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1 Introduction
After the discovery of high-temperature superconductivity in copper oxides in 1986,
strongly correlated many-particle systems have attracted much attention. Despite the
longstanding search for the origin of an attractive interaction causing fermionic bound
states in repulsively interacting particles, possible mechanisms of superconductivity in
the cuprates are still the subject of considerable debate and further research. In the
field of high-Tc superconductivity the bosonic degrees of freedom play an important
role: on the one hand, tightly paired fermions act approximately as bosons, and so can
collectively form a quantum coherent state at low temperatures. On the other hand, it
is accepted that the nature of the high-temperature superconductivity is controlled not
only by the electron-electron interaction but also by the electron-phonon interaction.
In order to investigate such a fermionic system with phonons, the bosonic degrees of
freedom should be taken into account. However, this makes the numerical simulations
much complicated, since an unlimited number of bosons may occupy the same site.
Thus, from the theoretical point of view, one-dimensional (1D) systems are of specific
interest because there exist exact numerical and analytical techniques which permit
deep insights into understanding of the nature of the quantum many-body systems
with and without background medium such as the electron-phonon coupling.

The recent rapid progress in cooling atoms to low temperatures and manipulating
their interactions has also motivated theorists to explore strongly correlated quantum
systems including bosonic degrees of freedom. After achievement of the Bose–Einstein
condensations (BEC) in the ultracold dilute gases in 1995, the quantum phase tran-
sition between Mott insulating (MI) and superfluid (SF) phases has been observed
experimentally using bosonic atoms loaded into an optical lattice. A number of opti-
cal lattice experiments have investigated the nature of Bose condensates in disordered
traps to answer a fundamental unsolved issue, what is the fate of Anderson localiza-
tion in the presence of strong quantum correlations. Moreover, the crossover between a
molecular BEC and a Bardeen–Cooper–Schrieffer (BCS) pairing state has been realized
using Feshbach resonances, which enable one to control the strength of paring interac-
tions using a magnetic field. Thus, ultracold fermionic/bosonic atoms in optical lattices
provide highly controllable quantum systems allowing to probe various quantum many-
body phenomena experimentally. Excitation of superfluids in optical lattices have been
probed by momentum-resolved Bragg spectroscopy, which motivates theoreticians to
compute dynamical quantities for a direct comparison with experiments. Since bosons
on a chain are also accessible in optical lattice experiments, it is also of significant in-
terest to study the 1D quantum systems for bosons, while the main numerical obstacle
is again caused by the multiple occupancies of bosons on a single site.

The BCS-BEC crossover can also be investigated by considering excitons, i.e., elec-
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2 1 Introduction

tron-hole bound pairs. With increasing the magnitude of the Coulomb interaction,
which acts as an attraction between an electron and a hole, electron-hole pairs expe-
rience the crossover from a weakly bound BCS-like state to a BEC state of tightly
bound excitons. Here, the so-called excitonic insulator (EI) is one of the longstand-
ing problems in condensed matter physics. Despite its half a century-old history, the
experimental realization of the EI state is still quite challenging. Needless to say, the
bosonic degrees of freedom play a significant role in the EI, since (tightly) bound pairs
can be regarded approximately as bosons.

Various numerically exact techniques are used to investigate such strongly correlated
many-particle systems. The most direct method is (Lanczos) Exact Diagonalization
(ED), which allows us to calculate almost all properties of a quantum system. How-
ever, ED is restricted to systems (for spinful fermions) with up to about 20 particles
because of the exponential increase of the memory capacity with the number of par-
ticles. In many cases, such system sizes are too small to extrapolate the physical
quantities of interest to the thermodynamic limit. Quantum Monte Carlo (QMC)
techniques can be applied to much larger system sizes than ED. QMC is, however,
restricted to simple quantum models due to the notorious “minus sign” problem. In
(quasi-)1D systems these problems can be overcome by means of the Density-Matrix
Renormalization group (DMRG) technique. The DMRG can be used to investigate
very large systems, L ∼ O(103), and is widely applicable not only to fermionic but
also to bosonic strongly correlated systems. In the latter case the cut-off should be
introduced to restrict the maximum number of bosons per site. Thereby, applying the
pseudo-site approach, DMRG allows one to perform accurate simulations in a system
with background medium, such as the electron-phonon coupled Holstein model and the
Edwards fermion-boson model. Most remarkably, the dynamical DMRG (DDMRG)
technique provides a novel opportunity for investigating the dynamical properties of
quantum many-body systems for all frequencies in large systems with a few hundred
sites. DDMRG is as widely applicable to quantum systems as the standard DMRG
method, and thus opens doors for a direct comparison with experimental results in the
strongly correlated systems.

In this thesis we investigate the static and dynamical properties of 1D quantum
many-body systems including bosonic degrees of freedom. Based on the unbiased large-
scale DMRG technique, we perform a careful finite-size scaling analysis combined with
field theory when necessary, to characterize each phase and phase boundaries, and
to examine the quantum criticality. In order to determine quantum phase transition
points, Tomonaga–Luttinger liquid (TLL) parameters and/or central charge are ex-
ploited. Dynamical quantities obtained by DDMRG can also be used to characterize
different phases and phase boundaries.

The outline of the thesis is as follows. In the next chapter, we introduce the basic ideas
and algorithms of the standard DMRG and DDMRG techniques. Then the pseudo-
site approach is explained, which is necessary to simulate a system with background
medium, as in the Holstein and Edwards models. At the end of Chap. 2 we present
accurate numerical methods to estimate TLL parameters and central charge.
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In Chap. 3 we explore the BCS-BEC crossover of electron-hole pairs (excitons) in
the half-filled Falicov–Kimball model, using the ED and DMRG techniques. So far,
the absence of an order parameter has prevented addressing the problem of excitonic
condensation in 1D systems by mean-field approaches, despite their success in higher
dimensions. In order to overcome this problem, we simulate the off-diagonal anomalous
Green function, which is originally introduced for detecting the particle fluctuations of
Cooper pairs in 2D systems. The binding energy and coherence length of the electron-
hole pairs obtained from the anomalous spectral function and condensation amplitude
show a Coulomb interaction driven BCS-BEC crossover.

In Chap. 4 we apply the pseudo-site DMRG technique to 1D quantum many-particle
systems with background medium. In order to explore the origin of attractive interac-
tions between electrons we investigate the electron-phonon coupled Holstein model for
spinless and spinful cases. As a second example for the system with background medium
we study the Edwards transport model with boson-affected hopping, which exhibits a
surprisingly rich physics including the metal-insulator quantum phase transitions, the
anomalous momentum distribution function triggered by the effective next-nearest-
neighbor hopping process at half filling, and even the attractive TLL phase away from
half band filling.

In Chap. 5 we investigate the pure bosonic systems in 1D. Exploring first the ground-
state phase diagram and the Kosterlitz–Thouless transition between SF and MI phases
in the standard 1D Bose–Hubbard model (BHM), we demonstrate the accuracy of
DMRG results in comparison to strong-coupling perturbation theory. Analogously, dy-
namical quantities in the BHM obtained by the DDMRG exhibits excellent agreements
with the perturbative results.

Then, including the nearest-neighbor Coulomb interaction in the BHM we examine
the entanglement and dynamical properties of the so-called Haldane insulator, which
is regarded as a symmetry-protected topological (SPT) phase by the lattice inversion
symmetry. In order to detect such a Haldane state in optical lattice experiments, we
simulate the dynamical structure factor, which exhibits the gapped excitation spectrum
in analogy with the spin-1 Heisenberg chain.

Feshbach resonances and molecule formation will also be studied in the bosonic lattice
system in Chap. 6. From the theoretical point of view, the BCS-BEC crossover problem
for bosons differs markedly from the fermionic case since the carriers themselves may
Bose condense. This leads to the possibility of an Ising quantum phase transition
occurring between distinct paired superfluids. We characterize the phases and quantum
phase transitions of bosons interacting via Feshbach resonant pairing interactions in 1D
lattice and provide compelling evidence for an Ising quantum phase transition.

Figure 1.1 summarizes all issues and lattice models addressed in this thesis schemat-
ically. Thesis articles are categorized into each lattice model.
A summary and an outlook can be found in Chap. 7, which closes the scientific part of
the thesis.
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Falicov-Kimball [I - III]
Excitonic condensation

Spin-1XXZ [XX]

Symmetry-protected topological order

Fermions

(Hubbard-)Holstein [IV and V]

(Anderson-)Edwards [VI - XII]

Coupling Bosons

Bose-Hubbard [XIII - XVII]

Bose-Bose mixture [XXI - XXIII]

Superfluid-Mott insulator transition

Extended Bose-Hubbard [XVIII and XIX]

Ising transition between distinct superfluids

Metal-insulator transition
Phase separation
Andereson localization

Quantum phase transition / Quantum criticality

Metal-insulator transition

Quantum condensation / Quantum coherence

Spins Disorder

Symmetry-protected topological order

Fig. 1.1: Schematic representation of the lattice models, which will be discussed in
this thesis. The roman numbers after each lattice model denote the number
of corresponding thesis articles listed in Chap. 8.



2 Numerical technique

The Density-Matrix Renormalisation Group (DMRG) technique was invented in 1992
by Steven R. White [1,2], and is considered now as the most efficient numerical method
for investigating the (quasi-) 1D quantum systems. The DMRG allows one to calculate
static, dynamic, and spectral properties in the strongly correlated 1D systems with
high precision for large system sizes as L ∼ O(103). In this chapter we will introduce
briefly basic notions of the (dynamical) DMRG which can be applied to the various 1D
interacting systems as demonstrated in this thesis later.

2.1 DMRG algorithms
2.1.1 Density matrix projection
We devide the entire system (superblock) into the system block |i〉 and environment
block |j〉 as shown in Fig. 2.1. Then, the state of the superblock is given by

|ψ〉 =
∑
i,j

ψi,j |i〉|j〉. (2.1)

Here, we assume |ψ〉 to be normalized, 〈ψ|ψ〉 = 1. The reduced density matrix for the
system block is defined as

ρii′ =
∑
j

ψ∗ijψi′j , (2.2)

where Trρ̂ = 1 due to normalization. Then, for any system block operator Â we have

〈ψ|Â|ψ〉 = Trρ̂Â =
∑
α

wα〈uα|Â|uα〉 (2.3)

with the eigenstates |uα〉 and eigenvalues wα ≥ 0 of ρ̂. Since Trρ̂ = 1, we have
∑
αwα =

1. Eq. (2.3) gives us a way to discard some states from the system block, namely,
keeping the states with significant wα and discarding ones with wα ≈ 0, we obtain a
good approximation value of 〈Â〉 as

〈ψ|Â|ψ〉approx =
m∑
α=1

wα〈uα|Â|uα〉 (2.4)

for a fixed number of m system block states kept.
Let us make this argument more precise. For the moment, we assume that the

superblock has been diagonalized and we have obtained one particular state |ψ〉, e.g.,
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6 2 Numerical technique

superblock
︷ ︸︸ ︷

|i〉 |j〉

︸ ︷︷ ︸

system
︸ ︷︷ ︸

environment

Fig. 2.1: A superblock divided into a system block and an environment block.

the ground state. We desire to construct an accurate approximation state |ψ′〉 for |ψ〉,
which is given by

|ψ〉 ≈ |ψ′〉 =
∑
j

m∑
α=1

aα,j |uα〉|j〉, (2.5)

where the system block states |uα〉 are defined for a fixed number m of states kept as

|uα〉 =
∑
i

uαi |i〉, α = 1, · · · ,m. (2.6)

To this end, we minimize

Dm =
∣∣|ψ〉 − |ψ′〉∣∣2 (2.7)

by varying over all aα,j and uα, with the condition 〈uα|uα′〉 = δα,α′ . In general, one
can write

|ψ′〉 =
∑
α

aα|uα〉|vα〉 , (2.8)

where vαj = 〈j|vα〉 = Nαaα,j , with Nα chosen to set
∑
j |vαj |2 = 1. Then, Dm is

described by

Dm =
∑
ij

(
ψij −

m∑
α=1

aαu
α
i v

α
j

)2

, (2.9)

and we need to minimize Dm over all uα, vα and aα with the given number of m.
Here, ψ is a rectangular matrix. The solution is determined by the singular value
decomposition of ψ,

ψ = UDV T , (2.10)

where U is an orthogonal ` × ` matrix and V is a column-orthogonal ` × J matrix,
where j = 1, · · · , J and we assume J ≥ `. Here, the diagonal matrix D contains the
singular values of ψ. The diagonal elements of D are the aα and the corresponding
columns of U and V are the uα and vα, respectively. Using Eq. (2.2) we obtain

ρ = UD2UT . (2.11)
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H̃l

︸ ︷︷ ︸

H̃l+1(=O
†
L
Hl+1OL)

H̃R
l

Fig. 2.2: Superblock configuration (left panel) and process (right panel) of the infinite-
system algorithm.

The eigenvalues of ρ are wα = a2
α and the eigenstates of ρ with the largest eigenvalues

are uα. Each wα represents the probability of the block being in the state uα, with∑
αwα.
More specifically, Dm is the so-called “discarded weight” of the density matrix eigen-

values

Dm =
mmax∑
α=m+1

wα = 1−
m∑
α=1

wα , (2.12)

where mmax is the size of the density matrix. Since the discarded weight Dm is strongly
correlated with the error in the ground-state energy, Dm is often used as a measure
of the error. One can calculate the ground-state energy and the discarded weight for
several values of m and make an extrapolation m → ∞. This approach provides a
reliable estimate of the error on the ground-state energy [1, 3].

In most cases, the accuracy of the energy for a given number of m is many orders
of magnitude better for open boundary conditions (OBC) than for periodic boundary
conditions (PBC). Therefore, it is usually better to treat systems with OBC on larger
lattices than small systems with PBC. However, sometimes one needs to simulate a
specific quantity with PBC, e.g. in order to avoid boundary effects with OBC. In
Sec. 2.4 we introduce the so-called folding lattice procedure, which improve the accuracy
with PBC drastically.

2.1.2 Infinite-system algorithm

The DMRG procedure starts with the infinite-system algorithm to enlarge the system
size in real space up to the desired system size while keeping the maximal dimension
of the superblock Hamiltonian constant. The environment block is constructed using a
reflection of the system block. The superblock configuration is shown in the left panel
of Fig. 2.2. Here, H̃l is the Hamiltonian for the system block with the reduced basis,
each dot represents a single site, and the environment block H̃R

l is obtained by the
reflection of H̃l.

The infinite-system algorithm proceeds as follows:

1. Form a superblock with L sites that is small enough to be exactly diagonalized.
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2. Diagonalize the superblock Hamiltonian HSB
L , e.g., by using the Lanczos al-

gorithm, or the more elaborate Lanczos–Davidson [4, 5] algorithm, to find the
ground-state eigenvalue E0 and eigenvector |ψ〉. Other states could also be kept,
such as the first excited ones. They are called “target states”.

3. Form the reduced density matrix ρii′ for the new system block with l′ sites from
|ψ〉 using Eq. (2.2), where l′ = l = L/2− 1.

4. Diagonalize ρii′ , and obtain the m eigenvectors u1, · · · , um with the largest
eigenvalues.

5. Construct Hl+1 and other operators Al+1 in the new system block, and transform
them to the reduced density matrix eigenbasis as H̃l+1 = O†LHl+1OL and Ãl+1 =
O†LAl+1OL, where OL = (u1, · · · , um).

6. Form a new superblock HSB
L+2 from H̃l+1, two single sites, and H̃R

l+1.

7. Repeat again from step 2 replacing L with L+ 2.

The superblock size increases by two sites at each step as shown in the right panel
of Fig. 2.2. Iterations are continued until a good approximation of an infinite system
is obtained.

Note that PBC can be attached to the ends by forming the superblock, and a different
block layout should be considered to avoid connecting two big blocks (system and
environment) which takes longer to converge. This is the key reason why DMRG
prefers OBC.

2.1.3 Finite-system algorithm

The finite-system algorithm is the DMRG procedure to calculate the properties of
a finite system most accurately. The environment is chosen so that the size of the
superblock is kept fixed at every iteration.

The finite-system algorithm proceeds as follows:

0. Run the infinite-system algorithm until the superblock reaches size L. Store H̃l
and the operators needed to connect the blocks at each iteration.

1. Carry out steps 3-5 of the infinite-system algorithm to obtain H̃l+1, and store it
(note that now l 6= l′).

2. Form a superblock of size L using H̃l+1, two single sites and H̃l′−1.

3. Repeat steps 1 and 2 until the environment size reaches l′ = 1. This is the left to
right zipping phase of the algorithm.

4. Carry out steps 3-5 of the infinite-system algorithm but with the direction to
build up the environment, and store H̃R

l′+1 at each iteration.
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Fig. 2.3: Finite-system algorithm.

5. Form a superblock of size L using H̃l−1, two single sites and H̃l′+1.

6. Repeat steps 4 and 5 until l = 1. This is the left to right zipping phase of the
algorithm.

7. Repeat again from step 1.

Iterations are continued through every configuration of the superblock for a given num-
ber m of the density-matrix eigenstates kept until convergence. This procedure is il-
lustrated in Fig. 2.3. This ensures a self-consistent optimization and thus considerably
improves the quality of the results as compared to the infinite-system algorithm.

Before we close this subsection, it should be noted that DMRG can be considered as
a variational approach. Namely, the energy functional

E(ψ) = 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(2.13)

is minimized in a variational subspace in order to find the ground-state wave function
|ψ0〉 and energy E0 = E(ψ0) whereby the DMRG energy error is proportional to the
weight of the density-matrix eigenstates discarded in the renormalisation process. The
discarded weight can be reduced systematically by increasing the number m of density-
matrix eigenstates kept.

2.2 Pseudo-site approach
In principle, the DMRG algorithm can be adapted directly to the strongly correlated
electron systems including bosons, e.g., as background medium in the electron-phonon
system. However, the simulations are often not practical, since one has to deal with the
infinite dimension of the bosonic Hilbert space even for finite systems. To overcome
this difficulty Jeckelmann and White introduced the pseudo-site approach [6] in the
usual DMRG procedure. The key idea is to transform each boson site into several
artificial two-state sites (pseudo-sites), since the DMRG works much more effective to
treat several two-state sites than single many-state site. In this section, we will explain
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(a) Standard DMRG approach

mf
⊗

testtestte
︸ ︷︷ ︸

23 bosonic states

(b) Pseudo-site approach

mf
⊗ ⊗ ⊗

testtesttetesttesttesttesttesttest
︸ ︷︷ ︸

nb = 3 pseudo-sites

Fig. 2.4: Panel (a): Standard DMRG approach with a block (dotted rectangle) includ-
ing a fermionic block (solid rectangle) and a bosonic site (oval) with mb = 8
states. Panel (b): Pseude-site approach with a block made of the previous
block and nb = 3 pseudo-sites. It takes nb steps to build the final block
(largest dotted rectangle), which is equivalent to the whole block in panel (a).

the pseudo-site approach, which is essential to investigate the Holstein-type models and
the Edwards fermion-boson system.

Let us consider first a simple lattice model, as the Hubbard model for spinful fermions,
where the number of states per site is mf = 4. In the case of bosonic systems, however,
the number of states on a single site is infinite in principle. For numerical calculations
we truncate this number and keep a finite number of states per site mb. In a stan-
dard implementation of the DMRG procedure for bosonic systems, memory and CPU
time costs increase roughly as m2

b and m3
b, respectively. The main difficulty of the

fermion-boson coupled systems is the large number of bosonic degrees of freedom. For
fermion-boson coupled systems, however, we need to keep a large number of bosonic
states per site (mb ∼ 10 − 100) in order to reduce errors caused by the truncation of
bosonic Hilbert spaces. Thus, such simulations cost much more computational time
than DMRG computations, e.g., in the Hubbard model.

To understand the key idea of the pseudo-site approach, it should be emphasized
that the computational resources needed by the DMRG increase only linearly with the
number of lattice sites. Therefore, individual lattice sites should be defined so that
the total number of states per site ms = mfmb is as small as possible, although it
brings an increase of the total sites in the lattice. Then, the first step in the fermion-
boson coupled system is to separate the fermions and bosons of a site into two sites as
shown in Fig. 2.4(a), instead of treating a site with both fermion and boson degrees of
freedom. A boson site with mb = 2nb states can be further divided into nb pseudo-sites,
where each site is made of a hard-core boson with two states per site, as depicted in
Fig. 2.4(b).

To be more precise, let us consider a boson site with a truncated occupation-number
basis {|α〉, α = 0, 1, 2, . . . , 2nb − 1}, where b̂†b̂ |α〉 = α|α〉. Here, b̂† (b̂ ) is the boson
creation (annihilation) operator. In this case, we need to introduce nb hard-core bo-
son sites (pseudo-sites) with {|rj〉, rj = 0, 1} for j = 1, . . . , nb and the creation and
annihilation hard-core boson operators â†j , âj , such as â†j |0〉 = |1〉, â†j |1〉 = 0, and âj is
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the Hermitian conjugate of â†j . A boson level |α〉 can be mapped one-to-one with the
relation

α =
nb∑
j=1

2j−1rj . (2.14)

Then, all boson operators should be defined via pseudo-site operators. For instance,
the boson number operator is given by

N̂b = b̂†b̂ =
nb∑
j=1

2j−1â†j âj . (2.15)

Other boson operators can be determined from the one-to-one mapping (2.14) and
the properties of the boson and hard-core boson operators. As an example, b̂† can be
obtained as follows. We first define b̂† = B̂†

√
Nb + 1 with B̂†|α〉 = |α + 1〉, where√

Nb + 1 and B̂† are given by

√
Nb + 1 =

mb−1∑
α=0

√
α+ 1P̂1(r1)P̂2(r2) · · · P̂nb(rnb) , (2.16)

B̂† = â†1 + â†2â1 + â†3â2â1 + · · ·+ â†nb ânb−1ânb−2 · · · â1 . (2.17)

Here, P̂j(1) = â†j âj , P̂j(0) = âj â
†
j , and rj can be obtained from the relation (2.14).

More concretely, for nb = 2 pseudo-sites,

b̂† = â†1 +
√

2â†2â1 + (
√

3− 1)â†1â
†
2â2 . (2.18)

Other boson operators can also be determined in a similar manner.
By substituting each boson site in the lattice with nb = log2(mb) pseudo-sites and

rewriting the Hamiltonian and other operators in terms of the pseudo-sites operators,
DMRG algorithms can be proceeded to simulate the physical properties in the system.

2.3 Dynamical DMRG
In this section we will describe the variational principle in order to simulate a dynamical
correlation function, which allows us to investigate the linear response of a quantum
system.

The zero-temperature dynamic response of a quantum system to a time-dependent
perturbation can be described by dynamical correlation functions as

GÂ(ω + iη) = − 1
π
〈ψ0|Â†

1
E0 + ω + iη − Ĥ

Â|ψ0〉 . (2.19)

Here, Ĥ is the time-independent Hamiltonian of the system, Â denotes the operator
of the physical quantity to be analyzed, and Â† is the Hermitian conjugate of Â. The
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small real number η > 0 shifts the poles of the correlation function in the complex
plane. The imaginary part of the correlation function corresponding to the spectral
function is obtained as

IÂ(ω + iη) = Im GÂ(ω + iη) (2.20)

= 1
π
〈ψ0|Â†

η

(E0 + ω − Ĥ)2 + η2
Â|ψ0〉 , (2.21)

which can be calculated by the correction vector method [7]. The correction vector is
defined by

ψA(ω + iη)〉 = 1
E0 + ω + iη − Ĥ

|A〉 , (2.22)

where |A〉 = Â|ψ0〉. In order to determine a correction vector one solves an inhomoge-
neous linear equation [

(E0 + ω − Ĥ)2 + η2
]
|ψ〉 = −η|A〉 , (2.23)

which always has a unique solution |ψ〉 = |YA(ω + iη)〉 for η 6= 0. Then, the correction
vector is calculated as

|ψA(ω + iη)〉 = |XA(ω + iη)〉+ i|YA(ω + iη)〉 (2.24)

with

|XA(ω + iη)〉 = Ĥ − E0 − ω
η

|YA(ω + iη)〉 . (2.25)

Minimizing the following functional

WA,η(ω, ψ) = 〈ψ|(E0 + ω − Ĥ)2 + η2|ψ〉+ η〈A|ψ〉+ η〈ψ|A〉 , (2.26)

which has a well-defined and nondegenerate minimum for any η 6= 0 and a fixed fre-
quency ω, the solution of Eq. (2.23) can be simulated as

|ψmin〉 = |YÂ(ω + iη)〉 . (2.27)

The value of the minimum corresponds to the imaginary part of the dynamical corre-
lation function as

WA,η(ω, ψmin) = −πηIÂ(ω + iη). (2.28)

Thus, the simulation of spectral functions ends up in a minimization problem. In order
to determine IÂ(ω+iη) for any frequency ω and η > 0 one minimizes the corresponding
functional WA,η(ω, ψmin). This is the variational principle of the dynamical DMRG
procedure [8, 9].



2.4 Periodic boundary conditions 13

This variational formulation is completely equivalent if |YA(ω+iη)〉 can be determined
exactly. However, in an approximate calculation with an error of the order ε � 1,
|ψ〉 = |YA(ω+iη)〉+ ε|φ〉 with 〈φ|φ〉 = 1, the variational procedure is more accurate. In
the correction vector method the error in the spectrum IÂ(ω+iη) = − 1

π 〈A|bYA(ω+iη)〉
is of the order of ε. In the variational formulation the error in WA,η(ω, ψmin), thus in
IÂ(ω + iη), is of the order of ε2 as can be shown easily from Eq. (2.26).

This minimization process of the functional WA,η(ω, ψ) can be easily integrated
into the DMRG algorithm, which is used to minimize the energy functional E(ψ) in
Eq. (2.13). At every step of a DMRG sweep, the following processes are performed in
the superblock subspace:

0. Run the infinite-system algorithm until the superblock reaches size L.

1. Minimize the energy functional E(ψ) to obtain the ground-state wave function
|ψ0〉 and its energy E0.

2. Calculate |A〉 = Â|ψ0〉.

3. Minimize the functional WA,η(ω, ψ) to determine the part of the correction vector
|YA(ω + iη)〉 and the imaginary part of the correlation function IÂ(ω + iη).

4. Calculate the other part of the correction vector |XA(ω + iη)〉 via Eq. (2.25).

5. Build a new superblock including the four states |ψ0〉, |A〉, |YA(ω + iη)〉, and
|XA(ω + iη)〉 as targets in the density-matrix renormalization. Repeat from step
1 until the minimum of both functionals E(ψ) and WA,η(ω, ψ) converge.

Note that in the practical calculations, it is of great importance in the first place
to determine the ground state with high precision. Therefore, we keep larger number
of eigenstates m during first few DMRG sweeps, and afterwards use the slightly re-
duced number of m for the calculations of dynamical properties in order to reduce the
computational time.

2.4 Periodic boundary conditions
As mentioned above, the DMRG will encounter a severe problem by carrying out the 1D
simulations with PBC due to the structual issue. By imposing PBC with an open-ended
1D shape as shown in Fig. 2.5(a), the nearest-neighbor interaction/hopping between
site 1 and site L becomes an effective long-range process proportional to the distance
L, so that the simulations lose accuracy drastically as the system size L increases.

Applying the so-called folding lattice approach [10] as demonstrated in Fig. 2.5(b),
this issue can be eliminated, in which the nearest-neighbor interactions/hoppings can be
considered as the combination of nearest-neighbor and next-nearest-neighbor processes.
While the larger number of m is still necessary to carry out simulations with high
accuracy comparing with OBC, the obtained results with PBC show often much less
system-size dependence and are free from the boundary effect like Friedel oscillations.



14 2 Numerical technique

(a)

1 2 3 4 5 6 7 8

5

6

7

8

1

2

3

4

(b)

1 8 2 7 3 6 4 5

5

6

7

8

1

2

3

4

Fig. 2.5: Implementation of PBC in the DMRG technique for the system size L = 8.
Solid lines denote the actual sites configurations in the DMRG simulations,
dotted ones (effective) interation/hopping processes. (a): The standard ap-
proach including a long-range process proportinal to the system size L. (b):
The reconfigurated folding lattice approach, in which the nearest-neighbor in-
teractions/hopping are replaced with the nearest- and next-nearest-neighbor
processes effctively.

In the following, we demonstrate the accuracy of the DMRG ground-state energy in
the half-filled Hubbard model as a paradigm of the strongly correlated electron systems.
The Hamiltonian of the Hubbard model is defined as

Ĥ = −t
∑
〈i,j〉σ

ĉ†iσ ĉjσ + U
∑

i

n̂i↑n̂i↓ , (2.29)

where ĉ†iσ (ĉiσ) creates (annihilates) an electron with spin σ =↑, ↓ in a Wannier orbital
centered around site i, and n̂i = ĉ†iσ ĉiσ. Here, i and j refer to the sites of a one-
or higher-dimensional lattice, and 〈i, j〉 represents nearest-neighbors. In Table. 2.1, we
compare the DMRG ground-state energy E(folding)

DMRG for PBC with the exact values Eexact
from Bethe Ansatz. For small system sizes L ∼ O(10) the standard configuration in
Fig. 2.5(a) provides still the accurate results and the numerical error can be reduced
with increasing the number of the density-matrix states m kept (see the results for
L = 30 in Table 2.1). The accuracy of the DMRG results with the folding lattice
approach is similar to these with the standard configuration. On the other hand, for
the system size L & O(102), the accuracy of the energy with the standard configuration
can not be improved any more even for m = 4000 states as shown in the results for
L = 130, while the magnitude of the discarded weight is erroneously decreased. The
DMRG ground state gets stuck into wrong minimum. Applying the folding lattice
approach in Fig. 2.5(b) this issue can be eliminated. With increasing m the accuracy of
the ground-state energy is improved, so that the DMRG can be regarded as numerically
exact technique again.
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L m |Eex − EDMRG| Dm for EDMRG |Eex − Efolding
DMRG| Dm for Efolding

DMRG
30 100 1.97× 10−1 6.36× 10−6 4.13× 10−2 2.64× 10−5

30 1000 2.84× 10−5 2.72× 10−8 3.31× 10−5 3.43× 10−8

30 2000 1.46× 10−6 1.49× 10−9 1.62× 10−6 1.62× 10−9

130 1000 3.14× 10−1 4.62× 10−13 4.12× 10−3 6.99× 10−7

130 2000 3.14× 10−1 3.14× 10−15 6.94× 10−4 1.20× 10−7

130 4000 3.14× 10−1 2.48× 10−17 7.19× 10−5 1.43× 10−8

Table 2.1: Ground-state energy difference between exact values Eex and numerical ones
EDMRG (Efolding

DMRG) in the 1D half-filled Hubbard model for U/t = 5 with L
sites using the DMRG with PBC (applying the folding lattice approach).
m is the number of density-matrix states kept, Dm the discarded weight in
Eq. (2.12).

2.5 Parallelization of the DMRG algorithm
The accuracy of physical observables as the ground-state energy depends strongly on
the number of density-matrix states m kept. For a particular problem the discarded
weight Dm in Eq. (2.12) provides us some hint for choosing the proper m. In order
to compute the complex systems accurately, it is important to compute the system
with large m as much as possible. Simultaneously, the system size should also be
enough large to perform the finite-size scaling. Thus, in the case of the 1D system with
background medium, e.g., the Holstein–Hubbard model, a sequential DMRG run for
the system size L ∼ O(102) and m ∼ 2000 immediately takes more than a week. The
paralleization of the DMRG technique is therefore essential to reduce the actual wall
time, since a single node in the modern computer consists of a few cores.

The most time-consuming part of the DMRG algorithm is the diagonalization process
of the superblock Hamiltonian Ĥ, which is carried out by a Davidson procedure. Thus,
repeated multiplications of Ĥ with superblock wavefunctions ψ have to be carried out.
Thereby, a Hamiltonian consisting of two blocks can be described as

Ĥij;i′j′ =
∑
α

Âαii′B̂
α
jj′ , (2.30)

where Â and B̂ are operators in two blocks and α indicates diffrent terms in Ĥ. Due
to double indices the matrix-vector multiplication (MVM) for Ĥψ is at the end of the
matrix-matrix type: ∑

i′j′

Ĥij;i′j′ψi′j′ =
∑
α

∑
i′

Âαii′
∑
j′

B̂α
jj′ψi′j′ . (2.31)

Since many operators have non-zero matrix elements between states only with specific
quantum numbers, it is sufficient to store only the non-zero blocks. Those blocks are
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Fig. 2.6: Timing of OpenMP DMRG sim-
ulations on Intel Xeon E5-2637
v3 machine (3.5GHz) in the half-
filled Hubbard model with PBC.
Squares (circles) denote the scal-
ing in 1D (2D) system with L =
130 (Lx = Ly = 4) and PBC. A
speedup of S indicates that the
calculation using n cores was S
times faster than the same cal-
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labeled by indices R(k) [L(k)] on the RHS (LHS). Omitting the normal matrix indices
and adding sum over qunatum numbers, Eq. (2.31) can be rewritten as

Ĥψ =
∑
α

∑
k

(Ĥψ)αL(k) =
∑
α

∑
k

ÂαkψR(k)
[
B̂T
]α
k
. (2.32)

In this equation there exists three loops, which can be performed in parrallel: the
innermost matrix-matrix multiplication (twice), the sum over quantum numbers and
the sum over terms in the Hamiltonian. In Ref. [11] Hager et al. presented a efficient
parallelization strategy on shared-memory systems via OpenMP by setting up an array
of OpenMP locks in order to describe loops in Eq. (2.32) as a single loop.

The efficiency of this OpenMP parallerized DMRG program depends strongly on the
model, the system size, and the number of density-matrix states m kept. In Fig. 2.6
we demonstrate the OpenMP scaling of the parallized DMRG code with up to 8 CPUs
comparing the wall time of a whole simulation in the 1D and 2D half-filled Hubbard
model. As a first benchmark we compare the results for the 1D system at U/t = 5 with
L = 130 sites and PBC for m = 4000, applying the folding lattice approach as explained
in Sec. 2.4 (the accuracy of the ground-state energy is shown in Table 2.1). Increasing
the number of CPU cores, the computational time can successfully be reduced up to
four CPUs in this case. Simulating with more than 4 cores speedups between 2 and 3
are achievable, so that in practice it is often most reasonable in 1D systems to carry
out the OpenMP parallized calculations with 4 CPUs. Much better efficiency of the
parallized code has been achieved in the second benchmark case for the 2D Hubbard
model at U/t = 4 with 4 × 4 sites and PBC including m = 15000 states, which is a
default benchmark system in Ref. [11] while m was chosen to be up to 2000 there. Note
that with m = 15000 the numerical error |EED − EDMRG| is reduced to be 3.1× 10−4.
As shown in Fig. 2.6, increasing the number of cores up to 8 we observe the much better
efficiency and the simulation with 8 CPUs can be finished five times faster than the
ones with a single core.
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2.6 Tomonaga–Luttinger liquid parameters
The physical properties of the metallic state in 1D interacting fermionic systems are
described by the Tomonaga–Luttinger liquid (TLL) theory. In the TLL picture the
space- and time-dependent correlation functions display unusual power-law decays, de-
termined by nonuniversal coefficients, Kρ and Kσ. These so-called TLL parameters
can be used to identify not only the properties of the TLL phase, but also the phase
boundaries to the insulating states [12, 13]. In this section we revisit shortly, how the
TLL parameters can be computed by the DMRG technique.

Let us first define the density-density correlation function as

Sρ(r) = 1
L

∑
l

{〈n̂l+rn̂l〉 − 〈n̂l+r〉〈n̂l〉}, (2.33)

where n̂j = n̂j↑ + n̂j↓ counts the electrons on site j.
Using conformal field theory it can be shown [14, 15] that the asymptotic behavior

for 1� r � L is given by

Sρ(r) ∼ −
Kρ

πr2 + A cos(2kFr)
r1+Kρ ln−3/2(r) + · · · , (2.34)

where kF = nπ/2 is the Fermi wave number, and A is a constant. For spinless fermions,
the first term should be multiplied by 1/2. In order to extract Kρ, we introduce the
Fourier transform

S̃ρ(q) =
L∑
r=1

e−iqrSρ(r) (2.35)

with 0 ≤ q < 2π. By construction, S̃ρ(q = 0) = 0. Then, Kρ is proportional to the
slope of the charge-structure factor in the long-wavelength limit q → 0+ [16]:

Kρ = απ lim
q→0+

S̃ρ(q)
q

, q = 2π
L
, L→∞, (2.36)

where α = 2 (α = 1) in the 1D spinless (spinfull) fermionic systems. From this relation
Kρ can be determined accurately using the DMRG technique [17].

Similarly, we define the spin-spin correlation function in order to extract Kσ in the
1D spinful systems as

Sσ(r) = 1
L

∑
l

{〈ŝzl+rŝzl 〉 − 〈ŝzl+r〉〈ŝzl 〉}, (2.37)

where ŝzj = n̂j↑ − n̂j↓. Then, Kσ can be determined from the Fourier transform S̃σ(q)
as

Kσ = π lim
q→0+

S̃σ(q)
q

, q = 2π
L
, L→∞. (2.38)
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In this way we can investigate the properties of TLL parameters very accurately
in any quasi-1D systems using the DMRG technique with OBC. Its accuracy can be
checked in the Hubbard model and the spinless fermion model with nearest-neighbor
interaction V by comparing with the exact results from the Bethe-ansatz solutions.
The agreement between both results is excellent [17].

In Chap. 4, we apply this method to the fermion-boson Edwards model and to the
Holstein model for both spinless and spinfull fermions in order to determine the metal-
insulator transition points accurately and especially to discuss the possible existence of
an attractive TLL phase indicated by Kρ > 1.

2.7 Entanglement analysis
In last decade it has been shown that an entanglement analysis can be used to detect
and locate quantum phase transitions in low-dimensional systems.

As explained above, in the DMRG algorithms we divide a system with L sites into two
sub-blocks and the reduced density matrix ρ` = TrL−`[ρ] of a sub-block of arbitrarily
length ` is calculated during each DMRG sweeps. Adding up the weights λα of the
reduced density matrix ρ` during the simulation, we have direct access to the von
Neumann entropy SL(`) = −Tr`[ρ` ln ρ`]. From conformal field theory [18] it follows
that in the case of a periodic system the von Neumann entropy takes the form

SL(`) = c

3 ln
[
L

π
sin
(
π`

L

)]
+ s1 , (2.39)

where s1 is a non-universal constant. In order to determine the quantum phase tran-
sition point accurately, Läuchli and Kollath have suggested to determine the central
charge from the entropy difference [19]

∆S(L) ≡ SL(L/2)− SL/2(L/4) = c

3 ln(2) + · · · . (2.40)

However, ∆S(L) includes the effect of the nonuniversal constant s1, and the values of
the critical point cannot be extrapolated systematically. Since the most precise data
of SL(`) are obtained when the length ` of the sub-block equals half the system size L,
the relation [20]

c∗(L) ≡ 3[SL(L/2− 1)− SL(L/2)]
ln[cos(π/L)] (2.41)

is much better suited for determining the central charge than expression Eq. (2.39), or
evaluating the entropy difference ∆S(L) via Eq. (2.40). As will be shown in this thesis,
the numerically obtained central charge c∗(L) not only determines the universality class
the system belongs to, but also provides an alternative way of precisely determining
the phase boundaries, e.g., at metal-insulator transitions, accurately.

In the framework of the DMRG, entanglement analysis provides further information
especially for the SPT phases. Li and Haldane [21] pointed out that it is also useful
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to examine the full entanglement spectrum ξα ≡ −2 lnλα rather than just representing
entanglement by a single number, e.g., as the von Neumann entropy SL(`). Namely, the
low-lying entanglement spectrum can be used as a “fingerprint” to identify topological
order. Pollmann et al. demonstrated that in the topological Haldane phase the lowest
entanglement levels show a characteristic degeneracy reflecting the symmetry protection
of the system [22,23].

In Sec. 5.2, we investigate the entanglement properties of the Haldane insulator phase
in the 1D extended Bose–Hubbard model and demonstrate that the bosonic Haldane
phase also reveals a characteristic degeneracy of the entanglement spectrum.





3 Excitonic insulators in one dimension —
Article I

The formation and condensation of excitonic bound states between electrons and holes
have been a continuously studied problem in condensed matter physics for 5 decades.
The attractive Coulomb interaction between oppositely charged particles can trigger
their pairing, and can even build up a macroscopic phase-coherent quantum state un-
der certain conditions. Quite recently, quasi-1D Ta2NiSe5 has raised as a candidate for
the excitonic insulator (EI) state and attracted much experimental attention [24]. An
extremely flat valence-band top was observed by angle-resolved photoemission spec-
troscopy and taken as a strong signature for the EI state to be formed out of “con-
densed” bound Ni 3d–Se 4p holes and Ta 5d electrons. This detection of the EI state
in the quasi-1D material has brought renewed attention to the formation and possible
condensation of excitons in 1D systems. However, in 1D, it has been unable to capture
the EI state by mean-field based approaches despite their success in higher dimensions,
since spontaneous breaking of continuous systems is generally impossible in 1D even at
zero temperature.

In this chapter we investigate the nature of excitonic bound states and the develop-
ment of exciton coherence in the 1D system using exact numerical techniques. Adopt-
ing a technique introduced for detecting the particle fluctuations of Cooper pairs in 2D
systems [25,26] we compute the off-diagonal anomalous exciton Green function, which
exhibits a Coulomb interaction driven crossover from BCS-like electron-hole pairing
fluctuations to BEC-like tightly bound excitons.

3.1 Extended Falicov–Kimball model
A minimal lattice fermion model to address the problem of exciton condensation is the
so-called extended Falicov–Kimball model (EFKM) [27–30]:

Ĥ = −tc
∑
〈i,j〉

ĉ†i ĉj − tf
∑
〈i,j〉

f̂ †i f̂j + U
∑
i

ĉ†i ĉi f̂
†
i f̂i + D

2
∑
i

(ĉ†i ĉi − f̂
†
i f̂i ). (3.1)

Here, α̂†i (α̂i ) denotes the creation (annihilation) operator of a spinless fermion in the
α = c, f orbital at site i. The transfer amplitude between f (c) orbitals on nearest-
neighbor sites is denoted by tf (tc). U(> 0) parameterizes the on-site Coulomb attrac-
tion between f holes and c electrons, and D is the level splitting between different α
orbitals. Increasing the magnitude of D in the EFKM we expect to find the staggered
orbital ordered (SOO) phase which corresponds to the antiferromagnetic phase in the

21



22 3 Excitonic insulators in one dimension

0 1 2 3 4 5

U

0

0.5

1

1.5

2

D

|tf|=0.1

BI

EI

SOO

(b) (c)

-2 0 2 4
ω−EF

π

π/2

0

k

-2 0 2 4

ω−EF

tf=−0.1, D=1 (c) U=1.9(b) U=1

0 π/2 π

k

0

0.2

0.4

F
(k
)

-π -π/2 0 π/2 π

k

-0.8

-0.4

0

E
(k
)

(d)

(e)

Fig. 3.1: (a): Ground-state phase diagram of the half-filled 1D EFKM with |tf | = 1.
Squares (circles) denote the EI-BI (EI-SOO) transition points Dc2 (Dc1). The
solid line gives the analytical solution (3.2) for the EI-BI boundary. Anomalous
spectral function F (k, ω) with U = 1 (b) and U = 1.9 (c), where tf = −0.1,
D = 1. Data are obtained by ED using η = 0.1, L = 16, and PBC. Numerical
results for F (k) (d) and E(k) (e) are also shown for U = 1 (circles), 1.5
(diamonds), 1.7 (triangles), and 1.9 (squares). E(k) is extracted from the
lowest peaks of single-particle spectra A(k, ω) calculated by ED for L = 16
(PBC). Dashed lines in the panel (d) mark the corresponding Fermi momenta
kF = πNc/L in the noninteracting limit. Adapted from Article I.

spin-1/2 XXZ chain, the EI phase with finite excitonic binding energy, and the band
insulator (BI) state characterized by a filled (empty) f (c) band. The EI-BI phase
boundary is exactly known to be [31]

Dc2 =
√

4(|tf |+ |tc|)2 + U2 − U. (3.2)

Using DMRG, BI-EI and EI-SOO transition points can be obtained from the energy
differences

Dc2(L) = E0(L, 0)− E0(L− 1, 1) = −E0(L− 1, 1), (3.3)
Dc1(L) = E0(L/2 + 1, L/2− 1)− E0(L/2, L/2), (3.4)

in the course of a finite-size scaling. The DMRG ground-state phase diagram is pre-
sented in Fig. 3.1(a). In this chapter we take tc as the energy unit.

3.2 BCS-BEC crossover in the EFKM
In 1D system the 〈ĉ†f̂ 〉 expectation value is always zero in the absence of an explicit f -c-
band hybridization. For the 1D EFKM, power-law excitonic correlations were observed
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instead [29]. Mean-field-based approaches are unable to capture the EI state in 1D due
to the lack of an order parameter associated with the breaking of the U(1) symmetry.

In order to examine the BCS-BEC crossover, we therefore adopt a technique intro-
duced for detecting the particle fluctuations of Cooper pairs in 2D systems [25, 26].
That is, we consider the off-diagonal anomalous Green function

Gcf (k, ω) =
〈
ψ1

∣∣∣∣∣ĉ†k 1
ω + iη − Ĥ + E0

f̂k

∣∣∣∣∣ψ0

〉
, (3.5)

where |ψ0〉 is the ground state |Nf , Nc〉 with fixed numbers of f - and c-electrons, |ψ1〉
is the excited state |Nf − 1, Nc + 1〉, E0 is the averaged energy of |ψ0〉 and |ψ1〉, and η
is a broadening. Then we determine the corresponding spectral function

F (k, ω) = − 1
π
=Gcf (k, ω) (3.6)

that gives the condensation amplitude

F (k) = 〈ψ1|ĉ†kf̂k |ψ0〉. (3.7)

F (k) can be directly computed by the ground-state DMRG method taking into account
an extra target state |ψ1〉. From F (k) the coherence length characterizing the excitonic
condensate follows as

ξ2 =
∑
k

|∇kF (k)|2
/∑

k

|F (k)|2 . (3.8)

The binding energy of the excitons EB can be also determined from diverse ground-state
energies (see also Article II):

EB = E0(Nf − 1, Nc + 1) + E0(Nf , Nc)− E0(Nf − 1, Nc)− E0(Nf , Nc + 1). (3.9)

Figures 3.1(a) and (b) show the anomalous spectral function F (k, ω) for U = 1 and
U = 1.9, respectively, where tf = −0.1 and D = 1. In the former case the EI arises from
a semimetallic phase. As a consequence most of the spectral weight of the quasiparticle
excitations is located around the Fermi points k = ±kF, again indicating a BCS-type
pairing of electrons and holes. Obviously, Fermi surface effects play no role for large
U where the Hartree shift drives the system in the semiconducting regime. Here the
excitation gap occurs at k = 0. Note that the gap between the lowest energy peaks in
F (k, ω) is equal to the binding energy EB given by Eq. (3.9). Figure 3.1(d) displays
the frequency-integrated quantity F (k). At U = 1, F (k) exhibits a sharp peak at
the Fermi momentum. Increasing U the peak weakens and shifts to smaller momenta.
Close to the EI-BI transition point U = 1.9 . Uc2 = 1.92, F (k) has a maximum at
k = 0 but is spread out in momentum space, indicating that the radius of electron-
hole pairs becomes small in real space. Panel (e) gives the quasiparticle dispersion
E(k) derived from A(k, ω). Driving the BCS-BEC crossover by increasing U , the peaks
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around k = ±kF disappear as well as the notch around k = 0. Instead a valence band
with a flat top around k = 0 develops, just as observed e.g. in quasi-1D Ta2NiSe5 [24].

Figure 3.2 shows the variation of the coherence length and the binding energy in the
EI phase of the 1D EFKM with |tf | = 1 (left panels) and 0.1 (right panels). At small
U the excitonic state is composed of electron-hole pairs having large spatial extension,
leading to large values of ξ. EB, on the other hand, is rather small, but increases
exponentially with U . This typifies a BCS pairing mechanism. At large U , the binding
energy increases linearly with U . Here, tightly bound spatially confined excitons acquire
quantum coherence (with ξ � 1) in a Bose-Einstein condensation process.

At last we address the influence of a mass imbalance between f - and c-band quasi-
particles. As suggested by the EI-BI transition lines (3.2), both the U and D axes in
Fig. 3.2 have been rescaled by (|tf |+ tc). Indeed we find that EI phase shrinks as |tf |
decreases. That is, the mass anisotropy gets stronger, which is simply a bandwidth
effect, however, leading to a stronger Ising anisotropy. This, on their part, enlarges the
SOO region, while the EI-BI phase boundary basically is unaffected. Importantly, the
location of the BCS-BEC crossover, which can be derived from the intensity plots for
EB and ξ, does not change in this presentation.

To conclude this chapter, adopting the numerically exact ED and DMRG techniques,
we examined the excitonic insulator states in the 1D half-filled EFKM. The complete
ground-state phase diagram was derived, in which besides the EI to BI transition,
the EI-SOO phase boundary was determined with high accuracy. The whole phase
diagram of the 1D EFKM could be scaled by |tf | + tc; the SOO phase appears only
for small mass-imbalance ratios |tf |/tc. The absence of an order parameter prevents
addressing the problem of excitonic condensation in 1D systems by usual mean-field
approaches. That is why we exploited the off-diagonal anomalous Green function.
The related anomalous spectral function elucidates the different nature of the electron-
hole pairing and condensation process at weak and strong couplings. At fixed level
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splitting the binding energy between c electrons and f holes is exponentially small in
the weak-coupling regime. It strongly increases as the Coulomb attraction increases.
Concomitantly the coherence length of the electron-hole pair condensate shortens. This
unambiguously demonstrates a crossover from BCS-like electron-hole pairing to a Bose-
Einstein condensation of preformed excitons. The quasiparticle band dispersion in the
BEC regime exhibits a rather dispersionless valence band near k = 0. This result
further supports the EI scenario for quasi-1D Ta2NiSe5, where the flat valence-band
top was detected by angle-resolved photoemission spectroscopy experiments.

In Articles II and III the formation of excitons in electron-hole double-layer systems
has been studied in the two-dimensional EFKM. Most notably, we have provided strong
evidence for exciton condensation and a BCS-BEC crossover scenario at zero temper-
ature, again by exploiting the anomalous Green’s function using the unbiased Lanczos
ED technique.





4 Metal-insulator transitions in
fermion-boson coupled systems

In solid state physics it is one of the most fundamental problems to investigate how
a material evolves from a metallic to an insulating state. Except for band structure
and disorder effects, metal-insulator quantum phase transitions stem quite often from
electron-electron and electron-phonon interactions in many cases. A subtle compe-
tition between Mott–Hubbard transition caused by the strong Coulomb correlations
and Peierls transition driven by the coupling to vibrational excitations of the crystal
triggers even a quantum insulator-insulator transition. The challenge of understand-
ing such metal-insulator or insulator-insulator quantum phase transitions has attracted
broad attention on generic microscopic models with interacting electrons and phonons.
Especially, in the high-Tc cuprate superconductivity, the importance of the electron-
phonon interaction is indicated by angle-resolved photoemission spectroscopy [32] and
optical conductivity [33] measurements.

In this chapter, we introduce the 1D fermion-boson coupled systems in order to
explore the role of background medium such as the electron-phonon coupling. Thereby,
the large-scale pseudo-site DMRG method plays an essential role due to the large
dimension of the bosonic Hilbert space.

4.1 Electron-phonon coupled systems
In this section we study the ground-state properties of the Holstein model for both
spinless and spinfull fermions at half band filling. At the commensurate fillings, the
lattice degrees of freedom trigger charge ordering, so that a quantum phase transition
is expected between a metallic and a charge-ordered insulating phases. In the follow-
ing, we demonstrate that the metal-insulator transition point in the Holstein model
can be extracted from the Tomonaga–Luttinger liquid (TLL) parameters accurately.
Moreover, in the metallic phase, the coupling to the lattice might make the system even
attractive, indicated by the TLL charge exponent Kρ > 1. It is of particular interest
to prove the existence of such an attractive TLL phase.

4.1.1 Spinless Holstein model — Article IV
Let us first neglect the spin degrees of freedom in the 1D electron-phonon system. The
resulting 1D Holstein model for spinless fermions is given by

Ĥ = −t
∑
j

(ĉ†j ĉj+1 + h.c.)− gω0
∑
j

(b̂†j + b̂j)n̂j + ω0
∑
j

b̂†j b̂j , (4.1)

27
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Fig. 4.1: Left: Schematic representation of the 1D spinless half-filled Holstein Hamil-
tonian. Right: Ground-state phase diagram according to Refs. [34–37]. Stars
denote the phase transition points obtained from Kρ = 1/2 via Eq. (2.36) as
shown in Fig. 4.3(a).

where b†j (bj) is the creation (annihilation) operator for a dispersionless phonon with fre-
quency ω0. It accounts for a tight-binding electron band (∝ t), a local electron-phonon
interaction (∝ g), and the energy of the phonon subsystem in harmonic approximation.
The schematic representation of the model (4.1) is shown in the left panel of Fig. 4.1.
Despite its simplicity, the model (4.1) is not exactly solvable. However, it is generally
accepted that the model exhibits a quantum phase transition from metal to a CDW
insulator at half filling (N = L/2) [38], when the electron-phonon coupling g increases
at fixed ω0 > 0. During the last three decades various analytical and numerical tech-
niques have been applied to figure out the ground-state phase diagram in the half-filled
spineless Holstein model [34–41]. In the anti-adiabatic limit (ω0 → ∞), the model
can be mapped onto the exactly solvable spin-1/2 XXZ model [38], which shows a
Kosterlitz–Thouless-type transition. In the adiabatic limit (ω0 → 0) the CDW phase
above the critical coupling gc(ω0) vanishes.

Since a 1D gapless metallic system of interacting fermions should belong to the TLL
universality class, the correlation exponent Kρ can be used to characterize the metallic
phase. In the past, Kρ in the spinless Holstein model were determined via the charge
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velocity uρ and the single-particle gap ∆c1 as

E0(L)
L

= ε(∞)− π

3
uρ
2

1
L2 ,

∆c1(L) = E±0 (L)− E0(L) = π
uρ
2

1
Kρ

1
L
. (4.2)

Here, ε(∞) denotes the energy density of the infinite system at half filling, E±0 (L) are
the ground-state energies with N = L/2 ± 1 fermions. Simulating Kρ from Eqs. (4.2)
on finite clusters using the exact numerical methods, gc(ω0) can be determined with
Kρ reaching 1/2 from above the transition point. Moreover, the TLL phase seemed
to split into two different regions: for large phonon frequencies the effective fermion-
fermion interaction is repulsive (Kρ < 1), while it is attractive (Kρ > 1) for small
frequencies [34,35].

However, the existence of an attractive TLL (Kρ > 1) in the half-filled spinless
Holstein model is by no means free from doubts. Although retardation effects might
lead to an effective attraction between electrons at small ω0/t it has been pointed out
that such an interaction is ineffective in the case of spinless fermions due to the Pauli
exclusion principles [38, 42]. This issue arises from the determination of Kρ via the
relations (4.2). Namely, Eqs. (4.2) are leading-order expressions so that one has to
take nonlinear correction terms into account, e.g., in order to obtain accurate data for
gc(ω0) especially in the adiabatic region. In particular, the gc(ω0) determined with and
without nonlinear correction terms adds up to more than 3% for ω0/t = 0.1 whereas it
is only 0.4% for ω0 = 10. In Article IV it is also demonstrated that the charge velocity
uρ depends strongly on the system size as shown in Fig. 4.2, using the pseudo-site
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DMRG method. Extrapolating the ground-state energies E(L) for L = 8, 12 and 16,
uρ can be estimated as uρ/2 ∼ 0.977, so that Kρ ∼ 1.21 from the finite-size scaling of
∆c1 , while taking the ground-state energies for L = 32, 48 and 64, the extracted values
of Kρ reduces to 1.06 (uρ/2 ∼ 0.858).

As explained in Sec. 2.6, Kρ can be determined via Eq. (2.36) more accurately.
Figure 4.3(a) presents Kρ in the thermodynamic limit (L → ∞) for various phonon
frequencies in the spinless Holstein Model. For intermediate-to-large phonon frequen-
cies, we find Kρ(g) < 1 for all g, and the values of Kρ via Eq. (2.36) agree reasonably
with those determined by the scaling relations (4.2) [see Fig. 4.3(a), filled and open
symbols for ω0/t = 10]. Furthermore, our values for the critical coupling, gc, confirm
previous results as can be seen by inserting the points where Kρ(gc) = 1/2 (stars) into
the existing phase diagram [34–37], see the right panel of Fig. 4.1.

The situation changes dramatically, when we enter the adiabatic regime. Figure 4.3(b)
shows the finite-size scaling of Kρ via Eq. (2.36) with OBC and up to L = 256 sites.
Surprisingly, Kρ scales to values smaller than unity for any electron-phonon coupling
(filled symbols). This holds for other adiabatic phonon frequencies ω0 < 1 as well.
Thus, we arrive at the conclusion that the half-filled spinless Holstein model does not
exhibit an attractive TLL phase.

4.1.2 Hubbard–Holstein model — Article V
The Holstein–Hubbard model (HHM) is archetypal for exploring the complex interplay
of electron-electron and electron-phonon interactions especially in quasi-1D materials.
The Hamiltonian is given by

Ĥ = −t
∑
jσ

(ĉ†jσ ĉj+1σ + h.c.) + U
∑
j

n̂j↑n̂j↓ − gω0
∑
jσ

(b̂†j + b̂j)n̂jσ + ω0
∑
j

b̂†j b̂j , (4.3)

where ĉ†jσ (ĉjσ) creates (annihilates) a spin-σ electron at Wannier site j of an 1D lattice
with L sites and n̂jσ = ĉ†jσ ĉjσ. The electron itinerancy (∝ 4t) competes with electron-
electron (∝ u = U/4t) and electron-phonon (∝ λ = g2ω0/2t) interactions. The left
panel of Fig. 4.4(a) shows a schematic representation of the HHM (4.3). Hereafter, we
consider the half-filled case, 1

L

∑
jσ n̂jσ = 1, and take t as energy unit.

Based on ED data for the staggered static charge/spin structure factor, Sρ/σ(π), it
has been argued that the HHM shows a crossover between Mott and Peierls insulating
phases near u/λ ' 1 [43]. But this only holds in the strong-coupling adiabatic-to-
intermediate phonon frequency regime. Later on the ground-sate phase diagram of the
HHM was explored in more detail, also for weak interaction strengths and large phonon
frequencies. In this regime, variational displacement Lang-Firsov [44], stochastic series
expansion QMC [45,46], and DMRG [47–49] methods give strong evidence that, if λ is
enhanced at fixed u and ω0, the SDW-CDW transition splits into two subsequent SDW-
TLL and TLL-CDW transitions at λc1 and λc2 , respectively [see Fig. 4.4(b), dashed
and dot-dashed lines].

The TLL parameters, Kρ and Kσ, can be used to examine the properties of the
metallic phase and the phase boundaries to the insulating states. Kρ > 1 corresponds
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to attractive charge correlations in the TLL and Kρ = 0 signals an insulating phase.
Moreover, at half filling the repulsive metallic phase can be realized only for Kρ = 1.
Hence one expects that Kρ jumps from 1→ 0 at the metal-SDW/CDW transitions. The
spin-exponent takes the value Kσ = 0 in a spin-gapped phase and Kσ = 1 everywhere
else in the thermodynamic limit. For finite systems the situation is more involved, in
particular for the spin exponent Kσ. First, the convergence Kσ → 0 is slow-going as
L → ∞ in the spin-gapped phase. Second, logarithmic corrections prevent Kσ → 1
in the spin-gapless (SDW) phase. On the other hand, these logarithmic corrections
vanish at the critical point, where the spin gap opens, and we can utilize that Kσ (Kρ)
crosses 1 from above (below) at some λc1 (as the electron-phonon coupling increases
for fixed u), in order to determine the SDW-metal phase boundary itself. Increasing λ
further, Kρ should cross 1 once again, this time from above, at another critical coupling
strength, λc2 , which pins the metal-CDW transition point down.

In order to characterize the SDW-CDW-intervening metallic phase, Kρ and Kσ are
intensively studied in Ref. [46], comparing with the numerical data in the half-filled
negative-U Hubbard model. Specifically, QMC data up to L = 64 appear to show
Kρ > 1 in the intermediate region, which corresponds to attractive charge correlations.
However, the authors argued that Kρ > 1 might be the finite-size effects and the true
Kρ should be equal to unity, considering the numerical wrong results of Kρ > 1 in the
negative-U Hubbard model instead of the exact value, Kρ = 1.

In Article V, we investigated TLL parameters, various excitation energies and the
binding energy, using the large-scale boson pseudo-site DMRG approach. Figure 4.5
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corroborates the scenario mentioned above for the anti-adiabatic regime (ω0 = 5) of
the HHM. The values of two critical points λc1 and λc2 are in accord with the phase
diagram obtained by QMC [45, 46]. Kσ < 1 and Kρ > 1 earmark the intervening
metallic phase. Here we inspect the finite-size scaling of the spin and single-particle
charge excitation gaps,

∆s(L) = E0(1)− E0(0), (4.4)
∆c1(L) = E1+

0 (1/2) + E1−
0 (−1/2)− 2E0(0), (4.5)

respectively, as well as that of the two-particle binding energy

∆b(L) = E2−
0 (0) + E0(0)− 2E1−

0 (−1/2), (4.6)

where E
[δN±]
0 (Sz) denotes the ground-state energy at [away from] half filling with

Ne = N [±δN ] particles in the sector with total spin-z component Sz. Figure 4.5(a)
demonstrates that both spin and charge gaps open at λc1 (but there is no long-range
order). For u < um, the transition at λc1 seems to be of Kosterlitz–Thouless type, i.e.
just above λc1 the gaps are exponentially small and therefore their magnitude is difficult
to determine numerically. In this region, we find ∆c1 ∼ ∆s, and the binding energy
∆b is also extremely small, or maybe even zero [see the data for λ = 0.4 (triangles
up) in Fig. 4.5(b)]. As λ increases, we obtain a crossover to a metallic regime with a
noticeable two-particle binding energy ∆b < 0, where ∆c1 ∼ ∆s. In the CDW phase,
which typifies a bipolaronic superlattice at large phonon frequencies, we have, besides
∆s = ∆c1 > 0 and ∆b < 0, whereas in the SDW state ∆c1 > 0 but ∆b(L → ∞) → 0.
While the basic scenario discussed so far persists in the adiabatic regime, the metallic
region shrinks as the phonon frequency ω0 becomes smaller [45, 46, 49]. Furthermore,
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the CDW state rather behaves as a normal Peierls insulator and consequently there is
a weaker tendency towards bipolaron formation in the metallic state for small λ, and
u < um.

In this way the QMC results of the TLL parameter Kρ > 1 in Refs. [45, 46] can be
confirmed by using the large-scale DMRG technique. However, we still can not exclude
the possibility that Kρ > 1 in the half-filled HHM arises from the finite-size effect. It
is desired to establish a numerical technique, which provides Kρ = 1 in the half-filled
negative-U Hubbard model, and to apply it to the intermediate metallic region in the
HHM. The infinite-system DMRG [50,51] might be a strong candidate.

4.2 Edwards transport model
The nature of charge transport within a correlated background medium can be de-
scribed by spinless fermions coupled to bosons in the model introduced by Edwards [52,
53]. Although the physically interesting regime with respect to superconductivity is for
low to moderate fermion density, the Edwards model has interesting properties over
the whole density range.

The Hamiltonian of the 1D fermion-boson coupled Edwards model is given by

ĤE = Ĥfb − λ
∑
j

(b̂†j + b̂j) + ω0
∑
j

b̂†j b̂j , (4.7)

where a boson-affected nearest-neighbor hopping (∝ tb) of spinless fermions is

Ĥfb = −tb
∑
〈j,l〉

ĉ†l ĉj(b̂
†
j + b̂l). (4.8)

Every time a fermion ĉ(†)
j hops, it creates or absorbs a boson b̂(†)j of energy ω0 at the sites

it leaves or enters. Such an excitation or deexcitation corresponds to a local distortion
of the background medium. Due to quantum fluctuations the distortions are able to
relax (∝ λ). Performing the unitary transformation b̂j 7→ b̂j + λ/ω0 eliminates the
boson relaxation term in favor of a second fermion hopping channel:

ĤE = Ĥfb − tf
∑
〈j,l〉

ĉ†l ĉj + ω0
∑
j

b̂†j b̂j , (4.9)

with a strongly reduced energy scale, tf = 2λtb/ω0. We would like to emphasize that
coherent propagation of a fermion is possible even in the limit λ = tf = 0 by means of
a six-step vacuum-restoring hopping process [53]

R̂
(6)
j = L̂†j+2L̂

†
j+1R̂

†
jL̂j+2R̂j+1R̂j , (4.10)

where R̂†j = ĉ†j ĉj+1b̂j and L̂†j = ĉ†j ĉj−1b̂j . Note that R̂(6)
j acts as direct next-nearest-

neighbor transfer “ĉ†j+2ĉj”, in complete analogy to the “Trugman path” of a hole in a
2D Néel-ordered spin background [54].
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Fig. 4.6: (a): TLL parameter Kρ (circles) and single-particle gap ∆c1 (open squares)
as a function of λ−1 for ω0 = 10 (main panel). The inset displays results for
smaller ω0. (b): Central charge c∗ at ω0 = 10 for different system sizes with
PBC. The red dashed-dotted line gives the metal-insulator transition point
determined by extrapolating the maximum of c∗(L) in reasonable agreement
with the value obtained from Kρ (black dashed line) in panel (a). (c): DMRG
phase diagram of the Edwards model at half filling. The inset gives the phase
diagram in the λ-ω0 plane. Adapted from Articles VI and VII.

Albeit the simplicity of the Hamiltonian, the Edwards model displays a rich physics,
e.g., a metal to CDW insulator quantum phase transitions at commensurate fillings,
an attractive TLL phase with Kρ > 1 and phase-separated regimes similar to the t-J
model. In the following, we introduce part of the numerical results for the Edwards
fermion-boson model obtained by the large-scale boson pseudo-site DMRG approach.
Note that in this section we take tb = 1 as the energy unit.

4.2.1 Metal-insulator transition at half filling — Articles VI - IX

As in the case of the Holstein model, the most fundamental problem is to prove the
existence of a metal-insulator transition. At half filling evidence for such a quantum
phase transition in the Edwards model has been found first in a ED study [55]. Cal-
culating the photoemission spectra up to the system size L = 16 sites, the opening
of a single-particle excitation gap has been observed at kF = ±π/2 as λ decreases at
relatively large ω0 = 2. Of course, this is not a unambiguous proof of the existence
of a metal-insulator transition which should be confirmed in the thermodynamic limit
L→∞.

In the absence of disorder, the formation of a CDW state is the only possibility
for a metal-insulator transition. In the 1D spinless fermion model at half filling one
expects that the metal-CDW insulator transition occurs when the TLL charge exponent
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Kρ reaches 1/2. In Article VI we extract the TLL parameter Kρ via Eq. (2.36) in
order to figure out the ground-state phase diagram at half filling. Lowering λ at fixed
values of ω0 = 10, the extrapolated values of Kρ actually decreases from 1 → 1/2 as
shown in Fig. 4.6(a). The point where Kρ = 1/2 is reached marks the critical coupling
λ−1

c (ω0 = 10) ∼ 6.7 at the metal-insulator transition. We expect that the single-particle
gap ∆c becomes finite in the insulating phase, which is given by

∆c(L) = E(N + 1) + E(N − 1)− 2E(N), (4.11)

where E(N) and E(N±1) are the ground-state energies in theN - and (N±1)-fermionic-
particle sectors, respectively, with L = N/2. Actually, ∆c opens exponentially when
entering the insulating phase, indicating the Kosterlitz–Thouless-type transition. This
collaborates with the numerically obtained central charge via Eq. (2.41), where we find
c∗(L → ∞) ∼ 1 for λ−1 < λ−1

c , as shown in Fig. 4.6(b). Furthermore, extrapolating
the value of λc(L) where c∗(L) shows maximum to the thermodynamic limit L → ∞,
the metal-insulator transition point λc can be also determined and matches the critical
value obtained from Kρ surprisingly well as show in Fig. 4.6(b). Note that at half filling
we find only a repulsive particle interaction (Kρ ≤ 1) in the metallic phase even for
small boson frequencies [see the inset of Fig. 4.6(a)]; i.e., in 1D there is no indication
for a pairing instability at half band filling.

Figure 4.6(c) represents the ground-state phase diagram of the 1D half-filled Edwards
model in the λ−1-ω−1

0 plane. The phase space is divided into two regimes, the repulsive
TLL phase (Kρ ≤ 1) and the 2kF-CDW phase with long-range order. Let us first
consider how the CDW state is realized in the limit of large ω0 at half filling. The CDW
is a few-boson state that typifies rather a correlated (Mott-Hubbard-type) insulator
than a Peierls state with many bosons (phonons) involved. Since in the limit ω0 �
1� λ background fluctuations are energetically costly, charge transport is hindered and
an effective Hamiltonian with nearest-neighbor fermion repulsion results. To leading
order, in a reduced (zero-boson) Hilbert space, we obtain

ĤtV = −tf
∑
〈j,l〉

ĉ†l ĉj + V
∑
j

n̂f
jn̂

f
j+1 (4.12)

with V = t2b/ω0. This so-called t-V model can be mapped onto the integrable spin-1/2
XXZ model, and exhibits also a TLL-CDW quantum phase transition at half filling
for V/tf = 2, i.e., for λ−1

c = 4. This value is slightly smaller than those obtained in the
Edwards model, λ−1

c ' 6.3 in the limit ω0 � 1 [see Fig. 4.6], because already three-
site and next-nearest-neighbor hopping terms of the effective model were neglected
in Eq. (4.12). In the opposite limit of small ω0, the background medium is easily
disturbed by particle motion. Therefore the rate of bosonic fluctuations (∝ ω−1

0 ) is
high. Now we enter the fluctuation dominated regime, and consequently CDW order
is suppressed. The inset of Fig. 4.6(c) shows that even for λ = 0, i.e., if the explicit
λ-relaxation channel is closed, a metallic state may exist below a finite critical energy
ω0(λ = 0) ∼ 1.38.
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The different transport behavior in the Edwards model becomes apparent in the
momentum distribution function

n(k) = 1
L

∑
j,l

eik(j−l)〈ĉ†j ĉl 〉. (4.13)

By means of DMRG the correlation function 〈ĉ†j ĉl 〉 can be easily calculated with PBC.
Figure 4.7 displays n(k) for two characteristic boson energies. In the CDW phase the
periodicity of n(k) doubles at λ = 0, since only a R̂(6) next-nearest-neighbor hopping
channel, Eq. (4.10), survives. To substantiate this reasoning we have included in Fig. 4.7
n(k) data calculated in the 1D Hubbard model with additional next-nearest-neighbor
transfer t′. We see that n(k) of the Edwards model is in qualitative agreement with
our data and those for the t-t′-U Hubbard model [56], in particular, for the case t = 0.

In Article IX, the interplay of disorder and interaction effects is also studied in
the framework of the Anderson–Edwards model at half filling. Adding the disorder
induced by random on-site potentials, the Anderson localized state replaces the TLL
phase of the half-filled Edwards model. It will be shown that the nature of the Anderson
insulator state can still be understood in terms of scaling relations containing the charge
susceptibility and the TLL parameter Kρ of the metallic phase in the absence of disorder
only. However, the Anderson–Edwards model reveals a complex interrelation between
disorder and CDW correlations due to additional scattering channels, involving bosonic
excitation and annihilation processes.
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Fig. 4.8: (a): L→∞ extrapolated Kρ (circles) and ∆c (squares) as functions of λ−1 for
ω0 = 2 in the one-third filled Edwards model. The inset shows the finite-size
scaling of Kρ for various values of λ(> λc) (open symbols) in the TLL phase
and for λ = 0.01 with n = 1/3 − 1/L (filled symbols) in the infinitesimally
doped CDW insulator. (b): DMRG ground-state phase diagram of the 1D
Edwards model at one-third filling. The dashed line denotes the MI transition
points at half filling from Article VI. Adopted from Article X.

4.2.2 Metal-insulator transition at one-third band filling — Article X

Surprisingly, the Edwards fermion-boson model displays a metal-to-insulator quantum
phase transition also at one-third band filling (n = 1/3). Determining the single-particle
gap ∆c and the TLL parameter Kρ via Eq. (2.36), the quantum phase transition points
can be examined as in the case of half band filling. For a spinless-fermion system
with one-third band filling, bosonization theory yields K∗ρ = 2/9 at the metal-insulator
transition point and KCDW

ρ = 1/9 for an infinitesimally doped three-period CDW
insulator [12, 57]. At fixed ω0 = 2 the values of Kρ decreases with increasing λ−1 and
becomes equal to K∗ρ = 2/9 at the Kosterlitz–Thouless transition point λ−1

c ∼ 36; see
Fig. 4.8(a). For λ−1 > λ−1

c the system embodies a 2kF-CDW insulator with finite
charge gap ∆c. Furthermore, calculating Kρ(L) for N = L/3− 1 particles deep in the
CDW phase, Kρ approaches 1/9 in the thermodynamic limit [cf. the λ = 0.01 data
(filled symbols) in the inset of Fig. 4.8(a)] as expected from bosonization.

Figure 4.8(b) represents the ground-state phase diagram of the one-third filled Ed-
wards model. Analogous to the half-filled case, the L→∞ extrapolated Kρ values de-
termine the metal-insulator transition point. The repulsive TLL phase (2/9 < Kρ < 1)
appears at large λ, when any distortion of the background medium readily relaxes
(∝ λ), or in the opposite limit of small λ, when the rate of the bosonic fluctuations
(∝ ω−1

0 ) is sufficiently high. At half filling the CDW phase with ∆c > 0 and long-
range order appears for small λ and by trend large ω0 (see dashed lines); λc ' 0.16
for ω0 → ∞, see Fig. 4.6(b). Interestingly, for n = 1/3, we observe that the CDW
will be suppressed again if the energy of a background distortion becomes larger than
a certain λ-dependent value [see Fig 4.8(b)]. In stark contrast to the half-filled band



38 4 Metal-insulator transitions in fermion-boson coupled systems

0 0.02 0.04

1 / L

1

2

K
ρ

1 1.5
ω

0

1

1.5

K
ρ

λ = 0.2

ω
0
= 0.6

ω
0
= 0.8

ω
0
= 1.4

ω
0
= 1

(a)

0 0.02 0.04

1 / L

0

0.01

κ
–1

0.6 0.8 1
ω

0

0

0.004

0.008

κ
–

1

ω
0
= 0.8

ω
0
= 1

ω
0
= 0.7

ω
0
= 0.6

(b)

0 0.2 0.4 0.6 0.8 1
n

0

0.5

1

ω
0

PS

TLL (repulsive)

PS

TLL (attractive)

TLL (attractive)

(c)

Fig. 4.9: Finite-size scaling of the TLL parameter Kρ (a) and inverse compressibility
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TLL (Kρ > 1), and phase separated (κ−1 = 0) regions. The phase boundaries
were obtained by DMRG (filled symbols) and by projective renormalization
method [41,58] (open symbols). Adopted from Article XI.

case, at n = 1/3 it seems that the TLL is stable ∀λ, when ω0 →∞. This is because in
this limit not only a nearest-neighbor Coulomb repulsion V but also a substantial next-
nearest-neighbor interaction V2 is needed to derive the metal-to-CDW transition in the
corresponding spinless model (4.12) at n = 1/3. Again in the limit ω0/tb � 1� λ/tb,
the Edwards model at one-third filling can be described by the effective t-V -V2 model
with V = 2t2b/3ω0 and V2 = 2t4b/ω3

0, i.e., V2/tf = t3b/λω
2
0, which clearly explains the

absence of the CDW phase for ω0 � 1.

4.2.3 Phase separation — Article XI
The situation away from half-band filling is much less understood. By analogy with
the t-J model, one might expect that the system is metallic for 0 < n < 1/2, at least
if the background is not too stiff. If so, the next question will be whether there might
exist an attractive TLL phase (Kρ > 1) in a certain parameter regime (λ, ω0) of the
Edwards model. Apparently, a second electron, following the path of a first one, can
take advantage of the background excitations (bosons) left behind by the first electron.
This acts like an effective attractive interaction. If this attraction completely dominates
the kinetic energy, the system might even phase-separate into particle-enriched and
particle-depleted regions.

To address these problems, we analyze again the TLL parameter Kρ and the charge
compressibility κ away from the half-band filling. The latter quantity can be obtained
as

κ = L

N2

[
E0(N + 2) + E0(N − 2)− 2E0(N)

4

]−1
. (4.14)
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An infinite compressibility signals the formation of a phase separated state.
Figures 4.9(a) and (b) demonstrate the finite-size-scaling of the TLL exponentKρ and

the inverse compressibility κ−1 at various ω0. The transition point between a repulsive
and an attractive TLL phases at smaller ω0 can be read off from the inset [depicting
the extrapolations Kρ(L→∞)] as ω0,c1(λ = 0.2) ' 1.118. Reducing ω0 further, in the
attractive TLL phase, a dramatic increase in Kρ is observed at ω0,c2 ' 0.6. Our inverse
compressibility data indicate that at this point, the attraction among the particles
becomes so strong that the system shows phase separation, i.e., κ−1 = 0 for ω0 < ω0,c2 .

Proceeding in the same manner for different values of n and ω0 for a fixed value of λ,
we can map out the phase diagram of the Edwards model in the n-ω0 space as shown in
Fig. 4.9(c). Let us consider the case of a not too small boson relaxation, λ = 0.2, which
ensures that the system is metallic for large ω0 in the whole density regime. Then,
depending on n we find up to three different regimes: For small and large particle
densities, an attractive TLL, and a phase separated state appear in sequence as the
energy of the bosons is lowered. In contrast, around half band filling only the repulsive
TLL phase exists. Note that the behavior in the low-density regime is consistent with
what is found for the 1D t-J model [59,60], where the holes correspond to the spinless
fermions in the Edwards model.

To summarize this section, the Edwards fermion-boson model has been intensively
studied using the large-scale DMRG technique combined with the boson pseudo-site
approach. At half- and one-third-band fillings the system realizes a TLL or a truly long-
range ordered CDW state. Depending on the properties of the background medium,
the TLL might be repulsive or attractive away from half filling. In the low- and high-
density regions, the attraction between the particles mediated by the bosonic degrees of
freedom representing the background medium might become so strong that electronic
phase separation sets in. Thus, the Edwards model captures important features of
Holstein-, t-J-, and Hubbard-type models.

The dynamical properties of the Edwards model have also been investigated using
the dynamical DMRG technique, but will not be discussed here. We only like to note
that the simple Green’s function approximation is proposed for the Edwards model in
Article XII, showing excellent agreements with the DDMRG results.





5 Quantum phase transitions of lattice
bosons

At very low temperatures, bosonic atoms which are loaded into an optical lattice realize
a superfluid (SF) for a shallow optical potential or a Mott insulator (MI) for a deep
optical potential. The SF-MI transition has been observed experimentally [61, 62].
Since bosons on a chain are also accessible experimentally [63], it attracts increasing
attention for studying the 1D lattice model for bosons. The physics of 1D bosonic
systems is rather peculiar. For instance, the state with the lowest kinetic energy is
not macroscopically occupied in the “superfluid” but it is characterized by an algebraic
divergence of the momentum distribution [13]. Moreover, the Mott gap is exponentially
small in the Mott insulator close to the phase transition. Therefore, it is very difficult
to determine the critical interaction strength numerically.

The minimal model of the strongly interacting bosons on a lattice is the so-called
Bose–Hubbard model (BHM), which exhibits a SF-MI phase transition, induced by
the competition between the on-site repulsion and the hopping integral. In order to
determine this quantum phase transition point the BHM has been intensively studied
both by analytical [64, 65] and numerical [66, 67] methods at zero temperature. In
Sec. 5.1 we demonstrate that the quantum phase transition point can be determined
with high accuracy not only by the TLL parameter as in Ref. [66, 67] but also the
numerically obtained central charge, showing an excellent agreement between both
results. Moreover, comparing the static and dynamical quantities obtained from the
(D)DMRG method with those by the strong-coupling perturbation theory, we show the
accuracy of DMRG simulations in the bosonic systems.

In Sec. 5.2, we further apply the (D)DMRG technique to the extended model with
the longer-range repulsion. Namely, we investigate the entanglement and dynamical
properties of the so-called Haldane insulator, which is now categorized as a symmetry-
protected topological phase.

5.1 Superfluid-Mott insulator quantum phase transition

The Bose–Hubbard Hamiltonian ĤBH on a chain with L sites is defined by

ĤBH = −tT̂ + UD̂ , (5.1)

T̂ =
L∑
j=1

(b̂†j b̂j+1 + b̂†j+1b̂j) ,

41
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D̂ = 1
2

L∑
j=1

n̂j(n̂j − 1) .

Here, b̂†j (b̂j) is the boson creation (annihilation) operator on site j and n̂j = b̂†j b̂j . The
physics of the BHM is governed by the ratio between kinetic energy and interaction
energy, x = t/U . If x is larger than a critical value xc the bosons are superfluid. Below
xc the system becomes Mott insulating with an integer filling factor ρ. In experiments,
x can be varied over several orders of magnitude by modifying the depth of the lattice
through quantum optical techniques whereby SF and MI phases can be realized.

A detailed theoretical understanding of the BHM requires the calculations of (dy-
namical) correlation functions which poses a hard problem since the model for U <∞
(soft-core bosons) is not integrable. From the analytical point of view, in the SF phase
weakly interacting boson at low energies are well described as a Tomonaga–Luttinger
liquid [68, 69]. In the MI phase, the strong-coupling expansions in x give reliable ana-
lytical results. For instance, the ground-state energy of all Mott lobes was determined
to second order by Freericks and Monien [64], and was improved up to order x14 for
the first Mott lobe by Damski and Zakrzewski [70]. The results for the momentum
distribution n(k) to third order in x were obtained for ρ = 1 in Refs. [70,71]. From the
numerical point of view, the (D)DMRG technique permits the calculation of ground-
state and dynamical properties in the 1D BHM at zero temperature with excellent
accuracy for large systems [67]. Again, the main obstacle thereby is related to the fact
that, in principle, each lattice site can be occupied by infinitely many bosonic particles.
Therefore, one has to introduce a cutoff nmax

b , the maximum number of bosons per
site taken into account. The DMRG results are nonetheless unbiased and numerically
exact, if the dependence on nmax

b can be proven to be negligible.
In this section we demonstrate the ground-state and dynamical results of the 1D

BHM obtained by the large-scale (D)DMRG technique comparing with the perturba-
tive results, which give reliable analytical estimations especially in the MI phase. While
in the past DMRG has been successfully applied to investigate the ground-state prop-
erties of the BHM [66,67] DMRG results for dynamical properties are rare, but highly
desirable because superfluids in optical lattices can be studied by momentum-resolved
Bragg spectroscopy [72].

5.1.1 Superfluidity — Articles XIII and XIV

Ground-state energy

The ground-state energy E0 of the 1D BHM has been determined analytically in the
weak- and strong-coupling cases. For weak interactions, the ground-state energy in
Bogoliubov theory is given by

EB
0 (U)
L

= −3t+
√

2Ut
π

+ U + 2t
π

arccos

√ U

U + 2t

 . (5.2)
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The small-U expansion yields

EB
0 (U � t)
Lt

= −2 + U

2t −
√

2(U/t)3/2

3π . (5.3)

For strong interactions, an expansion up to 14th order in x = t/U was obtained by
Damski and Zakrzewski [70]

E
[14]
0

4UL = −x2 + x4 + 68
9 x

6 − 1267
81 x8 + 44171

1458 x
10 − 4902596

6561 x12

−8020902135607
2645395200 x14 +O(x16) . (5.4)

Figure 5.1 compares these perturbative results with DMRG data. The strong-
coupling series expansion is in accordance with the numerical exact data, surprisingly
even beyond the Kosterlitz–Thouless transition point (i.e., for t/U ' 0.4). Clearly, the
quality of the strong-coupling approximation improves as higher-order corrections are
taken into account. Figure 5.1 also shows the range of validity of the corresponding
weak-coupling approaches.

Ground-state phase diagram

At integer filling ρ = N/L, the 1D BHM describes a Mott transition between the
SF phase, characterized by a divergence of the momentum distribution at momentum
k = 0, and a MI phase, characterized by a finite gap for single-particle excitations.
The latter is defined by the energy difference between the chemical potentials which
are given by

∆(L) = µ+(L)− µ−(L) ,
µ+(L) = E0(L,N + 1)− E0(L,N) , (5.5)
µ−(L) = E0(L,N)− E0(L,N − 1) ,

where E0(L,N) is the ground-state energy for L sites and N particles. In the thermody-
namical limit, N,L→∞ and ρ = N/L integer, the gap is finite for the Mott insulator,
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∆ = limN,L→∞∆(L) > 0, so that the system becomes incompressible when we go from
the SF phase to the MI phase. The Mott transition lines in the µ–U ground-state
phase diagram have been previously determined by various analytical and numerical
methods, e.g., strong-coupling expansions [64, 65], QMC [73, 74], and DMRG [66, 67],
as also shown in Fig. 5.2(a) for the first Mott lobe (ρ = 1) and the second Mott lobe
(ρ = 2) by DMRG.

At the tip of each Mott lobe, the model is in the universality class of XY spin model
with central charge c = 1 so that there is a Kosterlitz–Thouless phase transition with
the TLL parameter Kb = 1/2, and the gap is exponentially small in the vicinity of
(t/U)c. In the following we explain how the critical interactions (t/U)c in the BHM
can be determined via the TLL parameter Kb and numerically obtained central charge
c∗ using the DMRG technique.

