however, stays
open, which means that the winding number W does not
change. Consequently, the detached boundary state can
not disappear and persists even beyond the phase transi-
tion at J = 0.7 (right panels).

The top boundary still fullfills the bulk-boundary cor-
respondence, since it is Hermitian, so the boundary state
that is localized on it disappears during the phase tran-
sition. It is replaced by a boundary state with the same

p-3

Article VI

115



Bastian Höckendorf et al.

chirality which is now localized on the bottom boundary
(see the bottom row of Fig. 3). This new boundary state
forms a non-contractible loop with the bulk bands in ac-
cordance with the non-zero value of the winding number
W . Here, we directly observe that the bottom boundary
is essentially a non-Hermitian Floquet chain that is glued
to a trivial insulator with W3 = 0.

The breakdown of the bulk-boundary correspondence
has previously been observed in many different non-
Hermitian static systems [22–29]. In these system, the
breakdown is a consequence of the non-Hermitian skin ef-
fect, in which bulk states are exponentially localized upon
the introduction of an open boundary condition, leading to
a significant change in the energy spectrum. In our case of
an anomalous Floquet insulator, the bulk quasienergies do
not depend on the boundary condition. The breakdown of
the bulk-boundary correspondence is a consequence of the
spectral detachment between bulk and boundary states
induced through BSE. The conventional bulk-boundary
correspondence is immediatly recovered when the non-
Hermitian boundary is cut off.

By setting α = 0, the bottom boundary is cut off from
the remaining lattice and can be regarded as a seperate
one-dimensional chain. The trajectories enforced by this
chain for perfect coupling are shown in Fig. 2(c). The two
counterpropating bulk states of the chain coincide with the
boundary states of Fig. 2(b) in terms of both trajectories
and quasienergies. We again have W (Γ) = 1 for γ > 0
and W (Γ) = −1 for γ < 0 with the imaginary gap iΓ at
Γ = γ. Note that there is no spatial overlap between the
wave functions of the two bulk states for perfect coupling.

For non-perfect coupling, this is no longer the case.
Therefore, the imaginary gap only persists for sufficiently
large values of γ. The critical value γc, at which the imag-
inary gap closes, follows from the eigenvalues of Û(k) for
the chain, analogous to Ref. [19]. The two eigenvalues are

e−iε1,2(k) = eγ
(

1− 2 sin2 J cos2 κ

± 2 sinJ cosκ
√

sin2 J cos2 κ− 1
)
,

(4)

with κ = k/2 + iγ/2. The topological phase transi-
tion between a trivial chain with W = 0 and a non-
trivial chain with W = 1 occurs when the square root
in Eq. (4) vanishes, which happens at γ = ±γc for
γc(J) = 2 arcosh(1/ sin |J |).

The critical value γc is generally larger then the value
of γ at which the boundary state detachement occurs for
α = 1. This is due to the spatial overlap between the coun-
terpropagating bulk states in the chain for α = 0 which
reduces the imaginary gap induced by BSE. The various
scenarios that emerge in the present driving protocol after
the bottom boundary has been cut off are shown in Fig. 4.
In all cases, we recover the conventional bulk-boundary
correspondence in the anomalous Floquet insulator. Non-
Hermitian Floquet chains with non-zero winding numbers
are generated if γ is above the critical value γc as in the
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Fig. 4: Same as Fig. 3, now showing the spectra before (α = 1,
left panels) and after (α = 0, central and right panels) the
bottom boundary has been cut off. In the top row we use
the parameters J = γ = 1, in the second row we use J = 1,
γ = 1.8, in the third row we use J = 0.7, γ = 1.8, and in the
bottom row we use J = 0.7, γ = 2.1. In all panels, we have
Ny = 20. The color of the curves now indicates the amplitude
distribution of the eigenfunctions on the red, blue, gray, and
green colored area of the lattice in Fig. 2(c).

second and fourth row of Fig. 4.
In conclusion, non-Hermitian Floquet chains can be

constructed from the non-Hermitian boundaries of two-
dimensional anomalous Floquet insulators. The crucial
aspect in this construction is the imaginary gap created
with the help of BSE. The imaginary gap provides topo-
logical protection for the spectrally detached boundary
states irrespective of the bulk topology. Our construc-
tion enables a straightforward experimental realization of
non-Hermitian Floquet chains by exploiting existing ex-
perimental designs [15–18] for anomalous Floquet insula-
tors. The present model can be implemented in photonic
waveguide lattices [15,16]. In that context, the BSE could
be realized through waveguide bending [30].

An interesting route for future research is the applica-
tion of our procedure to symmetry-protected anomalous
Floquet topological phases or systems with different spa-
tial dimensionality [12]. We expect that by cutting off the
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boundaries from other anomalous Floquet insulators, e.g.
those with fermionic time-reversal symmetry [18,21], novel
non-Hermitian Floquet topological phases will emerge,
which may also possess interesting (quantized) transport
properties.
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