As in the case of 1D fermionic systems the TLL parameter Kb determines the asymp-
totic behavior of the correlation functions in the SF phase, and various correlation
functions have been used to extract Kb. Similar to the TLL parameter in 1D fermionic
systems explained in Sec. 2.6 we consider the density-density correlation function

S(r) = 1
L

∑
l

{〈n̂l+rn̂l〉 − 〈n̂l+r〉〈n̂l〉}. (5.6)

Asymptotically, it behaves like

S(r →∞) ∼ − 1
2Kb

1
(πr)2 + Aρ2 cos(2πρr)

(ρr)2/Kb
+ . . . . (5.7)

Thus, we can extract Kb from the derivative of its Fourier transformation S̃(q),
1

2Kb
= lim

L→∞

S̃(q)
q

. (5.8)

In order to treat finite systems in numerical calculations, we translate Eq. (5.8) into
1

2Kb(L) = lim
L→∞

L

2 S̃
(2π
L

)
, (5.9)

and extrapolate Kb(L) to the thermodynamic limit. As shown in Fig. 5.2(b), Kb(L)
can be reliably extrapolated to the thermodynamic limit using polynomial functions
in 1/L. When we extrapolate our data for up to L = 1024 lattice sites for ρ = 1, we
find Kb(t/U = 0.304) > 1/2 and Kb(t/U = 0.306) < 1/2. Therefore, we locate the
transition point at (t/U)c = 0.305 ± 0.001 for the first Mott lobe. In the same way
we find the transition point for the second Mott lobe at (t/U)c = 0.180 ± 0.001 (not
shown) for the restricted BHM with nmax

b ≤ 5.
Alternatively the SF-MI transition point can be extracted from the numerically ob-

tained central charge c∗, since the SF phase is described by the TLL. Figure 5.2(c)
displays c∗(L) via Eq. (2.41) for the 1D BHM. By extrapolating the position of the
maximum in c∗ to the thermodynamic limit [see Fig. 5.2(d)], (t/U)c can be determined
reliably. In this way we again get the cone point of the Mott lobes (t/U)c = 0.305(3)
for ρ = 1 and (t/U)c = 0.179(7) for ρ = 2 (not shown), in excellent agreement with the
previous estimates from the finite-size scaling of Kb.
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and Mott-insulating (MI) regions as a function of the chemical potential µ/U
and the tunneling amplitude t/U . (b): Finite-size scaling for the Tomonaga–
Luttinger liquid parameter Kb in the 1D constrained BHM (nmax

b = 5) for
the first Mott lobe (ρ = 1). (c): Central charge c∗(L) from Eq. (2.41). The
closed symbols indicate the maximum value in c∗ for each system size. (d):
An extrapolation of the t/U values at maxima from panel (c) to the ther-
modynamic limit provides the Kosterlitz–Thouless transition point for ρ = 1,
(t/U)c = 0.305(3). Adapted from Articles XIII and XIV.

5.1.2 Dynamical properties — Articles XIII, XIV and XV
In the following, we present the dynamical properties for the first Mott lobe (ρ = 1)
in the 1D BHM at zero temperature using the numerically exact dynamical DMRG
technique explained in Sec. 2.3.

Photoemission spectra

Single-particle excitations associated with the injection or emission of a boson with
wave vector k and frequency ω, A+(k, ω) or A−(k, ω), are described by the spectral
functions

A±(k, ω) =
∑
n

∣∣∣〈ψ±n |b̂±(k)|ψ0〉
∣∣∣2 δ(ω ∓ ω±n ) , (5.10)

where b̂+(k) = b̂†(k)
[
b̂−(k) = b̂(k)

]
create [annihilate] particles with momentum k.

Moreover, |ψ0〉 is the ground state of a L-site system in the N -particle sector while |ψ±n 〉
denote the nth excited states in the (N ± 1)-particle sectors with excitation energies
ω±n = E±n − E0.

Figures 5.3(a), (b) and (c) display the results for the Mott insulator with ρ = 1
in the 1D BHM. The spectra A(k, ω) = A+(k, ω) + A−(k, ω) for fixed k consist of
two Lorentzians of width η = 0.04; the size of broadening introduced in the DDMRG
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Fig. 5.3: Intensity of the single-boson spectral functions A(k, ω) for different t/U where
ρ = 1. The dashed lines denote the strong-coupling dispersions for the prop-
agation of a hole and a double occupancy ωh,p(k), Eqs. (5.11) and (5.12).
Circles in panels (c) and (d) mark the positions of the peaks in each k sector.
The dotted lines in panel (d) show the dispersion of the condensate excitations
E(k) from Bogoliubov theory. Adapted from Article XIV.

procedure. For comparison, we also include strong-coupling result of the quasi-particle
dispersions (dashed lines). From strong-coupling perturbation theory the single-hole
and single-particle energies are given by

ωh(k)
t

= 8x− 512
3 x5 +

(
−2 + 12x2 − 224

3 x4
)

cos(k) (5.11)

+
(
−4x+ 64x3 − 1436

3 x5
)

cos(2k) +
(
−12x2 + 276x4

)
cos(3k)

+
(
−44x3 + 1296x5

)
cos(4k)− 180x4 cos(5k)− 792x5 cos(6k) +O

(
x6
)
,

and
ωp(k)
t

= 1
x

+ 5x− 513
20 x

3 − 80139
200 x5 +

(
−4 + 18x2 − 137

150x
4
)

cos(k) (5.12)

+
(
−4x+ 64x3 − 426161

1500 x5
)

cos(2k) +
(
−12x2 + 276x4

)
cos(3k)

+
(
−44x3 + 1296x5

)
cos(4k)− 180x4 cos(5k)− 792x5 cos(6k) +O

(
x6
)
.

Because of the large Mott gap separating single-particle and single-hole quasiparticle
band in the strong-coupling regime (x . 0.15), the perturbative results are in perfect
agreement with the DDMRG data. In fact, for large interactions, each site is singly
occupied in the ground state. As a consequence, a hole or doubly occupied site can
move almost freely through the system. From this consideration, the leading-order
expression for the quasiparticle dispersions results, see Eqs. (5.11) and (5.12). Note
that the simple mean-field approach by van Oosten et al. [75] fails to reproduce the
quasiparticle dispersion already for x = 0.1, see Article XIII.



5.1 Superfluid-Mott insulator quantum phase transition 47

0 π/2 π

q

0

1

2
ω
/U

(a)

t/U=0.05 (MI)

0 0.002 0.004 0.006

0 π/2 π

q

0

1

2

(b)

t/U=0.1 (MI)

0 0.01 0.02

0 π/2 π

q

0

1

2

(c)

t/U=0.2 (MI)

0 0.02 0.04 0.06

0 π/2 π

k

0

1

2

3

(d)

t/U=0.4 (SF)

0 0.05 0.1
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As the on-site interaction further weakens, the Mott gap gradually closes. Obvi-
ously, strong-coupling theory becomes imprecise at x ' 0.2 as shown in Fig. 5.3 and
completely fails at x & 0.25.

In the SF phase, the elementary excitations concentrate around the region (k = 0,
ω = 0), which indicates the formation of a “condensate”. In accordance with Bogoliubov
theory and field theory [76, 77], the low-energy, low-momentum excitations dominate
the single-particle spectrum. As can be seen from Fig. 5.3(d), our spectral function
indeed exhibits a phonon mode whose excitation energy is linear in k and gapless at
k = 0 for a system in the thermodynamic limit. Yet, for finite-size systems a gap is
present whose magnitude is inversely proportional to the system size. Our DDMRG
data demonstrate that the gap almost vanishes already for a OBC system with 64 sites.

Dynamic density-density correlations

Let us now turn to the dynamical structure factor

S(q, ω) =
∑
n

|〈ψn|n̂q|ψ0〉|2 δ(ω − ωn), (5.13)

where |ψ0〉 and |ψn〉 denote the ground and n-th excited state, respectively, and ωn =
En−E0 gives the corresponding excitation energy. We compare the large-scale DDMRG
results with the fourth-order strong-coupling theory by keeping the states to fifth order
in x.

Figure 5.4 illustrates the change of the intensity distribution of S(q, ω) in the q-ω
plane as x = t/U increases. For small x, deep in the MI phase, the spectral weight is
concentrated around ω ∼ U in the region q > π/2. In this regime the structure factor is
dominated by the primary band. When x increases, the maximum of S(q, ω) acquires
an appreciable dispersion; simultaneously the overall intensity of the density-density
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response strengthens [see, e.g., Fig.5.4(c) and also Fig. 5.5]. As the system approaches
the MI-SF transition point, the excitation gap closes. Concomitantly, we find a sig-
nificant redistribution of the spectral weight to smaller q values [see Fig. 5.4(c)]. At
small momenta in the SF phase [Fig. 5.4(d)], Bogoliubov theory gives the correct slope
of the dispersion which we derive from the maximum of the DDMRG data for S(q, ω).
Bogoliubov’s dispersion overestimates the DDMRG maxima for larger momenta and
higher energies, as observed experimentally for a three-dimensional setup [72].

In Fig. 5.5 we show constant-moment scans of S(q, ω) at q = π. For x = 0.05 and
x = 0.1, the agreement between the broadened strong-coupling results and the DDMRG
data for S(q, ω) is excellent. As x becomes larger than x ' 0.1, the strong-coupling
theory yields a double-peak structure in S(q = π, ω). When we increase the lattice
size and reduce η, this feature also appears in DDMRG data for x = 0.15. Therefore,
this feature is not an artifact of the strong-coupling approach even though the strong-
coupling expansion overestimates the double-peak structure for x = 0.15. Interestingly,
in the SF phase we also find a shoulder in S(q = π, ω) as shown in Fig. 5.5(d), which
may form a double peak as L → ∞, η → 0. This high-energy double peak in the SF
phase resembles the structure seen in the MI phase. In our opinion, this rules out an
interpretation of the second peak as signature of a massive Higgs mode [78].

Summary

In this section, we provided extensive numerical (D)DMRG data for static and dy-
namical quantities of the 1D BHM at integer filling (mostly for ρ = 1), comparing
mainly with the analytical strong-coupling perturbation theory to explore merits and
limitations in the most demanding case of one dimension.

Calculating the central charge via von Neumann entropy we confirmed the criti-
cal values for the SF-to-MI transition obtained from the Tomonaga–Luttinger liquid
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parameter for integer filling.
We simulated the dynamical quantities such as the single-particle spectral function

and the dynamical structure factor. The comparison in the photoemission spectra (dy-
namical structure factor) between DDMRG data and the strong-coupling expansions
shows that the latter are reliable for x = t/U . 0.15 (x . 0.1). In the SF phase,
the response at low energies is dominated by the quasicondensate, in agreement with
predictions from field theory and Bogoliubov theory. In Article XVI we further ex-
amined the dynamical current and kinetic-energy correlation functions for ρ = 1 by
means of the DDMRG and the strong-coupling theory, showing again excellent agree-
ment between both methods in the interaction and frequency regimes where they are
applicable.

Thus, the (D)DMRG technique provide us reliable ground-state and dynamical esti-
mations in both insulating and superfluid phases of the 1D Bose–Hubbard-type systems.
We demonstrated high accuracy of the (D)DMRG techniques comparing mainly with
the perturbations theory. Advantageously, further extensions of the Hamiltonians are
easily possible in (D)DMRG. For instance, in Article XVII, we investigated the static
and dynamical properties of the Bose–Hubbard model with local three-body interaction
W . Surprisingly, physical quantities in the second Mott lobe (ρ = 2) such as the gap
and the dynamical structure factor scale almost perfectly in t/(U + W ), even close to
the Mott transition. Strong-coupling theory shows that there is no true scaling but
deviations from it are quantitatively small in the strong-coupling limit. Therefore, this
observation should remain true also in higher dimensions.

5.2 Haldane insulator in the extended Bose–Hubbard model
— Articles XVIII and XIX

A quarter-century after Haldane’s conjecture of an appearance of finite gap in the
integer-spin chain [79], the so-called Haldane phase attracts renewed attention from a
topological point of view. Such a topological protected state, characterized by symme-
tries and a finite bulk gap, is termed now a symmetry-protected topological (SPT) or-
dered phase [23,80]. To analyze SPT states in interacting systems it has been proposed
that the entanglement spectrum can be used as a fingerprint of topological order [21].
Namely, the lowest entanglement level reflects the degree of degeneracy correspond-
ing to symmetries and the edge states of the system, as demonstrated in various spin
chains [22, 23, 81]. It is important to notice that the odd Haldane (OH) phase in odd-
integer-spin chains is a SPT phase, because the odd-S AKLT state [82] cannot be
adiabatically connected to another trivial state without undergoing a phase transition.
On the other hand, the even Haldane (EH) state in the even-integer-spin systems is a
trivial state, since the even-S AKLT state is adiabatically connected to a trivial state
without a bulk phase transition [23].

Interestingly, a hidden SPT phase was also found in interacting boson systems with
long-range repulsion [83]. This phase resembles the Haldane gapped phase of the quan-
tum spin-1 Heisenberg chain. Indeed, assuming that the site occupation of an 1D Bose–
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Hubbard model (EBHM) with nearest-neighbor repulsion is restricted to nj = 0, 1 or 2,
the system can be described by an effective spin-1 model with Szj = nj − ρ for ρ = 1.
The Hamiltonian of the EBHM is defined as

ĤeBH = ĤBH + V
∑
j

n̂jn̂j+1, (5.14)

where V parameterizes the nearest-neighbor Coulomb repulsion. The Haldane insulator
(HI) appears between the conventional Mott insulator (MI) and the density wave (DW)
phases at intermediate couplings [83, 84]. Field theory predicts the MI-HI transition
to be in the Luttinger liquid universality class with central charge c = 1, whereas the
HI-DW transition belongs to the Ising university class with c = 1/2 [84].

In this section we focus on the characterization of the EBHM’s ground-state and
spectral properties comparing with those in the corresponding effective spin-1 XXZ
model, which is given by

Ĥeff
eBH = ĤXXZ + Ĥ ′, (5.15)

ĤXXZ =
∑
j

[J(Ŝxj Ŝxj+1 + Ŝyj Ŝ
y
j+1) + JzŜ

z
j Ŝ

z
j+1] +D

∑
j

(Ŝzj )2 , (5.16)

where Ŝj denotes a spin-1 operator and the parameter D represents the uniaxial single-
ion anisotropy. Here, Ĥ ′ contains further terms which breaks the particle-hole symme-
try of ĤXXZ . The MI, HI, and DW phases of the EBHM correspond to the EH, OH,
and antiferromagnetic (AFM) phases of the spin-1 XXZ model, respectively. In the
following, we apply the (D)DMRG technique to the EBHM and show that the lowest
entanglement level in the topological HI phase is actually degenerate. The university
classes of the MI-HI and HI-DW transitions are determined from the central charge in
accordance with what is obtained from field theory. Most notably we demonstrate that
the dynamical structure factor S(q, ω) can be used to unambiguously discriminate the
HI from the MI and DW phases.

5.2.1 Symmetry-protected topological order
Figure 5.6(a) illustrates the ground-state phase diagram of the EBHM with a maximum
number of bosons per site nb = 2 and ρ = 1, showing three different insulating phases as
well as a superfluid state in the weak-coupling regime. As demonstrated in Fig. 5.6(b) at
fixed U/t = 5, the MI-HI (HI-DW) quantum phase transitions can be easily determined
from the numerically obtained central charge c∗(L) via Eq. (2.41) in the intermediate-
coupling region (3t . U . 8t), since the system becomes critical only at the transition
points with c = 1 (1/2). With increasing system size L two sharp peaks develop,
indicating the MI-HI and HI-DW transition points. For L = 128, we found c∗ ' 0.999
in the former case and c∗ ' 0.494 in the latter, showing an excellent agreement with
those from field theory.

Let us now discuss the entanglement properties of the SPT state in the intermediate-
coupling region. Since we divide the system in halves when calculating the entanglement
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Fig. 5.6: (a): Ground-state phase diagram of the constrained extended Bose–Hubbard
model for nmax

b = 2 and ρ = 1, showing the Mott insulator (MI), Haldane
insulator (HI), density wave (DW), and superfluid (SF) phases. (b): Central
charge c∗(L) for U/t = 5, indicating the MI-HI (HI-DW) transition point with
c = 1 (c = 1/2). (c): Entanglement spectrum ξα with U/t = 5, exhibiting a
characteristic degeneracy in the HI phase. Adapted from Article XVIII.

spectrum ξα using the DMRG with PBC, one of the block with L/2 possesses two edges.
Thus, the ξα in the HI phase is expected to be at least fourfold degenerate, reflecting
the broken Z2 × Z2 symmetry. Figure 5.6(c) shows the DMRG data for ξα obtained
at U/t = 5 for L = 512 and PBC. Indeed, almost all HI states exhibit this degeneracy.
By contrast, in the trivial MI and DW phases the lowest entanglement level is always
nondegenerate. Note that the HI phase is protected by the inversion symmetry of
the lattice. Adding an appropriate perturbation [84] to the Hamiltonian (5.14), this
symmetry can be broken. In fact, by turning on any finite perturbation, the fourfold
degeneracy in the HI phase will be dissolved, see Fig. 3 in Article XVIII.

5.2.2 Dynamical structure factor

Since the EBHM (5.14) can be realized by ultracold bosonic atoms loaded in optical
lattices it is highly desirable to study dynamical correlation functions which are ac-
cessible by experiments. For this purpose, we suggest the dynamical structure factor
S(q, ω) [Eq. (5.13)]—which can be directly measured by momentum resolved Bragg
spectroscopy [72,85]—to be indicative of a SPT state.

Figure 5.7 reveals DDMRG results for S(q, ω) obtained for the EBHM with U/t = 5
inside the three insulating phases, as well as at the quantum phase transition points in
between. In the MI phase [Fig.5.7(a) at V/t = 1], a gap opens at q = 0 and most of
the spectral weight is concentrated in the momentum range q > π/2, around ω/U ' 1,
just as for the MI phase in the BHM [see Fig. 5.4]. The dispersion of the maximum in
S(q, ω) behaves cosine-like for small-to-intermediate momenta, and is flattened close to
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the Brillouin zone boundary (above k ≥ 3π/4). With increasing V/t, the MI-HI transi-
tion occurs at V/t = Vc1/t ' 2.765, where the excitation gap closes at the momentum
q = 0, as shown in Fig. 5.7(b). Deep in the HI phase, the situation changes dramatically
[see Fig. 5.7(c) for V/t = 3]. Now the dispersion of the maximum in S(q, ω) takes a sine-
like form. Again there are finite excitation gap at k = 0 and π. Here the spectral weight
exclusively concentrates at k ≈ π and finite but small ω � U . The question is whether
the gap in S(q, ω) again closes at the HI-DW transition point if V/t is increased further.
Figure 5.7(d) shows that the gap indeed closes, at V/t = Vc2/t ' 3.325, but this time at
momentum q = π, reflecting the lattice-period doubling in the DW phase. In the DW
phase [Fig. 5.7(e) at V/t = 5] , the dispersion becomes flattened with a large excitation
gap that opens at k = π. In every sense, S(q, ω) behaves very differently in the MI,
DW, and HI states and might therefore be used to discriminate these insulating phases.

In summary, we studied the topologically nontrivial Haldane insulator in the inter-
mediate-coupling region of the 1D EBHM. The MI-HI (HI-DW) quantum phase tran-
sition is determined with high precision from the central charge c∗ obtained from the
von Neumann entropy. We furthermore established a characteristic fourfold degener-
acy of the lowest entanglement level in the SPT Haldane phase. Finally, we analyzed
the dynamical structure factor S(q, ω) for the EBHM and demonstrated that S(q, ω)
can be used to distinguish the Haldane insulator, exhibiting a gapped excitation spec-
trum similar to the spin-1 isotropic Heisenberg model, from conventional Mott and
density-wave states.

In Article XX, (D)DMRG results for the spin-1 XXZ model (5.16) are also demon-
strated. The phase boundaries between the nontrivial OH phase and EH/AFM phase
are determined numerically with high precision again via the central charge. The
ground-state phase diagram resembles those of the restricted EBHM with nmax

b = 2.
The degeneracy of the lowest entanglement level in the OH phase can be observed by
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finite-system DMRG simulations. Interestingly, the results of the dynamical spin struc-
ture factor in the EH, OH, and AFM phases are similar to those for S(q, ω) in the MI,
HI, and DW phases of the EBHM. These results corroborate that the spin-1 model can
be taken as an effective model for the EBHM with nmax

b = 2.





6 Ising quantum phase transition between
Feshbach-resonant superfluids —
Articles XXI and XXII

The recent rapid progress in cooling atoms to low temperatures and controlling their in-
teractions allows to realize Bose–Einstein condensates (BEC), Bardeen–Cooper–Schrie-
ffer (BCS) pairing in Fermi gases, and strongly correlated Mott insulators. In particular,
the BEC-BCS crossover between a molecular BEC and a weakly bound BCS pairing
state has played a significant role. This has been achieved through the use of Fesh-
bach resonances, which enable us to control the strength of pairing interactions via
a magnetic field. Feshbach resonances and molecule formation have also been stud-
ied in bosonic systems experimentally [86]. On the theoretical side, the BEC-BCS
“crossover” for bosons is strikingly different from the fermionic case since both atoms
and molecules may undergo Bose–Einstein condensation. This leads to the possibility
of an Ising quantum phase transition occurring between distinct molecular (MC) and
atomic plus molecular (AC+MC) condensates [87–89].

In this chapter, we consider the 1D lattice model for bosons interacting via Feshbach
resonant pairing. Using DMRG and field theory techniques, we first characterize the
phases and quantum phase transitions of this model and provide strict evidence of
an Ising quantum phase transition separating distinct paired superfluids, including
results for the energy gaps, correlation functions, and entanglement entropy. We further
demonstrate that the visibility is in accordance with the absence of a purely atomic
superfluid phase. Thereby, the careful finite-size scaling of DMRG data by means of field
theory analysis plays a significant role. A polynomial extrapolation leads erroneously
to a purely atomic superfluid phase reported in Ref. [90].

6.1 Model and ground-state phase diagram
In order to establish the presence of such novel Z2 transitions, we explore the atomic
and molecular correlations in the 1D bosonic Feshbach systems considering the pairing
Hamiltonian

Ĥ =
∑
iα

εαn̂iα −
∑
〈ij〉

∑
α

tα(b̂†iαb̂jα + H.c.) +
∑
iαα′

Uαα′

2 : n̂iαn̂iα′: +ĤF, (6.1)

where α = a,m labels atoms and molecules and εα are on-site potentials. Normal
ordering yields : n̂iαn̂iα′: = n̂iα(n̂iα − 1) for like species and : n̂iαn̂iα′: = n̂iαn̂iα′ for

55
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distinct species. Molecules are formed by the Feshbach resonance term

ĤF = g
∑
i

(m̂†i âiâi + H.c.), (6.2)

where m̂i ≡ b̂im and âi ≡ b̂ia. The number of atoms and molecules are not conserved
separately, but the total NT ≡

∑
i(n̂ia + 2n̂im) is preserved. To make contact with

previous quantum Monte Carlo (QMC) simulations [90] we choose parameters εa = 0,
Uaa/2 = Umm/2 = Uam = g = U , ta = 1 and tm = 1/2.

The phase boundaries of the model (6.1) correspond to the vanishing of the single-
and two-particle excitation gaps, E1g ≡ µ1p(L) − µ1h(L) and E2g ≡ µ2p(L) − µ2h(L),
respectively. Here

µnp = [E0(L,NT + n)− E0(L,NT)]/n, (6.3)
µnh = [E0(L,NT)− E0(L,NT − n)]/n, (6.4)

where E0(L,N) is the ground-state energy for a system of size L and a total number
N of atoms and molecules. The phase diagram in Fig. 6.1(a) consists of three distinct
phases: a Mott insulator (MI) with gaps for both excitations E1g 6= 0 and E2g 6= 0, a
MC phase with a single-particle gap E1g 6= 0 and E2g = 0, and a AC+MC phase with
E1g = 0 and E2g = 0. In contrast to the QMC phase diagram in Ref. [90], we find no
evidence for a single-component AC phase. This is supported by direct evaluation of
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the correlation function. Namely, throughout the AC+MC phase we find power laws
for atoms and molecules with related exponents; see inset of Fig.6.1(a). The conclusion
of Ref. [90] is attributed by the finite-size effects when simulating the zero-momentum
molecular occupation number as will be discussed in Sec. 6.3.

Let us now concentrate on the transition between the MC and AC+MC superfluids.
In order to understand the origin of the proposed Ising transitions it is useful to consider
that the Hamiltonian (6.1) is invariant under U(1)× Z2 transformations:

m̂→ eiθm̂, â→ ei(θ/2±π)â, (6.5)

where θ ∈ R. In higher dimensions, the MC phase has 〈m̂〉 6= 0 and 〈â〉 = 0. This only
breaks the U(1) contribution and leaves Z2 symmetry, â → −â, intact. This leads to
the disordered phase of an Ising model, coexisting with molecular superfluidity. On the
other hand, the AC+MC phase has 〈m̂〉 6= 0 and 〈â〉 6= 0. This breaks the U(1) × Z2
symmetry completely and corresponds to the ordered phase of an Ising model, coexist-
ing with atomic and molecular superfluidity. However, in 1D the spontaneous formation
of expectation values 〈â〉 and 〈m̂〉 is prohibited, since continuous U(1) symmetry is ab-
sent. Instead, superfluid order is characterized by long-range power law correlations,
and the nature of the phases and transitions requires closer inspection.

Let us first examine the MC to AC+MC transition via the central charge c obtained
from the entanglement entropy (2.40). As shown in Fig. 6.1(b), the numerically ex-
tracted central charge of the MC phase yields c = 1 as expected for a free boson with
coexisting gapped degrees of freedom. In addition, the AC+MC phase has also c = 1.
Close to the MC to AC+MC transition, where the Ising gap closes, one expects the
central charge to increase to c = 3/2, due to additional critical Ising degrees of freedom
with c = 1/2. The evolution with increasing L is consistent with this prediction. More-
over, the MI to superfluid transitions yields c = 1 close to the MI boundary, suggesting
XY behavior; see Figs. 6.1(c) and (d).

6.2 Field theory predictions for correlation functions

In the Z2 disordered MC phase, the atomic correlation function decays exponentially
with a power law prefactor,

〈â†(x)â(0)〉 ∼ x−1/2−νm/4e−x/ξ, (6.6)

where ξ is the Ising correlation length. On the other hand, pairs of atoms condense
and exhibit power law correlations,

〈â†(x)â†(x)â(0)â(0)〉 ∼ 〈φ2〉2x−νm , (6.7)

with the same exponent νm as the molecular two-point function,

〈m̂†(x)m̂(0)〉 ∼ x−νm . (6.8)
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Fig. 6.2: Correlation functions with U = 0.7
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the same exponent. Inset: Atomic
correlations decay exponentially. (b):
AC+MC phase with εm = −3.
Atoms and molecules exhibit power
low exponents locked by a factor of
4; the fits are y = 0.667x−0.1827 and
y = 0.657x−0.0456. Adapted from Ar-
ticle XXI.

This behavior is well supported by DMRG simulations in Fig. 6.2(a), which reveal
identical power laws for molecules and atomic bilinears.

In contrast, in the Z2 ordered AC+MC phase, both molecules and atoms have power
law correlations,

〈m̂†(x)m̂(0)〉 ∼ x−νm , 〈â†(x)â(0)〉 ∼ 〈φ〉2x−νa , (6.9)

with locked exponents, νm = 4νa, that differ by a factor of 4. Again, these features
can be readily seen in DMRG simulations as shown in Fig. 6.2(b). In addition these
robust features persist into the large-U regime where field theoretical arguments are no
longer strictly valid. In particular, the molecular correlation function remains a power
law throughout the AC+MC phase and close to the Mott boundary shown in Fig. 6.1.
Carrying out the scaling collapse of the DMRG data for different system sizes, the
atomic and molecular exponents νa and νm can be extracted. We find that the atomic
exponent νa reaches the value of νa = 1/4 at the AC+MC to MI transition. At the
same time, the molecular exponent νm reaches the value of νm = 1 consistent with the
aforementioned exponent locking; see Fig. 6.3. The presence of this molecular superfluid
close to the MI boundary clearly supports the absence of an AC phase in contrast to
Ref. [90]. This is also compatible with mean-filed theory in higher dimensions [87–89]
where atomic condensation is always accompanied by molecular condensation due to
the structure of the Feshbach term ĤF.

The DMRG results of the atomic and molecular correlation functions also yield valu-
able information about the the critical exponents extracted from the correlation length
ξ and the order parameter 〈φ〉, showing excellent agreement with Ising critical expo-
nents (ν = 1 and β = 1/8), see Articles XXI and XXII.
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Fig. 6.3: DMRG results for the two-point functions of (a) atoms and (b) molecules in
the AC+MC phase. Carrying out the scaling collapse of the data for different
system sizes we extract the exponents νa and νb. In (c) we show the resulting
evolution of 4νa (circles) and νm (stars) as determined in (a) and (b) for fixed
values of εm = 2. The vertical dashed lines correspond to the location of the
AC+MC to MI transition obtained form the gap data. The data confirm the
locking of the atomic and molecular exponents, νm = 4νa. The exponents
reach the values of νa = 1/4 and νm = 1 at the MI boundary, indicating the
absence of the AC phase. Adapted from Article XXII.

6.3 Finite-size scaling for momentum space observables

In the previous section we have focused directly on the superfluid correlation functions
due to the absence of continuous symmetry breaking in 1D. However, the authors of
Ref. [90] rather examined the divergence of the occupation number

nα(k) = 1
L

L∑
i,j=1

eik(i−j)〈α†iαj〉 (6.10)

and its corresponding visibility,

Vα ≡
nmax
α (k)− nmin

α (k)
nmax
α (k) + nmin

α (k) , (6.11)

where nmax
α (nmin

α ) is the maximum (minimum) in the momentum space occupation
number distribution. In the present context this is identified as

Vα = nα(0)− nα(π)
nα(0) + nα(π) . (6.12)

In a SF phase where nα(0) diverges with increasing system size, Vα approaches unity
as L→∞. In Ref. [90] it was argued that the molecular visibility within the AC+MC
phase failed to saturate at this value close to the MI boundary. In order to gain a
quantitative handle on this issue we need to exploit the finite-size dependence of the
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superfluid correlations within the AC+MC phase. In a system with PBC the two-
point function of a primary field O(r) at position r can be obtained by conformal
transformation [91]

〈O(r1)O(r2)〉L = N
[

π

L sin(πrL )

]a
, (6.13)

where a is the critical exponent in the thermodynamic limit, r = |r1 − r2| is the
separation, and N is a constant prefactor. It follows that the rescaled combination
La〈O(r1)O(r2)〉L is a prescribed scaling function of the reduced separation r/L. The
confirmation of this behavior for the atomic correlation functions within the AC+MC
phase is demonstrated in Fig. 6.4. Note that the exponent for molecules can also be
determined in a similar manner. Given this agreement we may substitute the conformal
result (6.13) into Eq. (6.10) in order to obtain formal expressions for the finite-size
dependence of the atomic and molecular visibilities in Eq. (6.11). In Figs. 6.5(a) and
(b) we show the results of this conformal extrapolation, where we further incorporate
the exact DMRG results for the short distance behavior with r ≤ 3a0, where a0 is the
lattice spacing. It is readily seen from the solid lines in left panels of Fig. 6.5 that
both the atomic and molecular visibilities extrapolate to unity in the thermodynamic
limit. In particular, close to the MI boundary [panel (b) for U = 2.2] there are strong
deviations from the results that would be obtained by naive polynomial extrapolation as
indicated by the dashed lines which erroneously suggests that the molecular visibility is
less than unity. We use the conformal extrapolation procedure to track the atomic and
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thermodynamic limit obtained by (c) conformal and (d) polynomial extrapo-
lation procedures. Adapted from Article XXII.

molecular visibilities within the AC+MC phase. The results are consistent with unity
right up to the MI boundary. For comparison, in Fig. 6.5(d) we show the results that
would be inferred using a naive polynomial extrapolation. The results are in accordance
with those of Ref. [90], but differ markedly from the asymptotic visibilities obtained by
conformal extrapolation as shown in Fig. 6.5(c). Thus, within the AC+MC phase the
finite-size dependence of the atomic and molecular momentum space diagnostics is in
complete agreement with power-law correlations for both the atoms and the molecules.
This behavior persists right up to the MI boundary and provides further evidence for
the absence of a purely AC phase.

Summary

To summarize this chapter, we explored the phase diagram of the bosons interacting
via Feshbach resonant pairing in a 1D optical lattice. Strong evidence for an Ising
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quantum phase transition between distinct superfluids can be obtained by combining
the large-scale DMRG and field theoretical techniques. In particular, we demonstrated
that it is of significant importance to carry out the appropriate finite-size scaling close
to the (AC+MC)-MI quantum phase transition. Our numerical results are consistent
with an Ising quantum phase transition approaching both a molecular KT transition
and an atomic KT transition, compatible with mean-field theory predictions for the
continuum model in higher dimensions.

In Article XXIII, the Mott insulating state of bosonic pairing Hamiltonians is further
investigated using analytical and numerical techniques and the results are consistent
with the absence of super-Mott behavior within the second Mott lobe, which is indicated
by the QMC in Ref. [90].



7 Summary and outlook
In this thesis, we investigated fermionic, bosonic and fermion-boson coupled systems in
one dimension (1D), using the unbiased density-matrix renormalization-group (DMRG)
technique, in order to identify and characterize possible quantum phases of matter, as
well as the quantum phase transitions between these phases. The low-dimensional
setting enables us to study these exactly non-solvable systems by means of the exact
numerical technique.

In Chap. 2 we first reviewed the DMRG technique in a traditional manner as intro-
duced by S. White in 1992. The pseudo-site approach was then introduced, which is
essential in DMRG to simulate the fermion-boson coupled systems such as the Holstein-
type models. The dynamical DMRG (DDMRG) technique provides us an unique op-
portunity to compute the dynamical quantities in the various (quasi-)1D systems both
with and without background medium. Due to the structural reason of the lattices
used, the numerical precision of DMRG is better for open boundary conditions com-
paring with periodic boundary conditions (PBC), in general. However, simulations
with PBC provide us often less system-size dependent results. Thereby, applying the
folding lattice configuration the accuracy can be drastically improved, so that the cal-
culations with system sizes up to O(102) become possible. Furthermore, parallelization
scheme via OpenMP also helps to reduce the practical wall time of (D)DMRG simula-
tions. As explained in last two sections of this chapter the Tomonaga–Luttinger liquid
(TLL) parameter and the central charge can be estimated in high accuracy by DMRG
taking the advantage of above explained procedures. Quantum phase transition points
in the 1D strongly correlated systems can thus be determined by these characteristic
quantities as also demonstrated in this thesis.

In Chap. 3, we considered the excitonic insulator states of the 1D half-filled extended
Falicov–Kimball model. In 1D, the absence of an order parameter prevents addressing
the problem of excitonic condensation by means of the mean-field based approaches,
despite their success for D> 1. Considering the off-diagonal anomalous Green function
instead of calculating the 〈c†f〉 expectation value, we demonstrated that the different
nature of the electron-hole pairing and condensation process at weak and strong cou-
plings can be clarified by the related anomalous spectral function. The binding energy
and the correlation length provided a clear evidence for a Coulomb interaction driven
crossover from BCS-like electron-hole pairing fluctuations to tightly bound excitons.
Within the Bose–Einstein condensation regime, the quasiparticle dispersion develops
a characteristic flat valence-band top, in accord with the experimental findings for
quasi-1D Ta2NiSe5.

In Chap. 4 we applied the pseudo-site DMRG technique to the fermion-boson cou-
pled systems. In the first two sections we investigated the fermionic systems with
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background medium in order to explore the conditions for the metal-insulator quan-
tum phase transitions and the metallic phase with attractive interactions where TLL
parameter Kρ is larger than unity. In the half-filled spinless Holstein model, in which
Kρ > 1 has been reported in former studies, the reexamined TLL parameters by the
large-scale DMRG are always less than unity, indicating that there exists no attractive
TLL phase. On the other hand, Kρ > 1 was obtained in the intermediate metallic
regime of the spinfull Holstein-Hubbard model at half filling, as also reported by the
quantum Monte Carlo (QMC) method. Due to the strong system size dependence of
Kρ, however, the existence of the attractive TLL phase is still unclear. Further studies
by more recent numerical techniques would be highly desirable to examine the character
of the intermediate metallic regime in this model.

In Sec. 4.2, we demonstrated that the 1D spinless fermion Edwards transport model
with boson-affected hopping displays an incredibly rich physics despite its simplicity.
At half-band filling the metal-insulator quantum phase transition occurs in the case of
strong background correlations. The characteristic six-step hopping process is reflected
in the momentum distribution function, showing a qualitative agreement with the one
in the Hubbard model with the next-nearest-neighbor hopping transfer. Even away
from half filling (e.g., at one-third band filing) the Edwards model exhibits a quantum
phase transition between TLL and charge-density-wave (CDW) phases without taking
longer-range Coulomb interactions into account. If the charge carriers are coupled
to slow quantum bosons away from half filling, the TLL parameter becomes clearly
attractive (Kρ > 1) and even forms a phase-separated state. Thus, the 1D Edwards
model for spinless fermions exhibits the nature not only of the system with longer-
range interactions but also of the t-J-like system. It would, therefore, be of significant
interest to study this model further in higher dimensions to elucidate the origin of the
attractive interactions of Cooper pairs in the superconducting phase.

In Chap. 5 we focused on various Bose–Hubbard-type models which might directly
be compared with the experimental results in the optical lattices. By investigating the
ground-state and dynamical properties of the pure Bose–Hubbard model (BHM), we
developed the fundamental understanding how the bosonic systems should be treated
by DMRG. The quantum phase transition between superfluid (SF) and Mott insulator
(MI) phases can be successfully determined by the TLL parameter and the central
charge. Dynamical quantities estimated by DDMRG agree perfectly with those by the
strong-coupling perturbation theory for the appropriate parameter regime.

On this background, in Sec. 5.2 we then included the nearest-neighbor repulsion into
the BHM. This extended BHM (EBHM) attracts much attentions from the topological
point of view. Namely, the topologically nontrivial Haldane insulator (HI) appears
in the midst of the MI, density-wave, and SF phases for the intermediate coupling
regime. We approved the universality class of the phase boundaries predicted by the
field theory and established the characteristic degeneracy of the lowest entanglement
level in the symmetry-protected topological HI phase. Moreover, we demonstrated that
the dynamical density structure factor can be used to distinguish the HI, exhibiting a
gapped excitation spectrum similar to the spin-1 XXZ chain, from conventional MI
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and DW states.
In the final chapter for the numerical results, we explored the zero-temperature

ground-state phase diagram of bosons interacting via Feshbach resonant pairing in-
teractions. Combining the DMRG and field theoretical techniques the phases and
quantum phase transitions in this low-dimensional settings were successfully charac-
terized. Thereby, we demonstrated that the careful finite-size scaling by the field
theoretical analysis is essential. Naive polynomial extrapolation leads to an atomic
superfluid phase erroneously as reported by the QMC method. Finally, we provided
a broad evidence in support of an Ising quantum phase transition separating distinct
paired superfluids.

By giving an outlook on future developments we close this thesis. In this study, we
discussed various 1D quantum many-particle systems (with background medium) by
means of the large-scale (D)DMRG technique. Treating finite systems only, however,
one always has to perform an additional careful finite-size scaling analysis, as demon-
strated in Chap. 6 with the help of field theory. In order to overcome this problem,
the matrix-product-states (MPS) based tensor network algorithms (see, e.g., Ref. [51])
have been developed recently and the so-called infinite DMRG (iDMRG) technique [50]
based on the MPS scheme enables us to simulate the ground-state properties directly
in the thermodynamic limit. Figure 7 displays the advantage of the iDMRG tech-
nique. Characteristic degeneracy of the Haldane phase in the EBHM can be proved
immediately by iDMRG with bond dimensions χ = 100 [Fig.7(a)], while the system-size
dependence should be considered in the case of finite system calculations especially close
to the quantum phase transition points [see, Fig. 5.6(c) for comparison with L = 512 by
DMRG]. Moreover, the correlation length ξχ can be extracted from the second largest
eigenvalue of the transfer matrix by iDMRG. When the system is critical, ξχ diverges
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for χ → ∞. In the EBHM the system becomes critical only at quantum phase transi-
tions, so that the values of transition points can be determined simply by calculating
ξχ. The positions of maxima in Fig. 7 are in perfect agreement with the DMRG results,
see Fig. 5.6(b). Note that iDMRG helps to reduce the computational cost (CPU time
and memory requirements). For instance, each simulation for Fig. 7 with χ = 100
finished in less than 1 hour, while the DMRG calculations with L = 512 and PBC for
Fig. 5.6 took a few days.

In our most recent work, Article XXIV, we have implemented a MPS-based iDMRG
program and applied this efficient code to the extended Hubbard model supplemented
by a ferromagnetic spin coupling term for the half-filled band case, in order to study
topological phase transitions. The Haldane phase exhibits again the double degeneracy
and phase boundaries between HI and CDW phases can be determined via the corre-
lation length ξχ analogous to the case in the EBHM demonstrated in Fig. 7. Using the
so-called “infinite boundary conditions” [92], the excitation gaps and the dynamical
quantities can be simulated directly in the thermodynamic limit. Hence we do not
suffer from the usual finite-size and boundary effects in 1D. Again as in the case of
the Ising transition point in the EBHM, only neutral gaps closes at the HI-CDW Ising
transition and the dynamical density structure factor reflects this behavior.

In this manner, the MPS-based algorithm and the iDMRG technique allow us to
explore the quantum phase transitions in the (quasi-)1D strongly correlated systems
more precisely. The iDMRG technique might be applied to the systems with the back-
ground medium such as the Holstein model and to the Feshbach systems such as the
Hamiltonian (6.1). It would be desirable to adopt the iDMRG technique to the 1D
half-filled Holstein–Hubbard model (4.3). Reexamining the ground-state character of
the intermediate metallic regime, the existence of an attractive TLL might be proved
by means of iDMRG, where the strong finite-size effects prevent us from exploring the
nature of this phase. Simulating atomic and molecular correlation functions in the 1D
lattice model (6.1) and extracting their exponents using iDMRG, the absence of the
atomic superfluid phase might be proved directly in the thermodynamic limit.

The tensor network algorithms can be applied to quasi-1D systems, e.g., a ladder
system, or a cylindrical system even in the thermodynamic limit. Recent targets are
true two-dimensional (2D) systems. In the case of simple spin models, static quantities
can be simulated successfully by tensor network algorithms. It is desirable, e.g., to
verify the existence of the superconducting phase in the 2D Edwards model introduced
in Sec. 4.2 by such a technique, since we found an attractive TLL phase in the 1D
Edwards model. Bosonic topological insulators in 2D are another fascinating candidates
to be simulated by tensor network algorithms [93].
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Using exact numerical techniques, we investigate the nature of excitonic (electron-hole) bound states and the
development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The
ground-statephasediagramof themodelexhibits,besidesband-insulatorandstaggeredorbitalorderedphases, an
excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in thevonNeumann
entropy.The anomalous spectral function andcondensation amplitudeprovide thebinding energyandcoherence
length of the electron-hole pairs which, on their part, point towards aCoulomb interaction driven crossover from
BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance
between electrons and holes does not affect the location of the BCS-BEC crossover regime, it favors staggered
orbital ordering to the disadvantage of the EI. Within the Bose-Einstein condensation (BEC) regime, the
quasiparticle dispersion develops a flat valence-band top, in accord with the experimental finding for Ta2NiSe5.
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The formation and condensation of excitonic bound states
of electrons and holes in semimetallic or semiconducting
systems possessing a small band overlap or band gap is
still—half a century after its theoretical prediction [1]—a
topical issue in condensed matter physics [2–4]. If the
binding energy of the excitons exceeds the overlap or
gap, they may spontaneously condensate at low temperatures
and drive the system into an excitonic insulator (EI) state. It
has been pointed out that the semimetal-EI transition can be
discussed in close analogy to the BCS superconductivity,
whereas the semiconductor-EI transition is described in terms
of aBose-Einstein condensation (BEC)ofpreformedexcitons
[5]. Quite recently, as a candidate for the EI state, quasi-one-
dimensional (1D) Ta2NiSe5 has raised and attracted much
experimental attention [6]. Most notably, by angle-resolved
photoemission spectroscopy, an extremely flat valence-band
top at 40 K was observed and taken as a strong signature
for the EI state to be formed out of “condensed” bound
Ni 3d − Se 4p holes and Ta 5d electrons.
The detection of the EI state in Ta2NiSe5 has spurred

multifaceted research activities with regard to the formation
and possible condensation of excitons in 1D systems [7].
The minimal theoretical model in this respect is of the
Falicov-Kimball type. While the original Falicov-Kimball
model (FKM) describes localized f electrons interacting
via a local Coulomb repulsion (U) with itinerant c electrons
(tc) if residing at the same Wannier site [8], an extended
version takes into account also the direct nearest-neighbor
f-electron hopping (tf) [9]:

H ¼ −tc
X
hi;ji

c†i cj − tf
X
hi;ji

f†i fj þU
X
i

c†i cif
†
i fi

þD
2

X
i

ðc†i ci − f†i fiÞ: (1)

Here, α†i (αi) denotes the creation (annihilation) operator of
a spinless fermion in the α ¼ fc; fg orbital at site i, and D
is the level splitting between different α orbitals. In regard
to the modeling of Ta2NiSe5, the half-filled-band case is of
particular importance, and it has been shown theoretically
that a direct f-c hopping (hybridization) is prohibited by
symmetry reasons, at least between the valence-band top
and conduction-band bottom [7].
For the original FKM, rigorous results were obtained

only in infinite spatial dimensions by dynamical mean-field
theory; see, e.g., reviews in Refs. [10,11]. The extended
FKM (EFKM) [Eq. (1)] has been studied extensively in the
context of EI formation for D > 1, using dynamical mean-
field theory [12], random phase approximation [13], slave-
boson [14], projective renormalization [15], and variational
cluster [16] techniques, or purely numerical diagonalization
procedures [17]. At the same time, the problem of electronic
ferroelectricity, which is equivalent to the appearance of the
EI in some theoretical models, has also attracted much
attention [18,19]. This phenomenon was confirmed for the
2D EFKM by constrained path Monte Carlo simulations
[20]. In 1D, however, true ferroelectric long-range order (the
equivalent of a nonvanishing hc†fi expectation value in the
limit of vanishing c-f-band hybridization) is not possible.
This was demonstrated for the 1D FKM [21]. For the 1D
EFKM, power-law critical (excitonic) correlations were
observed instead [20]. Mean-field-based approaches [22]
are unable to capture the EI state in 1D (despite their success
for D > 1), mainly due to the lack of an order parameter
associated with the breaking of the Uð1Þ symmetry. On
this note, a thorough investigation of the ground-state and
spectral properties of the 1D EFKM is still missing.
In this paper, we present a comprehensive numerical

analysis of the 1D EFKM at half-filling. At first, we
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determine the ground-state phase diagram from large-scale
density-matrix renormalization group (DMRG) [23]
calculations and identify—depending on the orbital level
splitting—staggered orbital ordered (SOO) and band-
insulator (BI) phases as well as an intervening critical EI
state. Then, within the EI, we detect a crossover between
BCS- and Bose-Einstein-type condensates monitoring the
exciton-exciton correlation and exciton momentum distri-
bution functions. Note that in our 1D setting, we use the term
“condensate” to indicate a critical phase with power-law
correlation decay. Finally, combining DMRG, Lanczos exact
diagonalization (ED), and Green functions techniques [24],
we study the anomalous spectral function and extract the
correlation length and binding energy of the electron-hole
pairs. This allows us to comment on the nature of the
excitonic bound states preceding the condensation process
and to discuss the effect of a mass imbalance between (c)
electrons and (f) holes.
Examining the (large-U) strong-coupling regime gives a

first hint of which phases might be realized in the 1D
EFKM at zero temperature. To leading order, the EFKM
can be mapped onto the exactly solvable spin-1=2
XXZ-Heisenberg model in a magnetic field h ¼ D aligned
in the z direction [25]: HXXZ ¼ J

P
jfΔSzjSzjþ1 þ ð1=2Þ

ðSþj S−jþ1 þ S−j Sþjþ1Þg − h
P

jS
z
j, with J ¼ 4jtfjtc=U and

Δ ¼ ðt2f þ t2cÞ=ð2jtfjtcÞ. The XXZ model exhibits three
phases: the gapped antiferromagnetic (AF) phase, the
critical gapless XY phase with central charge c ¼ 1, and
the ferromagnetic (FM) phase, where both transition lines,
those between the AF and XY phases (hc1=J) and those
between the XY and FM phases (hc2=J), follow from the
Bethe ansatz [26]. Correspondingly, increasing the magni-
tude of the f-c level splitting D in the EFKM, we expect to
find the following sequence of phases: (i) the SOO phase
that matches the Ising-like AF phase in the XXZ model,
(ii) an intermediate critical EI phase with finite excitonic
binding energy, and (iii) a BI state, which is characterized
by a filled (empty) f (c) band and related to the FM phase
of the XXZ model. The phase boundary separating the EI
and BI states is exactly known to be [27]

Dc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðjtfj þ jtcjÞ2 þU2

q
−U: (2)

The complete phase diagram of the 1D EFKM is
presented in Fig. 1. Symbols denote the DMRG BI-EI
and EI-SOO transition points, which can be obtained from
the energy differences

Dc2ðLÞ ¼ E0ðL; 0Þ − E0ðL − 1; 1Þ ¼ −E0ðL − 1; 1Þ (3)

and

Dc1ðLÞ ¼ E0ðL=2þ 1; L=2 − 1Þ − E0ðL=2; L=2Þ; (4)

respectively, in the course of a finite-size scaling analysis
(see the inset). Here, E0ðNf; NcÞ denotes the ground-state

energy for a system with Nf f and Nc c electrons atD ¼ 0.
Note that Eq. (3) holds for both open and periodic boundary
conditions (OBCs and PBCs), whereas Eq. (4) has to be
evaluated with PBCs (if here OBCs were used, an extra
factor 2 results: DOBC

c1 ¼ 2Dc1). For the DMRG runs
performed in this work, we keep at least m ¼ 3200
density-matrix eigenstates, which ensures a discarded
weight smaller than 1 × 10−6. The Dc2ðL → ∞Þ values
demonstrate the accuracy of our DMRG calculations. Exact
results for Dc1ðL → ∞Þ can only be obtained numerically,
where a comparison with the dotted line reveals the limits
of the strong-coupling approach [25]; see Fig. 1. The
criticality of the EI phase—corresponding to the critical
XY phase in the XXZ model with central charge c ¼ 1—
can be confirmed by the von Neumann entanglement
entropy SLðlÞ ¼ −Trlðρl ln ρlÞ [with reduced density
matrix ρl ¼ TrL−lðρÞ]. Numerically, the central charge
is best estimated from the entropy difference [28,29]:

c�ðLÞ≡ 3½SLðL=2 − 1Þ − SLðL=2Þ�= ln ½cosðπ=LÞ�: (5)

Our results for c�, displayed in the lower panel of Fig. 1 for
jtfj ¼ 0.1 at U ¼ 5, give clear evidence that c� → 1 in the
EI, whereas we find c� ¼ 0 in the BI and SOO phases.
Regrettably, c�ðLÞ is strongly system size dependent near
the EI-SOO transition.

FIG. 1 (color online). Upper panel: Ground-state phase diagram
of the half-filled 1D EFKM with jtfj ¼ 0.1. Here and in what
follows, we take tc as the unit of energy. Squares (circles) denote
the EI-BI (EI-SOO) transition points Dc2 (Dc1 ) obtained by the
DMRG method with up to L ¼ 128 sites and OBCs. The solid
line gives the analytical solution (2) for the EI-BI boundary; the
dotted line shows the strong-coupling result for the EI-SOO
boundary. The finite-size scaling of Dc1ðLÞ is illustrated by the
inset (open symbols); here, the corresponding strong-coupling
data are given by filled symbols. Lower panel: Central charge
obtained at U ¼ 5 for various L and PBCs. Criticality c� ∼ 1 is
observed for the EI.
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Let us now discuss the nature of the EI state in more
detail. For simplicity, we consider the case tftc < 0, where
two Fermi points (�kF) exist for U ¼ 0, provided D is
sufficiently small (otherwise, a direct band gap emerges).
As a signature of an excitonic Bose-Einstein condensate in
1D, one expects (i) a power-law decay of the correlations
hb†i bji with b†i ¼ c†i fi and (ii) a divergence of the excitonic
momentum distribution NðqÞ ¼ hb†qbqi with b†q ¼ ð1= ffiffiffiffi

L
p ÞP

kc
†
kþqfk for the state with the lowest possible energy (in

the direct gap case at q ¼ 0) due to the absence of true
long-range order. Figure 2 supports these expectations:
Whereas in the weak-coupling BCS regime (U ¼ 1),
hb†i bji decays almost exponentially and NðqÞ shows only
a marginal system-size dependence (for all momenta), in
the strong-coupling BEC regime close to the EI-BI tran-
sition (U ¼ 1.9), hb†i bji exhibits a rather slow algebraic
decay of the excitonic correlations and Nðq ¼ 0Þ becomes
divergent as L → ∞.
We note that the hc†fi expectation value is always zero for

a 1D system in the absence of an explicit f-c-band
hybridization. To examine the BCS-BEC crossover, we
adopt a technique introduced for detecting the particle
fluctuations of Cooper pairs in 2D systems [24]. That is,
we consider the off-diagonal anomalous exciton Green
function

Gcfðk;ωÞ ¼
�
ψ1

����c†k 1

ωþ iη −Hþ E0

fk

����ψ0

�
; (6)

where jψ0i is the ground state jNf; Nci with fixed numbers
of f and c electrons, jψ1i is the excited state jNf − 1;
Nc þ 1i, E0 is the averaged energy of jψ0i and jψ1i, and η
is a broadening, and determine the corresponding spectral
function Fðk;ωÞ ¼ ð−1=πÞℑGcfðk;ωÞ that gives the
condensation amplitude FðkÞ ¼ hψ1jc†kfkjψ0i. FðkÞ can
be directly computed by the ground-state DMRG method,
taking into account an extra target state jψ1i. From FðkÞ, the
coherence length characterizing the excitonic condensate
follows as

ξ2 ¼
X
k

j∇kFðkÞj2=
X
k

jFðkÞj2: (7)

The binding energy of the excitons EB can be also
determined from diverse ground-state energies [17]:

EB ¼ E0ðNf − 1; Nc þ 1Þ þ E0ðNf; NcÞ
− E0ðNf − 1; NcÞ − E0ðNf; Nc þ 1Þ: (8)

Figures 3(a) and 3(b) show the anomalous spectral
function Fðk;ωÞ in the weak-coupling (U ¼ 1) and
strong-coupling (U ¼ 1.9) regimes, respectively, where
D ¼ 1. In the former case, the EI arises from a semimetallic
phase. As a consequence, most of the spectral weight of the
quasiparticle excitations is located around the Fermi points
k ¼ �kF, again indicating a BCS-type pairing of electrons
and holes. Obviously, Fermi surface effects play no role for
large U, where the Hartree shift drives the system in the
semiconducting regime. Here, the excitation gap occurs at
k ¼ 0. Note that the gap between the lowest energy peaks
in Fðk;ωÞ is equal to the binding energy EB given by
Eq. (8). Figure 3(c) displays the frequency-integrated
quantity FðkÞ. At U ¼ 1, FðkÞ exhibits a sharp peak at
the Fermi momentum. Increasing U, the peak weakens and
shifts to smaller momenta. Close to the EI-BI transition
point U ¼ 1.9≲ Uc2 ¼ 1.92, FðkÞ has a maximum at
k ¼ 0 but is spread out in momentum space, indicating
that the radius of electron-hole pairs becomes small in real
space. Figure 3(d) gives the quasiparticle dispersion EðkÞ
derived from Aðk;ωÞ. Driving the BCS-BEC crossover by

FIG. 2 (color online). (a) Exciton-exciton correlation function
hb†i bji and excitonic momentum distribution function NðqÞ at
(b) U ¼ 1 and (c) U ¼ 1.9 for tf ¼ −0.1, D ¼ 1. Data are
obtained by the DMRG for 1D L-site lattices with PBCs.

FIG. 3 (color online). Anomalous spectral function Fðk;ωÞ in
the 1D EFKM with (a) U ¼ 1 and (b) U ¼ 1.9, where tf ¼ −0.1,
D ¼ 1. Data are obtained by ED using η ¼ 0.1, L ¼ 16,
and PBCs. Numerical results for (c) FðkÞ and (d) EðkÞ are
shown for U ¼ 1 (circles), 1.5 (diamonds), 1.7 (triangles), and
1.9 (squares). FðkÞ is determined by the DMRG for L ¼ 64
(PBC), whereas EðkÞ is extracted from the lowest peaks of single-
particle spectra Aðk;ωÞ calculated by ED for L ¼ 16 (PBC).
Dashed lines in (c) mark the corresponding Fermi momenta
kF ¼ πNc=L in the noninteracting limit.
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increasing U, the peaks around k ¼ �kF disappear as well
as the notch around k ¼ 0. Instead, a valence band with
a flattop around k ¼ 0 develops, just as observed, e.g., in
quasi-1D Ta2NiSe5 [6].
Figure 4 shows the variation of the coherence length and

the binding energy in the EI phase of the 1D EFKM with
jtfj ¼ 1 (left panels) and 0.1 (right panels). At small U, the
excitonic state is composed of electron-hole pairs having
large spatial extension, leading to large values of ξ. EB, on
the other hand, is rather small, but increases exponentially
with U. This typifies a BCS pairing mechanism. At large U,
the binding increases linearly with U. Here, tightly bound
spatially confined excitons acquire quantum coherence (with
ξ ≪ 1) in a Bose-Einstein condensation process.
We finally address the influence of a mass imbalance

between f- and c-band quasiparticles. The EI phase is
absent for tf ¼ 0. In the mass-symmetric case jtfj ¼ tc, the
1D Hubbard model results for D ¼ 0. Here, we cannot
distinguish between the AF (with vanishing spin gap) and
EI phases because both phases are critical. Therefore, in
this limit, we have examined the 1D EFKM for Nf > L=2.
To this end, both the U and D axes in Fig. 4 have been
rescaled by ðjtfj þ tcÞ, as suggested by the EI-BI transition
lines [Eq. (2)]. Indeed, we find that the EI phase shrinks as
jtfj decreases. That is, the mass anisotropy gets stronger,
which is simply a bandwidth effect, however, leading to a
stronger Ising anisotropy. This, on their part, enlarges the
SOO region, while the EI-BI phase boundary basically is
unaffected. Importantly, the location of the BCS-BEC

crossover, which can be derived from the intensity plots
for EB and ξ, does not change in this presentation. To
expose correlation effects, we included in Fig. 4 the
semimetallic-to-semiconducting transition line, assuming
that the EI phase is absent. UBIðDÞ can be obtained from
the band gap Δc that depends linearly on U for fixed D:
ΔcðDÞ ¼ U þ 2ðjtfj þ tcÞ þUBIðDÞ [i.e., UBIðDÞ scales
again with jtfj þ tc]. Apparently in the BCS-BEC cross-
over regime, a strong renormalization of the band structure
due to the incipient f-c hybridization takes place.
To conclude, adopting the numerically exact density-

matrix renormalization group technique, we examined the
1D EFKM and, most notably, proved the EI state shown to
be critical. The complete ground-state phase diagram was
derived and put into perspective, with the Bethe ansatz
results obtained in the strong-coupling limit for the spin-1=2
XXZ chain. Besides the EI-to-band-insulator transition, the
boundary between the EI and a phase with staggered orbital
ordering was determined with high accuracy. The whole
phase diagram of the 1D EFKM could be scaled by jtfj þ tc;
staggered orbital ordering appears only for small mass-
imbalance ratios jtfj=tc. The absence of an order parameter
prevents addressing the problem of excitonic condensation
in 1D systems by the usual mean-field approaches. That is
why we exploited the off-diagonal anomalous Green func-
tion. The related anomalous spectral function elucidates the
different nature of the electron-hole pairing and condensa-
tion process at weak and strong couplings. At fixed level
splitting, the binding energy between c electrons and f
holes is exponentially small in the weak-coupling regime.
It strongly increases as the Coulomb attraction increases.
Concomitantly, the coherence length of the electron-hole
pair condensate shortens. This unambiguously demonstrates
a crossover from BCS-like electron-hole pairing to a Bose-
Einstein condensation of preformed excitons. The quasipar-
ticle band dispersion in the BEC regime exhibits a rather
dispersionless valence band near k ¼ 0, despite the fact that
the expectation value hc†fi is zero because of the 1D setting.
This result further supports the EI scenario for quasi-1D
Ta2NiSe5, where the flat valence-band top was detected by
angle-resolved photoemission spectroscopy experiments.
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Exact-diagonalization study of exciton condensation in electron bilayers
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We report on small-cluster exact-diagonalization calculations which prove the formation of electron-hole pairs
(excitons) as a prerequisite for spontaneous interlayer phase coherence in double-layer systems described by
the extended Falicov-Kimball model. Evaluating the anomalous Green’s function and momentum distribution
function of the pairs, and thereby analyzing the dependence of the exciton binding energy, condensation amplitude,
and coherence length on the Coulomb interaction strength, we demonstrate a crossover between a BCS-like
electron-hole pairing transition and a Bose-Einstein condensation of tightly bound preformed excitons. We
furthermore show that a mass imbalance between electrons and holes tends to suppress the condensation of
excitons.

DOI: 10.1103/PhysRevB.88.035312 PACS number(s): 73.21.−b, 71.35.−y, 71.10.Fd

I. INTRODUCTION

The formation of excitonic quantum condensates is an
intensively studied continuous problem in condensed matter
physics.1–4 In a two-component (electron-hole) many-particle
system, the attractive Coulomb interaction between oppositely
charged electrons and holes can trigger their pairing and—
under certain conditions—build up a macroscopic phase-
coherent quantum state.

A variety of experimental attempts have been made to
observe the condensed state of excitons in quasithermal equi-
librium, e.g., in photoexcited semiconductors such as Cu2O,5–9

or in unconventional semiconductor and bilayer graphene
systems subject to electric and/or magnetic fields.10–14 Quite
recently, the emergence of spontaneous coherence in a gas of
indirect excitons in an electrostatic trap has been reported.15

Neutral electron-ion quantum plasmas are other promising
candidates for exciton condensates.16,17

From a theoretical point of view, a possible continu-
ous transition between a Bardeen-Cooper-Schrieffer (BCS)
electron-hole pair condensate and a Bose-Einstein condensate
(BEC) of preformed excitons has been of topical interest.4,18–23

However, exact results for the ground-state properties of
strongly correlated electron-hole (excitonic) systems are rare.
Gas (or fluid) models have recently been studied, e.g.,
by the diffusion quantum Monte Carlo method.24,25 Lattice
fermion models with short-range Coulomb interaction, such
as multiband Hubbard-like models,26–28 should be capable of
describing the physics of exciton condensation as well, but
they have not yet been thoroughly explored using unbiased
numerical techniques.

Motivated by this situation, in this paper we made an
attempt to address the problem of exciton condensation
in electron-hole bilayers in terms of a minimal lattice
fermion model, the so-called extended Falicov-Kimball model
(EFKM).29–33 Originally the EFKM described a two-band
electron system with local Coulomb interaction between f -
and c-band electrons, and it has been used to study electronic
ferroelectricity,30,31,34 excitonic resonances,35 or the excitonic
insulator state.33,36–40 Different from these problems, in our
double-layer (DL) system, the numbers of f and c particles
are separately conserved, however, because charge transfer

between the two layers is assumed to be impossible. This mim-
ics the generic situation in semiconductor electron-hole double
quantum wells,12,41,42 bilayer quantum antiferromagnets,43

and double-monolayer44,45 or double-bilayer graphene.46

II. MODEL

The EFKM for an electron-hole DL takes the form

H = −tf
∑
〈i,j〉

(f †
i fj + H.c.) − tc

∑
〈i,j〉

(c†i cj + H.c.)

−μf

∑
i

n
f

i − μc

∑
i

nc
i + U

∑
i

n
f

i nc
i , (1)

where f
†
i (fi) creates (annihilates) an electron in the f orbital

at site i of the hole (or valence-band) layer, and n
f

i = f
†
i fi

is the f -particle number operator. The transfer amplitude
between f orbitals on nearest-neighbor sites is denoted by tf .
Corresponding definitions apply for the c orbital of the electron
(or conduction-band) layer. U (> 0) parametrizes the on-site
interlayer (on-site) Coulomb attraction between f holes and
c electrons. The spin degrees of freedom have been ignored
for simplicity. Furthermore, we assume a band structure with
a direct band gap (tctf < 0) as shown in Fig. 1.

Taking into account the experimental situation,5–13,17,45 we
assume that the excited electrons and holes have an infinite
lifetime, that the number of excited electrons is equal to the
number of excited holes, and that the number of bound pairs
(excitons) can be viewed as an input parameter, independent
of the interaction strength. In practice, we adjust the chemical
potentials μf and μc to maintain the number of electrons in
the f and c layer separately, thereby fixing the average f - and
c-particle density per site as nf and nc, respectively. Due to
this simplified description Eq. (1), issues such as the exciton
Mott transition and biexciton formation16 are beyond the scope
of this work.

III. THEORETICAL APPROACH

We employ a Lanczos exact-diagonalization technique for
a finite square lattice with periodic boundary conditions (see
Fig. 1) and calculate the anomalous Green’s function for
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FIG. 1. (Color online) (a) Schematic representation of the DL
EFKM cluster model with Ns = 16 sites (32 orbitals). (b) Noninter-
acting tight-binding band structure and (c) square lattice Brillouin
zone. Dots indicate the allowed momenta of the 4 × 4 lattice with
periodic boundary conditions. Throughout this work, we assume
filling factors nf = 0.75 and nc = 0.25, i.e., (Nf ,Nc) = (12,4),
which means nh = ne = 0.25, irrespective of U . The red and blue
lines in (c) show the perfectly matching hole and electron Fermi
surfaces, respectively, with finite-lattice Fermi momenta kF located
at k = (±π/2,0) and (0, ± π/2).

exciton condensation,

Gcf (k,ω) = 〈
ψN

0

∣∣ c†k 1

ω + i0+ − H + E0
fk

∣∣ψN
0

〉
, (2)

in the momentum (k) and frequency (ω) space, where |ψN
0 〉

is the ground-state wave function and E0 is the ground-state
energy of a system with N electrons. We define the anomalous
spectral function

F (k,ω) = − 1

π
ImGcf (k,ω) (3)

and denote its frequency integral by Fk. Clearly, the anomalous
Green’s function vanishes in finite systems without long-range
phase coherence. We therefore have to assume the presence of
the state |ψN

0 〉, which is a coherent superposition of states
with different numbers of excited electrons and holes (or
excitons) at a given number N , just as for the BCS wave
function of superconductors where the number of electrons
is also not conserved. To detect particle fluctuations of the
exciton condensate, we adopt a technique introduced for the
evaluation of the superconducting anomalous Green’s function
on small clusters,47,48 which allows for the calculation of
the off-diagonal Green’s functions with respect to varying
particle numbers [see Eq. (4)]. We thus monitor the excitonic
pairing instability via the anomalous excitation spectrum
(corresponding to the Bogoliubov quasiparticle spectrum in
superconductors). Note that the term “anomalous” is used to
indicate that the number of electrons on each of the f and c

bands is not conserved in the course of exciton condensation

(or spontaneous c-f hybridization) although the total number
of electrons N is conserved.

Having Gcf (k,ω) determined, we can calculate the conden-
sation amplitude Fk (following Refs. 47 and 48) from

Fk = 〈Nf − 1,Nc + 1 | c†kfk | Nf ,Nc〉, (4)

where |Nf ,Nc〉 is the ground state with the fixed numbers of f

and c electrons, and subsequently we will be able to determine
the order parameter,

� = U

Ns

∑
k

Fk, (5)

and the coherence length,

ξ =
√∑

k |∇kFk|2∑
k |Fk|2 , (6)

for the excitonic condensate (Ns denotes the number of lattice
sites).

The binding energy of an exciton EB should be equal to
twice the order parameter � in the weak-coupling limit and
deviate largely from this value in the strong-coupling regime.
Within our finite-cluster approach, EB may be obtained
representing the orbital flavor by electron-hole variables, i.e.,
f

†
i → hi and c

†
i → e

†
i . As a result, the interaction term of

the DL EFKM takes the form U
∑

i n
f

i nc
i → −U

∑
i n

e
i n

h
i +

U
∑

i n
e
i , where, in addition to the attractive electron-hole

interaction, an extra on-site energy term appears. Due to this
term, we should first determine the energy for the addition and
removal of an electron:

E+
B = E0(Nf − 1,Nc + 1) + E0(Nf ,Nc)

− 2E0(Nf ,Nc + 1) + U, (7)

E−
B = E0(Nf − 1,Nc + 1) + E0(Nf ,Nc)

− 2E0(Nf − 1,Nc) − U, (8)

where E0(Nf ,Nc) is the ground-state energy of the system
with (Nf ,Nc) electrons. Then, if |tf | = tc, the exciton binding
energy EB equals E+

B = E−
B . For the mass-asymmetric case

|tf | �= tc, however, E+
B �= E−

B because E0(Nf ,Nc + 1) − U �=
E0(Nf − 1,Nc). Hence, EB should be defined as the average
of E+

B and E−
B , i.e., in general the exciton binding energy is

given by

EB = E0(Nf − 1,Nc + 1) + E0(Nf ,Nc)

−E0(Nf − 1,Nc) − E0(Nf ,Nc + 1). (9)

Finally, introducing a creation operator b
†
q =

(1/
√

Ns)
∑

k c
†
k+qfk of an excitonic quasiparticle with

momentum q, the momentum distribution function of
excitons can be obtained from

Nq = 〈Nf ,Nc | b†qbq | Nf ,Nc〉. (10)

IV. NUMERICAL RESULTS

A. Mass-symmetric case

We now present the results of our exact-diagonalization
study. Let us first examine the DL EFKM without mass
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FIG. 2. (Color online) Condensation amplitude Fk (upper panels) and momentum distribution function Nq of excitons (lower panels) in the
mass-symmetric DL EFKM with U/t = 0.5 (left), 5 (middle), and 50 (right).

imbalance, i.e., |tf | = tc ≡ t . Figure 2 shows the correspond-
ing data for the condensation amplitude Fk and the exciton
momentum distribution Nq , in a wide parameter range of U/t .
In the weak-coupling regime [panels (a) and (d)], Fk exhibits
pronounced maxima at the Fermi momenta, kF = (±π/2,0),
(0, ± π/2), and decreases rapidly away from the “Fermi sur-
face,” pointing toward a BCS-type instability of weakly bound
electron-hole pairs with s-wave symmetry. As U/t increases,
Fk broadens in momentum space [panel (b)], indicating that
the radius of the bound electron-hole objects becomes smaller
in real space. Accordingly, Nq is enhanced at momentum q =
(0,0); see Fig. 2(e). In the strong-coupling regime [panels (c)
and (f)], Fk is homogeneously spread over the entire Brillouin
zone, whereas Nq is sharply peaked at q = (0,0), which is a
sign of a BEC of tightly bound excitons. That is to say, as
the attraction between electrons and holes increases in the DL
EFKM, we get evidence for a BCS-BEC crossover scenario.

0  10  20  30U / t
0.0

 0.5

1.0

ξ

0

 10

 20

Δ
 / t, |E

B | / t

|EB| / t
Δ / t

ξ

FIG. 3. (Color online) Coherence length ξ (squares), order pa-
rameter � (diamonds), and exciton binding energy |EB | (circles) for
the mass-symmetric DL EFKM as functions of U/t . For comparison,
the asymptotics in the strong-coupling limit � ∝ 0.45U (dashed line)
and |EB | ∝ U (dotted line) have been inserted.

The behavior of the coherence length depicted in Fig. 3 as
a function of the Coulomb attraction corroborates this finding.
The spatial coherence of the excitonic state decreases with
increasing U/t , indicating that the character of the condensate
changes from BCS-like to BEC-like. That ξ stays finite as
U/t → 0 is an obvious artifact of our small cluster calculation.
Figure 3 also displays the functional dependence of both the
exciton order parameter and the exciton binding energy on
U/t . The results may be compared with those of the BCS
mean-field theory,21,22 which gives � and EB as a solution of
the self-consistent equations

1 = U

2Ns

∑
k

1√
(εk − μ̄)2 + �2

, (11)

2n = 1 − 1

Ns

∑
k

εk − μ̄√
(εk − μ̄)2 + �2

, (12)
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FIG. 4. (Color online) Binding energy |EB |/U (left ordinate)
and coherence length ξ (right ordinate) for the mass-asymmetric
(filled symbols) and mass-symmetric (open symbols) DL EFKM as
functions of |tf |/U at tc/U = 1.
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FIG. 5. (Color online) Exciton binding energy EB/U (left panel)
and coherence length ξ (right panel) of the DL EFKM in the tc/U -
|tf |/U plane.

where εk = 2t(cos kx + cos ky), n = ne = nh, μ̄ = μ −
U (n − 1/2), and μf = −μc = μ.

In the weak-coupling limit, we should recover the usual
BCS picture. � should therefore increase exponentially with
U : � ∝ exp[−1/ρ(εF)U ], thereby satisfying the relation
|EB | = 2�, with ρ(εF) being the density of states at the Fermi
level. In the strong-coupling limit, on the other hand, the BCS
equations yield the asymptotic behavior: � = U

√
n(1 − n) =√

3U/4 	 0.433U and |EB | = 2
√

μ̄2 + �2 = U . The numer-
ical results obtained for � and |EB | show that we find the BCS
relation |EB | = 2� at weak couplings. In the strong-coupling
limit, � and |EB | are found to be ∝ 0.45U and ∝ U ,
respectively, which matches the BEC of composite bosons,
where � = 0.433U and |EB | = U for U/t → ∞.

B. Mass-asymmetric case

We finally address the effects of a mass imbalance between
f holes and c electrons. Since |tf | �= tc, it makes sense to use
U as the unit of energy and determine the exciton binding
energy EB and coherence length ξ in dependence on |tf |/U .
Figure 4 shows the results for tc/U = 1 in comparison to the
mass-symmetric case where a BCS-to-BEC transition occurs
with decreasing |tf |/U . In contrast, ξ is not reflective of such
a crossover for tc �= |tf |, and the exciton binding energy even
weakens at strong couplings, |tf |/U � 1.

In the strong-coupling region, where both |tf |/U and tc/U

are small, the EFKM can be mapped onto the XXZ quantum
spin-1/2 model in a magnetic field,30

Heff = J
∑
〈i,j〉

[
τ i · τ j + δτ z

i τ z
j

] − Bz

∑
i

τ z
i (13)

with τ i = (1/2)
∑

α,β α
†
i σ αββi (α,β = f,c; σ is the vector of

Pauli matrices), J = 4|tf |tc/U , and δ = (|tf | − tc)2/(2|tf |tc).
Bz = 2μ is determined in order to maintain

∑
i τ

z
i = 1/4. The

effective model is isotropic in spin space for the case of |tf | =
tc, and it exhibits antiferromagnetic order in the x-y plane at
zero temperature. This long-range ordered state corresponds
to an exciton condensate in the original EFKM. Different
hopping parameters tc �= |tf | give rise to an Ising anisotropy
δ, which tends to suppress the x-y antiferromagnetic order.
Accordingly, the exciton binding energy |EB | (excitonic
condensate) is suppressed as |tf |/U → 0.

Figure 5 compiles our EB (left panel) and ξ (right panel)
data by two contour plots in the tc/U -|tf |/U plane. For the
mass-symmetric case tc = |tf |, i.e., on the diagonals of Fig. 5,
both |EB |/U and ξ indicate a smooth crossover from BCS to
BEC as U increases. On the other hand, at sufficiently weak
Coulomb interactions, tc/U � 0.3, we stay in the BCS-like
state as |tf |/U is varied by changing the absolute value of
tf /tc. Note that a strong mass imbalance between electrons
and holes acts in a “pair-breaking” way in both the BCS49 and
BEC26,50 limits.

V. SUMMARY

Based on unbiased exact-diagonalization calculations for
the two-dimensional extended Falicov-Kimball model, we
have studied the formation of excitons in both mass-symmetric
and mass-asymmetric electron-hole double-layer systems
(bilayers) and provided, most notably, strong evidence for
exciton condensation and a BCS-BEC crossover scenario at
zero temperature. Thereby, the properties of the excitonic
quasiparticles and the nature of the condensation process
were analyzed, exploiting the anomalous Green’s function
in order to determine the order parameter of the condensate
and coherence length, as well as the binding energy and
momentum distribution function of excitons. The weak and
strong correlation limits are discussed and put into perspective
to approximative analytical approaches. We corroborated
previous analytical26,49,50 and numerical17 findings to the effect
that a mass imbalance between electrons and holes might
suppress the condensation of excitons. This holds even in the
strong-coupling regime. We hope that the presented results will
stimulate further experimental studies of exciton condensation
in bilayer systems with strong electronic correlations.
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We investigate electron-hole pair condensation in electron bilayers described by the square-lattice
extended Falicov-Kimball model. Using exact diagonalization and variational cluster approximation
techniques we first calculate the anomalous Green’s function to clarify the character of the excitons in
momentum space. We then evaluate the coherence length ξ (in unit of the lattice constant a) from the
corresponding condensation amplitude and demonstrate the smooth crossover between a BCS state
of weakly paired electrons and holes (ξ/a � 1) and a BEC state of tightly bound excitons (ξ/a �
1) as the Coulomb attraction increases. Overcoming the finite-size effects of exact diagonalization
while still taking into account the essential correlation effects we show that the variational cluster
approximation provides an advantageous description of exciton condensation in strongly correlated
electron systems.

KEYWORDS: exciton condensation, BCS-BEC crossover, Falicov-Kimball model, exact
diagonalization, variational cluster approximation

1. Introduction

The formation of excitonic quantum condensates are intensively studied during the last half cen-
tury [1–4]. Experimentally, multifaceted attempts have been made to observe the condensed state of
excitons, e.g., in photoexcited semiconductors [5–9], unconventional semiconductor/graphene sys-
tems [10–14], electrostatic traps [15], or neutral electron-ion quantum plasmas [16]. Theoretically, a
possible crossover between a Bardeen-Cooper-Schrieffer (BCS) electron-hole pair condensate and a
Bose-Einstein condensate (BEC) of preformed excitons has been of topical interest [4, 17–23].

In order to get unbiased results for the problem of exciton condensation in electron-hole double-
layer systems, in previous work [24], we investigated a minimal lattice fermion model, the so-called
extended Falicov-Kimball model (EFKM) [25–29], by exact diagonalization (ED) of small clusters.
To pinpoint the finite-size effects and affirm the main conclusions of [24] in the thermodynamic
limit, in the present work, we employ the variational cluster approximation (VCA), based on the
self-energy functional theory [30–33], to the square-lattice double-layer EFKM. Thereby we will
corroborate the excitonic BCS-BEC crossover scenario suggested previously for strongly correlated
electron-hole systems [34–36]. Calculating the anomalous excitation spectra and the condensation
amplitude, we are able to extract the coherence length and order parameter of the condensate in both
limits. Methodically, we will compare the VCA results with the corresponding ED and mean-field
(MF) data to point out the range of applicability of the different approaches.
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2. Model and Method

2.1 Extended Falicov-Kimball model
The EFKM for an electron-hole double layer is defined by the Hamiltonian

H = −
∑

α=c,f

tα
∑
〈i,j〉

(α†
iαj + H.c.) + U

∑
i

nf
i nc

i −
∑

α=c,f

µα

∑
i

nα
i , (1)

where α†
i (αi) creates (annihilates) an electron in the α (= c, f) orbital at site i, and nα

i = α†
iαi. The

transfer amplitude of electrons between the α orbitals on nearest-neighbor sites is denoted by tα. We
assume a band structure with a direct band gap (tctf < 0). Without loss of generality the f orbitals
were assigned to the hole (or valence-band) layer and the c orbitals to the electron (or conduction-
band) layer. U (> 0) parametrizes the on-site interlayer Coulomb repulsion between f and c electrons
that allows for an on-site interlayer Coulomb attraction between f hole and c electrons. Note that in
our double-layer system the numbers of f and c particles are separately conserved because charge
transfer between the two layers is assumed to be impossible. This mimics the generic situation in
semiconductor electron-hole double quantum wells [12, 37, 38], and double-monolayer [39, 40] or
double-bilayer graphene systems [41]. We furthermore assume that the excited electrons and holes
have infinite lifetime and that the number of excited electrons is equal to the number of excited holes.
This is in accord with the experimental situation in the majority of cases [5–13, 23, 40]. In practice,
we adjust the chemical potentials µf and µc to maintain the number of electrons in the f and c
layers independently. Throughout this work, we assume that the effective mass of the f band is equal
to that of the c band (or |tf | = tc = t). Then we have the chemical potentials µf = −µc = µ.
Let us stress that the exciton condensation state in the double-layer EFKM can be mapped onto the
superconducting (superfluid) state in the attractive Hubbard model in the mass-balanced case [42].

2.2 Exact diagonalization and variational cluster approximation
Within the ED investigation of the double-layer EFKM we use finite-size square lattices of Lc =

4×4 = 16 sites (32 orbitals) with periodic boundary conditions (PBC). The particle densities are fixed
to be nf = 0.75 and nc = 0.25, i.e., (Nf , Nc) = (12, 4), which realizes a quarter-filled electron and
hole band: ne = nh = 0.25. For the 4×4 lattice considered, the Fermi momenta are kF = (±π/2, 0)
and kF = (0,±π/2).

To accomplish the thermodynamic limit, we employ the VCA based on the variational principle
for the grand potential as a functional of the self-energy [30–33]. The trial self-energy for the varia-
tional method is generated from the exact self-energy of the disconnected finite clusters which act as
a reference system. The Hamiltonian of the reference system is defined as H′ = H + Hpair + Hlocal

with

Hpair = ∆′
∑

i

(c†ifi + H.c.) and Hlocal = ε′f
∑

i

nf
i + ε′c

∑
i

nc
i , (2)

where the Weiss field for the s-wave pairing ∆′ and the on-site potentials ε′α (α = f, c) are variational
parameters. Note that the ε′α, fulfilling for the mass-balanced case ε′f = −ε′c = ε′, were introduced
to determine the particle density correctly. Provided (∂Ω/∂∆′, ∂Ω/∂ε′α) = (0, 0) is guaranteed, the
particle density nα follows from nα = −∂Ω/∂µα, and the chemical potential µα is determined to
maintain nf = 0.75 and nc = 0.25. The Fermi momentum kF is defined via εkF

= µ (at U = 0),
where εk = −2t(cos kx +cos ky). Note that in the space of the cluster reference system all electronic
correlations were exactly taken into account. We use Lc = 2 × 2 = 4 (8 orbitals) in what follows.
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Fig. 1. (Color online) Left panel: Anomalous spectral function F (k, ω) as obtained by ED [(a)-(c)] and
VCA [(d)-(f)] with a Lorentzian broadening of η/t = 0.1. Right panel: Exciton condensation amplitude F (k)
calculated by ED [(g)-(i)] and VCA [(j)-(l)]. In panels (j)-(l) the green dashed lines indicate the Fermi surface.

3. Numerical results

3.1 Anomalous Green’s function
Let us first discuss the anomalous Green’s function. Using ED, the anomalous Green’s function

is obtained from

Gcf
ED(k, ω) = 〈Nf − 1, Nc + 1|c†k

1
ω + iη −H + E0

fk|Nf , Nc〉 , (3)

where |Nf , Nc〉 is the ground state of the EFKM with fixed numbers of c and f electrons. In Eq. (3),
E0 is the average energy of the states |Nf , Nc〉 and |Nf − 1, Nc + 1〉 [24, 43, 44]. Within VCA, the
anomalous Green’s function is calculated by cluster perturbation theory (CPT) [45], Gcf

CPT(k, ω),
making use of optimized variational parameters. From Gcf (k, ω), we can immediately deduce the
anomalous spectral function: F (k, ω) = − 1

π ImGcf (k, ω).
Figure 1 (a)-(f) gives an intensity plot of F (k, ω) in the square-lattice Brillouin zone. First of

all we note that the VCA spectra basically agree with the ED spectra at the wave vectors allowed
for a 4 × 4 cluster with PBC. In the weak-coupling regime [see Fig. 1 (a) and (d)], F (k, ω) has a
sharp peak at the Fermi momentum kF whose intensity rapidly decreases as soon as the momentum
deviates from kF. With increasing U/t, the lowermost peak of F (k, ω) shifts to higher energies,
indicating an enhancement of the exciton’s binding energy |EB|, which may also be evaluated by the
ground-stete energies [24]. For U/t = 5 [see Fig. 1 (b) and (e)], F (k, ω) still exhibits a pronounced
peak around kF, but to compare to the U/t = 2.5 spectrum, F (k, ω) acquires substantial weight at
momenta away from kF. In the strong-coupling limit [cf. Fig. 1 (c) and (f) for U/t = 40], the spectral
weight of F (k, ω) is redistributed to higher energies and spread over the entire Brillouin zone.
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Fig. 2. (Color online) (a) Coherence length ξ in unit of the lattice constant a and (b) anomalous expectation
value Φ for the double-layer EFKM, as obtained by ED (open green circles), VCA (full red squares), and MF
(dashed blue lines). In (b), the horizontal line indicates |Φ| =

√
3/4 and the inset gives the order parameter

∆ = UΦ in the weak-coupling regime.

3.2 Exciton condensation amplitude
To elucidate the nature of excitons in momentum space we now consider the condensation am-

plitude F (k). Within ED the condensation amplitude can be directly calculated from

F (k) = 〈Nf − 1, Nc + 1|c†kfk|Nf , Nc〉 . (4)

In VCA the amplitude emanates from the anomalous CPT Green’s function

F (k) =
∮

C

dz

2πi
Gcf

CPT(k, z) , (5)

where the contour C encloses the negative real axis in frequency space.
The results for F (k) are shown in Fig. 1 (g)-(l). Again ED and VCA data agree insofar as com-

parable. The finite-size limitations of ED become obvious however. At weak couplings [cf. Fig. 1
(g) and (j)], the importance of Fermi surface effects are reflected in the corral-like shape of kF with
|F (kF)| ' 0.5. The sharply peaked F (k) in momentum space indicates that the radius of the exci-
ton is large in real space, i.e., we observe a weakly bound electron-hole pair. Increasing U/t, F (k)
broadens in momentum space, indicating a spatially more confined exciton. In the strong-coupling
regime displayed by Fig. 1 (i) and (l)), F (k) is (almost) homogeneously distributed over the whole
Brillouin zone. Hence the excitons are tightly bound and small in real space.

3.3 Coherence length
The coherence length ξ gives valuable information as to the nature of the exciton condensate.

Coming from F (k), this quantity may be defined as

ξ2 =
∑

r r2|F (r)|2∑
r |F (r)|2

=
∑

k |∇kF (k)|2∑
k |F (k)|2

, (6)

where F (r) = 1√
L

∑
r′〈c†r′+rfr′〉 is the condensation amplitude in real space for the electron-hole

pairs with distance r [24, 35, 42, 44]. The results obtained by ED, VCA, and MF are shown in Fig. 2
(a) in dependence on U/t. We find that ξ calculated by ED stays finite as U/t → 0. This is clearly
a finite-size effect caused by the small number of available momenta in the Brillouin zone. In the
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intermediate-to-strong coupling regime, the coherence lengths calculated by ED, VCA, and MF are
even in quantitative agreement. They rapidly decrease as U/t increases. At small U/t, the coherence
length is much larger than the lattice constant a, in consequence of the weakly bound electron-hole
pairs [cf. the behavior of F (k) shown in Fig. 1 (g)-(l)]. This is the BCS limit. Increasing U/t, ξ
decreases and firstly becomes comparable and finally much smaller than the lattice constant (for
very strong couplings). As a result the excitons become manifest in a BEC. Altogether we observe a
smooth crossover from a BCS state of weakly paired electrons and holes (ξ/a � 1) to a BEC state
of tightly bound pairs (ξ/a � 1). This crossover behavior is consistent with the calculated spectral
properties of the system shown in Fig. 1.

3.4 Order parameter
Finally let us discuss the order parameter for exciton condensation ∆ = UΦ, which again can be

obtained from the anomalous Green’s function since

Φ =
1
L

∑
k

〈c†kfk〉 =
1
L

∑
k

F (k). (7)

The results for Φ and ∆ are shown in Fig. 2 (b). The MF theory predicts that the order parameter
∆MF increases exponentially with increasing U/t in the weak-coupling limit (log ∆MF ∝ −1/U ),
and ΦMF saturates at

√
3/4 for ne = nh = 0.25 in the strong-coupling limit. Obviously ED fails

in reproducing the correct weak-coupling behavior: ΦED stays finite as U/t → 0 and ∆ED does
not show the exponential increase at U/t & 0. Clearly this can be attributed to finite-size effects
within our small cluster calculation. Remarkably the VCA yields the exponential increase expected
in the weak-coupling limit [see inset of Fig. 2 (b)]. We furthermore note that ΦVCA is in qualitative
accordance with the ED and MF results in the intermediate to strong coupling regime. For U/t &
5, ΦVCA is reduced in comparison to the MF result. This may be due to the effects of quantum
fluctuations of exciton condensation included in VCA but not in MF.

4. Conclusions

To summarize, we have investigated the formation and condensation of excitons in the mass-
balanced double-layer extended Falicov-Kimball model using—besides ED (exact diagonalization)—
VCA (variational cluster approximation) and MF (mean-field) based approaches. We have analyzed
the nature of excitonic bound states in dependence on the strength of the Coulomb interaction be-
tween electrons and holes and showed—evaluating the anomalous Green’s function—that the exci-
tonic condensation amplitude, coherence length, and order parameter function signal a smooth BCS-
BEC crossover in the condensed phase. Our comparative numerical study reveals the need for taking
control of both correlation and finite-size effects. In this respect the VCA turns out to be especially
advantageous in the weak-to-intermediate coupling regime.
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Abstract – We reexamine the nature of the metallic phase of the one-dimensional half-filled
Holstein model of spinless fermions. To this end, we determine the Tomonaga-Luttinger–liquid
correlation parameter Kρ by large-scale density matrix renormalisation group (DMRG) calcula-
tions, exploiting i) the leading-order scaling relations between the ground-state energy and the
single-particle excitation gap and ii) the static charge structure factor in the long-wavelength limit.
While both approaches give almost identical results for intermediate-to-large phonon frequencies,
we find contrasting behaviour in the adiabatic regime: i) Kρ > 1 (attractive) vs. ii) Kρ < 1 (repul-
sive). The latter result for the correlation exponent is corroborated by data obtained for the
momentum distribution function n(k), which puts the existence of an attractive metallic state in
the spinless fermion Holstein model into question. We conclude that the scaling relation must be
modified in the presence of electron-phonon interactions with noticeable retardation.

Copyright c© EPLA, 2009

During the last three decades we have seen a constant
growth of experimental realizations of one-dimensional
(1D) materials. Nowadays the progress in nanotechnology
allows to manufacture isolated carbon nanotubes or
quantum wires [1]. But there are also bulk materials with
quasi-1D structures inside. Famous examples are conju-
gated polymers, charge transfer salts, halogen-bridged
transition metal complexes, ferroelectric perovskites,
spin Peierls compounds, molecular metals or organic
superconductors [2]. The apparent diversity of physical
properties observed for different material classes has its
seeds in the strong competition between the itinerancy
of the electronic charge carriers on the one hand and
the electron-electron and electron-lattice interactions on
the other hand. The latter tend to establish insulating
spin-density-wave or charge-density-wave (CDW) ground
states, respectively, at least for commensurate band
fillings [3–8]. Interactions have drastic effects in 1D
systems compared to higher dimensions. Most notably
one observes a “collectivisation” of any excitation. As
a consequence, for fermionic systems, the usual Fermi-
liquid description breaks down [9]. Luttinger-liquid theory
provides an adequate compensation [10]. It tells us that
all ground-state, spectral and thermodynamic properties

(a)E-mail: holger.fehske@physik.uni-greifswald.de

of a Luttinger liquid are basically controlled by a few
(non-universal) parameters. This result can be used in the
following way. Starting from a specific microscopic model,
one can try to compute certain (thermodynamic) quanti-
ties exactly, e.g. for finite systems by elaborate numerical
techniques, and afterwards extract the Luttinger-liquid
parameters, e.g. the charge correlation exponent Kρ and
charge velocity uρ, out of them. Advantageously these
parameters, describing the overall low-energy physics of
our system, are much less sensitive to finite-size effects
than the correlation functions themselves. Of course, the
concept of a Luttinger liquid has to be taken as a starting
point to study more complex situations, comprising e.g.
the lattice degrees of freedom or disorder effects. Then the
Luttinger parameters become effective parameters, which
characterise very basic properties of the system, such as
an attractive (Kρ > 1) or repulsive (Kρ > 1) interaction
between the particles [9,11].
In this respect, focusing on the coupling of charge

carriers to the vibrations of a deformable lattice, the
so-called Holstein model of spinless fermions (HMSF) [12],

H = −t
∑
j

(
c†jcj+1+h.c.

)
+ω0

∑
j

b†jbj

−gω0
∑
j

(
b†j + bj

)(
nj − 1

2

)
, (1)
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is particularly rewarding to study. It accounts for a tight-
binding electron band (∝ t), a local electron-phonon (EP)
interaction (∝ g), and the energy of the phonon subsystem
in harmonic approximation. In eq. (1), c†j (cj) creates
(annihilates) an electron at Wannier site j of a 1D

lattice with N sites, b†j (bj) are the corresponding bosonic
operators for a dispersionless optical phonon, and ω0 is the
frequency of such an internal (e.g. molecular) vibration.
Despite its seemingly simplicity, the 1D HMSF is not

exactly solvable. It is generally accepted, however, that the
model exhibits a quantum phase transition from a metal
to a CDW insulator at half-filling, when the EP coupling g
increases at fixed ω0 > 0 (see footnote

1). The CDW phase
above gc(ω0) is connected to a (Peierls) distortion of the
lattice, and can be classified as traditional band insulator
and polaronic superlattice, respectively, in the adiabatic
(ω0� 1) and anti-adiabatic (ω0� 1) regimes [13,14]. A
wide range of analytical and numerical methods have been
applied to map out the phase diagram of the HMSF in the
whole g−ω0 plane [13,15–19], with significant differences
in the region of small-to-intermediate phonon frequen-
cies. The results agree in the anti-adiabatic strong EP
coupling limit (ω0→∞, g > 1), where the HMSF possesses
XXZ-model physics. There a Kosterlitz-Thouless–type
transition [20] occurs at the spin isotropy point, with Kρ
reaching 1/2 from above at the transition point [15,18].
In the first instance, however, the correlation exponent
Kρ can be used to characterise the metallic phase itself.
According to Haldane’s conjecture [21], a 1D gapless
(metallic) system of interacting fermions should belong
to the Tomonaga-Luttinger–liquid (TLL) universality
class [10,22]. For a TLL of spinless fermions, the ground-
state energy E(N) and the one-particle charge excitation
gap ∆c1 of a finite system with N sites scale to leading
order as [11,23]:

E(N)

N
= ε(∞)− π

3

uρ

2

1

N2
, (2)

∆c1 =E
±(N)−E(N) = πuρ

2

1

Kρ

1

N
. (3)

Here, ε(∞) denotes the energy density of the infinite
system with N/2 electrons, E±(N) are the ground-state
energies with ±1 fermion away from half-filling, and
uρ is the renormalised charge velocity

2. Using these
equations from field theory, in the past, Kρ and uρ
were determined for the HMSF on finite clusters by
various exact numerical techniques [13,17,18,26]. Inter-
estingly the TLL phase seems to split into two differ-
ent regions: for large phonon frequencies the effective
fermion-fermion interaction is repulsive (Kρ < 1), while it

1We consider the half-filled band case hereafter, i.e.,
1
N

∑
j〈c†jcj〉= 12 , and take t= 1 as energy unit.

2The TLL scaling relations (2) and (3) were also derived for
spinful systems [24], and, e.g., used in order to compute the central
charge in the framework of the t-J model [25].

is attractive (Kρ > 1) for small frequencies [13,26]. In the
former (anti-adiabatic) regime the kinetic energy (∝ uρ)
is strongly reduced and the charge carriers behave like
(small) polarons [27,28]. By contrast the mass renormal-
isation is rather weak in the adiabatic regime [26]. The
size of the phonon frequency also significantly affects the
electron and phonon spectral functions [14,19,29].
The existence of an attractive TLL (Kρ > 1) in the

HMSF is by no means obvious however. Although retarda-
tion effects might lead to an effective attraction between
electrons at small ω0/t (i.e., a second electron may take
the advantage of the lattice distortion left by the first one),
it has been pointed out that such an interaction is ineffec-
tive in the case of spinless fermions for small EP couplings
because of the Pauli exclusion principle [15]3. Further-
more, if Kρ would increase with increasing EP coupling at
small ω0, as indicated by different numerical studies [13,26]
exploiting eqs. (2) and (3), how could we detect the
phase transition from Kρ→ 1/2 in the adiabatic regime?
Of course, eqs. (2) and (3) are leading-order expressions
only, and nonlinear correction terms have to been taken
into account in order to obtain accurate data for gc [18].
This particularly applies to the adiabatic region. Accord-
ing to table III in ref. [18] the difference between the gc
determined with and without nonlinear correction terms
adds up to more than 3% for ω0 = 0.1, whereas it is only
0.4% for ω0 = 10. Actually the charge velocity uρ depends
strongly on the system’s size as shown in fig. 1 obtained
by a density matrix renormalisation group (DMRG) calcu-
lation. Extrapolating the ground-state energies E(N) for
N = 8, 12 and 16, the charge velocity uρ can be estimated
as uρ/2∼ 0.977, so thatKρ ∼ 1.21 from the finite-size scal-
ing of ∆c1 , while taking the ground-state energies for
N = 32, 48 and 64, the extracted value of Kρ reduces
to 1.06 (uρ/2∼ 0.858). Moreover we are faced with the
difficulty that the single-particle excitation gap seems to
scale to zero (see inset of fig. 1 for ω0 = 0.1, g= 2.5),
i.e. ∆c1 gives no signal for a pairing instability. Because
of this situation it is highly desirable to find a reliable and
numerical efficient method for calculating the correla-
tion exponent Kρ with high precision in the whole TLL
regime.
Recently Ejima et al. [30] have shown that Kρ can be

determined for fermionic models accurately in an alterna-
tive way: by a DMRG calculation of the charge structure
factor for systems with open boundary conditions. The
approach was extended to coupled fermion-boson systems
and has been used, e.g., to analyse the metal-insulator
transition points in a model with boson affected transport,
for both small and large boson frequencies [31].
In this work we adapt this calculation scheme to the 1D

Holstein model of spinless fermions (1) and reexamine, in
particular, the possible existence of a metallic phase with
attractive interaction. To this end we compute, in a first

3Note this argument does not hold for the spinful Holstein model.
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Fig. 1: (Colour on-line) Finite-size scaling of the ground-state
energy E(N) and the one-particle charge excitation gap ∆c1
(inset) in the spinless Holstein model at half-filling. Results
are obtained by DMRG for ω0 = 0.1 and g= 2.5. The linear
equations give the coefficients of a straight-line fit to the scaling
relations (2) and (3).

step, the static charge structure factor

Sc(q) =
1

N

∑
j,l

eiq(j−l)
〈(
c†jcj −

1

2

)(
c†l cl −

1

2

)〉
, (4)

and extract, in a second step, the TLL correlation expo-
nent Kρ, being proportional to the slope of Sc(q) in the
long-wavelength limit [7,30,32]:

Kρ = π lim
q→0+

Sc(q)

q
, q=

2π

N
, N →∞. (5)

Moreover we calculate the momentum distribution func-
tion for the HMSF and, having accurate data for Kρ
at hand, analyse the results within a TLL description,
also in relation to the corresponding results for the half-
filled spinless t-V model. When treating coupled 1D
fermion-boson systems by DMRG we employ the pseudo-
site approach [33] which maps a bosonic site, containing
2nb states, exactly to nb pseudo-sites. For the numer-
ics presented below we have taken into account up to
nb = 5 pseudo-sites, so that the nb-th local boson density
is always smaller than 10−8. In addition we kept m= 1200
density matrix eigenstates. Then the discarded weight was
always smaller than 1.0× 10−10.
Figure 2(a) presents Kρ obtained from eq. (5) for

various phonon frequencies. Note that data points in (a)
represent Kρ-values extrapolated to the infinite system at
fixed (g, ω0) (cf., e.g., panel (c)). For intermediate-to-large
phonon frequencies we find Kρ(g)< 1 for all g, but an
appreciable reduction of Kρ takes place above g= 1 only.
The strong decrease of Kρ and uρ (not shown) for g > 1
is closely connected to polaron formation, which appears
at about g� 1 in the non-to-anti-adiabatic regime [28].
There the TLL typifies a (repulsive) polaronic metal [14].
We emphasise that in this frequency region the values
of Kρ, computed from eq. (5) via the static charge
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Fig. 2: (Colour on-line) Panel (a): TLL parameter Kρ in
the spinless Holstein model at half-filling. Closed symbols
are obtained via Sc(q) from eq. (5) for ω0 = 0.1 (triangles),
1 (squares), and 10 (circles). Kρ obtained from the scaling
relations (2) and (3) are included as open symbols. Lines
are guides to the eye. Panel (b): ground-state phase diagram
of the 1D half-filled spinless Holstein model according to
refs. [13,14,18]. Stars denote the phase transition points ob-
tained from Kρ = 1/2 in (a). Panel (c): Kρ as a function of the
inverse system size at various EP couplings g= 1.5, 2.5, and
2.81 for ω0 = 0.1 (adiabatic regime). Lines are polynomial fits.

structure factor, reasonably agree with those determined
by the scaling relations (2), (3) (see panel (a), filled
and open symbols for ω0 = 10). Furthermore, our values
for the critical coupling, gc, confirm previous results
(although a Kosterlitz-Thouless transition is difficult to
detect because the gap opens exponentially slow), as can
be seen by inserting the points where Kρ(gc) = 1/2 (stars)
into the existing phase diagram of the HMSF [13,14,18]
(cf. panel (b)).
Let us now look whether the situation changes when

the phonon frequency becomes smaller, i.e., when we
enter the adiabatic regime. Figure 2(c) shows the scaling
of Kρ at ω0 = 0.1, based on the relation (5), for up to
N = 256 sites, using open boundary conditions. The lines
are second-order polynomial fits. Surprisingly, we find that
Kρ scales to values smaller than unity for any EP coupling
(filled symbols). This holds for other adiabatic phonon
frequencies ω0 < 1 as well. Taking this result seriously,
we arrive at the conclusion that the HMSF does not
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exhibit a metallic TLL phase with attractive interaction,
which is in strong contradiction to the reasonings based
on the leading-order energy scaling laws (2) and (3) (see
open symbols in fig. 2(a)). We would like to point out,
however, that our Sc(q)-based approach gives apparently
the correct value of the critical coupling for the TLL-
CDW metal-insulator transition in the adiabatic HMSF.
In previous work, gc was estimated as gc(ω0 = 0.1)∼ 2.8
[18], which is in accordance with our DMRG-results for
Kρ(N) at g= 2.81 that clearly extrapolate to Kρ = 1/2 in
the thermodynamic limit. This means that the TLL-CDW
transition at small ω0 = 0.1 seems to be of Kosterlitz-
Thouless type as well.
To substantiate these findings, we investigate another

quantity of interest, the so-called momentum distribution
function,

n(k) =
1

N

∑
j,l

eik(j−l)〈c†jcl 〉. (6)

Basically n(k) is the Fourier transform of the equal time
Green’s function [9] and therefore gives the occupation of
fermionic states carrying momentum k. For free fermions,
at T = 0, all states up to the Fermi energy, EF , are
occupied, so that n(k) has a discontinuity (Z = 1) at the
corresponding Fermi momentum kF (see footnote

4). For
a 1D TLL, instead of the (Fermi-liquid archetypical) jump
of n(k) at kF , one finds an essential power law singularity,
corresponding to a vanishing quasiparticle weight Z = 0,

n(k) = nkF −C|k− kF|αsgn(k− kF), (7)

where nkF = 1/2 for the half-filled band case. For spinless
fermions, again the critical exponent α is given by the TLL
parameter Kρ:

α=
1

2
(Kρ+K

−1
ρ )− 1. (8)

The relation (7) with (8) was first derived in [10,34],
and afterwards many analytical [35] and numerical [36]
calculations were performed in order to determine the
momentum distribution in the weak- and strong-coupling
regimes. By means of DMRG, n(k) can be computed

directly from the Fourier transformed 〈c†jcl〉 correlator,
n(k) = 1

N

∑N
j,l=1 cos (k(j− l)) 〈c†jcl 〉, where k= 2πN m with

m= 0, . . . , N/2. In the following, we calculate n(k) for
a linear chain with periodic boundary conditions, and
N = 66 sites.
Before we discuss n(k) for the HMSF, let us consider a

somewhat simpler, purely fermionic model, however, the
spinless t-V model,

H=−t
∑
j

(
c†jcj+1+h.c.

)
+V
∑
j

njnj+1, (9)

where V is the nearest-neighbour Coulomb interaction.
This is of avail because the t-V model can also be mapped

4In an interacting Fermi-liquid system there is still a discontinu-
ity, but Z < 1.
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Fig. 3: (Colour on-line) Momentum distribution function n(k)
for the half-filled spinless t-V model. Lines are fit to eq. (7)
with Kρ taken from eq. (10).

onto the exactly solvable XXZ-Heisenberg model (i.e.,
it should exhibit the same asymptotic behaviour as the
strong-coupling anti-adiabatic HMSF). For the t-V model
the analytical form of Kρ in the thermodynamic limit is
known,

Kρ =
π

2arccos[−V/(2t)] . (10)

Hence, the results obtained for n(k) by DMRG can be
fitted by the relation (7), with Kρ taken from eq. (10) [37].
Clearly, since eq. (7) is a weak-coupling result, the DMRG
data for n(k) are fitted almost perfectly for small V .
This is demonstrated by figs. 3(a) and (b). Figure 3(c)
shows that the agreement becomes worse for larger
Coulomb interaction (V = 1.9). In the insulating phase
(V > 2), the power law singularity does not exist anymore
(cf. the smooth curves in fig. 3(d)). As V →∞, the system
becomes a “perfect” CDW, and consequently n(k) = 1/2
for all momenta k. De facto this situation is realized for
V = 1000 already where, according to fig. 3(d), n(k) is
almost constant.
Turning now to the HMSF, we discuss at first the

case of large phonon frequencies. Figure 4 gives the n(k)
DMRG data obtained for ω0 = 10 (symbols). Obviously,
the momentum distribution is a monotonously decreasing
function as k changes from the centre (k= 0) to the
boundary of the Brillouin zone (k= π), with a power
law singularity at k= kF in the metallic phase (panels
(a) to (c)). Quite different from the t-V model, however,
the momentum distribution becomes renormalised for all
momenta k, as soon as the EP coupling is switched on,
where n(k) decreases (increases) almost uniformly for
0� k < π/2 (π/2<k� π). Although there is no jump in
n(k) at kF , as for an ordinary Fermi liquid, for finite

27001-p4

8 Thesis Articles

94



TLL parameter and momentum distribution function for the Holstein model

0

0.2

0.4

0.6

0.8

1
n
(k

)

0 0.2 0.4 0.6 0.8 1
k / π

0 0.2 0.4 0.6 0.8 1
k / π

0

0.2

0.4

0.6

0.8

1

n
(k

)

0 0.5 1
0.46
0.48
0.5

0.52
0.54

0 0.5 1
0.49

0.5

0.51

g = 1.5g = 0.5

g = 2

Kρ ~ 1 Kρ = 0.91

C = 0.43 C = 0.1

g = 3.5

Kρ = 0.65

C = 0.035

(CDW)

(a) (b)

(d)(c)

(TLL)(TLL)

(TLL)

Fig. 4: (Colour on-line) Momentum distribution function n(k)
in the anti-adiabatic regime (ω0 = 10) of the half-filled spinless
Holstein model . Lines are a fit to eq. (7) with Kρ calculated by
the DMRG. Insets give n(k) with magnified axis of ordinate.

TLL systems the difference ∆= n(kF− δ)−n(kF+ δ) is
finite (with δ = π/N = π/66 in our case), and rapidly
decreases with increasing EP interaction g. As can be
seen from the solid lines in figs. 4(a)–(c), the momentum
distribution can be surprisingly well fitted to the weak-
coupling result (7), just by adjusting the constant C.
Thereby we take the Kρ–values extracted from eq. (5).
Of course, around k� kF the agreement becomes worse
as g increases, but we observe a power law singularity
even close to the CDW transition point. Approaching
the insulating CDW state this singularity vanishes, and
∆→ 0 as g→ gc (cf. the insets in panels (c) and (d)).
In the CDW phase, n(k)� 1/2 for all k (see panel (d)).
In the anti-adiabatic regime, the CDW state basically
constitutes a polaronic superlattice, i.e. the electrons are
heavily dressed by phonons and, in addition, ordered in
a A-B structure. Since the polarons are self-trapped, the
system tends to be a perfect CDW, as in the limit V →∞
of the t-V model.
Finally, we investigate the behaviour of n(k) in the

adiabatic regime of the HMSF (see fig. 5 for ω0 = 0.1).
In this case, n(k) is well approximated by eq. (7) with
C = 0.5 for all g < gc (see panels (a) and (b)). This
means the weak-coupling result Kρ � 1, ∆� 1, holds in
(almost) the entire metallic region, where the system can
be considered as to be composed of nearly free electrons.
The momentum distribution starts to deviate from eq. (7)
just in the neighbourhood of the metal insulator transition
point g� gc, but even there n(k) differs near k∼ kF = π/2
only. Note that ∆ (C) is still very large in the transition
region. Of course, very close to the critical point, where a
strong renormalisation of Kρ takes place (indicating the
formation of a TLL with strong repulsive interactions),
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Fig. 5: (Colour on-line) Momentum distribution function n(k)
in the adiabatic regime (ω0 = 0.1) of the half-filled spinless
Holstein model. Lines are a fit to eq. (7) with Kρ calculated by
the DMRG.

the fit of our DMRG data to the weak-coupling relation
(7) fails. In the insulating state, n(k) is given by a
smooth curve (without power law singularity), which —in
contrast to the anti-adiabatic case— exhibits a significant
curvature because the EP coupling used in fig. 5(d) is
small if compared to the half-electronic bandwidth 2t (see
footnote 5). Therefore system now typifies rather a Peierls
band insulator than a polaronic superlattice.
To summarise, we investigated the properties of the

metallic phase and the metal insulator transition in the
spinless fermion Holstein model by means of a boson
pseudo-site DMRG technique supplemented by a careful
finite-size scaling analysis. In particular we determined
the Tomonaga-Luttinger correlation exponent Kρ from
the long-wavelength limit of the static charge structure
factor. This approach yields reliable data for Kρ in the
whole range of electron-phonon interaction strengths g and
phonon frequencies ω0. We compare our results with new
and previous data extracted in an alternative way from
leading-order scaling relations for the ground-state energy
and single-particle excitation gap. In striking contrast to
the latter data we find Kρ < 1 for all phonon frequencies,
i.e., the metallic state of the HMSF represents a repulsive
Tomonaga-Luttinger liquid, even in the adiabatic regime.
Therefore we conclude that in one dimension we have to
include the spin degrees of freedom [7,8,15] in order to
obtain, e.g., a phase with attractive interactions (Kρ > 1),
or even dominant superconducting correlations. Further-
more, since the metal insulator phase boundary in the
g-ω−10 plane obtained from the Kρ(g, ω0) = 1/2 line is in

5Recall that in the adiabatic regime λ= g2ω0/2t is the appropri-
ate dimensionless EP interaction parameter in order to discriminate
weak- (λ� 1) and strong-coupling (λ� 1) situations.
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excellent agreement with previous results [13,14,18], we
suppose that the TLL-CDW transition in the HMSF is
always of Kosterlitz-Thouless type. Comparing the behav-
iour of the momentum distribution function with the
weak-coupling TLL result reveals, however, significant
differences regarding the nature of the metallic and insu-
lating phases in the adiabatic and anti-adiabatic regimes
of the HMSF. Whereas the metallic state is a weakly renor-
malised TLL and the CDW phase typifies a Peierls band
insulator at small phonon frequencies, a polaronic metal
and a polaronic superlattice are formed at large phonon
frequencies. This is in accord with the electron and phonon
spectral properties detected in refs. [14,29]. In the strong-
coupling anti-adiabatic regime the momentum distribu-
tion function indicates perfect CDW behaviour as in the
V →∞ limit of the t-V model.
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DMRG analysis of the SDW-CDW crossover region

in the 1D half-filled Hubbard-Holstein model

S. Ejima and H. Fehske
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Abstract. In order to clarify the physics of the crossover from a spin-density-wave (SDW)
Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D)
systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density
matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation
exponents, the momentum distribution function, and various excitation gaps, we confirm that
an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.

The Hubbard-Holstein model (HHM) [1] is archetypal for exploring the complex interplay
of electron-electron and electron-phonon interactions especially in quasi-1D materials, such as
halogen-bridged transition metal complexes, charge transfer salts, or organic superconductors [2].
It accounts for a tight-binding electron band (∝ 2t), an intra-site Coulomb repulsion between
electrons of opposite spin (∝ u = U/4t), a local coupling of the charge carriers to optical phonons
(∝ λ = g2ω0/2t), and the energy of the phonon subsystem in harmonic approximation (∝ ω0/t):

H = −t
∑

jσ

(c†jσcj+1σ + h.c.) + U
∑

j

nj↑nj↓ − gω0

∑

jσ

(b†j + bj)niσ + ω0

∑

j

b†jbj . (1)

Here c†iσ (ciσ) creates (annihilates) a spin-σ electron at Wannier site i of an 1D lattice with

N sites, niσ = c†iσciσ, and b†i (bi) are the corresponding creation (annihilation) operators for a
dispersionless phonon. We consider the case 1

N

∑
iσ niσ = 1 hereafter, and take t as energy unit.

Based on exact diagonalisation data for the staggered static spin/charge structure factor,
Sσ/ρ(q) = 1

N

∑
j,ℓ eiq(j−ℓ)〈(n̂j↑ ± n̂j↓)(n̂ℓ↑ ± n̂ℓ↓)〉, it has been argued that the HHM shows a

crossover between Mott and Peierls insulating phases near u/λ ≃ 1 [3]. But this only holds in
the strong-coupling adiabatic-to-intermediate phonon frequency regime. Later on the ground-
state phase diagram of the HHM was explored in more detail, also for weak interaction strengths
and large phonon frequencies. In this regime, variational displacement Lang-Firsov [4], stochastic
series expansion QMC [5], and DMRG [6] methods give strong evidence that, if λ is enhanced at
fixed u and ω0, the SDW-CDW transition splits into two subsequent SDW-metal and metal-CDW
transitions at λc1 and λc2, respectively (see fig. 1, dashed and dot-dashed lines). Very recent
DMRG data indicated that in the anti-adiabatic regime of very large phonon frequencies the
metallic phase might be even more extended than the one obtained by QMC and is subdivided
into regions with a normal 1D metallic (I) and a bipolaronic-liquid (II) behaviour [7].

In this work, we will re-examine the weak-coupling SDW-CDW transition regime by
calculating the ground-state properties of the HHM in the framework of a large-scale numerical
(boson pseudo-site) DMRG approach supplemented by a finite-size scaling analysis [8].
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Figure 1. Qualitative phase diagram of the 1D Hubbard-
Holstein model. Given that in the half-filled HHM model
the ground-state is metallic at u = 0 for ω0 > 0 provided
that g < gc, it was proposed that this metallic phase
continues to exist between the SDW and CDW states for
u > 0 [4, 5, 6, 7]. With increasing ω0 the region of the
intervening metallic state increases, and the tricritical point
um moves to larger u [5]. The SDW state shows no long-
range order (LRO) and is characterised by a vanishing spin
gap ∆s but a finite charge gap ∆c1 , whereas the CDW phase
exhibits true LRO and ∆s = ∆c1 > 0.

Characterising the SDW-CDW-intervening metallic phase of the HHM, we presume that
for the metallic state a Tomonaga-Luttinger-liquid (TLL) description holds. In the TLL
picture, nonuniversal coefficients, Kρ and Kσ, determine the decay of correlation functions
and therefore can be used to identify the properties of the TLL phase [9], but also the phase
boundaries to the insulating states [5]. In practice, we can extract the TLL correlation exponents
from the slope of the corresponding structure factors in the long-wavelength limit [5, 10]:
Kρ/σ = π limq→0 Sρ/σ(q)/q, where q = 2π/N for N → ∞.

Specifically, Kρ > 1 (Kρ < 1) corresponds to attractive (repulsive) charge correlations in
the TLL and Kρ = 0 signals an insulating phase. Hence Kρ jumps from 1 → 0 at the metal-
SDW/CDW transitions. The spin exponent takes the value Kσ = 0 in a spin-gapped phase and
Kσ = 1 everywhere else in the thermodynamic limit [11]. For finite systems the situation is more
involved, in particular for the spin exponent Kσ. First, the convergence Kσ → 0 is slow-going as
N → ∞ in the spin-gapped phase. Second, logarithmic corrections prevent Kσ → 1 in the spin-
gapless (SDW) phase. On the other hand, these logarithmic corrections vanish at the critical
point, where the spin gap opens, and we can utilise that Kσ (Kρ) crosses 1 from above (below)
at some λc1 (as the electron-phonon coupling increases for fixed u), in order to determine the
SDW-metal phase boundary itself. Increasing λ further, Kρ should cross 1 once again, this time
from above, at another critical coupling strength, λc2 , which pins the metal-CDW transition
point down.

Figure 2 corroborates this scenario for the anti-adiabatic regime of the HHM. The two critical
values λc1 and λc2 are in accord with the phase diagram obtained by QMC [5]. Kσ < 1 and
Kρ > 1 earmark the intervening metallic phase. In terms of the TLL framework, a metallic phase
with Kρ > 1 exhibits dominant superconducting correlations. Recent DMRG calculations of the
the (s–, p–, and d–wave) superconducting correlation functions of the half-filled HHM indicate,
however, that these correlations are only sub-dominant against CDW correlations [6], while QMC
investigations attributed the Kρ > 1 to finite-size effects and suggest that Kρ(N → ∞) = 1,
i.e., superconducting and CDW correlations are exactly degenerate.

Here we inspect the finite-size scaling of the spin and single-particle charge excitation gaps,
∆s(N) = E0(1) − E0(0) and ∆c1(N) = E+

0 (1/2) + E−
0 (−1/2) − 2E0(0), respectively, as well as

that of the two-particle binding energy ∆b(N) = E2−
0 (0)+E0(0)−2E−

0 (−1/2), where E
(L±)
0 (Sz)

is the ground-state energy at or away from half-filling with Ne = N ± L particles in the sector
with total spin-z component Sz. The left panel of fig. 2 shows that both spin and charge
gaps open at λc1 (but there is no LRO). For u < um, the transition at λc1 seems to be of
Kosterlitz-Thouless type, i.e. just above λc1 the gaps are exponentially small and therefore their
magnitude is difficult to determine. In this region, denoted by (I) in fig. 1, we find ∆c1 ∼ ∆s,
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Figure 2. DMRG results for the half-filled HHM with u = 0.25 and ω0 = 5. Left panel: charge
(Kρ, filled circles) and spin (Kσ, open squares) TLL exponents as functions of λ [left-hand axis
of ordinate]. Open triangles up (triangles down) give the spin (charge) gap ∆s (∆c1) [right-
hand axis of ordinate]. Data shown are extrapolated values for the infinite systems, using open
boundary conditions. Right panel: Finite-size scaling of the binding energy ∆b for different λ;
lines are polynomial fits. In the numerical calculations we use up to five pseudo-sites and keep
2400 density-matrix eigenstates; then, for all parameters studied, the local boson density is less
than 10−8 and the discarded weight is smaller than 10−9.

and the binding energy ∆b is also extremely small, or maybe even zero (see triangles up, right-
hand panel of fig. 2). As λ increases, we obtain a (smooth) crossover to a metallic regime with
a noticeable two-particle binding ∆b < 0 (region (II) in fig. 1), where ∆c1 ∼ ∆s. This is in
accord with the very recent findings of Ref. [7], where a subdivision of the metallic phase into a
weakly renormalised TLL (I) and a bipolaronic liquid1 (II) was suggested. In the latter phase,
the two-particle excitation gap ∆c2(N) = E2+

0 (0)+E2−
0 (0)− 2E0(0) was shown to scale to zero.

In the CDW phase, which typifies a bipolaronic superlattice at large phonon frequencies, we
have, besides ∆s = ∆c1 > 0, ∆c2 > 0 and ∆b < 0, whereas in the SDW state ∆c2 > 0 but
∆b(N → ∞) → 0. While the basic scenario discussed so far persists in the adiabatic regime,
the metallic region shrinks as the phonon frequency ω0 becomes smaller [5, 7]. Furthermore,
the CDW state rather behaves as a normal Peierls insulator and consequently there is a weaker
tendency towards bipolaron formation in the metallic state for small λ, and u < um.

Finally, let us investigate the behaviour of the momentum distribution function, nσ(k) =
1
N

∑N
j,l=1 cos (k(j − l)) 〈c†j,σcl,σ〉, k = 2πm/N , m = 0, . . . , N/2, which can be obtained by DMRG

for a system with periodic boundary conditions.
Figure 3 shows the variation of n(k) for weak (circles) and intermediate (stars) Hubbard

interactions in the SDW (a), TLL (b)-(c), and CDW (d) phases. The momentum distribution is
a monotonously decreasing function as k changes from the centre (k = 0) to the boundary
of the Brillouin zone (k = π). Since we consider the weak-coupling regime, n(k) is only
weakly renormalised away from the Fermi momentum kF . For a 1D TLL, instead of the
Fermi liquid typical jump of n(k) at kF , one finds an essential power-law singularity [9],
corresponding to a vanishing quasiparticle weight Z = 0. For finite TLL systems, the difference
∆ = n(kF − δ) − n(kF + δ) is finite (with δ = π/N = π/66 in our case), and rapidly decreases
with increasing couplings λ, u. Approaching the insulating SDW/CDW states n(k) becomes a
smooth curve, i.e. the singularity vanishes and ∆ → 0. At very large λ, the system develops a

1 Note that the polaronic two-particle bound states are not necessarily small (i.e. on-site).
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Figure 3. Momentum distribution of the
half-filled HHM in the anti-adiabatic regime
(ω0 = 5). Open (closed) circles give DMRG
results at u = 0.25 (u = 1) for a system
with N = 66 sites and periodic boundary
conditions. The occupation of fermionic
states carrying momentum k is given by
n(k) = 1

2

∑
σ nσ(k), and we have kF = π/2,

nkF
= 1/2 for the half-filled band case. In

the intermediate metallic phase, n(k) exhibits
a power-law singularity at kF [see panels (b)
and (c)]. At weak and strong electron-phonon
couplings insulating SDW [panel (a)] and
CDW [panel (d)] are realised, respectively.

“perfect” CDW with n(k) = 1/2 for all momenta k.
To summarise, we validated the existence of an intervening metallic phase in the SDW-CDW

transition regime of the 1D half-filled Hubbard-Holstein model for u < um by large-scale DMRG
calculations. Spin and charge gaps open exponentially slowly at the SDW-TLL transition point,
λc1 , but no long-range order develops. λc1(u, ω0) can be determined from the “1”–crossing of
the spin and charge TLL parameters. In the TLL, the momentum distribution function exhibits
a power-law singularity at kF . As the electron-phonon coupling increases, a crossover to a
bipolaronic metal, indicated by negative binding energy, takes place, before the systems enters
the long-range ordered insulating CDW phase at a second critical coupling λc2 . We would like
to point out that fixing the metal-CDW phase boundary quantitatively is a difficult issue.
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We solve a very general two-channel fermion-boson model describing charge transport within some

background medium by means of a refined pseudosite density-matrix renormalization group technique.

Performing a careful finite-size scaling analysis, we determine the ground-state phase diagram and

convincingly prove that the model exhibits a metal-insulator quantum phase transition for the half-filled

band case. In order to characterize the metallic and insulating regimes we calculate, besides the local

particle densities and fermion-boson correlation functions, the kinetic energy, the charge-structure factor,

the Luttinger liquid charge exponent, and the single-particle excitation gap for a one-dimensional infinite

system.

DOI: 10.1103/PhysRevLett.102.106404 PACS numbers: 71.10.Hf, 71.10.Fd, 71.30.+h

The proof of the existence of metal-insulator transitions
(MITs) in generic model Hamiltonians is one of the most
fundamental problems in solid state theory. While the
mechanisms that can drive a MIT, such as band structure
effects [1], disorder [2], Coulomb correlations [3], or the
coupling to the lattice degrees of freedom [4], are accepted
in general, there is only a very small number of micro-
scopic models which have rigorously been shown to indeed
exhibit such a transition. Examples are the three-di-
mensional (3D) Anderson tight-binding (disorder) model,
for which an analytical proof of particle localization exists
[5], or the 1D spinless fermion Holstein (electron-phonon)
model, where the Tomonaga-Luttinger-liquid (TLL)
charge-density-wave (CDW) MIT has been confirmed nu-
merically by the density-matrix renormalization group
(DMRG) [6]. Zero-temperature MITs triggered by
Coulomb interaction are more difficult to assess; the pro-
totype half-filled 1D Hubbard model, e.g., is insulating for
all U > 0 [7], and only on introducing a (particular) long-
range hopping does the MIT take place at finite interaction
strength [8]. In the 1D half-filled extended Hubbard (U-V)
model, there exists at most a metallic line at the bond-
order-wave CDW insulator-insulator transition [9]. If
Coulomb and electron-phonon interactions compete, an
extended intervening metallic phase may occur between
Mott and Peierls insulating states, which allows for a MIT.
This has been demonstrated for the 1D Holstein-Hubbard
model at half filling [10].

Quite recently a novel quantum transport Hamiltonian
has been proposed [11] which describes regimes of quasi-
free, correlation or fluctuation dominated transport. In a
sense this model parametrizes the correlations inherent to a
fermionic many-particle system, but also the couplings to
phonon or bath degrees of freedom, by a ‘‘background
medium’’ that controls the particle’s transport properties.
Thus the model captures basic aspects of more complicated
Hubbard or Holstein Hamiltonians. Then it is a legitimate

question to ask whether the interaction with the back-
ground may even drive a MIT.
Consider the Hamiltonian [11]

H ¼ Hb � �
X
i

ðbyi þ biÞ þ!0

X
i

byi bi þ
N�2

!0

; (1)

where Hb ¼ �tb
P

hi;jif
y
j fiðbyi þ bjÞ describes a boson-

affected nearest-neighbor hopping (/ tb) of spinless fermi-

onic particles (fðyÞi ). A fermion emits (or absorbs) a local

boson byj (bi) every time it hops between lattice sites i, j.

This way the particle creates local distortions of certain
energy in the background. In the case of an antiferromag-
netic spin background the distortions correspond to local
spin deviations (cf. the motion of a hole in the t-J model
[12]). If the background medium is a deformable lattice,
they are basically lattice fluctuations (phonons). Other
situations such as doped CDWs or exciton transport in
molecular aggregates might be envisaged. In any case the
distortions of the background can be parametrized as bo-
sons [11,13]. The distortions are able to relax (compare �
with J? in the t-J model), which is described by the second
term in (1). The third term gives the energy of the bosons;
the constant energy shift N�2=!0 guarantees finite energy
for N ! 1. Performing the unitary transformation bi �
bi þ �=!0 eliminates the boson relaxation term in favor of

a second, free-fermion hopping channel, H ! H ¼ Hb þ
Hf þ!0

P
ib

y
i bi, where Hf ¼ �tf

P
hi;jif

y
j fi with tf ¼

2�tb=!0. Hereafter we focus on the 1D half-filled band
case, i.e., fermion numberNf=N ¼ 1=2, and take tb ¼ 1 as

the energy unit.
In our model (1), the particles have only a charge degree

of freedom. Then, for a tight-binding band structure and in
the absence of disorder, the formation of a CDW is the only
possibility for a MIT. The CDW might be induced by
strong correlations in the background, which exist for large
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!0 because (i) coherent transport (/ tf) takes place on a

strongly reduced energy scale only and (ii) incoherent
transport is energetically costly [11]. Hence, in the limit
!0 � 1, an effective Hamiltonian with nearest-neighbor
fermion repulsion results. By contrast, if the local distor-
tions of the background relax readily (i.e., � � 1) and/or
the energy of the bosons is small (i.e., !0 � 1), the free
hopping channel can act efficiently against any correlation-
induced charge ordering.

Evidence for a MIT comes from a very recent exact
diagonalization (ED) study of (1): Through calculating the
wave-vector-resolved photoemission and inverse photo-
emission spectra, the opening of a single-particle excita-
tion gap has been observed at KF ¼ ��=2 as � decreases
at relatively large !0 ¼ 2 [14]. Of course, dealing with
lattices of up to 16 sites, this does not unambiguously
prove the existence of a true phase transition which may
occur in the thermodynamic limit N ! 1 only.

In this Letter, we carry out the first large-scale DMRG
investigation of the two-channel transport model (1). In
combination with a finite-size scaling analysis this allows
us to map out the ground-state phase diagram for the 1D
half-filled band case and to characterize the different
phases involved. The DMRG is one of the most powerful
and accurate numerical techniques for studying 1D fermi-
onic many-body systems [15]. It can be easily generalized
to treat systems including bosons. Within the pseudosite
approach an exact mapping of a boson site, containing 2nb

states, to nb pseudosites is performed [16]. Here we take
into account up to nb ¼ 5 pseudosites, so that the nbth
local boson density is always smaller than 10�8. In addi-
tion, we keepm ¼ 1200 to 2000 density-matrix eigenstates
and extrapolate various quantities to the m ! 1 limit. To
test our DMRG implementation we compared data ob-
tained for small systems with previous ED results [14]
and got very good agreement: The relative error of the
ground-state energy jEED � EDMRGj was always smaller
than 10�7 (for all � at !0 ¼ 2); the discarded weight was
smaller than 5� 10�8.

As indicated by small cluster EDs [14], at !0 ¼ 2:0,
where fermions and bosons are strongly correlated for
small �, a MIT might occur in the range of 0:01< �<
5. This is confirmed by DMRG for much larger systems:
Figs. 1(a) and 1(b), showing the variation of the local den-

sities of fermions hfyi fii and bosons hbyi bii, respectively,
point towards the existence of a homogeneous state (CDW
state) for rather large (small) �. Using open boundary con-
ditions (OBCs), the system is obviously not translation in-
variant; i.e., the local density is inhomogeneous in any
case. In the CDW phase, there are two degenerate ground
states. Within an OBC DMRG calculation, one of these
ground states is picked out by initializing the DMRG al-
gorithm, so that the CDW state is directly observable in the
local density. In the metallic regime, on the other hand, the
open boundaries reveal (strong) Friedel oscillations, which
will be algebraically reduced, however, as we move to-

wards the interior. Thus for large enough system sizes,
within the central part of the chain, the local density be-
comes constant [see filled symbols in Figs. 1(a) and 1(b)]
[17].
The CDW structure of the insulating state shows up also

in the fermion-boson correlation function

�fbðjÞ ¼ 1

Nf

X
i

hfyi fibyiþjbiþji: (2)

Calculating �fbðjÞ at !0 ¼ 2:0 for N ¼ 64 with antiperi-
odic boundary conditions (APBCs) [18], we find a distinc-
tive alternation for � ¼ 0:01 and a constant value away
from the ‘‘central site’’ for � ¼ 0:50, which again supports
the MIT scenario [see Fig. 1(c)]. Note that in the latter case
there is still a large boson density at the particle’s nearest-
neighbor site, locally enhancing the mobility of the carrier.
Whether the pronounced CDW correlations observed for

small � and large !0 are signatures of true long-range
order remains an open issue yet. To answer this question,
we explore the static charge-structure factor,

ScðqÞ ¼ 1

N

X
j;k

eiqðj�kÞ
��

fyj fj �
1

2

��
fyk fk �

1

2

��
; (3)

where 0 � q < 2�. If Scð�Þ=N stays finite in the thermo-
dynamic limit, CDW long-range order exists. Figure 2(a)
demonstrates that this is the case for � ¼ 0:01, i.e., when
the distortions of the background relax poorly. By contrast,
limN!1Sð�Þ=N ¼ 0 for � ¼ 0:5. This means the model
(1) undergoes a quantum phase transition from a metal to
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FIG. 1 (color online). Local densities of fermions hfyi fii (a)
and bosons hbyi bii (b) for a 128-site system with OBCs. Open

symbols are for � ¼ 0:01 (CDW regime); filled ones for � ¼ 0:5
(metallic regime). The fermion-boson correlation function �fbðjÞ
is given in panel (c) for a 64-site system with APBCs [here the
discarded weight is 1:4� 10�10 (7:9� 10�10) for � ¼ 0:01
(� ¼ 0:50)]. In all cases !0 ¼ 2:0.
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an insulator as the relaxation parameter � decreases at
fixed !0.

Next we investigate the relative importance of the differ-
ent transport mechanisms by calculating the kinetic energy
parts

Ekin
b=f ¼ hc 0jHb=fjc 0i (4)

(jc 0i denotes the ground state). Figure 2(b) shows that Ekin
f

tends to zero at small �, indicating the suppression of the
coherent transport channel. Note that boson-assisted trans-
port is possible for both small and large � [Ekin

b stays close

to �0:6; see panel (b)], and even becomes more pro-
nounced in the CDW phase.

Finally we determine the TLL charge exponent K� and

the single-particle excitation gap�c1 [which, for the model

(1), equals the charge gap]. K� is proportional to the slope

of the charge-structure factor in the long-wavelength limit
q ! 0þ [19]:

K� ¼ �lim
q!0

ScðqÞ
q

; q ¼ 2�

N
; N ! 1: (5)

From this relation we can calculate K� quite accurately

using DMRG techniques. As is well-known the 1D spinless
fermion model with the nearest-neighbor Coulomb inter-
action V at half filling can be mapped onto the exactly
solvable XXZ model. There the TLL charge exponent
decreases from K� ¼ 1, as V is enhanced, and finally

reaches 1=2 at the MIT point [20]. We expect that this
holds also for the 1D spinless fermion transport model (1)
at half band filling, even though there are only a few

analytical or numerical results referring to this for coupled
fermion-boson systems [for the (Hubbard-)Holstein model
see [6,10] ]. The single-particle (charge) gap can be ob-
tained from

�c1ðNÞ ¼ EðNf þ 1Þ þ EðNf � 1Þ � 2EðNfÞ; (6)

where EðNfÞ and EðNf � 1Þ are the ground-state energies
in the Nf- and (Nf � 1)-particle sectors, respectively, with

Nf ¼ N=2. Figures 2(c) and 2(d) illustrate the finite-size

scaling analysis for the TLL parameter (c) and the charge
gap (d) at !0 ¼ 2:0. Both physical quantities can be ex-
trapolated by performing a least-squares fit to a second-
order polynomial in 1=N. Note that close to the MIT points
we need larger system sizes, because a strong finite-size
dependence evolves. In this regime, we use chains from
N ¼ 32 to 256 sites and higher order polynomial functions
(up to fourth order) to extrapolate the data. In doing so, we
determine the nonuniversal exponents K�ð�Þ> 0:5 in the

metallic TLL phase where �c1 ¼ 0, and the finite charge

gap �c1 > 0 in the CDW phase [see panels (c) and (d)].

In Fig. 3 we display the extrapolated values of the TLL
exponent and the charge gap as a function of � at fixed
!0 ¼ 2:0. Lowering �, K� decreases from 1 ! 1=2. The

point where K� ¼ 1=2 is reached marks the critical cou-

pling for the MIT [��1
c ð!0 ¼ 2Þ � 20:4]. From the ex-

trapolated DMRG data it seems that the charge gap
opens exponentially on entering the insulating phase and
afterwards rises almost linearly. This result is similar to
what is observed for the TLL-CDW transition in the anti-
adiabatic strong-coupling limit of the spinless fermion
Holstein model, which there possesses XXZ-model phys-
ics (i.e., a Kosterlitz-Thouless transition at the spin iso-
tropy point). But note that we find a repulsive particle
interaction (K� � 1) in the metallic phase for small boson

frequencies as well; i.e., there is no indication for a pairing
instability in the half-filled band case.
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Figure 4 represents the main result of our work: the
ground-state phase diagram of the 1D half-filled fermion-
boson model (1) in the ��1-!�1

0 plane. Obviously the

phase space is divided into two regimes, the metallic
TLL phase and the insulating CDW phase with long-range
order. We first discuss the limit of large !0. In this regime
background fluctuations, which are intimately connected
with any particle hop, are energetically costly. As a result
the itinerancy of the particles is suppressed to a large
extent, and charge ordering becomes favorable. Never-
theless, we find a metallic state even for!0 ¼ 1, provided
that ��1 < ��1

c (!0 ¼ 1) (numerically we proved the
TLL to exist for ��1 < ��1

c ’ 6:3 at !0 ¼ 1000). In this
case the system’s ability for relaxation (/�) is strong
enough to prevent long-range charge order. This is remi-
niscent of the existence of a finite critical coupling strength
gc (g2 ¼ "p=!0) in the antiadiabatic limit (!0 ! 1) of

the spinless fermion Holstein model, where the TLL phase
is realized for g < gcð!Þ [6]. In contrast to the TLL-CDW
transition in the Holstein model, however, the symmetry-
broken CDW state is a few-boson state [14] (i.e., not a
Peierls phase with many phonons involved). In the opposite
limit of small !0, the background medium is easily dis-
turbed by particle motion. Therefore the rate of bosonic
fluctuations (/!�1

0 ) is high. Now we enter the fluctuation

dominated regime [11], and consequently CDW order is
suppressed. The inset of Fig. 4 shows that even for � ¼ 0,
i.e., if the explicit �-relaxation channel is closed, a metallic
state may exist below a finite critical energy !0ð0Þ.

To conclude, using an unbiased numerical (DMRG)
technique, we proved that the very general fermion-boson
transport model (1) displays a correlation-induced metal-
insulator transition at half filling in 1D. The metallic phase
typifies a repulsive Luttinger liquid, while the insulating

phase shows CDW long-range order. The phase boundary
between these states is nontrivial. It would be highly
desirable to verify the numerical results of this Letter by
an analytical (field theoretical or algebraic) approach.
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Abstract. To understand how charge transport is affected by a background medium and vice
versa we study a two-channel transport model which captures this interplay via a novel, effective
fermion-boson coupling. By means of (dynamical) DMRG we prove that this model exhibits
a metal-insulator transition at half-filling, where the metal typifies a repulsive Luttinger liquid
and the insulator constitutes a charge density wave. The quantum phase transition point is
determined consistently from the calculated photoemission spectra, the scaling of the Luttinger
liquid exponent, the charge excitation gap, and the entanglement entropy.

The way a system evolves from a metallic to an insulating state is one of the most fundamental
problems in solid state theory. Electron-electron and electron-phonon interactions are the driving
forces behind metal-insulator transitions (MITs) in the majority of cases. For example, the
Mott-Hubbard MIT [1] is caused by strong Coulomb correlations, whereas the Peierls MIT [2]
is triggered by the coupling to vibrational excitations of the crystal. Theoretically the MIT
problem can be addressed by the investigation of generic Hamiltonians for interacting electrons
and phonons such as Hubbard or Holstein models [3]. In one dimension (1D), these models
exhibit a MIT at half-filling, where on the insulating side of the MIT a spin-density-wave
(SDW) or a charge-density-wave (CDW) broken-symmetry ground state appears, respectively.
On the metallic side, near the MIT, charge transport then takes place within a strongly
correlated “background” that anticipates the developing SDW, respectively CDW, order. Since
the particles responsible for charge transport and the background order phenomena are the
same, the problem is very complex.

A path forward might be the construction of simplified transport models, which capture
the basic mechanisms of quantum transport in a background medium in a rather effective way.
Along this line a novel quantum transport model has been proposed recently [4],

H = −tb
∑

〈i,j〉

f †j fi(b
†
i + bj)− λ

∑

i

(b†i + bi) + ω0

∑

i

b†ibi . (1)

This so-called Edwards model mimics the correlations inherent to a spinfull fermionic many-
particle systems by a boson affected hopping of spinless particles (see Fig. 1). For the half-filled
band case, the model describes a repulsive Tomonaga-Luttinger liquid (TLL), provided the
excitations of the background are energetically inexpensive (ω0 < ω0,c) or will readily relax
(λ > λc(ω0)). This defines the fluctuation dominated regime. By contrast, strong background
correlations, which will develop for large ω0 and small λ ≪ tb tend to immobilize the charge
carriers and may even drive a MIT by establishing CDW long-range order [5].
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Figure 1. The Edwards model (1) describes a very general situation: As a charge carrier (•)
moves along a 1D transport path it creates an excitation with energy ω0 (∗) in the background
at the site it leaves or annihilates an existing excitation at the site it enters. The background
medium may represent, e.g., a magnetically, orbitally or charge ordered lattice. One assumes
that the (de)excitation of the background can be parameterized as a bosonic degree of freedom.
Any distortion of the background can heal by quantum fluctuations. Accordingly the λ-term
allows for spontaneous boson creation and annihilation processes.

In the present work, we employ density-matrix renormalization group (DMRG) and
dynamical DMRG methods [6] to analyse the ground-state properties of the Edwards model
and the charge carrier dynamics for the limiting case of high-energy background fluctuations.

Let us start with the discussion of the photoemission (PE) spectra. The single-particle
spectral function probed by angle-resolved [inverse] PE reads

A(k, ω) = A−(k, ω) +A+(k, ω) , with A±(k, ω) =
∑

n

|〈ψ±
n |f

±
k |ψ0〉|

2 δ[ω ∓ ω±] . (2)

Here A−(k, ω) [A+(k, ω)] is associated with the emission [injection] of an electron with wave

vector k, i.e. f−k = fk and f+k = f †k . |ψ0〉 is the ground state of a N–site system in the Nf–
particle sector, while |ψ±

n 〉 denote the n-th excited states in the Nf ± 1-particle sectors with
excitation energies ω±

n = E±
n − E0. For the half-filled Edwards model we have Nf = N/2.

Figure 2 shows A(k, ω) for a stiff background, i.e. the distortions induced by particle hopping
are energetically costly. In this regime the bosons will strongly affect particle transport: The
quasiparticle mass is sizeably enhanced and a renormalized band structure appears but—if λ is
large enough—the system remains metallic, as can be seen from the finite spectral weight at the
Fermi energy EF (left panel). As the system’s ability for relaxation decreases, i.e., at fixed ω0,
λ falls below a certain critical value, a gap opens in the single-particle spectrum at kF = π/2
(middle panel). Evidently the system has become an insulator. We note the internal feedback
mechanism: The collective boson excitations originate from the motion of the charge carriers
and have to persist long enough to finally inhibit particle transport, thereby completely changing
the nature of the many-particle ground state. The collective boson-particle dynamics leads to
an asymmetric band structure for k ≤ kF and k ≥ kF (see inset). While the induced hole
probed by PE can only move coherently by a six-step process with three bosons first excited and
afterwards consumed, an additional electron can easily move by a two-step process even if strong
CDW correlations exist in the background [5]. We note that the (I)PE spectra exhibit weak
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Figure 2. Line-shape of the single-particle spectral A(k, ω) in the half-filled band sector of the
1D Edwards model. The insets shows the dispersion of the absorption/emission maximum. For
the numerics, we consider an N = 32–site chain with open boundary conditions (BC) and map a
boson site, containing 2nb states, to nb pseudosites. We take up to 4 pseudosites, keep m = 500
density-matrix eigenstates, and use a broadening η = 0.1. All energies are given in units of tb.

signals around the bare boson energies ±ω0 (not shown). The interrelation of charge dynamics
and background fluctuation becomes apparent again, if we decrease ω0 keeping λ fixed (right
panel). Now the fluctuations overcome the correlations and the system returns to a metallic
state which is different in nature, however, from the state we started with: A(k, ω) shows sharp
absorption features near kF only and is “overdamped” at the Brillouin zone boundaries, where
the spectrum is dominated by bosonic excitations.

In order to determine more precisely the phase boundary between the metallic and insulating
ground states, typifying a Tomonaga-Luttinger liquid (TLL) and a CDW, respectively, we
analyse the limiting (N → ∞) behaviour of the TLL charge exponent

Kρ = π lim
q→0

Sc(q)

q
, with Sc(q) =

1
N

∑

i,j

eiq(j−k)〈(nj −
1
2)(nk −

1
2)〉 , q =

2π

N
, (3)

as well as those of the single-particle (charge) gap, ∆c(N) = E+
0 + E−

0 − 2E0, and monitor the
finite-size scaling of the entanglement entropy difference [7]

∆SN = SN (N/2)− SN (N/2− 1) = −
c∗

3
ln cos

[ π

N

]

, (4)

where SN (l) = −Tr[ρl ln ρl] =
c∗

3 ln
[

N
π
sin

(

πl
N

)]

+ s1. We expect that the TLL charge exponent

decreases from Kρ = 1, as λ is lowered, and finally reaches 1/2 at the MIT point, if the transition
is of Kosterlitz-Thouless type [8, 9]. The central charge c∗ should scale to unity in the metallic
TLL regime [10].

Figure 3 demonstrates that the N → ∞ extrapolated Kρ indeed becomes 1/2 at some critical
value, where λ−1

c (ω0 = 10) ≃ 5.89, indicating the MIT. In the metallic phase we find a repulsive
particle interaction, Kρ ≤ 1. Our DMRG results point towards an exponential opening of the
charge gap entering the insulating state, which corroborates the Kosterlitz-Thouless transition
scenario. Note that the CDW state of the Edwards model is a few boson state, in contrast to
the Peierls CDW phase of the Holstein model [5]. That means the MIT in the Edwards model is
driven by strong correlations, as for the Mott-Hubbard transition. To extract the central charge
c∗ we use the entanglement entropy difference, Eq. (4), rather than directly exploiting SN (l).
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Figure 3. Left panel: N → ∞ extrapolated value of the TLL parameter Kρ, respectively of
the charge gap ∆c, as a function of λ−1 for ω0 = 10 (open BC). Middle panel: Entanglement
entropy differences ∆SN for different system sizes (periodic BC). The red dashed-dotted line
gives the MIT transition point in reasonable agreement with the value obtained from Kρ (black
dashed line). Right panels: Critical value of λ−1

c (filled circle, top panel) and central charge
c∗ ≃ 1 (filled square, bottom panel), both extrapolated from the maxima of ∆SN . Here we use
m = 2000, nb = 2, and ensure a discarded weight less than 10−10.

For a model with spinless fermions this is advantageous because we can work with a fixed system
size, thereby avoiding antiperiodic BC that give rise to complex phase factors [7]. As can be
seen from the middle panel of Fig. 3, for λ−1 < λ−1

c , the rescaled quantity −3∆SN/ ln[cos(π/N)]
extrapolates to unity as N → ∞. This opens an alternative route to detect the MIT point. We
find that the λ−1

c (ω0) determined by extrapolating the maximum of ∆SN , i.e. in a completely
different manner, matches the critical value obtained from Kρ surprisingly well. Simultaneously,
indeed c∗ → 1 (see right panel).

To summarise, we have studied the spectral and ground-state properties of the 1D Edwards
fermion-boson transport model by large-scale (dynamical) DMRG numerics. We showed that
strong correlations within the background medium will not only affect the charge-carrier’s
dynamics by enhancing the quasiparticle mass but may even trigger a metal-insulator quantum
phase transition. The MIT transition point has been determined in good agreement both from
the TLL charge exponent and the entanglement entropy difference. We stress that to date only
a very small number of microscopic model exists which have been rigorously shown to exhibit a
MIT.
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One-dimensional quantum transport affected by a background medium:
Fluctuations versus correlations

S. Ejima and H. Fehske
Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany

�Received 17 July 2009; revised manuscript received 31 August 2009; published 1 October 2009�

We analyze the spectral properties of a very general two-channel fermion-boson transport model in the
insulating and metallic regimes and the signatures of the metal-insulator quantum phase transition in between.
To this end we determine the single-particle spectral function related to angle-resolved photoemission spec-
troscopy, the momentum distribution function, the Drude weight, and the optical response by means of a
dynamical �pseudosite� density-matrix renormalization group technique for the one-dimensional half-filled
band case. We show how the interplay of correlations and fluctuations in the background medium controls the
charge dynamics of the system, which is a fundamental problem in a great variety of advanced materials.

DOI: 10.1103/PhysRevB.80.155101 PACS number�s�: 71.10.Fd, 71.30.�h, 71.10.Hf

I. INTRODUCTION

Charge transport normally takes place in some back-
ground medium. To understand how the environment affects
the moving carrier and vice versa is a difficult question and
in this generality at present perhaps one of the most heavily
debated issues in condensed matter physics. Here the term
“background” describes a variety of situations. We can think
of the motion of a hole through an ordered insulator.1 Ex-
amples are the high-Tc cuprates and the colossal magnetore-
sistive manganates, with a background of spins and orbitals,
respectively, forming a pattern of alternating order. Then, as
the hole moves, it disrupts the order of the background,
which on its part hinders the particle transfer. Nevertheless
coherent particle transport may occur but on a strongly
renormalized energy scale. The new quasiparticles formed in
the cuprates and manganates are spin or orbital polarons.2–4

Another situation concerns a charge carrier coupled to a de-
formable background. Here, if the interaction with phonons
is strong, the particle has to carry a phonon cloud through the
medium. The outcome might be a “self-trapped” small lattice
polaron.5 In this case hopping transport, accompanied by
phonon emission and absorption processes, evolves as the
dominant transport channel.

So far we have considered a single particle only. It is quite
obvious that the problem becomes even more involved if the
particle density increases. Then the interrelation between
charge carriers and background medium may drive quantum
phase transitions. The appearance of ferromagnetism in the
three-dimensional manganates, superconductivity in the qua-
si-two-dimensional �2D� cuprates, or charge-density-wave
�CDW� states in one-dimensional �1D� halogen-bridged
transition-metal complexes are prominent examples.6 In the
theoretical description of these strongly correlated systems
an additional difficulty arises: the particles which are respon-
sible for charge transport and the order phenomena of the
background are the same. As a consequence, on a micro-
scopic level, rather involved many-particle models result,
which incorporate the coupling between charge, spin, orbital,
and lattice degrees of freedom.4,7 Naturally this prevents an
exact solution of the problem even in reduced dimensions.

II. MODEL AND METHOD

A way out might be the construction of simplified trans-
port models, which capture the basic mechanisms of quan-
tum transport in a background medium in an effective way.
Along this line a quantum transport model has been proposed
recently8,9

H = − tb�
�i,j�

f j
†f i�bi

† + bj� − ��
i

�bi
† + bi� + �0�

i

bi
†bi, �1�

which mimics the correlations inherent to a spinful fermionic
many-particle system by a boson-affected hopping of spin-
less particles �tb �see Fig. 1�. In the model �1�, a fermion f i

�†�

creates �or absorbs� a local boson bi
�†� every time it hops,

which corresponds to a local excitation in the background
with a certain energy �0. Because of quantum fluctuations
the distortions are able to relax ��. A unitary transformation
bi→bi+� /�0 replaces this term by second transport channel
Hf =−tf��i,j�f j

†f i, describing unaffected fermionic transfer,
however with a renormalized amplitude tf =2�tb /�0. It has
been shown9 that coherent propagation of a fermion is pos-
sible even in the limit �= tf =0 by means of a six-step
vacuum-restoring hopping process

Ri
�6� = Li+2

† Li+1
† Ri

†Li+2Ri+1Ri, �2�

where Ri
†= f i

†f i+1bi and Li
†= f i

†f i−1bi. Note that Ri
�6� acts as

direct next-nearest-neighbor �NNN� transfer “f i+2
† f i,” in com-

plete analogy to the “Trugman path” of a hole in a 2D Néel-
ordered spin background.10

The model �1� has been solved in the single-particle sec-
tor �Ne=1� by exact diagonalization,9 using a basis construc-
tion for the fermion-boson �many-particle� Hilbert space that
is variational for an infinite lattice �N=��.11 The transport
behavior was found to be surprisingly complex, reflecting the
properties of both spin and lattice polarons in t-J- and
Holstein-type models.

For the 1D half-filled band sector �Ne=N /2�, evidence for
a metal insulator transition comes from small cluster
diagonalizations.12 Quite recently the ground-state phase dia-
gram of the model �1� has been mapped out in the whole �
−�0 plane,13 using a density-matrix renormalization group
�DMRG� technique.14 A quantum phase transition between a
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Tomonaga-Luttinger liquid �TLL� and CDW was proven to
exist. A complementary study of the dynamical properties of
the system is therefore desirable.

In the present work, we employ the dynamical DMRG
�DDMRG� method15 in order to investigate the effects of
background fluctuations and correlations on the dynamics of
charge carriers in the framework of the 1D half-filled
fermion-boson model �1�. Thereby the focus is on the wave-
vector resolves single-particle spectral function probed by
angle-resolved photoemission spectroscopy �ARPES� and on
the optical conductivity probed, e.g., by reflectivity measure-
ments.

In general the dynamic response of a quantum system
described by a time-independent Hamiltonian H is given by

the imaginary part of correlation functions of type

AO��� = lim
�→0

1

�
��0�O† �

�E0 + � − H�2 + �2O��0� , �3�

where the operator O identifies the physical quantity of in-
terest. ��0� and E0 give the ground-state wave function and
energy of H. The small �	0 shifts the poles of the related
Green’s function GO��+i�� into the complex plane.

Single-particle excitations associated with the injection or
emission of an electron with wave vector k, A+�k ,�� or
A−�k ,��, can be written in the spectral form

A
�k,�� = �
n

���n

�fk


��0��2� �� � �
� , �4�

where fk
+= fk

† and fk
−= fk. ��0� is the ground state of a N-site

system in the Ne-particle sector while ��n

� denote the nth

excited states in the Ne
1-particle sectors with excitation
energies �n


=En

−E0.

Optical excitations, on the other hand, connect states in
the same particle sector with a site-parity change. For a sys-
tem with open boundary conditions �OBC� the regular part of
the optical absorption


reg��� =
�

N
�

n

�n���n�P��0��2� �� − �n� �5�

is related to the dynamical polarizability, 
reg���=�����,
where P=−� j=1

N j�f j
†f j −1� is the dipole operator �in units of

e� and �n= �En−E0�. Then the current operator is obtained
from J=i�H , P�. Applying periodic boundary conditions
�PBC�, the optical conductivity can be calculated from


reg��� =
�

N
�

n

���n�J��0��2

�n
� �� − �n� . �6�

Note that for our fermion-boson model �1�, the current op-
erator has two contributions, J=Jf +Jb, where Jf =itf� j f j+1

† f j
− f j

†f j+1 and Jb=itb� j f j+1
† f jbj

†− f j
†f j+1bj + f j−1

† f jbj
†− f j

†f j−1bj.
The f-sum rule

Sreg��� + �D = − �Ekin/2 �7�

connects the frequency-integrated optical response Sreg���
=	0

�
reg����d�� to the kinetic energy Ekin= 1
N �0�H

−�0�ibi
†bi�0�, where the Drude part �D serves as a measure

for coherent transport. For OBC, only a D precursor exists in
the metallic region.

In the actual DDMRG calculation of spectral functions
the required CPU time increases rapidly with the number of
the density-matrix eigenstates m. Since the DDMRG ap-
proach is based on a variational principle,15 we first of all
have to prepare a good “trial function” for the ground state
with as many density-matrix eigenstates as possible. As a
rule we keep m
500 states to obtain the true ground state in
the first five DDMRG sweeps and afterwards take m
200
states for the calculation of the various spectra from Eq. �3�
with a broadening �=0.1. In order to save CPU time in the
DDMRG runs we take into account just nb=3 pseudosites. In
this case the nbth local boson pseudosite density is smaller
than 10−5. Using nb=4 this value can be reduced to 10−8

single-particle case - any D

background medium

λ�

1D transport path

ω0

*
ω0

*

f †
i+1fi b

†
i = Ri

tb

R†
i

half-filled band case - 1D

strong fluctuations (repulsive) TLL

* *

L†
j = f †

j fj−1bj

strong correlations CDW - LRO

FIG. 1. �Color online� Schematic of quantum transport in a
background medium. The background could represent a magneti-
cally, orbitally, or charge ordered lattice but also a heat bath or
certain chemical side groups. Then the proposed transport model �1�
describes a very general situation: as a charge carrier ��� moves
along a 1D transport path it creates an excitation with energy �0 �� �
in the background medium at the site it leaves or annihilates an
existing excitation at the site it enters. It is a plausible assumption
that the �de�excitation of the background can be parameterized as a
bosonic degree of freedom. In the case of spin deviations, orbital
fluctuations, or lattice vibrations, the bosons might be viewed as a
Schwinger-bosons, orbitons or phonons. Of course, any distortion
of the background can heal out by quantum fluctuations. Accord-
ingly the � term allows for spontaneous boson creation and annihi-
lation processes. The upper panel displays the single-particle case.
Depending on the model parameters quasifree, diffusive, or boson-
assisted transport takes place �Ref. 9�. The latter case corresponds,
e.g., to the motion of a hole through an ordered antiferromagnetic
insulator. The lower panel shows the half-filled band case. Here, for
spinless fermions in 1D, a repulsive Tomonaga-Luttinger liquid
evolves, provided the excitations of the background are energeti-
cally inexpensive ��0��0,c� or will readily relax ��	�c��0��. This
defines the fluctuation dominated regime. By contrast, strong back-
ground correlations, which develop for large �0 and small �� tb

tend to immobilize the charge carriers and even may drive a metal-
insulator transition by establishing CDW long-range order �Refs. 12
and 13�.
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which leads, however, not to visible change in the spectra
because the discarded weight in the DDMRG calculations is

10−3 �i.e., three orders of magnitude larger than for the
DMRG ground-state calculations�.

III. RESULTS

A. Photoemission spectrum

Let us first discuss the single-particle spectra of the trans-
port model �1� in the regime where the background is stiff,
i.e., the distortions induced by the particle hopping process
are energetically costly ��0=2�.

For very large � the free transport channel nevertheless
dominates and an almost particle-hole symmetric spectrum
�A+�k ,�−EF�
A−�k−� ,EF−��� results �see Fig. 2 upper
panels�. As � decreases, the background distortions hardly
relax. Consequently, the bosonic degrees of freedom will
strongly affect the transport. The middle panels of Fig. 2
show how, at �=0.1, strong correlations develop in the oc-
cupied states probed by photoemission �PE� for ��EF. The
introduced hole can only move coherently by the six-step

process �Eq. �2��, where in steps one-three, three bosons
were excited, which are consumed in steps four-six after-
ward. In this way the collective particle-boson dynamics
leads to a flattening of the “coherent” band for k�kF. By
contrast an additional electron, which probes the unoccupied
states in an inverse �I�PE experiment ��	EF�, can more
easily move by a two-step process, even if pronounced CDW
correlations exist in the background medium.12 The incoher-
ent parts of A�k ,�� far away from the Fermi energy EF are
caused by excitations with additional bosons involved �bear
in mind that the ground state with Ne electrons is a mul-
tiphonon state and the wave vector of the Ne
1 target state
corresponds to the total momentum of electrons and bosons�.

While for �=0.1, A�kF ,�� has finite spectral weight at EF,
i.e., the system is still metallic �albeit the TLL charge expo-
nent K� is noticeably reduced from one13�, an excitation
gap opens in the PE spectrum as � falls below a certain
critical value, provided that �0	�0,c��=0�.13 We find
�c��0=2��0.05. The lower panels of Fig. 2 show A�k ,��
for �=0.01, in the insulating regime, where a CDW with true
long-range order exists. The TLL-CDW quantum phase tran-
sition is driven by the correlations that might evolve in the
background medium at commensurate fillings. Let us empha-
size the dynamical aspect of this process: the �collective�
bosonic excitations are intimately connected to the motion of
the particles, and themselves have to persist long enough in
order to affect the many-particle state.

The ARPES spectrum for the insulating state clearly
shows the doubling of the Brillouin zone. The remaining
asymmetry with regard to the spectral weight of the absorp-
tion signals as k↔ ��−k� vanishes for �→0. Most notably
the widths of the highest PE and lowest IPE coherent bands
differ by a factor of about �tb /�0�4 since the CDW order is
restored if the injected hole �electron� is transferred to a
NNN site by a process of order O�tb

6 /�0
5� �O�tb

2 /�0��. Hence
the CDW state exhibits a correlation-induced asymmetric
band structure.12

The strong interrelation of charge dynamics and back-
ground fluctuations becomes obvious if we decrease �0 be-
low �0,c keeping �=0.01 fixed. Of course, in passing the
accompanied insulator-metal transition the PE spectrum
changes completely but the “nature” of the TLL at �0=1 is
different compared to that of the metallic state realized at
larger �0 and � as well �cf. Fig. 3 and upper panels of Fig.
2�. The single-particle spectrum for �0=1 shows sharp ab-
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FIG. 3. Density �left� and line-shape �right� plot of the A�k ,��
spectra. Again N=32 �OBC�, �=0.01, but now �0=1.
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FIG. 2. Intensity �left panels� and line-shape �right panels� of the
single-particle spectral function A�k ,�� in the half-filled band sec-
tor of the fermion-boson transport model �1� on a N=32-site chain.
The upper two rows �lower row� give DDMRG data for �=2 and
0.1 in the metallic regime ��=0.01, insulating regime�, where
�0=2. All energies are measured in units of tb. Since we apply
OBC, we use quasimomenta k=�l / �N+1� with integers 1� l�N.
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sorption signals in the vicinity of kF only. In a wide k-space
region emanating from k=0 �k=�� the PE �IPE� spectrum is
smeared out �overdamped�, i.e., here the dynamics of the
system is dominated by bosonic fluctuations.

B. Momentum distribution function

The different transport behavior becomes also apparent in
the momentum distribution function

n�k� =
1

N
�
j,l

eik�j−l��cj
†cl� . �8�

By means of DMRG, the ground-state correlation function
�cj

†cl� can be easily calculated for PBC. Figure 4 displays
n�k� for two characteristic boson energies, above and below
�0,c.

In the former case, the TLL-CDW transition causes sig-
nificant changes in the functional form of n�k�. For �	�c,
one expects an essential power law singularity at kF, corre-
sponding to a vanishing quasiparticle weight. For finite TLL
systems the difference �=n�kF−��−n�kF+�� is finite �with
�=� /66 in our case�.16 � rapidly decreases approaching the
CDW transition point with decreasing � �see data for �0=2
�red squares��. In the CDW phase the singularity at kF van-
ishes. Note that the periodicity of n�k� doubles at �=0, in
accordance with a R�6� NNN-only hopping channel. To sub-
stantiate this reasoning we have included in Fig. 4 n�k� data
calculated for the 1D Hubbard model with additional NNN
transfer t�. We see that n�k� of the fermion-boson model �1�
is in qualitative agreement with our data and previous results
for the t− t� Hubbard model,17 in particular, for the case t
=0. The upturn in n�k� for k	kF persists even in the metallic

regime as long as NNN-hopping processes triggered by the
�CDW� correlations in the background are of importance.

For �0=1 the system stays metallic for all �. Besides the
usual renormalization of n�k� with increasing correlations
�i.e., decreasing �� we find a slight upturn in n�k� for k�kf.
This might be attributed to the fact that in our model �1� a
particle injected with k= 
� is almost unaffected by bosonic
fluctuations �which holds also for the single-particle case9�.
So to speak the system behaves as a nearly perfect metal at
this point. It is worth mentioning that an increase in n�k� for
both k�kF and k�kF has also been found for the momen-
tum distribution function of the Hubbard model �with and
without magnetization� using the Gutzwiller variational
wave function.18

C. Optical response

Finally we consider the evolution of the optical conduc-
tivity going from the correlated TLL to the CDW phase at
�0=2. The corresponding optical absorption spectra are de-
picted in Fig. 5. In the metallic state most of the spectral
weight resides in the coherent Drude part. At �=1 �see in-
set�, we find �D /N�1.6, which has to be compared with
Sreg����0.2 �of course D decreases as � gets smaller�. In
this case the wave-vector resolved single-particle spectra
roughly extends from �=−6 to �=6. The regular part of the
conductivity is mainly due to excitations to the phononic side
bands appearing in the sectors with momenta far away from
kF. In the insulating region �see main panel�, the first peak at
about ��0.5 can be assigned to an optical excitation across
the gap in the �coherent� two-band structure. These excita-
tions are only accessible for �	0. Additional excitations
with higher energy occur around multiples of the boson fre-
quency, where ���0=2 sets an absorption threshold for the
�=0 case. As expected for an insulating system with OBC,
the whole spectral weight is contained in Sreg���
�−�Ekin /2. We emphasize that the CDW state in our model
contains less than one boson per site on average, unlike, e.g.,
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2 �squares�. Triangles show n�k� for a half-filled t-t�-U model �38
sites, PBC� with U=10t�, t= t� �panel �c��, and t=0 �panel �d�� �see
text�. In order to obtain more accurate ground-state data we use
nb=4 pseudosites.
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the Peierls insulating state in the Holstein model. That is the
CDW phase typifies rather as a correlated insulator—such as
the Mott-Hubbard insulator—and no divergence occurs at
the optical absorption threshold.19

IV. SUMMARY

In conclusion, we have determined the spectral properties
of a highly nontrivial two-channel fermion-boson transport
model for the 1D half-filled band case, using an unbiased
DDMRG technique. The background medium, parameterized
by bosonic degrees of freedom, strongly influences the
charge-carrier dynamics, as it happens in many novel mate-
rials. If the background fluctuations dominate we find diffu-
sive transport. In opposite case of strong background corre-
lations coherent quantum transport may evolve on a reduced

energy scale. These correlations can also trigger a metal-
insulator transition. The insulating CDW state has an asym-
metric band structure, leading to characteristic signatures in
the ARPES and optical response. Whether an extended
model with spinful fermions gives rise to an attractive me-
tallic phase like in the Holstein-Hubbard model20 would be
an interesting question for further research.
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Anderson localization versus charge-density-wave formation in disordered electron systems
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We study the interplay of disorder and interaction effects including bosonic degrees of freedom in the
framework of a generic one-dimensional transport model: the Anderson-Edwards model. Using the density-
matrix-renormalization group technique, we extract the localization length and the renormalization of the
Tomonaga-Luttinger-liquid parameter from the charge-structure factor by a elaborate sample-average finite-size
scaling procedure. The properties of the Anderson localized state can be described in terms of scaling relations of
the metallic phase without disorder. We analyze how disorder competes with the charge-density-wave correlations
triggered by the bosons and give evidence that disorder will destroy the long-range charge-ordered state.
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I. INTRODUCTION

Disorder is an inherent part of any solid-state system.1 Low-
dimensional materials are exceedingly susceptible to disorder.
In one dimension (1D), theory predicts that all carriers are
strongly localized for arbitrary energies and arbitrarily weak
disorder. This holds for Anderson’s noninteracting tight-
binding Hamiltonian with a diagonal (i.e., on-site) random
potential.2,3 The coherent backscattering from the randomly
distributed impurities thereby transforms the metal into an
insulator.

In 1D, the mutual interaction of the particles is likewise
of significance; here even weak interactions can cause strong
correlations. The instantaneous Coulomb repulsion between
the electrons, for instance, tends to immobilize the charge
carriers as well. As a consequence, at half filling, a Mott insu-
lating (spin-density-wave) phase is energetically favored over
the metallic state.4 The retarded electron-phonon coupling, on
the other hand, may lead to structural distortions accompanied
by polaron formation,5 and is the driving force behind the
metal-to-Peierls transition, establishing a charge-density-wave
(CDW) order.6

An understanding of how disorder and interaction act
together is of vital importance not only to discuss the
metal-insulator itself but also to analyze the electronic
properties of many quasi-1D materials of current interest,
such as conjugated polymers, organic charge-transfer salts,
ferroelectric perovskites, halogen-bridged transition-metal
complexes, TMT[SF,TF] chains, Qn(TCNQ)2 compounds,
or, e.g., the quite recently studied vanadium dioxide
Peierls-Mott insulator.7–10 Carbon nanotubes11 and organic
semiconductors12 are other examples where disorder and
bosonic degrees of freedom are of importance. Regarding
interacting bosons, ultracold atoms trapped in optical lattices
offer the unique possibility to tune both the disorder and
interaction strength.13

Unfortunately, the subtle interplay of disorder and inter-
action effects is one of the most challenging problems in
solid-state theory and—despite 50 years of intense research—
is still an area of uncertainty; see Ref. 14 and references
therein. In the limit of vanishing charge-carrier density,
only the interaction with the lattice vibrations matters. Then
Anderson disorder may affect the polaron self-trapping in

a highly nontrivial way.15 This has been demonstrated for
the Anderson-Holstein model within the statistical dynamical
mean-field and momentum-average approximations.16,17 At fi-
nite carrier density, the Mott-Anderson transition for Coulomb
correlated electrons was investigated by self-consistent mean-
field theory in D = ∞ and D = 3,18–20 as well as by
variational Gutzwiller-ansatz-based approaches.21 Electron-
electron interactions may screen the disorder potential in
strongly correlated systems, thereby stabilizing metallicity.22

Exact results are rare, however. In 2D, Lanczos and quantum
Monte Carlo data suggest a disorder-induced stabilization of
the pseudogap, also away from half filling.23 The density-
matrix-renormalization group (DMRG)24 allows the numerical
exact calculation of ground-state properties of disordered,
interacting fermion systems in 1D, on fairly large systems.
Exploiting this technique, the properties of disordered Lut-
tinger liquids have been analyzed in the framework of the
spinless fermion Anderson-t-V model (AtV M)25 and the
spinful Anderson-Hubbard model.26

In this paper, we address how many-body Anderson local-
ization competes with CDW formation triggered by bosonic
degrees of freedom in the framework of the Anderson-Edwards
model (AEM).

II. MODEL

The Edwards model27 represents a very general two-
channel fermion-boson Hamiltonian, describing quantum
transport in a background medium. Its fermion-boson inter-
action part

Hf b = −tb
∑
〈i,j〉

f
†
j fi(b

†
i + bj ) (1)

mimics the correlations/fluctuations inherent to a spinful
fermion many-particle system by a boson-affected transfer of
spinless charge carriers. In Eq. (1), a fermion f

(†)
i creates (or

absorbs) a local boson b
(†)
i every time it hops to a nearest-

neighbor (NN) site j . Thereby it creates a local excitation in
the background with energy ω0: Hb = ω0

∑
i b

†
i bi . Because

of quantum fluctuations, the background distortions should
be able to relax with a certain rate λ. The entire Edwards
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FIG. 1. (Color online) DMRG metal-insulator phase boundary
for the 1D half-filled Edwards model without disorder (solid line).
CDW order is suppressed if the background fluctuations dominate
[ω0 < 1] or if the system’s ability for relaxation is high [λ > λc(ω0)].
The blue crosses denote the parameter sets considered in this paper
for the disordered Edwards model.

Hamiltonian then reads

HE = Hf b − λ
∑

i

(b†i + bi) + Hb. (2)

A unitary transformation bi �→ bi + λ/ω0 eliminates the bo-
son relaxation term in favor of a second fermion hopping
channel:

HE = Hf b − tf
∑
〈i,j〉

f
†
j fi + Hb. (3)

We like to emphasize that (i) this free-fermion transfer,
however, takes place on a strongly reduced energy scale,
tf = 2λtb/ω0, and (ii) coherent propagation of a fermion
is possible even in the limit λ = tf = 0 by means of a
six-step vacuum-restoring hopping process,28 acting as a direct
next-NN transfer “f †

i+2fi .” The Edwards model reveals a
surprisingly rich physics. Depending on the relative strengths
tf /tb of the two transport mechanisms and the rate of
bosonic fluctuations tb/ω0, it reproduces Holstein and t-J
model-like lattice- and spin-polaron transport, respectively, in
the single-particle sector.28,29 For the half-filled band case,
a metal-insulator quantum phase transition from a repul-
sive Tomonaga-Luttinger-liquid (TLL) to a CDW has been
reported;30,31 see Fig. 1. Note that the CDW is a few-boson
state that typifies rather a correlated (Mott-Hubbard-type)
insulator than a Peierls state with many bosons (phonons)
involved.30,31 Since in the limit ω0 � 1 � λ (here, and in what
follows, tb is taken as the unit of energy) background fluctua-
tions are energetically costly, charge transport is hindered and
an effective Hamiltonian with NN fermion repulsion results.
To leading order, in a reduced (zero-boson) Hilbert space, we
get

HtV = −tf
∑
〈i,j〉

f
†
j fi + V

∑
i

n
f

i n
f

i+1, (4)

with V = t2
b /ω0. This so-called t-V model can be mapped onto

the exactly solvable XXZ model, which exhibits a TLL-CDW
quantum phase transition at V/tf = 2, i.e., at λ−1

c = 4. This
value is smaller than those obtained for the Edwards model in
the limit ω−1

0 � 1, where λ−1
c 	 6.3 (see Fig. 1 and Ref. 31),

because already three-site and effective next-NN hopping
terms were neglected in the derivation of the tV model.

We now employ the DMRG technique,24 which can be
easily generalized to treat systems including bosons,32 in order
to obtain unbiased results for the full AEM,

HAE = �
∑

i

εin
f

i + HE, (5)

and the related AtV M, HAtV = �
∑

i εin
f

i + HtV , where
disorder of strength � is induced by independently distributed
random on-site potentials εi , drawn from the box distribution
P (εi) = θ (1/2 − |εi |). Within the pseudosite approach, a
boson is mapped to nb pseudosites.32,33 In the numerical study
of the AEM, we take into account up to nb = 4 pseudosites
and determine nb by the requirement that local boson density
of the last pseudosite is less than 10−7 for all i. Furthermore,
we keep up to m = 1200 density-matrix eigenstates in the
renormalization steps to ensure that the discarded weight is
smaller than 10−8. The calculations are performed for finite
systems with lengths L = 16 to 128 and open boundary
conditions (OBC). For the simpler effective AtV M, we reach
L = 192 with OBC. Here the use of m = 1000 density-matrix
eigenstates makes the discarded weight negligible. To gain
representative results for our disordered systems, we proceed
as follows. We first compute the physical quantity of interest at
fixed L for numerous samples {εi}, then set up an appropriate
statistical average, and finally perform a careful finite-size
scaling.

III. FINITE-SIZE SCALING

An important question is, of course, which physical quantity
to use in the finite-size scaling of the Anderson transition. For
this purpose, the localization length ξ seems to be promising
because it is sensitive to the nature, localized or extended, of
the electron’s eigenstate.34,35 So far, ξ has been determined
from the phase sensitivity of the ground-state energy.17,25

Quite recently, Berkovits demonstrates that the entanglement
entropy can also be used to extract the localization length.36

However, in both methods, the system size L should be always
larger than ξ .

Advantageously, the localization length can be extracted
by a finite-size scaling analysis of the charge-density-structure
factor even for L � ξ , which works equally well for in-
teracting systems,26 and therefore allows us to discuss the
interplay between Anderson localization and CDW formation
in a consistent manner. The charge structure is defined as

C̃(q) = 1

L

L∑
i,r=1

[〈
n

f

i n
f

i+r

〉 − 〈
n

f

i

〉〈
n

f

i+r

〉]
eiqr . (6)

Assuming an exponential decay of the equal-time density-
density correlations in the Anderson insulating phase,37 the
structure factor scales with

C̃(q) = − K∗
ρ

2π2

e
− π2L

6ξ − 1

e
π2
6ξ − 1

q2, (7)

where q = 2π/L � 1.26 Equation (7) contains two unknown
parameters: the localization length ξ and the disorder-modified
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TLL interaction coefficient K∗
ρ . Hence, if the charge-structure

factor is determined numerically, then ξ and K∗
ρ can be

easily derived by fitting the numerical data with Eq. (7). For
vanishing disorder, � → 0, ξ diverges and K∗

ρ becomes the
ordinary TLL parameter Kρ . We are aware that a disordered
1D system is no longer a TLL and, consequently, the TLL
parameter is ill defined in the strict sense. Nevertheless, if the
localization length significantly exceeds the lattice constant,
then the short-range correlation functions should still show
a power-law decay. Therefore, we might gain some valuable
information about the local motion of fermions from K∗

ρ .

IV. DMRG RESULTS

Figure 2 demonstrates that the finite-size scaling of the
averaged charge-structure factor C̃av(q) by means of (7) works
best and equally well for the 1D AEM and AtV M (this applies
to all parameter values discussed below). To accommodate the
missing correlations owing to the OBC, we have plotted C̃av(q)
as a function of 1/(L − δ) instead of 1/L (this way of plotting
the data is nonessential but gives a quantitative refinement of
the fit). The parameter δ is adjusted to reproduce K∗

ρ = Kρ

and ξ = ∞ at � = 0. We note the general tendency that the
charge correlations arising at finite L will be suppressed as �

becomes larger.
In a next step, we extract the localization length ξ and the

modified TLL parameter for the disordered Edwards and t-V
models. Figure 3 shows the dependence of ξ and K∗

ρ on the
disorder strength �. First of all, we find a power-law decay of
ξ with 1/� in the whole (λ, ω0; V ) parameter regime:

ξ/ξ0 = �−γ (8)

[note that � is given in units of tb (tf ) in Fig. 3 for the AEM
(AtV M)]. The estimated values of the (bare) decay length
ξ0 and the exponent γ are given in the caption of Fig. 3 for
characteristic model parameters. As expected, the localization
length decreases with increasing disorder strength. Stronger
electronic correlations, i.e, smaller λ or larger ω0 (larger V )
in the AEM (AtV M), also tend to reduce ξ . In any case,
ξ turns out to be finite as soon as � > 0, indicating that
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FIG. 2. (Color online) Charge-structure factor of the AEM with
λ = 0.1 and ω0 = 2 (left panel) and the AtV M with V/tf = 1.5 (right
panel) sampled over 300 and 500 disorder realizations, respectively.
Dashed lines give the finite-size scaling of C̃av(q) according to (7).
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FIG. 3. (Color online) Left panels: Log-log plot of the localiza-
tion length vs disorder strength for the AEM at (a) fixed λ = 0.1,
(c) fixed ω0 = 2.5, and (e) for the AtV M. Dashed lines are fits to
Eq. (8) with (a) ξ0 = 620, 98, 50 and γ = 1.75, 1.65, 1.22 for λ = 1,
0.2, 0.1; (c) ξ0 = 500, 65, 40 and γ = 1.81, 1.35, 1.1 for ω0 = 1, 2,
3; and (e) ξ0 = 440, 350, 230, 190, 150 and γ = 1.95, 1.5, 1.3, 1.1,
0.95 for V/tf = 0, 0.5, 1. 1.5, 2 (from top to bottom), respectively.
Right panels: Corresponding results for the modified TLL parameter
K∗

ρ in the (b), (d) AEM and (f) AtV M.

the repulsive TLL, if realized for � = 0, makes way for an
Anderson insulator. Thereby the localization length becomes
comparable to the lattice spacing at � = 2 in the AEM with
λ = 0.1, ω0 = 2.5, while it is still about 102 for the AtV M
with V/tf = 2.

The right-hand panels display striking differences in the �

dependence of K∗
ρ for the models under consideration. These

can be attributed to the fact that the Edwards model contains
two energy scales λ and ω0, while the physics of the t-V model
is merely governed by the ratio V/tf = tb/2λ, i.e,. ω0 drops
out. Far away from the CDW instability, however, both models
describe a weakly correlated TLL with Kρ � 1, and K∗

ρ slowly
decays as the disorder � increases (see the red open triangles
in Fig. 3; to make the comparison with the t-V model data
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easy, we have shown K∗
ρ versus �/tf in the insets). If we move

towards the CDW instability by decreasing λ at fixed ω0 > ω0,c

or increase ω0 at λ < λc (cf. Fig. 1), then a nonmonotonous
behavior develops. At small �, K∗

ρ is significantly enhanced as
the disorder increases. Obviously, weak disorder destabilizes
the 2kF -CDW correlations locally, since disorder-induced
second- (and higher-) order boson-assisted (inelastic) hopping
processes are possible in the AEM, even for ω0 � 1. This in
sharp contrast to the AtV M, where only elastic scattering takes
place and the intersite Coulomb repulsion is hardly affected
by �. As a result, in the disordered t-V model, the CDW
correlations will be stronger and more robust. Hence, for the
AtV M, K∗

ρ appears to be nearly independent from � for
0.5 � V/tf � 2. This also notably differs from the behavior
found for the disordered Hubbard model,26 where the umklapp
scattering is effectively enhanced by the formation of Mott
plateaus appearing due to disorder.38 If � exceeds a certain
value in the AEM, then K∗

ρ starts to decrease and, finally,
the whole scaling procedure breaks down when ξ � 1 (see the
point at � = 2 in the upper right panel with K∗

ρ well below 0.5).
In this regime, the wave functions of the particles are strongly
localized and the TLL behavior is as much suppressed as the
CDW correlations. Let us point out that the enhancement of
K∗

ρ triggered by the bosonic degrees of freedom might serve
as an explanation for the observed increasing charge velocity
near a negatively charged defect in the single-wall carbon
nanotubes,11 since the TLL parameter Kρ is proportional to
the charge velocity.

We now focus on the localization behavior at large distances
[O(ξ � 1)], and therefore make an attempt to analyze the
decay length ξ0 and the exponent γ , for both the AEM and
AtV M, in terms of the interaction exponent Kρ and the charge
susceptibility χc of standard TLL theory.37 We expect that ξ0

is strongly influenced by the strength of the charge fluctuations
quantified by χc, which is given—for the t-V model—as

χc = 2Kρ

πvc

= 4

π

√
1 − (

V
2tf

)2

[
π

arccos
( − V

2tf

) − 1

]
, (9)

with charge velocity vc. Figure 4 shows that ξ0 nicely scales
with V/tf , i.e., ξ0 ∝ χc, in fact (see upper panel). The same
holds—perhaps surprisingly—for the AEM when ξ0/t

γ

f is
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FIG. 4. (Color online) Left panels: Decay length ξ0 as a function
of the (effective) Coulomb repulsion V(eff) for the AtV M and AEM.
Right panel: Corresponding γ exponent vs Kρ , in comparison to the
scaling relation (10) (dashed line). For further explanation, see text.

plotted versus an effective intersite repulsion estimated from
Veff/tf = −2 cos(π/2Kρ) (see lower panel). Moreover, for
the disordered t-V model, the exponent γ is connected to
Kρ of the (spinless fermion) TLL system without disorder via
the renormalization equation: d(�2)/dl = (3 − 2Kρ)�2 (with
scale quantity l). This causes the scaling relation37,39,40

γ = 2/(3 − 2Kρ). (10)

The right panel of Fig. 4 displays that γ basically depends on
Kρ , as predicted by Eq. (10). This means that the long-range
localization properties of the AEM can be understood in the
framework of AtV M with an effective intersite interaction in-
duced by the bosonic degrees of freedom. Since the (effective)
Coulomb repulsion tends to result in a lesser Kρ , γ decreases
with increasing V(eff) (cf. Fig. 4). In this way, the 2kF -CDW
fluctuations triggered by V tend to weaken Anderson localiza-
tion. While γ = 2 in the free-fermion limit (V, 1/λ → 0), it
scales to unity approaching the CDW transition point located,
e.g., at λc 	 0.07 for ω0 = 2.5, respectively, at ω0,c 	 3.1 for
λ = 0.1.

The question of how disorder affects the insulating CDW
state could not be addressed by the above TLL-based scaling.
In particular, we cannot assess by our numerical approach
whether the CDW phase survives weak disorder (as experi-
mentally observed for disordered Peierls-Mott insulators).10

If the Imry-Ma argument for disordered (low-D) interacting
systems41 holds, then CDW long-range order should be
destroyed by any finite �. Figure 5, showing the spatial
variation of the local fermion/boson densities for a specific
but typical disorder realization (note that any real experiment
is performed on a particular sample), illustrates the situation
deep inside the (former) CDW phase (λ−1 = 100, ω−1

0 = 0.4;
cf. Fig. 1). One realizes that long-range charge order ceases
to exist but short-range CDW correlations locally persist
whenever neighboring on-site potentials do not differ much
(see, e.g., the region i = 45, . . . ,55 in the lower panel of
Fig. 5).
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FIG. 5. (Color online) Local densities of fermions 〈f †
i fi〉 (blue

circles) and bosons 〈b†
i bi〉 (red open squares) in the central part of

an open AEM chain without (� = 0) and with (� = 2) disorder.
Results are given for a single realization {εi} (black triangles). Model
parameters are λ = 0.01, ω0 = 2.5, and L = 128 (OBC).
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V. CONCLUSIONS

To summarize, using an unbiased numerical DMRG ap-
proach, we investigated the interplay of disorder and inter-
action effects including bosonic degrees of freedom in the
framework of the 1D spinless fermion Anderson-Edwards
model. Although the TLL phase disappears owing to the
disorder, the localization properties of the Anderson insulator
state can be understood in terms of scaling relations containing
the charge susceptibility and the Luttinger liquid parameter
of the metallic phase without disorder only, as in the case
of the spinless fermion Anderson-t-V model. However, the

Anderson-Edwards model reveals a more complex inter-
relation between disorder and CDW correlations because
additional scattering channels, involving bosonic excitation
and annihilation processes, appear. This offers a promising
route for adapting the description of low-dimensional transport
in many disordered materials. Disorder also affects the CDW
state in that true long-range order vanishes although local
CDW correlations survive.
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Charge-density-wave formation in the Edwards
fermion-boson model at one-third band filling
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We examine the ground-state properties of the one-dimensional Edwards spinless fermion trans-
port model by means of large-scale density-matrix renormalization-group calculations. Determining
the single-particle gap and the Tomonaga-Luttinger liquid parameter (Kρ) at zero temperature, we
prove the existence of a metal-to-insulator quantum phase transition at one-third band filling. The
insulator—established by strong correlation in the background medium—typifies a charge density
wave (CDW) that is commensurate with the band filling. Kρ = 2/9 is very small at the quantum crit-
ical point, and becomes KCDW

ρ = 1/9 in the infinitesimally doped three-period CDW, as predicted
by the bosonization approach.

KEYWORDS: Edwards model, metal-insulator transition, DMRG

1. Introduction

Strong correlations can affect the transport properties of low-dimensional systems to the point
of insulating behavior. Prominent examples are broken symmetry states of quasi one-dimensional
(1D) metals, where charge- or spin-density waves brought about by electron-phonon or by electron-
electron interactions [1]. These interactions can be parametrized by bosonic degrees of freedom, with
the result that the fermionic charge carrier becomes “dressed” by a boson cloud that lives in the par-
ticle’s immediate vicinity and takes an active part in its transport [2]. A paradigmatic model describ-
ing quantum transport in such a “background medium” is the Edwards fermion-boson model [3, 4].
The model exhibits a surprisingly rich phase diagram including metallic repulsive and attractive
Tomonaga-Luttinger-liquid (TLL) phases, insulating charge-density-wave (CDW) states [5–8], and
even regions where phase separation appears [9].

The part of the Edwards Hamiltonian that accommodates boson-affected transport is

Hfb = −tb
∑
〈i,j〉

f †
j fi (b†i + bj) . (1)

Every time a spinless fermion hops between nearest-neighbor lattice sites i and j it creates (or ab-
sorbs) a local boson b†j (bi). As to Hb = ω0

∑
i b

†
ibi this enhances (lowers) the energy of the back-

ground by ω0. Moving in one direction only, the fermion creates a string of local bosonic excitations
that will finally immobilize the particle (just as for a hole in a classical Néel background). Because of
quantum fluctuations any distortion in the background should be able to relax however. Incorporating
this effect the entire Edwards model takes the form

H = Hfb − λ
∑

i

(b†i + bi ) + Hb , (2)

∗E-mail address: ejima@physik.uni-greifswald.de
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where λ is the relaxation rate. The unitary transformation bi → bi + λ/ω0 replaces the second term
in (2) by a direct, i.e., boson-unaffected, fermionic hopping term Hf = −tf

∑
〈i,j〉 f †

j fi. In this way
the particle can move freely, but with a renormalized transfer amplitude tf = 2λtb/ω0. We note that
coherent propagation of a fermion is possible even in the limit λ = tf = 0, by means of a six-step
vacuum-restoring hopping being related to an effective next-nearest-neighbor transfer. This process
takes place on a strongly reduced energy scale (with weight ∝ t6b/ω5

0), and is particularly important in
the extreme low-density regime (nf � 1), where the Edwards model mimics the motion of a single
hole in a quantum antiferromagnet [10].

At low-to-intermediate particle densities nf ≤ 0.3 the 1D Edwards model system stays metallic.
If here the fermions couple to slow (low-energy) bosons (ω0/tb . 1), the primarily repulsive TLL
becomes attractive, and eventually even phase segregation into particle-enriched and particle-depleted
regions takes place at small λ [9]. No such particle attraction is observed, however, for densities
0.3 . nf ≤ 0.5. Perhaps, in this regime, the repulsive TLL might give way to an insulating state with
charge order if the background is “stiff”, i.e., for small λ/tb and fast (high-energy) bosons ω0/tb > 1.
So far, a correlation induced TLL-CDW metal-insulator transition like that has been proven to exist
for the half-filled band case (nf = 0.5) [5, 6]. In the limit ω0/tb � 1 � λ/tb the Edwards model
can be approximated by an effective t-V model, HtV = Hf + V

∑
i n

f
i nf

i+1, with nearest-neighbor
Coulomb interaction V = t2b/ω0 [11]. The spinless fermion t-V model on his part can be mapped
onto the exactly solvable XXZ-Heisenberg model, which exhibits a Kosterlitz-Thouless [12] (TLL-
CDW) quantum phase transition at (V/tf )c = 2, i.e., at (λ/tb)tV,c = 0.25. The critical value is in
reasonable agreement with that obtained for the half-filled Edwards model in the limit ω0 → ∞:
(λ/tb)c ' 0.16 [6]. At lower densities, however, for example at nf = 1/3, a CDW instability
occurs in 1D t-V -type models only if (substantially large) longer-ranged Coulomb interactions were
included, such as a next-nearest-neighbor term V2 [13].

In order to clarify whether the 1D Edwards model by itself shows a metal-to-insulator transition
off half-filling at large ω0 and what is the reason for the absence of phase separation for small ω0, in
this work, we investigate the model at one-third band filling, using the density matrix renormalization
group (DMRG) technique [14] combined with the pseudo-site approach [15, 16] and a finite-size
analysis. This allows us to determine the ground-state phase diagram of the 1D Edwards model in the
complete parameter range.

2. Theoretical approach

To identify the quantum phase transition between the metallic TLL and insulating CDW phases
we inspect—by means of DMRG—the behavior of the local fermion/boson densities n

f/b
i , of the

single-particle gap ∆c, and of the the TLL parameter Kρ. In doing so, we take into account up to
four pseudo-sites, and ensure that the local boson density of the last pseudo-site is always less than
10−7 for all real lattice sites i. We furthermore keep up to m = 1200 density-matrix eigenstates in
the renormalization process to guarantee a discarded weight smaller than 10−8.

For a finite system with L sites the single-particle charge gap is given by

∆c(L) = E(N + 1) + E(N − 1) − 2E(N), (3)

where E(N) and E(N ± 1) are the ground-state energies in the N - and (N ± 1)-particle sectors,
respectively. In the CDW state ∆c is finite, but will decrease exponentially across the MI transition
point if the transition is of Kosterlitz-Thouless type as for the t-V model. This hampers an accurate
determination of the TLL-CDW transition line.

In this respect the TLL parameter Kρ is more promising. Here bosonization field theory predicts
how Kρ should behave at a quantum critical point. In order to determine Kρ accurately by DMRG,
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Fig. 1. (Color online) Local fermion (nf
j – filled blue circles) and boson (nb

j – open red squares) densities in
the central part of an Edwards model chain with L = 120 sites and OBC. DMRG data shown in the left-hand
(right-hand) panel indicate a homogeneous TLL (CDW) state for nf = 1/3 and λ−1 = 10 (λ−1 = 80), where
ω0 = 2. In what follows all energies are measured in units of tb.

we first have to calculate the static (charge) structure factor

Sc(q) =
1
L

∑
j,l

eiq(j−l)〈(f †
j fj − n)(f †

l fl − n)〉 , (4)

where the momenta q = 2πm/L with integers 0 < m < L [17]. The TLL parameter Kρ is propor-
tional to the slope of Sc(q) in the long-wavelength limit q → 0+:

Kρ = π lim
q→0

Sc(q)
q

. (5)

For a spinless-fermion system with one-third band filling, the TLL parameter should be K∗
ρ = 2/9 at

the metal-insulator transition point. For an infinitesimally doped three-period CDW insulator, on the
other hand, bosonization theory yields KCDW

ρ = 1/9 [18, 19].

3. Numerical results

First evidence for the formation of a CDW state in the one-third filled Edwards model comes
from the spatial variation of the local densities of fermions nf

i ≡ 〈f †
i fi 〉 and bosons nb

i ≡ 〈b†ibi 〉.
Fixing ω0 = 2, we find a modulation of the particle density commensurate with the band filling
factor 1/3 for very small λ = 0.0125 (see Fig. 1, right panel). Thereby, working with open boundary
conditions (OBC), one of the three degenerate ground states with charge pattern (... 100100100 ...),
(... 010010010 ...), or (... 001001001 ...) is picked up by initializing the DMRG algorithm. As a result
the CDW becomes visible in the local density. Note that also in the metallic state, which is realized
already for λ’s as small as 0.1 (cf. Fig. 1, left panel), a charge modulation is observed. Those, however,
can be attributed to Friedel oscillations, which are caused by the OBC and will decay algebraically
in the central part of the chain as L increases. Thus, for ω0 = 2, a metal-to-insulator transition is
expected to occur in between 10 < λ−1 < 80.

To localize the point where—at given ω0 and λ—the quantum phase transition takes place, we
first compute the single-particle gap ∆c and TLL charge exponent Kρ for finite chains with up to
L = 150 sites and OBC. Then we perform a finite-size scaling as illustrated for Kρ by Fig. 2, left
panel. Here open symbols give Kρ as a function of the inverse system size L−1. The DMRG data
can be extrapolated to the thermodynamic limit by third-order polynomial functions. Decreasing λ
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Fig. 2. (Color online) Left panel: Kρ(L) in the one-third filled Edwards model as a function of the inverse
system size for various values of λ at ω0 = 2 (open symbols). The finite-size interpolated DMRG data at
the metal-insulator transition point and for the infinitesimally doped CDW insulator [nf = 1/3 − 1/L (filled
symbols)] are in perfect agreement with the bosonization results K∗

ρ = 2/9 and KCDW
ρ = 1/9, respectively.

Right panel: L → ∞ extrapolated Kρ (circles) and ∆c (squares), as functions of λ−1 for ω0 = 2, indicate a
TLL-CDW transition at λ−1 ∼ 36.

at fixed ω0 = 2 the values of Kρ decreases too and becomes equal to K∗
ρ = 2/9 at the Kosterlitz-

Thouless transition point (λ−1)c ∼ 36; see Fig. 2, right panel. For λ−1 > 36 the system embodies
a 2kF-CDW insulator with finite charge gap ∆c. Furthermore, calculating Kρ(L) for N = L/3 − 1
particles, we can show that the infinitesimally doped CDW insulator has KCDW

ρ = 1/9 at nf = 1/3.
Deep in the CDW phase, Kρ approaches 1/9 in the thermodynamic limit [cf. the λ = 0.01 data (filled
symbols) in the left panel of Fig. 2].

Our final result is the ground-state phase diagram of the one-third filled Edwards model shown
in Fig. 3. The TLL-CDW phase boundary is derived from the L → ∞ extrapolated Kρ values.
Within the TLL region 2/9 < Kρ < 1. Of course, the TLL appears at large λ, when any distortion
of the background medium readily relaxes (∝ λ), or, in the opposite limit of small λ, when the
rate of the bosonic fluctuations (∝ ω−1

0 ) is sufficiently high. Below ω0,c ' 0.93 the metallic state
is stable ∀λ, because the background medium is easily disturbed and therefore does not hinder the
particle’s motion much. Note that this value is smaller than the corresponding one for the half-filled
band case, where ω0,c ' 1.38. On the other hand, the 2kF-CDW phase with ∆c > 0 and long-range
order appears, at half-filling, for small λ and by trend large ω0 (see dashed lines); λc ' 0.16 for
ω0 → ∞ [6]. Interestingly, for nf = 1/3, we observe that the CDW will be suppressed again if the
energy of a background distortion becomes larger than a certain λ-dependent value (see Fig. 3, left
panel). In stark contrast to the half-filled band case, at nf = 1/3, it seems that the TLL is stable
∀λ, when ω0 → ∞. This is because in this limit in the corresponding one-third filled t-V model not
only a nearest-neighbor Coulomb repulsion V but also a substantial next-nearest-neighbor interaction
V2 is needed to drive the TLL-to-CDW transition [13]. Again in the limit ω0/tb � 1 � λ/tb, the
Edwards model at one-third filling can be described by the effective t-V -V2 model with V = 2t2b/3ω0

and V2 = 2t4b/ω3
0 , i.e., V2/tf = t3b/λω2

0 , which clearly explains the absence of the CDW phase for
ω0 � 1.

4. Conclusions

To summarize, using an unbiased numerical (density matrix renormalization group) technique,
we investigated the one-dimensional fermion-boson Edwards model at one-third band filling. We
proved that the model displays a metal-insulator quantum phase transition induced by correlations in
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Fig. 3. (Color online) DMRG ground-state phase diagram of the 1D Edwards model at one-third band filling,
showing the stability regions of metallic TLL and insulating CDW phases in the λ−1-ω−1

0 (left panel) and λ-ω0

(right panel) plane. The dashed line denotes the MI transition points at half band filling from Ref. [6].

the background medium. The metallic phase is a Tomonaga-Luttinger liquid with 2/9 < Kρ < 1. The
insulator represents a 2kF charge density wave with KCDW

ρ = 1/9 deep inside the long-range ordered
state. Performing a careful finite-size scaling analysis, the phase transition point can be precisely
determined by Kρ. If the background medium is stiff, we can conclude—by analogy with the ground-
state phase diagram of the one-third filled t-V -V2 model—that the Edwards model incorporates the
effects of both effective nearest-neighbor and next-nearest-neighbor Coulomb interactions between
the fermionic charge carriers. The effect of the latter one is reduced when the energy of a local
distortion in the background is very large, which maintains metallic behavior—different from the
half-filled band case—even for weak boson relaxation.
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Phase separation in the Edwards model
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The nature of charge transport within a correlated background medium can be described by spinless fermions
coupled to bosons in the model introduced by Edwards. Combining numerical density matrix renormalization
group and analytical projector-based renormalization methods, we explore the ground-state phase diagram of the
Edwards model in one dimension. Below a critical boson frequency, any long-range order disappears and the
system becomes metallic. If the charge carriers are coupled to slow quantum bosons, the Tomonaga-Luttinger
liquid is attractive and finally makes room for a phase separated state, just as in the t-J model. The phase boundary
separating the repulsive from the attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge
correlations, whereas fermion segregation is indicated by a vanishing inverse compressibility. On approaching
phase separation, the photoemission spectra develop strong anomalies.

DOI: 10.1103/PhysRevB.86.155149 PACS number(s): 71.10.Hf, 71.30.+h, 71.10.Fd

I. PROBLEM

The Edwards fermion-boson model1,2 constitutes a paradig-
matic model for the theoretical description of quantum
transport in solids. Charge transport normally takes place in
the presence of some background medium.3 Examples for such
a “background” could be a spin-, charge-, or orbital-ordered
lattice,4,5 but also a sequence of chemical side groups along
the transport path, a deformable medium, or even a heat bath
might be possible. In all these cases, the transfer of the charge
carriers will be strongly influenced by fluctuations, which may
exist in the background medium. The other way around, the
properties of the background are quite often determined by the
motion of the particle itself.

Correlations inherent in such a complex interactive sys-
tem are mimicked by a boson-affected hopping of spinless
fermionic particles in the Edwards model. It reads

H = −tb
∑
〈i,j〉

f
†
j fi(b

†
i + bj ) − λ

∑
i

(b†i + bi) + ω0

∑
i

b
†
i bi .

(1)

Every time a fermion f
(†)
i hops, it creates or absorbs a boson

b
(†)
i of energy ω0 at the sites it leaves or enters. Such an excita-

tion or deexcitation corresponds to a local “distortion” of the
background. Because of quantum fluctuations, the distortions
are able to relax (∝ λ). The physically most interesting regimes
in this setting are those of vanishing fermion density and of a
half-filled band, representing doped Mott insulators, polaronic
organics, and charge-density-wave (CDW) systems6–9 with
possible relevance to high-Tc superconductors,10,11 colos-
sal magnetoresistive manganites,12–14 carbon nanotubes,15,16

graphene,17,18 and CDW transition metal complexes,19,20

respectively. However, the Edwards model also reveals fas-
cinating properties over the whole density range.

On these grounds, the main goal of the present work
is to pinpoint the ground-state phase diagram of the one-
dimensional (1D) Edwards model as a function of the band
filling n. Thereby, we demonstrate that this model indeed
captures a number of very interesting phenomena, including,

e.g., electronic phase separation (PS). To obtain reliable
information about the ground-state and spectral properties of
the model in the thermodynamic limit, we employ numerical
pseudosite density-matrix renormalization group (DMRG) and
dynamical DMRG (DDMRG) techniques (supplemented by a
careful finite-size scaling procedure; for details, see Refs. 9
and 21–24), in combination with the analytical projective
renormalization method (PRM).25,26

So far the 1D Edwards model has been solved exactly by
numerical approaches for two cases.22,24,27 The first, in no way
trivial, case concerns just a single particle on an infinite lat-
tice, where—depending on the model parameters—transport
appears to be quasifree, diffusive, or boson-assisted.6,28 When
strong correlations develop at small λ and large ω0, the
background becomes “stiff” and the spinless particle’s motion
resembles those of a hole in an antiferromagnetic spin
background,29,30 as known from the t-J model. Interestingly,
the Edwards model allows for so-called Trugman paths31

in a 1D setting (Trugman paths usually unwind the string
of misaligned spins a mobile hole leaves behind in two
dimensions). The second case is half-filling, n = 1/2. Here a
metal-insulator transition has been proven to exist: For small λ
and large ω0, the repulsive Tomonaga-Luttinger liquid (TLL)
gives way to a CDW.7,8 The CDW constitutes a few-boson
state that typifies a Mott-Hubbard insulator rather than a
Peierls state (normally established by the softening of a boson
mode).

II. THEORETICAL RESULTS

A. Ground-state properties

The situation at finite density n (n �= 1/2) is much less
understood. By analogy with the t-J model, one might expect
that the system is metallic for 0 < n < 1/2, at least if the
background is not too stiff. If so, the next question will be
whether the Edwards model might support the pairing of
electrons in a certain parameter regime (λ,ω0). Apparently
a second electron, following the path of a first one, can take
advantage of the background excitations (bosons) left behind
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FIG. 1. (Color online) Finite-size scaling of the TLL parameter
Kρ (left panel) and inverse compressibility κ−1 (right panel) for the
1D Edwards model with λ = 0.2 at n = 1/8. Insets show the variation
with ω0 of the L → ∞ extrapolated values. Results are obtained by
DMRG for a lattice with L sites and OBC. In all DMRG runs, we take
into account up to nb = 4 bosonic pseudosites and determine nb by
the requirement that the local boson density of the last pseudosite is
less than 10−6 for all j . Using selectively nb = 5, we controlled that
convergence is truly achieved. Furthermore, we keep up to m = 1200
density-matrix eigenstates in the renormalization steps to ensure that
the discarded weight is smaller than 10−8.

by the first electron. This acts like an effective attractive
interaction. If this attraction completely dominates the kinetic
energy, the system might even phase-separate into particle-
enriched and particle-depleted regions.32 Since the Edwards
model is not particle-hole symmetric, it is a moot point whether
a corresponding hole pairing mechanism is at play also for
1/2 < n < 1.

To address these problems, we analyze the charge correla-
tions existing in the ground state of the 1D Edwards model.
First, we calculate the charge structure factor

Sc(q) = 1

L

∑
j,l

eiq(j−l)〈(f †
j fj − n)(f †

l fl − n)〉 (2)

for a system with N fermions, L sites, and open boundary
conditions (OBCs). So the particle density is n = N/L and
the momenta q = 2πs/L with integers 0 < s < L. The TLL
charge exponent is proportional to the slope of Sc(q) in the
long-wavelength limit q → 0+ (cf. Refs. 33 and 34):

Kρ = π lim
q→0

Sc(q)

q
. (3)

Then, Kρ > 1 (Kρ < 1) characterizes an attractive (repulsive)
TLL for our spinless fermion transport model (1), and Kρ =
1/2 will define a metal-insulator transition point at n = 1/2.35

That the finite-size scaling of Sc(q) and Kρ works well has
been demonstrated for the half-filled band case.8 Secondly, in
order to comprise potential PS, we determine the finite-size
equivalent of the charge compressibility,36

κ = L

N2

[
E0(N + 2) + E0(N − 2) − 2E0(N )

4

]−1

, (4)

with E0(N ) being the ground-state energy for N electrons on
L sites. An infinite compressibility signals the formation of a
PS state.

Figure 1 demonstrates that all this works in practice.
Exemplarily choosing n = 1/8 and λ = 0.2, we show how the
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FIG. 2. (Color online) Ground-state phase diagram of the 1D
Edwards model, showing repulsive TLL (Kρ < 1), attractive TLL
(Kρ > 1), and PS (κ−1 = 0) regions. The phase boundaries were
obtained by DMRG (filled symbols) in the course of a careful finite-
size scaling analysis and for the infinite system directly by PRM (open
symbols). The upper panel displays the phase diagram as a function
of n, varying ω0 at fixed λ = 0.2; the lower panel gives the phase
diagram in the λ-ω0 plane for fixed density n = 1/8.

TLL exponent Kρ and the inverse compressibility κ−1 scale
with increasing system size at various ω0. The transition point
between a repulsive TLL—obviously realized at ω0 > ω0,c1

when excitations of the background are energetically rather
costly—and an attractive TLL at smaller ω0 can be read off
from the inset [depicting the extrapolations Kρ(L → ∞)]
to be ω0,c1(λ = 0.2) � 1.118. Reducing ω0 further, in the
attractive TLL phase, a dramatic increase in Kρ is observed
at ω0,c2 � 0.6. Our inverse compressibility data indicate that
at this point, the attraction among the particles becomes so
strong that the system shows PS, i.e., κ−1 = 0 for ω0 < ω0,c2.

Proceeding in the same manner for different values of n and
λ, and, respectively, ω0, we can map out the phase diagram of
the 1D Edwards model. The outcome is displayed in Fig. 2. Let
us first consider the case of a not too small boson relaxation
(∝ λ), which ensures that the system is metallic for large ω0

in the whole density regime. Then, as the upper panel of Fig. 2
shows, depending on n we find up to three different regimes:
For small and large particle densities, a repulsive TLL, an
attractive TLL, and a PS state appear in sequence as the energy
of the bosons is lowered. In contrast, around half-filling only
the repulsive TLL exists. At this point, we would like to remind
the reader that at half-filling, for smaller values of λ (λ < λc),
a CDW is formed for ω0 > ω0,c.8 Our unbiased DMRG
calculations give no evidence for any other phases. Note that
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the behavior in the low-density regime is consistent with what
is found for the 1D t-J model,36,37 where the holes correspond
to the spinless fermions in the Edwards model. As mentioned
before, the phase diagram is not symmetric with respect to n =
1/2. This is because the hopping of a hole (missing electron) to
a neighboring site creates in the Edwards model a boson at the
arrival site and not on the departure site, as in the motion of a
single particle. Since this boson can be destroyed immediately
when the hole makes a further hop, there is no string effect and
a few holes propagate more easily than a few electrons. Hence
the background at fixed ω0 and λ appears to be less stiff for
n � 1 than for n � 0 and, as a result, the boundary between the
repulsive and attractive TLL is shifted to larger values of ω0,c1.
Contrariwise, since carriers will be less mobile in a state with
charge separation, the boundary between the attractive TLL
and the PS state ω0,c2 is shifted to smaller values if one com-
pares the corresponding results at high and low carrier density.

We next consider a fixed particle density n = 1/8 and track
the phase boundaries in the λ-ω0 plane; see the lower panel of
Fig. 2. The repulsive TLL established for large ω0 is strongly
renormalized if the ability of the background to relax is low.
For example, we find Kρ = 0.527 for ω0 = 2 at λ = 0.01.
Lowering ω0 for such a stiff background, the transition to
the PS state happens almost instantaneously with a narrow
intervening attractive TLL state; at λ = 0.01 we have ω0,c1 �
0.747 and ω0,c2 � 0.672. If we fix, on the other hand, ω0 = 2
and increase λ, we observe a strong enhancement of Kρ in
the interval 0 < λ < 0.3 (Kρ = 0.767, 0.879, and 0.932 for
λ = 0.1, 0.2, and 0.3, respectively), followed by a very gradual
increase until the transition to the attractive TLL takes place at
about λc1 � 1. Obviously, the region where the attractive TLL
(PS state) constitutes the ground state expands (shrinks) as λ

gets larger, which can be traced back to the subtle competition
between kinetic energy and charge segregation effects.

To gain deeper insight into the different mechanisms at play,
we analyze the variation of the local fermion [nf

j = 〈f †
j fj 〉]

and boson [nb
j = 〈b†j bj 〉] densities in real space. In Fig. 3,

we show both density profiles for n = 1/8 and characteristic
values of λ and ω0, implementing repulsive TLL, attractive
TLL, and PS states. In the metallic regime, the OBCs lead to
Friedel oscillations in the particle density. These oscillations
are especially pronounced for the repulsive TLL [Fig. 3(a)],
and they will be even stronger for ω0 = 2 (not shown), where
the number and fluctuations of the bosons is reduced. Note
that the Friedel oscillations caused by the OBC will be
algebraically reduced if we move for very large systems toward
the central part of the chain. If we enter the attractive TLL
regime by increasing λ at fixed ω0, the Friedel oscillation will
be smeared out [Fig. 3(b)]. Thereby, the number of oscillations
stays constant, which means that a pairing of electrons does
not occur. This is an important difference from the spinful
1D t-J model, where a recent DMRG study reveals that the
number of Friedel oscillations is halved (by increasing J ),
corresponding to half the number of particles, which indicates
pairing.37 Next, lowering ω0 to a point where PS sets in, the
particle density oscillations vanish; see Fig. 3(c). There, just
above the PS boundary, no evidence is found for the clustering
of multiple particles in several groups. This agrees with the
findings for the 1D t-J model.37 Once we are deep inside the
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FIG. 3. (Color online) Local particle (filled circles) and boson
(open squares) densities for the 1D Edwards model with n = 1/8,
calculated for a 48-site system with OBC at various λ and ω0.

PS region, a density distribution results, where a single island
of particles at the central part of the system appears, leaving a
sizable number of almost empty sites at both ends of the chain
[see Fig. 3(d)]. Looking at the bosonic degrees of freedom, we
see that the strong attraction among these particles is mediated
by a boson cloud covering the electron-rich region. As a result,
the kinetic fluctuations will be strongly quenched.

It is all but impossible to comprise by DMRG the large
number of bosons and the strong bosonic fluctuations, which
appear at still smaller ω0 in the Edwards model, simply because
the dimension of the Hilbert space increases dramatically. To
access the low-ω0 regime and reconfirm the DMRG phase
boundaries obtained for the 1D Edwards model at larger
values of ω0, we employ the analytical PRM approach.25 The
basic idea of the PRM approach is to construct—performing a
sequence of discrete unitary transformations and eliminating
all transitions with energy larger than a given cutoff energy—
an effective noninteracting Hamiltonian H̃ with renormalized
parameters (in the limit of vanishing cutoff energy). For the
metallic state of the Edwards model, in momentum space, it
takes the form

H̃ =
∑

k

ε̃kf
†
k fk +

∑
q

ω̃qb
†
qbq + Ẽ, (5)

where the renormalization equations for ε̃k and ω̃q have been
derived in Ref. 26 (for the half-filled band case). To fix
the boundary between metallic and PS states, we (i) solve
the renormalization equations at a given EF in the TLL
phase, (ii) determine the corresponding fermion density n, and
(iii) slightly vary EF (to get closer to the PS instability),
determine n, and repeat the whole procedure self-consistently
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FIG. 4. Line-shape of the single-particle spectral function A(k,ω)
for the 1D Edwards model with λ = 0.2 at n = 1/8. Results are
obtained by DDMRG for a 16-site chain with quasimomenta k =
πs/(L + 1), using a broadening η = 0.2.

until the functional dependence of n on EF is established. A
vanishing inverse compressibility can then be read off from a
sudden jump of n under a tiny variation of EF or, the other
way around, if a plateau in the EF versus n plot appears. The
transition points, determined in the manner described, were
inserted in Fig. 2 to complete the ground-state phase diagram
in the n-ω0 plane. Whenever points can be compared, we find a
remarkable agreement between our DMRG and PRM data. The
deviation of the PRM data at larger particle densities n � 0.75
results from uncertainties in fixing the jump of n under EF

variation. Here we should trust in the DMRG phase boundary.

B. Spectral properties

Let us finally discuss the single-particle spectrum of the
1D Edwards model. The single-particle excitations associated
with the injection (+) or emission (−) of an electron with wave
vector k,

A±(k,ω) =
∑
m

|〈ψ±
m |f ±

k |ψ0〉|2 δ(ω ∓ ω±) , (6)

can be computed by DDMRG,23,24 where f +
k = f

†
k , f −

k = fk ,
|ψ0〉 is the ground state of an L-site system in the N -particle
sector, and |ψ±

m 〉 denotes the mth excited states in the (N ± 1)-
particle sectors with excitation energies ω±

m = E±
m − E0.

Within PRM, we find for the photoemission part

A−(k,ω) = α̃2
k ñ

f

k δ(ω − ε̃k)

+
∑

q

β̃2
k,q (1 + ñb

q)ñf

k+qδ(ω + ω̃q − ε̃k+q)

+
∑

q

γ̃ 2
k,q ñb

q ñ
f

k−qδ(ω − ω̃q − ε̃k−q), (7)

where ñ
f
q (ñb

q) are the fermion (boson) occupation numbers in
momentum space calculated with the renormalized Hamilto-
nian H̃ . The coefficients α̃2

k , β̃2
k,q , and γ̃ 2

k,q follow from renor-
malization equations.26 Taking the corresponding expression
for A+(k,ω), the sum rule

∫ ∞
∞ dω[A+(k,ω) + A−(k,ω)] = 1

is fulfilled.
Figure 4 gives the combined photoemission spectrum,

A(k,ω) = A+(k,ω) + A−(k,ω), as obtained by DDMRG for
quasimomenta k. In the repulsive TLL regime (left panel,

-4 0 4 8
ω−EF

A
– (k

,ω
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A
+
(k

,ω
)

k

π/2

π

0
ω0=0.5n=3/10

FIG. 5. (Color online) PRM (inverse) photoemission spectrum
[A+(k,ω)] A−(k,ω) for the Edwards model with λ = 0.2, n = 3/10.
The bold line marks the signal at the Fermi momentum kF = 0.3π .

ω0 = 2), we find a rather coherent signal with comparable
spectral weight for all k values k � π/2. For larger k,
excitations with at least one additional ω0 boson involved
become important (recall that both initial N -particle- and target
(N ± 1)-particle states are multiboson states with a momentum
being the total momentum of electrons and bosons). The
spectrum in the attractive TLL phase (right panel, ω0 = 0.7)
shows a sharp absorption signal in the vicinity of kF only. Here
the (inverse) photoemission spectrum for k < kF (k > kF )
exhibits a few absorption maxima at multiples of the boson
energy. Obviously, due to the smaller ω0, here the dynamics
of the system becomes dominated by bosonic fluctuations.

The (inverse) photoemission close to the transition to the
PS state is depicted in Fig. 5, as calculated by PRM for ω0 =
0.5. Here the almost dispersionless signal for k � 0.212π

(k � 0.788π ) is a precursor of the PS instability. As we
noted above, EF does not show any variation with n if n

is smaller (larger) than the lower (upper) critical density nc2

for PS. Since in the PRM derivation of A±(k,ω) terms with
two (and more) bosonic creation or annihilation operators
were neglected,26 the photoemission spectrum of Fig. 5 does
not feature the multiboson related signatures found within a
DDMRG treatment.

III. CONCLUSIONS

To summarize, the combination of analytical (PRM) and
numerical (DMRG) approaches permits the precise determi-
nation of the ground-state phase diagram of the 1D Edwards
model in the whole parameter regime. In the low- and
high-density regions, the attraction between the particles
mediated by the bosonic degrees of freedom representing the
background medium might become so strong that electronic
PS sets in. In the remaining region, the system realizes a TLL
or, at n = 1/2, possibly even a truly long-range ordered CDW
state. Depending on the properties of the background medium,
the TLL might be attractive or repulsive. The richness of the
phase diagram is remarkable. The model captures important
features of Holstein, t-J , Hubbard, and Falicov-Kimball type
models.6–9,38 Since the Edwards model is one of the simplest
models for studying transport in low-dimensional systems,
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an inspection of its predictions with ultracold fermion/boson
quantum gases,39 as, e.g., carried out for the 1D t-J model,40

would be of great interest.
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Abstract
Holes in a Mott insulator are represented by spinless fermions in the fermion–boson model
introduced by Edwards. Although the physically interesting regime is for low to moderate
fermion density, the model has interesting properties over the whole density range. It has
previously been studied at half-filling in the one-dimensional (1D) case by numerical methods,
in particular using exact diagonalization and the density matrix renormalization group
(DMRG). In the present study the one-particle Green’s function is calculated analytically by
means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D
and 3D with fairly large boson energy and zero boson relaxation parameter. The Green’s
function is used to compute some ground state properties, and the one-fermion spectral
function, for fermion densities n = 0.1, 0.5 and 0.9 in the 1D case. The results are generally in
good agreement with numerical results obtained using the DMRG and dynamical DMRG, and
new light is shed on the nature of the ground state at different fillings. The Green’s function
approximation is sufficiently successful in 1D to justify future application to the 2D and 3D
cases.

1. Introduction

Hubbard-like models provide a paradigm for a large class of
strongly correlated systems. A general form for the Hubbard
Hamiltonian is

HHu = T + U = −
∑

r,ρ,a,b

tρabc†
r+ρbcra + U

∑

r

nr+nr− (1)

and the system is strongly correlated when the repulsive on-
site interaction U is considerably larger than the hopping
parameters t . Here cra destroys an electron in state a on lattice
site r and c†

r+ρb creates an electron in state b on a nearest-
neighbour site r + ρ. The state indices a, b are summed
over two states denoted by + and −, and the occupation
numbers nr± = c†

r±cr±. In general we consider bipartite
lattices in one, two and three dimensions. The standard
Hubbard model [1] corresponds to the case of a single orbital
on each site with states ± corresponding to spin ±1/2 and with
hopping parameter

tρab = t0δab. (2)

This model with a 2D square lattice is frequently used to
describe the copper–oxygen plane of high-Tc systems such as

doped La2CuO4, where the orbital corresponds to a Cu dx2−y2

orbital. A related model on a 2D square lattice in the xy plane
describes a ferromagnetic system in which the on-site states
all have the same spin and the states + and − correspond
to dz2−x2 and dz2−y2 t2g orbitals respectively. This ‘t2g model’
describes ferromagnetic planes in Sr2VO4 and also in fluorides
such as K2CuF4 and Cs2AgF4, where in this case a crystal field
converts eg orbitals into an effective t2g system [2–6]. In the t2g

model one considers only the dominant hopping processes in
which hopping between + states occurs along the x axis and
hopping between − states occurs along the y axis. Thus in the
t2g model

tρab = t0δab|ρ̂ · ea|, (3)

where e+ and e− are unit vectors along the x and y directions
respectively and ρ̂ is a unit vector in the nearest-neighbour
direction ρ.

In the large-U limit we can approximate the Hamiltonian
HHu by an effective Hamiltonian Heff which is defined to act
only within a subspace where there is no double occupation of
any site. Heff takes the form

Heff = T − T 2
1 /U, (4)
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where T1 is that part of T which has matrix elements linking
states of no double occupation with states having a single
doubly occupied site. If three-site terms are neglected it is
straight-forward to write the second term of equation (4) in
terms of spin (pseudospin for the t2g model) operators Sz

r =
(nr+ − nr−)/2, S±

r = Sx
r ± Sy

r = c†
r±cr∓ and number operator

nr = nr+ + nr−. Then, for the Hubbard model, Heff becomes

Ht−J = Tt−J + 1
2 J

∑

r,ρ

[Sz
r Sz

r+ρ + 1
2 (S

+
r S−

r+ρ + S−
r S+

r+ρ )

− 1
4 nrnr+ρ ] = Tt−J + 1

2 J
∑

r,ρ

(Sr · Sr+ρ − 1
4 nrnr+ρ ), (5)

where J = 4t2
0/U and Tt−J contains the hopping parameters

of equation (2) [7]. For the t2g model the corresponding
Hamiltonian is

Ht2g = Tt2g + 1
4 J

∑

r,ρ

(Sz
r Sz

r+ρ − 1
4 nrnr+ρ ), (6)

where Tt2g contains the hopping parameters of equation (3) [2].
Ht−J is known as the t-J model and if the transverse exchange
terms in equation (5) are omitted we have the t-Jz model. This
differs from Ht2g where + and − spins only hop along the x
and y axes respectively. For the case of one electron per site,
the undoped case for the oxides being modelled, T drops out
and the system is a Mott insulator. In the Hubbard case the
insulator is a Heisenberg antiferromagnet and in the t2g case it
is an Ising antiferromagnet with alternating orbital order in the
ground state. The transverse exchange terms in equation (5) are
not present in equation (6) owing to the directional hopping of
the orbitals in the t2g case.

When a hole is introduced into the lattice its motion
disturbs the spin or orbital order of the ground state. At
each hop through the ordered lattice the hole leaves a spin,
or orbital, deviation at the site it vacates. Thus as the hole
hops through the lattice the energy of the system increases
linearly and the hole is bound to its starting point. This is
known as the string effect and it exists in dimensions higher
than one [8]. In 1D the spin deviation created by a hole at its
first hop, from some initial position, increases the energy but
subsequent hops in the same direction merely shift the ordered
spin configuration by a lattice spacing without further increase
in energy. There is therefore no string effect in the 1D t-J or
t-Jz models. Furthermore in the 2D or 3D t-J models the string
effect is relaxed by the S+

r S−
r+ρ terms in equation (5) which

exchange spin directions between lattice sites and can lead to
a healing of the spin deviations created by the hole. Thus
the hole can move at a speed determined by the healing rate,
which leads to a quasiparticle band of width proportional to
the exchange parameter J [9]. This way of relaxing the string
effect is not possible in the t-Jz or the Ht2g model owing to
the absence of the S+

r S−
r+ρ terms. In these models a relaxation

mechanism can be introduced by including in the Hamiltonian
a term of the form

∑

r

(S+
r + S−

r ) = 2
∑

r

Sx
r (7)

so that the spin part of equation (6) becomes a transverse-field
Ising antiferromagnet. In the physical case of the t2g model this

transverse field corresponds to an on-site crystal field which
mixes the two t2g orbitals just as the transverse magnetic field
mixes + and − spins. In both the t-Jz and the Ht2g model
inclusion of three-site terms mentioned earlier also relaxes the
string effect [2] but we shall not include them here. A hole in
the 2D t-Jz model can also propagate by means of a Trugman
path [10] which consists of six hops around a four-site square
plaquette. The hole moves to a next-nearest-neighbour site and
leaves the antiferromagnetic spin arrangement undisturbed.
This cannot occur in the Ht2g model owing to the directional
hopping [2]. We shall here concentrate on the t-J model and
the t-Jz model in a transverse field although there should be no
difficulty in treating the directional hopping of the Ht2g model.

Our reference state has one electron on each site with spins
(or pseudospins) ordered as in an antiferromagnet. We follow
Martinez and Horsch [11] in introducing a spinless fermion
operator f †

r which creates a hole in the reference state at site r
and a boson operator b†

r which creates a spin reversal on site r.
Thus b†

r = S−
r for site r on the + spin sublattice and b†

r = S+
r

for r on the − sublattice. Clearly each nearest-neighbour hop
of the hole through the ordered lattice reverses the spin on the
site vacated by the hole. Thus the hopping operator Tt−J may
be written as

Tt−J = −t0
∑

rρ

( f †
r+ρ frb†

r + H.c.). (8)

For the t2g model the corresponding hopping operator Tt2g is

Tt2g = −t0
∑

rρ

( f †
r+ρ frb†

r + H.c.) |ρ̂ · ea|. (9)

Since Sz
r = ±( 1

2 − b†
r br) for r on the ± spin sublattice we may

write the Ising part of the exchange term, in the presence of a
hole, as

− 1
8 J

∑

rρ

(1 − hr)(1 − 2b†
rbr)(1 − 2b†

r+ρbr+ρ)(1 − hr+ρ)

= 1
2 J

∑

rρ

b†
r br(1 − hr+ρ − b†

r+ρbr+ρ), (10)

where hr = f †
r fr and an irrelevant constant term has been

dropped. Here we have used hrb†
r br = 0 since the hole and a

spin deviation cannot occupy the same site. A spin deviation
created on site r when the hole vacates that site will in general
have one neighbouring site r + ρ occupied by the hole and
another by a spin deviation created when the hole arrived on
site r. Thus the expression in equation (10) may be written as

1
2 J (z − 2)

∑

r

b†
rbr, (11)

where z is the number of nearest-neighbours. z = 2 in 1D so
that the above term is zero, which is consistent with the absence
of the string effect in the 1D t-Jz model. Apart from an additive
constant the t-J Hamiltonian equation (5) becomes

Ht−J = −t0
∑

rρ

( f †
r+ρ frb†

r + H.c.)

+ 1
4 J

∑

rρ

(b†
rb†

r+ρ + brbr+ρ)+ 1
2 J (z − 2)

∑

r

b†
r br. (12)

2

8 Thesis Articles

134



J. Phys.: Condens. Matter 22 (2010) 435601 D M Edwards et al

Note that the derivation of this Hamiltonian in [11] gives
additional constraints which we will not discuss here.

The relaxation of the string effect occurs when bosons,
created by fermion hopping, are spontaneously destroyed in
nearest-neighbour pairs by the terms brbr+ρ . Edwards [12]
introduced a simplified model Hamiltonian of the form

HEd = −t0
∑

rρ

( f †
r+ρ frb†

r + H.c.)− λ
∑

r

(b†
r + br)

+ ω0

∑

r

b†
rbr + Nλ2/ω0 (13)

in which boson relaxation terms brbr+ρ are replaced by the
simpler linear ones br. A unitary transformation H̃Ed =
eSHEde−S , S = (λ/ω0)

∑
r(br − b†

r), resulting in br →
br + λ/ω0, yields

H̃Ed = −2t0λ

ω0

∑

rρ

f †
r+ρ fr − t0

∑

rρ

( f †
r+ρ frb†

r + H.c.)

+ ω0

∑

r

b†
rbr. (14)

Thus the second term in HEd is eliminated in favour of the first
term in H̃Ed which introduces a coherent hopping channel in
addition to the original incoherent one. In the ground state |0̃〉
of the Hamiltonian H̃Ed, in the absence of fermions, there are
no bosons, so that br|0̃〉 = 0. Thus for the ground state |0〉
of HEd we have (br − λ/ω0)|0〉 = 0 and hence 〈0|b†

rbr|0〉 =
λ2/ω2

0.
From the above discussion it is clear that in 2D

the Edwards model corresponds, within a certain range
of parameters, to an underlying t-Jz type of model with
Hamiltonian

−t0
∑

rρσ

c†
r+ρcrσ + 1

2ω0

∑

rρ

Sz
r Sz

r+ρ − 2λ
∑

r

Sx
r , (15)

since 2Sx
r = S+

r + S−
r = b†

r + br. This corresponds to a
doped antiferromagnetic Ising model in a transverse magnetic
field, but this correspondence is only valid for low hole density
(low fermion density in the HEd model) and λ � ω0. In
this case, since |〈0|Sz

r |0〉| = 1
2 − 〈0|b†

r br|0〉 = 1
2 − λ2/ω2

0,
the holes move in a background medium which is close to a
saturated antiferromagnet. For λ � ω0 the transverse-field
Ising model no longer exhibits antiferromagnetic order [13]. In
1D the correspondence breaks down completely since if λ = 0
and ω0 �= 0 the HEd model exhibits the string effect which is
absent in the 1D t-Jz model. In fact the 1D HEd model has an
interesting similarity to the 2D t-Jz model. Even for λ = 0
the string effect is relaxed by an analogue of the Trugman
path [14]. This is again a six-step process in which the
fermion propagates to a next-nearest-neighbour site with the
background medium left undisturbed, i.e. no bosons excited.
During the process the fermion excites three bosons which are
subsequently destroyed. Unfortunately the model HEd does not
represent precisely any physical system that we know of. The
underlying Ising exchange is characteristic of the t2g model
for vanadates and fluorides but the directional hopping of that
model is not included, although this could be remedied in the
2D model. However if the model is considered over the whole
λ/t0, ω0/t0-space it is found, even in the 1D case, to exhibit

a surprising number of different physical regimes reminiscent
of some found in realistic strongly correlated electron systems
and strongly coupled electron–phonon systems. This was first
demonstrated for the case of a single fermion (Nf = 1) at
temperature T = 0 by the method of variational Lanczos
diagonalization [14]. A great advantage of the model is that the
simple treatment of the background medium, in terms of local
bosons, makes it possible to obtain essentially exact results in
the thermodynamic limit, at least in the 1D case. More recently
the half-filled case, with Nf = N/2 where N is the number
of lattice sites, has been investigated [15–17]. The ground
state phase diagram has been mapped out in the whole λ–ω0

plane, using a density matrix renormalization group (DMRG)
technique [18, 19]. A quantum phase transition between a
metallic Tomonaga–Luttinger liquid and an insulating charge
density wave (CDW) was shown to exist.

It is desirable to complement these numerical results
with some more analytical approaches. Nearly all analytical
work on t-J-like or polaronic models is confined to the case
of a single fermion. However very recently the projective
renormalization method [20] has been applied to the half-filled
1D HEd model in a study of CDW formation at T = 0 [21].
Our initial analytical work on the HEd model was confined
to the one-fermion case in 1D at T = 0 with the additional
restriction λ = 0 [22]. The latter restriction means that the
fermion can only propagate as a coherent quasiparticle by
the Trugman-like process discussed above. This requires the
coexistence of at least three bosons during the particle’s motion
and in [22] the one-fermion Green’s function was calculated
within a three-boson approximation. The spectral functions
agree well with exact numerical results for ω0/t0 � 1. In this
paper we extend the analytical approach for λ = 0 to finite
fermion density and to higher dimension, 2D and 3D. This is
achieved within a two-boson approximation and comparison
with exact numerical results in 1D shows that the range of
validity is thereby reduced to ω0/t0 � 3. No Trugman-like
processes exist in the two-boson approximation but they are
unimportant to understand CDW formation at finite density.
Relaxation of the string effect does not depend on them
because bosons created by one fermion can be destroyed by
other fermions. Near half-filling a CDW state is found, in good
agreement with 1D numerical results, and the CDW transition
temperature can be calculated formally. However, within the
two-boson approximation, the transition is mean-field-like,
with no short-range order in the disordered state. This is clearly
not realistic in 1D but finite-temperature calculations should
certainly be relevant in 3D. In this paper we concentrate on the
calculation of spectral functions in 1D at T = 0 with various
fermion densities and compare with some new DMRG results.

In section 2 we determine the one-fermion Green’s
function for λ = 0 within the two-boson approximation in the
cases of one particle (Nf = 1) and one hole (Nf = N − 1).
The method used is different from that previously employed
for Nf = 1 [22] and provides a wavefunction as a byproduct. In
section 3 we study the hierarchy of equations of motion for the
Green’s function at arbitrary density and devise a decoupling
which leads to the correct Green’s function in the two-boson
approximation for Nf = 1 and N − 1. This two-boson Green’s

3
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function is valid for any bipartite lattice in 1D, 2D or 3D and
allows for two distinct sublattices so that the CDW state can be
investigated. In section 4 spectral functions and ground state
properties calculated from the two-boson Green’s function are
compared with those calculated numerically by the DMRG
method. In section 5 we draw conclusions and consider the
outlook for future work.

2. Limiting cases of the Green’s function within the
two-boson approximation

We now derive expressions for the one-fermion Green’s
function in the special cases of a single fermion (Nf = 1) and
a single hole (Nf = N − 1). For these single-particle cases the
Green’s function may be calculated by direct solution of the
Schrödinger equation, which also yields the wavefunction.

2.1. The case N f = 1

For λ = 0 the Hamiltonian equation (13), written in k-space,
takes the form

HEd = 1√
N

∑

kk′
f †
k fk′ [γ (k)b†

k′−k+γ (k′)bk−k′ ]+ω0

∑

q

b†
qbq,

(16)
where

fk = 1√
N

∑

r

eik·r fr, bq = 1√
N

∑

r

eiq·rbr,

γ (k) = −t0
∑

ρ

eik·ρ .
(17)

The ρ-summation is over z nearest-neighbours in a 1D, 2D
or 3D bipartite lattice. In the two-boson approximation the
wavefunction for a single fermion is of the form

�k =
[

f †
k +

∑

q1

a(q1) f †
k−q1

b†
q1

+
∑

q1

∑

q2

a(q1,q2) f †
k−q1−q2

b†
q1

b†
q2

]
|vac〉, (18)

where |vac〉 is the vacuum state and a(q1,q2) = a(q2,q1).
On substituting this in the Schrödinger equation H�k =
E�k, and multiplying on the left by 〈vac|, 〈vac|bq′ fk−q′ and
〈vac|bq′

1
bq′

2
fk−q′

1−q′
2

we obtain equations of the form

−E + 1√
N

∑

q1

γ (k − q1)a(q1) = 0, (19)

1√
N
γ (k − q1)+ a(q1)(ω0 − E)

+ 2√
N

∑

q2

a(q1,q2)γ (k − q1 − q2) = 0, (20)

1√
N
γ (k − q1 − q2)[a(q1)+ a(q2)]
+ 2a(q1,q2)(2ω0 − E) = 0. (21)

On solving equation (21) for a(q1,q2), and substituting in
equation (20), we find

a(q1)

[
ω0 − E − zt2

0

2ω0 − E

]
= − 1√

N
γ (k − q1)

+ 1

N

∑

q2

[γ (k − q1 − q2)]2a(q2)

2ω0 − E
. (22)

It is easily shown that for a bipartite lattice the last term in
this equation vanishes when a(q) ∝ γ (k − q). Hence a
solution for a(q1) is obtained by omitting the last term and,
on substituting this solution in equation (19), we find

E + zt2
0

ω0 − E − zt2
0

2ω0−E

= 0. (23)

The solutions of this equation are the energies of single
fermion eigenstates, which are the poles of the one-fermion
Green’s function Gk(E). The left-hand side of equation (23)
is G−1

k (E). The absence of k-dependence in this expression
shows that the single fermion eigenstates are localized. This is
due to the string effect which is not relaxed in the two-boson
approximation.

2.2. The case N f = N − 1

The motion of a single hole in the present model is quite
different from that of a single particle. To avoid confusion
it should be stressed that the hole discussed here does not
correspond to a hole in a t-J-like model, the latter being
represented by a fermion in the present model. Clearly when
the hole considered here hops to a neighbouring site a boson
is created on the arrival site, not on the departure site as in
the motion of a single particle. This boson can be destroyed
immediately when the hole makes a further hop. There is
therefore no string effect and the hole propagates easily. To
find the Green’s function in this case we use the Schrödinger
equation as in the case of a single particle. The wavefunction
for the hole is of the form

�k =
[

fk +
∑

q1

c(q1) fk+q1 b†
q1

+
∑

q1

∑

q2

c(q1,q2) fk+q1+q2 b†
q1

b†
q2

]
|F〉, (24)

where |F〉 is the state with every site occupied by a fermion
and c(q1,q2) = c(q2,q1). The equations corresponding to
equations (19)–(21) in the previous case are

−E − 1√
N
γ (k)

∑

q1

c(q1) = 0, (25)

− 1√
N
γ (k)+ c(q1)(ω0 − E)

− 2√
N
γ (k + q1)

∑

q2

c(q1,q2) = 0, (26)

− 1√
N

[c(q1)γ (k + q1)+ c(q2)γ (k + q2)]
+ 2c(q1,q2)(2ω0 − E) = 0. (27)
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From equations (26) and (27) we find that for a bipartite lattice

c(q1) = 1√
N

γ (k)

ω0 − E − [γ (k+q1)]2

2ω0−E

. (28)

Hence, from equation (25),

− E − [γ (k)]2 1

N

∑

q

1

ω0 − E − [γ (q)]2

2ω0−E

= 0. (29)

The solutions of this equation are the energies of single hole
eigenstates and, as expected, they depend on the wavevector
k, being functions of [γ (k)]2. This type of k dependence
arises from the fact that the hole propagates through the lattice,
leaving behind no excited bosons, by means of double hops,
as discussed at the beginning of this section. As in the one-
particle case we deduce that for one hole (Nf = N − 1) the
one-fermion Green’s function is given by

[Gk(E)]−1 = E − [γ (k)]2 1

N

∑

q

1

ω0 + E − [γ (q)]2

2ω0+E

. (30)

The sign of E has been changed since in equation (29) the
energy refers to a hole state.

3. The Green’s function at finite fermion density

In this section we study the hierarchy of equations of motion
of the one-fermion Green’s function and find a decoupling
which is consistent with the results derived in section 2 for the
limiting cases of low (Nf = 1) and high (Nf = N − 1) fermion
density. We allow for two distinct sublattices with different
occupation so that the CDW state can be investigated.

The Fourier transform of the one-fermion retarded Green’s
function is defined by [23]

Gk(E) = 〈〈 fk; f †
k 〉〉 = −i

∫ ∞

−∞
dt θ(t)〈[ fk(t), fk]+〉eiEt ,

(31)
where fk(t) = eiH t fke−iH t and θ(t) is the unit step function.
We may write fk, defined by equation (17), as a sum of two-
sublattice components. Thus

fk = 1√
2
( fk1 + fk2), (32)

where

fkl =
√

2

N

∑

rl

eik·rl frl . (33)

Here the summation is over sites rl which belong to sublattice
l (l = 1, 2). It follows from equations (31) and (32) that

Gk(E) = 1
2

2∑

l=1

2∑

m=1

Glm
k (E), (34)

where

Glm
k = 〈〈 fkl; f †

km〉〉 = 2

N

∑

rl sm

eik·(rl −sm )Grl sm , (35)

and
Grl sm = 〈〈 frl ; f †

sm
〉〉. (36)

The equation of motion for the Green’s function 〈〈A; B〉〉
is [23]

E〈〈A; B〉〉 = 〈[A, B]+〉 + 〈〈[A,H]; B〉〉. (37)

Hence, noting that H is given by equation (13) with λ = 0, we
find

EGrl sm = δrl sm − t0
∑

ρ

H rl
rl+ρ,sm

− t0
∑

ρ

I rl +ρ
rl +ρ,sm

, (38)

where
H rl

rl+ρ,sm
= 〈〈 frl +ρbrl ; f †

sm
〉〉, (39)

I rl +ρ
rl̄ ,sm

= 〈〈 frl̄
b†

rl+ρ; f †
sm

〉〉. (40)

Here rl̄ is a general site on the sublattice l̄ which complements
the sublattice l (l̄ = 2, 1 for l = 1, 2 respectively). rl + ρ is
a particular site on the sublattice l̄ but it is necessary to define
I more generally in order to close the equations of motion.
However we first calculate the second term on the right of
equation (38).

The equation of motion for H is

(E − ω0)H
rl
rl+ρ,sm

= δrl +ρ,sm 〈brl 〉
− t0

∑

ρ′
〈〈 frl +ρ f †

rl +ρ ′ frl ; f †
sm

〉〉

− t0
∑

ρ′
〈〈 frl +ρ+ρ′(brl+ρ + b†

rl+ρ+ρ′)brl ; f †
sm

〉〉. (41)

The last term of this equation is produced by a process in
which a fermion hops from rl + ρ to rl + ρ + ρ ′ with
either the creation of a boson on the vacated site rl + ρ or
destruction of a boson on the arrival site rl + ρ + ρ ′. The
latter boson must have been created by another fermion so
that the term involving b†

rl+ρ+ρ′ brl corresponds to a dynamical
interaction between fermions. This should only be included if
we consider two-fermion interactions consistently which goes
beyond the effective Hartree–Fock treatment introduced below.
We therefore neglect this term. In the second term on the right
of equation (41) we retain only the part involving fermions on
two sites, thus taking ρ ′ = ρ, and then make a Hartree–Fock
type of approximation. Thus the second term becomes

− t0〈〈(1 − nrl +ρ) frl ; f †
sm

〉〉 � −t0(1 − 〈nrl +ρ〉)Grl ,sm , (42)

where nrl = f †
rl

frl . Also we write the average fermion
occupation for sites on sublattice l as nl = 〈nrl 〉 so that
〈nrl +ρ〉 = nl̄ . Following this discussion equation (41) becomes

(E − ω0)H
rl
rl+ρ,sm

= δrl +ρ,sm 〈brl 〉 − t0(1 − nl̄)Grl ,sm

− t0
∑

ρ′
J rl +ρ,rl

rl +ρ+ρ ′,sm
, (43)

where
J rl +ρ,rl

rl +ρ+ρ′,sm
= 〈〈 frl +ρ+ρ′ brl+ρbrl ; f †

sm
〉〉. (44)

In the equation of motion for J the terms arising from
[ frl +ρ+ρ′ ,H] involve three boson operators and we neglect
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them. The terms arising from [brl +ρbrl ,H] may be treated in
the Hartree–Fock-like way used to obtain equation (42). Hence

(E − 2ω0)J
rl +ρ,rl
rl +ρ+ρ′,sm

= δrl +ρ+ρ ′,sm 〈brl +ρbrl 〉
− t0(1 − nl)H

rl
rl+ρ,sm

. (45)

We approximate 〈brl +ρbrl 〉 by blbl̄ , where bl = 〈brl 〉.
Furthermore it is shown below that bl = 0 for the present
model, with λ = 0. Hence 〈brl +ρbrl 〉 may be neglected. On
substituting for J in equation (43), using equation (45), and
summing over ρ, we find∑

ρ

H rl
rl+ρ,sm

= C(E, nl)

[
bl

∑

ρ

δrl +ρ,sm − zt0(1 − nl̄)Grl ,sm

]
, (46)

where

C(E, nl) = 1

E − ω0 − zt2
0 (1−nl)

E−2ω0

. (47)

The second term on the right of equation (38) has therefore
been determined and to find the third term we must consider
the equation of motion of the Green’s function I defined by
equation (40). This takes the form

(E + ω0)I
rl +ρ
rl̄ ,sm

= δrl̄ ,sm 〈b†
rl +ρ〉 + t0

∑

ρ ′
〈〈 frl̄

f †
rl +ρ frl +ρ+ρ′ ; f †

sm
〉〉

− t0
∑

ρ′
〈〈 frl̄ +ρ ′(δrl̄ ,rl +ρ + b†

rl+ρbrl̄
+ b†

rl̄+ρ ′b
†
rl +ρ); f †

sm
〉〉.

(48)

We now make similar approximations to those used to obtain
equation (43). Thus we make an effective Hartree–Fock
approximation to the second term on the right of equation (48),
retaining it only when rl̄ = rl + ρ, and we neglect the b†

rl +ρbrl̄

term in the third term. Hence

(E + ω0)I
rl +ρ
rl̄ ,sm

= δrl̄ ,sm b∗
l̄
− t0nl̄δrl̄ ,rl +ρ

∑

ρ ′
Grl̄ +ρ ′,sm

− t0
∑

ρ′
K

rl̄ +ρ ′,rl +ρ

rl̄ +ρ′,sm
, (49)

where
K

rl̄ +ρ′,rl +ρ

rl̄ +ρ ′,sm
= 〈〈 frl̄ +ρ ′b†

rl̄ +ρ′ b
†
rl +ρ; f †

sm
〉〉. (50)

We treat the equation of motion of K in a similar way to that
of J . A slight difference is that instead of neglecting all the
terms arising from [ frl̄ +ρ ′, H ] we retain one which leads to
a factor brl̄+ρ ′b†

rl̄ +ρ′ . This equals [1 + b†
rl̄ +ρ′ brl̄ +ρ′ ] which we

approximate by 1, neglecting the boson occupation number.
Hence, neglecting a 〈b†b†〉 correlation function as before, we
find

(E + 2ω0)K
rl̄ +ρ ′,rl +ρ

rl̄ +ρ′,sm
= −t0nl

∑

ρ′′
I rl +ρ
rl̄ +ρ′+ρ′′,sm

. (51)

Thus, from equations (49) and (51),

(E + ω0)I
rl +ρ
rl̄ ,sm

= δrl̄ ,sm b∗
l̄
− t0nl̄δrl̄ ,rl +ρ

∑

ρ ′
Grl̄ +ρ ′,sm

+ t2
0 nl

E + 2ω0

∑

ρ′

∑

ρ′′
I rl +ρ
rl̄+ρ′+ρ′′ ,sm

. (52)

To solve this equation for I we introduce the Fourier transform

I l̄m
kq =

(
2

N

) 3
2 ∑

rl rl̄ sm

I rl +ρ
rl̄ ,sm

ei[(k+q)·rl̄ −k·sm−q·(rl +ρ)] (53)

so that
(

E + ω0 − nl[γ (k + q)]2

E + 2ω0

)
I l̄m
kq =

√
N

2
δq0δl̄mb∗

l̄

+
√

2

N
nl̄γ (k)G

lm
k . (54)

By taking the Fourier transform of equation (38), and using
equation (46), we find

EGlm
k = δlm − C(E, nl)[blγ (k)δl̄m − zt2

0 (1 − nl̄)G
lm
k ]

+ γ (k)I l̄m
k , (55)

where

I l̄m
k = 2

N

∑

rl̄ sm

e[ik·(rl̄ −sm )] I rl̄
rl̄ sm =

√
2

N

∑

q

I l̄m
kq . (56)

By combining the last three equations we obtain

Glm
k [E − zt2

0 (1 − nl̄)C(E, nl)− [γ (k)]2nl̄ D̄(E, nl)]
= δlm − [C(E, nl)bl + D(E,k, nl )b

∗
l̄
]δl̄mγ (k), (57)

where

D(E,k, nl ) = 1

E + ω0 − nl [γ (k)]2

E+2ω0

, (58)

and

D̄(E, nl) = 2

N

∑

q

D(E,q, nl ). (59)

It remains to explain why, as indicated following equation (45),
bl = 0. This may be shown using

bl = 〈brl 〉 = 1

z

∑

ρ

〈[brl frl +ρ, f †
rl +ρ ]+〉

= i

2πz

∑

ρ

∫ ∞

−∞
[H rl

rl+ρ,rl +ρ(E + iη)

− H rl
rl+ρ,rl +ρ(E − iη)] dE . (60)

Equations (46) and (57) may be used to show that the above
expression is a linear combination of bl and b∗

l̄
. Thus

bl, b∗
l (l = 1, 2) satisfy a set of linear homogeneous equations

so that in general bl = 0. This result is consistent with the
symmetry of the transverse-field t-Jz model (equation (15))
which underlies the present model for low fermion density.
When λ = 0, as assumed here, the transverse magnetic
field vanishes so that by symmetry the expected value of the
transverse spin moment 〈Sx

r 〉 = 〈b†
r + br〉/2 = 0. The

properties bl = 0 and the characteristic periodicity in k are
shown in the appendix to be generally true for the model with
λ = 0 for all values of ω0/t0. As soon as λ �= 0 we shall
in general have bl �= 0 so that, from equation (57), the k
dependence of the Green’s function will involve γ (k) and not
only [γ (k)]2 as is the case for λ = 0.
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The final result for the Green’s function in the case λ = 0
is

Glm
k (E) = δlm[E −zt2

0 (1−nl̄)C(E, nl)−γ (k)2nl̄ D̄(E, nl)]−1

(61)
where C and D̄ are given by equations (47) and (59)
respectively. Also, from equation (34),

Gk(E) = 1
2 [Gk1(E)+ Gk2(E)], (62)

where Gkl = Gll
k . In the homogeneous case, where there is

no CDW, n1 = n2 = n, where n = Nf/N is the fermion
density, and Gk1 = Gk2 = Gk. For n = 0 we recover
the Nf = 1 result for G−1

k , given by the left-hand side of
equation (23), and for n = 1 we recover the Nf = N − 1
result given by equation (30). Thus Gk is correct in these
two limits within the two-boson approximation. The factor δlm

in equation (61) shows that within the present approximation
fermions propagate, by means of double hops, within a single
sublattice. The dimension of the bipartite lattice (1, 2 or 3)
enters only through the band energy γ (k) (equation (17)) and
the function D̄, which may be written as

D̄(E, nl) =
∫

N0(γ )

E + ω0 − γ 2nl/(E + 2ω0)
dγ, (63)

where N0(γ ) is the density of states per site for the band energy
γ (k).

To complete the present formulation we require the
equations which determine the chemical potential μ and the
self-consistent sublattice densities n1, n2 for a given fermion
density n. The density of states per site on sublattice l is given
by

Nl(E) = − 1

Nπ

∑

k

Im Gkl(E + iη) (64)

and

nl =
∫

Nl (E) f (E, μ) dE, (65)

where f (E, μ) = [eβ(E−μ) + 1]−1 is the Fermi function
with chemical potential μ and β = (kBT )−1. The chemical
potential and the CDW order parameter P are determined by

1
2 (n1 + n2) = n, 1

2 (n1 − n2) = n P. (66)

If the system is ordered (P �= 0) at T = 0 the CDW
temperature Tc, where P → 0, can be calculated. In the
present mean-field-like approximation this will not be the
true Tc but a higher temperature where short-range order
substantially disappears. The calculated Tc should be a
reasonable approximation to the true value in 3D. In general,
if quantities such as the spectral functions discussed below
are calculated assuming P = 0, the results will be valid in
the high-temperature limit where there is truly no short-range
order.

The spectral function for states projected onto the
sublattice l is given by

Sl(k, E) = − 1

π
Im Gkl(E + iη) (67)

and the total spectral function is

S(k, E) = − 1

π
Im Gk(E + iη) = 1

2
[S1(k, E)+ S2(k, E)].

(68)
These spectral functions may be used to calculate the
occupation number n(k) = 〈 f †

k fk〉 and the related quantity
d(k) = 〈 f †

k fk+Q/2〉, where Q is a basis vector of the reciprocal
lattice. fk is given by equation (32) and it follows from
equation (33) that fk+Q/2 = ( fk1 − fk2)/

√
2. Hence we find

n(k) = 1
2

∫ μ

−∞
[S1(k, E)+ S2(k, E)] dE (69)

and

d(k) = 1
2

∫ μ

−∞
[S1(k, E)− S2(k, E)] dE . (70)

These quantities satisfy the sum rules

1

N

∑

k

n(k) = n,
1

N

∑

k

d(k) = n P. (71)

In section 4 we report numerical results for all the above
quantities, based on the approximate Green’s function of
equation (61), in the 1D case. Many of the results are compared
with those of the DMRG method, both to assess the validity of
the present approximation and sometimes to throw new light
on the DMRG results. The application of the DMRG method
to the present model has been described previously [16, 17].

4. Numerical results for ground state and spectral
properties in 1D

In 1D the band energy γ (k) = −2 cos k, with the
lattice constant taken as 1 and the unit of energy taken
as t0. The quantity D̄ which appears in the Green’s
function (equation (61)) can then be evaluated analytically
using equations (58) and (59). The q-summation is most
conveniently performed as a contour integral around the unit
circle. The result is

D̄(E, nl) = Dlr θ(a
2
l − b2

l )− iDliθ(b
2
l − a2

l ), (72)

where

Dlr = 1

al

√
1 − b2

l /a
2
l

, Dli = 1√
b2

l − a2
l

(73)

with

al = E + ω0 − 2nl

E + 2ω0
, bl = − 2nl

E + 2ω0
. (74)

The density of states, given by equation (64), can be evaluated
similarly with the result

Nl (E) = Nl1(E)+ Nl2(E), (75)
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Figure 1. Zero-temperature single-particle spectral function S(k, E) at n = 0.9 for ω0 = 3 from equation (68) (left panel) compared with the
DDMRG result (right panel) obtained for a finite system with N = 20 sites using open boundary conditions (OBC). The inset shows the
photoemission spectra (PES) and inverse photoemission spectra (IPES) near the Fermi point. E is measured with respect to the Fermi energy
EF (all energies are given in units of t0).

(This figure is in colour only in the electronic version)

where

Nl1(E) = 1

π
θ(a2

l − b2
l )

[
θ(v2

l − u2
l )√

v2
l − u2

l

+ θ(u2
l − v2

l )

×
∣∣∣∣Im

(
1√

ul(E + iη)2 − vl(E + iη)2

)∣∣∣∣
]
, (76)

Nl2(E) = θ(b2
l − a2

l )

2πnl̄ Dli

√√√√
√

V 2
l + 4 − |Vl|

2|Vl |(V 2
l + 4)

(77)

with

ul(E) = E − 2(1 − nl̄)C(E, nl)− 2nl̄ Dlr (E), (78)

vl(E) = −2nl̄ Dlr (E), (79)

Vl(E) = − E − 2(1 − nl̄)C(E, nl)

2nl̄ Dli (E)
. (80)

The results presented below are for the case ω0 = 3. By
comparison with the DMRG results for the ground state
properties n(k) and d(k), and with the dynamical DMRG [24]
(DDMRG) results for S(k, E), it is found that this boson
energy is large enough for many results of the present analytic
approximation to be quite accurate.

4.1. High and low fermion density

The existence of a two-sublattice CDW state in the present
model is well established at half-filling (n = 0.5) for
sufficiently large ω0/t0 [15–17, 21]. However the general
results of the appendix imply that a two-sublattice CDW state is
always a possibility, whatever the density n. We therefore used
equations (65), (66) and (75) to search for such states even in
the high and low density cases of n = 0.9 and 0.1. In the case
n = 0.9 with ω0/t0 = 3 we find a self-consistent CDW state
with order parameter P = 0.063. The flow of the iterative
procedure to determine P indicates that this, not the uniform
density P = 0 state, is the stable ground state. In the DMRG
calculations convergence to the CDW solution is improved
by use of suitable external fields at the boundaries with open

boundary conditions. The spectral function S(k, E) calculated
from the Green’s function using equation (68) is compared
with the DDMRG results in figure 1. The quasiparticle peaks
for the Green’s function decoupling scheme results (left panels)
are delta-functions in the limit η → 0, but to make them
visible we have taken η = 0.05; the same value has been
taken in the DDMRG data (right panel). The following main
features are in good agreement: the general shape and width of
the quasiparticle band crossing the Fermi level, the dispersive
peaks just below E − EF = −4 which vanish for k = π/2,
the weak flat band at E − EF = 2 in the left panel and 3 in
the right one. The splitting of the quasiparticle peaks due to
CDW order is clearly visible in the left panel. This splitting
is not clearly resolved in the main right panel but the inset
for k = π/21 shows a splitting between a peak below EF in
the photoemission spectrum (PES) and one above EF in the
inverse photoemission spectrum (IPES). The absence of the
splitting for states further from EF in the DDMRG data is
presumably due to finite lifetime broadening processes which
are not included in the Green’s function approximation. It
should be noticed that the quasiparticle states at the Fermi level
are from only one of the split subbands near k = 0 and π , the
other subband being fully occupied. This means that the Fermi
wavevectors are at π/10, π − π/10 so that the hole pockets
near k = 0 and π have the correct Fermi surface ‘volume’, this
being twice what it would have been in the absence of the CDW
(P = 0). Discontinuities at these wavevectors are clearly seen
in figure 3 where n(k) and d(k), calculated from equations (69)
and (70), are plotted. The agreement with the DMRG data,
also plotted, is excellent. In the Green’s function calculations
the discontinuities are not perfectly sharp owing to the use of a
finite η (=0.0005) near EF. There are two contributions to n(k)
and d(k), one arising from the coherent quasiparticle bands and
the other from spectral weight further below the Fermi level. In
the present case d(k) arises almost entirely from the coherent
contribution and the quasiparticle states have slightly more
weight on the minority sublattice, hence the negative value of
d(k) over most of the zone. Near k = 0 and π , however, only
the subband associated with the majority sublattice is occupied,
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Figure 2. Single-particle spectral function S(k, E) at n = 0.1 for
λ = 0 and ω0 = 3 from equation (68).

hence the strong positive contribution. Correlations giving rise
to Luttinger liquid behaviour in 1D are beyond the present
Green’s function approach. It should be noted that at n = 0.9
the CDW state is metallic, whereas at n = 0.5 it is an insulator,
as discussed in section 4.2.

In the case n = 0.1 with ω0/t0 = 3 we find a self-
consistent CDW state with order parameter P = 0.61. The
discrepancy in order of magnitude between this value and
the much smaller one for n = 0.9 is due to the consistent
use of fermion density in the definition of P (equation (66)),
rather than changing to hole density for the n = 0.9 case.
For n = 0.1 it has proved difficult to converge to a CDW
solution in DMRG. This may indicate that the Green’s function

approximation is failing in this low density case. If so, the
nature of the ground state is unclear. Nevertheless in figure 2
we show results for the spectral function and in figure 3 we
plot n(k) and d(k). The bottom of the narrow quasiparticle
band near EF is at k = π/2 and only the majority subband
is occupied. Hence d(k) is strongly positive near k = π/2
and almost equal to n(k). Over most of the zone the only
contribution is from spectral weight further below the Fermi
level; this vanishes at k = π/2 and makes a negative
contribution to d(k) owing to more weight residing on the
minority sublattice. The discontinuities in n(k) and d(k) at
the expected values π/2 ± π/10 are clearly seen.

4.2. The CDW state at half-filling

We now consider a self-consistent CDW state for the half-filled
band with n = 0.5 and λ = 0, ω0 = 3. As before the
Fermi energy EF (or chemical potential μ at T > 0) and order
parameter P are determined by equations (66) and (65), with
the sublattice densities of states given by equation (75). For the
above parameters we find μ = −0.211, P = 0.765. EF lies in
a gap as is appropriate for an insulator.

The spectral functions calculated from the Green’s
function method and the DDMRG are compared in figure 4.
The agreement is generally good. The Fermi level lies
in a gap between two quasiparticle bands, a broad upper
unoccupied one and a narrower lower occupied one. The
main discrepancy is that in the DDMRG case the lower
quasiparticle band is extremely narrow whereas in the Green’s
function method it has a significant width. This shortcoming
of the Green’s function approximation is discussed thoroughly

Figure 3. Bloch state occupation numbers n(k) (left) and related correlation function d(k) (right) for n = 0.9 (upper panels) and n = 0.1
(lower panels) at λ = 0, ω0 = 3. Analytical results (lines) are compared to numerical DMRG data (symbols).
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Figure 4. Single-particle spectral function S(k, E) at n = 0.5 for λ = 0, ω0 = 3 from equation (68) (left panel) compared with the DDMRG
result (right panel).

Figure 5. Density of states D(E) near the Fermi level for λ = 0 at half-filling from equation (75) (left panel) and corresponding quasiparticle
band dispersion E(k) (right panel).

Figure 6. Bloch state occupation number n(k) (left panel) and related correlation function d(k) (right panel) for the half-filled band case with
λ = 0, ω0 = 3.

in section 4.3. Figure 5 shows the density of states near
the Fermi level, projected onto the majority and minority
sublattices, calculated from equation (64). It is remarkable
that states in the occupied quasiparticle band are entirely
confined to the majority sublattice, whereas those in the
unoccupied quasiparticle band reside entirely on the minority
sublattice. The dispersion curves E(k) of the quasiparticle
bands, obtained by plotting the loci of quasiparticle peaks in

the spectral function, are shown in figure 5. The approximate
Green’s function therefore predicts an indirect gap, with the top
of the occupied quasiparticle band at k = 0, π and the bottom
of the unoccupied band at k = π/2.

In figure 6 left and right panels we plot curves for
n(k) and d(k), respectively, calculated from equations (69)
and (70), together with points obtained by the DMRG method
for finite systems of different sizes. The agreement is very
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Figure 7. Single-particle spectral function (left panel) and quasiparticle band (right panel) in the high-temperature limit P = 0 for the
half-filled band case with λ = 0, ω0 = 3.

striking, particularly since in DMRG these quantities are
calculated directly from the ground state whereas in the
Green’s function method they are obtained as integrals over the
spectral function. It should be noted that n(π/2) = d(π/2)
because for k = π/2 all the spectral weight of the occupied
states resides in the quasiparticle peak which is entirely based
on the majority sublattice. From equations (69) and (70) it is
clear that the weight in this peak is 2n(π/2) � 0.88.

Finally in figure 7 we plot the spectral function (left panel)
and quasiparticle energy (right panel) in the high-temperature
limit, where all short-range order has disappeared (P = 0).
The Fermi wavevectors are close to π/4 and 3π/4 with the
correct Fermi surface ‘volume’. This is the state from which
the CDW evolves as the temperature is lowered. Clearly the
situation is quite different from the usual one in which a CDW
evolves because of nesting between Fermi wavevectors at k =
±π/2. The origin of this difference is that for λ = 0 only
next-nearest-neighbour hopping, resulting in π -periodicity in
k-space, occurs even in the disordered state.

4.3. Discussion

The most notable difference between the Green’s function and
DDMRG results lies in the width of the occupied quasiparticle
band for n = 0.5. A very narrow band is also found in
earlier calculations for ω0 = 2 using exact diagonalization
where there is also no tendency for the top of the band to be
at k = 0, π rather than π/2 [15]. The band seems to be almost
as narrow as one would have from the Trugman-like six-step
process in a perfect CDW (P = 1). This is quite surprising
since for ω0 = 2 the densities on the two sublattices are about
0.8 and 0.2 [16] which is far from a perfect CDW. Satellites
below the main quasiparticle peak are suggestive of finite-size
effects in the systems considered with 12 and 16 sites.

To gain more insight into the Green’s function approxi-
mation we may consider the limit of large ω0 where all the
weight is concentrated in the two quasiparticle bands. From
equation (61) it follows that these bands are given by

E(k) = ±2P + (1 ± P) cos(2k)

ω0
, (81)

where the upper signs (+) correspond to the upper band and
the lower signs (−) to the lower band. The widths 2(1 ±
P)/ω0 of these bands can be understood by inspection of the
following processes, where a bullet represents a vacant site, a
star represents a boson and a circle represents a fermion:

| • © ©〉 → |© � ©〉 → |© © • 〉

|© © • 〉 → |© � ©〉 → | • © ©〉.

In the upper line the central site is on the majority sublattice.
The diagram shows how a fermion added to the upper band, on
the minority sublattice, can hop by a two-step process across
an occupied majority site. The probability of the majority
site being occupied is (1 + P)/2 so an estimate of the width
of the upper band is 2(1 + P)/ω0, as in equation (81). In
the lower line the central site is on the minority sublattice.
Clearly a hole created on the majority sublattice can hop by
a two-step process across an occupied minority site. The
probability of the minority site being occupied is (1 − P)/2
so an estimate of the width of the lower quasiparticle band is
2(1 − P)/ω0 as in equation (81). The probability argument
used here is equivalent to the Hartree–Fock-like approximation
made in deriving the Green’s function. This approximation is
clearly failing in the present situation, since the width of the
lower quasiparticle band is much larger than that given by the
DDMRG. To expose the cause of this failure we used DMRG
to calculate the three-site correlation functions 〈nm−1nmnm+1〉
for a ten-site system with periodic boundary conditions and
λ = 0, ω0/t0 = 3 as usual. The correlation function takes two
values 6.460 62 × 10−4 and 3.908 26 × 10−3, depending on
whether m is an even or odd site corresponding to the majority
and minority sublattice, respectively. The simple probability
argument would give respective values P(1− P)2 = 0.042 25,
(1 − P)P2 = 0.1375 when P = 0.765. If a site on the
minority sublattice is occupied it is clear that the probability
of both neighbouring sites being occupied is only about 0.039.
Thus one of these majority sublattice sites is very likely to be
occupied by a hole. Hence there is a strong tendency for the
minority sublattice fermions and the majority sublattice holes,
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equal in number, to form bound pairs. We conclude that for
n = 0.5 important correlations exist in the ground state which
are not included in the Hartree–Fock-like approximation of the
Green’s function decoupling.

5. Conclusions and outlook

Doped Mott insulators remain at the forefront of physics
research largely because of their relevance to high-temperature
superconductivity. In the cuprate superconductors holes
in the copper oxide planes move in a background of
antiferromagnetic order. In other systems of interest the
background is one of alternating orbital order. The progress
of a hole through such a background is hindered by the string
effect. This effect has been known for a long time [8] but the
string picture is central to much recent work (e.g. [25–28]).
The Edwards fermion–boson model considered in this paper
was introduced to describe this effect in the simplest possible
way [12]. The spinless fermions correspond physically to the
holes in the Mott insulator. The ordered background does
not appear explicitly in the model; the essence of the string
effect actually relies only on the existence of substantial short-
range order without the necessity of true long-range order.
Clearly the physical interest lies mainly in 2D [29], but so far
most calculations for the Edwards model have been made in
1D [14–17, 21, 22]. In this paper we describe an analytical
approximation to the one-fermion Green’s function which is
valid in 1D, 2D and 3D. Its main limitations are that the boson
energy should be fairly large (ω0/t0 > 2) and that string
relaxation is neglected (λ = 0). The principal objective of this
paper is to test the accuracy of the Green’s function method,
within its expected domain of validity, by comparing with
numerical results obtained in 1D by the DMRG and DDRMG
methods.

This comparison has been made in detail for ω0 = 3
and for various fermion densities. For the half-filled band
case (n = 0.5) excellent agreement is obtained for ground
state properties. These include the CDW order parameter, the
Bloch state occupation number n(k) and a related quantity
d(k) associated with the CDW. There is also generally good
agreement for the one-fermion spectral function although
the Green’s function method predicts much too wide an
occupied quasiparticle band. In section 4.3 the reason for this
discrepancy is traced to missing correlations in the Green’s
function approximation. The Green’s function method predicts
that the CDW state evolves from a high-temperature disordered
state with Fermi wavevectors close to π/4 and 3π/4, which
is quite different from the usual case where a CDW evolves
because of nesting between Fermi wavevectors at k = ±π/2.
The origin of the difference is that only next-nearest-neighbour
hopping, resulting in π -periodicity in k-space, occurs even in
the disordered state.

There is excellent agreement between the two methods
for the dilute hole (n = 0.9) case with the usual parameters
λ = 0, ω0/t0 = 3. Somewhat surprisingly, there is also a
two-sublattice CDW state which in this case is metallic. In
the appendix it is shown how the appearance of two-sublattice
CDW states is related to a symmetry property of the model

with λ = 0. The comparison between the two methods proved
to be more difficult in the dilute fermion (n = 0.1) case. The
Green’s function method again predicts a metallic CDW state
but the DMRG fails to confirm this. The true nature of the
ground state in this case remains unclear.

It may be concluded that the rather simple Green’s
function approximation derived here is sufficiently successful
in 1D, which is probably the least favourable case, to envisage
future applications to the 2D t-Jz model and, with a slight
extension of the model, to the t2g model of alternating orbital
order. The situation of physical interest will be low to moderate
fermion density, the fermions corresponding to holes in the
relevant Mott insulator.
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Appendix

Through the particular form of the fermion–boson hopping
term at λ = 0 (cf equation (14)) the transfer of a fermion
between neighbouring lattice sites coincides with a change of
the number of bosons by one. As a consequence we may think
of the bosons as tracking the motion of the fermions. This
picture becomes exact through the identification of a conserved
quantity. Let us define operators NA

f and NB
f which count

the number of fermions on the A- or B-sites of a bipartite
lattice, and similar operators NA

b and NB
b for bosons. Then

Nfb = NA
f −NB

f +2(NA
b −NB

b ) commutes with the Hamiltonian
H̃Ed, when λ = 0, and is therefore a conserved quantity. The
eigenvalues of Nfb can be used to classify the eigenstates of the
Hamiltonian. We note that Nfb is not conserved for λ �= 0.

The existence of Nfb has two major consequences. First,
fermion operators such as f †

nA fmB change Nfb by 2, so that
in any eigenstate of the Hamiltonian the expectation value
〈 f †

nA fmB〉 = 0 for arbitrary sites nA and mB on the respective
sublattices. Similarly 〈bn〉 = 0. Hence quantities such as the
spectral function S(k, E) or the momentum distribution n(k)
have the periodicity in k of the reciprocal lattice of the real-
space A or B sublattice, e.g. π -periodicity in the 1D case.
Second, it implies that those eigenvalues of the Hamiltonian
corresponding to Nfb �= 0 are degenerate. This follows because
the translation operator T commutes with H , but changes
the sign of Nfb. The energy eigenvalue of an eigenstate |ψ〉
with 〈ψ|Nfb|ψ〉 �= 0 must therefore be (at least) two-fold
degenerate, since the state T |ψ〉 belongs to the same energy
but differs from |ψ〉 due to the change of Nfb. This degeneracy
corresponds to a breaking of translational symmetry, as for a
two-sublattice CDW state. Clearly if the ground state at λ = 0
is not such a CDW state it must have Nfb = 0.
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PACS 03.75.Kk – Dynamic properties of condensates; collective and hydrodynamic excitations,
superfluid flow

PACS 71.10.Fd – Lattice fermion models (Hubbard model, etc.)

Abstract – We use the density-matrix renormalization group method to investigate ground-
state and dynamic properties of the one-dimensional Bose-Hubbard model, the effective model
of ultracold bosonic atoms in an optical lattice. For fixed maximum site occupancy nb = 5,
we calculate the phase boundaries between the Mott insulator and the “superfluid” phase for
the lowest two Mott lobes. We extract the Tomonaga-Luttinger parameter from the density-
density correlation function and determine accurately the critical interaction strength for the Mott
transition. For both phases, we study the momentum distribution function in the homogeneous
system, and the particle distribution and quasi-momentum distribution functions in a parabolic
trap. With our zero-temperature method we determine the photoemission spectra in the Mott
insulator and in the “superfluid” phase of the one-dimensional Bose-Hubbard model. In the
insulator, the Mott gap separates the quasi-particle and quasi-hole dispersions. In the “superfluid”
phase the spectral weight is concentrated around zero momentum.

Copyright c© EPLA, 2011

Introduction. – At very low temperatures, bosonic
atoms which are loaded into an optical lattice become
superfluid for a shallow optical potential and Mott insula-
tors for a deep optical potential. The transition between
both phases has been observed experimentally [1]; for a
recent review, see [2]. The Bose-Hubbard model provides
a reasonable description of the experimental situation,
and its ground-state phase diagram in two and three
dimensions has been determined fairly accurately by
perturbation theory [3–5] and quantum Monte Carlo
(QMC) calculations [6–8].
Bosons on a chain are also accessible experimentally [9]

so that it is interesting to study the one-dimensional Bose-
Hubbard model. The physics in one dimension is rather
peculiar. For example, the state with the lowest kinetic
energy is not macroscopically occupied in the “super-
fluid” [10] but it is characterised by an algebraic diver-
gence of the momentum distribution; for a review, see [11].
Moreover, the Mott gap is exponentially small in the Mott
insulator close to the phase transition. Therefore, it is
very difficult to determine the critical interaction strength
numerically. This problem also impairs the applicability of
strong-coupling perturbation theory.
In one dimension and at zero temperature, the density-

matrix renormalisation group (DMRG) method [12–14]

permits the calculation of ground-state properties with an
excellent accuracy for large systems so that the extrapo-
lation to the thermodynamic limit can be performed reli-
ably. In this work, we use the density-density correlation
function to calculate the Tomonaga-Luttinger parameter
from which we determine the Mott transition accurately.
Moreover, we obtain the momentum distribution and the
particle distribution for bosons on a homogeneous chain
and in the presence of a harmonic trap. Using the dynam-
ical DMRG [15], we calculate the single-particle spectral
function at zero temperature in the “superfluid” and the
Mott insulating phases.

Bose-Hubbard model. – The Hamilton operator for
the Bose-Hubbard model on a chain with an even number
of sites L in a harmonic potential is defined by

Ĥ = −t
∑
j

(
b̂†j b̂j+1+ b̂

†
j+1b̂j

)
+
U

2

∑
j

n̂j(n̂j − 1)

+Vc
∑
j

(j− rc)2 n̂j , (1)

where b̂†j and b̂j are the creation and annihilation operators
for bosons on site j, n̂j = b̂

†
j b̂j is the boson number

operator on site j, t is the tunnel amplitude between
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neighbouring lattice sites, U > 0 denotes the strength
of the on-site Coulomb repulsion, Vc parameterises the
curvature of the quadratic confining potential, and rc =
(L+1)/2 denotes the central position of the chain. In the
following, we set U = 1 as our energy unit, unless stated
otherwise.

Constrained Bose-Hubbard model. In general, the
Bose-Hubbard model cannot be solved analytically. In
the low-density limit, the model reduces to the Bose gas
with δ-potential interaction which was solved by Lieb
and Liniger [16]. The fact that three or more bosons
may occupy the same site forms the major obstacle on
the way to an exact solution. Since multiple occupancies
also pose technical problems in numerical approaches,
the Bose-Hubbard model is usually approximated by the
constraint that there is a maximal number of bosons
per site, 0� nb �N − 1 . This constrained Bose-Hubbard
model has N degrees of freedom per site so that it can be
written in terms of spin variables with S = (N − 1)/2. The
case N = 2 is trivial because the hard-core Bose-Hubbard
model has no interaction term. It reduces to a model
for free spinless fermions whose properties are known
exactly [17]. The Bose-Hubbard model is recovered in
the limit N →∞. In general, however, the SU(N )-Bethe
Ansatz equations do not solve the constrained Bose-
Hubbard model [18,19].
In our work, we study the restricted Bose-Hubbard

model with N = 6, i.e., nb � 5. Our results are represen-
tative for the original Bose-Hubbard model (1) because
multiple lattice occupancies are strongly suppressed in the
parameter regions of interest to us, U/t > 2 and fillings
ρ=N/L<nb.

Numerical algorithm. We adopt the DMRG
method [12] as our numerical tool for the calcula-
tion of ground-state properties for constrained Bose
systems [13,14]. For the spectral properties, we employ
the dynamical DMRG (DDMRG) [15].
The considered lattices are large enough to permit

reliable extrapolations to the thermodynamic limit for
the physical quantities of interest to us. We keep up to
m= 2000 density-matrix eigenstates, so that the discarded
weight is always smaller than 1× 10−10.
We checked our algorithm for nb = 1 against the exact

result [17]. The exact ground-state energy in the thermo-
dynamical limit and the extrapolated ground-state energy
from DMRG agree to four-digit accuracy.

Ground-state phase diagram. At integer filling ρ=
N/L, the Bose-Hubbard model in one dimension describes
a Mott transition between the “superfluid” phase, char-
acterised by a divergence of the momentum distribution
at momentum k= 0 [10], and a Mott insulating phase,
characterised by a finite gap for single-particle excitations.
The latter is defined by the energy difference between the
chemical potentials for half band filling and one particle

0 0.1 0.2 0.3 0.4
t / U

0

0.5

1

1.5

2

µ 
/ U

ρ = 1
MI

MI
ρ = 2

t
c
 ~ 0.305

SF

t
c
 ~ 0.180

Fig. 1: Phase diagram of the one-dimensional constrained Bose-
Hubbard model (nb � 5) from DMRG with “superfluid” (SF)
and Mott insulating (MI) regions. The symbols confine the
regions with a finite Mott gap, ∆> 0, extrapolated from ∆(L)
for L� 128. The position of the Mott tips has been obtained
from the Tomonaga-Luttinger parameter.

less than half filling,

∆(L) = µ+(L)−µ−(L),
µ+(L) = E0(L,N +1)−E0(L,N), (2)

µ−(L) = E0(L,N)−E0(L,N − 1),

where E0(L,N) is the ground-state energy for L sites
and N particles. In the thermodynamical limit, N,L→
∞ and ρ=N/L integer, the gap is finite for the Mott
insulator, ∆= limN,L→∞∆(L)> 0, so that the system
becomes incompressible when we go from the “superfluid”
phase to the Mott insulating phase.
The Mott transition lines in the µ-U ground-state phase

diagram have been previously determined by various
analytical and numerical methods, e.g., strong-coupling
expansions [20,21], variational cluster approach [22],
QMC [23,24], and DMRG [13,14]. In fig. 1 we show the
phase diagram for the first Mott lobe (ρ= 1) and the
second Mott lobe (ρ= 2) as obtained from our DMRG
calculations with system sizes up to L= 128.
The overall shape of the Mott lobes agrees with previous

results. Here, we provide accurate data for the second
Mott lobe, and the values for the critical interaction
strength for the first two Mott lobes which we obtain
from the Tomonaga-Luttinger parameter. At the tip of
each Mott lobe, the model is in the universality class of
the XY spin model so that there is a Kosterlitz-Thouless
phase transition with the Tomonaga-Luttinger parameter
Kb = 1/2, and the gap is exponentially small in the vicinity
of (t/U)c. In contrast, SU(N )-Bethe Ansatz equations
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predict a discontinuity of the gap at the critical interaction
for N � 3 [18,19].
Ground-state properties. –

Tomonaga-Luttinger parameter and critical interactions
for the Mott transition. The low-energy excitations of
interacting bosons in the superfluid phase are gapless
linear excitations (“phonons”). As in the case of fermionic
systems in one dimension [25,26], the Tomonaga-Luttinger
parameter Kb determines the asymptotic behaviour of
the correlation functions in the “superfluid” phase, and
various correlations functions have been used to extract
Kb [27–30]. Here, we employ the density-density correla-
tion function which is defined by the ground-state expec-
tation value

C(r) =
1

L

L∑
�=1

〈n̂�+rn̂�〉− 〈n̂�+r〉〈n̂�〉. (3)

Asymptotically, it behaves like

C(r→∞)∼− 1

2Kb

1

(πr)2
+
Aρ2 cos(2πρr)

(ρr)2/Kb
+ · · · . (4)

Thus, we can extract Kb from the derivative of its Fourier
transformation,

C̃(q) =

L∑
r=1

e−iqrC(r), 0� q < 2π, (5)

as q= 0. In the thermodynamic limit one finds

1

2πKb
= lim
q→0

C̃(q)

q
. (6)

In order to treat finite systems in numerical calcula-
tions [26], we translate (6) into

1

2Kb(L)
= lim
L→∞

L

2
C̃

(
2π

L

)
, (7)

and extrapolate Kb(L) to the thermodynamical limit.
In refs. [14] and [31] the transition point has been also

determined from the Luttinger parameter Kb. However,
these authors estimated Kb from the single-particle
density matrix

Γ(r) = 〈b̂†r b̂0〉 ∼ r−Kb/2 for r� 1. (8)

In their work, the extrapolation for the critical point tc
depends on the interval used for the fits to Γ(r), see table I
in ref. [14]. When we derive the Luttinger parameter from
eq. (6) we can avoid this problem.
As shown in fig. 2, Kb(L) can be reliably extrapolated

to the thermodynamic limit using polynomial functions in
1/L. For ρ= 1, we clearly haveKb(t/U = 0.3)> 1/2. When
we extrapolate our data for up to L= 1024 lattice sites,
we findKb(t/U = 0.304)> 1/2 butKb(t/U = 0.306)< 1/2.
Therefore, we locate the transition point at tc = 0.305±
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2 3 4 5 6
n

b

0

0.02

0.04

0.06

0.08

C
(2

π/
L

)

3 4 5 6
n

b

0
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0.04
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L

)L = 32
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L = 128

~

ρ = 1 ρ = 2

~

L = 32

L = 48

L = 128

Fig. 2: Finite-size scaling for the Tomonaga-Luttinger para-
meter Kb in the one-dimensional constrained Bose-Hubbard
model (nb = 5) for the first (ρ= 1) and second (ρ= 2) Mott
lobes, using the DMRG with open boundary conditions. The
lines are polynomial fits. The insets give the nb-dependence of
C̃(2π/L) for various system sizes at t/U = 0.305 (left panel)
and t/U = 0.18 (right panel).

0.001 for the first Mott lobe. In the same way we find the
transition point for the second Mott lobe at tc = 0.180±
0.001 for the restricted Bose-Hubbard model with nb � 5.
Using the same method, we have verified numerically that
the values for the critical coupling (t/U)c are the same for
nb = 4, 6 within our extrapolation uncertainty.
Note that Kb(t < tc) is not defined because we are in

the Mott insulating phase. However, Kb(L) is finite and
continuous over the Kosterlitz-Thouless transition because
the Mott gap is exponentially small near tc. Nevertheless,
our approach remains applicable as has been shown for
various fermionic models in refs. [26,32].
Previous groups located the Kosterlitz-Thouless

transition for the first Mott lobe at values consistent
with ours. In their DMRG work [14], Kühner et al.
computed the Luttinger parameter using their DMRG
algorithm on lattices with up to L= 1024 sites. From
their fit to Γ(r), eq. (8), they found tc = 0.297± 0.01.
Based on the same correlation function, Zakrzewski and
Delande [31] gave tc = 0.2975± 0.005 for the first and
tc = 0.175± 0.002 for the second Mott lobe for nb = 6.
The determined tc-values of such a kind significantly
depend on the interval of r, which is not the case
within our approach. Läuchli and Kollath [33] determined
the critical point from the block entropy, by combining the
recently developed quantum information theory with the
DMRG. Our result is within their region of the estimated
values for tc (see fig. 2 in ref. [33]). In a combination
of an exact diagonalisation study for systems with up
to L= 12 sites and a renormalisation group approach,
Kashurnikov and Svistunov found tc = 0.304± 0.002 [34],
and their QMC calculations together with Kravasin
gave tc = 0.300± 0.005 [24]. Another QMC calculation in
combination with a renormalisation-group flow analysis
of the finite-temperature data gave tc = 0.305(4) [35], in
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Fig. 3: (Colour on-line) Finite-size dependence of the momen-
tum distribution function n(k) for t= 0.1 (Mott insulator) and
t= 0.305 (“superfluid”) in the one-dimensional Bose-Hubbard
model using the DMRG with periodic boundary conditions.
Inset: n(k) for L= 64. The solid line in the inset gives the
result of strong-coupling theory to third order, eq. (10) [5,37].

perfect agreement with the result of our zero-temperature
study.

Momentum distribution function. Using the DMRG,
the momentum distribution function n(k) can be calcu-
lated by taking the Fourier transformation of the single-
particle density matrix

n(k) =
1

L

L∑
j,�=1

eik(j−�)〈b̂†j b̂�〉, (9)

where k= 2πm/L for m=−L/2− 1, . . . , L/2 holds for
periodic boundary conditions [36]. Note that the momen-
tum distribution function fulfils the sum rule

∑
k n(k) =

N . In all cases of fig. 3 the numerical deviation ξ =
|N −∑k n(k)| is always small, ξ < 1.0× 10−3.
The difference between the superfluid phase and the

Mott insulator is most markedly seen in the momentum
distribution n(k) at momentum k= 0: in the insulating
phase, n(k= 0) remains finite whereas it diverges as a
function of system size in the superfluid phase, as shown
in fig. 3. At t/U = 0.1, n(k= 0) is almost independent
of system size, and the momentum distribution n(k)
is a smooth function of momentum k. Strong-coupling
perturbation theory to third order [5,37] predicts
(x= t/U)

n[3](k) = 1+2C1 cos(k)+ 2C2 cos(2k)+ 2C3 cos(3k),

C1 = 4x− 8x3, C2 = 18x
2, C3 = 88x

3. (10)

Our numerical results for t/U = 0.1 favourably compare
with this expression, see the inset of fig. 3.
At t/U = 0.305, above the critical point, n(k= 0)

increases rapidly with system size. In one spatial dimen-
sion there is no true superfluid with a macroscopic value
for n(k= 0) in the thermodynamic limit [10]. Instead, we
have from (8) n(|k| → 0)∼ |k|−ν , ν = 1−Kb/2< 1.

0 20 40 60 80 100
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0

0.5
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1.5

〈n
j〉

N = 24
N = 40
N = 54

-π -π/2 0 π/2 π
q

0

1

2

3

4

n(
q)

t / U = 0.125,  V
c
 / U = 0.001(a) (b)

∼

Fig. 4: (Colour on-line) Occupation probabilities in the one-
dimensional constrained Bose-Hubbard model (nb � 5) in a
parabolic trap potential of strength Vc/U = 0.001. We show
the results for N = 24, 40, 54 and L= 100 (ρ= 0.24, 0.40, 0.54)
for t/U = 0.125 for (a) the local densities 〈b̂†j b̂j〉 and (b) the
pseudo-momentum distribution ñ(q).

Local densities for the Bose-Hubbard model in a trap.
In the presence of the confining potential Vc in the

model (1), the density profile over the trap is no longer
homogeneous, see, e.g., ref. [38]. For an open system, we

define the quasi-momentum distribution ñ(q) = 〈b̂†(q)b̂(q)〉
using the quasi-momentum states of particles in a box,

b̂(q) =

√
2

L+1

∑
�

sin(q�)b̂� (11)

with q= πnq/(L+1) for integers 1� nq �L.
As demonstrated by Batrouni et al. [38] and Kollath

et al. [36], the potential confines the particles in the
middle of the trap. For small fillings, the local occupan-
cies display a bell-shaped distribution, where the maxi-
mum does not reach the Mott plateau value, 〈b̂†j b̂j〉(ρ=
0.24)< 1. The quasi-momentum distribution ñ(q) for this
“superfluid in a trap” shows a prominent peak at k=
0. For a larger filling, ρ= 0.40, there exists a Mott
plateau, 〈b̂†j b̂j〉(ρ= 0.40) = 1 for 40< j < 60. Recall that,
for t/U = 0.125, the homogeneous system at filling ρ= 1 is
a Mott insulator. Correspondingly, the peak in the pseudo-
momentum distribution at k= 0 is smaller for ρ= 0.40
than for ρ= 0.24, see fig. 4(b). Finally, at filling ρ= 0.54,
the confining potential and the bosons’ tendency to clus-
ter overcome the repulsive potential in the middle of the
trap so that local occupancies larger than unity are seen
inside the trap. Correspondingly, the peak intensity of
the pseudo-momentum distribution at ρ= 0.54 exceeds its
value for ρ= 0.40.

Photoemission spectra. – Single-particle excitations
associated with the injection or emission of a boson with
wave vector q and frequency ω, A+(q, ω) or A−(q, ω), are
described by the spectral functions

A±(q, ω) =
∑
n

|〈ψ±n |b̂±(q)|ψ0〉2δ(ω∓ω±), (12)
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Fig. 5: Intensity (left panels) and line-shape (right panels)
of the single-boson spectral functions A(q, ω) in the Mott
insulating (MI) phase for t/U = 0.05 (upper panels) and t/U =
0.1 (lower panels) with system size L= 64 at filling ρ= 1 using
the DDMRG technique with open boundary conditions.

where b̂+(q) = b̂†(q) and b̂−(q) = b̂(q) create/annihilate
particles with pseudo-momentum q. Moreover, |ψ0〉 is the
ground state of a L-site system in the N -particle sector
while |ψ±n 〉 denote the n-th excited states in the (N ± 1)-
particle sectors with excitation energies ω±n =E±n −E0.
So far, very few data are available for the (inverse)

photoemission spectra in the one-dimensional (con-
strained) Bose-Hubbard model. Analytical results include
the variational cluster perturbation theory [22], the
random phase approximation [39], and strong-coupling
theory [40]. Pippan et al. [41] combined QMC at low but
finite temperatures with the maximum-entropy method
to extract the spectral functions.
In the following we present the (inverse)-photoemission

spectra at zero temperature using the numerically exact
dynamical DMRGmethod [15,42]. We keepm= 500 states
to obtain the ground state in the first five DMRG sweeps
and take m= 200 states for the calculation of the various
spectra from (12) by DDMRG. For a bosonic system the
following sum-rules hold:∫ ∞

−∞
dω
(
A+(k, ω)−A−(k, ω))= 1, (13)

∫ 0
−∞
dω
(
A+(k, ω)+A−(k, ω)

)
= n(k). (14)

In our DDMRG calculations, both sum-rules are fulfilled
with high precision.
In fig. 5 we show the results for the Mott insulator with

ρ= 1. The spectra A(q, ω) =A+(q, ω)+A−(q, ω) for fixed
q consist of two Lorentzians of width η= 0.04, the size of
the broadening introduced in the DDMRG procedure. The

0 π/2 π
k

-0.5

0

0.5

1

ω
(k

)

strong-coupling
mean-field

0 π/2 π
k

-0.5

0

0.5

1

-1 0 1
ω

0

10

20

30

A
(q

,ω
)

t / U = 0.1t / U = 0.05

η =0.04

Fig. 6: (Colour on-line) Quasi-particle dispersions ω(k) in the
Mott insulating phase at filling ρ= 1 for t/U = 0.05 and t/U =
0.1 from Lorentz fits to the spectral functions A(q, ω). For
comparison, we also show the strong-coupling dispersions for
the propagation of a hole and a double occupancy, ωh,p(k), and
the mean-field result of ref. [40]. Inset: A(q, ω) for t/U = 0.1 at
q= π/33 with L= 32 (line) and q= 2π/65 with L= 64 (circles)
demonstrating the negligible system size dependence.
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Fig. 7: Intensity (left panel) and line-shape (right panel)
of the single-boson spectral functions A(q, ω) for tc = 0.305
(“superfluid” phase) with system size L= 64 at filling ρ= 1
using the DDMRG technique with open boundary conditions
for a broadening η= 0.04.

quality of the fits suggests that the quasi-particle life-time
is very large in the Mott insulator.
In fig. 6 we show the quasi-particle dispersions for t/U =

0.05 and t/U = 0.1 which we extracted from the fits of the
spectral functions to two Lorentz peaks at ω= ω±(k). For
comparison, we include the mean-field result [40] and the
strong-coupling result. For large interactions, each site is
singly occupied in the ground state. A hole excitation can
propagate freely so that the dispersion relation is given by
ωh(k) =−µ+2t cos(k). Likewise, a doubly occupied site
can also move freely through the system. Since either of
the two bosons of the doubly occupied site can tunnel to
its neighbouring sites, the dispersion relation is given by
ωp(k) =U −µ− 4t cos(k). These expressions for the quasi-
particle dispersions are exact to leading and first order in
strong-coupling perturbation theory.
In fig. 7 we show the spectral functions in the “super-

fluid” phase for ρ= 1 close to the Mott transition, t=
0.305. The elementary excitations concentrate around (k=
0, ω= 0). This confirms the formation of a “condensate”,
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as also seen in the momentum distribution, see fig. 3.
Moreover, it shows that the low-energy excitations near
k= 0 indeed dominate the spectral functions. We used this
concept for the analysis of the ground-state correlation
functions, see eq. (4). Note that deep inside of the Mott
phase the system size dependence of the spectral functions
is insignificant, see inset of fig. 6.

Conclusions. – In this work we have investigated
the one-dimensional constrained Bose-Hubbard model
(nb � 5) at zero temperature. Using the density-matrix
renormalisation group method we have obtained the
Tomonaga-Luttinger parameter Kb from the density-
density correlation function and determined the critical
couplings (t/U)c = 0.305(1) for density ρ=N/L= 1 and
(t/U)c = 0.180(1) for density ρ= 2 which separate the
“superfluid” and Mott insulating phases.
In the “superfluid” phase, the momentum distribution

diverges for small momenta, n(|k| → 0)∼ |k|−ν ∼Lν (ν =
1−Kb/2), and the spectral function is finite only for small
frequencies and momenta. In the presence of a confining
potential, we recover the Mott plateau in the particle
density for filling ρ= 0.40 and the wedding-cake structure
for filling ρ= 0.54.
In the Mott insulator, the momentum distribution

is a continuous function. The spectral function is well
described in terms of free quasi-hole and quasi-particle
excitations which have a very long life-time for strong
correlations. Their dispersion relation can be obtained
from strong-coupling perturbation theory. A calculation
of the quasi-particle bands beyond first order remains to
be done.
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[33] Läuchli A. M. and Kollath C., J. Stat. Mech. (2008)

P05018.
[34] Kashurnikov V. A. and Svistunov B. V., Phys. Rev.

B, 53 (1996) 11776.
[35] Rombouts S. M. A., Van Houcke K. and Pollet L.,

Phys. Rev. Lett., 96 (2006) 180603.
[36] Kollath C. et al., Phys. Rev. A, 69 (2004) 031601(R).
[37] Damski B. and Zakrzewski J., Phys. Rev. A, 74 (2006)

043609.
[38] Batrouni G. G. et al., Phys. Rev. Lett., 89 (2002)

117203.
[39] Menotti C. and Trivedi N., Phys. Rev. B, 77 (2008)

235120.
[40] Van Oosten D., van der Straten P. and Stoof

H. T. C., Phys. Rev. A, 63 (2001) 053601.
[41] Pippan P., Evertz H. G. and Hohenadler M., Phys.

Rev. A, 80 (2009) 033612.
[42] Jeckelmann E. and Fehske H., Riv. Nuovo Cimento,

30 (2007) 259.

30002-p6

8 Thesis Articles

152



PHYSICAL REVIEW A 85, 053644 (2012)

Characterization of Mott-insulating and superfluid phases in the one-dimensional
Bose-Hubbard model

Satoshi Ejima and Holger Fehske
Institut für Physik, Ernst–Moritz–Arndt–Universität Greifswald, D-17489 Greifswald, Germany

Florian Gebhard and Kevin zu Münster
Fachbereich Physik, Philipps Universität Marburg, D-35032 Marburg, Germany

Michael Knap, Enrico Arrigoni, and Wolfgang von der Linden
Institute of Theoretical and Computational Physics, Graz University of Technology, A-8010 Graz, Austria

(Received 6 March 2012; published 29 May 2012)

We use strong-coupling perturbation theory, the variational cluster approach (VCA), and the dynamical
density-matrix renormalization group (DDMRG) method to investigate static and dynamical properties of the
one-dimensional Bose–Hubbard model in both the Mott-insulating and superfluid phases. From the von Neumann
entanglement entropy we determine the central charge and the transition points for the first two Mott lobes. Our
DMRG results for the ground-state energy, momentum distribution function, boson correlation function decay,
Mott gap, and single-particle spectral function are reproduced very well by the strong-coupling expansion to fifth
order, and by VCA with clusters up to 12 sites as long as the ratio between the hopping amplitude and onsite
repulsion, t/U , is smaller than 0.15 and 0.25, respectively. In addition, in the superfluid phase VCA captures
well the ground-state energy and the sound velocity of the linear phonon modes. This comparison provides an
authoritative estimate for the range of applicability of these methods. In strong-coupling theory for the Mott
phase, the dynamical structure factor is obtained from the solution of an effective single-particle problem with
an attractive potential. The resulting resonances show up as double-peak structures close to the Brillouin zone
boundary. These high-energy features also appear in the superfluid phase which is characterized by a pronounced
phonon mode at small momenta and energies, as predicted by Bogoliubov and field theory. In one dimension,
there are no traces of an amplitude mode in the dynamical single-particle and two-particle correlation functions.

DOI: 10.1103/PhysRevA.85.053644 PACS number(s): 67.85.Bc, 67.85.De, 64.70.Tg

I. INTRODUCTION

The ability to place ultracold bosonic atoms in optical
lattices offered new prospects in the study of quantum
many-particle systems [1,2], mainly because, in contrast to
solid-state realizations, the properties of the system can be
manipulated in a very controlled way by tuning the particle
density, the lattice depth, the trapping potential, and the
interactions between the particles [3,4]. Likewise, the spatial
dimension and coordination number of the optical lattice,
the degree of disorder, or the coupling strength to external
fields might be changed [5,6]. Hence, in these experiments,
specific lattice Hamiltonians can be engineered and analyzed,
including quantum phase transitions between gapped and itin-
erant phases. A prominent example is the transition between
Mott-insulating (MI) and superfluid (SF) phases which results
from the competition between the particles’ kinetic energy
and their mutual onsite repulsion. In this way, subtle quantum
correlation effects become observable on a macroscopic
scale.

The Bose-Hubbard Hamiltonian captures the essential
physics of interacting bosons in optical lattices [7]. The
ground-state phase diagram of this model in two and three
dimensions has been determined by analytical, perturbative
methods [8–10] and numerical, quantum Monte Carlo (QMC)
techniques [11–15]. The one-dimensional (1D) case, which
can be realized experimentally [16], is also accessible by
QMC [17] and is particularly rewarding to study because the
physics in 1D is normally rather peculiar [18].

On a linear chain with L sites and periodic boundary
conditions (PBC) the Bose-Hubbard Hamiltonian reads

Ĥ = t T̂ + UD̂, T̂ = −
L∑

j=1

(b̂†j b̂j+1 + b̂
†
j+1b̂j ),

(1)

D̂ = 1

2

L∑
j=1

n̂j (n̂j − 1).

Here, b̂
†
j , b̂j , and n̂j = b̂

†
j b̂j are the boson creation, annihila-

tion, and particle number operators on site j .
The grand-canonical Hamiltonian is given by K̂ = Ĥ −

μN̂ where μ is the thermodynamic chemical potential and
N̂ = ∑

j n̂j counts the total number of particles. For N

particles (atoms) in the system, the (global) filling factor is
ρ = N/L.

In Eq. (1), the hopping of the bosons between neighboring
sites is characterized by the tunneling amplitude t , while U is
the onsite interaction which we choose to be repulsive, U > 0;
recently, Nägerl et al. investigated an unstable crystal of
bosons with U < 0 [19]. Accordingly, the physics of the Bose-
Hubbard model is governed by the ratio between kinetic energy
and interaction energy, x = t/U . If, for a given chemical
potential μ, x is larger than a critical value the bosons are
“superfluid.” Below xc, the system becomes Mott insulating,
characterized by an integer filling factor ρ. In experiments, x

can be varied over several orders of magnitude by modifying
the depth of the lattice through quantum optical techniques
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FIG. 1. Phase diagram of the 1D Bose-Hubbard model showing
superfluid (SF) and Mott-insulating (MI) regions as a function of
the chemical potential μ/U and the electron transfer amplitude t/U .
The boundaries delimiting the first two Mott lobes were determined
by DMRG, using system sizes up to L = 128 and open boundary
conditions [20] (see text).

whereby SF and MI phases can be realized. From a theoretical
point of view, the calculation of the boundaries between the
SF and MI phases in the (μ,U ) ground-state phase diagram is
particularly demanding because quantum phase transitions in
one dimension often are of Kosterlitz-Thouless type [18] with
exponentially small Mott gaps in the vicinity of the transition.

The numerical density-matrix renormalization group
(DMRG) method [21,22] is well suited to address one-
dimensional interacting particle systems [3,23,24]. In fact,
the (μ,U ) ground-state phase diagram of the 1D Bose-
Hubbard model has been obtained fairly accurately using this
technique [20] (see Fig. 1). Since multiple occupancies pose
serious technical problems, the maximal boson number per site
in DMRG is constrained to be five. Note that DMRG naturally
works at fixed N,L < ∞ (i.e., in the canonical ensemble). This
leads to the definition of two chemical potentials for finite
systems, ±μ±(L) = E0(L,N ± 1) − E0(L,N ) [24] where
E0(L,N ) denotes the ground-state energy. In the MI state
we have a finite gap, � = μ+(L → ∞) − μ−(L → ∞) > 0,
whereas the chemical potential is continuous in the SF phase,
μ = μ+(L → ∞) = μ−(L → ∞).

In one dimension, the delocalized SF state is not macro-
scopically occupied but rather characterized by an algebraic
divergence of the momentum distribution [18,25]. The local-
ized MI state is incompressible, as usual, and characterized
by an integer particle density and a gap in the single-particle
spectrum [8]. The regions in the (μ,U ) phase diagram where
the density ρ is pinned to integer values are termed Mott
lobes. Their special shape is conditioned by the strong phase
fluctuations existing in a 1D system. Close to the boundaries
of the Mott lobes, the Mott gap is exponentially small. The
precise position of the Mott dips can be obtained from the
Tomonaga-Luttinger parameter [20,24].

A detailed theoretical understanding of the Bose-Hubbard
model requires the calculations of (dynamical) correlation
functions which poses a hard problem for which no exact
solution exists. Recall that the 1D Bose-Hubbard model at

U < ∞ (soft-core bosons) is not integrable. Consequently, a
large variety of approximative approaches were suggested and
elaborated for the Bose-Hubbard model and its variants during
the last two decades; for a recent review see Ref. [26].

In the SF phase, (weakly) interacting bosons at low energies
are well described as a Tomonaga-Luttinger liquid [8,27].
However, close to the SF-to-MI transition, the precise character
of the spectrum is still under debate. This particularly concerns
the question of whether or not a second gapped mode
besides the standard sound mode, as obtained from mean-field
theory [28], can be seen in the single-particle spectral function
or in the dynamical structure factor.

In the MI phase, strong-coupling expansions in x = t/U

give reliable analytical results. The ground-state energy of all
Mott lobes was determined to second order by Freericks and
Monien [29], and was improved up to order x14 for the lowest
Mott lobe, ρ = 1, by Damski and Zakrzewski [30]. They also
provided the series expansion for the local particle-density
fluctuations to order x13, a high-order series expansion for
the single-particle density matrix P (r) = O(xr ) for r = 1,2,3
and gave the corresponding expressions for the ground-state
density-density correlation function D(r) − 1 = O(x2r ) for
r = 1,2,3; for results for r � 6 and r � 10, respectively, see
Ref. [9]. The Fourier transformation of P (r) provides the mo-
mentum distribution n(k). The result for n(k) to third order in x

was rederived by Freericks et al. [10] using a different method.
In contrast to higher dimensions, d � 2, the convergence

of the strong-coupling expansion series in 1D is rather
questionable. These problems become apparent, for example,
in the calculation of the critical value xc for the transition
between the Mott-insulator and the superfluid phase. For
example, the series expansion for the superfluid susceptibility
constructed by Eckardt et al. [9] determines xc very accurately
in d � 2 but fails for d = 1 where a reentrant superfluid phase
is predicted [9,23].

High-order expansions are also possible for the single-
particle gap [31]. The Mott transition in one dimension is
of Kosterlitz-Thouless (KT) type so that the gap becomes
exponentially small close to the transition, which cannot
be reproduced easily within a third-order strong-coupling
expansion [29]. In order to obtain a good approximation of
the critical value for the transition, Elstner and Monien [32]
proposed a scaling analysis for the gap. Based on this idea,
Freericks et al. [10] used a (6,7) Padé approximant for the
square of the logarithm of the single-particle gap to find
xc ≈ 0.300 (1) for ρ = 1, in good agreement with the DMRG
value; for another scheme, see Heil and von der Linden [33].

In the present paper, we first refine and extend the
perturbative strong-coupling approach in order to analyze the
single-particle spectral function and the dynamical structure
factor. For the latter quantity, we obtain higher-order cor-
rections from the corresponding Green’s function. Second,
in order to relax the strong-coupling condition, we employ
the variational cluster approach (VCA) that is applicable in
both the Mott-insulating and the superfluid phase [34–37].
For the calculation of spectral properties in the SF phase,
the VCA can be reformulated in terms of a pseudoparticle
approach, whereby single-particle excitations within a cluster
are approximately mapped onto particle-like excitations [36]
or in terms of the self-energy functional approach [37,38].
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Third, we perform large-scale DMRG calculations: (i) to
access the whole parameter space of the Bose-Hubbard model
and (ii) to benchmark the reliability of the used analytical
strong-coupling and numerical VCA techniques. While in the
past DMRG has been successfully applied to investigate the
ground-state properties of the Bose-Hubbard model [3,23,24],
DMRG results for dynamical properties at zero temperatures
are rare (in contrast to fermionic systems), but highly desirable
because superfluids in optical lattices can be studied by
momentum-resolved Bragg spectroscopy [39–42].

The outline of this paper is as follows: In Sec. II we describe
perturbative approaches to the Bose-Hubbard model, and
present a detailed derivation of the strong-coupling results for
static and dynamical quantities. Sections III and IV sketch the
specifics of the VCA and DMRG, respectively, when applied to
the Bose-Hubbard model. Section V contains our main results.
In particular, we discuss how the von Neumann entanglement
entropy can be calculated from DMRG and how it can be used
to determine the KT transition point in the Mott lobes. Next,
we determine the ground-state energy, the boson correlation
function, and the momentum distribution function. Lastly, we
analyze the photoemission spectra and dynamical structure
factors. In all cases, we compare analytical and numerical
results. Finally, Sec. VI summarizes our findings.

II. PERTURBATIVE APPROACHES

A. Weak-coupling limit

For weak interactions, we use the perturbative results
obtained by Bogoliubov [43] (see Fetter and Walecka,
Ref. [44], chap. 35), for a weakly interacting Bose gas with
contact interaction and density ρ = N/L. From the text-book
formulas we find for the 1D Bose-Hubbard Hamiltonian at
ρ = 1,

ε(k) = −2t[cos(k) − 1], (2)

E(k) =
√

ε(k)[ε(k) + 2U ], (3)

N0

L
= 1 − 1

2L

∑
k �=0

(
ε(k) + U

E(k)
− 1

)
, (4)

where ε(k) is the bare dispersion of (1) shifted by 2t , E(k)
is the dispersion of the Bogoliubov quasiparticles, and N0

is the number of particles in the condensate. Here, k =
2πmk/L, mk = 0,1, . . . ,L − 1 are the crystal momenta for
PBC. The Bogoliubov ground-state energy reads

EB
0 (U )

L
= −2t + U

2
+ 1

2L

∑
k �=0

[E(k) − ε(k) − U ] . (5)

Two problems with the Bogoliubov theory become apparent
when we consider some limits. First, we address the limit k →
0 for E(k), E(k → 0) ∼ k. Therefore, in the thermodynamic
limit, the integral in Eq. (4) is logarithmically divergent, and
N0 = 0 in 1D results, in agreement with field theory [18].
This, however, invalidates the starting point of the Bogoliubov
approximation. Second, we cannot apply the theory for
large U/t because E(k,U � t) ≈ √

8Ut | sin(k/2)| so that

EB
0 (U � t)/L ∼ √

Ut for large U/t , in contrast with the exact
limit, limU→∞ E0(U ) = 0.

The analytical result for the ground-state energy in Bogoli-
ubov theory is found, for example using MATHEMATICA [45], as

EB
0 (U )

L
= −3t +

√
2Ut

π
+ U + 2t

π
arccos

(√
U

U + 2t

)
.

(6)
The small-U expansion is

EB
0 (U 	 t)

Lt
= −2 + U

2t
−

√
2(U/t)3/2

3π
. (7)

Corrections are of the order (U/t)5/2 which is formally
beyond the validity of the Bogoliubov expansion which
ignores terms of order (U/t)2.

B. Strong-coupling limit

1. Harris-Lange transformation

For the bosonic Hubbard model, an x = t/U strong-
coupling expansion easily permits the calculation of the ground
state for x → 0,

|φ0〉 = 1

(ρ!)L/2

∏
i

(b̂†i )ρ |vac〉, (8)

because it is nondegenerate for the Mott lobe with integer
filling ρ = N/L. Likewise, the energy levels of a single-hole
excitation, Eh(k), and of a single-particle excitation, Ep(k),
can be determined to high order in x because the perturbation
theory for these energy levels also starts from nondegenerate
states; for example, for ρ = 1,

|φh(k)〉 =
√

1

L

L∑
l=1

e−ikl b̂l|φ0〉, (9)

|φp(k)〉 =
√

1

L

√
1

2!

L∑
l=1

eikl b̂
†
l |φ0〉. (10)

When we employ the unitary Harris-Lange transforma-
tion [46], the strong-coupling Hamiltonian of the Bose-
Hubbard model can be derived in a systematic way:

ĥ = eŜĤ e−Ŝ = UD̂ + t

∞∑
r=0

xr ĥr , (11)

Ŝ = −Ŝ† =
∞∑

r=1

xr Ŝr . (12)

In practice, a finite order in the expansion of Ŝ is kept. When
we retain Ŝr for 1 � r � n, we denote this as the “nth-order
approximation.” In nth order we thus keep (n − 1) terms in the
expansion for ĥ whose terms obey [ĥr ,D̂]− = 0 for 0 � r �
n − 1. To order (n − 1), the number of double occupancies is
conserved by ĥ. This defines the construction principle for the
operators Ŝn.

The leading-order terms for Ŝr and ĥr are given by

Ŝ1 =
∑

D1,D2

P̂D1 T̂ P̂D2

D1 − D2
, (13)
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Ŝ2 =
∑

D1,D2

−P̂D1 T̂ P̂D1 T̂ P̂D2 + P̂D1 T̂ P̂D2 T̂ P̂D2

(D1 − D2)2

+
∑

D1,D2,D3

P̂D1 T̂ P̂D3 T̂ P̂D2

2(D1 − D2)

[D1 − D3 + D2 − D3]

(D1 − D3)(D2 − D3)
,

(14)

ĥ0 =
∑
D

P̂DT̂ P̂D, (15)

ĥ1 =
∑

D1,D2

P̂D1 T̂ P̂D2 T̂ P̂D1

D1 − D2
, (16)

where P̂D is the projection operator onto the subspace of
eigenstate with D interactions, D̂ = ∑∞

D=0 DP̂D . In the above
sums it is implicitly understood that all indices Di � 0
are mutually different. A compact formula for the recursive
generation of higher orders can be found in Ref. [47]. In our
analysis, we use a computer program to generate orders r � 2
in Ŝr and ĥr [48].

For the exact ground state of the Mott insulator we have

Ĥ |ψ0〉 = E0|ψ0〉, (17)

where E0 is the exact ground-state energy. Within the strong-
coupling expansion we then find

|ψ0〉 = eŜ |φ0〉, ĥ|φ0〉 = E0|φ0〉, (18)

where |φ0〉 is the ground state of ĥ−1 = D̂ [see Eq. (8)].
Since the Harris-Lange transformation is unitary, operators

and ground-state expectation values translate according to

|ψ0〉 �→ |φ0〉, Ĥ �→ ĥ,
(19)

Â �→ Ã = eŜÂe−Ŝ .

The series expansion for Ŝ to nth order contains n powers of
the kinetic energy operator T̂ . Therefore, local operators Âi

translate into cluster operators which involve the sites l with
|l − i| � n. The range of ĥ scales accordingly: the strong-
coupling theory generates a cluster expansion.

2. Static quantities

For fixed momentum k, the exact eigenstates of ĥ with one
extra particle or one hole in |φ0〉, Eq. (8), are given by the hole
and particle states defined in Eqs. (9) and (10). In this sector,
we thus obtain the ground-state energy and the single-particle
excitation energies from

E0 = 〈φ0|ĥ|φ0〉, (20)

Ep(k) = 〈φp(k)|ĥ|φp(k)〉 − E0, (21)

Eh(k) = 〈φh(k)|ĥ|φh(k)〉 − E0. (22)

Up to and including 6th order in x, we obtain for the ground-
state energy per site

E
[6]
0

4UL
= −x2 + x4 + 68

9
x6 + O(x8), (23)

in agreement with Ref. [30].

The single-hole and single-particle excitation energies are

Eh(k)

t
= 8x − 512

3
x5 +

(
−2 + 12x2 − 224

3
x4

)
cos(k)

+
(

−4x + 64x3 − 1436

3
x5

)
cos(2k)

+ (−12x2 + 276x4) cos(3k)

+ (−44x3 + 1296x5) cos(4k) − 180x4 cos(5k)

− 792x5 cos(6k) + O(x6), (24)

and

Ep(k)

t
= 1

x
+ 5x − 513

20
x3 − 80139

200
x5

+
(

−4 + 18x2 − 137

150
x4

)
cos(k)

+
(

−4x + 64x3 − 426161

1500
x5

)
cos(2k)

+ (−12x2 + 276x4) cos(3k)

+ (−44x3 + 1296x5) cos(4k)

− 180x4 cos(5k) − 792x5 cos(6k) + O(x6). (25)

The single-particle gap is calculated from � = Ep(0) + Eh(0),
which results in

�

U
= 1 − 6x + 5x2 + 6x3 + 287

20
x4 + 5821

50
x5

− 602243

1000
x6 + · · · , (26)

in agreement with Ref. [31].

3. Single-particle spectral functions

The single-particle spectral functions are obtained from

A+(k,ω) =
∑

n

|〈φn|b̂†(k)|φ0〉|2δ(ω − ω+
n ), (27)

A−(k,ω) =
∑

n

|〈φn|b̂(k)|φ0〉|2δ(ω + ω−
n ), (28)

where ω±
n = En − E0 is the excitation energy of the exact

eigenstates |φn〉 of ĥ with N = ρL ± 1 bosons, measured from
the ground-state energy, and

b̂(k) =
√

1

L

L∑
l=1

e−ikl b̂l , b̂†(k) =
√

1

L

L∑
l=1

eikl b̂
†
l (29)

for PBC. Obviously, the single-particle gap � is obtained from
� = minn(ω+

n ) − maxn(−ω−
n ).

For the calculation of the spectral function, we need the
weight factors

wp(k) = |〈φp(k)|k+〉|2, |k+〉 = b̃
†
k|φ0〉, (30)

wh(k) = |〈φh(k)|k−〉|2, |k−〉 = b̃k|φ0〉. (31)

Up to and including third order in x we find

wh(k) = [1 − 4x2 + (4x − 20x3) cos(k)

+ 14x2 cos(2k) + 60x3 cos(3k)]2, (32)
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wp(k) = 2
[
1 − 7

4x2 + (
2x − 15

4 x3
)

cos(k)

+ 8x2 cos(2k) + 18x3 cos(3k)
]2

. (33)

The weights wp(k) and wh(k) are those of the lower and upper
Hubbard bands which are energetically closest to the single-
particle gap and separated by U in the atomic limit.

In higher orders of the strong-coupling expansion, sec-
ondary Hubbard bands appear in the single-particle spectral
function [35,46,49,50]. This can most easily be seen from
the weights which express the overlap of the exact excited
eigenstates of ĥ with the states |k±〉 [see Eqs. (30) and (31)].
With an amplitude of the order x2, the state |k−〉 contains
a component with two neighboring holes and one doubly
occupied site in a row. This component is not in the original
subspace with D = 0 and contributes to the upper Hubbard
band with weight x4. Therefore, for the weight of the lower
Hubbard band we have

wLHB(k) = wh(k) + O(x4)

= 1 + (8x − 16x3) cos(k) + 36x2 cos(2k)

+ 176x3 cos(3k) + O(x4). (34)

The state |k+〉 contains configurations with a triple occu-
pancy and a neighboring hole to the left or right. Their am-
plitude up to order x2 is a±(k) = √

6[x/2 − exp(±ik)x2/3].
They contribute to the secondary Hubbard band centered
around ω = 3U to order x2 and x3. Components with two
double occupancies and a quadruple occupancy have an
amplitude proportional to order x2 and thus contribute to
the bands centered around ω = 2U and ω = 6U , respectively,
with weights of the order of x4. Up to and including order x3,
the secondary Hubbard band around ω = 3U has the weight

w3U (k) = 12

∣∣∣∣x2 − x2e−ik

3

∣∣∣∣2

+ O(x4). (35)

Therefore, the total weight for the upper Hubbard bands
is given by wUHB(k) = wp(k) + w3U (k) = 1 + wLHB(k), in
agreement with the sum rule∫ ∞

−∞
dω[A+(k,ω) − A−(k,ω)] = wUHB(k) − wLHB(k) = 1,

(36)
which follows directly from the definition of the spectral func-
tion. Another check results from the momentum distribution
sum rule,

wLHB(k) =
∫ ∞

−∞
dωA−(k,ω) = 〈φ0|b̂†(k)b̂(k)|φ0〉 = n(k).

(37)
Up to and including third order in x, our results for n(k) agree
with those found in Refs. [10,30].

4. Dynamical structure factor

For the density-density correlation function we focus on
ω > 0 so that we do not have to consider terms of the form
〈φ0 |̃nl+r δ(ω − (ĥ − E0))|φ0〉 ∼ δ(ω). We define the states

|q〉 = (̃nq − n̂q)|φ0〉, (38)

where the density operator in momentum space is given by
(q = 2πmq/L, mq = 0,1, . . . ,L − 1)

n̂(q) =
L∑

l=1

eiql n̂l =
∑

k

b̂†(k + q)b̂(k) = [n̂(−q)]† . (39)

Then, we can express the dynamical structure factor in the
form

S(q,ω > 0) =
L∑

l=1

e−iqlSl(ω)

= 〈q|δ(ω − (ĥ − E0))|q〉
=

∑
n

|〈
n|q〉|2δ(ω − (ĥ − E0)), (40)

where |
n〉 are the exact eigenstates of ĥ in the sector with
N = ρL bosons.

Leading-order contribution. The dynamical structure factor
was calculated analytically within mean-field theory [28],
bosonization [26,51], and lowest-order strong-coupling the-
ory [51–53].

The strong-coupling result to leading order is readily
obtained from the exact eigenstates of ĥ0 [Eq. (15)] in the
sector with one hole and one double occupancy. The subspace
(N = L, D = 1) is spanned by the L(L − 1) orthonormal
states (l �= L)

|q,l〉 =
√

1

L

L∑
s=1

eiqs |s,l〉, |s,l〉 =
√

1

2
b̂†s b̂s+l |φ0〉. (41)

The states |q,l〉 obey the effective single-particle Schrödinger
equation

ĥ0|q,l〉 = −(1 − δl,1)(1 + 2e−iq )|q,l − 1〉
− (1 − δl,L−1)(1 + 2eiq)|q,l + 1〉. (42)

As expected for a translationally invariant system, the center-
of-mass momentum q = 2πmq/L with mq = 0,1, . . . ,L − 1
is conserved.

The leading-order contribution to the states |q〉 =∑∞
n=1 xn|q[n]〉 from (38) is given by

|q[1]〉 =
√

2[(1 − eiq)|q,1〉 + (1 − e−iq)|q,L − 1〉]; (43)

that is, double occupancy and hole are nearest neighbors.
Equation (42) describes a single particle on an open

chain with L − 1 sites which reflects the fact that hole and
double occupancy cannot be on the same site, l �= L. In
contrast to the fermionic case, the hard-core constraint is not
sufficient to determine the phase shift between hole and double
occupancy because their tunnel amplitudes differ by a factor
of two. Therefore, the scattering phase shift between double
occupancy and hole is not trivial [51–53]. This is in contrast
to the mean-field approach [28] where the bare dispersions for
hole and double occupancy enter Eq. (40).

The normalized double-occupancy–hole eigenstates are
given by

|q; k〉 =
√

2

L

L−1∑
l=1

sin(kl)eiφ(q)l|q,l〉, (44)
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with k = (π/L)mk (mk = 1,2, . . . ,L − 1) where the two-
particle phase shift φ(q) follows from

tan[φ(q)] = 2 sin(q)

1 + 2 cos(q)
. (45)

The energies of the eigenstates |q; k〉 of t ĥ0 are given by

E(q,k) = −2t cos(k)
√

5 + 4 cos(q). (46)

The overlap with the states in Eq. (43) defines the oscillator
strengths in Eq. (38),

〈q; k|q[1]〉 =
√

2

√
2

L
sin(k)[(1 − eiq)e−iφ(q)

− (1 − e−iq)(−1)mke−iφ(q)(L−1)], (47)

so that, in the thermodynamic limit (L → ∞), we obtain for
the weights

w(q; k) =
(

t

U

)2 32

L
sin2(k) sin2(q/2), (48)

where we dropped the cross terms because their contribution
to the structure factor vanishes due to the fast oscillations of
(−1)mk .

The dynamical structure factor becomes for ω > 0

S[1](q,ω) = 2

(
4t sin(q/2)

U

)2

×
∫ π

0

dk

π
sin2(k)δ(ω − U − E(q,k)). (49)

Finally, for |ω − U | � 2t
√

5 + 4 cos(q) we obtain (t ≡ 1)

S[1](q,ω) =
(

4 sin(q/2)

U

)2
√

20 + 16 cos(q) − (ω − U )2

2π [5 + 4 cos(q)]
(50)

for the dynamical structure factor to leading order [51–53].
Second- and higher-order contributions. For the next

order in the (t/U ) expansion we must calculate the action
of h1 ≡ ĥ1 − E

[1]
0 on the states |q,l〉, where we use E0 =

t
∑∞

n=1 xnE
[n]
0 . The correction to Eq. (42) reads

h1|q,l〉 = 13|q,l〉 − 2[(1− δl,1)(1 − δl,2)(1 + e−2iq)|q,l − 2〉]
− 2[(1 − δl,L−1)(1 − δl,L−2)(1 + e2iq)|q,l + 2〉]
+ 2δl,1

[(− 1
4 + e−iq + eiq

) |q,1〉
+ (

1
4 + e−iq + e−2iq

)|q,L − 1〉]
+ 2δl,L−1

[(
1
4 + eiq + e2iq

) |q,1〉
+ (− 1

4 + e−iq + eiq
) |q,L − 1〉] . (51)

The effective single-particle problem contains an overall
energy shift 13t2/U , a nearest-neighbor transfer l → (l +
1) with amplitude t(q) = (−t)[1 + 2 cos(q) + 2i sin(q)] as
before, an additional next-nearest neighbor transfer from
l → l + 2 with amplitude m(q) = −2(t2/U )[1 + cos(2q) +
i sin(2q)], and a potential at the chain ends, V1,1 =
VL−1,L−1 = (t2/U )[4 cos(q) − 1/2] and V1,L−1 = V ∗

L−1,1 =
(2t2/U )[1/4 + cos(q) + cos(2q) + i sin(q) + i sin(2q)].

Now that the potential links the two chain ends, it is
computationally advantageous to treat the problem on a

ring instead of a chain. The potential is readily generalized
according to Eq. (51). For a ring, the potential also contains
the terms V1,L−2 and V2,L−1 and their complex conjugates so
that the potential links four neighboring sites. Moreover, the
extension of ĥ0 from a chain to a ring generates corrections to
V1,L−1 and VL−1,1.

The x2 corrections to the states |q〉 (38) read

|q[2]〉 = 3
√

2[(1 − e2iq)|q,2〉 + (1 − e−2iq )|q,L − 2〉]. (52)

As the potential Va,b, the dynamical structure factor to second
order involves the four neighboring sites l = L − 2, L −
1,1,2.

The calculation of all eigenstates of ĥ0 + ĥ1 is not feasible
in the thermodynamic limit. To calculate the dynamical
structure factor we address the corresponding Green’s function

Ga,b(q,z) = 〈q,a| 1

z − (ĥ − E0)
|q,b〉. (53)

For the structure factor in leading order, Eq. (43) requires
the four Green’s functions Ga,b(q,ω + i0+) for a,b = 1,L −
1. The second order requires the Green’s function for a,b =
1,2,L − 2,L − 1. This cluster principle generalizes to higher
orders; that is, in nth order we have to calculate a (2n) × (2n)
matrix of Green’s functions for a potential which links 2n

neighboring sites.
The Green’s function of a particle in a potential of

finite range is readily calculated [54]. We start from ĥ =
t̂ + V̂ , where t̂ describes the free particle motion over the
ring with dispersion relation εq(k); up to second order
we have ε(2)

q (k) = −2t[cos(k) + 2 cos(k − q)] + 13(t2/U ) −
4(t2/U )[cos(2k) + cos(2k − 2q)] with 0 � k < 2π . In the
thermodynamic limit, the free Green’s function is readily
calculated,

ga,b(q,z) = 〈q,a| 1

z − t̂
|q,b〉 =

∫ π

−π

dk

2π

eik(a−b)

z − εq(k)
, (54)

where we use the fact that the free states are plane waves. We
calculate the free Green’s functions for z = ω ± i0+ with the
help of the residue theorem. Therefore, their real and imaginary
parts are available with high accuracy for all real frequencies
ω > 0.

With the help of the operator identity

1

z − t̂ − V̂
= 1

z − t̂
+ 1

z − t̂
V̂

1

z − t̂ − V̂
, (55)

we derive the Green’s function (53) from the equation

Ga,b(q,z) = ga,b(q,z) +
∑
l,m

ga,l(q,z)Vl,mGm,b(q,z). (56)

This matrix equation has the formal solution

G(q,z) = (1 − g(q,z)V )−1g(q,z). (57)

In nth-order perturbation theory, the potential and the required
Green’s functions have the same range 2n on the lattice.
Therefore, the matrix problem in (57) reduces to the inversion
of a 2n × 2n matrix for fixed (q,z = ω ± i0+).

The Green’s function calculation provides higher-order
corrections to S[1](q,ω). In Sec. V we show results for the
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dynamical structure factor to fifth order in the (t/U ) expansion
in the region around ω = U .

The Green’s function calculation does not cover the higher
Hubbard subbands. The first contribution to the structure factor
S(q,ω) beyond ω ≈ U occurs around ω = 3U with intensity
x4. In the regions where strong-coupling perturbation theory is
reliable, x � 0.15, the secondary bands contribute only a few
percent of the total weight. When we include the term to order
x4 in the frequency-integrated structure factor, the sum-rule for
the structure factor is fulfilled; that is, we reproduce the terms
D(r) of the ground-state density-density correlation function
for r = 1,2,3 [30] up to and including x4.

III. VARIATIONAL CLUSTER APPROACH

The basic idea of the VCA is to approximate the self-
energy � of a strongly correlated, physical system Ĥ by the
self-energy of an exactly solvable reference system Ĥ ′ [55].
Both the physical and the reference system share the same
interaction but differ in their single-particle terms. The optimal
self-energy is determined self-consistently from a stationary
condition on the grand-canonical potential 
,

δ


δ�
= 0. (58)

To evaluate this expression, the self-energy is parametrized
by the single-particle parameters of the reference system. In
fact, this idea is quite general and allows to unify (cluster)
dynamical mean-field theory and VCA within the same
theoretical framework depending on the choice of reference
system [38,56]. In the case of the VCA, the reference system
is chosen to be a cluster decomposition of the physical system
with modified single-particle parameters. Furthermore, the
reference system is selected such that it can be solved exactly.
In principle, any many-body cluster solver at hand can be used
which provides the dynamic single-particle Green’s function.
Here, we use Lanczos exact diagonalization [35,57].

Originally, VCA was introduced for fermionic
systems [55]. For correlated lattice bosons, it first has been in
use to investigate the normal, Mott-insulating phase [34]. In
Refs. [36,37] VCA has been extended to the superfluid phase.
This extension adopts the Nambu notation and is applicable
to a large class of lattice models that exhibit a condensed
phase. Since VCA is in the end a form of a cluster mean-field
approach, it can obviously not comprise fluctuations at length
scales larger than the cluster size. This means that in the case
of power-law decaying correlations as present here, these are
spuriously replaced by long-range order in the VCA. This is a
common issue of all mean-field like approaches. Despite this
drawback, VCA still provides reliable results for many observ-
ables such as the ground-state energy, the sound velocity of the
phonon excitations, and the single-particle spectral function.

Explicitly, the grand potential for bosonic systems with
normal and the superfluid components is given by [36,37]

2
 = 2
′ − Tr ln(−G) + Tr ln(−G′) − Tr(t − t ′)

+〈Â〉†[G(0)]
−1〈Â〉 − 〈Â′〉†[G′

(0)]
−1〈Â′〉, (59)

where G is the interacting Green’s function, t is the single-
particle Hamiltonian matrix, 〈Â〉 denotes expectation values
of the Nambu boson operators consisting of both creation and

annihilation operators, and the subscript “(0)” indicates that
the Green’s function is evaluated at zero wave vector and zero
frequency. In (59), the prime marks again reference system
quantities. The first line of (59) is identical to the expression
in the normal phase [34] apart from the fact that the Green’s
functions are considered to be in Nambu space and thus contain
anomalous parts which also account for the factor 1/2. The
second line takes care of the condensation of bosons, which
in one dimension is an artifact of the dynamical and self-
consistent mean-field treatment, as discussed above.

To obtain the results presented below, we always use the
chemical potential of the reference system and a field which
breaks the U (1) symmetry on the level of the reference system
as variational parameters. In the Mott phase we also determine
the intercluster hopping and the boundary energies of the refer-
ence system self-consistently [50]. Having found the stationary
point of the grand potential 
 with respect to the variational
parameters, we evaluate the dynamical single-particle Green’s
function G(k,ω) of the physical system [36,37]. From that
we calculate the single-particle spectral function A(k,ω) =
−ImG(k,ω)/π . The static density-density correlation func-
tions can be obtained from the Fourier transform of the
momentum distribution function, as specified in Ref. [50].

IV. DENSITY MATRIX RENORMALIZATION
GROUP APPROACH

The DMRG allows us to calculate static, dynamic, and
spectral properties of the 1D Bose-Hubbard model with high
precision for fairly large system sizes. The main obstacle is
related to the fact that, in principle, each lattice site can be
occupied by infinitely many bosonic particles. Therefore, one
has to introduce a cutoff nb, the maximum number of bosons
per site taken into account. The DMRG results are nonetheless
unbiased and numerically exact, if the dependence on nb can be
proven to be negligible and a careful finite-size extrapolation
to the thermodynamic limit (L → ∞) has been performed.

Within the ground-state DMRG technique [21,22] the
energy functional

E(ψ) = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 (60)

is minimized in a variational subspace in order to find the
ground-state wave function |ψ0〉 and energy E0 = E(ψ0)
whereby the DMRG energy error is proportional to the
weight of the density-matrix eigenstates discarded in the
renormalization process. Increasing the number m of density-
matrix eigenstates kept, the discarded weight can be reduced
systematically. Practically, the ground-state DMRG procedure
consists mostly of two steps. During the infinite-system
algorithm the system size is enlarged by two sites at each
step and this operation has to be continued until the whole
system reaches the desired system size L. Subsequently, a
finite-system algorithm is used, where several sweeps through
a lattice of fixed size L are performed. Thereby, the lattice is
divided in two blocks with � respectively L − � sites where
1 � � � L − 1. This sweeping improves the quality of the
results obtained in the infinite-system algorithm. We note
that this procedure is perfectly suited to compute the von
Neumann entanglement entropy on the fly in the finite-system
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algorithm. From this quantity, the KT transition point of the
Bose-Hubbard model can be determined accurately.

The DMRG procedure can also be used to minimize the
following functional [58,59]:

WA,η(ω,ψ) = 〈ψ |(E0 + ω − Ĥ )2 + η2|ψ〉
+ η〈A|ψ〉 + η〈ψ |A〉. (61)

Here, Ĥ is the (time-independent) Hamilton operator and Â

denotes the quantum operator of the physical quantity to be
analyzed; Â† is its Hermitian conjugate and |A〉 = Â|ψ0〉.
Once this minimization has been carried out, the dynamical
correlation function

GÂ(ω + iη) = − 1

π
〈ψ0|Â† 1

E0 + ω + iη − Ĥ
Â|ψ0〉, (62)

can be evaluated. Here, the small real number η shifts the poles
of the correlation function in the complex plane; that is, η leads
to a Lorentzian broadening of the peaks of the corresponding
spectral function given in Lehmann representation as

IÂ(ω + iη) = ImGÂ(ω + iη)

= 1

π

∑
n

|〈ψn|Â|ψ0〉|2 η

(En − E0 − ω)2 + η2
.

(63)

Within this so-called dynamical DMRG (DDMRG) technique,
the sweeps in the finite-system algorithm are repeated until
both functionals, E(ψ) and WA,η(ω,ψ), take their minimal
values.

Investigating the Bose-Hubbard model by DMRG, we keep
up to nb = 5 bosonic particles per site. Furthermore, we
use m = 2000 density-matrix eigenstates in the DMRG runs
for the ground-state expectation values. Then, the discarded
weight is typically smaller than 10−10. In the DDMRG
calculations we keep m = 500 states to determine the ground
state during the first five DMRG sweeps, and afterward use
m = 300 states for the calculation of the dynamical properties.

V. RESULTS AND DISCUSSION

A. von Neumann entanglement entropy

Previously, the KT transition point between the superfluid
and insulating phases has been determined from the Luttinger
parameter Kb [60,61], which can be extracted from the
density-density correlation function by DMRG, yielding tc =
0.305 ± 0.001 (tc = 0.180 ± 0.001) for ρ = 1 (ρ = 2) [20].
Although Kb(t < tc) is not defined in the MI, Kb(L) is finite
and continuous over the KT transition because the Mott gap is
exponentially small. Therefore, it can be used within a DMRG
finite-size extrapolation procedure.

The quantum phase transition should become manifest
in the system’s entanglement properties as well [62,63].
An important measure to quantify the entanglement of two
subsets of an interacting quantum system is the von Neumann
entanglement entropy, which shows a logarithmic scaling for
critical systems [64]. To determine the critical point between a
Tomonaga-Luttinger liquid and gapped (or ordered) phases for
more subtle situations (e.g., for frustrated spin models, spinless
fermion models with nearest-neighbor interaction, or fermion-

boson transport models), the use of the entanglement entropy
difference has been demonstrated to be advantageous [65–67].

For a block of length � in a periodic system of the
system size L, the von Neumann entropy SL(�) is given
by SL(�) = −Tr�(ρ� ln ρ�), with the reduced density matrix
ρ� = TrL−�(ρ). One finds for PBC [68]

SL(�) = c

3
ln

[
L

π
sin

(
π�

L

)]
+ s1, (64)

where c is the central charge. When one evaluates the entropy
difference SL(L/2) − SL/2(L/4) using DMRG with open
boundary conditions (OBC) [69], it includes the effect of the
nonuniversal constant s1. Therefore, the values for tc cannot
be extrapolated systematically. Here, we follow the alternative
scheme proposed by Nishimoto [65]. We subtract SL(L/2)
from SL(L/2 − 1) to obtain

c∗(L) ≡ 3[SL(L/2 − 1) − SL(L/2)]

ln[cos(π/L)]
. (65)

As L → ∞, in the SF regime, the quantity c∗(L) scales to the
central charge c = 1 [68,70].

Figure 2 displays c∗(L) for the 1D Bose-Hubbard model.
Advantageously, we can use periodic boundary conditions for
the calculation of this quantity. As shown in the insets, the
position of the maximum in c∗ can be reliably extrapolated to
the thermodynamic limit. In this way we get the cone point of
the Mott lobes tc = 0.305 (3) for ρ = 1 and tc = 0.179 (7) for
ρ = 2 (in units of U ), in excellent agreement with the previous
estimates from the OBC finite-size scaling of Kb [20].

B. Ground-state properties

1. Ground-state energy

The ground-state energy E0 of the 1D Bose-Hubbard model
has been determined analytically in the weak- and strong-
coupling cases. For weak interactions, the Bogoliubov result
was given in Eq. (6), with the small-U expansion given by
Eq. (7). For strong interactions, an expansion up to 14th order
in x = t/U was obtained by Damski and Zakrzewski [30]:

E
[14]
0

4UL
= −x2 + x4 + 68

9
x6 − 1267

81
x8 + 44171

1458
x10

−4 902 596

6561
x12 − 8 020 902 135 607

2 645 395 200
x14 + O(x16).

(66)

Figure 3 compares these perturbative results with our VCA
and DMRG data. The VCA reproduces the DMRG results
almost perfectly for all interaction strengths t/U � 0.5. The
strong-coupling series expansion is also in accordance with
the numerical exact data, surprisingly even beyond the KT
transition point (i.e., for t/U � 0.4). Note that, in Ref. [30],
the ground-state energy (67) was compared with numerical
data obtained for a system with L = 40 sites only. Hence, in
their figure, the deviation starts at about t ≈ 0.2U . Clearly,
the quality of the strong-coupling approximation improves as
higher-order corrections are taken into account; cf. the 4th-,
10th-, and 14th-order results. Figure 3 also shows the range
of validity of the corresponding weak-coupling approaches.
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FIG. 2. (Color online) Entanglement entropy difference, c∗ from
Eq. (65), for the 1D Bose-Hubbard model with ρ = 1 (upper panel)
and ρ = 2 (lower panel). Data are obtained by DMRG for lattices
up to L = 64 with PBC. The closed symbols indicate the maximum
value for each system size. An extrapolation of the t/U values at
these maxima to the thermodynamic limit provides the Kosterlitz-
Thouless transition point (see insets); here, the lines correspond to a
polynomial fit. The vertical dashed lines in the main panels mark the
Kosterlitz-Thouless transition point.
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FIG. 3. (Color online) Ground-state energy E0/(LU ) as a func-
tion of interaction strength t/U for ρ = 1. Weak- and strong-coupling
results are compared with the L → ∞ extrapolated DMRG data
obtained from chains up to L = 128 with OBC. For the VCA
calculations (crosses) a cluster with Lc = 12 (Lc = 4) sites is used
in the MI (SF) phase.

10 20 30

1×10
-12

1×10
-8

1×10
-4

1

b† j
b

20 40 60

1×10
-12

1×10
-8

1×10
-4

1

40 80
|j− |

1×10
-8

1×10
-4

1

b† j
b

40 80
|j− |

1×10
-4

1×10
-2

1

Lc = 12
Lc = 8
Lc = 4

(a) t / U = 0.05 (b) t / U = 0.1

(c) t / U = 0.15

(d) t / U = 0.2

ρ = 1

FIG. 4. (Color online) Decay of bosonic correlations in the 1D
Bose-Hubbard model within the first Mott lobe (ρ = 1) for decreasing
interaction strengths x = 0.05 (a), 0.1 (b), 0.15 (c), and 0.2 (d).
DMRG results are obtained for a chain with L = 128 sites and OBC.
To minimize the boundary effects we place j and � symmetrically
around the center of the system. The VCA data were calculated using
clusters with Lc = 4 (green triangles), 8 (blue squares), and 12 (red
circles).

Surprisingly, the Bogoliubov result is applicable up to the
Mott-transition point.

2. Boson correlation function

In order to characterize the correlations in the ground state
of the interacting Bose gas described by the Bose-Hubbard
model, it is instructive to look at the distance dependence
of the expectation values 〈b̂†j b̂�〉, which, with appropriate
normalization, constitute the matrix elements of the one-
particle density matrix [3].

In the gapless SF state, the boson single-particle correlation
function

〈b̂†j b̂�〉 ∼ |j − �|−Kb/2 (67)

shows a power-law decay with an exponent determined by the
Tomonaga-Luttinger parameter Kb [18].

In the insulating (gapped) MI, the bosonic correlations
decay exponentially (at large distances), which is demonstrated
by the semilogarithmic representation in Fig. 4. At very strong
couplings, the excitation gap is large and therefore can be
obtained very accurately within VCA. As x becomes larger
(i.e., U becoming smaller at fixed t), the correlations are
significant over many lattice sites. In this regime, we find
noticeable deviations of the VCA results if Lc is too small [see
Fig. 4(d)].

3. Momentum distribution function

The Fourier-transformed single-particle density matrix
gives the momentum distribution function

n(k) = 1

L

L∑
j,�=1

eik(j−�)〈b̂†j b̂�〉. (68)

053644-9

Article XIV

161



SATOSHI EJIMA et al. PHYSICAL REVIEW A 85, 053644 (2012)

0

0.5

1

1.5

2

n
(k

)

0

1

2

3

0 π/2 π

k

0

2

4

6

n
(k

) DMRG
VCA
strong-coupling

0 π/2 π

k

0

5

10

0 π/32 π/16

5

10
Lc=12
Lc=8
Lc=4

(a) t / U = 0.05 (b) t / U = 0.1

(c) t / U = 0.15 (d) t / U = 0.2

FIG. 5. (Color online) Momentum distribution function n(k)
within the first Mott lobe from DMRG with L = 64 and PBC
(symbols), VCA (dashed lines), and third-order strong-coupling
expansion (69) (solid lines). The inset in panel (d) shows the
dependence of the VCA results on the cluster size Lc for k � 0
in comparison with the DMRG data.

To third order in x = t/U , strong-coupling theory predicts for
the first Mott lobe [10,30]

n[3](k) = 1 + (8x − 16x3) cos(k)

+ 36x2 cos(2k) + 176x3 cos(3k). (69)

In Fig. 5 we compare the strong-coupling expansion (69) with
the DMRG and VCA numerics.

While for t/U = 0.05, where the momentum distribution is
rather flat indicating weak site-to-site correlations, all methods
essentially agree [see Fig. 5(a)], small deviations between
analytical and numerical approaches appear for t/U � 0.1
[Fig. 5(b)]. The oscillations emerging for x ∼ 0.15 in the
third-order strong-coupling theory are clearly an artifact.
The VCA reproduces the density distribution n(k) very well.
However, it fails quantitatively for k → 0 and x = 0.2 if the
cluster used is not large enough [see inset in Fig. 5(d)].

When we approach the MI-SF KT transition point by
raising x, n(k = 0) will rapidly increase with system size.
In 1D, of course, n(k = 0) will not attain a macroscopic
value in the thermodynamic limit because no true condensate
develops [25]. Instead, we have from Eq. (67)

n(|k| → 0) ∼ |k|−ν, ν = 1 − Kb/2 < 1. (70)

Thus far, it is difficult to reproduce this algebraic divergence in
the SF phase. However, see Ref. [71], where ν was determined
by DMRG.

C. Dynamical quantities

1. Photoemission spectra and density of states

The single-particle excitations associated with the injection
and emission of a boson with wave vector k and frequency ω

are described by the spectral functions A+(k,ω) and A−(k,ω);
see Eqs. (27) and (28), respectively. These quantities can be
evaluated by VCA [36] and DDMRG [58,59]. For the Bose-
Hubbard model the following sum rules hold [cf. Eqs. (36)
and (37)]: ∫ ∞

−∞
dω[A+(k,ω) − A−(k,ω)] = 1, (71)

∫ ∞

−∞
dωA−(k,ω) = n(k). (72)

Summing over momenta k, the density of states N (ω) follows
as

N (ω) = A+(ω) − A−(ω), (73)

where A±(ω) = ∑
k A±(k,ω)/L. Within the DDMRG frame-

work, however, it is much more appropriate to calculate N (ω)
directly, instead of performing the k summation of A±(k,ω).

First, we discuss the spectral function, A(k,ω) =
A+(k,ω) + A−(k,ω), and the density of states, N (ω), in the
MI regime. The DDMRG spectra for fixed k consist of two
Lorentzians of width η = 0.04U , which is the broadening
introduced in the DDMRG procedure (cf. Sec. IV).

Figure 6 shows the quasiparticle dispersions (squares)
extracted from Lorentz fits to the maxima in A±(k,ω). The
quality of the fits suggests that the quasiparticle lifetime is very
large. Because of the large Mott gap separating single-particle
and single-hole quasiparticle bands, the VCA can work with
small cluster sizes and the quasiparticle spectra are in perfect
agreement with the DDMRG data. The same holds for the
strong-coupling results. In fact, for large interactions, each site

DDMRG
VCAt/U = 0.05

ω
/U

−2

0

2

t/U = 0.1

k
0 π

ω
/U

−2

0

2

−4 0 4
N(ω)

FIG. 6. (Color online) Single-particle spectral function A(k,ω)
in the k-ω plane (left panels) and density of states N (ω) (right
panels) for the 1D Bose-Hubbard model with ρ = 1 and t/U = 0.05
(upper panels), t/U = 0.1 (lower panels). We compare DDMRG
data for a system with L = 64 and OBC (squares) with the results of
VCA for Lc = 12 and η = 0.03U (density plots) and strong-coupling
expansions (24) and (25) (lines).
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FIG. 7. (Color online) Spectral functions and density of states
for intermediate couplings t/U = 0.15 (upper panels), t/U = 0.2
(middle panels) and t/U = 0.25 (lower panels). Notations are the
same as in Fig. 6.

is singly occupied in the ground state. As a consequence, a hole
or doubly occupied site can move almost freely through the
system. From this consideration, the leading-order expression
for the quasiparticle dispersions results [20] [see Eqs. (24) and
(25)]. We note in passing that the simple mean-field approach
by van Oosten et al. [72] fails to reproduce the quasiparticle
dispersion already for x = 0.1 (see Ref. [20]).

As the onsite interaction further weakens, the Mott gap
gradually closes; the corresponding results are depicted in
Fig. 7. Obviously, strong-coupling theory becomes imprecise
at x ≈ 0.2 and completely fails at x � 0.25. There also, VCA
shows some artificial gap features near the Brillouin-zone
boundary, which do not show up in DDMRG.

In the superfluid phase, the elementary excitations concen-
trate around the region (k = 0, ω = 0) (see Fig. 7 in Ref. [20]),
which indicates the formation of a “condensate.” In accor-
dance with Bogoliubov theory and field theory [26,43], the
low-energy, low-momentum excitations dominate the single-
particle spectrum. As can be seen from Fig. 8, our spectral
function indeed exhibits a phonon mode whose excitation
energy—for a system in the thermodynamic limit—is linear
in k and gapless at k = 0. Yet, for finite-size systems a gap
is present whose magnitude is inversely proportional to the
system size. Our DDMRG data demonstrate that the gap
almost vanishes already for an OBC system with 64 sites.
A similar behavior has been observed in QMC calculations
which employ the directed-loop method [13].

Within the VCA, we find a larger gap as compared to
DDMRG, due to the fact that we solve only four-site clusters
exactly which are subsequently coupled perturbatively. In

t/U = 0.35

k
0 π

ω
/U

−3

0

3
t/U = 0.4

k
0 π

FIG. 8. (Color online) Spectral functions in superfluid phase
of the 1D Bose-Hubbard model with t/U = 0.35 (left panel),
t/U = 0.4 (right panel). Compared are DDMRG dispersions with
VCA density plots for Lc = 4 and the dispersion of the condensate
excitations E(k) from Bogoliubov theory (black lines, other symbols
are the same as in Fig. 6). See Eq. (3) with (2).

Ref. [36] we showed that the gap at k = 0 decreases with
increasing cluster size, suggesting the correct behavior in the
infinitely large cluster limit. Along the linear Goldstone modes,
the spectral weight obtained by means of VCA exhibits fringes
and a series of minigaps. This behavior is most likely a result of
the cluster decomposition and subsequent periodization of the
Green’s function [35]. However, it should be emphasized that
the slopes of the phonon mode obtained by the two methods
agree very well.

A universal feature of systems with broken U(1) symmetry
is that, in addition to a gapless Goldstone mode, a gapped
amplitude mode should be present. Whereas the Goldstone
modes correspond to phase fluctuations, the amplitude modes
arise from fluctuations in the magnitude of the order parameter.
This behavior can be sketched by a Mexican hat potential for
the order parameter [73]. It has been argued in Ref. [73] that
the amplitude modes are sharp excitations in the quasiparticle
sense only for dimensions d � 3 for which they were detected
experimentally [74].

For d < 3 the decay of the amplitude modes into Goldstone
modes is very efficient and, thus, the weight observed in the
susceptibilities can be redistributed over a large frequency
range. This renders an observation of the amplitude modes
difficult. In two dimensions (2D) it was demonstrated theoreti-
cally that the coupling to the amplitude modes can be improved
by evaluating susceptibilities for the kinetic energies [75] or
for operators that resemble the rotationally invariant structure
of the Mexican hat potential [76]. This should result in clearer
signals for the amplitude modes in the respective response
functions. Indeed, in setups with ultracold atoms, recent lattice
modulation experiments, which couple directly to the ampli-
tude modes, provide evidence for their existence in 2D [77].

In 1D where no true condensate exists, the spectral
smearing of the amplitude modes is believed to be even more
pronounced. Our numerical DMRG and VCA results for the
spectral function and the dynamical structure factor, which
both couple to the gapless Goldstone mode and the amplitude
mode, give no indication for the latter. Therefore, we do not
expect that an amplitude mode will be observed in Bragg
spectroscopy experiments for bosons in one dimension. It is
quite remarkable that VCA reproduces the overall character
of the single-particle spectrum consisting of Goldstone modes
only, despite of the fact that, technically, a spurious condensate
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has to be introduced to treat the superfluid phase. See Sec. III
for a detailed discussion.

2. Dynamic density-density correlations

We now turn to the dynamical density-density response
function. We carry out large-scale DDMRG calculations
of the dynamic structure factor S(q,ω) and compare the
results with the predictions of strong-coupling theory (40)
where appropriate. In strong coupling, we show results in
fourth-order approximation. The agreement with the DDMRG
data for x = 0.15 improves noticeably when we calculate
expectation values with |q〉 ≈ ∑5

n=1 xn|q[n]〉 from (38) (i.e.,
we keep the states to fifth order in x).

Since DDMRG provides S(q,ω) with a finite broadening η,
it turns out to be useful to convolve the strong-coupling result
with the Lorentz distribution [78],

Sη(q,ω) =
∫ ∞

−∞
dω′S(q,ω′)

η

π [(ω − ω′)2 + η2]
. (74)

Mott phase. Figure 9 illustrates the change of the intensity
distribution of S(q,ω) in the q-ω plane as x = t/U increases
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FIG. 9. (Color online) Intensity of the dynamical structure factor
S(q,ω) in the MI phase of the 1D Bose-Hubbard model for different
t/U where ρ = 1. DDMRG data were obtained for an L = 32 site
system with PBC, using η = 0.5t . Red crosses mark the positions of
the maximum in each q = 2πmq/L sector.
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FIG. 10. (Color online) Frequency scans of the dynamical struc-
ture factor in the MI state at fixed momenta q = π/2 (left panels)
and q = π (right panels). DDMRG data (circles) were obtained
for L = 64, PBC, and η = 0.5t ; at t/U = 0.15 (q = π ) also for
L = 128, PBC, and η = 0.2t (green crosses). Blue solid (red dashed)
lines give the corresponding results of the strong-coupling theory
with η = 0 (η = 0.5t). Please note the different scales of the
ordinates.

in the MI regime. For small x, deep in the MI, the spectral
weight is concentrated around ω ∼ U in the region q > π/2
(cf. the upper-left panel of Fig. 9). This meets the predictions
of the strong-coupling theory [53]. In this regime the structure
factor is dominated by the primary band.

When x increases, the maximum of S(q,ω) acquires an
appreciable dispersion; simultaneously the overall intensity
of the density-density response strengthens (see the mid-
dle panels of Fig. 9 and also Fig. 10). As the system
approaches the MI-SF transition point, the excitation gap
closes. Concomitantly, we find a significant redistribution of
the spectral weight to smaller q values (see lower panels
of Fig. 9).

In Fig. 10 we show constant-moment scans of S(q,ω)
at q = π/2 and q = π . For x = 0.05 and x = 0.10, the
agreement between the broadened strong-coupling results and
the DDMRG data for S(q,ω) is excellent. As x becomes larger
than x ≈ 0.10, the strong-coupling theory yields a double-peak
structure in S(π,ω). When we increase the lattice size and
reduce η, this feature also appears in our DDMRG data for
t/U = 0.15. Therefore, this feature is not an artifact of the
strong-coupling approach even though the strong-coupling ex-
pansion overestimates the double-peak structure for x = 0.15.
The strong-coupling expansion solves an effective single-
particle problem in a (finite range, attractive) potential. Such
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FIG. 11. (Color online) Intensity of the dynamical structure factor
S(q,ω) in the superfluid phase of the Bose-Hubbard model with
ρ = 1. Again we use L = 32, PBC, and η = 0.5t . The yellow line
gives the Bogoliubov result (3).

a potential gives rise to a nontrivial spectrum (resonances
and possibly bound states). The energy levels of the effective
single-particle problem lead to nontrivial spectral signatures
in the dynamical structure factor.

Superfluid phase. Figures 11 and 12 present the corre-
sponding results for the dynamical structure factor in the
SF phase. At small momenta, Bogoliubov theory gives
the correct slope of the dispersion which we derive from
the maximum of the DDMRG data for S(q,ω). Note that the
dispersion E(q) in Eq. (3) is identical to the predictions from
field theory [18]. Bogoliubov’s dispersion overestimates the
DDMRG maxima for larger momenta and higher energies,
as observed experimentally for a three-dimensional (3D)
setup [41]. As compared to the MI phase, the density-density
response has higher intensity in the SF state. Interestingly,
we also find a shoulder in S(π,ω), which may form a double
peak as L → ∞, η → 0 (see the right-hand panel of Fig. 12).
This high-energy double peak in the SF phase resembles the
structure seen in the MI phase. In our opinion, this rules out
an interpretation of the second peak as signature of a massive
Higgs mode [28].

VI. SUMMARY

The aim of this paper was twofold: (i) to provide extensive
numerical (D)DMRG data for static and dynamical quantities
of the one-dimensional Bose-Hubbard model at integer filling,
mostly for ρ = N/L = 1; (ii) to compare the (D)DMRG
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FIG. 12. (Color online) Frequency dependence of dynamical
structure factor S(q,ω) at q = π/2 and q = π . Only DDMRG data
are shown. Circles (crosses) mark the results for L = 64, PBC, and
η = 0.5t (L = 128, PBC, and η = 0.2t).

results with the analytical strong-coupling perturbation theory
and the numerically inexpensive VCA and thereby explore
their merits and limitations in the most demanding case of one
dimension.

We used the DMRG to calculate the central charge from
which we confirmed the critical values for the superfluid-to-
Mott transition for integer fillings ρ = 1 and ρ = 2.

The ground-state energy from DMRG compares favorably
with results from VCA and from perturbation theory. For static
correlation functions such as the single-particle density matrix
and the momentum distribution, the comparison between
DMRG data and strong-coupling perturbation theory (VCA)
shows that the latter are reliable for x = t/U � 0.15 (x �
0.25), for doable implementations.

We calculated dynamical quantities such as the single-
particle spectral function and the dynamical structure factor. In
the superfluid phase, the response at low energies is dominated
by the quasicondensate, in agreement with predictions from
field theory and Bogoliubov theory. The latter provides the
correct result for the phonon mode despite the fact that it
is based on the incorrect assumption of a true condensate.
For finite interactions and at higher energies, the dynamical
structure factor is broad and reflects the physics of the Mott
insulator. The overall character of the single-particle spectrum
and the sound velocity of the phonon modes are reproduced
by VCA for larger values of x.

The strong-coupling results for the dynamical structure
factor helped us to interpret our numerical DDMRG data
because the latter are spectrally broadened for finite system
sizes. The two-particle correlation function in the Mott phase
reflects the (scattering) states of a doubly occupied site and
a hole with a hard-core repulsion and a (weak) longer-ranged
attraction giving rise to a double-peak structure in the
dynamical structure factor near the boundary of the Brillouin
zone.

Our numerical work can be compared with experiments
only after the parabolic confinement potentials are taken into
account. Important as it is to confine the atoms to the optical
lattice, the confinement potential often is so strong that the
density profile contains several Mott regions with different in-
teger fillings and transition regions between them. In this case,
the structure factor at low energies describes the dynamical
response of the “wedding-cake” density profile [79,80].

There are two other directions to extend our work. The
Mott gap in the Bose-Hubbard model resembles a band
gap. Therefore, it is interesting to see how bound states
(“excitons”) form in this gap in the presence of a nearest-
neighbor attraction. A second route to extend our work is
the inclusion of a disorder potential [26,81,82] so that the
smearing and closing of the Mott gap as a function of
the disorder can be studied. Work in this direction is in
progress.
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Abstract. In order to identify possible experimental signatures of the superfluid to Mott-
insulator quantum phase transition we calculate the charge structure factor S(k, ω) for the
one-dimensional Bose-Hubbard model using the dynamical density-matrix renormalisation
group (DDMRG) technique. Particularly we analyse the behaviour of S(k, ω) by varying—
at zero temperature—the Coulomb interaction strength within the first Mott lobe. For strong
interactions, in the Mott-insulator phase, we demonstrate that the DDMRG results are well
reproduced by a strong-coupling expansion, just as the quasi-particle dispersion. In the super-
fluid phase we determine the linear excitation spectrum near k = 0. In one dimension, the
amplitude mode is absent which mean-field theory suggests for higher dimensions.

Recent experimental realisations of optical lattices make it possible to investigate the
properties of ultracold dilute atoms in a new regime of strong correlations [1, 2]. Tuning
the strength of the laser field, the effective interactions between the atoms can be tuned to
be stronger than their kinetic energy. The competition between the Coulomb energy and the
kinetic energy may even drive a quantum phase transition between superfluid (SF) and Mott
insulating (MI) phases. The Bose–Hubbard model (BHM) captures the essential physics of this
problem. In previous work [3] we studied the photoemission spectra of the one-dimensional (1D)
BHM both in the MI and SF phases. In this contribution we extend our preceding investigations
of the dynamical properties of the BHM by analysing the dynamical structure factor S(k, ω).
Analytically, S(k, ω) has been determined by mean-field approaches [4, 5] and, numerically, for
rather small 1D systems, by exact diagonalisation [6] or, at finite temperatures, by QMC [7].
Here, we carry out large-scale dynamical density-matrix renormalisation group (DDMRG) [8]
calculations in order to examine the density-density correlations of N interacting Bose particles
on L sites at zero temperature. Moreover, fixing ρ = N/L = 1, we set up a perturbation theory
whose results can be compared with the DDMRG data in the strong-coupling limiting case.

The Hamiltonian of the 1D BHM reads

Ĥ = −t
∑

j

(b̂†j b̂j+1 + b̂j b̂
†
j+1) +

U

2

∑

j

n̂j(n̂j − 1) , (1)

where b̂†j and b̂j are the creation and annihilation operators for bosons on site j, n̂j = b̂†j b̂j is
the boson number operator on site j. The tunnel amplitude between nearest neighbour lattice
sites is denoted by t, and U gives the on-site Coulomb repulsion of the Bose particles. For the
DDMRG treatment of (1) we use periodic boundary conditions, take into account nb = 5 bosons
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per site and keep up to m = 500 density-matrix eigenstates, ensuring that the discarded weight
is always smaller than 3× 10−5.

The dynamical charge structure factor is defined as

S(k, ω) =
∑

n

|〈ψn|n̂k|ψ0〉|2δ(ω − ωn) , (2)

where |ψ0〉 and |ψn〉 denote the ground and n-th excited state, respectively, and ωn = En − E0

gives the corresponding excitation energy. S(k, ω) characterises the density-density response of
the Bose gas and is directly accessible in experiment, for instance, by Bragg spectroscopy [9].

From lowest-order strong-coupling perturbation theory we find for ρ = N/L = 1 (N,L→ ∞)

S(1)(k, ω > 0) =

(

4t sin(k/2)

U

)2 ∫ π

−π

dk

π
sin2 k δ(ω − U + 2t cos k

√
5 + 4 cos k) . (3)

Then, for U − 2
√
5 + 4 cos k ≤ ω ≤ U + 2

√
5 + 4 cos k, we have in units of t

S(1)(k, ω > 0) =

[

4 sin(k/2)

U

]2
√

20 + 16 cos k − (ω − U)2

2π(5 + 4 cos k)
, (4)

where 0 ≤ k < 2π. Since DDMRG provides S(k, ω) with a finite broadening η, it is
useful to convolve the strong-coupling result S(1)(k, ω) with the Lorentz distribution [10]:
Sη(k, ω) =

∫∞

−∞
dω′S(k, ω′)η/

[

π
[

(ω − ω′)2 + η2
]]

. For the 1D BHM, from Eq. (4), we thus
get

S(1)
η (k, ω > 0) =

(

4 sin(k/2)

U

)2 2

π2

∫ 1

−1
dλ

η
√
1− λ2

(ω − U + 2λ
√
5 + 4 cos k)2 + η2

. (5)

Figure 1 illustrates the frequency and momentum dependencies of S(k, ω). Peaks in S(k, ω)
assign charge excitations. For k ≃ 0, S(k, ω) exhibits a maximum around ω ≈ U that can be
attributed to excitations across the Mott gap. Within strong-coupling theory (4) this signature
stays at ω ≈ U for all k but becomes more pronounced as k reaches the Brillouin zone boundary.

40 60
ω / t

0

2

4

S
(k

, ω
)
/
t

DDMRG
1st order

0 10 20 30 40
ω / t

0

1

3

0 10 20
ω / t

0

1
t/U = 0.05

×10
-4

t/U = 0.1t/U = 0.02

η = 4t

×10
-3 ×10

-2

Figure 1. Frequency dependence of the dynamical charge structure factor S(k, ω) at various
momenta k = 2πj/L (for j = 1, 2, . . . , L/2 from bottom to top). DDMRG data (symbols)

were obtained for L = 16; S
(1)
η (k, ω) (lines) give the corresponding first-order strong-coupling

expansion results (for the same value of η = 4t). The dashed line indicates the point ω = U .
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Figure 2. η-dependence of the dynamical structure factor S(k, ω). DDMRG data (symbols) are
compared with the corresponding strong-coupling results (dashed lines) at various momenta k.
The solid green line shows the unconvolved result of the strong-coupling expansion.

Our DDMRG data corroborate this prediction (cf. the left panel of Fig. 1 depicting the results
for t/U = 0.02). Naturally, as U gets smaller, differences between the numerical DDMRG and
the analytical strong-coupling results emerge. Most importantly, the position of the maximum
in S(k, ω) varies with k: it is shifted to smaller (larger) frequencies for k values near the band
centre (Brillouin zone boundary); see middle and right-hand panels of Fig. 1. We have to include
higher-order t/U–corrections to reproduce this feature analytically. Note that the maximum in
S(k, ω) amplifies as k → π.

Next, we investigate the dependences of S(k, ω) on the broadening η and the system size L to
scrutinise whether the DDMRG data “converge” to the unconvolved strong-coupling result (4) as
η → 0 and L→ ∞. Figure 2—showing S(k, ω) in the MI phase at k = π/8 (left), π/2 (middle)
and π (right panel) for L = 16, 32, 64 η = 4t, 2t, t, respectively—demonstrates that this is
indeed the case. Firstly, for t/U = 0.02, we see that the DDMRG results are in a satisfactory

accord with S
(1)
η (k, ω), where as a matter of course for smaller system sizes a larger value of η

has to be used to achieve good agreement. Secondly, S(k, ω) calculated by DDMRG approaches
the curve given by (4) for increasing system size L and decreasing broadening η.

Finally, we look at the changes in the dynamical density-density response as the system crosses
the MI-SF quantum phase transition with decreasing Coulomb interaction strength. Figure 3
shows the intensity distribution of S(k, ω) in the MI and SF phases as well as in the vicinity
of the Kosterlitz–Thouless (KT) transition point, where the charge excitation gap closes. For
large U , the spectral weight is mainly concentrated around ω = U in the region π/2 ≤ k ≤ π, in
agreement with the strong-coupling prediction. As U weakens in the MI phase, the distribution
of the spectral weight broadens. At the same time, the maximum value of S(k, ω) acquires a
sizable dispersion (see upper-row panels). As the system reaches the MI-SF transition point we
observe a significant redistribution of spectral weight to lower k values and, most notably, the
excitation gap closes (see lower panels). In our previous work, we evaluated the scaling of the
Tomonaga–Luttinger liquid parameter and determined the KT transition point to be located at
t/U = 0.305(1) [3]. In the SF phase spectra for k & 0 (cf. the panel for t/U = 0.4), we observe
an almost linear dispersion of the S(k, ω), which—in accordance with bosonization [11] and with
Bogoliubov theory [12] —can be taken as a signature of the Bose condensation process. Our
1D DDMRG BHM data are unsuggestive of two distinct (gapless sound and massive) modes in
the SF phase. These two phases are found in mean-field theory and may appear for dimensions
d ≥ 2 where a true condensate exists in the SF ground state.
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Figure 3. Intensity of the dynamical structure factor S(k, ω) in the k–ω plane for different t/U .
DDMRG data were obtained for L = 32 system, using η = 2t (η = t) in the MI phase and at the
KT transition point (in the SF phase). The red crosses mark the positions of the maximum in
each k = 2πj/L–sector. The green line for t/U = 0.4 marks the field-theory/Bogoliubov result
ω(k) =

√

ǫ0(k)[ǫ0(k) + 2U ] with ǫ0(k) = −2t(cos k − 1).

To summarise, we have determined the dynamical structure factor S(k, ω) for the 1D BHM
with particle density ρ = N/L = 1 by means of unbiased numerical DDMRG calculations.
As discussed for photoemission spectra previously [3], S(k, ω) agrees with the first-order
perturbation theory result in the Mott insulator phase for U ≫ t. Naturally, as the Coulomb
interaction is lowered, noticeable deviations appear between both approaches, in particular the
DDMRG S(k, ω) becomes dispersive and we find a substantial redistribution of spectral weight
into the small k-sector. In this regime, higher-order corrections have to be taken into account
in our analytical treatment of the BHM. Approaching the SF state, the charge excitations gap
closes and the maximum in S(k, ω) exhibits a linear dispersion. The quantum phase transition
between MI and SF phases is located at about t/U ≃ 0.3 and found to be of KT type.
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We calculate the dynamical current and kinetic-energy correlation functions for the first Mott lobe of the
one-dimensional Bose-Hubbard model. We employ the strong-coupling expansion up to sixth order in x = t/U

and the dynamical density-matrix renormalization group method on rings with 64 sites. The correlation functions
are finite above the single-particle gap with a square-root onset, as also found from field theory close to the
Mott transition. The correlation functions display a featureless superposition of the primary and tertiary Hubbard
bands. We find very good agreement between all methods in the interaction and frequency regimes where they
are applicable.
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I. INTRODUCTION

Ultracold atomic systems in which the atoms are trapped
on an optical lattice offer a wide range of possibilities to prove
the applicability of theoretical studies [1]. New experimental
techniques such as the modulation of the amplitude and
the phase of the lattice potential provide a variety of new
possibilities, e.g., the modulation of the lattice potential can
be used to introduce artificial gauge fields into the system
[2,3]. Such a modulation derives an excitation of the system
described by the kinetic and current correlation functions.
Recently, the signature of a Higgs amplitude mode in the
two-dimensional superfluid in the vicinity of a quantum phase
transition to a Mott insulator has been predicted by field
theory combined with quantum Monte Carlo simulations,
showing a resonance-like feature in dynamical spectra [4].
Albeit this increasing attention, theoretical studies for these
dynamical correlation functions in the bosonic systems are
rare even in one dimension. Kühner et al. computed the
optical conductivities in the one-dimensional Bose-Hubbard
model by using the density-matrix renormalization group
(DMRG) method [4]. The dynamical response due to the
lattice modulation were also simulated by applying the time-
dependent DMRG [5].

In this work we address the one-dimensional Bose-Hubbard
model in the insulating phase when the number N of bosons
equals the number of lattice sites L. The model describes a
system of neutral spinless atoms trapped in an optical lattice
with deep lattice potentials. The Bose-Hubbard Hamiltonian
is defined by

Ĥ = −t T̂ + UD̂,

T̂ =
L∑

j=1

( b̂
†
j b̂j+1 + b̂

†
j+1 b̂j ), (1)

D̂ = 1

2

L∑
j=1

n̂j (n̂j − 1).

Here, b̂
†
j , b̂j , and n̂j = b̂

†
j b̂j are the boson creation, annihila-

tion, and particle number operators on site j , respectively, and

periodic boundary conditions (PBCs) apply. Throughout this
work, we denote the ratio of the hopping amplitude t and the
local interaction strength U by x = t/U .

At integer filling, ρ = N/L = 1, the Bose-Hubbard model
describes a phase transition from the Mott insulating phase to
the superfluid phase at a critical interaction ratio, xc ≈ 0.305
[6]. The phase transition lies in the XY universality class and is
of Kosterlitz-Thouless type, which results in an exponentially
small band gap near the transition. In this work we restrict
ourselves to the first Mott lobe: x < xc.

The response of the bosons to weak phase and amplitude
modulations of the lattice potential is described by the corre-
lation functions for the current operator and the kinetic-energy
operator; for a detailed discussion of the connection between
measurable quantities like the energy absorption rate and
correlation functions in terms of a linear response theory, see
Refs. [7–9]. We define the correlation function of an operator
Â as the imaginary part of the corresponding retarded Green
function, which is given in frequency space by

S̃A(ω � 0) = − 1

π
lim

η→0+
Im

[
Gret

A (ω + iη)
]

= 1

L

∑
n

|〈�n|Â|�0〉|2δ(ω − (En − E0)). (2)

Here, |�0〉 is the ground state of Ĥ with energy E0, and |�n〉
are eigenstates of Ĥ with energy En. Note that the correlation
functions are positive, S̃A(ω) � 0. Moreover, the sum rule∫ ∞

0
dωS̃A(ω) = 1

L
〈�0|Â2|�0〉 (3)

shows that S̃A(ω → ∞) → 0.
In this work, we focus on the correlation function for the

kinetic energy, S̃T (ω) with T̂ from Eq. (1), and define

S̃T (ω) = wT
0 δ(ω) + ST (ω), (4)

where we extracted the δ peak at ω = 0. Moreover, we address
SJ (ω) with the current operator

Ĵ = i
∑

l

(b†j+1bj − b
†
j bj+1). (5)
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Note that SJ is related to the real part of the optical conductivity
at zero momentum as [10]

SJ (ω > 0) = ω

π
Re[σ (q = 0,ω)]. (6)

Since we focus on the insulating phase, we know that wJ
0 = 0

so that S̃J (ω) = SJ (ω).
Our work is organized as follows: In Sec. II we briefly dis-

cuss the dynamical DMRG (DDMRG) method and the strong-
coupling expansion and give the field-theory expression for the
current correlation function. In Sec. III we discuss the results
for the current and kinetic-energy correlation functions in the
Mott phase. Conclusions and outlook, Sec. IV, close our pre-
sentation. Some technical aspects are deferred to the Appendix.

II. METHODS

We evaluate the correlation functions with the numerical
DDMRG method and the analytical strong-coupling expan-
sion (SC). We used these methods previously [11–13] for
the evaluation of single-particle and two-particle response
functions such as the density correlation function Sn(k,ω).
In Refs. [11,13], a detailed explanation of the methods can
be found. In this section, we briefly summarize the most
important aspects of both methods. For comparison, we also
give the field-theoretical expression for the current correlation
function. For an early application of the DMRG correction
vector method [14] to the one-dimensional (extended) Bose-
Hubbard model; see Ref. [4].

A. Dynamical density-matrix renormalization group

In order to simulate the Bose-Hubbard type models using
the (D)DMRG technique [15–17], the maximum number nb

of bosons per site should be limited, while each lattice site can
be occupied, in principle, by infinitely many bosons. Never-
theless, the (D)DMRG results are unbiased and numerically
exact as long as the dependence on nb can be verified to be
negligible. In the DDMRG scheme it makes a considerable
difference from the correction vector method [14] to minimize
the functional [16]

WA,η(ω,ψ) = 〈ψ |(E0 + ω − Ĥ )2 + η2|ψ〉
+ η〈A|ψ〉 + η〈ψ |A〉, (7)

where |A〉 = Â|ψ0〉. Then the imaginary part of the Green
function can be evaluated as

WA,η(ω,ψmin) = −πη Im Gret
A (ω + iη). (8)

Within this DDMRG scheme we repeat the sweeps in the
finite-system algorithm until the functional WA,η(ω,ψ) takes
its minimal values.

Calculating the dynamical current [A = J in Eqs. (7)
and (8)] and kinetic-energy [A = T ] correlation functions
in the first Mott lobe of the Bose-Hubbard model, we keep
m = 800 states to determine the ground state during the first
five DMRG sweeps, and then use m = 400 states for the
evaluation of the dynamical properties. For a precise analysis
of the dynamical properties we consider a finite system with
broadening width η as small as possible. In doing so artificial
peaks can appear if η is too small for fixed system size L.

Thus, one needs to find an appropriate η(L) empirically. In
order to avoid artificial peaks, in this paper we fix η = 0.8t for
L = 64.

B. Spectral broadening and deconvolution

The DDMRG method works with complex frequencies, i.e.,
instead of the real frequency ω, the calculations are done with a
finite shift η into the complex plane: ω → ω + iη. The shift to
the complex plane introduces a Lorentzian spectral broadening
of the correlation function, i.e., the DDMRG actually provides

S
η

A(ω) = 1

π

∫ ∞

−∞

η

(ω − ω̃)2 + η2
SA(ω̃)dω̃ (9)

at equally spaced frequencies ωi with high numerical accuracy.
The size of the intervals 
ω = |ωi+1 − ωi | is smaller than, but
of the order of η. Then, without loss of accuracy, the integration
over ω in Eq. (9) can be represented by a matrix multiplication,

S
η

A(ωi) =
∑

j

1

π

η

(ωi − ωj )2 + η2
SA(ωj ),

S
η

A = Lη · SA. (10)

The derivation of the vector SA for the correlation function at
the frequencies ωi from the corresponding DDMRG vector S

η

A

(“deconvolution”) poses an ill-conditioned inverse problem.
There is a number of deconvolution techniques for Lorentz-

broadened spectra. It was shown in Refs. [18–20] that the
matrix inversion of Eq. (10) provides a simple and reliable
way to deconvolve spectral functions,

SA = (Lη)−1 · S
η

A. (11)

As seen from Eq. (2), the correlation functions are positive,
SA(ω) � 0. However, the deconvolution scheme (11) cannot
guarantee this so that the deconvolved correlation functions
might be negative in some regions. The width and depth of
the regions with negative values of the correlation functions
can be taken as a sign of the error introduced by the decon-
volution technique and the finite-size and finite-η limitations
in the DDMRG method. Of course, the deviations are most
prominent when the correlation functions tend to zero or show
narrow extrema. In the first Mott lobe of the Bose-Hubbard
model, the width of the peaks is large enough to deconvolve
the data by using η = 0.8t and L = 64. Then, only very close
to ω � 
 (with particle gap 
) do the spectra show negative
values, as we see in the following.

C. Strong-coupling expansion

In the strong-coupling expansion we use a Harris-Lange
transformation [21,22] to obtain an effective Hamilton opera-
tor ĥ that does not mix states from different subspaces of the
operator for potential energy UD̂. Within this approach, the
transformation operator Ŝ as well as the effective Hamilton
operator ĥ are expanded in x:

ĥ = eŜĤ e−Ŝ = UD̂ + t

∞∑
r=0

xr ĥr ,

Ŝ = −Ŝ† =
∞∑

r=1

xr Ŝr . (12)

063623-2

8 Thesis Articles

174



DYNAMICAL CORRELATION FUNCTIONS FOR THE ONE- . . . PHYSICAL REVIEW A 89, 063623 (2014)

In mth order SC perturbation theory, the operators ĥr and Ŝr

are constructed iteratively whereby we enforce [ ĥr ,D̂]− = 0
for 0 � r � m. This requires that we keep the operators up
Ŝm, ĥm−1 in the Taylor series for Ŝ and ĥ.

The (nondegenerate) ground state |�0〉 for finite x is ob-
tained from the (nondegenerate) ground state |�0〉 for x = 0 as

|�0〉 = exp(−Ŝ)|�0〉. (13)

Note that the ground state for t = 0 is very simple because
for N = L every site is singly occupied by a boson, |�0〉 =∏

j b̂
+
j |vac〉. Within SC perturbation theory, the evaluation of

a ground state expectation values of an operator Â reduces to

〈�0|Â|�0〉 = 〈�0|Ã|�0〉,
Ã = exp(Ŝ)Â exp(−Ŝ). (14)

To lowest order, it is readily deduced from Eq. (13) that the
operator Ŝ1 generates states in |�0〉 with one doubly occupied
site and a neighboring hole. In general, the states from the
subspaceH1 ⊂ H give rise to the primary Hubbard band in the
dynamical correlation functions around ω ≈ U . In higher or-
ders in Eq. (13), states fromH2 andH3 appear in |�0〉 that give
rise to the secondary and tertiary Hubbard bands. Therefore,
as long as x is small and the spectral splitting of the Hilbert
space is large, the dynamical correlation functions display
contributions from energetically separated Hubbard bands.
Due to sum rules and the fact that the correlation functions are
non-negative, most of the spectral weight is concentrated in
the primary Hubbard band. Within SC perturbation theory, the
contributions from the higher Hubbard bands is fairly small.

For the primary Hubbard band in the mth-order approxima-
tion, we have to consider one double occupancy and one hole
on a ring. When their relative distance is larger than m lat-
tice sites, they do not interact with each other. For this
reason, the SC problem reduces to the analytical solution of a
two-particle problem with a finite-range interaction [11]. Most
importantly, the interaction leads to a backscattering of the hole
from the double occupancy so that an effective single-particle
problem results where the hole moves on a chain with open
boundary conditions.

For higher-order corrections the analytical expressions
for the weights and the Hamilton operator are employed
for the succeeding numerical evaluation of the correlation
functions. If the states describe a single quasiparticle, Cauchy’s
integral formula can be used to compute the results for an
infinite system [11,13] without spectral broadening, η = 0+.
The contributions originating from states with two or more
quasiparticles can be obtained by a simple diagonalization of
the Hamilton operator for systems large enough to set η ≈ 0.
However, since this perturbation theory is based on the spectral
separation of the Hilbert space, it breaks down when the gap
becomes exponentially small close to the Kosterlitz-Thouless-
type Mott transition at xc ≈ 0.305. Therefore, its applicability
is limited to x � 0.10, as we shall see below.

D. Results from field theory

Close to the Mott transition, the Bose-Hubbard model can
be described by the sine-Gordon model where the dispersion
of holons (h) and antiholons (h) with momentum P is given

by E(P ) = ±[P 2 + (
/2)2]1/2 where 
 is the (exponentially
small) single-particle gap. If only one holon and antiholon is
taken into account and a marginal interaction between them is
assumed, the two-particle contribution to the current-current
correlation function is given by [23–25] (ν = ω/
)

SJ,h,h (ω) = 


π
C2 (
)

2

π

√
ν2 − 1

ν

 (ν − 1)

× exp

(
−

∫ ∞

0

dx

x

1 − cos (xθ/π ) cosh x

exp (x/2) cosh (x/2) sinh x

)
,

(15)

where θ = 2arccosh(ν). Formula (15) is exact in the interval

 � ω � 2
. For ω > 2
 there are corrections to (15), which
are due to multiholon and antiholon states and have a more
complicated structure but can be shown to be important only
at energies ω 
 
 [25], where the field-theory approach
becomes invalid anyway.

The more general case with a relevant holon-antiholon in-
teraction, parametrized by 1/2 < β2 = K/2 < 1, is discussed
in detail in Ref. [8]; here, the parameter K in a Luttinger-model
description or the parameter β2 in the sine-Gordon model
characterize the strength of the holon-antiholon interaction. As
we shall see below, our DDMRG is not sufficient to determine
the value β2 for the first Mott lobe accurately but we shall
see that the assumption β2 = 1 as used in Eq. (15) provides a
reasonable description of the DDMRG data for the frequency
dependence of the current-current correlation function close
to the gap (see below).

The current correlation function is finite only beyond the
single-particle gap with a square-root onset at ω = 
. It shows
a maximum at ω ≈ 1.24
 and a power-law decay at large
frequencies. The normalization C2(
) cannot be calculated
analytically. To estimate the normalization C2(
), we use the
sum rule for the conductivity,∫ ∞

0

dω

π
Re[σ (ω)] = − 1

2L
〈�0|T̂ |�0〉. (16)

This quantity can be determined accurately by using the
ground-state DMRG. For example, for x = 0.20 we find
[
 = 0.436t, − 〈�0|T̂ |�0〉/(2L) = 1.418t] and for x = 0.15
we find [
 = 1.63t,−〈�0|T̂ |�0〉/(2L) = 1.133t].

Close to the Mott transition, most of the optical weight is
concentrated at low energy ω ∼ 
. Therefore, in the field-
theory limit, the left-hand side of Eq. (16) can be determined
from Eq. (15) because the omitted terms have a negligible
contribution at low energy. This comparison provides C2(
)
for given x,

C2(
) = −〈�0|T̂ |�0〉
2L

π

F

, (17)

with

F = 2

π

∫ ∞

1
dy

√
y2 − 1

y2

× exp

(
−

∫ ∞

0

dx

x

1 − cos(2xarccosh(y)/π ) cosh x

exp(x/2) cosh(x/2) sinh x

)
≈ 1.70, (18)
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with accuracy ±0.01. Therefore, for x = 0.20, we have C2 =
6.01 and, for x = 0.15, we find C2 = 1.28.

The result from field theory is applicable in the region
where the gap is (exponentially) small. Therefore, it is
complementary to the DDMRG with its energy resolution
η ≈ 12W/L where W = 4t is the bare bandwidth. We note
that the formula (15) works surprisingly well for the fermionic
Hubbard model even when the gap is not exponentially
small but of the order of t [26,27]. Therefore, we compare
our DDMRG results for the current correlation function for
x = 0.20 and x = 0.15 to those from field theory in Sec. III B.

III. CORRELATION FUNCTIONS

A. Strong-coupling result to leading order

To leading order in the SC expansion, the doubly occupied
site and the hole only experience their hard-core repulsion.
Otherwise, they move freely with hoping amplitudes th = t for
the hole and td = −2t for the double occupancy. Consequently,
both the current correlation function and the kinetic-energy
correlation function are given by a semi-ellipse,

S
(0)
J,T (ω) = 4

3π

√
1 −

(
ω − U

6t

)2




(
1 −

(
ω − U

6t

)2)
, (19)

where 
(x) denotes the Heaviside step function (see also
Refs. [6,7,11]). The result is qualitatively the same for the
fermionic Hubbard model [26,27], where tF

d = −t .
The correlation function is finite only above the single-

particle gap, 
 ≈ U − 6t for x → 0. Moreover, the correlation
function displays a square-root onset, as seen in field theory.
Therefore, the square-root onset above the single-particle gap
apparently is a generic feature of the correlation functions in
the Mott-insulating phase.

B. Current correlation function

In Fig. 1 we show the deconvolved DDMRG data and the
results from sixth-order SC theory for the current correlation
function for x = 0.05, 0.08, 0.10, and 0.12. For x = 0.05,
the correlation function is almost an undisturbed semi-ellipse;
see Eq. (19). Upon decreasing the interaction, the width of the
primary Hubbard band increases, and spectral weight is shifted
towards the lower band edge so that the current correlation
function becomes asymmetric. As seen from the figure, both
DDMRG and SC agree perfectly with each other up to x =
t/U = 0.08. As discussed in Sec. II B, the slightly negative
DDMRG data for the current correlation function close to the
band edges are an artifact of the deconvolution scheme.

For smaller interactions, x � 0.10, the current correlation
function steeply rises to its maximum value as a function of
frequency and falls off monotonically beyond the maximum.
The agreement of DDMRG and SC is satisfactory only at
first glance because some wiggles appear in the SC results
that are absent in the DDMRG data. The wiggles are more
pronounced for x = 0.12 than for x = 0.10. The reason
why these unphysical wiggles appear in SC is discussed in
Appendix B.

For x = 0.12, the tertiary Hubbard band can be seen in the
DDMRG data. In the SC theory this band emerges from states
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FIG. 1. (Color online) Current correlation function for interac-
tions x = t/U = 0.05, 0.08, 0.1, 0.12 from top left to bottom right.
The deconvolved DDMRG data (circles) were obtained for L = 64,
PBCs, and η = 0.8t . The black solid lines give the result of the SC
theory of the primary Hubbard band. The red solid lines give the result
of the SC theory for the tertiary Hubbard band. A magnification of
the tertiary Hubbard band is shown in the inset.

with a triple occupancy and two holes whose contributions to
|J̃ |�0〉|2 are of the order O(x4). For x = 0.12 the weight of
the primary, secondary, and tertiary Hubbard bands is given
by 3.04, 1.5×10−3, and 0.01, respectively. Here, the weight of
the primary Hubbard band has been approximated by a sixth-
order expansion, while a third- and fourth-order expansion
has been used for the secondary and tertiary Hubbard band,
respectively. The secondary Hubbard band is described by two
double occupancies and two holes but is not visible because
its weight is only of the order O(x6); see Appendix A.

To leading order, the total weight of the correlation
functions is given by

∫ ∞
0 S

(0)
T ,J (ω)dω = 4. For x > 0, the total

spectral weight can be determined by the static DMRG method
with great precision so that it can be used as a test for the
accuracy of the SC expansion. The results for the total weight
from DMRG and SC deviate by less than 3×10−3 up to
x � 0.12. For higher values of x, the SC theory seems to
overestimate the weight.

For interaction parameters x = 0.15 and x = 0.20, only
the DDMRG can provide reliable results. In Fig. 2 we plot
the Lorentz-broadened current correlation function S

η

J (ω) for
η = 0.8t and compare it to the predictions from field theory.
Even up to half the width of the primary Hubbard band, the
field-theory curve agrees with the DDMRG data, despite the
fact that the gap is quite sizable for x = 0.15. For x = 0.20, the
agreement appears to be worse than for x = 0.15. At x = 0.20,
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FIG. 2. (Color online) DDRMG data (squares) for L = 64,
PBCs, and η = 0.8t for (left panel) x = 0.15 and (right panel) x = 0.2.
The solid black line gives the Lorentz-broadened field-theoretical
results. The deconvolved DDMRG data (circles) and the field-theory
results are shown in the inset for x = 0.15.

however, the DDMRG has difficulties to resolve the quite
sharp maximum close to the onset of the correlation function.
Here, larger system sizes and, correspondingly, smaller values
for η would improve the agreement. Therefore, we show
exemplarily a comparison of the deconvolved DDMRG data
with the field-theory results in the inset of Fig. 2 for x = 0.15
and omit a further deconvolution of the DDMRG data in this
parameter regime.

C. Kinetic correlation function

Before we discuss ST (ω > 0), we briefly comment on the
weight at ω = 0. Within the SC expansion to sixth order, it is
given by √

wT
0 = 8x − 16x3 + 529

3
x5 + O(x7). (20)

Apparently, the series converges rapidly even for x = 0.2.
In general, the SC expansion reproduces the total weight of
the kinetic-energy correlation function with an accuracy of
3.7×10−2 for x � 0.12. As for the current correlation function,
the SC expansion seems to overestimate the weight for higher
values of x.

In Fig. 3 we show the kinetic-energy correlation function
for the values x = 0.05, 0.08, 0.1, and 0.12. For x � 0.08
the agreement of SC and DDMRG is very good. For x = 0.1
and 0.12, the sixth-order SC theory starts to develop wiggles
as in the case of the current correlation functions, which are
not seen in the DDMRG data. Therefore, the SC expansion
cannot be used beyond x = 0.10. As the current correlation
function, the kinetic-energy correlation function is finite above
the single-particle gap with a square-root onset. In contrast to
the current correlation function, the primary Hubbard band
for ST appears to remain symmetrical so that its maximum
appears in the middle of the band for all interaction strengths.

The total weight of the secondary and tertiary Hubbard
bands are of the order O(x6) and O(x2). For x = 0.12,
the weight of the primary, secondary, and tertiary Hubbard
bands is given by 3.3, 3.3×10−3, and 0.076, respectively. The
operator T̂ is symmetric under spatial inversion, so that states
in which the holes are symmetrically placed to the left and the
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FIG. 3. (Color online) Kinetic-energy correlation function for
interactions x = 0.05,0.08,0.1,0.12 (from top left to bottom right).
The deconvolved DDMRG data (circles) were obtained for L = 64,
PBCs, and η = 0.8t . Black solid lines gives the result of the SC theory
of the primary Hubbard band. Red solid line gives the result of the SC
theory for the tertiary Hubbard band. A magnification of the tertiary
Hubbard band is shown in the insets.

right of the triple occupancy also occur in T̃ |�0〉. They are
the leading-order contributions to the tertiary Hubbard band.
Therefore, the tertiary Hubbard band is more prominent in ST

than in SJ where the spatial antisymmetry eliminates these
states; see Appendix A.

In Fig. 3, we also compare the DDMRG data with SC
results for the tertiary Hubbard band. Note, however, that the
calculations are quite cumbersome so that we used the weights
of the tertiary Hubbard band up to fourth order and considered
the action of the effective Hamiltonian on H3 in second
order only. This means that we work with Ŝ4 and ĥ1. Given
these simplifications, we obtain the SC results for the tertiary
Hubbard band from an exact diagonalization of a system of
L = 128 lattice sites and a very small spectral broadening of
η = 0.08. Despite these limitations, our restricted SC approach
quite accurately describes the asymmetrical shape of the
tertiary Hubbard band.

The third Hubbard band shows some interesting features.
For example, an attractive force acts between the two particles
if they are placed next to each other. Moreover, the alignment
of a hole next to the triple occupancy leads to a decrease in
the potential energy. These effects induce sizable correlations
between the holes and the triple occupancy which influences
the shape of the correlation function.

For interaction parameters x = 0.15 and x = 0.20, only
the DDMRG can provide reliable results. In Fig. 4 we plot
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FIG. 4. (Color online) DDRMG data (squares) were obtained for
L = 64, PBCs, and η = 0.8t for (left panel) x = 0.15 and (right
panel) x = 0.2.

the Lorentz-broadened kinetic-energy correlation function for
η = 0.8t . The weight of the primary Hubbard band shrinks
when we approach the transition whereas the tertiary Hubbard
band gains more weight as a function of x. Therefore, the
tertiary Hubbard band becomes clearly visible for x = 0.20.

IV. CONCLUSION AND OUTLOOK

In this work we calculated the current and kinetic-energy
correlation functions for the Mott insulating regime of the
one-dimensional Bose-Hubbard model at filling ρ = N/L =
1 using the strong-coupling (SC) expansion up to sixth order
in x = t/U and the dynamical density-matrix renormalization
group (DDMRG) method on rings with L = 64 lattice sites.
The DDMRG data for finite η = 0.8t permit a reliable decon-
volution of the Lorentz-broadened data so that the correlation
functions can be studied in the thermodynamical limit.

A comparison of sixth-order SC and DDMRG results shows
that SC is reliable up to x = 0.10. DDMRG on L = 64 sites
can be used up to x � 0.20. For x � 0.20 it becomes difficult to
resolve the sharp maximum in the current correlation functions
at frequency ω ≈ 1.3
, where 
 is the single-particle gap.
In any case, the exponentially small gap close to the Mott
transition at xc ≈ 0.305 cannot be resolved by (D)DMRG for
x � 0.25.

The correlation functions are dominated by the primary
Hubbard band around ω ≈ U . The primary Hubbard band
starts at the single-particle gap with a characteristic square-
root onset SJ,T (ω → 
) ∝ √

ω − 
. This is seen in SC
perturbation theory and in the deconvolved DDMRG data. It is
confirmed for the current correlation function by field theory
which is applicable close to the Mott transition. Apart from
a maximum at low frequencies, the primary Hubbard band of
the current correlation function is featureless. The primary
Hubbard band of the kinetic-energy correlation function
appears to be symmetric with a single maximum at the band
center. For both correlation functions, the secondary Hubbard
band is very small but the tertiary Hubbard band around
ω = 3U becomes visible for x � 0.10. The asymmetric shape
is understood from SC theory which includes correlations
between the quasiparticles.

For the primary Hubbard band in the one-dimensional
Bose-Hubbard model, the attractive correlations between

doubly occupied site and hole are not significant enough to
overcome their hard-core repulsion. Therefore, it requires a fi-
nite nearest-neighbor interaction to generate an excitonic state
[4,26,27]. The situation could change in the two-dimensional
Bose-Hubbard model. In recent quantum Monte Carlo studies
and field-theoretical studies [28], the existence of a peak in the
optical conductivity has been alluded to in the critical region
above but close to the Mott transition, x2d

c − x < 1.15x2d
c . This

peak is a signature of the Higgs boson in the two-dimensional
superfluid which should persist as a resonance in the Mott
phase.

Albeit the SC expansion is better behaved in two than in
one dimension [29], it is not clear at this point whether the ex-
pansion can be carried out far enough to include such features.
The SC diagrams show that higher orders in the expansion
generate an attractive interaction between the quasiparticles
in the primary and tertiary Hubbard band. However, it is
unclear whether these interactions are sufficient to generate
a resonance structure close to the transition. Moreover, the
diagrammatic expansion is considerably more cumbersome in
two dimensions than in one dimension. Therefore, a SC study
of the two-dimensional Bose-Hubbard model remains an open
problem.
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APPENDIX A: DIAGRAMMATIC ANALYSIS

The Taylor expansion for ĥ in Eq. (12) gives rise to
so-called process chains [29–31]. They represent sequences
that involve alternately the kinetic-energy operator T̂ and
projection operators P̂D onto subspaces HD . For example, the
leading-order approximations of the transformation operator
Ŝ and the effective Hamilton operator ĥ can be written as

UD̂ + t ĥ0 = UD̂ + t
∑
D

P̂DT̂ P̂D, (A1)

Ŝ1 =
∑

D1,D2

P̂D1 T̂ P̂D2

D1 − D2
. (A2)

This example shows that each process chain must be weighted
according to the number of double occupancies that occur in
intermediate steps.

The application of the Baker-Campbell-Hausdorff formula
to Eqs. (12) shows that ĥ and Ŝ can be written in terms
of nested Lie brackets. In this way, only connected hopping
processes must be considered in the action of these operators
onto some state. This simplification leads to an intuitive
understanding of why the secondary Hubbard band has
vanishingly small intensity. Its starting state consists of two
double occupancies and two holes. The leading-order contri-
bution for the secondary Hubbard band can be depicted as

, , .
The actual computation of these diagrams requires the

evaluation of all possible hopping processes generated by an
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arbitrary time ordering of its constituents. One hopping process
originates from the operator T̂ or Ĵ itself while the other
processes result from Ŝ3 so that these states are O(x3). Note
that the antisymmetry of Ĵ with respect to spatial inversion
leads to a cancellation of the last two diagrams.

APPENDIX B: LIMITATIONS OF STRONG-COUPLING
EXPANSION

In the primary Hubbard band, a particle hole-pair is created
in which the hole is placed n lattice sites to the right or
left of the double occupancy (state |±n〉). In the lowest-
order approximation, the hole cannot jump over the double

occupancy, so that it moves on an open chain on the remaining
L − 1 sites. The correlation functions are a weighted sum of
Green functions of the form Gij (ω) = 〈i|δ(ω − ( ĥ − E0))|j 〉.

For x � 0.1, the SC expansion shows some wiggles which
can be understood as follows: In general, the Greens functions
Gjj or G1j of a particle in an open chain subject to nearest-
neighbor hopping with lattice-site index j will have j extrema.
The parts of the state J̃ |�0〉 that describe particle-hole pairs
which are separated by j lattice sites thus lead to contributions
in SJ (ω) which have j maxima. The wiggles naturally appear
when the expansion parameter x is chosen too large so that
the weight of these contributions is overestimated and not yet
corrected by contributions to higher orders.
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[3] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet,
A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012).

[4] T. D. Kühner, S. R. White, and H. Monien, Phys. Rev. B 61,
12474 (2000).

[5] J.-W. Huo, F.-C. Zhang, W. Chen, M. Troyer, and U. Schollwöck,
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We employ the (dynamical) density-matrix renormalization-group technique to investigate the ground-state
properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-
body repulsion of strength U and W , respectively. We determine the phase boundaries between the Mott-insulating
and superfluid phases for the lowest two Mott lobes from the chemical potentials. We calculate the tips of the
Mott lobes from the Tomonaga-Luttinger liquid parameter and confirm the positions of the Kosterlitz-Thouless
points from the von Neumann entanglement entropy. We find that physical quantities in the second Mott lobe
such as the gap and the dynamical structure factor scale almost perfectly in t/(U + W ), even close to the Mott
transition. Strong-coupling perturbation theory shows that there is no true scaling but deviations from it are
quantitatively small in the strong-coupling limit. This observation should remain true in higher dimensions and
for not too large attractive three-body interactions.

DOI: 10.1103/PhysRevA.88.063625 PACS number(s): 67.85.Bc, 67.85.De, 64.70.Tg

I. INTRODUCTION

The revolutionary control over ultracold atoms in optical
lattices made possible the direct experimental observation
of many-body states of different quantum systems [1]. Tun-
ing two-body interactions by using Feshbach resonances or
changing the strength of the lattice confinement permitted
the observation of a superfluid (SF) to Mott-insulating (MI)
quantum phase transition for bosonic lattice atoms [2] for
integer densities. More recently, the importance of multibody
interactions has been inferred from experiment [3,4]. These
interactions were so far deemed negligible higher-order many-
body interactions.

The minimal model to describe bosonic lattice quantum
gases is the Bose-Hubbard model. On a chain with L sites,
the Hamilton operator with local two-body and three-body
interactions is given by

H = −t T̂ + UD̂ + WŴ,

T̂ =
L−1∑
j=1

(b̂†j b̂j+1 + b̂
†
j+1b̂j ),

(1)

D̂ = 1

2

L∑
j=1

n̂j (n̂j − 1),

Ŵ = 1

6

L∑
j=1

n̂j (n̂j − 1)(n̂j − 2),

where b̂
†
j and b̂j are the creation and annihilation operators for

bosons on site j , n̂j = b̂
†
j b̂j is the boson number operator on

site j , t is the tunnel amplitude between neighboring lattice
sites, and U > 0 (W > 0) denote the strength of the on-site
two-body (three-body) repulsion. There are N = ρL bosons
in the system.

The Bose-Hubbard model in one dimension with pure two-
body interactions has been extensively studied [5–8], using the
density-matrix renormalization-group (DMRG) technique [9].

SF-to-MI quantum phase transition points can be determined
accurately from the finite-size scaling of the Tomonaga-
Luttinger liquid (TLL) parameter Kb; the model is in the
universality class of the spin-1/2 XY model so that there exists
a Kosterlitz-Thouless transition in the thermodynamic limit,
L → ∞, where Kb = 1/2.

The model including the three-body local interaction
remains largely unexplored. The first Mott lobe was recently
studied using DMRG [10] and the cluster expansion approach
[11]. The whole ground-state phase diagram for the first
and second lobes was derived from exact diagonalization
results for small system sizes L � 8 [12] and DMRG data for
larger system sizes [13]. Very recently, Sowińsky et al. [14]
studied the full model with attractive two-body and repulsive
three-body interactions using the DMRG.

In this work, we examine the static and dynamical ground-
state properties of the Bose-Hubbard model with two-body and
three-body interactions using large-scale DMRG calculations.
To determine the phase boundaries between MI and SF phases
we compute the chemical potential, the Tomonaga-Luttinger
liquid (TLL) parameter, and the von Neumann entanglement
entropy. Moreover, for ρ = 2, we calculate the single-particle
gap and the dynamical structure factor S(q,ω) using the
dynamical DMRG (DDMRG) procedure [15].

We find that the three-body interaction is qualitatively
irrelevant in one dimension for strong coupling. Its quantitative
corrections for ρ = 2 for the size of the Mott lobe, the
gap, and the dynamical structure factor can be incorporated
almost perfectly by rescaling t/U → t/(U + W ) in the results
for a bare two-body interaction (W = 0). Strong-coupling
perturbation theory shows that this rescaling is not rigorous but
quantitative corrections are very small for strong interactions.

II. GROUND-STATE PHASE DIAGRAM

A. Single-particle gap

The Mott-insulating phases are characterized by a finite gap
for single-particle excitations. The chemical potential μ(L,N )
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FIG. 1. (Color online) Ground-state phase diagram of the one-dimensional Bose-Hubbard model with three-body interactions for W = 0
(left panel), W = U/2 (middle panel), and W = U (right panel), showing superfluid (SF) and Mott insulating (MI) regions as a function of the
chemical potential μ/U and the electron transfer amplitude t/U . Results are based on DMRG data for lattices with up to L = 128 sites and
open boundary conditions. The position of the Mott tips is obtained from the finite-size extrapolation of the Tomonaga-Luttinger parameter
Kb(L), Eq. (4).

gives the energy for adding the N th particle to the system with
L sites in its ground state,

μ(L,N ) = E0(L,N ) − E0(L,N − 1), (2)

where E0(L,N ) is the ground-state energy for N bosons
on L sites. For t = 0, [μ(L,L + 1) = U,μ(L,L) = 0] and
[μ(L,2L + 1) = 2U + W,μ(L,2L) = U ] hold. The single-
particle gap results from the difference between the chemical
potentials for N + 1 and N particles,

�(L,N ) = μ(L,N + 1) − μ(L,N ). (3)

In the Mott insulating state, the gap remains finite in the
thermodynamic limit, �(ρ) ≡ �(L → ∞,N → ∞) > 0 for
fixed ρ = N/L. In the superfluid phase, the chemical potential
is a continuous function of the density ρ. For t = 0, we have
�(ρ = 1) = U and �(ρ = 2) = U + W .

For integer fillings ρ and for large U/t , the Bose-Hubbard
model is in its Mott insulating phase. Thus, the ground-state
phase diagram in the plane (t/U,μ/U ) shows superfluid and
Mott-insulating regions; see Fig. 1. In the shaded regions,
the particle density is constant and the gap for fixed t/U

is given by the difference in the chemical potentials at
the boundaries to the superfluid phases, i.e., the chemical
potentials determine the phase boundaries. Unfortunately, the
gaps become exponentially small close to the critical points t

ρ
c

above which the Mott gap is zero. Since it is not possible
to resolve such small gaps numerically, the critical points
must be determined in a different manner; see Sec. II B. We
obtained the ground-state phase diagram in Fig. 1 using the
DMRG method with up to L = 128 sites and open boundary
conditions (OBCs). We extrapolated the chemical potentials to
the thermodynamical limit using a second-order polynomial
fit in 1/L for μ(L,L + 1) and μ(L,L) [7,8].

In the absence of the three-body interaction (left panel),
the Mott lobes become smaller with increasing density ρ,
and, concomitantly, the values of the transition points t

ρ
c

decrease with increasing ρ. When we switch on the three-body
interaction (middle panel for W = U/2, right panel for U =
W ), the first Mott lobe is almost unchanged in comparison with

the result for W = 0, and the dependence of t
ρ=1
c on W is rather

weak, too. This is readily understood because at t
ρ=1
c � 0.3U ,

there are few doubly occupied sites in the ground state and
hardly any triply occupied sites: the Mott transition occurs at
strong coupling where triple occupancies are strongly reduced
for ρ = 1. The situations is different for N = 2L particles
because there are essentially double and triple occupancies
present at the transition so that the three-body interaction is
effective. Therefore, the size of the second Mott lobe and the
value of t

ρ=2
c substantially increase as a function of W , which

also pushes up in energy the other Mott lobes.

B. Critical interactions

In order to determine the transition points, we com-
pute the TLL parameter Kb in the superfluid phase. The
Fourier transformation of the static structure factor, S(q) =
(1/L)

∑
j,l e

iq(j−l)(〈n̂j n̂l〉 − 〈n̂j 〉〈n̂l〉) at q = 2π/L, defines
Kb(L) [7,16],

1

2πKb(L)
= S(2π/L)

2π/L
. (4)

The TLL exponent is then obtained from the extrapolation
of the DMRG data, Kb = limL→∞ Kb(L). At the SF-MI
transition point we expect that Kb = 1/2 [17], as in the case
for the model (1) at W = 0 [5–7]. In this way, the transition
points t

ρ
c can be determined accurately.

In the upper panels of Fig. 2 we demonstrate the finite-size
scaling of the TLL parameter Kb(L) for ρ = 1 (left panel)
and ρ = 2 (right panel) at U = W , where we use the DMRG
method with up to L = 512 sites and OBC. The transition
points are determined from limL→∞ Kb(L) = 0.5 as t

ρ=1
c =

0.339 ± 0.001 and t
ρ=2
c = 0.367 ± 0.001. Our data improve

the estimates from the exact diagonalization method [12] with
up to L = 8 sites, t

ρ=1
c,ED/U = 0.32 and t

ρ=2
c,ED/U = 0.38.

In order to confirm the values of the critical points, we
address the von Neumann entanglement entropy SL(�), defined
as SL(�) = −Tr�(ρ� ln ρ�) with the reduced density matrix
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FIG. 2. (Color online) DMRG data for the Tomonaga-Luttinger
liquid parameter Kb(L) (upper panels) and the central charge c∗(L)
(lower panels) for the first (left panels) and second (right panels) Mott
lobes in the model (1) for W/U = 1. The position of the maxima of
c∗(L) can be extrapolated systematically to the thermodynamic limit,
as shown in the insets of the lower panels.

ρ� = TrL−�(ρ). For a system with central charge c, one finds
for periodic boundary conditions (PBCs) [18]

SL(�) = c

3
ln

[
L

π
sin

(
π�

L

)]
+ s1, (5)

where s1 is a nonuniversal constant and corrections are small,
of the order 1/L. The constant s1 can be eliminated by
subtracting SL(L/2) from SL(L/2 − 1) so that we can define
the size-dependent central charge [19],

c∗(L) = 3[SL(L/2 − 1) − SL(L/2)]

ln[cos(π/L)]
. (6)

Since the excitations of the interacting suprafluid in one
dimension form a TLL with central charge c = 1, we can
use c∗ = limL→∞ c∗(L) to locate the critical interactions.

In the lower panels of Fig. 2, we employ the DMRG method
for up to L = 64 sites and PBCs. As in the case of the model
(1) for W/U = 0 [8], c∗(L) displays maxima as a function of
the hopping amplitude t/U for fixed system size L. When we
extrapolate the position of the maxima in c∗(L) for U = W

to the thermodynamic limit, we obtain the transition points
as t

ρ=1
c /U = 0.340 ± 0.002 and t

ρ=2
c /U � 0.366 ± 0.002, in

excellent agreement with our previous estimate from the TLL
parameter Kb. In this way, we reliably determined the position
of the tips in the Mott lobes of the ground-state phase diagram
in Fig. 1.

III. SECOND MOTT LOBE

In the remainder of this work we focus on the second Mott
lobe, ρ = 2 and t < t

ρ=2
c , where the three-body repulsion plays

a significant role.

A. Gap function

For strong interactions, the gap can be calculated sys-
tematically in a power series in the particle hopping. For
N = 2L + 1 particles, the first nontrivial order describes the
free propagation of a triple occupancy so that its dispersion re-
lation is given by ω+(k) = E+(k) − E0(L,2L) = W + 2U −
6t cos(k). For N = 2L − 1 particles, the singly occupied site
(a hole in the background of doubly occupied sites) has
the dispersion relation ω−(k) = E−(k) − E0(L,2L) = −U +
4t cos(k). Therefore, to leading order in t , the gap becomes
� = Maxk[ω+(k) − ω−(k)] or

�(t 	 U,W )

U + W
= 1 − 10t

U + W
+ · · · . (7)

To leading order, � is only a function of t/(U + W ). In the left
panel of Fig. 3 we plot �/(U + W ) as a function of t/(U + W )
for t < t

ρ=2
c . It is seen that the data for W = 0,U/2,U

essentially collapse onto a single curve, suggesting that the
gap is solely a function of U + W . Likewise, when we plot
the modified chemical potentials μ + W as a function of
t/(U + W ) in the right panel of Fig. 3, we see that the second
Mott lobes for W = 0,U/2,U almost collapse onto each other.
Deviations are visible only close to the transition points.

B. Dynamical structure factor

The dynamical structure factor S(q,ω) characterizes the
density-density response of the Bose gas and is directly
accessible by Bragg spectroscopy [20,21]. It is defined as

S(q,ω) =
∑

n

|〈ψn|n̂(q)|ψ0〉|2δ(ω − ωn), (8)

where n̂(q) = ∑
l e

iql b̂
†
l b̂l , |ψ0〉 and |ψn〉 denote the ground

state and nth excited state, respectively, and ωn = En − E0

gives the corresponding excitation energy. As shown in
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FIG. 3. (Color online) Rescaled single-particle gaps (left panel)
and phase diagram (right panel) of the second Mott lobe (ρ = 2) in
the model (1). The data for W = 0,U/2,U collapse onto each other.
Also shown is the third-order result for the gap �(3)(U + W,0) at
U = W , Eq. (12).
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FIG. 4. (Color online) Dynamical structure factor Sη(q,ω) with
Lorentz broadening η = 2t at momenta q = π/2 (upper panels) and
q = π (lower panels) of the second Mott lobe in the model (1)
for t/(U + W ) = 0.05 (left panels) and t/(U + W ) = 0.15 (right
panels), as obtained from the dynamical DMRG technique for L = 32
sites.

Ref. [8,22], we can compute the Lorentz-broadened Sη(q,ω)
with

Sη(q,ω) =
∫ ∞

−∞
dω′S(q,ω′)

η

π [(ω − ω′)2 + η2]
(9)

for Bose-Hubbard models using the DDMRG technique. In
this work, we use η = 2t for L = 32 sites with PBCs to
obtain smooth curves. Note that the unbroadened dynamical
quantities corresponding to the experimental measurements
can be extracted from the deconvolution of the DDMRG data
as demonstrated in Ref. [23].

In Fig. 4 we show Sη(q,ω) for q = π/2 (upper panels) and
q = π (lower panels) for t/(U + W ) = 0.05 (left panels) and
t/(U + W ) = 0.15 (right panels) as a function of ω/t . The
results for W = U lie essentially on top of those for W = 0,
apart from small deviations around ω = 0 for t/(U + W ) =
0.15 and q = π , suggesting again a scaling relation.

C. Strong-coupling perturbation theory

The strong-coupling analysis of Harris and Lange as used
in [8] starts from the unperturbed Hamiltonian Ĥ0 = UD̂

where D̂ counts the number nD of pair interactions. The
perturbation expansion for t/U → 0 relies on the fact that
the subspaces with nD = 0,1,2, . . . are well separated. In
the presence of the triple interaction Ŵ , we assume ener-
getically separated subspaces for Ĥ0 = UD̂ + WŴ that have
the unperturbed energies E0(nD,nW ) = UnD + WnW with
two integer quantum numbers (nD � 0,nW � 0). A transfer
process between neighbors with positive integer occupancies
(n1 = ρ + m,n2 = ρ + n) to (n1 = ρ + m − 1,n2 = ρ + n +
1) results in an energy transfer

�E(m,n) = (n − m + 1)[U + W (ρ − 1) + W (n + m)/2].

(10)

For ρ = 2, the resulting finite-energy denominators in a
perturbation expansion thus include the energies U + W +
W (n + m)/2. Therefore, there cannot be a rigorous scaling
relation, i.e., the physical quantities are not solely a function
of t/(U + W ).

However, the lowest-order terms involve small deviations
from ρ = 2, i.e., only (m = 0,n = 0) and (m = ±1,n = ∓1)
appear. Thus, only the energy denominator U + W occurs in
low-order perturbation theory in T̂ . Moreover, in higher orders,
those terms that involve t/(U + W ) have a higher weight than
those that are proportional to t/(2U + W ) or else. For these
practical reasons, the results for the gap and the dynamical
structure factor show fairly small deviations from a scaling be-
havior, apart from the region close to the MI-to-SF transition.

1. Gap

To be definite, we address the series expansion of the
gap to third order. To this end, we repeat the perturbative
expansion [8,24] whereby we effectively replace the energy
denominators U (nD,1 − nD,2) of states with nD1 and nD2

double occupancies by the appropriate energy differences
U (nD,1 − nD,2) + W (nW,1 − nW,2). For ρ = 2 this leads to

�(3)(U,W )

U + W

= 1 − 10t

U + W
+ 2t2(26U 2 + 57UW + 19W 2)

(U + W )2(2U + W )(2U + 3W )

+ 12t3

(U + W )3(2U + W )2(2U + 3W )2

× [40U 4 + 160U 3W + 230U 2W 2

+ 134UW 3 + 29W 4]. (11)

It is seen that deviations from the scaling of �/(U + W ) with
t/(U + W ) first occur in second order. In order to assess the
quantitative effect, we use the result for W = 0 and define

�(3,sc)(U,W )

U + W
= �(3)(U + W,0)

U + W

= 1 − 10t

U + W
+ 13t2

(U + W )2
+ 30t3

(U + W )3
.

(12)

Then, at U = W we consider

δ(3)(U ) = |�(3)(U,U ) − �(3,sc)(U,U )|
�(3)(U,U )

= t2(61t + 45U )

2(593t3 + 510t2U − 750tU 2 + 150U 3)
. (13)

where, e.g., δ(3)(t/0.15) = 0.012. At U = W we find that the
relative deviation of the scaling curve for t/U < 0.15 is about
1% or less, a negligibly small correction. This explains the
almost perfect scaling seen in Fig. 3.

2. Dynamical structure factor

As has been shown in Refs. [8,24], the dynamical structure
factor in the region of the primary Hubbard band can be
obtained from the solution of an effective single-particle
problem on a ring that describes the propagation of a
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“hole” (single occupancy for ρ = 2) and a “particle” (triple
occupancy for ρ = 2) that move with total momentum q. The
resulting effective single-particle problem is governed by a
kinetic term and a potential whose range is proportional to the
order of the expansion.

In the calculation of the structure factor, we need the
eigenstates |q; k〉 of k0 that describes the free propagation
of particles and holes,

k0|q; k〉 = (βqe
−ik + β∗

q eik)|q; k〉,
(14)

βq = −t[ρ + (ρ + 1)eiq].

The states |q〉 that enter the calculation of the structure factor
are weighted linear combinations of the states |q; k〉. Up to
second order, these weights are solely a function of t/(U + W )
and do not play a role for our discussion.

By definition, the states |q; k〉 are eigenstates of the kinetic
contribution to all orders,

k1|q; k〉 = (α + γqe
−i2k + γ ∗

q ei2k)|q; k〉,

γq = −t
tρ(ρ + 1)

U + (ρ − 1)W
(1 + ei2q),

(15)

α = t
8tρ(ρ + 1)

U + (ρ − 1)W
− t

2t(ρ2 − 1)

2U + (2ρ − 3)W

− t
2tρ(ρ + 2)

2U + (2ρ − 1)W
.

For ρ = 2, α is not a function of t/(U + W ) alone but also
involves terms of different analytical structure.

The same observation holds for the interaction potential.
Apart from the hard-core correction that appears when we
close the chain into a ring [8,24], the interaction potential
contains terms between nearest neighbors and next-nearest
neighbors of the form

V1,1(q)

t
= 2tρ(ρ + 1) cos(q) + 2t(2ρ + 1)2/3

U + (ρ − 1)W
, (16)

and
VL−1,1(q)

t
= tρ(ρ + 1)

U + (ρ − 1)W
− tρ(ρ + 2)

2U + (2ρ − 1)W

+ tρ(ρ + 1)e−iq

U + (ρ − 1)W
+ tρ(ρ + 1)e−i2q

U + (ρ − 1)W

− t(ρ − 1)2e−i2q

2U + (2ρ − 3)W
. (17)

The contributions for next-nearest neighbors involve interme-
diate states with excitation energies that are different from
U + W or its multiples for ρ = 2. In Fig. 5 we show the
resulting structure factor to second order S(2)(q,ω) at q = π

as a function of ω for U = W , t/U = 0.15, and ρ = 2, where
we give the full result to second order. For comparison we
also show S(2,sc)(q,ω) where we replace U by U + W in the
results for W = 0. The quantitative differences are very small
so that the scaling U → U + W is almost fulfilled, as seen
in the DDMRG data. Note that the result of S(q,ω) in Fig. 5
looks quantitatively different from the DDMRG data in the
right lower panel of Fig. 4. This is due to the finite broadening
width η in the DDMRG calculation and the limited validity
of the second-order strong-coupling approach for intermediate
coupling strengths.
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FIG. 5. (Color online) Dynamical structure factor in second-order
strong-coupling perturbation theory, S(2)(q = π,ω), for U = W and
t/(U + W ) = 0.15 (full line), in comparison with the scaling result
S(2,sc)(q = π,ω) (dashed line). The differences are very small.

IV. CONCLUSIONS

In this work we used the numerically exact density-
matrix renormalization-group technique to investigate the one-
dimensional Bose-Hubbard model with a two-body interaction
UD̂ and a three-body interaction WŴ . We determined the
ground-state phase diagram with and without three-body
repulsion for the first and second Mott lobes from the chem-
ical potentials. The calculation of the Tomonaga-Luttinger
parameter Kb close to the Kosterlitz-Thouless transitions
provided accurate estimates for the tips of the Mott lobes
where the gaps become exponentially small. We confirmed
the results for t

ρ=1,2
c using the von Neumann entanglement

entropy. We find that t
ρ=1
c (W ) increases from t

ρ=1
c (0) by

less than 10% for W � U . Moreover, t
ρ=2
c (W ) obeys the

relation t
ρ=2
c (W ) ≈ t

ρ=2
c (0)(1 + W/U ) with an accuracy of

a few percent for W � U .
For the second Mott lobe, ρ = 2, our numerical data for

the gap � and the Lorentz-broadened dynamical structure
factor Sη(q,ω) showed a similarly good “scaling behavior”:
the curves for different values of W = 0,U/2,U almost fall on
top of each other when plotted as a function of t/(U + W ). Our
results from strong-coupling perturbation theory show that the
scaling is not rigorous. However, deviations are quantitatively
small because, in the Mott insulating region, interactions are
strong so that the physical quantities are largely determined
by particle-hole excitations with one triple occupancy and one
single occupancy in the background of doubly occupied sites.

Since our observations rely on the strong-coupling picture
alone, they should also hold in higher dimensions. The
Bose-Hubbard model with pure two-body interactions remains
qualitatively correct even in the presence of sizable local
three-particle interactions. Of course, this conclusion becomes
invalid for substantial attractive three-body interactions that
will lead to the formation of local clusters.
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Spectral and Entanglement Properties of the Bosonic Haldane Insulator
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We discuss the existence of a nontrivial topological phase in one-dimensional interacting systems
described by the extended Bose-Hubbard model with a mean filling of one boson per site. Performing
large-scale density-matrix renormalization group calculations we show that the presence of nearest-
neighbor repulsion enriches the ground-state phase diagram of the paradigmatic Bose-Hubbard model by
stabilizing a novel gapped insulating state, the so-called Haldane insulator, which, embedded into
superfluid, Mott insulator, and density wave phases, is protected by the lattice inversion symmetry. The
quantum phase transitions between the different insulating phases were determined from the central charge
via the von Neumann entropy. The Haldane phase reveals a characteristic fourfold degeneracy of the
entanglement spectrum. We finally demonstrate that the intensity maximum of the dynamical charge
structure factor, accessible by Bragg spectroscopy, features the gapped dispersion known from the spin-1
Heisenberg chain.

DOI: 10.1103/PhysRevLett.113.020401 PACS numbers: 05.30.Jp, 03.67.-a, 64.70.Tg, 75.10.Pq

A quarter-century after Haldane’s conjecture of an
appearance of finite gap in the integer-spin chain [1], the
so-called Haldane phase protected by the lattice inversion
symmetry attracts renewed attention from a topological
point of view. Such a topological protected state, charac-
terized by symmetries and a finite bulk gap, is termed now
as a symmetry-protected topological (SPT) ordered phase
[2,3]. In higher dimensions, the so-called Kane-Mele
topological band insulator of noninteracting fermions
[4,5] exhibits a SPT state protected by Uð1Þ and time-
reversal symmetries. Since particles in real materials
normally interact, it is not sufficient to study SPT order
for non-interacting systems. To analyze SPT states in
interacting systems two main approaches have been pro-
posed. The first is based on the definition of appropriate
topological invariants within a Green function scheme [6].
It has been successfully applied to the one-dimensional
Peierls-Hubbard model [7,8]. The second uses the entan-
glement spectrum as a fingerprint of topological order [9].
Here the lowest entanglement level reflects the degree of
degeneracy corresponding to symmetries and the edge
states of the system. This has been worked out for various
spin chains [3,10,11].
Interestingly a hidden SPT phase was also found in

interacting boson systems with long-range repulsion [12].
This phase resembles the Haldane gapped phase of the
quantum spin-1 Heisenberg chain. Indeed, assuming that
the site occupation of an one-dimensional extended Bose-
Hubbard model (EBHM) with nearest-neighbor interaction
is restricted to nj ¼ 0, 1 or 2, the system can be described
by an effective spin-1 model with Szj ¼ nj − ρ for a mean
boson filling factor ρ ¼ 1. The Haldane insulator (HI) then
appears between the conventional Mott insulator (MI) and
the density wave (DW) phases at intermediate couplings

[12,13]. Field theory predicts the MI-HI transition to be in
the Luttinger liquid universality class with central charge
c ¼ 1, whereas the HI-DW transition belongs to the Ising
universality class with c ¼ 1=2 [13]. Very recent quantum
Monte Carlo simulations [14] reveal in addition a super-
solid phase competing with the HI.
In this work, we focus on the characterization of the

EBHM’s ground-state and spectral properties from an
entanglement point of view. Using the (dynamical) den-
sity-matrix renormalization group (DMRG) technique
[15,16], we show that the lowest entanglement level in
the nontrivial topological HI phase is fourfold degenerate.
The universality classes of the MI-HI and HI-DW tran-
sitions are determined from the central charge in accor-
dance with what is obtained from field theory. Most notably
we demonstrate that the dynamical charge structure factor
can be used to unambiguously discriminate the HI from
the MI and DW phases.
The Hamiltonian of the EBHM is defined as

Ĥ ¼ −t
X

j

ðb̂†j b̂jþ1 þ b̂jb̂
†
jþ1Þ þU

X

j

n̂jðn̂j − 1Þ=2

þ V
X

j

n̂jn̂jþ1; ð1Þ

where b̂†j , b̂j, and n̂j ¼ b̂†j b̂j are, respectively, the boson
creation, annihilation, and number operators at the lattice
site j. The nearest-neighbor boson transfer amplitude is
given by t; U and V parametrize the Coulomb repulsions
between bosons resting at the same and neighboring sites.
While t causes the bosons to delocalize, promoting a
superfluid (SF) phase at weak interactions, U ðVÞ tends
to stabilize a MI (DW) when the interaction dominates over
the kinetic energy scale set by t.
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In the framework of the DMRG the entanglement
properties of the EBHM can be analyzed as follows.
Consider the reduced density matrix ρl ¼ TrL−l½ρ� of a
block of length l out of a periodic system of size L. Then
the bipartite entanglement spectrum fξαg is defined as
those of a fictitious Hamiltonian H̄ defined via ρl ¼ e−H̄.
As a consequence the ξα can be extracted from the weights
λα of the reduced density matrix ρl by ξα ¼ −2 ln λα.
Adding up, along the calculations, the λα, we have
direct access to the von Neumann entropy, SLðlÞ ¼
−Trl½ρl ln ρl�. On the other hand, from conformal field
theory [17] one has SLðlÞ ¼ ðc=3Þ ln ½ðL=πÞ sin ðπl=LÞ� þ
s1 with the nonuniversal constant s1. Thus we can easily
determine the central charge c by DMRG. Since the most
precise data for SLðlÞ were obtained when the length l of
the sub-block equals half the system size L, the central
charge should be determined from the relation [18]

c�ðLÞ ¼ 3½SLðL=2 − 1Þ − SLðL=2Þ�
ln½cosðπ=LÞ� ; ð2Þ

rather than directly using the above expression for SLðlÞ.
In contrast to hitherto existing open boundary DMRG

studies of the EBHM [12,13,19] we use periodic boundary
conditions (PBCs). As shown for the regular Bose-Hubbard
model this is advantageous calculating the central charge
[20,21]. Beyond that we benefit from the fact that no
artificial on-site potentials at the edges will affect our
results. To reach the same system sizes as with open
boundary conditions (OBCs), we limit the number of
bosons per site. Throughout this work we use nb ¼ 2;
here the EBHM corresponds to an effective spin-1
Heisenberg model. We have convinced ourselves that at
sufficiently large U the boson truncation does not alter
qualitatively the results presented in the following (solely,
in the weak coupling regime, the extension of the SF phase
is somewhat underestimated). Let us finally note that we
keep up to m ¼ 2400 states in the DMRG runs, so that the
discarded weight is typically smaller than 1 × 10−8. For the
dynamical DMRG calculations we take m ¼ 800 states to
compute the ground state during the first five DMRG
sweeps, and afterwards use 400 states evaluating the
dynamical properties.
As stated above the ground-state phase diagram of the

EBHM (1) with nb ¼ 2 exhibits three differing insulator
phases, as well as a superfluid state at weak interactions
U=t, V=t. The stability regions of the various phases are
pinpointed by Fig. 1. Let us emphasize that in the
intermediate-coupling region (3≲ U ≲ 8), the central
charge is best suited for detecting the MI-HI (HI-DW)
quantum phase transition since the system becomes critical
at the transition points with c ¼ 1 (1=2).
Figure 2(a) illustrates the behavior of the central charge

c� obtained numerically as a function of V=t at fixed
U=t ¼ 5. With increasing system size L two sharp peaks

develop, indicating the MI-HI and HI-DW transition points.
For L ¼ 128, we found c� ≃ 0.999 in the former case and
c� ≃ 0.494 in the latter case; i.e., the numerical error,
jc�ðLÞ − cj=c, is about 1% if compared with the field
theoretical predictions. Since the positions of the peaks
only weakly depend on the system size, the transition
points can be determined by extrapolating the values of the
critical VðLÞ to the thermodynamic limit L → ∞. MI-HI
transition points are also extracted from the level spectros-
copy of two lowest-lying energies with antiperiodic boun-

dary conditions (APBCs), b̂ð†ÞLþ1 → −b̂ð†Þ1 . This equates to
the twisted boundary methods [22] with the spin operators
ŜxLþ1 → −Ŝx1 and ŜyLþ1 → −Ŝy1 applied to the spin-1 XXZ
chain [23], see also Ref. [24]. The obtained transition
points can be linearly extrapolated to the thermodynamic
limit as in the inset of Fig. 2(a), showing a perfect
agreement with the critical points obtained in the main
panel.
The excitation gaps behave differently in various insu-

lating phases [12,13]: While the single-particle gap Δc ¼
E0ðN þ 1Þ þ E0ðN − 1Þ − 2E0ðNÞ is finite in all three
insulator phases, except for the MI-HI transition point,
the neutral gap Δn ¼ E1ðNÞ − E0ðNÞ closes both at the
MI-HI and HI-DW transitions [E0ðNÞ and E1ðNÞ denote
the energies of the ground state and first excited state of
the N-particle system, respectively]. This is corroborated
by Fig. 2(b). A similar behavior of the neutral gap has been
observed for the SPT phases of spin-1=2 ladder systems
[25]. Note that the phase boundaries obtained by our PBC
DMRG calculation at intermediate and strong couplings

0 1 2 3 4 5
0

2

4

6

8

FIG. 1 (color online). DMRG phase diagram of the one-
dimensional constrained extended Bose-Hubbard model with
nb ¼ 2 and ρ ¼ 1. Shown are the Mott insulator (MI), Haldane
insulator (HI), density wave (DW), and superfluid (SF) phases.
The MI-HI (squares) and HI-DW (circles) transition points are
determined via the central charge c ¼ 1 and c ¼ 1=2, respec-
tively, which can be extracted from the von Neumann entropy
[cf. Fig. 2(b)]. MI-HI transition points are confirmed by a finite-
size scaling of the two lowest energy levels with APBCs.
Relaxing the boson constraint the SF region extends.
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basically agree with very recent DMRG data for OBCs
[19,26]. In the weak-coupling regime, on the other hand,
our phase diagram differs from former studies due to the
nb ¼ 2 restraint. Accordingly the MI-SF transition at
V ¼ 0 occurs at a smaller value, U ≃ 1.555t, if compared
to the critical U=t derived from the Tomonaga-Luttinger
liquid parameter [27]. The appearance of the SF phase,
which can be understood as a Luttinger liquid with c ¼ 1
[28], together with strong finite-size effects prevents using
c� for detecting the MI-HI transition in this regime.
Otherwise, as shown by Fig. 2(c), the HI-DW Ising
transition can still be determined from c�, even for U ¼ 0.
On these grounds, discussing the entanglement proper-

ties of the SPT state, we consider the intermediate-coupling
region hereafter. Calculating the entanglement spectrum ξα
we divide the system in halves. Then, using DMRG with

PBCs, one of the block with L=2 sites possesses two edges
(rather than a single edge in the semi-infinite chain used by
the infinite-time evolving block-decimation algorithm [3]).
In the HI phase the entanglement spectrum is expected to be
at least fourfold degenerate, reflecting the broken Z2 × Z2

symmetry. Figure 3 shows the DMRG data for ξα obtained
atU=t ¼ 5. While for L ¼ 128 the fourfold degeneracy can
be seen only deep inside of the HI phase, for L ¼ 512
almost all HI states exhibit this degeneracy. By contrast, in
the trivial MI and DW phases the lowest entanglement level
is always nondegenerate. Obviously higher entanglement
levels ξα > 8 are also fourfold degenerate (cf. Fig. S2 of
Ref. [24]).
We already stated that the HI phase is protected by the

inversion symmetry of the lattice. This symmetry can
explicitly be broken by adding to the Hamiltonian (1) an
appropriate perturbation [13],
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FIG. 2 (color online). Panel (a): Central charge c� of the EBHM
with U=t ¼ 5, indicating the MI-HI (HI-DW) transition point
with c ¼ 1 (c ¼ 1=2). The inset shows a finite-size scaling of the
MI-HI transition points from the energy difference with APBCs.
Panel (b): Extrapolated data for the charge gap Δc (open squares)
and neutral gap Δn (open circles) at U ¼ 5t. Vertical lines mark
the transition points estimated from c�. While Δn vanishes at both
MI-HI and HI-DW boundaries, the charge gap Δc closes at the
MI-HI transition only. Turning on an inversion-symmetry break-
ing perturbation [g=t ¼ 0.1, see Eq. (3)] Δc stays finite ∀ V=t
(filled squares). Panel (c): c� at U ¼ 0. Now the SF/MI-HI
transition point is hardly to detect.
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FIG. 3 (color online). Entanglement spectrum ξα of the EBHM
with U=t ¼ 5. If exciting the degeneracy of the entanglement
levels becomes more perfect as the system size increases (cf. data
for L ¼ 128 [panel (a)] with those for 512 [panel (b)]). A
perturbation (3) breaking the lattice inversion symmetry lifts
the degeneracy in the HI phase. This is demonstrated by panels
(c) and (d) giving ξα for PBCs in the primary HI regime for
g=t ¼ 0.1 and 0.2, respectively.
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δĤ ¼ g
X

j

½ðn̂j − ρÞb̂†j b̂jþ1 þ H:c:�: ð3Þ

As a consequence the MI-HI quantum phase transition
disappears [13] and the single-particle charge gap stays
finite; see the filled squares in Fig. 2(b) displaying Δc for
g=t ¼ 0.1. One also expects that this perturbation lifts
the degeneracy of the lowest entanglement level in the HI
phase. Indeed Fig. 3(c) illustrates that any finite g dissolves
the fourfold degeneracy in the HI phase, where the gap
between the lowest levels increases raising g [cf. Fig. 3(d)].
That is, the entanglement spectrum substantiates the
suspicion that the lattice inversion symmetry is necessary
for the nontrivial topological HI state to exist.
Since the EBHM (1) can be realized by ultracold bosonic

atoms loaded in optical lattices [29] it is highly desirable to
study dynamical correlation functions which are accessible
by experiments. For this purpose, the kinetic-energy
correlations of the effective spin-1 Heisenberg chain was
proposed to be a candidate detecting the HI phase and
calculated on a mean-field level of approximation [12].
Here we suggest the dynamical structure factor—which
can be directly measured by momentum-resolved Bragg
spectroscopy [30,31]—to be indicative of a SPT state. This
quantity is defined as

Sðk;ωÞ ¼
X

n

jhψnjn̂kjψ0ij2δðω − ωnÞ; ð4Þ

where jψ0i and jψni denote the ground state and nth
excited state, respectively. The corresponding excitation
energy is ωn ¼ En − E0. In the absence of the nearest-
neighbor repulsion V, Sðk;ωÞ was intensively studied by
means of perturbative and dynamical DMRG techniques
[20,32]. Taking V into account, in the MI, a gap opens at
k ¼ 0 and the spectral weight becomes concentrated in the
region k > π=2, around ω=U ≃ 1, just as for the standard

Bose-Hubbard model. This is exemplified for U ¼ 5t and
V ¼ t by Fig. 4(a). The maximum in Sðk;ωÞ follows a
cosine-dispersion which is flattened, however, near the
Brillouin zone boundary for k ≥ 3π=4. The situation
dramatically changes when we enter the HI phase by
increasing V=t, cf. Fig. 4(b) for V=t ¼ 3. Now the
dispersion of the maximum in Sðk;ωÞ bends back above
k ¼ π=2, acquiring a sinus shape with (small) excitation
gaps at both k ¼ 0 and k ¼ π. Also the spectral weight of
the dynamical charge structure factor is concentrated at
k ¼ π and finite but very small for ω ≪ U. We note that the
dispersion of the maximum in the HI phase is remindful of
those of the spin-1 Heisenberg chain. A dispersive signal
persists if we allow larger nb (see the results presented in
Ref. [24] for the EBHMwith nb ¼ 5). In the DW phase, the
maximum of Sðk;ωÞ is almost dispersionsless and located
at ω≳ 1.5U for U=t ¼ V=t ¼ 5 [see Fig. 4(c)]. The
intensity is notably more confined than for the MI.
Figure 4 demonstrates that the dispersion in the insulating
phases barely changes if the system size is increased.
In every sense, Sðk;ωÞ behaves very differently in the
MI, DW, and HI states and might therefore be used to
discriminate these insulating phases.
In summary, we studied—from an entanglement point of

view—the topologically nontrivial Haldane insulator,
appearing in the intermediate coupling regime of the
one-dimensional Bose-Hubbard model with on-site and
nearest-neighbor Coulomb interactions in the midst of Mott
insulator, density-wave, and superfluid phases. Using the
DMRG technique, the MI-HI (HI-DW) quantum phase
transition is determined with high precision from the
central charge c� that can be extracted from the von
Neumann entropy. We thereby approved the universality
class c ¼ 1 (c ¼ 1=2) predicted by field theory. We
furthermore established a characteristic fourfold degen-
eracy of the lowest entanglement level in the SPT Haldane
phase and demonstrated that any violation of the lattice

(a) (b) (c)

FIG. 4 (color online). Intensity plots of the dynamical structure factor Sðk;ωÞ in the MI (a), HI (b), and DW (c) phases. Data were
obtained by the dynamical DMRG technique for L ¼ 64 using a broadening η ¼ 0.5t. Crosses (circles) give the maximum value of
Sðk;ωÞ for L ¼ 64 (L ¼ 32 and η ¼ t) at fixed momenta k ¼ 2πj=L with j ¼ 1;…; L=2.
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inversion symmetry lifts this degeneracy. With the objective
to stimulate further experiments on ultracold bosonic atoms
in optical lattices we analyzed the dynamical charge
structure factor for the extended Bose-Hubbard model
and showed that this quantity can be used to distinguish
the Haldane insulator, exhibiting a gapped excitation
spectrum similar to the spin-1 Heisenberg-chain model,
from conventional Mott and density-wave states.

The authors would like to thank S. Nishimoto and
T. Yoshida for valuable discussions. This work was
supported by Deutsche Forschungsgemeinschaft through
SFB 652, Project B5.
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Supplementary material

Using the unbiased density matrix renormalization
group (DMRG) technique with periodic boundary condi-
tions (PBCs), in the main paper, we derived the ground-
state phase diagram of the one-dimensional (1D) ex-
tended Bose-Hubbard model (EHBM), restricting the
maximum number of bosons per site to be nb = 2. Fig-
ure 1 showed the extent of the Haldane insulator (HI)
phase, located between the conventional insulating Mott
(MI) and density wave (DW) states and the superfluid
(SF) phase. In the following we provide further results
for the EBHM in the intermediate-coupling region, in
order to guarantee that our main conclusions will be un-
affected in the more general case with nb > 2.

Determination of the MI-HI transition points

As stressed in the main text the 1D EBHM can be
mapped onto an effective spin-1 XXZ chain model with
on-site anisotropy D. Then, in the notations of Ref. [23],
the three insulating MI, HI, and DW phases of the EBHM
correspond to the large-D, the Haldane and the Néel
phases, respectively. The Haldane phase in the spin-
1 chain is described by a spin-1/2 two-leg ladder sys-
tem [3, 10, 11]. As discussed in Ref. [11], with the pro-
jective representations of the symmetry group it is re-
lated to the t0 phase of the latter system. According
to Ref. [23], using Lanczos diagonalization, the large-D-
Haldane phase transition points can be determined by
level spectroscopy [22] of the two lowest-lying energies
with twisted boundary conditions (i.e., Ŝx

L+1 → −Ŝx
1 ,

Ŝy
L+1 → −Ŝy

1 , and Ŝz
L+1 → Ŝz

1 ). Hence also the MI-
HI transition points can be extracted by analyzing the
two lowest-lying energies with anti-periodic boundary

conditions (APBCs), i.e., b̂
(†)
L+1 → −b̂(†)1 . As shown by
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FIG. S1. (a) The V dependence of the two lowest energy
eigenvalues with APBCs at U/t = 5 and L = 32. The energies
of the Haldane state (squares) and the Mott insulating state
(circles) cross at the MI-HI transition point. (b) The critical
points Vc(L)/t as extracted in the panel (a) versus inverse of
the squares of the system size at U/t = 5 with up to L = 128.
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FIG. S2. Entanglement spectrum ξα obtained by DMRG in
the HI state of the EBHM with U/t = 5. The dotted (dashed)
line denotes the MI-HI (HI-DW) transition point extracted
from the von Neumann entropy, see Fig. 2(a) of the main text.
The numbers in the circles give the degree of degeneracy.

Fig. S1 (a), the Mott insulating state and the Haldane
state crosses at the MI-HI transition point Vc(L) for the
fixed system size used at U/t = 5. The transition points
obtained for various system sizes can be linearly extrapo-
lated to the thermodynamic limit L→ ∞, see Fig. S1(b).
We emphasize the perfect agreement with the critical
points obtained in the main panel of Fig. 2(a).

Entanglement spectrum in the constrained EBHM

In the HI, due to the broken Z2×Z2 symmetry, the low-
est entanglement level is four-fold degenerate Since the
HI phase is nontrivial protected by the lattice inversion
symmetry, not only the lowest but also the entire entan-
glement spectrum is 4j-fold degenerate with j = 1, 2, . . .
Figure S2 visualizes the four-fold degeneracy of the higher
entanglement levels in the HI phase at U/t = 5 for a sys-
tem with L = 512, PBC and nb = 2.

As noticed in the main text, in the weak-coupling
regime the central charge c∗(L) strongly depends on the
system size [cf. Fig. 2 (c)]. Then the MI-HI (and likewise
the SF-HI) phase transition is hard to detect. Figure S3
demonstrates that the situation is similar for the entan-
glement spectrum calculations at U = 0 with nb = 2.
Close to the Ising transition point (U ≈ 1.733) the low-
est entanglement level is four-fold degenerate, indicating
the existence of the HI phase also at U = 0. Increasing
the system size the HI state extends to V → 0. Here a
more precise finite-size-scaling is desired to pinpoint the
MI/SF-HI transition.

Haldane insulator state in the full EBHM

We now demonstrate that the qualitative analysis of
EBHM with nb = 2 remains valid if we increase the bo-
son cutoff. To this end we convinced ourselves that for
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FIG. S3. Entanglement spectrum ξα in the weak-coupling
(V/t) regime at U/t = 0. Data obtained by DMRG with
PBCs for L = 128 (a) and L = 512 (b). The dashed line gives
the HI-DW transition point extracted from the von Neumann
entropy.

large enough values of U/t again both MI-HI and HI-
DW phase transition points can be determined via the
entanglement entropy and the level spectroscopy. For ex-
ample, at U = 5t, the MI-HI phase transition occurs at
V/t ' 3.00 with c∗ ' 1.0 and the system-size dependence
of maxima is very weak; see main panel of Fig. S4(a).
Adopting level spectroscopy again, the MI-HI transition
points can be determined (see inset), yielding excellent
agreement with the values in the main panel. The Ising-
like HI-DW transition shows up for large system sizes
L > 32 at V/t ' 3.55 with c∗ ' 0.5. The entangle-
ment spectrum ξα with nb = 5 shows a degeneracy of
the lowest level deep in the HI phase for L = 128 as in
Fig. S4(b). With increasing system size the degenerate
HI state extends to the point of the MI-HI transition
[Fig. S4(c)].
Finally we show that characteristic behavior of the dy-

namical charge structure factor S(k, ω) in the HI phase
survives the inclusion of higher boson occupation num-
bers. Figure S5 presents dynamical DMRG results for

S(k, ω) with nb = 5 deep in the HI phase (for U/t = 5,
V/t = 3.3, L = 32 and broadening η = t). Just as for
the constrained EBHM with nb = 2, most of the spec-
tral weights in S(k, ω) is concentrated around k = π and
ω � U . The maxima of S(k, ω) follow—as a function
of the momentum—the sinus-like dispersion known from
the dynamical spin structure factor in the quantum spin-
1 Heisenberg model. Note that the system-size depen-
dence of the dispersion in S(k, ω) is hardly seen in Fig. 4.
We conclude that our results for the dynamical structure
factor in the HI phase of the constrained EBHM hold
qualitatively in the full EBHM as well.
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Abstract. We investigate the entanglement properties of a nontrivial topological phase in
the one-dimensional (1D) Bose-Hubbard model with additional nearest-neighbor repulsion.
Employing the large-scale density-matrix renormalization group technique we show that a
gapped insulating phase protected by lattice inversion symmetry, the so-called Haldane
insulator, appears between the Mott and density wave phases in the intermediate-coupling
regime. The phase boundaries were determined from the central charge via the von Neumann
entropy. The Haldane insulator reveals a characteristic degeneracy in the entanglement spectra.
Breaking the lattice inversion symmetry strongly affects the distinctive gapped dispersion of the
dynamical charge response of the bosonic Haldane insulator.

1. Introduction
In the recent past, quantum spin chains, featuring rich physics in spite of their simplicity, have
attracted renewed attention from a topological point of view. For example, a novel symmetry-
protected topological (SPT) phase, the gapful Haldane phase [1] protected by lattice inversion
symmetry, appears in one-dimensional (1D) integer-spin systems [2, 3]. Interestingly such SPT
phase emerges also in interacting boson systems with long-range particle replusion [4, 5, 6].
This is documented for the 1D extended Bose-Hubbard model (EBHM) with local and nearest-
neighbor particle repulsion, and a site occupation nj = 0, 1 or 2, where the system can be
mapped into an effective spin-1 model with Sz

j = nj − ρ for a mean boson filling factor ρ = 1.
Here the so-called Haldane insulator (HI) phase, resembling the topological Haldane phase in the
quantum spin-1 chain, appears between the conventional Mott insulator (MI) and the insulating
density wave (DW) phases in the intermediate-coupling regime. Thereby the MI-HI transition
belongs to the Tomonaga-Luttinger liquid university class with central charge c = 1, while the
HI-DW transition is of Ising type with c = 1/2 [5].

In this work we characterize the properties of the topological HI phase in the EBHM from
an entanglement point of view. Utilizing the density-matrix renormalization group (DMRG)
technique [7], we numerically determine the MI-HI and HI-DW quantum phase transition
points via the central charge. The results appear to be in accordance with field theoretical
predictions. For the nontrivial HI phase a distinctive degeneracy of the lowest entanglement
levels is demonstrated. Finally, carrying out the dynamical DMRG (DDMRG) simulations [8, 9],
we investigate the dynamical density structure factor in the vicinity of the quantum phase
transitions to confirm the closing of the excitation gap, which is of great significance for the the
SPT state.
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2. Model and Method
The Hamiltonian of the EBHM reads

Ĥ = −t
∑
j

(b̂†j b̂j+1 + b̂j b̂
†
j+1) + U

∑
j

n̂j(n̂j − 1)/2 + V
∑
j

n̂jn̂j+1, (1)

where b̂†j , b̂j , and n̂j = b̂†j b̂j are, respectively, the boson creation, annihilation, and number
operators at lattice site j. In Eq. (1) the nearest-neighbor boson transfer amplitude is denoted
by t; U (V ) parametrizes the on-site (nearest-neighbor) repulsions of bosons. The bosonic
hopping amplitude t promotes a superfluid (SF) phase at weak interactions, while U (V ) tends
to stabilize a MI (DW) state. In what follows we take t as energy unit.

To address the topological properties of the 1D EBHM we perform an entanglement analysis
in the framework of the finite-system DMRG approach. Considering the reduced density matrix
ρ� = TrL−�[ρ] of a sub-block of length �, the entanglement spectrum ξα [10] is obtained from
the weights λα of ρ� by ξα = −2 lnλα. In the nontrivial HI phase of the EBHM one expects
a characteristic degeneracy of the lowest entanglement levels due to the artificial edges that
appear by dividing the system into two sub-blocks during the simulation [11].

The entanglement analysis provides also valuable information about the universality class
of the system. Adding up the λα in the course of their computation, the von Neumann
entropy is obtained as SL(�) = −Tr�[ρ� ln ρ�]. Exploiting the conformal field theory result

SL(�) = c
3 ln

[
L
π sin

(
π�
L

)]
+ s1 (s1 is a non-universal constant), the central charge c can be

computed from the relation [12]

c∗(L) =
3[SL(L/2− 1)− SL(L/2)]

ln[cos(π/L)]
, (2)

and the phase boundaries follow—in a very efficient and accurate manner— from the numerically
determined c∗, because the system becomes critical only at the MI-HI (HI-DW) transition points
where c = 1 (c = 1/2) and c∗ forms pronounced peaks as the system size increases. Quite recently
this has been demonstrated for the EBHM [6].

In order to characterize the various insulating phases the excitation gaps have to be examined,
which behave differently approaching the trivial-nontrivial phase transition points, where one
expects the gap closing. This was also shown for the EBHM [4, 5, 6]. While the single-particle
gap Δc = E0(N + 1) + E0(N − 1) − 2E0(N) is finite in the MI, HI and DW phases and closes
at the MI-HI transition, the neutral gap Δn = E1(N) − E0(N) closes at both the MI-HI and
HI-DW transition lines. Here, E0(N) and E1(N) are the energies of the ground state and first
excited state of the N -particle system, respectively, which can be easily calculated by DMRG.

Finally, calculating the dynamical charge structure factor is of particular importance since
the frequency- and wave-vector-resolved density response can be directly compared with
experimental results by momentum-resolved Bragg spectroscopy [13, 14]. The charge structure
factor is defined as

S(k, ω) =
∑
n

|〈ψn|n̂k|ψ0〉|2δ(ω − ωn) , (3)

where |ψ0〉 (|ψn〉) denotes the ground state (nth excited state) and ωn = En − E0 is the
corresponding excitation energy. In the absence of the nearest-neighbor repulsion V , S(k, ω)
was intensively studied by means of perturbation theory and the DDMRG method [15, 16].
Taking V into account, it is shown that the dispersion of S(k, ω) in the HI phase is remindful of
those of the spin-1 Heisenberg chain and behaves very differently in all three insulating phases [6].
Hence S(k, ω) might be used analyzing experiments in order to discriminate the various insulator
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Figure 1. Ground-state phase diagram of the constrained extended Bose-Hubbard model with
nb = 3 and ρ = 1, showing the Mott insulator (MI), Haldane insulator (HI), density wave
(DW) and superfluid (SF) phases. The MI-HI (squares) [HI-DW (circles)] phase transitions
are determined by the central charge c = 1 [c = 1/2] exploiting the von Neumann entropy as
demonstrated in panel (b) for U/t = 5. Panel (c) gives the corresponding (L → ∞ extrapolated)
data of the single-particle gap (triangles) and neutral gap (diamonds). The shaded regions in
panels (b) and (c) define the HI phase.

states. Here we adapt the DDMRG method to simulate S(k, ω) in the HI phase of the EBHM,
especially near MI-HI and HI-DW transition points with a focus on the gap closing.

In this work we fix the maximum number of bosons per site nb = 3. Furthermore, we use
periodic boundary conditions (PBC) and keep up to m = 2400 density matrix states in the
DMRG computation, so that the discarded weight is typically smaller than 1 × 10−7. For the
DDMRG simulations we take m = 800 states to compute the ground state during the first five
sweeps, and afterwards use 400 states evaluating dynamical quantities.

3. Numerical results
Figure 1(a) displays the DMRG ground-state phase diagram of the 1D EBHM (1) with nb = 3. It
exhibits three different insulating phases, besides a superfluid state in the weak-coupling region.
We have shown in a preceding work that the phase boundaries between these insulating phases
can be determined from the numerically calculated central charge c∗ [6]. This works particularly
well in the intermediate-coupling regime as demonstrated by Fig. 1(b). Obviously two maxima
develop in c∗, which become more and more pronounced as the system size L increases, indicating
the MI-HI and HI-DW transitions with c = 1 and 1/2, respectively. This shows that the
system becomes critical approaching the quantum phase transition points. Note that the
estimated values of critical points in this region agree very well with other DMRG data [17]. We
furthermore note that the SF-MI transition points are estimated via the Tomonaga-Luttinger
exponent Kb as explained in Ref. [18].

As stressed above the various excitation gaps behave differently in the HI phase, in particular
at the quantum phase transition points [4, 5]. Figure 1(c) indicates that extrapolated DMRG
data of the single-particle gap Δc is finite in all insulating phases and closes at the MI-HI
transition. By contrast the neutral gap Δn closes at both the MI-HI and HI-DW transitions.
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Figure 2. Entanglement spectrum ξα of the EBHM with U/t = 5, as obtained by DMRG for a
system with L = 256. The shaded regions mark the HI phase, which shows (at least) a fourfold
degeneracy of the lowest [panel (a)] and higher entanglement levels [panel (b)]. The numbers in
panel (b) give the degree of degeneracy.

Let us now discuss the topological properties in terms of the entanglement spectra ξα within
the intermediate-coupling regime (U/t = 5). Dividing the system in two halves, using the
finite-system DMRG algorithm with PBC, one of the subblock with L/2 sites possesses two
edges [6, 11]. This has to be contrasted with the infinite-time evolving block-decimation
algorithm [3], where only a single edge emerges for the semi-infinite chain. Here we expect
a fourfold degeneracy of the lowest entanglement level of the HI phase, just as for the nontrivial
topological Haldane phase in the spin-1 XXZ chain. Figure 2(a) brings out this characteristic
fourfold degeneracy of the lowest entanglement levels of the EBHM with nb = 3—deep in the
HI phase. Since the HI phase is protected by the lattice inversion symmetry in a nontrivial way,
not only the lowest but the entire spectrum shows a 4j-fold degeneracy with j = 1, 2, . . ., as can
be seen from Fig. 2(b). In contrast the lowest entanglement levels of the MI and DW phases
are apparently non-degenerate. Close to the MI-HI transition larger system sizes L > 256 are
needed to reproduce the fourfold degeneracy; because of c = 1 the gap closes exponentially.

We finally want to take a look at the dynamical properties of EBHM within the range of the
topological HI phase, and therefore consider again the intermediate-coupling regime, U/t = 5.
It is well-known that in the Mott insulator phase a gap opens at the momentum k = 0 and
the spectral weight becomes concentrated in the region k > π/2 for ω � U [15, 16]. Increasing
V the MI-HI transition occurs, whereupon the gap at k = 0 closes according to Fig. 1(c). At
the same time the spectral weight will be concentrated at k > 3π/4 for ω � U , as indicated
by Fig. 3(a) for V � 3.01. Deep inside the HI phase [see panel (b) for V/t = 3.3] the gap at
k = 0 opens again and the dispersion of the maximum in S(k, ω) acquires a sine-shape as for the
spin-1 XXZ chain [6]. Then the interesting question is whether the gap in S(k, ω) closes again at
the HI-DW transition point if V is increases further. The answer is yes, but now the gap closes
at momentum k = π, reflecting the lattice-period doubling within the DW phase. Accordingly,
S(k, ω) follows the behavior of the neutral gap Δn shown in Fig. 1(c).

4. Summary
To conclude, we have analyzed the non-trivial topological Haldane insulator phase—showing
up in the intermediate-coupling regime of the one-dimensional Bose-Hubbard model with long-
range repulsive particle interaction—from an entanglement point of view. Performing large-scale
density matrix renormalization group calculations for finite systems with periodic boundary
conditions, the MI-HI and HI-DW quantum phase transition lines can be determined from the
central charge c∗ via the von Neumann entropy. Thereby our unbiased numerical (lattice model)
results confirm the corresponding field theoretical (continuum model) predictions c = 1 and 1/2.

International Conference on Strongly Correlated Electron Systems 2014 (SCES2014) IOP Publishing
Journal of Physics: Conference Series 592 (2015) 012134 doi:10.1088/1742-6596/592/1/012134

4

8 Thesis Articles

198



0 π/2 π

k

0

1

ω
/
U

(a) V/t�3.01

(MI−HI)

0 π/2 π

k

(b) V/t=3.3 (HI)

0 π/2 π

k

(c) V/t�3.55

(HI−DW)

U/t=5

Figure 3. Intensity plots of the dynamical charge structure factor S(k, ω) at the MI-HI
transition point (a), in the HI phase (b), and at the HI-DW transition point (c). Data were
obtained applying the DDMRG technique to the 1D EBHM with L = 32, using a broadening
η = t. Crosses (circles) give the maximum value of S(k, ω) at fixed momenta k = 2πj/L where
j = 1, . . . , L/2.

Furthermore, a characteristic fourfold degeneracy of the lowest entanglement levels in the HI
phase is found, which signals the SPT state for the interacting boson model in exactly the same
way as for the quantum spin-1 XXZ chain. Finally we studied the dynamical properties of the
topological HI phase. Here the dynamical density structure factor is reflective of the behavior
of the neutral gap: the dispersion of the maximum in S(k, ω) is gapless at both the MI-HI and
HI-DW transition lines. Notably the momentum where the gap closes differs: for the MI-HI
(HI-DW) phase transition the gap vanishes at k = 0 (k = π).
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Comparative density-matrix renormalization group study of symmetry-protected
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We reexamine the one-dimensional spin-1 XXZ model with on-site uniaxial single-ion anisotropy as to the
appearance and characterization of the symmetry-protected topological Haldane phase. By means of large-scale
density-matrix renormalization group (DMRG) calculations the central charge can be determined numerically
via the von Neumann entropy, from which the ground-state phase diagram of the model can be derived with
high precision. The nontrivial gapped Haldane phase shows up in between the trivial gapped even Haldane
and Néel phases, appearing at large single-ion and spin-exchange interaction anisotropies, respectively. We
furthermore carve out a characteristic degeneracy of the lowest entanglement level in the topological Haldane
phase, which is determined using a conventional finite-system DMRG technique with both periodic and open
boundary conditions. Defining the spin and neutral gaps in analogy to the single-particle and neutral gaps in
the intimately connected extended Bose-Hubbard model, we show that the excitation gaps in the spin model
qualitatively behave just as for the bosonic system. We finally compute the dynamical spin structure factor in the
three different gapped phases and find significant differences in the intensity maximum which might be used to
distinguish these phases experimentally.

DOI: 10.1103/PhysRevB.91.045121 PACS number(s): 75.10.Pq, 64.70.Tg, 03.67.−a

I. INTRODUCTION

One-dimensional (1D) quantum spin systems have received
continued attention as paradigms for strongly correlated
systems, because miscellaneous—and even exotic—phases
can be realized within simple model Hamiltonians. By way
of example, the exactly solvable spin-1/2 antiferromagnetic
(AFM) Heisenberg chain is known to be gapless, while for
integer spins a gap exists between the ground state and
the first excited state, as conjectured first by Haldane [1].
Especially for the spin-1 chain, the Haldane gap was con-
firmed experimentally [2,3], and the dynamical spin structure
factor has been observed by inelastic neutron scattering, e.g.,
on Ni(C2H8N2)2NO2ClO4 [4]. Affleck, Lieb, Kennedy, and
Tasaki (AKLT) proposed a exactly solvable model that offers
valuable clues to the physics of the spin-1 Heisenberg chain [5].
The so-called AKLT state [cf. Fig. 1(a) below] successfully
describes the ground state of the Haldane phase [6]. Also for
the the spin-1 XXZ model, the ground-state phase diagram
has been determined—even if a single-ion anisotropy is
added [7]—e.g., by the Lanczos exact diagonalization (ED)
technique based on the level spectroscopy method [8].

Currently, quantum integer-spin chains have attracted ex-
traordinary interest from a topological point of view. The
gapped ground states in the Haldane phase can be classified
by the projective representations of the underlying symmetry
group [9,10]. The odd Haldane (OH) phase in odd-integer-
spin chains with two half-integer edge spins is a symmetry-
protected topological (SPT) phase, because the odd-S AKLT
state cannot be adiabatically connected to another trivial state
without undergoing a phase transition. On the other hand, the
even Haldane (EH) state in the even-integer-spin systems with
integer edge spins [11–14] is a trivial state, since the even-S
AKLT state is adiabatically connected to a trivial state without
a bulk phase transition [15,16].

Interestingly, a hidden SPT phase analogous to the OH
phase was discovered in the extended Bose-Hubbard model

(EBHM) with longer-range repulsions [17]. This Haldane-
insulator (HI) phase, embedded between the Mott-insulator
(MI) and the density-wave (DW) phases in the intermediate
coupling regime, exhibits the characteristic degeneracy of
the entanglement spectrum in the Haldane phase [18]. The
excitation gaps at the quantum phase transition lines depend on
their universality classes [17,19]. Beyond that, the dynamical
density structure factor SEBHM(k,ω) significantly differs in the
MI, DW, and HI states [18].

On the basis of our recent EBHM study [18], in the present
work we investigate the topological properties of the odd
Haldane phase in the anisotropic spin-1 XXZ chain which,
as we will show, can be taken as an effective model for
the EBHM. Using the density-matrix renormalization group
(DMRG) technique [20–22], first we determine the phase
boundaries by exploiting the central charge. In order to confirm
the closing of the excitation gap at the trivial-nontrivial phase
transition points, we simulate both the spin and neutral gaps.
We furthermore demonstrate the degeneracy of entanglement
levels in the OH phase with both periodic (P) and open (O)
boudary conditions (BC) (for the anisotropic spin-1 XXZ

chain it is well known how the edge spins should be treated
in the latter case). In order to experimentally detect the topo-
logical HI phase in the EBHM, various dynamical quantities
have been proposed [17,18,23]. Here we will examine the
dynamical spin structure factor Szz(k,ω) for the spin-1 model
by means of the dynamical DMRG (DDMRG) technique [24].
We will demonstrate that the intensity maximum in Szz(k,ω)
features a gapped dispersion in the nontrivial Haldane phase as
obtained for SEBHM(k,ω) in the EBHM. Since this quantity is
directly accessible by inelastic neutron scattering, significant
differences in Szz(k,ω) could be used to detect the various
gapped phases.

This paper is organized as follows. In the next section
we establish the anisotropic spin-1 XXZ model and the
corresponding EBHM. The physical quantities of interests are
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(a) AKLT state

(b) DMRG with OBC

L/2

(c) DMRG with PBC

L/2

FIG. 1. (Color online) (a) Valence bond picture of the AKLT state
in a spin-1 XXZ chain. Each of the two S = 1/2 spins connected by
an ellipse form a singlet (1/

√
2)(↑↓ − ↓↑). The two free edge spins

cause the fourfold degeneracy of the ground-state energy. (b) To
simulate the AKLT state within OBC DMRG, the free edge spins
have to be excluded from the system (dashed circles). (c) With PBC
the AKLT state can be simulated without any changes, so that the
lowest entanglement level exhibits a fourfold degeneracy according
to the two edge spins.

introduced in Sec. III. Large-scale (D) DMRG results for the
anisotropic spin-1 XXZ chain will be presented and discussed
in Sec. IV. Section V contains a brief summary and our main
conclusions.

II. MODEL HAMILTONIANS

In this section we introduce the anisotropic spin-1 XXZ

model and get back to its established ground-state phase
properties. We then define the extended Bose-Hubbard model
and point out the correspondences with an effective spin-1
XXZ model.

A. Spin-1 X X Z model with single-ion anisotropy

The Hamiltonian of the 1D spin-1 XXZ model with on-site
anisotropy is given by

Ĥ =
∑

j

[
J
(
Ŝx

j Ŝx
j+1 + Ŝ

y

j Ŝ
y

j+1

) + JzŜ
z
j Ŝ

z
j+1

] + D
∑

j

(
Ŝz

j

)2
,

(1)

where Ŝj denotes a spin-1 operator. The parameter D rep-
resents the uniaxial single-ion anisotropy. The ground-state
phase diagram of the model (1) exhibits various gapful and
gapless phases, namely, following the conventional notations,
the Haldane phase, the large-D phase, two XY phases, the
ferromagnetic phase, and the Néel phase [7,25,26]. According
to this, different types of phase transitions occur between
these phases: (i) A gapful-gapful Gaussian phase transition

takes place between the large-D phase and the Haldane phase
with the central charge c = 1, (ii) the Haldane-Néel transition
appears to be of the Ising universality class with c = 1/2, and
(iii) a gapless-gapful Berezinskii-Kosterlitz-Thouless (BKT)
transition emerges between the XY phase and the Haldane
or large-D phase. In what follows we restrict ourselves to
the parameter region where Jz > 0 and D > 0. Following the
notation by Kjäll et al. [16], we use the termini EH, OH,
and AFM phases instead of the large-D, Haldane, and Néel
phases, respectively. The lattice-inversion symmetry, which
protects the SPT state of the Haldane phase, can be broken by
adding a perturbation to the Hamiltonian (1):

δĤ = g
∑

j

[
Ŝz

j

(
Ŝx

j Ŝx
j+1 + Ŝ

y

j Ŝ
y

j+1

)

− Ŝz
j+1

(
Ŝx

j Ŝx
j+1 + Ŝ

y

j Ŝ
y

j+1

) + H.c.
]
. (2)

Any finite g immediately lifts the characteristic degeneracy of
the lowest entanglement level in the Haldane phase [10]. As
we will see later, thereby the EH-OH quantum phase transition
also disappears.

B. Extended Bose-Hubbard model

In 2006, Dalla Torre et al. [17] discovered the HI phase
in the 1D extended Bose-Hubbard model with longer-range
repulsions. The HI phase features the properties of the OH
phase in the spin-1 model (1). The EBHM Hamiltonian reads

ĤEBHM = −t
∑

j

(b̂†j b̂j+1 + H.c.) + U
∑

j

n̂j (n̂j − 1)/2

+V
∑

j

n̂j n̂j+1, (3)

where b̂
†
j (b̂j ) creates (annihilates) a boson at lattice site j ,

and n̂j = b̂
†
j b̂j is the corresponding boson number operator.

The nearest-neighbor boson transfer amplitude is given by t

and U (V ) parametrizes the on-site (nearest-neighbor) particle
repulsion. Assuming that the site occupation is restricted to
nj = 0, 1, or 2, with Sz

j = nj − 1 for a mean boson filling
factor ρ = N/L = 1, the system can be mapped onto an
effective spin-1 Hamiltonian,

Ĥeff
EBHM = Ĥ + Ĥ′, (4)

with the replacements J → −t , Jz → V , and D → U/2 in
Eq. (1). Ĥ′ contains further terms which breaks the particle-
hole symmetry of Ĥ [see Eq. (A1) of Ref. [19] for the explicit
form of Ĥ′]. The EBHM exhibits three insulating phases,
where the nontrivial HI phase appears in between the MI and
DW phases for intermediate couplings. The MI, HI, and DW
phases of the EBHM correspond to the EH, OH, and AFM
phases of the spin-1 model (1), respectively.

III. PHYSICAL QUANTITIES OF INTEREST

In this section we assort the quantities that can be used
to characterize the different phases and phase transitions in
the spin-1 model (1) and accordingly in the EBHM. We
furthermore explain how the quantities can be simulated using
the DMRG technique.

045121-2

8 Thesis Articles

202



COMPARATIVE DENSITY-MATRIX RENORMALIZATION . . . PHYSICAL REVIEW B 91, 045121 (2015)

A. Entanglement spectrum, von Neumann entropy,
and central charge

After Li and Haldane’s proposal [27] to characterize
topological phases by the entanglement spectrum, this has
become one of the most powerful tools to investigate the SPT
state. Dividing a system with L sites into two subblocks and
considering the reduced density matrix ρ� = TrL−�[ρ] of a
subblock of arbitrarily length �, the entanglement spectrum ξα

is obtained from the weights λα of the reduced density matrix
ρ� by

ξα = −2 ln λα. (5)

The entanglement spectrum of a subblock with � = L/2 sites
can be obtained for OBC and PBC as sketched in Figs. 1(b)
and 1(c), respectively. Thereby the artificial edges give rise
to the characteristic degeneracy of the lowest entanglement
level in the nontrivial AKLT state [displayed in Fig. 1(a)],
where the degree of degeneracy depends on the boundary
conditions. To determine the entanglement spectrum in the OH
phase with OBC, a well-known trick is in use: One simulates a
system without free edge spins by replacing the edge sites with
S = 1/2, as shown in Fig. 1(b). One then expects a doubly
degenerate lowest entanglement level in the OH phase. For
PBC, on the other hand, for the same finite system, a fourfold
degeneracy is expected due to two free S = 1/2 spins [see
Fig. 1(c)], just as for the HI phase in the EBHM [18].

The entanglement analysis provides also valuable infor-
mation about the criticality of the system. Adding up the
λα during the simulation, we have direct access to the von
Neumann entropy SL(�) = −Tr�[ρ� ln ρ�]. From conformal
field theory [28], it follows that in the case of a periodic system
the von Neumann entropy takes the form

SL(�) = c

3
ln

[
L

π
sin

(
π�

L

)]
+ s1, (6)

where s1 is a nonuniversal constant. Since the most precise
data of SL(�) are obtained when the length � of the subblock
equals half the system size L, the relation [29]

c∗(L) ≡ 3[SL(L/2 − 1) − SL(L/2)]

ln[cos(π/L)]
(7)

is much better suited for determining the central charge than
directly using the above expression for SL(�).

For the EBHM the phase boundaries can be assigned very
effectively using the (numerically determined) central charge
c∗, because the system becomes critical only at the MI-HI
(HI-DW) transition points where c = 1 (c = 1/2), and there
c∗ shows pronounced peaks [18]. Hence we adopt this method
for the spin-1 model (1) as well to pinpoint the EH-OH and
OH-AFM transition points.

B. Excitation gaps

Monitoring various excitation gaps for the EBHM, sig-
nificant features have been found at the MI-HI and HI-DW
transition points [17,19]. For example, the single-particle gap,


c = EEBHM
0 (N + 1) + EEBHM

0 (N − 1) − 2EEBHM
0 (N ), (8)

is finite in all three insulating phases, except for the MI-HI
transition point. By contrast, the neutral gap,


n = EEBHM
1 (N ) − EEBHM

0 (N ), (9)

closes at both the MI-HI and HI-DW transitions. In Eqs. (8)
and (9), EEBHM

0 (N ) and EEBHM
1 (N ) denote the energies of the

ground state and first excited state of the N -particle system for
the EBHM, respectively.

Since adding (removing) a particle in the EBHM cor-
responds to raising (lowering) the spin Sz projection in a
pseudospin model, we consider for the spin-1 XXZ model
the spin gap


s = EXXZ
0 (1) − EXXZ

0 (0), (10)

which likewise might be finite in all three phases, except for
the EH-OH transition point. As for the EBHM, the neutral gap
in the spin-1 model (1) can be defined as


n = EXXZ
1 (0) − EXXZ

0 (0), (11)

where EXXZ
0 (M) and EXXZ

1 (M) denote the ground-state
and first excited energies within the subspace M = ∑

j Sz
j ,

respectively. By analogy to the behavior of the neutral gap in
the EBHM, 
n should vanish at the EH-OH and OH-AFM
transition points for the spin-1 chain model.

C. Dynamical spin structure factor

Simulating the dynamical spin structure factor by DDMRG
is of particular importance since it might be directly com-
pared with inelastic neutron scattering experiments, e.g., on
Ni(C2H8N2)2NO2ClO4 [4]. Its zz component is defined by

Szz(k,ω) =
∑

n

∣∣〈ψn|Ŝz
k |ψ0〉

∣∣2
δ(ω − ωn), (12)

where |ψ0〉 and |ψn〉 denote the ground state and nth excited
state, respectively. The corresponding excitation energy is
ωn = En − E0. For D = 0, i.e., for the isotropic Heisenberg
or XXZ fix points of (1), Szz(k,ω) was extensively studied by
ED [30] and time-dependent DMRG [31] techniques. That
is, the behavior of Szz(k,ω) in the Haldane phase is well
known, albeit numerical results for the EH and AFM states
are rare. Taking into account the relation Sz

j = nj − ρ for the

pseudospin in the effective model Ĥeff
EBHM, one expects that the

spin structure factor Szz(k,ω) corresponds to the dynamical
density structure factor SEBHM(k,ω) in the EBHM, which
exhibits different behavior in the three insulating phases [18].

IV. NUMERICAL RESULTS

In this section we present our numerical (D)DMRG results
for the spin-1 XXZ model with and without single-ion
anisotropy. We first determine the phase boundaries and
then analyze the behavior of the excitation gaps at the
transitions between the nontrivial and trivial phases. Fur-
thermore, we discuss the entanglement spectra of an odd
Haldane phase. Finally, we simulate the dynamic spin structure
factor and compare it with the dynamical density response in
the EBHM.

In the numerics we keep up to m = 3200 density-matrix
states for the static DMRG runs, so that the discarded weight is
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L=32
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L=128

1.18 1.2
0

0.5D/J=0

OH AFM

OH AFM

FIG. 2. (Color online) Central charge c∗(L) as obtained by
DMRG for the spin-1 XXZ model with D = 0 and PBC. The
OH-AFM transition can be assigned to Jz/J = 1.186 ± 0.001 with
c = 1/2, where a pronounced peak appears [see also the magnifying
inset which shows c∗(L) close to the transition point].

typically smaller than 1 × 10−10. For the DDMRG simulations
we take m = 800, examining the ground state along the first
five DMRG sweeps, and then use m = 400 states computing
dynamical properties.

A. Phase boundaries

1. OH-AFM transition

Let us first discuss the spin-1 model (1) with D = 0. In
this case it is known that a BKT transition occurs at Jz = 0
between the XY and OH phases [32]. At Jz > 0, only an
OH-AFM transition takes place, where c = 1/2 is expected.

Figure 2 shows the central charge c∗(L), computed from
Eq. (7). If Jz/J is raised at fixed system size, the maximum in
c∗(L) sharpens at the OH-AFM transition point Jz,c1/J , and we
deduce c∗ � 0.5. The other critical point Jz,c2/J � 1.185 with
c∗ � 0.503 approximates the recent infinite-system DMRG
result Jz,c2/J = 1.186 ± 0.002 [16,33] very well already for
L = 32. The agreement becomes perfect if we increase the
system size: Jz,c2/J � 1.186 with c∗ � 0.500 for L = 128.
Note that c∗(L) stays equal to one in a relatively wide region
(from Jz/J = 0 to Jz/J � 0.3 for L = 128), indicating the
BKT transition between the XY and the OH phases at Jz/J =
0 with c = 1.

To relate our numerical results to previous ones we include
an on-site anisotropy D and compute c∗(L) in the vicinity of
the OH-AFM transition. For D/J = 0.5 the central charge
c∗(L) at fixed system size L develops again a pronounced
maximum at the OH-AFM transition point [see Fig. 3(a)]. The

1.48 1.5
Jz/J

0.4

0.45

0.5

c*

0 0.0005
1/L2

1.488

1.492

J
z,

c2
/J

(a)

(b)

1.4897

D/J=0.5

FIG. 3. (Color online) c∗(L) for D = 0.5 near the OH-AFM
transition. (b) shows that the Ising transition point Jz,c2/J (L) obtained
from c∗(L) can be linearly extrapolated to the thermodynamic limit.

deduced transition point Jz, c1/J (L) is readily extrapolated
to the thermodynamic limit [Fig. 3(b)], yielding Jz, c2/J �
1.4897, which is in reasonable agreement with the ED result
Jz,c2/J � 1.536 obtained from systems with L up to 16 [7]
and confirms recent DMRG data Jz, c2/J = 1.4905 ± 0.0015
[34].

2. EH-OH transition

We now turn to the case D > 0. In previous
works [7,32,35,36] a Gaussian transition between the EH
and OH phases has been found by employing the level
spectroscopy technique to ED results obtained for small
systems. Applying the twisted boundary conditions (TBC),
Ŝx

L+1 = −Ŝx
1 , Ŝ

y

L+1 = −Ŝ
y

1 , and Ŝz
L+1 = Ŝz

1 within DMRG,
the two lowest energy levels can be simulated accurately for
much larger system sizes than accessible to ED. Figure 4(a)
demonstrates that the two lowest energies assigned to the
EH and OH states cross at Jz, c1/J � 1.6945 by increasing
Jz/J at fixed D/J = 1.5 for L = 32 (and TBC). The critical
points Jz, c1/J (L) can be systematically extrapolated to the
thermodynamic limit by a linear fit, as indicated in Fig. 4(b).
For L → ∞ we obtain Jz, c1/J � 1.6938.

Alternatively, the EH-OH transition points can be extracted
from the central charge c∗(L) if compared with the field
theoretical prediction c = 1. This is demonstrated in Fig. 4(c).

1.68 1.72
Jz/J

-0.8

-0.78

E
/L

EH
OH

0 0.0005
1/L2

1.694

1.695
J

z,
c/

J

L=32

(a)

(b) L=32

1.5 2
Jz/J

0

0.5

1

c* L=32
L=64
L=128

D/J=1.5OH

AFM

EH(c)

g/J=0.1

FIG. 4. (Color online) (a) Jz dependence of the two lowest
energy eigenvalues at D/J = 1.5, using TBC and L = 32. Ob-
viously the energies of the OH state (squares) and the EH
state (circles) cross at the EH-OH transition point (dashed line).
(b) Critical points Jz, c1/J obtained by the level spectroscopy
technique (stars) [via the central charge (pluses)] as obtained in (a)
[(c)] vs the inverse of the system size squared at D/J = 1.5 for L

up to 128. (c) Central charge c∗ of the 1D spin-1 XXZ model (1)
with D/J = 1.5, indicating the EH-OH (OH-AFM) transition point
with c = 1 (c = 1/2). The solid line denotes the EH-OH transition
extracted from (a) and (b), which is in accordance with the position of
the maximum in c∗(L). Turning on a perturbation δĤ that breaks the
lattice-inversion symmetry, the central charge c∗(L) (solid symbols)
becomes zero for large enough system sizes (L � 64).
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Here the maxima of c∗(L) can also be extrapolated to the
thermodynamic limit [see Fig. 4(b)], where the transition point
is in excellent accord with the ones via level spectroscopy in
Figs. 4(a) and 4(b). We note that also the OH-AFM transition
can be reliably determined from the peak at Jz, c2/J � 2.138.

B. Characterization of the topological phase

In the following we analyze the signatures of the topological
OH phase and of the transition between the trivial and
nontrivial topological states for the model (1) in close analogy
to the EBHM [18]. To this end, we simulate the excitation gaps
and the entanglement spectra.

1. Excitation gaps

So far the excitation gaps of (1) have been studied mostly at
the isotropic Heisenberg point with respect to the magnitude
of the Haldane gap. At the trivial-nontrivial phase transition
points the excitation gaps should close, as demonstrated, e.g.,
for the EBHM [17,19]. Here we compute the spin and neutral
excitation gaps as defined in Sec. III B instead of calculating
the simple first excitation gap. Thereby, we adopt PBC instead
of OBC within DMRG, avoiding the use of edge spins, which
have to be adapted according to the considered parameter
region.

Figure 5(a) shows first the excitation gaps at D = 0. Upon
increasing Jz/J , the gaps open exponentially, reflecting the
BKT transition at Jz/J = 0. 
n and 
s cross each other
exactly at the Heisenberg point, Jz/J = 1, where 
n(L) =

s(L) (see the discussion about the system-size dependence
of the excitation gaps and the magnitude of the Haldane
gap for the spin-1 Heisenberg model in the Appendix). At
the OH-AFM transition (Jz, c/J � 1.186), 
n closes linearly

0 0.5 1 1.50

0.5

1

Δ
/J

(a) D/J=0

Δn

Δs

MFAHO

1.5 2 2.5
Jz/J

0

0.5

1

Δ
/J

(b)D/J=1.5

Δn
Δs

g/J=0

g/J=0.1

AFM

EH

OH

FIG. 5. (Color online) Extrapolated data for the spin gap 
s

(squares) and neutral gap 
n (open circles) as a function of Jz/J

for (a) D/J = 0 and (b) D/J = 1.5. The solid squares in (b) give 
s

with a finite inversion-symmetry-breaking perturbation g/J = 0.1
[see Eq. (2)].

because the transition belongs to the Ising universality class,
while 
s remains finite.

For D/J = 1.5 [see Fig. 5(b)], the EH-OH transition occurs
at Jz, c1/J ∼ 1.6938, where both spin and neutral gaps vanish.
Increasing Jz/J above Jz, c1/J , only 
n closes at the Ising
transition point Jz, c2/J , just as in the case of D/J = 0
[compare Figs. 5(a) and 5(b)]. If we turn on the perturbation
δĤ [see Eq. (2)], which breaks the lattice-inversion symmetry
explicitly, the EH-OH transition disappears, so that 
s stays
finite for g/J = 0.1, as shown in Fig. 5(b). Thereby, owing
to the loss of the criticality at the EH-OH transition, c∗(L)
converges to zero for large enough L, as demonstrated in
Fig. 4(c).

Comparing the behavior of the excitation gaps with those of
the EBHM [17,19], one sees that the spin (neutral) gap in the
spin-1 model (1) takes the role of the single-particle (neutral)
gap in the EBHM.

2. Entanglement spectra

Let us now analyze the entanglement properties of the topo-
logical states for intermediate single-ion anisotropy (D/J =
1.5), where both the EH-OH and OH-AFM transitions exist.
Here Pollmann et al. [10] showed that the SPT state in the
OH phase has a twofold degenerate lowest entanglement level
for the quantum spin chain model. The infinite-time evolving
block decimation procedure used by those authors gives the
entanglement spectra data directly in the thermodynamic
limit. In the following we show that when simulating the
model (1) for a finite system by conventional DMRG, this char-
acteristic degeneracy of the OH phase can also be obtained,
but the degree of the degeneracy depends on the boundary
conditions.

Figure 6 presents the entanglement spectrum ξα for the
anisotropic spin-1 XXZ model with D/J = 1.5. For a small
system (L = 64) with PBC [Fig. 6(a)] the lowest entanglement
level is fourfold degenerate only deep inside the OH phase.
This reflects the possession of the two edges for the subblock
L/2. Increasing the system size, this degeneracy is observed
for a larger region of the OH phase, as demonstrated by
Fig. 6(b) for L = 128, but close to the EH-OH transition
point the lowest entanglement level is still nondegenerate. To
overcome this drawback we apply OBC with half-spin edges
in the OH phase [cf. Fig. 1(b)]. The same procedure has been
used to estimate the magnitude of the Haldane gap at the
isotropic Heisenberg point. Figure 6(c) gives ξα for L = 128
and OBC, pointing out the twofold degeneracy of the lowest
level in the nontrivial phase and its nondegeneracy anywhere
else. The degeneracy is clearly caused by the single edge spin
of subblock L/2.

Recently it has been demonstrated for quantum spin
chains [10] and the EBHM [18] that the degeneracy of the
lowest entanglement level in the OH phase might be lifted
by turning on an inversion-symmetry-breaking term, such
as (2). Figure 7(a) [Figure 7(c)] exemplifies that the fourfold
[twofold] degeneracy with PBC [OBC] indeed dissolves for
any finite g. Thereby, the gap between the lowest levels
becomes larger as g increases—see Fig. 7(b) [Fig. 7(d)]
for PBC [OBC]. Obviously inversion symmetry protects the
Haldane phase.

045121-5

Article XX

205



SATOSHI EJIMA AND HOLGER FEHSKE PHYSICAL REVIEW B 91, 045121 (2015)

0

4

8

ξ α

ξ5

ξ4

ξ3

ξ2

ξ1

ξ0

L=64 (PBC)

(a)

0

4

8

ξ α

L=128 (PBC)

(b)

1.5 2 2.5
Jz/J

0

4

8

ξ α

L=128 (OBC)

OH AFMEH
(c)

FIG. 6. (Color online) Entanglement spectrum ξα of the 1D spin-
1 XXZ model (1) with D = 1.5. The fourfold degeneracy of the
lowest entanglement level can be taken as an indication of a nontrivial
Haldane state in the case of DMRG simulations with PBC. As the
system size increases, the degeneracy appears in the whole HI phase;
compare data for L = 64 [(a)] with those for 128 [(b)]. Using OBC
and taking spins (S = 1/2) at the edges into account, an almost
perfect double degeneracy is obtained for the OH phase even for
small systems with L = 128, as demonstrated in (c).

0
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8

ξ α

(a) g/J=0.1 (PBC) (b) g/J=0.2 (PBC)

1.8 2
Jz/J

0

4

8
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Jz/J

D/J=1.5

(c) g/J=0.1 (OBC) (d) g/J=0.2 (OBC)

L=128

FIG. 7. (Color online) Entanglement spectrum ξα if an inversion-
symmetry-breaking term is added to the spin-1 chain (1) with
D = 1.5, where g/J = 0.1 (left panels) and 0.2 (right panels). Data
obtained by DMRG with PBC (upper panels) and OBC with half-spin
edges (lower panels).

3. Multicritical point and EH-AFM transition

Raising the ratios D/J and Jz/J , the EH-OH and OH-AFM
critical lines merge at the multicritical point (Jz,mc/J , Dmc/J ).
Above this point, i.e., for Jz > Jz,mc and D > Dmc, a direct
EH-AFM transition is expected to occur, as pointed out
by den Nijs and Rommeles [26]. This has been confirmed
numerically by ED, yielding (Jz,mc,Dmc) ≈ (3.2,2.9) [7]. It
is challenging to determine this multicritical point more
precisely, but the entanglement analysis outlined above seems
to be a powerful tool. Obviously, for fixed values D > Dz,mc,
the lowest entanglement level is nondegenerate for the whole
parameter regime of Jz/J including the EH-AFM transition
point, while for D < Dmc the lowest entanglement level
should be degenerate for a very narrow but finite parameter
region of Jz/J . In fact, the double degeneracy can still be
observed at D/J = 2.88 by large-scale DMRG simulations
with L = 1024 and OBC [see Fig. 8(a)]. If D/J is increased
slightly, the degeneracy is lifted for L = 1024 [see Fig. 8(b)
for D/J = 2.9], but from the results presented we cannot
derive a definite conclusion about what happens for L → ∞.
Figure 8(c) indicates that degeneracy disappears already at
D/J = 2.92. In this way the ED results regarding the existence
of the multicritical point is corroborated by our more precise
entanglement spectra analysis, yielding (Jz,mc/J,Dmc/J ) =
(3.196 ± 0.02,2.90 ± 0.02).
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FIG. 8. (Color online) Entanglement spectrum ξα for (a) D/J =
2.88, (b) 2.90, and (c) 2.92 close to the EH-OH-AFM multicritical
point with L = 1024 and OBC, showing the disappearance of the
double degeneracy of the lowest entanglement levels.
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FIG. 9. (Color online) Central charge c∗ of the 1D spin-1 XXZ

model (1), (a) near the multicritical point Dmc/J and (b) across the
first-order EH-AFM transition for D/J = 3.7. The dashed line in (b)
denotes the EH-AFM transition point D/J � 3.9446 according to
Ref. [33].

Certainly it is of great interest to look at the behavior of
the central charge at the multicritical point. Here the central
charge might be c = 1 + 1/2 = 3/2 because BKT- and Ising-
transition lines merge. Figure 9(a) displays the numerically
obtained central charge c∗(L) for fixed values of D/J in the
vicinity of the multicritical point. We see that c∗(L) is always
smaller than 3/2 and decreases with increasing system size L.
Unfortunately, the system-size dependence of c∗(L) is much
stronger than those, e.g., at D/J = 1.5, in Fig. 4; so it turns out
that even L = 128 is not large enough to precisely determine
the value of the central charge. Maybe the use of the infinite-
system DMRG [16] can resolve this problem.

Increasing D/J further, a quantum phase transition occurs
between EH and AFM phases. A discontinuous staggered
magnetization suggests that this transition is of first order [7].
Quite recently, this was corroborated by analyzing the energy
level crossing [33]. The numerically determined central charge
c∗(L) at D/J = 3.7 yields a further signature of the first-order
transition [see Fig. 9(b)]. For small system sizes (L = 32), c∗
shows a peak at Jz/J � 3.945, in accord with the EH-AFM
transition point in Ref. [33]. With increasing the system size
L, c∗ decreases drastically and becomes already zero for
L = 128, which confirms the results of former studies [7,33].

C. Ground-state phase diagram

Figure 10 displays the DMRG ground-state phase diagram
of the spin-1 XXZ model with single-ion anisotropy. The
EH-OH and OH-AFM phase boundaries can been derived from
central charge c∗, as explained above: Again we obtain a very
good agreement with former ED and DMRG data [7,34]. Most
notably, the nontrivial OH phase appears in between the trivial
EH and AFM phases, just as the topological HI phase develops
between the MI and DW phases in the EBHM. Therefore, we
have included in Fig. 10 the phase boundaries of the MI-
HI and HI-DW transitions for the EBHM with nb = 2 (taken
from Ref. [18]). Qualitatively, the phase diagram of the spin-1
model looks quite similar to those of the EBHM, except for

0 1 2 3
Jz/J (V/t)

0

1

2

3

D
/J

(U
/2

t)

EH (MI)

OH (HI) AFM (DW)

c=
1

c=
1/

2

FIG. 10. (Color online) DMRG ground-state phase diagram of
the 1D spin-1 XXZ model with single-ion anisotropy (1). Shown
are the even Haldane (EH), odd Haldane (OH), and antiferromag-
netic (AFM) phases. The EH-OH (squares) and OH-AFM (circles)
transition points are determined from the central charge c = 1 and
c = 1/2, respectively, which was extracted from the von Neumann
entropy via Eq. (7). The EH-OH transition line was confirmed by
a careful finite-size scaling of the two low-lying energy levels with
TBC. The solid diamond gives the EH-OH-AFM multicritical point
determined from the entanglement analysis. Error bars are smaller
than symbols. The dashed (dotted) line denotes the MI-HI (HI-DW)
transition in the EBHM with nb = 2 bosons per site (taken from
Ref. [18]).

the existence of the superfluid (SF) phase in the EBHM (not
shown). Quantitatively, the topological phase of the EBHM
captures a larger region in parameter space than the OH phase,
however. This might be caused by the particle-hole symmetry-
breaking term Ĥ′ in Eq. (4).

D. Dynamical structure factor

Let us finally discuss the spin dynamical properties of the
spin-1 XXZ model.

Figure 11 reveals our DDMRG results for Szz(k,ω) obtained
for the spin-1 model (with anisotropy D/J = 1.5) inside the
three insulating phases, as well as at the quantum phase
transition points in between. In the EH phase, at Jz/J = 1,
most of the spectral weight is concentrated in the momentum
range π/2 < k < π [see Fig. 11(a)]. The excitation gap
appears at k ≈ 0. The dispersion of the maximum in Szz(k,ω)
behaves cosinelike for small-to-intermediate momenta, and
is flattened close to the Brillouin zone boundary (above k �
3π/4). With increasing Jz/J , the EH-OH transition occurs
at Jz/J = Jz,c1/J � 1.694, where the excitation gap closes
at the momentum k = 0, as shown in Fig. 11(b). Deep in the
Haldane phase, the situation changes drastically [see Fig. 11(c)
for Jz/J = 1.9]. Now the dispersion of the maximum in
Szz(k,ω) takes a sinelike form. Again there are finite excitation
gaps at k = 0 (Haldane gap) and π . This resembles the
behavior found at the isotropic Heisenberg point [30]. Here the
spectral weight exclusively concentrates at k ≈ π and finite but
small ω � J . We finally ask whether the gap in Szz(k,ω) again
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FIG. 11. (Color online) Intensity plots of the dynamical structure factor Szz(k,ω) for (a) Jz/J = 1, (b) Jz/J = 1.694 � Jz,c1/J , (c)
Jz/J = 1.9, (d) Jz/J = 2.138 � Jz,c2/J , and (e) Jz/J = 3. Data are obtained by the DDMRG technique for L = 64, using PBC and a
Lorenzian broadening η = 0.1t . Crosses give the maximum value of Szz(k,ω) at fixed momenta k = 2πj/L with j = 1, . . . ,L/2.

closes at the OH-AFM transition if Jz/J is increased further.
Figure 11(d) shows that the gap indeed closes, at Jz/J = 2.138
(�Jz,c2/J ), but this time at momentum k = π , reflecting the
lattice-period doubling in the AFM phase. Obviously, Szz(k,ω)
follows the behavior of the neutral gap 
n shown in Fig. 5. In
the AFM phase [see Fig. 11(e) with Jz/J = 3], the dispersion
becomes flattened with a large excitation gap that opens at
k = π , however. That is, the dynamical spin structure factor
shows a distinct behavior in each phase of the spin-1 model
with single-ion anisotropy. Interestingly, the results obtained
in the EH, OH, and AFM phases are similar to those for the MI,
HI, and DW phases of the 1D EBHM [18]. This corroborates
that the spin-1 model can be taken as an effective model for
the EBHM with nb = 2.

V. SUMMARY

We studied the topological properties of the anisotropic
spin-1 XXZ model with single-ion anisotropy in close analogy
to a recent investigation of the extended Bose-Hubbard model
(EBHM) with a nearest-neighbor repulsion [18]. The focus
was on the nontrivial Haldane phase as well. The phase
boundaries between trivial phases [even Haldane (EH) and
AFM phases] and nontrivial odd Haldane (OH) phase were
determined numerically with high precision via the central
charge. The ground-state phase diagram resembles those of the
restricted EBHM with a maximum number of bosons per site
nb = 2, but the topological phase takes a much narrower region
in the parameter space. Simulating the spin and neutral gaps,
which correspond to the single-particle respectively neutral
gaps in the EBHM, we confirmed the closing of the gap at the
trivial-nontrivial quantum phase transition as for the EBHM.

The degeneracy of the lowest entanglement level in the OH
phase could be observed by finite-system DMRG calculations
with both periodic (P) and open (O) boundary conditions (BC).
With PBC the lowest level in the entanglement spectrum is
fourfold degenerate in the OH phase; notably, the system-
size dependence of the results is much stronger than for
OBC. Adopting half spins (S = 1/2) at the open edges, the
twofold degeneracy corresponding to a single artificial edge
in the entanglement calculations can be detected easily. This
degeneracy will be lifted turning on a finite perturbation that

breaks the inversion symmetry of the lattice, independently
from the BC used.

We furthermore used the dynamical DMRG technique to
examine the dynamical spin structure Szz(k,ω) which mimics
the dynamical density fluctuations in the EBHM. In the
topological S = 1 OH phase a sinus-shaped dispersion was
observed for finite anisotropy D just as for the isotropic
Heisenberg model and the Haldane-insulator state of the
EBHM. Moreover, Szz(k,ω) shows a significant different
momentum and energy dependence in three different gapful
phases for both the spin-1 model and the EBHM. We finally
note that the influence of the particle-hole symmetry-breaking
term Ĥ′ in Eq. (4) on the properties of the constrained EBHM
is almost negligible, not only for static but also for dynamical
quantities.
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APPENDIX: HALDANE GAP

After Haldane’s conjecture about the finite excitation gaps
for integer-spin chains [1], it was a challenging issue to
estimate these so-called Haldane gaps numerically (note that
even the spin-1 XXZ Heisenberg chain is not integrable).
White presented the first accurate DMRG results for the
Haldane gap [20], and subsequently a series of more elaborated
DMRG [21,38,40], quantum Monte Carlo (QMC) [37], and
ED [39] studies have been performed. However, only OBC
have been used within the DMRG framework so far, mainly
because of the smaller computational costs. In this Appendix,
we demonstrate—at least for the spin-1 Heisenberg model—
that the Haldane gap can also be determined using PBC, and
the system-size dependence of the gap is much smaller than
those with OBC adopting the half-spin edges [cf. Fig. 1(b)].
Hence any finite-size scaling is needless.

Figure 12 presents the finite-size extrapolation of the
corresponding spin and neutral excitation gaps, as defined in
Sec. III B, for both OBC and PBC. The spin and neutral gaps
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FIG. 12. (Color online) Finite-size scaling of the excitation gaps
at the Heisenberg point (D = 0 and Jz/J = 1).

become equal (
) only at the Heisenberg point for D = 0
[cf. Fig. 5(a)]. Computing 
 for systems with up to L = 512
sites and OBC, we can extrapolate the results to the ther-
modynamic limit and obtain 
 = 0.410 50(3) (in agreement
with Ref. [38]). On the other hand, the first excitation gaps

 = 0.410 479 24(4) obtained with PBC and up to m = 4800
density-matrix states show almost no finite-size dependence;

TABLE I. First excitation gap 
 in the spin-1 XXZ chain as
obtained by QMC, ED, and DMRG for a system size L, at temperature
T , using the specified boundary conditions BC.

Method L 
 T BC

QMC [37] 128 0.41048(6) 0.015625 PBC
DMRG [38] 120 0.41050(2) 0 OBC
ED [39] 24 0.41047(8) 0 TBC
DMRG [40] 2048 0.4104792485(4) 0 OBC
DMRG (this work) 96 0.4104792(7) 0 PBC
DMRG (this work) 128 0.41047924(4) 0 PBC

see also the raw data for L = 96 and L = 128 in Table I.
This value is very close to the (low-temperature) QMC [37]
and ED [39] results and shows a perfect agreement with the
very recent non-Abelian DMRG data with OBC [40]. Let us
emphasize that although the accessible system size is rather
limited for PBC, 
 for PBC is always lower than for OBC.
Most notably, the system-size dependence is almost negligible
(for enough large L), so that sophisticated extrapolation
techniques or the use of special boundary conditions [39,40]
are no longer mandatory for analyzing the Haldane gap in
spin-1 chains.

[1] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[2] W. J. L. Buyers, R. M. Morra, R. L. Armstrong, M. J. Hogan,

P. Gerlach, and K. Hirakawa, Phys. Rev. Lett. 56, 371 (1986).
[3] J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C. Erkelens,

J. Rossat-Mignod, and W. G. Stirling, Europhys. Lett. 3, 945
(1987).

[4] S. Ma, C. Broholm, D. H. Reich, B. J. Sternlieb, and R. W.
Erwin, Phys. Rev. Lett. 69, 3571 (1992).

[5] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.
Lett. 59, 799 (1987).

[6] T. Kennedy and H. Tasaki, Phys. Rev. B 45, 304 (1992).
[7] W. Chen, K. Hida, and B. C. Sanctuary, Phys. Rev. B 67, 104401

(2003).
[8] K. Nomura, J. Phys. A 28, 5451 (1995).
[9] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).

[10] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.
Rev. B 81, 064439 (2010).

[11] T. Tonegawa, K. Okamoto, H. Nakano, T. Sakai, K. Nomura,
and M. Kaburagi, J. Phys. Soc. Jpn. 80, 043001 (2011).

[12] K. Okamoto, T. Tonegawa, H. Nakano, T. Sakai, K. Nomura,
and M. Kaburagi, J. Phys.: Conf. Ser. 302, 012014 (2011).

[13] K. Okamoto, T. Tonegawa, H. Nakano, T. Sakai, K. Nomura,
and M. Kaburagi, J. Phys.: Conf. Ser. 320, 012018 (2011).

[14] Y.-C. Tzeng, Phys. Rev. B 86, 024403 (2012).
[15] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys.

Rev. B 85, 075125 (2012).
[16] J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson, and

F. Pollmann, Phys. Rev. B 87, 235106 (2013).
[17] E. G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev. Lett. 97,

260401 (2006).

[18] S. Ejima, F. Lange, and H. Fehske, Phys. Rev. Lett. 113, 020401
(2014).

[19] E. Berg, E. G. Dalla Torre, T. Giamarchi, and E. Altman, Phys.
Rev. B 77, 245119 (2008).

[20] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[21] S. R. White, Phys. Rev. B 48, 10345 (1993).
[22] E. Jeckelmann and H. Fehske, Riv. Nuovo Cimento 30, 259

(2007).
[23] E. G. D. Torre, J. Phys. B: At. Mol. Opt. Phys. 46, 085303

(2013).
[24] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
[25] H. J. Schulz, Phys. Rev. B 34, 6372 (1986).
[26] M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).
[27] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
[28] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[29] S. Nishimoto, Phys. Rev. B 84, 195108 (2011).
[30] M. Takahashi, Phys. Rev. B 50, 3045 (1994).
[31] S. R. White and I. Affleck, Phys. Rev. B 77, 134437 (2008).
[32] A. Kitazawa, K. Nomura, and K. Okamoto, Phys. Rev. Lett. 76,

4038 (1996).
[33] G.-H. Liu, W. Li, W.-L. You, G. Su, and G.-S. Tian, Physica B

443, 63 (2014).
[34] H. Ueda, H. Nakano, and K. Kusakabe, Phys. Rev. B 78, 224402

(2008).
[35] A. Kitazawa and K. Nomura, J. Phys. Soc. Jpn. 66, 3379 (1997).
[36] A. Kitazawa and K. Nomura, J. Phys. Soc. Jpn. 66, 3944 (1997).
[37] S. Todo and K. Kato, Phys. Rev. Lett. 87, 047203 (2001).
[38] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
[39] H. Nakano and A. Terai, J. Phys. Soc. Jpn. 78, 014003 (2009).
[40] H. Ueda and K. Kusakabe, Phys. Rev. B 84, 054446 (2011).

045121-9

Article XX

209





Ising Deconfinement Transition between Feshbach-Resonant Superfluids
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We investigate the phase diagram of bosons interacting via Feshbach-resonant pairing interactions in a

one-dimensional lattice. Using large scale density matrix renormalization group and field theory

techniques we explore the atomic and molecular correlations in this low-dimensional setting. We provide

compelling evidence for an Ising deconfinement transition occurring between distinct superfluids and

extract the Ising order parameter and correlation length of this unusual superfluid transition. This is

supported by results for the entanglement entropy which reveal both the location of the transition and

critical Ising degrees of freedom on the phase boundary.

DOI: 10.1103/PhysRevLett.106.015303 PACS numbers: 67.85.Hj, 05.30.Rt, 67.85.Fg

The ability to cool atoms to low temperatures, and
control their interactions, has revolutionized the study of
quantum many body systems. Important achievements in-
clude realizations of Bose-Einstein condensation (BEC),
Bardeen-Cooper-Schrieffer (BCS) pairing in Fermi gases,
and strongly correlated Mott insulators (MIs). In this de-
velopment, the BEC-BCS crossover between a gas of
tightly bound molecules and weakly bound Cooper pairs
has played an instrumental role, and it has been widely
explored using Feshbach resonances to induce pairing.
This has led to diverse studies of the condensate fraction,
single-particle gap, collective excitations, and vortices, and
to pioneering approaches to molecular quantum chemistry.
For a review see Ref. [1].

In recent work [2–6] it has been argued that the BEC-
BCS ‘‘crossover’’ for bosons is strikingly different from
the fermionic case since the atoms as well as molecules
may undergo Bose-Einstein condensation. These studies
have raised the exciting possibility of an Ising quantum
phase transition between distinct molecular (MC) and
atomic plus molecular (ACþMC) condensates. In addi-
tion to discrete Z2 symmetry breaking, this transition has a
topological character and may be viewed as a confinement-
deconfinement transition for vortices.

The principal aim of this Letter is to establish the
presence of such novel Z2 transitions in 1D bosonic
Feshbach systems, where strong quantum fluctuations de-
stabilize long-range superfluid order. We combine large
scale density matrix renormalization group (DMRG) [7]
and field theory techniques to provide compelling evidence
for Ising behavior. We elucidate a full characterization of
the scaling regime and the proximate phases. Our results
demonstrate that an Ising transition survives at strong
coupling and large densities where field theory arguments
are no longer justified. For related transitions in the attrac-
tive Bose-Hubbard model with three-body losses, see

Refs. [8,9], and for analogues involving multicomponent
fermions, see [10,11].
We consider the Hamiltonian [4,6,12]

H ¼ X
i�

��ni� �X
hiji

X
�

t�ðbyi�bj� þ H:c:Þ

þ X
i��0

U��0

2
: ni�ni�0 :þHF; (1)

describing bosons bi� hopping on a lattice with sites i,
where � ¼ a;m labels atoms and molecules. Here, �� are
on-site potentials, t� are hopping parameters, hiji denotes
summation over nearest neighbor bonds, and U��0

are interactions. Normal ordering yields : ni�ni� :¼
ni�ðni� � 1Þ for like species and : ni�ni�0 :¼ ni�ni�0 for
distinct species. Molecules are formed by the Feshbach

term, HF ¼ g
P

iðmy
i aiai þ H:c:Þ, where mi � bim and

ai � bia. Atoms and molecules are not conserved, but
the total, NT � P

iðnia þ 2nimÞ, is preserved.
To orient the discussion, we present a section of the

phase diagram in Fig. 1, with parameters chosen for com-
parison with previous studies [6]. In this Letter we use
DMRG on a 1D system with up to L ¼ 512 sites and adopt
units where ta ¼ 1. We allow up to five atoms and five
molecules per site and retain up to m� ¼ 2400 states in

the density matrix so that the discarded weight is less than
1� 10�10. The phase boundaries correspond to the vanish-
ing of the one-particle and two-particle excitation gaps,
E1g � �1pðLÞ ��1hðLÞ and E2g � �2pðLÞ ��2hðLÞ, re-
spectively, where �npðLÞ ¼ E0ðL;NT þ nÞ � E0ðL;NTÞ,
�nhðLÞ ¼ E0ðL;NTÞ � E0ðL;NT � nÞ, and E0 is the
ground state energy. The diagram shows a MI with gaps
for both excitations E1g � 0 andE2g � 0, a MC phasewith

a one-particle gap E1g � 0 and E2g ¼ 0, and a coupled

atomic plus molecular condensate (ACþMC) with
E1g ¼ 0 and E2g ¼ 0. In contrast to the qualitative
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diagram in Ref. [6], inferred from quantum Monte Carlo
simulations on smaller systems, we find no evidence for a
single-component AC phase. This is in accord with expec-
tations in higher dimensions [2]. As we will discuss, this is
supported by direct evaluation of correlation functions
using both DMRG and field theory. Throughout the
ACþMC phase we find power laws for atoms and mole-
cules with related exponents; see inset of Fig. 1. The
conclusions of Ref. [6] are hampered by the slow diver-
gence of the associated zero-momentum molecular occu-
pation number with increasing L, close to the MI boundary.
This also afflicts the molecular visibility. Here, our focus is
on the transition between the MC and ACþMC super-
fluids. We begin with symmetry arguments and field theory
predictions before comparison with DMRG.

An intuitive way to understand the origin of the pro-
posed Ising transition between the MC and ACþMC
phases is via the symmetry of the Hamiltonian (1) under
Uð1Þ � Z2 transformations. This corresponds to invariance

under m ! ei�m and a ! eið�=2��Þa, where � 2 R. In
general these symmetries may be broken independently.
Before discussing the problem in 1D, where continuous
Uð1Þ symmetry breaking is absent, let us first recall the
situation in higher dimensions [2]. In this case, the MC
phase has hmi � 0 and hai ¼ 0. This only breaks the Uð1Þ
contribution and leaves the Z2 symmetry, a ! �a, intact;
this corresponds to the disordered phase of an Ising model,
coexisting with molecular superfluidity. On the other hand,
the coupled atomic plus molecular condensate (ACþMC)

phase has hmi � 0 and hai � 0. This breaks theUð1Þ � Z2

symmetry completely and corresponds to the ordered
phase of an Ising model, coexisting with atomic and mo-
lecular superfluidity. Returning to the present 1D problem,
where continuous Uð1Þ symmetry breaking is absent, the
spontaneous formation of expectation values hai and hmi is
prohibited. Instead, superfluid order is characterized by
long-range power law correlations, and the nature of the
phases and transitions in Fig. 1 requires closer inspection.
Owing to the Uð1Þ � Z2 symmetry of the Hamiltonian,

the low energy Lagrangian of the MC to ACþMC tran-
sition is given by L ¼ L# þL� þL#� [2,3], where

L # ¼ K#

2
½c�2

# ð@�#Þ2 þ ð@x#Þ2� (2)

is a Uð1Þ invariant free scalar field, and

L � ¼ K�

2
½c�2

� ð@��Þ2 þ ð@x�Þ2� � 	�2 þ 
�4 (3)

is an Ising model in the soft-spin �4 representation. The
coupling,L#� ¼ i�2@�#=2, has a similar form to a Berry

phase [2,3]. A similar action also emerges for quantum
wires [13]. In the following we neglect L#� and examine

the reduced theory. Within mean field theory, L#� �
ih�i2@�#=2 acts like a boundary term, and this is expected
to provide a good description of the proximate phases.
Near the transition, this cannot be neglected a priori, and
L#� may change the behavior on very large length scales

and in other regions of the phase diagram [13].
Nonetheless, we find excellent agreement with bulk prop-
erties. The parameters K# , c# , K�, c�, 	, 
 are related to

the coefficients of H. Atoms and molecules are described
by the semiclassical number-phase relations, m� ffiffiffiffiffiffiffi

�m
p

ei#

and a��ei#=2, where �m is the molecular density. We
will explore the consequences of this correspondence in
1D, for local observables and correlations.
Let us first gather consequences of this correspondence

for local observables. Deep within the Z2 disordered MC
phase, 	 � 0 and h�ðxÞi ¼ 0. However,�2ðxÞmay have a
nonzero average. It follows that the densities of atoms and
molecules, hayðxÞaðxÞi � h�2ðxÞi and hmyðxÞmðxÞi � �m,
are generically nonzero in both the ACþMC and MC
phases. In addition, hmyðxÞaðxÞaðxÞi � ffiffiffiffiffiffiffi

�m
p h�2ðxÞi ac-

quires true long-range order, even in this 1D setting; HF

locks the atomic and molecular condensates as encoded in
the number-phase relations. However, this local average is
naively insensitive to the Z2 transition due to invariance
under a ! �a. Insight is better gleaned from correlations.
It follows from the relation m� ffiffiffiffiffiffiffi

�m
p

ei# that the

molecular correlation function hmyðxÞmð0Þi �
�mhe�i#ðxÞei#ð0Þi � x��m decays like a power law, where
�m ¼ 1=2�K# varies throughout the phase diagram.
In contrast, the behavior of the atomic

correlations, hayðxÞað0Þi � h�ðxÞ�ð0Þihe�i#ðxÞ=2ei#ð0Þ=2i�
h�ðxÞ�ð0Þix��m=4, depends on the Ising prefactor. We
consider the disordered and ordered phases in turn.

0

1

2

3

1 
/ U

-10 -8 -6 -4 -2 0 2 4

FIG. 1 (color online). Phase diagram of the 1D Hamiltonian
(1) with total density �T ¼ NT=L ¼ 2, showing a Mott insulator
(MI), a molecular condensate (MC), and a coupled atomic plus
molecular condensate (ACþMC). We use DMRG with up to
L ¼ 128 and open boundaries, with �a ¼ 0, Uaa=2 ¼ Umm=2 ¼
Uam ¼ g ¼ U, ta ¼ 1, tm ¼ 1=2. The squares and circles in-
dicate the vanishing of the one-particle and two-particle gaps,
E1g and E2g, as L ! 1. The crosses show where the molecular

correlation exponent �m reaches unity. Inset: ACþMC to MI
transition at �m ¼ 4. The atomic and molecular exponents, �a

and �m, are locked up to the MI boundary where �m ¼ 1,
indicating the absence of an AC phase.
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In the Z2 disordered MC phase, the atomic correlation
function decays exponentially with a power law prefactor,

hayðxÞaðxÞi � x��m=4K0ðx=�Þ � x�1=2��m=4e�x=�. Here we
use the result for the hard-spin Ising model, h�ðxÞ�ð0Þi �
K0ðx=�Þ, where K0 is a modified Bessel function and � is
the Ising correlation length [14]. On the other hand, pairs
of atoms condense and exhibit power law correlations,
hayðxÞayðxÞað0Það0Þi � h�2i2x��m , with the same expo-
nent as the molecular two-point function �m. That is to
say, the MC phase is a pairing phase of bosons without
single-particle condensation [15]. In order to test these
weak coupling predictions we perform DMRG on the 1D
Hamiltonian (1). As predicted, this behavior is well sup-
ported by our simulations in Fig. 2(a), which reveal iden-
tical power laws for molecules and atomic bilinears, with
exponential decay for atoms. This behavior extends
throughout the MC phase, including the Mott boundary
in the strongly coupled regime.

In contrast, in the Z2 ordered ACþMC phase, both
molecules and atoms have power law correlations,
hmyðxÞmð0Þi � x��m , hayðxÞað0Þi � h�i2x��a , with locked
exponents, �m ¼ 4�a, that differ by a factor of 4 [2,3].
Again, these features are readily seen from our large scale
DMRG simulations in Fig. 2(b) and the inset of Fig. 1.
Likewise, this behavior persists into the strong coupling
limit, where the field theory approach no longer strictly
applies. In particular, we have checked that the molecular
correlation function, hmyðxÞmð0Þi � x��m , remains a

power law throughout the ACþMC phase and close to
the Mott boundary in Fig. 1. This is consistent with the
absence of an AC phase [2] in contrast to Ref. [6]. The
latter employ the zero-momentum occupation nð0Þ.
However, the Fourier transform of x�� gives nð0Þ �
constþ constL1��; close to the MI where �m ¼ 1, one
may miss the slow divergence of nmð0Þ.
Having established a close connection between field the-

ory andDMRG for theMCandACþMC phases, let us now
examine the transition. A key diagnostic is the central charge
c, which counts critical degrees of freedom. This may be
obtained from the entanglement entropy. For a block of
length l in a periodic system of length L, the von Neumann
entropy is given by SLðlÞ ¼ �Trlð�l ln�lÞ, where �l ¼
TrL�lð�Þ is the reduced density matrix. One obtains [16]

SLðlÞ ¼ c

3
ln

�
L

�
sin

�
�l

L

��
þ s1; (4)

where s1 is a constant. As may be seen in Fig. 3, the
numerically extracted central charge of the MC phase yields
c ¼ 1, as one would expect for a free boson, with coexisting
gapped degrees of freedom. In addition, theACþMC phase
also has c ¼ 1. Note that it is not c ¼ 2 as would be the case
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FIG. 2. Correlation functions using DMRG with L ¼ 128 and
open boundaries. We use the parameters in Fig. 1 with U ¼ 0:7.
(a) Z2 disordered MC phase with �m ¼ �4, revealing power
laws for molecules and atomic bilinears with the same exponent;
the fits are y ¼ 0:858x�0:1922 and y ¼ 0:130x�0:1909.
Inset: Atomic correlations decay exponentially. We fit to the
prediction hayðxÞað0Þi � x��m=4K0ðx=�Þ, where we input �m

from (a) and extract � � 9:28. This establishes MC as a pairing
phase without atomic condensation. (b) Z2 ordered ACþMC
phase with �m ¼ �3. Atoms and molecules exhibit power law
exponents locked by a factor of 4; the fits are y ¼ 0:667x�0:1827

and y ¼ 0:657x�0:0456.
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FIG. 3 (color online). Top: Entanglement entropy SLðlÞ ob-
tained by DMRG in a periodic system with L ¼ 64. We transit
through the AC to ACþMC transition in Fig. 1 with U ¼ 0:7.
The fits to Eq. (4) yield c � 1 in the MC and ACþMC phases,
and c � 3=2 close to the transition. This reflects additional
critical Z2 degrees of freedom. Because of the asymptotic nature
of Eq. (4), high quality fits are obtained from the central region
away from the boundaries. Bottom: Entanglement entropy dif-
ference �SðLÞ showing an Ising transition at �m � �3:8 for
U ¼ 0:7, in agreement with Fig. 1. The solid lines are spline fits.
Inset: �S on passing through the ACþMC to MI transition at
�m ¼ 4, suggesting an XY transition with c ¼ 1.

PRL 106, 015303 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 JANUARY 2011

015303-3

Article XXI

213



for two independent Luttinger liquids. This reflects the
coupled nature of the atomic and molecular condensates in
theACþMC phase,with additional gapped Ising degrees of
freedom; the Feshbach term is relevant and drives the Z2

sector massive. Close to the MC to ACþMC transition,
where the anticipated Ising gap closes, one expects the
central charge to increase to c ¼ 3=2, due to additional
critical Ising degrees of freedom with c ¼ 1=2. This is con-
firmedbyDMRG inFig. 3. Further evidence is obtained from
the difference [17], �SðLÞ � SLðL=2Þ � SL=2ðL=4Þ ¼ c

3 �
lnð2Þ þ 	 	 	 , as a function of �m; see Fig. 3. For a givenL this
displays a peak, whose location coincides with the MC to
ACþMC transition obtained via the single-particle gap in
Fig. 1. The evolution with increasing L is consistent with the
passage towards c ¼ 1 in the superfluid phases and c ¼ 3=2
in the vicinity of the transition. Application of this method to
the MI to superfluid transitions [4] yields c ¼ 1 close to the
MI boundary, suggesting XY behavior; see inset of Fig. 3.
The absence of criticality within the MI phase is evidence
against a super-Mott state [6] and correlations decay expo-
nentially [12,18].

Having provided evidence for a Z2 superfluid transition,
we now extract the Ising correlation length � and order
parameter h�i via finite size scaling of the atomic and
molecular correlations. Because of the absence of particle
conservation, and the presence of additional superfluid
degrees of freedom, these cannot be readily obtained
from the energy spectra alone. Ising scaling close to the

transition implies that ��1 � jM�Mcj and h�i �
jM�Mcj1=8, where M is a mass scale parametrizing
the departure from criticality. We identify the molecular
density, M� �m, as the appropriate scaling variable. As
shown in Fig. 4, the DMRG results are in excellent

agreement with Ising critical exponents. This is nontrivial
since the Ising degrees of freedom are nonlocal with re-
spect to the atoms and molecules themselves.
In summary, we have studied bosons interacting via

Feshbach interactions in a 1D lattice. We provide evidence
for an Ising quantum phase transition between distinct
superfluids. We extract both the Z2 order parameter h�i
and the Ising correlation length �. It would be interesting to
see if this Z2 transition may be driven first order and the
effect of higher bands [19]. One may also consider ZN

transitions involving N-particle pairing.
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We explore the zero-temperature phase diagram of bosons interacting via Feshbach resonant pairing interactions
in one dimension. Using DMRG (density matrix renormalization group) and field theory techniques we
characterize the phases and quantum phase transitions in this low-dimensional setting. We provide a broad
range of evidence in support of an Ising quantum phase transition separating distinct paired superfluids, including
results for the energy gaps, correlation functions, and entanglement entropy. In particular, we show that the
Ising correlation length, order parameter and critical properties are directly accessible from a ratio of the atomic
and molecular two-point functions. We further demonstrate that both the zero-momentum occupation numbers
and the visibility are in accordance with the absence of a purely atomic superfluid phase. We comment on the
connection to recent studies of boson pairing in a generalized classical XY model.
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I. INTRODUCTION

The rapid progress in manipulating ultracold atomic gases
has led to new approaches to strongly interacting quantum
systems. This includes the properties of highly correlated states
of matter, such as Bose-Einstein condensates (BECs) [1,2],
Mott insulators [3], and supersolids [4]. It also allows access to
the phase transitions and crossovers between these fascinating
phases. In the last few years, the BEC-BCS crossover [5–8]
between a molecular BEC and a Bardeen-Cooper-Schrieffer
(BCS) pairing state, has stimulated a wealth of experimental
activity using fermionic atoms [9–16]. This has been achieved
through the use of Feshbach resonances, which enable one to
control the strength of pairing interactions using a magnetic
field. This has not only opened the door to central problems
in condensed matter physics, but also offers insights into
the quantum chemistry of molecule formation and chemical
reactions [17].

In tandem with these advances, Feshbach resonances
and molecule formation have also been studied in bosonic
systems [18–26]. Recent experiments have been performed
both in optical traps [27–29] and in optical lattices [30];
for a review see Ref. [31]. On the theoretical side, the
BEC-BCS “crossover” problem for bosons has also been
investigated in the continuum limit [32–34] and on the lattice
[35–40]. The problem differs markedly from the fermionic
case since the carriers themselves may Bose condense. This
leads to the possibility of an Ising quantum phase transition
occurring between distinct paired superfluids [32–34]. The
phases are distinguished by the presence or absence of carrier
condensation, and the associated quantum phase transition
involves discrete Z2 symmetry breaking. Closely related
phases and quantum phase transitions have also been observed
in multicomponent fermion systems [41–44], and in the
attractive Bose-Hubbard model with a restricted three particle
Hilbert space [45–51]. There are also magnetic analogs in
quantum spin chains [52]. More recently, the phenomenon
of boson pairing has also been explored in the context of a
generalized classical XY model with two competing harmonics

in the periodic interactions [53–56]. This has led to the
prediction of a novel phase diagram with unusual criticality.

Motivated by the possibility of stabilizing pairing phases of
bosons [57–62] in cold atomic gases, we recently investigated
the bosonic Feshbach resonance problem in one dimension
(1D) [63]. We employed large scale DMRG (density matrix
renormalization group) [64] and field theory techniques [63] in
order to incorporate the effects of enhanced quantum fluctua-
tions in 1D. Among our findings, we presented compelling
evidence for an Ising quantum phase transition separating
distinct superfluids.1 The aim of the present manuscript is
to shed further light on this novel transition, and to provide a
thorough discussion of the superfluid phases in this 1D setting.
In particular, we describe a variety of methods to extract the
Ising characteristics from the gapless superfluid background.
We also provide a quantitative finite-size scaling analysis of
the zero-momentum occupation numbers and the visibility.
Our results are consistent with the absence of a purely atomic
superfluid phase with noncondensed molecules, in contrast to
the earlier suggestions of Refs. [37,38].

The layout of this paper is as follows. In Sec. II we
present the Hamiltonian under investigation and in Sec. III
we discuss the phase diagram. In Sec. IV we describe the
associated field theory and gather our predictions for a variety
of local expectation values and correlation functions. We
use these results to characterize the different phases and to
establish a detailed comparison with DMRG. In Sec. V we
provide a quantitative account of the finite-size scaling of the
zero-momentum occupation numbers and the visibility. We
contrast our results with those of Refs. [37,38]. In Sec. VI
we discuss the behavior of the entanglement entropy and
the emergence of Ising criticality at the transition between
the distinct paired superfluids. We also discuss the behavior
at the superfluid-Mott insulator transitions. In Sec. VII we

1In this 1D setting we use the terms “superfluid” and “condensate”
to indicate a phase with power-law correlations.

033636-11050-2947/2012/85(3)/033636(16) ©2012 American Physical Society

Article XXII

215



M. J. BHASEEN et al. PHYSICAL REVIEW A 85, 033636 (2012)

describe the Ising scaling regime, and discuss a variety of
ways to extract the principal Ising characteristics. This includes
the Ising order parameter and the correlation length using
a finite-size scaling analysis of the atomic and molecular
correlation functions. We also discuss the utility of a suitable
ratio of the atomic and molecular two-point functions for
analyzing the Ising quantum phase transition. We conclude
in Sec. VIII and provide further directions for research.

II. MODEL

We consider the Hamiltonian

H =
∑
iα

εαniα −
∑

i

∑
α

tα(b†iαbi+1α + H.c.)

+
∑
iαα′

Uαα′

2
niα(niα′ − δαα′ ) + HF, (1)

describing bosons biα hopping on a 1D lattice with sites i,
where α = a,m labels atoms and molecules [35–40]. Here
εα are on-site potentials, tα are nearest neighbor hopping pa-
rameters, and Uαα′ are interactions. We assume that molecule
formation is described by the s-wave Feshbach resonance term,

HF = g
∑

i

(m†
i aiai + H.c.), (2)

where we denote mi ≡ bim and ai ≡ bia; for recent work on
the p-wave problem see Refs. [65,66]. This conversion implies
that the number of atoms and molecules are not separately
conserved, but the total NT ≡ ∑

i(nia + 2nim) is preserved.
For simplicity, in writing Eq. (1) we neglect any effects of
higher Bloch bands in optical lattices [67–69]. In this respect,
the Hamiltonian (1) may be regarded as a lattice regularization
of the continuum models studied in Refs. [32–34]; see also
Refs. [24–26]. This approach is very convenient for numerical
simulations, and enables us to investigate the superfluid
transitions where lattice effects are germane. It also allows us
to make contact with previous quantum Monte Carlo (QMC)
simulations [37,38] and to place the problem on a firmer
footing. As in the original works [32–34], we neglect the
effects of three-body losses and finite molecular lifetimes.

In this paper we use DMRG on 1D systems with up to
L = 512 sites, where we set the lattice spacing to unity and
adopt energy units where ta = 1. We furthermore set tm = 1/2
throughout. We work in the canonical ensemble with the total
density ρT = NT/L = 2 held fixed and allow up to five atoms
and five molecules per site, corresponding to a large Hilbert
space of dimension (6 × 6)L; for a discussion of the effects
of changing the local Hilbert space dimension see Appendix.
With open (periodic) boundary conditions we retain up to
mρ = 2400 (mρ = 3000) states in the density matrix in order
to ensure that the discarded weight is less than 1 × 10−10

(1 × 10−8).

III. PHASE DIAGRAM

As we discussed in Ref. [63], the qualitative phase diagram
of the 1D lattice Hamiltonian (1) was previously considered
using QMC simulations [37,38]. In addition to delineating
the Mott insulating and superfluid phase boundaries, this
work led to intriguing predictions of superfluidity within the

-10 -8 -6 -4 -2 0 2 4
m

0

1

2

3

1
/

U

0.8 1.2
1 / U

0

0.2

0.4

E
1g

,E
2 g

E2g

-3.76 -3.72
m

0

0.1

2

3

E1g

0.22 0.24 0.26
1 / U

0

0.2

0.4

(a)

(b)

(b)

(d)

(c)

(c)

(d)

,

MC

Z2 Disordered

E1g = 0, E2g = 0 AC+MC

Z2 Ordered

E1g = 0, E2g = 0

MI

E1g = 0, E2g = 0

FIG. 1. (Color online) (a) Phase diagram of the 1D Hamiltonian
(1) with total density ρT = NT/L = 2, showing a Mott insulator (MI),
a molecular condensate (MC), and a coupled atomic plus molecular
condensate (AC + MC). We use DMRG with up to L = 128
sites and open boundary conditions. We choose parameters εa = 0,
Uaa/2 = Umm/2 = Uam = g = U , ta = 1, tm = 1/2, for comparison
with Ref. [37]. The squares and circles indicate the vanishing of
the one-particle and two-particle gaps E1g and E2g , respectively,
as L → ∞. The stars and crosses indicate where the molecular
and atomic correlation exponents νm and νa reach 1/4 in the MC
and AC + MC phases, respectively. These values correspond to a
molecular KT transition and an atomic KT transition, respectively.
The remaining panels (b), (c), and (d) show the variation of the
extrapolated gaps E1g and E2g with L → ∞ on passing through
the phase boundaries at the corresponding points in panel (a). In
particular, we provide detailed evidence for an Ising quantum phase
transition occurring between the MC and AC + MC phases.

Mott phase, and an additional superfluid phase not present
in mean-field theory [32–36]. Although we find very good
quantitative agreement with many of the numerical results
[37,38], these additional predictions are at variance with our
recent findings [63] which combine field theory with DMRG.
This was also suggested by our earlier studies using hardcore
bosons [39,40]. It has recently been argued that the absence
of particle conservation hindered the interpretation of these
previous QMC simulations [70]. In this paper we will further
demonstrate that the use of momentum space observables,
including the zero-momentum occupation numbers and the
visibility, also complicated the interpretation of these earlier
finite-size QMC simulations.

In order to put the problem on a more stable platform,
we present a section of the phase diagram in Fig. 1, with
parameters chosen for comparison with Ref. [37]. (Note that
our conventions differ from Ref. [37] by a factor of 1/2 in
the interaction terms so that double occupancy corresponds
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directly to Uαα′ . Also, εm plays the role of their detuning
parameter D when εa = 0.) The phase boundaries shown in
Fig. 1 correspond to the vanishing of the one-particle and two-
particle excitation gaps, E1g ≡ μ1p(L) − μ1h(L) and E2g ≡
μ2p(L) − μ2h(L), respectively, where the data are extrapolated
to the thermodynamic limit L → ∞. Here

μnp(L) = [E0(L,NT + n) − E0(L,NT)] /n,
(3)

μnh(L) = [E0(L,NT) − E0(L,NT − n)] /n,

where E0(L,N ) is the ground state energy for a system of
size L and a total number N of atoms and molecules. The
phase diagram in Fig. 1 consists of three distinct phases: a
Mott insulator (MI) with gaps for both excitations E1g �= 0 and
E2g �= 0, a molecular condensate (MC) with a one-particle gap
E1g �= 0 and E2g = 0, and a coupled atomic plus molecular
condensate (AC + MC) with E1g = 0 and E2g = 0. As
we shall discuss more fully below, the MC phase may be
interpreted as a pairing phase of bosons in the absence of
atomic condensation. In contrast, the AC + MC phase has
both molecular and atomic condensation. In comparison to
the qualitative phase diagram presented in Ref. [37], inferred
from QMC simulations on smaller system sizes, we find
no evidence for a single-component atomic superfluid phase
coexisting with noncondensed molecules. This is in accord
with theoretical expectations in higher dimensions, where
atomic condensation is always accompanied by molecular
condensation [32–34] provided the molecules are present; in
the extreme limit where εm → ∞, occurring on the boundary
of the AC + MC phase, the molecules are explicitly excluded
by the chemical potential as shown in Fig. 2. The conclusions
of Ref. [37] have also come under scrutiny due to the additional
claims of superfluidity within the Mott phase [39,70]. Here,
however, our main focus is on the character of the transition
between the distinct MC and AC + MC superfluids. In the
subsequent discussion we will begin with symmetry arguments
and field theory predictions before turning to a comparison
with DMRG.

IV. FIELD THEORY DESCRIPTION

A heuristic way to understand the possibility of an Ising
quantum phase transition between the distinct MC and AC +
MC superfluids is via the generic number-phase relationships
a ∼ √

ρa eiϑa and m ∼ √
ρm eiϑm , where ρa and ρm are the

average atomic and molecular densities respectively. Substi-
tuting these expressions into (1), the Feshbach term (2) takes
the form [34]

HF ∼ 2gρa

√
ρm cos(ϑm − 2ϑa). (4)

Minimizing this interaction locks the phases of the atomic and
molecular condensates according to the relationship

ϑm − 2ϑa = ±π, (5)

where for simplicity we assume g > 0. We see that the phases
are locked, but only modulo π , and this gives rise to the
possibility of a discrete symmetry breaking Z2 transition
between Feshbach coupled superfluids. Denoting ϑm ≡ ϑ , one
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FIG. 2. (a) Local expectation values obtained by DMRG for the
1D Hamiltonian (1) with open boundaries and up to L = 128 sites.
We use the same parameters as in Fig. 1 and set U = 0.7. We plot the
local density of atoms 〈a†

i ai〉 (circles), molecules 〈m†
i mi〉 (squares),

and the expectation value of the Feshbach conversion term 〈m†
i aiai〉

(triangles), evaluated at the system midpoint, i = L/2. All of these
quantities are generically nonzero on both sides of the MC to AC +
MC transition as indicated by the dashed line. In the limit of large
positive (negative) detuning εm we have mainly atoms (molecules)
with a density determined by the canonical ensemble constraint ρT =
2. (b) Corresponding finite-size data and linear extrapolation as a
function of 1/L for εm = −3 (open) and εm = −5 (filled).

may recast the number-phase relationships in the form [34]

m ∼ √
ρm eiϑ , a ∼ φ eiϑ/2, (6)

where the Feshbach locking is explicitly enforced and φ ∼√
ρae

∓iπ/2 plays the role of an Ising degree of freedom. The
decomposition (6) will play a central role in the subsequent
analysis and allows one to gain a handle on the correlation
functions and the principal features of the phase diagram.

An alternative way to understand the possibility of an Ising
quantum phase transition between the MC and AC + MC
phases is via the symmetry of the Hamiltonian (1) under
U(1) × Z2 transformations:

m → eiθm, a → ei(θ/2±π)a, (7)

where θ ∈ R. Before discussing the problem in 1D, where
continuous symmetry breaking is absent, we first consider
the behavior in higher dimensions [32–34]. In this case, the
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molecular condensate (MC) phase has 〈m〉 �= 0 and 〈a〉 = 0.
This only breaks the U(1) symmetry, and leaves the Z2

symmetry a → −a unbroken. This corresponds to an Ising
degree of freedom in the disordered phase, coexisting with
molecular superfluidity. In contrast, the coupled atomic plus
molecular condensate (AC + MC) phase has 〈m〉 �= 0 and
〈a〉 �= 0. This breaks the U(1) × Z2 symmetry completely
and corresponds to a Z2 ordered Ising degree of freedom,
coexisting with atomic and molecular superfluidity. Returning
to the present 1D problem, where continuous U(1) symmetry
breaking is prohibited, the formation of expectation values for
〈a〉 and 〈m〉 is excluded. Instead, superfluidity is characterized
by power-law correlations, and the nature of the phases
and quantum phase transitions in Fig. 1 requires further
examination.

Due to the U(1) × Z2 symmetry of the Hamiltonian (1), the
low energy Lagrangian of the MC to AC + MC transition is
given by L = Lϑ + Lφ + Lϑφ [34,71], where

Lϑ = Kϑ

2

[
c−2
ϑ (∂τϑ)2 + (∂xϑ)2

]
(8)

is a free bosonic field and

Lφ = Kφ

2

[
c−2
φ (∂τφ)2 + (∂xφ)2

] − Mφ2 + λφ4 (9)

is an Ising model in the soft-spin φ4 representation. The
coupling between the two sectors, Lϑφ = iφ2∂τϑ/2, has a
form similar to a Berry phase [34,71]. A closely related action
also arises for tunneling between quantum wires [72]. In the
following we will neglect the contribution Lϑφ and explore the
consequences of the reduced action. Sufficiently far away from
the transition this can be justified by a mean-field decoupling
Lϑφ ∼ i〈φ〉2∂τϑ/2, which reduces the additional interaction to
a total derivative term, which can be neglected. The simplified
action is therefore expected to provide a good description of
the proximate phases. Near the quantum phase transitions, this
cannot be neglected a priori, andLϑφ may change the behavior
on very large length scales and in other regions of the phase
diagram [72]. However, all of our findings are consistent with
expectations based on Lϑ + Lφ only. The parameters Kϑ , cϑ ,
Kφ , cφ , η, λ, are related to the coefficients of the Hamiltonian
(1), but the details need not concern us here. In this field
theory approach, the atoms and molecules are described by
the semiclassical number-phase relations given in Eq. (6). In
the subsequent discussion we will explore the ramifications
of this correspondence in 1D, both for local observables
and correlation functions. For complementary work using the
Bethe ansatz and bosonization see also Refs. [73,74].

A. Local expectation values

An immediate consequence of the decomposition (6) is that
the densities of atoms and molecules

〈m†(x)m(x)〉 ∼ ρm, 〈a†(x)a(x)〉 ∼ 〈φ2〉 (10)

are generically nonzero in both the MC and AC + MC
phases. This is supported by our DMRG results as shown

in Fig. 2(a). These are extrapolated from the finite-size data
to L → ∞, as indicated in Fig. 2(b). In the limit of large
positive detuning with εm → ∞ we have mainly atoms as
one would naively expect and 〈a†(x)a(x)〉 ∼ 2. Likewise,
in the limit of large negative detuning, corresponding to
εm → −∞, we have mainly molecules and 〈m†(x)m(x)〉 ∼ 1.
These limiting densities are consistent with working in the
canonical ensemble with ρT = ∑

i(nia + 2nim)/L = 2 held
fixed.

In addition to these local densities the local expectation
value of the Feshbach conversion term

〈m†(x)a(x)a(x)〉 ∼ √
ρm 〈φ2〉 �= 0 (11)

is nonzero. It exhibits true long range order, even in this low-
dimensional setting. This is a consequence of the relevance
of the Feshbach term in the renormalization group sense. Our
numerical results in Fig. 2 show that this quantity is indeed
finite. In particular, this confirms the locking of the phases
of the atomic and molecular condensates (modulo π ) on both
sides of the transition. However, due to the symmetry under
a → −a, the expectation value (11) is naively insensitive to
the Ising transition itself, as may be seen in Fig. 2. Further
insight into this quantum phase transition and the proximate
phases is more readily obtained from correlation functions. We
will explore this in more detail below.

B. Green’s functions and pairing correlations

The nature of the MC and AC + MC phases shows up
most clearly in the atomic and molecular Green’s functions
〈a†(x)a(0)〉 and 〈m†(x)m(0)〉 and the pairing correlations
〈a†(x)a†(x)a(0)a(0)〉. Their spatial dependence is dictated by
the correlations of the underlying Ising model in Eq. (9), and
we address each phase in turn.

1. Z2 disordered MC phase

As follows from the decomposition (6), the molecular
Green’s function

〈m†(x)m(0)〉 ∝ 〈e−iϑ(x) eiϑ(0)〉 ∼
(

a0

x

)νm

(12)

decays as a power law, where the correlation exponent νm =
1/(2πKϑ ) varies throughout the phase diagram, and a0 is a
short-distance cutoff. In contrast, in the Z2 disordered MC
phase, the atomic Green’s function

〈a†(x)a(0)〉 ∝ 〈
φ(x)e−i

ϑ(x)
2 φ(0)ei

ϑ(0)
2

〉
∼

(
a0

x

) νm
4

K0(x/ξ )

decays exponentially, where ξ is the Ising correlation length.
Here we use the hard-spin fermionic representation of the Ising
model to write [75]

〈φ(x)φ(0)〉 ∼ K0(x/ξ ), (13)

where K0 is a modified Bessel function. On the other hand,
pairs of atoms exhibit power-law correlations

〈a†(x)a†(x)a(0)a(0)〉 ∼
(

a0

x

)νb

, (14)
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FIG. 3. Correlation functions in the Z2 disordered MC phase
obtained by DMRG on the 1D Hamiltonian (1) with L = 512 and
open boundaries. Here and throughout the paper we consider sites
displaced around the system midpoint in order to minimize boundary
effects. We use the same parameters as in Fig. 1 and set U = 0.7
(open), U = 0.5 (filled), εm = −4 (circles), and εm = −6 (triangles).
(a) Atomic Green’s function 〈a†

i aj 〉 showing exponential decay.
(b) Molecular Green’s function 〈m†

i mj 〉 showing power-law behavior.
(c) Bilinears of atoms 〈a†

i a
†
i aj aj 〉 showing power-law behavior with

the same exponent as the molecular Green’s function in panel (b);
see Fig. 4. This establishes the MC phase as a pairing phase of atoms
without power-law atomic condensation.

where the exponent νb = νm for these atomic bilinears coin-
cides with the molecular exponent in Eq. (12). That is to say,
the MC phase is a pairing phase of bosons without power-law
atomic condensation [57–62].

In order to explore these field theory predictions in more
detail we perform DMRG on the 1D Hamiltonian (1). The
predicted behavior is well supported by our simulations in
Fig. 3. The molecules and atomic bilinears show power-law
behavior with the same exponent νm = νb, while the atomic
two-point function shows exponential decay. Our DMRG
results also indicate that this behavior persists into the regime
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FIG. 4. (Color online) DMRG results for the two-point functions
of (a) molecules and (b) atomic bilinears in the MC phase with open
boundaries and up to L = 512. We extract the molecular and bilinear
exponents νm and νb by finite-size scaling collapse of the data for
different system sizes. In (c), (d), and (e) we show the resulting
evolution of νm (circles) and νb (stars) for vertical scans through
Fig. 1 with fixed values of εm. The vertical dashed lines correspond
to the location of the MC to MI transition obtained from the gap
data. The molecular exponent reaches the value of νm = 1/4 at the
MC to MI transition. This corresponds to a molecular KT transition
and is analogous to the fixed density transition at the tips of the
Mott lobes in the single-band Bose-Hubbard model. The critical
exponent νb associated with the power-law decay of the atomic
bilinears 〈a†

i a
†
i aj aj 〉 (stars) coincides with νm.

close to the Mott insulating phase boundary shown in Fig. 1.
In particular, the molecular correlation exponent reaches the
value of νm = 1/4 at the MI boundary; see Fig. 4. This is
consistent with a molecular Kosterlitz-Thouless (KT) [76,77]
transition. It is analogous to the behavior at the tips of the
Mott lobes in the single-band Bose-Hubbard model [78–80]
where the Luttinger liquid parameter takes the value K =
1/(2πν) = 2/π in the normalization conventions of Eq. (8).
The latter transition takes place at constant density, and is
therefore compatible with our canonical ensemble constraint
ρT = 2.

We recall that in deriving the above correlation functions
we have neglected the coupling term Lϑφ in the low-energy

033636-5

Article XXII

219



M. J. BHASEEN et al. PHYSICAL REVIEW A 85, 033636 (2012)

Lagrangian so that the expressions factorize into independent
U(1) and Z2 contributions. The good agreement with DMRG
lends a postiori support to this approximation within the
explored region of the phase diagram.

2. Z2 ordered AC + MC phase

In the Z2 ordered phase the molecular Green’s function

〈m†(x)m(0)〉 ∝ 〈e−iϑ(x) eiϑ(0)〉 ∼
(

a0

x

)νm

(15)

continues to decay as a power law. In addition, the atomic
Green’s function

〈a†(x)a(0)〉 ∼ 〈φ〉2
〈
e−i

ϑ(x)
2 ei

ϑ(0)
2

〉 ∼
(

a0

x

)νa

(16)

also decays as a power law, where the atomic correlation
exponent νa = νm/4 is locked to the molecular exponent
by a factor of 1/4 [71]. This is a consequence of the
Feshbach coupling which ties the phases of the atomic and
molecular condensates together. Note that in writing Eq. (16)
we approximate the result for the two-point function of the
Ising order parameter at leading order [81]:

〈φ(x)φ(0)〉 ∼ 〈φ〉2[1 + π−2F(x/ξ )] ≈ 〈φ〉2, (17)

where

F(z) = z2[K2
1(z) − K2

0(z)
] − zK0(z)K1(z) + 1

2K
2
0(z),

(18)

and K0(z) and K1(z) are Bessel functions. These predictions
of power-law behavior, as given by Eqs. (15) and (16), are
well supported by our numerical simulations as shown in
Fig. 5. The locking of the atomic and molecular correlation
exponents νa = νm/4 is also observed. In addition, these robust
features persist into the large-U regime where field theory
arguments are no longer strictly valid. In particular, the atomic
and molecular correlation functions remain as power laws
right up to the MI boundary shown in Fig. 1. We find that
the atomic exponent νa reaches the value of νa = 1/4 at the
AC + MC to MI transition; see Fig. 6. This is consistent
with an atomic KT transition, as occurs at the tips of the Mott
lobes in the single-band Bose-Hubbard model. At the same
time, the molecular exponent νm reaches the value of νm = 1
due to the aforementioned exponent locking; see Fig. 6. The
presence of this molecular superfluid close to the MI boundary,
clearly supports the absence of a single component atomic
superfluid phase in this 1D setting, in contrast to the findings
of Ref. [37]. This is also compatible with mean-field theory
in higher dimensions [32–34] where atomic condensation
is always accompanied by molecular condensation due to
the structure of the Feshbach term HF. We will return to
this issue in Sec. V in our discussion of the corresponding
zero-momentum occupation numbers and the visibility.

3. Mixed correlation functions

In addition to the purely atomic or molecular Green’s
functions, it is also instructive to examine the mixed correlation
functions involving both atoms and molecules. It follows from
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(a) a
†
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(b) m
†
i mj

(c) a
†
i a

†
i aj aj

|i−j|

FIG. 5. Correlation functions in the Z2 ordered AC + MC phase
obtained by DMRG on the 1D Hamiltonian (1) with L = 512 and
open boundaries. We use the same parameters as in Fig. 1 and set
U = 0.7 (open), U = 0.5 (filled), εm = −2 (circles), and εm = −3
(squares). (a) Atomic Green’s function 〈a†

i aj 〉 showing power-law
decay, in contrast to Fig. 3(a). (b) Molecular Green’s function 〈m†

i mj 〉
showing power-law behavior; the exponent tracks the atomic expo-
nent in panel (a) up to a factor of 4; see Fig. 6. (c) Bilinears of atoms
〈a†

i a
†
i aj aj 〉 showing power-law behavior with the same exponent as

the molecular Green’s function in panel (b). This establishes the
AC + MC phase as a pairing phase of atoms in the presence of
atomic condensation.

the decomposition (6) that

〈m†(x)a(0)a(0)〉 ∼ √
ρm 〈φ2〉

(
a0

x

)νm

(19)

decays as a power law with the same exponent as the molecular
Green’s function. Once again this reflects the phase locking of
the atomic and molecular condensates due to the Feshbach
term, and is present in both the MC and AC + MC phases.
This behavior is in very good agreement with our DMRG
simulations as shown in Fig. 7. In particular, the power-law
exponent tracks those displayed in Figs. 3(b) and 5(b) for
〈m†(x)m(0)〉.
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FIG. 6. (Color online) DMRG results for the two-point functions
of (a) atoms and (b) molecules in the AC + MC phase with open
boundaries and up to L = 512. We extract the atomic and molecular
exponents νa and νm by finite-size scaling collapse of the data for
different system sizes. In (c), (d), and (e) we show the resulting
evolution of 4νa (circles) and νm (stars) for vertical scans through
Fig. 1 with fixed values of εm. The vertical dashed lines correspond
to the location of the AC + MC to MI transition obtained from the
gap data. The data confirm the locking of the atomic and molecular
exponents via the relation νm = 4νa . The exponents reach the values
of νa = 1/4 and νm = 1 at the MI boundary. This is consistent with
an atomic KT transition. It is analogous to the behavior at the tips of
the Mott lobes in the single-band Bose-Hubbard model.

C. Density correlation functions

Having discussed the atomic and molecular Green’s func-
tions we now turn our attention to the correlation functions of
the local densities. Denoting nm(x) ≡ m†(x)m(x) and na(x) ≡
a†(x)a(x) one obtains

nm(x) ∼ ρm + γ1∂xϑ + · · · ,
na(x) ∼ ρa + γ2∂xϑ + γ3 : φ2(x) : + · · · , (20)

where ρm and ρa are the average molecular and atomic
densities, and γ1, γ2, γ3 are constants. Here we use the
primary correspondence given in Eq. (6), and combine the

1 10 100
|i−j|

0.1

1

m
† i
a

j
a

j

U = 0.5

FIG. 7. DMRG results for the mixed correlation function
−〈m†

i aj aj 〉 with L = 512 sites, open boundaries and U = 0.5. The
data correspond to εm = −2 (circles), εm = −3 (squares), εm = −4
(up triangles), εm = −5 (diamonds), εm = −6 (down triangles), and
show power-law behavior in both the AC and AC + MC phases. As
predicted by Eq. (19), the exponents agree with those of the molecular
Green’s function in panels (b) of Figs. 3 and 5.

exponentials by point splitting and the short distance operator
product expansion. The expansion (20) incorporates the effects
of density fluctuations and it follows that the density-density
correlations have the same leading dependence in both the
MC and AC + MC phases:

〈nα(x)nβ(0)〉 � ραρβ + Cαβ

x2
+ · · · , (21)

where α, β ∈ a, m, and Cαβ are nonuniversal constants. This
is confirmed by our DMRG results in Figs. 8 and 9.

V. MOMENTUM SPACE OBSERVABLES

In the previous section we have focused directly on the
superfluid correlation functions due to the absence of contin-
uous symmetry breaking in 1D. However, a useful diagnostic
of superfluidity in higher dimensions is the divergence of the
occupation number

nα(k) = 1

L

L∑
i,j=1

eik(i−j )〈a†
α,iaα,j 〉 (22)

at zero momentum k = 0. This quantity was recently used
in Ref. [37], in conjunction with visibility data, to argue in
favor of a single component atomic superfluid phase in the 1D
system (1). In view of our results in the previous sections,
which show the presence of both atomic and molecular
superfluidity right up to the Mott boundary in Fig. 1, we revisit
this issue here. As shown in Fig. 6, the atomic and molecular
correlation functions in the AC + MC phase are power laws,
〈m†(x)m(0)〉 ∼ x−νm and 〈a†(x)a(0)〉 ∼ x−νm/4, with locked
exponents. Substituting these asymptotic forms into Eq. (22)
suggests that the zero-momentum occupation numbers depend
on system size according to [82,83]

nm(0) ∼ Am + BmL1−νm, na(0) ∼ Aa + BaL
1−νm/4, (23)

where Aa,m and Ba,m are constants. In particular, since the
molecular exponent νm only reaches unity at the Mott phase
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FIG. 8. DMRG results for the connected density correlation
functions in the Z2 disordered MC phase for the parameters used
in Fig. 1. The values of εm are indicated in panel (b). We use
open boundaries with L = 128 and set U = 0.7. (a) |〈nianja〉 −
〈nia〉〈nja〉|. (b) |〈nimnjm〉 − 〈nim〉〈njm〉|. (c) |〈nianjm〉 − 〈nia〉〈njm〉|.
The results are in agreement with the leading 1/x2 dependence
predicted by Eq. (21).

boundary (see Figs. 1 and 6) both of these zero-momentum
occupation numbers are expected to diverge with increasing
system size. This is supported by our DMRG results as shown
in Fig. 10. However, it is evident from Eq. (23) that nm(0)
diverges very slowly with increasing system size close to the
MI boundary since νm → 1. In the absence of a detailed finite-
size scaling analysis this may lead to the erroneous conclusion
of a purely atomic superfluid. In addition, our findings suggest
the absence of any change in behavior in the convergence
properties of nm(0) as L → ∞, which could be misinterpreted
as a quantum phase transition to a purely atomic superfluid.
In general, in this 1D setting, the zero-momentum occupation
number is a poor diagnostic of superfluid transitions since
it may simply reflect a change in the value of the critical
exponent within a superfluid phase, rather than the onset of
exponential correlations. Direct evaluation of the correlation
functions 〈a†(x)a(0)〉 and 〈m†(x)m(0)〉 provides a clearer
picture in 1D, especially in the case of a finite size system.
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FIG. 9. DMRG results for the connected density correlation
functions in the Z2 ordered AC + MC phase for the parameters
used in Fig. 1. The values of εm are indicated in panel (b). We
use open boundaries with L = 128 and set U = 0.7. (a) |〈nianja〉 −
〈nia〉〈nja〉|. (b) |〈nimnjm〉 − 〈nim〉〈njm〉|. (c) |〈nianjm〉 − 〈nia〉〈njm〉|.
The results are in agreement with the leading 1/x2 dependence
predicted by Eq. (21).

Our results are fully consistent with the absence of a purely
atomic superfluid phase in this region of the phase diagram.
This is compatible with the predictions of mean-field theory
in higher dimensions [32–34].

In addition to the zero-momentum occupation numbers, the
authors of Ref. [37] also consider the visibility. The visibility
is related to the momentum occupation numbers (22) via [84]

Vα ≡ nmax
α (k) − nmin

α (k)

nmax
α (k) + nmin

α (k)
, (24)

where nmax (nmin) is the maximum (minimum) in the mo-
mentum space occupation number distribution. In the present
context this is identified as

Vα = nα(0) − nα(π )

nα(0) + nα(π )
. (25)

In a superfluid phase where nα(0) diverges with increasing
system size, the visibility Vα approaches unity as L → ∞.
In Ref. [37] it was argued that the molecular visibility within
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FIG. 10. DMRG results for the dependence of the zero-
momentum occupation numbers na(0) and nm(0) on system size L

within the AC + MC phase shown in Fig. 1. The results are consistent
with algebraic correlations for both atoms and molecules with locked
exponents νm = 4νa . The presence of molecular superfluidity in the
lower panels confirms the absence of an AC phase close to the MI
boundary.
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FIG. 11. Atomic and molecular correlation functions within the
AC + MC phase obtained by DMRG with periodic boundary
conditions. We set εm = −2 and U = 1.5. (a) Atomic correlation
function 〈a†

i ai+r〉 as a function of the reduced separation r/L for
different system sizes. (b) Normalization factor N obtained from (a)
using Eq. (26). (c) Correlation exponent a obtained from (a) using
Eq. (26). (d) Rescaling the data in (a) using the extracted exponent a

leads to data collapse. This confirms the applicability of the conformal
result (26) within the AC + MC phase. This corresponds to power-
law atomic correlations for separations r � 3a0. The remaining
panels show the corresponding results for molecules.
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FIG. 12. Finite-size scaling of the atomic and molecular visi-
bilities within the AC + MC phase. The circles correspond to Va

and the squares to Vm obtained by Fourier transformation of the
correlation functions obtained by DMRG. The crosses and stars
correspond to Fourier transformation of the conformal result (25)
supplemented by exact DMRG results for the correlators at small
separations r � 3a0. The solid line indicates the results of conformal
extrapolation (described in the text and justified by the scaling
collapse in Fig. 11) supplemented by the exact DMRG results for
small separations r � 3a0. (a) With εm = −2 and U = 1.5 both Va

and Vm extrapolate to unity in the thermodynamic limit. (b) Close to
the MI transition with εm = −2 and U = 2.2 bothVa andVm approach
unity as L → ∞. This is in direct contrast to naive polynomial
extrapolation (dashed) which erroneously suggests that the molecular
visibility is less than unity.

the AC + MC phase failed to saturate at this value close to
the MI boundary. In order to gain a quantitative handle on
this issue we need to exploit the finite-size dependence of the
superfluid correlations within the AC + MC phase. In a system
with periodic boundary conditions the two-point function of a
primary field O(r) at position r can be obtained by conformal
transformation [85]:

〈O(r1)O(r2)〉L = N
[

π

L sin
(

πr
L

)
]a

, (26)

where a is the critical exponent in the thermodynamic limit,
r = |r1 − r2| is the separation, and N is a constant prefactor.
It follows that the rescaled combination La〈O(r1)O(r2)〉L is a
prescribed scaling function of the reduced separation r/L. The
confirmation of this behavior for the atomic and molecular
correlation functions within the AC + MC phase is shown in
Fig. 11. Given this agreement we may substitute the conformal
result (26) into Eq. (22) in order to obtain formal expressions
for the finite-size dependence of the atomic and molecular
visibilities in Eq. (24). In Fig. 12 we show the results of
this conformal extrapolation, where we further incorporate
the exact DMRG results for the short distance behavior with
r � 3a0, where a0 is the lattice spacing. It is readily seen from
the solid lines in Fig. 12 that both the atomic and molecular
visibilities extrapolate to unity in the thermodynamic limit.

033636-9

Article XXII

223



M. J. BHASEEN et al. PHYSICAL REVIEW A 85, 033636 (2012)

0.8

0.9

1

V a
,V

m

Va

Vm

1.5 2 2.5
U

0.8

0.9

1

V a
,V

m

(a) conformal extrapolation

(b) polynomial extrapolation

AC+MC MI

FIG. 13. (a) Atomic and molecular visibilities Va (circles) and
Vm (crosses) within the AC + MC phase for εm = −2 obtained
by DMRG with up to L = 64 and periodic boundaries. We use the
conformal extrapolation procedure described in the text in order to
obtain the asymptotic results as L → ∞. Both Va and Vm are unity
right up to the MI boundary, indicating the presence of both atomic
and molecular superfluidity. (b) Naive polynomial extrapolation
erroneously suggests that the molecular visibility is less than unity in
the AC + MC phase.

In particular, close to the MI boundary there are strong
deviations from the results that would be obtained by naive
polynomial extrapolation as indicated by the dashed lines.
In Fig. 13(a) we use the conformal extrapolation procedure
to track the atomic and molecular visibilities within the AC
+ MC phase. The results are consistent with unity right up
to the MI boundary. For comparison, in Fig. 13(b) we show
the results that would be inferred using a naive polynomial
extrapolation. The results are in accordance with those of
Ref. [37], but differ markedly from the asymptotic visibilities
obtained by conformal extrapolation as shown in Fig. 13(a).

To summarize the results of this section, within the
AC + MC phase the finite-size dependence of the atomic
and molecular momentum space diagnostics is in complete
agreement with power-law correlations for both the atoms
and the molecules. This behavior persists right up to the MI
boundary and provides further evidence for the absence of a
purely AC phase. This is analogous to expectations in higher
dimensions arising from mean-field theory analyses [32–34].

VI. ENTANGLEMENT ENTROPY

Having established good agreement between field theory
and DMRG for the MC and AC + MC phases, let us now
examine the quantum phase transition between them. A key
diagnostic in this 1D setting is the central charge c which is
a measure of the number of critical degrees of freedom. This
may be obtained from the entanglement entropy. For a block of
length l in a periodic system of length L, the von Neumann en-
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c ≈ 1

FIG. 14. Entanglement entropy SL(l) obtained by DMRG with
L = 64 and periodic boundaries. We consider horizontal scans
through Fig. 1 with U = 0.5 and U = 0.7. (a) Within the MC
phase with εm = −3.5 we find c ≈ 1 corresponding to a gapless
superfluid. (b) In the vicinity of the MC to AC + MC quantum
phase transition we find c ≈ 3/2. This corresponds to the presence
of additional gapless Ising degrees of freedom coexisting with
superfluidity. (c) Within the AC + MC phase with εm = −4 we
find c ≈ 1 corresponding to an effective free boson. The panels on the
right correspond to the same data as on the left, but are plotted against
the conformal distance l̃ ≡ ln[(L/π ) sin(πl/L)] in order to yield a
linear plot with slope c/3. The offset between the different curves
within each panel is due to the nonuniversal contribution in Eq. (27).

tropy is given by SL(l) = −Trl(ρl ln ρl), where ρl = TrL−l(ρ)
is the reduced density matrix. One obtains [86,87]

SL(l) = c

3
ln

[
L

π
sin

(
πl

L

)]
+ s1 + · · · , (27)

where s1 is a nonuniversal constant and where the corrections
are small when the chord length is large [88–94]. As may be
seen in Fig. 14(a), the numerically extracted central charge
of the MC phase yields c = 1, as one would expect for a
single free boson, with coexisting gapped degrees of freedom;
the adjacent panel shows the same results plotted against the
conformal distance l̃ ≡ ln[(L/π ) sin(πl/L)] in order to yield a
linear slope of c/3. It may be seen from Fig. 14(c) that the AC
+ MC phase also has c = 1. Note that it is not c = 2 as would
be the case for two independent Luttinger liquids. This reflects
the coupled nature of the atomic and molecular condensates
in the AC + MC phase, with additional gapped Ising degrees
of freedom; the Feshbach term is relevant and drives the Z2
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sector massive. Close to the MC to AC + MC transition,
where the anticipated Ising gap closes, one expects the central
charge to increase to c = 3/2, due to additional critical Ising
degrees of freedom with c = 1/2. This is confirmed by our
DMRG simulations in Fig. 14(b). Further support for this Z2

transition is obtained from the difference [95]

�S(L) ≡ SL(L/2) − SL/2(L/4) = c

3
ln(2) + · · · (28)

as a function of εm. For a given system size this displays a
peak, whose location coincides with the MC to AC + MC
quantum phase transition obtained via the vanishing of the
single-particle gap E1g = 0, as shown in Fig. 1; see Fig. 15(a).
The evolution with increasing system size is consistent
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FIG. 15. Entanglement entropy difference �S(L) on transiting
across the phase boundaries shown in Fig. 1. We use periodic
boundaries with up to L = 64 and work away from the multicritical
point. (a) The transition from MC to AC + MC yields c ≈ 3/2
corresponding to an Ising transition coexisting with a gapless
superfluid. (b) The transition from MC to MI yields c ≈ 1 and is
consistent with a molecular KT transition. (c) The transition from
AC + MC to MI with εm = 4 yields c ≈ 1 and is consistent with an
atomic KT transition. (d) The transition from AC + MC to MI with
εm = −3.5 appears to be compatible with the approach toward c ≈ 1
with increasing L, although the finite-size effects are stronger than
those in (c). (a) and (c) are adapted from Ref. [63].

with the passage toward c = 1 in the superfluid phases, and
c = 3/2 in the vicinity of the transition. This behavior may be
contrasted with that observed at the superfluid-MI transitions
in Fig. 1, away from the multicritical point. As may be seen in
Fig. 15(b), in passing from the MC phase to the MI, the central
charge remains pinned at unity. This is consistent with a KT
transition for the molecules. Likewise, in passing from the
AC + MC phase to the MI, we find c = 1 again; see
Fig. 15(c). This is consistent with a KT transition for the
atoms. We have checked that this atomic KT behavior persists
in Fig. 1 up to a value of εm = −3.5; see Fig. 15(d). It is
notable that the finite-size effects in Fig. 15(d) are much
stronger than those in Fig. 15(c), although both are compatible
with c ≈ 1 at the MI transition. A detailed analysis of the
multicritical region in Fig. 1 requires further investigation.

VII. ISING SCALING REGIME

Having provided evidence for a Z2 quantum phase transi-
tion occurring between the MC and AC + MC superfluids, we
now demonstrate how to extract both the Ising order parameter
〈φ〉 and the Ising correlation length ξ in the presence of the
additional superfluid degrees of freedom with c = 1.

A. Ising correlation length

The Ising correlation length ξ may be obtained from
the atomic and molecular correlation functions discussed in
Sec. IV B. Within the Z2 disordered MC phase the atomic
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FIG. 16. DMRG results used to extract the Ising correlation
length ξ within the Z2 disordered MC phase with L = 256 and open
boundaries. (a) With εm = −3.85 the molecular correlation function
〈m†

i mj 〉 ≈ 0.81|i − j |−0.18 decays as a power law. (b) Using the
previous exponent νm ≈ 0.18 we extract the Ising correlation length
ξ ≈ 43.6 from the exponential decay of 〈a†

i aj 〉 ∼ |i − j |−νm/4K0(|i −
j |/ξ ). (c) Repeating the above procedure we plot ξ−1 (circles) vs
the departure of the molecular density ρm from its value ρc

m at the
MC to AC + MC transition. Close to the transition the results are
in good agreement with the Ising relation ξ−1 ∼ |ρm − ρc

m|ν with
ν = 1. The triangles correspond to extracting ξ directly from the
ratio R(|i − j |) ≡ 〈a†

i aj 〉4/〈m†
i mj 〉 ∼ [K0(|i − j |/ξ )]4.

033636-11

Article XXII

225



M. J. BHASEEN et al. PHYSICAL REVIEW A 85, 033636 (2012)

correlations 〈a†(x)a(0)〉 ∼ x−νm/4K0 (x/ξ ) decay exponen-
tially, while the molecular correlations 〈m†(x)m(0)〉 ∼ x−νm

decay as a power law. At a given point in parameter space we
may use the molecular Green’s function to determine the expo-
nent νm, and thereby extract the Ising correlation length from
the atomic correlations. This approach is outlined in Fig. 16. In
the vicinity of an Ising quantum phase transition one expects
that ξ−1 ∼ |M − Mc|ν , where ν = 1 is the Ising correlation
length exponent andM is a suitable mass scale parameterizing
the departure from criticality. Unfortunately, it is nontrivial to
expressM in terms of the microscopic parameters of the lattice
model (1). A naive analysis gives M ∼ κ0 + κ1ρm + κ2

√
ρm,

where ρm is the density of molecules, and κ0 ∼ εa , κ1 ∼ Uam,
κ2 ∼ 2g are constants. Expanding the square root according
to

√
ρm ≈ √

ρc
m + (ρm − ρc

m)/
√

ρc
m suggests that sufficiently

close to the Ising transition

ξ−1 ∝ ∣∣ρm − ρc
m

∣∣. (29)

This Ising behavior with ν = 1 is confirmed in Fig. 16.

B. Ising order parameter

In the ordered phase of the Ising model (9) we have 〈φ〉 ∼
|M − Mc|β , where β = 1/8 is the Ising magnetization critical
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FIG. 17. (a) Atomic correlation functions within the AC + MC
phase obtained by DMRG with up to L = 512 and open boundaries.
We set U = 0.7 and consider εm = −3.75 (left) and εm = −3.79
(right). A direct fit to Eq. (31) yieldsA〈φ〉2 for each value of εm, where
〈φ〉 is the Ising order parameter and A is a nonuniversal constant
prefactor. Changing the fitting interval gives an estimate of the error
bars. (b) Extrapolation of A〈φ〉2 to the thermodynamic limit using
linear extrapolation of the largest three system sizes is indicated by
the solid line. An estimate of the error bars in the thermodynamic limit
is obtained by comparing to a quadratic fit of the data shown by the
dashed line. These results are plotted as a function of the molecular
density in Fig. 18 in order to confirm Ising behavior with β = 1/8.

exponent. From the discussion above one thus expects that

〈φ〉 ∼ ∣∣ρm − ρc
m

∣∣1/8
, (30)

where ρm is the density of molecules. In order to test the
validity of Eq. (30), we must first extract the Ising order
parameter from a finite-size scaling analysis of the atomic
correlations. As follows from Eq. (16), within the Z2 ordered
AC + MC phase one has

〈a†(x)a(0)〉 = A〈φ〉2x−νm/4, (31)

where A is a normalization amplitude. In Fig. 17(a) we show
DMRG results for 〈a†(x)a(0)〉 in the vicinity of the MC to
AC + MC quantum phase transition. A direct fit to Eq. (31)
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FIG. 18. DMRG results for the Ising order parameter in the
Z2 ordered AC + MC phase with up to L = 512 and U = 0.7.
(a) Variation of the Ising order parameter squared A〈φ〉2 where A
is a constant prefactor, vs the deviation of the molecular density ρm

from its value ρc
m at the MC to AC + MC quantum phase transition.

(b) Variation of A4〈φ〉8 vs the molecular density difference. The
results are in good agreement with the Ising magnetization relation
〈φ〉 ∼ |ρm − ρc

m|1/8 with β = 1/8. The inset shows analogous results
obtained from the plateau value of R(x) for L = 512, as indicated in
Fig. 19(c). The error bars are estimated from the magnitude of |R(x =
128,L = 512) − R(x = 64,L = 256)|. (c) Finite-size scaling of the
thermodynamic molecular density used in (a) and (b). (a) and (b) are
adapted from Ref. [63].
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yields A〈φ〉2. Repeating this procedure for different system
sizes one obtains an estimate for A〈φ〉2 in the thermodynamic
limit; see Fig. 17(b). In Fig. 18 we show the variation of this
order parameter with the molecular density. The results are in
good agreement with the theoretical prediction in Eq. (30) and
the Ising critical exponent β = 1/8.

C. Correlation function ratio

In the above discussion we have extracted the Ising
correlation length and the Ising order parameter through a
direct finite-size scaling analysis of the atomic and molecular
correlation functions. An alternative approach is to consider
the behavior of the ratio

R(x) ≡ 〈a†(x)a(0)〉4

〈m†(x)m(0)〉 (32)

in analogy to the considerations of Refs. [42,43] for the
confinement-deconfinement transition of Cooper pairs in 1D
fermion systems.

In the Z2 disordered MC phase 〈a†(x)a(0)〉 ∼
x−νm/4K0 (x/ξ ) and 〈m†(x)m(0)〉 ∼ x−νm . It follows that the
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−
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(b) QPT ( m = −3.809)

(c) Z 2 Ordered ( m = −3.75)

FIG. 19. Ratio R(|i − j |) ≡ 〈a†
i aj 〉4/〈m†

i mj 〉 of the atomic and
molecular correlation functions with U = 0.7. (a) In the Z2 disor-
dered MC phase with εm = −3.85 the ratio R(|i − j |) ∼ [K0(|i −
j |/ξ )]4 exhibits exponential decay. (b) In the vicinity of the MC to
AC + MC quantum phase transition the ratioR(|i − j |) ∼ 1/|i − j |
decays with a universal power law corresponding to the Ising critical
exponent η = 1/4. The line is a fit to R = A0|i − j |A1 over the
interval 3 � |i − j | � 48 for L = 512 with A0 ≈ 0.011 and A1 ≈
−1.01. (c) In the Z2 ordered AC + MC phase with εm = −3.75 the
ratio R(|i − j |) ∼ 〈φ〉8 exhibits a plateau corresponding to a nonzero
Ising order parameter.

power-law prefactors cancel out in this ratio:

R(x) ∼ [K0(x/ξ )]4 . (33)

As such, this ratio should exhibit exponential decay in the MC
phase. This is confirmed by our DMRG results in Fig. 19(a). A
direct fit to Eq. (33) yields the Ising correlation length shown
by the triangles in Fig. 16.

In the Z2 ordered AC + MC phase 〈m†(x)m(0)〉 ∼
x−νm and 〈a†(x)a(0)〉 ∼ 〈φ(x)φ(0)〉x−νm/4 where 〈φ(x)φ(0)〉
is given by Eq. (17). It follows that

R(x) ∼ 〈φ〉8[1 + π−2F(x/ξ )]4, (34)

where F(z) is given by Eq. (18). At leading order R(x) ∼ 〈φ〉8

and one thus expects R(x) to develop a constant plateau that
is proportional to the Ising order parameter. This is confirmed
by our DMRG results in Fig. 19(c).

In addition to these results for R(x) which are valid within
the superfluid phases, one may also explore the vicinity of the
quantum phase transition between them. At the Ising critical
point 〈φ〉 = 0 but

〈φ(x)φ(0)〉 ∼
(

a0

x

)η

(35)

decays as a power law where η = 1/4 is the Ising pair
correlation exponent. It follows from Eqs. (6) and (35) that
the atomic Green’s function at criticality is given by

〈a†(x)a(0)〉 ∼ 〈φ(x)φ(0)〉 〈e−i
ϑ(x)

2 ei
ϑ(0)

2 〉

∼
(

a0

x

) 1
4
(

a0

x

) νm
4

. (36)

On passing from the Z2 ordered AC + MC phase toward the
Ising quantum phase transition, the power-law decay of the
atomic Green’s function is therefore enhanced by η = 1/4 due
to the presence of additional critical Ising degrees of freedom.
It follows that

R(x) ∼ a0

x
(37)

exhibits universal power-law decay in the vicinity of the MC
to AC + MC quantum phase transition. This is confirmed
by our DMRG results shown in Fig. 19(b). This provides
direct evidence for the Ising correlation exponent η = 1/4.
These results demonstrate that the ratio R(x) may be used to
explore both the critical and off-critical Ising behavior at the
MC to AC + MC transition. The characteristic signatures
of R(x) parallel those observed in Refs. [42,43] for the
confinement-deconfinement transition of Cooper pairs in 1D
fermion systems.

VIII. CONCLUSIONS

In this paper we have explored the phase diagram of
bosons interacting via Feshbach resonant pairing in a 1D
optical lattice. We have presented a wide variety of evidence
in favor of an Ising quantum phase transition separating
distinct paired superfluids. We have also provided a detailed
characterization of these phases, including the behavior close
to the Mott insulating phase boundary. For the investigated
parameters, our DMRG results are consistent with an Ising
quantum phase transition approaching both a molecular KT
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FIG. 20. DMRG results for a horizontal scan through Fig. 1
with 1/U = 2.5. We consider up to L = 128 and extrapolate to
the thermodynamic limit. (a) Evolution of the ground state energy
E0 with increasing local Hilbert space restriction nr = na = nm.
(b) Evolution of the excitation gap E1g with increasing nr , showing
very little change beyond nr = 5.

transition and an atomic KT transition. This is compatible
with mean-field theory predictions for the continuum model in
higher dimensions. However, recent results for pairing phases
in a 2D classical XY model suggest the possibility that the Ising
transition may overextend beyond the multicritical point [53].
In view of this possibility, in a distinct but closely related
model, it would be profitable to explore the multicritical region
in more detail. A clear verdict on this issue for the present
1D quantum model requires further analytical and numerical
investigation and we will return to this question in future work.
It would also be interesting to explore the phase diagram for
a broader range of parameters, with a specific focus on the
choice of atomic species and experimental constraints. Even
in the presence of strong three-body losses, the emergent phase
diagram may exhibit notable similarities [45–51].
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APPENDIX: HILBERT SPACE TRUNCATION

Throughout the main text we truncate the local Hilbert
space to allow up to a maximum of na = 5 atoms and nm = 5
molecules per site. In the regime of large t/U , where intersite
hopping is strongly favored, one should check the validity of
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FIG. 22. (Color online) DMRG results with L = 128 and U =
0.5 within the AC + MC phase shown in Fig. 1. We show the
evolution of the atomic and molecular correlation functions with in-
creasing local Hilbert space restriction nr . We set εm = −2 (εm = −3)
in the upper (lower) panels.
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this approximation. Here we discuss the evolution of physical
observables with increasing Hilbert space restriction parameter
nr = na = nm. For the largest value of 1/U = 2.5 used in
Fig. 1, the results converge with increasing nr . For example,
in Fig. 20(a) we show the evolution of the ground state
energy E0 with increasing nr . The results show very little
variation beyond nr = 5. Likewise, in Fig. 20(b) we monitor
the excitation gap E1g with increasing nr . The data again show

very little change beyond nr = 5. The associated MC to AC +
MC phase boundary in Fig. 1 is therefore robust to increasing
nr . In a similar fashion, in Figs. 21 and 22 we examine the
evolution of the atomic and molecular correlation functions.
The results show clear convergence in both the MC and AC +
MC phases. The excellent agreement between our DMRG
results and field theory predictions also lends a postiori support
for this level of Hilbert space restriction with nr = 5.
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We explore the Mott insulating state of single-band bosonic pairing Hamiltonians using analytical approaches
and large-scale density matrix renormalization group calculations. We focus on the second Mott lobe which
exhibits a magnetic quantum phase transition in the Ising universality class. We use this feature to discuss the
behavior of a range of physical observables within the framework of the one-dimensional quantum Ising model
and the strongly anisotropic Heisenberg model. This includes the properties of local expectation values and
correlation functions both at and away from criticality. Depending on the microscopic interactions it is possible
to achieve either antiferromagnetic or ferromagnetic exchange interactions and we highlight the possibility of
observing the E8 mass spectrum for the critical Ising model in a longitudinal magnetic field.

DOI: 10.1103/PhysRevA.84.023635 PACS number(s): 03.75.Lm, 37.10.Jk, 75.10.Jm, 75.10.Pq

I. INTRODUCTION

The observation of Bose-Einstein condensation (BEC)
in dilute alkali-metal gases [1,2] has led to a wealth of
activity linking ultracold atom research and condensed matter
physics. The precise control over atomic interactions, and
the use of optical lattices, offers valuable insights into the
effects of strong correlations [3]. This is exemplified by
experiments on the Bose-Hubbard model which reveal the
quantum phase transition from a superfluid (SF) to a Mott
insulator (MI) as the depth of the optical lattice is increased
[4,5]. Motivated by these advances, recent attention has
been directed toward a variety of multicomponent systems,
including spinor condensates [6–17] and atomic mixtures
[18–23]. The possibility of novel behavior is greatly enhanced
in the presence of these additional “spin” degrees of freedom,
and routes to quantum magnetism have been proposed by
exploiting internal hyperfine states [24] and using different
atomic species [25–28]. The decoupling of the electronic
and nuclear spins in alkaline-earth-metal atoms has also been
suggested as a way to realize quantum spin liquids and exotic
magnetism based on the SU(N ) groups [29–31].

In recent work some of the present authors suggested
using atom-molecule mixtures as a route to the paradigmatic
quantum Ising model [32,33]. Motivated by studies of the
BEC-BCS transition for bosons, both in the continuum limit
[34–36] and on the lattice [37–40], we investigated the rich
phase diagram of bosons interacting via Feshbach resonant
pairing interactions in an optical lattice. Combining exact diag-
onalization (ED) on small systems with analytical predictions
based on the strong coupling expansion, we provided evidence
for an Ising quantum phase transition in the second Mott lobe.
In contrast to previous numerical studies which advocated the
presence of super-Mott behavior [39,40], the Ising spectral
gap indicates the absence of low-lying superfluid excitations
deep within the Mott phase [32,33]. This conclusion gained
further support in a recent comment [41] which shows an
exponential decay of the connected correlation functions. A
detailed discussion of the superfluid properties [34–36] in
one dimension (1D) was also provided in Ref. [42] using

large-scale density matrix renormalization group (DMRG)
[43] and field theory techniques.

In view of the broad interest in these systems, and the
technical issues surrounding Refs. [39,40], we discuss the
properties of the second Mott lobe in detail using analytical
arguments and DMRG. To aid the comparison with these
previous works we focus primarily on the homonuclear case
with a single species of bosonic atom. We also begin by
restricting the local Hilbert space for the atomic and molecular
occupations [40]. In this reduced setting we determine both the
locus of the antiferromagnetic Ising transition and the onset
of superfluidity. We also investigate the atomic and molecular
correlation functions within the MI and compare them directly
to the predictions of the quantum Ising model. As advocated in
Refs. [32,33] this provides a simple and intuitive framework in
which to discuss the absence of super-Mott behavior [39–41].

Going beyond the restricted Hilbert space description we
show that the same ideas apply. Interestingly, by tuning the
microscopic interactions it is also possible to change the sign of
the Ising exchange interaction from antiferromagnetic (AFM)
to ferromagnetic (FM). In general these Ising Hamiltonians
also contain an effective magnetic field [32,33] and in 1D this
will act as a confinement potential for the zero-field excitations
of the FM chain [44,45]. This suggests the possibility of
observing the nontrivial E8 mass spectrum of “meson” bound
states for the critical FM Ising model in a longitudinal field
[46–48]. As an extension of these results we also provide the
magnetic Hamiltonian for Bose-Fermi mixtures.

The layout of this paper is as follows. In Secs. II and III we
provide an introduction to the bosonic Feshbach Hamiltonian
and discuss the mapping to the quantum Ising model. In Sec. IV
we present a cross section of the phase diagram obtained by
DMRG which displays both the Ising quantum phase transition
and the onset of superfluidity. We confirm the Ising behavior
within the Mott phase using results for the excitation gap and
the entanglement entropy. In Sec. V we investigate the role
of higher-order terms in the strong coupling expansion. We
discuss their impact on the nonuniversal properties of the phase
diagram such as the curvature of the Ising phase boundary.
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In Sec. VI we examine the local expectation values within
the Mott phase at and away from criticality. We move on to
correlation functions in Secs. VII and VIII and discuss their
relation to the Ising model. In Secs. IX and X we turn our
attention to softcore bosons and demonstrate the existence
of both AFM and FM Ising transitions. We comment on the
closely related fermionic problem in Appendix B. We conclude
in Sec. XI and provide perspectives for further research.

II. MODEL

We consider the Hamiltonian [37–40]

H =
∑
iα

εαniα −
∑
〈ij〉

∑
α

tα(b†iαbjα + H.c.)

+
∑
iαα′

Uαα′

2
: niαniα′ : +HF , (1)

describing bosons, biα hopping on a lattice with sites i where
α = a and m labels atoms and molecules and niα = b

†
iαbiα .

Here, εα are on-site potentials, tα are hopping parameters,
〈ij 〉 denotes summation over nearest-neighbor bonds, and Uαα′

are interactions. We use normal ordering symbols to indicate
: niαniα′ : = niα(niα − 1) for like species and : niαniα′ : =
niαniα′ for distinct species. For simplicity we assume that
molecules are formed by s-wave Feshbach resonant interac-
tions,

HF = g
∑

i

(m†
i aiai + H.c.), (2)

where mi ≡ bim and ai ≡ bia; for recent work on the p-wave
problem see Ref. [49]. An important feature of the Feshbach
interaction (2) is that atoms and molecules are not separately
conserved. However, the total, NT ≡ ∑

i(nia + 2nim), is pre-
served. One may therefore work in the canonical ensemble
with ρT ≡ NT /L held fixed, where L is the number of lattice
sites. In order to make contact with the previous literature
[39–41] we consider only a single-band description in Eq. (1);
for a discussion of higher-band effects see Refs. [50–52]. As
reported elsewhere the pairing Hamiltonian (1) has a rich phase
diagram exhibiting both MI and SF phases [32–40,42]. Most
notably, the system displays a discrete Z2 symmetry-breaking
transition [34–36] between a paired molecular condensate
(MC) and an atomic plus molecular condensate (AC + MC)
phase [42]; for closely related transitions in other models
see also Refs. [53–57]. Here, our main focus will be on
the MI phase. In particular, we shed further light on the
magnetic characteristics of the second Mott lobe [32,33]. We
also discuss the connection to Ref. [41] and earlier numerical
studies [39,40]. In order to facilitate our numerical simulations
we consider the restricted Hamiltonian

HP = PHP, (3)

where the projection operator P projects on to the restricted
local Hilbert space with a maximum of ra atoms and rm

molecules per site. We begin our discussion in Sec. III by
setting ra = 2 and rm = 1 as used in Ref. [40]. As we will
see, the essential characteristic features of the phase diagram
are readily gleaned from this limiting case. We move on to
the more general problem with canonical softcore bosons in

Secs. IX and X. Throughout this manuscript we use the value
of Uam to set the overall energy scale; in Figs. 2, 3, and 4 and
Figs. 6, 7, and 8 we set Uam = 1, and in the remaining figures
we set Uam = 4 in order to descend deeper into the Mott phase.

III. SECOND MOTT LOBE

A convenient way to describe the second Mott lobe with
ρT = 2 is via an effective spin model derived within the
strong coupling expansion; see Fig. 1. Introducing effective
spins |⇓〉 ≡ |2; 0〉/√2 and |⇑〉 ≡ |0; 1〉 in the occupation basis
|na; nm〉 one obtains the effective spin-1/2 quantum Ising
model [32,33]

H 	 Jzz

∑
i

Sz
i S

z
i+1 + h

∑
i

Sz
i + �

∑
i

Sx
i + C + O(t3),

(4)

where we work to second order in the hopping parameters.
The spin operators are given by

S+ = m†aa√
2

, S− = a†a†m√
2

, Sz = (nm − na/2)

2
, (5)

and S± ≡ Sx ± iSy where we suppress site indices. The
factors of

√
2 arise from the action of the Bose operators on the

basis states. Equivalently, since na + 2nm = 2, one may also
write Sz = (1 − na)/2 or Sz = (2nm − 1)/2. As indicated in
Fig. 1, the first term in Eq. (4) arises from the virtual hopping
processes of atoms and molecules onto neighboring sites and
corresponds to an effective magnetic exchange interaction,
Jzz. The second term in Eq. (4) reflects the energetic detuning
between atoms and molecules and corresponds to an effective
longitudinal magnetic field, h. The third term in Eq. (4)
corresponds directly to the Feshbach term in Eq. (2). Indeed,
it is readily seen from the definition (5) that S+ converts two
atoms (⇓) into a molecule (⇑) and therefore acts like a spin
raising operator. It follows that the Feshbach term (2) acts like
a transverse field in the x direction with

� ≡ 2g
√

2. (6)

The overall structure of the magnetic Hamiltonian (4) is
generic to the second Mott lobe with ρT = 2. However, the
coefficients depend on the specific Hilbert space restriction.

FIG. 1. (Color online) Depiction of the second Mott lobe of the
Hamiltonian (1) with ρT = 2 showing either a pair of atoms or a
molecule on each site. These may be regarded as an effective spin-
down (⇓) and spin-up (⇑), respectively. Second-order virtual hopping
processes lead to Jzz interactions and an effective Ising model. The
XY exchange, Jxy , occurs at third order and involves interchanging a
pair of atoms and a molecule. The Feshbach term (2) converts a pair
of atoms (⇓) into a molecule (⇑) and therefore acts like a transverse
field.
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For the Hamiltonian (3) with restriction parameters ra = 2
and rm = 1 one obtains [32,33]

Jzz = 4t2
a

Uam − Uaa

+ t2
m

Uam

(7)

and

h = εm − 2εa − Uaa. (8)

The constant offset is given by

C = L

(
εm

2
+ εa + Uaa

2
− zJzz

8

)
, (9)

where z is the cubic lattice coordination and z = 2 in 1D. In
general there will also be additional contributions to these
coefficients arising from higher-order terms in the strong
coupling expansion. As we discuss in more detail below similar
results also hold for canonical softcore atoms and molecules
but with modified coefficients. This is due to the presence of
additional intermediate states that are explored in the virtual
hopping processes. Nonetheless, this truncation of the Hilbert
space is useful for initial numerical simulations and is also used
in Ref. [40]. In addition the principal features of the magnetic
description are more readily exposed. We return to canonical
softcore bosons in Secs. IX and X.

IV. PHASE DIAGRAM AND THE ANTIFERROMAGNETIC
ISING TRANSITION

In Refs. [32,33] we provided a variety of evidence for
an Ising quantum phase transition in the closely related
heteronuclear generalization of Hamiltonian (1). However, due
to the small system sizes accessible by exact diagonalization, a
complete elucidation of the phase diagram was not possible. In
addition correlation functions were out of reach. In particular,
it was not possible to track the Ising quantum phase transition
throughout the second Mott lobe or to accurately delimit
the onset of superfluidity. We address this situation for the
homonuclear case by using DMRG on large systems. We keep
up to 3000 density matrix states so that the discarded weight is
less than 10−10. Following Ref. [40] we implement the model
(3) as a two-leg ladder system, where the atoms and molecules
reside on opposite legs of the ladder. In this representation the
Feshbach term (2) corresponds to hopping along the rungs,
and extreme care must be taken for small values of g. In
Fig. 2 we present a cross section of the phase diagram for the
Hamiltonian (3) with ra = 2 and rm = 1. In this approach the
Hilbert space restriction parameters rα and the interactions
Uαα′ are treated independently. For ease of exposition we
begin by setting εa = εm = Uaa = 0 and Uam = 1, where our
choice of parameters is motivated by the simplest case with
zero magnetic field as given by Eq. (8). In addition, for small
hopping parameters tα , and large Uam, one may set Uaa = 0
in Eq. (7) without loss of generality or conflict with the strong
coupling expansion. We incorporate the effects of finite Uaa in
our subsequent discussion.

The phase diagram in Fig. 2 contains three distinct phases.
A Z2 disordered MI with vanishing staggered magnetization∑

i(−1)i〈Sz
i 〉/L = 0, a Z2 ordered MI with a finite staggered

magnetization and long range AFM correlations, and an AC +
MC superfluid with both atomic and molecular power law

Γ

Jzz

0.00

0.02

0.04

0.06

0.0 0.1 0.2 0.3 0.4 0.5

AC+MC SF

AFM MI
2 disordered

AFM MI
2 ordered

FIG. 2. (Color online) Phase diagram of the 1D Hamiltonian (3)
with ρT = 2 obtained by DMRG with up to L = 256 sites. We restrict
the local Hilbert space to a maximum of one molecule and two atoms
per site with rm = 1 and ra = 2, and we set εa = εm = 0, Uaa = 0,
and Uam = 1, corresponding to h = 0. We set ta = 2tm = t and vary
t to obtain different values of Jzz = 17t2/4 corresponding to the
AFM exchange. This cross section shows a Z2 ordered AFM MI,
a Z2 disordered AFM MI, and an AC + MC SF. The solid squares
are obtained from the vanishing of the first excitation gap, �1 ≡
E1 − E0, corresponding to an Ising quantum phase transition within
the MI; the solid line is a spline fit which is extrapolated down to
� = 0. The dashed line corresponds to the strong coupling result,
�c = Jzz/2, which follows from the Hamiltonian (4) with h = 0.
The dotted line is obtained by ED of Hamiltonian (4) including the
subleading XY exchange terms, Jxy = −0.46 J 3/2

zz , which arise at
higher order in the strong coupling expansion. The diamonds are
obtained from the vanishing of the two-particle gap, E2g ≡ μ+ −
μ−, where μ± = ±[E0(L,NT ± 2) − E0(L,NT)], and up to L = 128,
indicating the onset of an AC + MC superfluid.

superfluidity. The additional MC phase with only molecular
superfluidity is absent in this cross section of the phase
diagram due to our choice of parameters; for more details of
the superfluid phases see Ref. [42]. In this manuscript our
main focus is on the MI phase. In particular, we see that
the magnetic phase boundary bends over quite considerably
due to higher-order terms in the strong coupling expansion.
Nonetheless, the quantum phase transition remains in the Ising
universality class. For example, the Ising character of this
transition is supported by Fig. 3 which shows the characteristic
linear variation of the excitation gap [58]

� = |� − �c|, (10)

on passing through the transition in the scaling regime. The
Ising character is also confirmed by DMRG results for the
entanglement entropy as shown in Fig. 4. For a block of length
l in a system of length L, the von Neumann entropy is given
by SL(l) = −Trl (ρl ln ρl), where ρl = TrL−l(ρ) is the reduced
density matrix. In a critical system with periodic boundaries
one obtains [59–62]

SL(l) = c

3
ln

[
2L

π
sin

(
πl

L

)]
+ s1, (11)

023635-3

Article XXIII

233



M. J. BHASEEN et al. PHYSICAL REVIEW A 84, 023635 (2011)

4 2 0 2 4
0

2

4

2 ordered AFM MI 2 disordered AFM MI

104|Γ − Γc|

10
4
Δ

1
,
10

4
Δ

2

FIG. 3. DMRG results for the excitation gaps, �1 ≡ E1 −
E0 (circles) and �2 ≡ E2 − E0 (squares), for the bosonic
Hamiltonian (3) with open boundaries and up to L = 256 sites. We
pass through the Ising quantum phase transition shown in Fig. 2 with
t = 0.05 and Jzz ≈ 0.01. The transition occurs at �c ≈ 4.6 × 10−3,
which is slightly below the strong coupling result, �c = Jzz/2 ≈
5.3 × 10−3. This reflects the curvature of the Ising transition shown
in Fig. 2. The solid lines indicate the linear gap, � = |� − �c|,
corresponding to the Ising critical exponent, ν = 1.

where s1 is a nonuniversal constant and c is the central charge.
As shown in Fig. 4(a) the results are in excellent agreement
with an Ising quantum phase transition with c = 1/2. In
particular, this continues to hold further out in the Mott phase
where the strong coupling analysis no longer strictly applies.
Further evidence for this may be seen from the entanglement
entropy difference [42,63]

�S(L) ≡ SL(L/2) − SL/2(L/4), (12)

which exhibits a peak on transiting through the magnetic
transition as shown in Fig. 4(b). At criticality �S = c

3 ln 2 +
· · · [59–62] and the peak height is in good agreement with
c = 1/2. It is interesting to note that a naive spline fit
to the currently available DMRG data for the Ising phase
boundary shown in Fig. 2 terminates within the MI. This
tentatively suggests that a magnetic transition may exist even
in the absence of the Feshbach term (2). Unfortunately, it
is difficult to gain a quantitative handle on the character of
this feature, which occurs for intermediate hopping strengths
and vanishing Feshbach coupling, using our current imple-
mentation of DMRG. Moreover, this � = 0 limit differs
somewhat from other investigations of the two-component
Bose-Hubbard model [64,65], since we keep the total density,
ρT = ∑

i(nia + 2nim)/L = 2, held fixed, with two atoms and
one molecule per site. It would be instructive to explore this
limit in future work.

V. HIGHER-ORDER CONTRIBUTIONS IN THE STRONG
COUPLING EXPANSION

In the discussion above we have presented a variety of
large-scale DMRG results in favor of an Ising quantum phase
transition taking place within the second Mott lobe [32,33].
In particular we have argued that the Ising character of the

0.02 0.03 0.04
Γ

0

0.1

0.2

Δ
S

/
ln

2 L = 32
L = 48
L = 64

0 10 20 30 40 50 60
l

1.4

1.5

1.6

1.7

S
L
(l

)

(a)

(b)

FIG. 4. (Color online) (a) DMRG results for the entanglement
entropy, SL(l), at the Ising transition within the MI for a subsystem of
length l in a periodic chain with L = 64. We use the same parameters
as in Fig. 2 and set t = 0.17 corresponding to Jzz ≈ 0.12 and �c ≈
0.028. The solid line is a fit to Eq. (11). The extracted value of the
central charge c = 0.50(2) is consistent with a magnetic transition in
the Ising universality class. (b) The entanglement entropy difference
�S(L) for t = 0.17 shows a peak at the Ising transition. The peak
height corresponds to c = 1/2 as indicated by the dashed lines.

quantum phase transition persists throughout an extended
region of the phase diagram as shown in Fig. 2. Nonetheless, it
is important to bear in mind that the explicit Ising Hamiltonian
given in Eq. (4) is derived by means of the strong coupling,
t/U , expansion. It is therefore tailored toward a quantitative
description of the bosonic Hamiltonian (1) deep within the
Mott lobe, as supported by our DMRG results. At larger values
of the hopping parameters departures from the strong coupling
result (4) are to be expected. This is evident from the deviation
of the phase boundary from the asymptotic result, �c = Jzz/2,
as shown in Fig. 2. Carrying out the strong coupling expansion
to third order in the hopping parameters one must supplement
the Hamiltonian (4) with the additional XY exchange terms:

�H = Jxy

2

∑
i

(S+
i S−

i+1 + S−
i S+

i+1), (13)

where S± ≡ Sx ± iSy , and

Jxy = − 4t2
a tm

Uam − Uaa

(
1

Uam

+ 1

Uam − Uaa

)
. (14)

One thus obtains a strongly anisotropic XXZ Heisenberg
Hamiltonian in both a longitudinal and transverse field. For the
parameters chosen in Fig. 2, Jzz = 17t2/4 and Jxy = −4t3.
This yields the XXZ anisotropy parameter, δ ≡ Jxy/Jzz =
−16t/17, corresponding to δ ≈ −0.46

√
Jzz. Within the MI

shown in Fig. 2 this gives −0.27 � δ < 0. The system remains
in the strongly anisotropic regime and Ising criticality is
expected to persist throughout this cross section of the MI.
Nonetheless, the XY contributions (13) modify the location of
the Ising quantum phase transition as shown in Fig. 2. As we
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discuss in Sec. VII such terms also influence the nonuniversal
amplitudes in the correlation functions whilst preserving the
universal critical exponents.

VI. LOCAL EXPECTATION VALUES

Having provided numerical evidence for an Ising quantum
phase transition in the second Mott lobe of the Hamiltonian
(1) we turn our attention to the local expectation values. The
order parameter of the AFM transverse field Ising model (4) is
the staggered magnetization (−1)i〈Sz

i 〉. In the thermodynamic
limit with h = 0 and � < �c this is given by [66,67]

(−1)i
〈
Sz

i

〉 = 1

2

[
1 −

(
�

�c

)2]β

, (15)

where β = 1/8 is the Ising critical exponent; in the disordered
phase with � > �c the order parameter vanishes. In order to
verify this characteristic behavior in the bosonic Hamiltonian
(3) we choose parameters deep within the Mott phase. As
shown in Fig. 5(a) our DMRG results are in excellent
agreement with Eq. (15). This confirms that any higher-order
corrections to the Ising description (4) are small. In a similar
fashion the transverse magnetization is given by [66,67]

〈
Sx

i

〉 = −
∫ π

0

dk

2π

2� + Jzz cos k√
4�2 + J 2

zz + 4�Jzz cos k
. (16)

This dependence is confirmed in Fig. 5(b) both at and away
from criticality. Note that at the critical point where � = �c

the expectation value 〈Sx
i 〉 = −1/π is nonvanishing due to

the transverse field. We have also checked the consistency of
our DMRG results by applying a small staggered field hst to
the bosonic Hamiltonian (3), �Hst = −hst

∑
i(−1)iSz

i , where
Sz

i is given by Eq. (5). In the limit hst → 0 this replicates
the effect of spontaneous symmetry breaking in our finite-size
simulations. The results converge to the same values as for
hst = 0; see inset of Fig. 5(a).

Having established the validity of the explicit Ising Hamil-
tonian (4) deep within the Mott phase, it is instructive to see
how this leading-order behavior is modified as one moves
out toward the MI-SF boundary. In Fig. 6(a) we show the
evolution of the local magnetization 〈Sz

i 〉 with increasing
hopping parameters within the Z2 disordered phase shown
in Fig. 2. Deep within the MI, 〈Sz

i 〉 = 0, as one would
expect for the disordered phase of the transverse field Ising
model (4) with h = 0. However, at larger values of the
hopping parameters a finite uniform magnetization develops
as indicated by the plateaus in Fig. 6(a). This is due to
the presence of higher-order terms in the strong coupling
expansion. In general such contributions are expected to induce
corrections to the leading-order coefficients, Jzz and C, and
the magnetic field, h, given in Eqs. (7)–(9). However, it is
evident from Fig. 6(b) that this uniform contribution to the
magnetization remains significantly below the saturation value
of 〈Sz

i 〉 = −1/2, indicating that the leading-order description
(4) is a useful starting point in the broader phase diagram.
Indeed, the staggered magnetization remains zero in the bulk
of the system, as may be seen from the absence of oscillations
in Fig. 6(a). As such we remain in the disordered phase
of an Ising antiferromagnet, albeit in the presence of an
increasing uniform effective magnetic field. More generally,

0

0.1

0.2

0.3

0.4

0.5

|〈S
 z
〉|

0 0.5 1 1.5 2
Γ / Γ

c

-0.5

-0.4

-0.3

-0.2

-0.1

0

〈S
 x
〉

L = 24
L = 32
L = 48

0 0.001
h

st

0.4

0.5

(a)

(b)

Γ = 0.8Γ
c

i
i

FIG. 5. (Color online) Local expectation values deep within the
Mott phase obtained by DMRG for the bosonic Hamiltonian (3) with
periodic boundaries and restriction parameters rm = 1 and ra = 2.
In order to demonstrate the broader validity of our results, while
suppressing higher-order terms in the strong coupling expansion, we
choose parameters different from those used in Fig. 2. We set εa = 0
and εm = Uaa = 3.8, corresponding to h = 0, and we take Uam = 4
and t = 0.005. (a) Staggered magnetization |〈Sz

i 〉|. The theoretical
result for the transverse field Ising model is given by Eq. (15) and is
indicated by the solid line. Inset: The application of a small staggered
field hst yields the same results as in panel (a) in the limit hst → 0.
(b) Transverse magnetization 〈Sx

i 〉. The solid line shows the Ising
behavior given by Eq. (16). The dashed line corresponds to 〈Sx

i 〉 =
−1/π , which holds at criticality.

one may also transit through the Z2 ordered region shown
in Fig. 2. As indicated in Figs. 6(c) and 6(d) this results in
the onset of AFM oscillations in the local magnetization. In
Fig. 6(e) we plot the evolution of the corresponding uniform
and staggered magnetizations. The region of support of the
staggered component is in agreement with the Z2 ordered
phase inferred from the gap data in Fig. 2.

VII. CORRELATION FUNCTIONS

Having discussed the local expectation values we now
consider correlation functions. In order to orient the discussion
we first recall the expected theoretical behavior at the critical
point of the AFM Ising model in a transverse field, where
�c = Jzz/2 and h = 0. In the absence of a longitudinal field
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FIG. 6. (Color online) (a) DMRG results for the local magneti-
zation 〈Sz

i 〉 for the parameters used in Fig. 2 with h = 0 and � =
0.04. We set t = 0.025,0.075,0.125, . . . ,0.325 from top to bottom
with L = 32 and periodic boundaries. The plateaus correspond to
the development of a uniform magnetization while the staggered
magnetization remains zero. (b) Uniform magnetization MU =∑

i〈Sz
i 〉/L. The nonzero value is attributed to higher-order terms in

the strong coupling expansion. These may modify the leading-order
magnetic field given in Eq. (8). The dotted line shows the approximate
location of the MI to AC + MC transition obtained from the gap
data in Fig. 2. (c) We set � = 0.02 and use the same values of the
remaining parameters as in panel (a). The oscillations correspond to
the onset of the Z2 ordered phase in Fig. 2. (d) Antiferromagnetic
oscillations in the Z2 ordered phase with t = 0.125 (circles), t =
0.155 (squares), t = 0.175 (diamonds), and t = 0.195 (triangles).
(e) Uniform magnetizationMU (circles) and staggered magnetization
MS = ∑

i(−1)i〈Sz
i 〉/L (squares) for � = 0.02.

the asymptotic longitudinal correlation function decays as a
power law [66],〈

Sz
i S

z
i+n

〉 ∼ (−1)n B n−η + · · · , (17)

where η = 1/4 is the Ising pair correlation exponent, B =
A−3 4−1 21/12 e1/4 	 0.161 is a constant prefactor, and A 	
1.2824 is the Glaisher-Kinkelin constant. In a similar fashion,
the transverse correlators also exhibit power law behavior at
criticality [66],〈

Sx
i Sx

i+n

〉 ∼ 〈
Sx

i

〉2 + (2πn)−2 + · · · , (18)

where 〈Sx
i 〉 = −1/π at the transition and
〈
S

y

i S
y

i+n

〉 ∼ −(−1)n (B/4) n−9/4 + · · · . (19)

As suggested by Eq. (18), due to the finite value of 〈Sx
i 〉 =

−1/π at criticality one must consider the connected corre-
lation function 〈Sx

i Sx
i+n〉 − 〈Sx

i 〉〈Sx
i+n〉 in order to see power

law behavior. To establish this dependence in the bosonic
Hamiltonian (3) we perform DMRG calculations with open
boundaries and up to L = 512 sites. As shown in Fig. 7,
at � = �c the data are consistent with power law behavior
in the bulk of the system away from the sample boundaries.
In addition the data show long-range order in |〈Sz

i S
z
i+n〉| for

� < �c and a finite correlation length for � > �c. Although
this provides direct evidence for a quantum phase transition,
a quantitative determination of the Ising critical exponents
requires a more detailed finite-size scaling analysis of the
data. This is most readily achieved using periodic boundary
conditions. We recall that in a finite-size critical system with
periodic boundary conditions, the two-point function of a
primary field O may be obtained by conformal transformation
of the strip geometry [68]:

〈O(r1)O(r2)〉L = N
[

π

L sin
(

πr
L

)
]a

. (20)

Here a is the critical exponent in the thermodynamic limit and
N is the prefactor: 〈O(r1)O(r2)〉∞ = N r−a . It follows from
Eq. (20) that the rescaled combination

La〈O(r1)O(r2)〉L = fa (r/L) (21)

is a prescribed scaling function,

fa(x) = N
[

π

sin(πx)

]a

, (22)

of the reduced separation x = r/L. As shown in Figs. 8 and 9,
the rescaled critical two-point functions,

Fz(n/L) ≡ L1/4
∣∣〈Sz

i S
z
i+n

〉
L

∣∣,
Fy(n/L) ≡ L9/4

∣∣〈Sy

i S
y

i+n

〉
L

∣∣,
Fx(n/L) ≡ L2[〈Sx

i Sx
i+n

〉 − 〈
Sx

i

〉〈
Sx

i+n

〉]
L
, (23)

all show striking data collapse over the entire system length,
showing clear indications of Ising criticality. Deep in the Mott
phase the resulting scaling functions are in excellent agreement
with the theoretical results for the lattice Ising model (4)
in finite-size geometry, as indicated in Fig. 9. This includes
both the universal critical exponents, a, and the non-universal
amplitude prefactors, N , taken from Eqs. (17), (18), and (19).
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FIG. 7. Correlation functions within the second Mott lobe of the
bosonic Hamiltonian (3) obtained by DMRG with L = 512 and open
boundaries. We use the same parameters as in Fig. 3. The data are
consistent with an Ising quantum phase transition between a magnetic
state with long range order and a disordered state with a finite
correlation length. The solid lines correspond to the critical two-point
functions in Eqs. (17), (18) and (19). A quantitative demonstration
of the Ising critical exponents is shown in Fig. 8 using periodic
boundaries and finite-size scaling.

Further out in the Mott phase, the nonuniversal prefactors
are influenced by higher-order terms in the strong coupling
expansion as discussed in Sec. V, but the universal Ising
exponents are robust to these perturbations; see Fig. 8.

Having confirmed the presence of a line of critical Ising
correlations within the second Mott lobe of the bosonic
Hamiltonian (3) we now consider the generic behavior in the
MI phase. As may be seen in Fig. 7, the data reveal a finite
correlation length for the connected correlation functions on
either side of the transition. This is consistent with the presence
of an Ising spectral gap as shown in Fig. 3. In order to place
this behavior on a quantitative footing we recall the principal
results for the transverse field Ising model (4) with h = 0. In

0 0.1 0.2 0.3 0.4 0.5
0

1

2

L = 32
L = 64
L = 96

α = z

α = x

α = y

F α
(n

/L
)

n/L

FIG. 8. (Color online) DMRG results for the rescaled bosonic
correlation functions L1/4|〈Sz

i S
z
i+n〉L| (circles), L2[〈Sx

i Sx
i+n〉 −

〈Sx
i 〉〈Sx

i+n〉]L (squares), and L9/4|〈Sy

i S
y

i+n〉L| (triangles) with periodic
boundaries at criticality for the parameter set of Fig. 7 with t = 0.05.
The data collapse over the entire system length with the Ising
critical exponents. The nonuniversal prefactors differ slightly from
the theoretical predictions of the lattice Ising model (4) as indicated
by the solid lines. This is due to the presence of small additional XY
contributions to the Ising description. By descending deeper into the
Mott lobe one obtains a complete quantitative agreement including
the nonuniversal prefactors as shown in Fig. 9.

the ordered phase with � < �c the leading contribution to the
longitudinal correlations is given by [66]

〈
Sz

i S
z
i+n

〉 ∼ (−1)n
∣∣〈Sz

i

〉∣∣2
, (24)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

L = 16
L = 32
L = 48

α = z

α = x

α = y

F α
(n

/L
)

n/L

FIG. 9. (Color online) DMRG results for the rescaled bosonic
correlation functions L1/4|〈Sz

i S
z
i+n〉L| (circles), L2[〈Sx

i Sx
i+n〉 −

〈Sx
i 〉〈Sx

i+n〉]L (squares), and L9/4|〈Sy

i S
y

i+n〉L| (triangles) with periodic
boundaries at criticality for the parameter set of Fig. 5 with t = 0.005.
The data show clear scaling collapse over the entire system length.
The theoretical results for the lattice Ising model (4) in a finite-size
geometry are indicated by solid lines. The data are in excellent
agreement with both the universal Ising critical exponents and the
nonuniversal amplitudes in Eqs. (17), (18), and (19).
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FIG. 10. Off-critical order parameter correlations |〈Sz
i S

z
i+n〉| ob-

tained by DMRG on the 1D system (3) with L = 48 and periodic
boundaries. We use the same parameters as in Fig. 5. The solid lines
correspond to the quantum Ising model (4) and are given by Eq. (24)
for � < �c and Eq. (25) for � > �c. The agreement confirms the
presence of long-range order for � < �c and exponential decay for
� > �c.

where |〈Sz
i 〉| is the staggered magnetization corresponding to

the onset of long-range AFM order as given by Eq. (15). In
contrast, in the disordered phase with � > �c, the correlations
decay exponentially with a power law prefactor [66],

〈
Sz

i S
z
i+n

〉 ∼ (−1)n

4

[
1 −

(
�c

�

)2]−1/4
e−n/ξ

√
πn

, (25)

where ξ−1 = ln(�/�c). To confirm this behavior we descend
deep into the Mott phase in order to suppress the effects of
the small XY terms given by Eq. (14). As shown in Fig. 10,
the results are in excellent agreement with the theoretical
predictions, Eqs. (24) and (25).

VIII. ATOM-MOLECULE CORRELATIONS

The above considerations are consistent with the notion that
away from the Ising transition line the connected correlations
decay exponentially in the MI. As advocated in Ref. [32]
the absence of low-lying gapless excitations precludes the
possibility of the novel super-Mott behavior proposed in
Refs. [39,40]. This gained further support in a recent comment
[41] which confirms the presence of exponential decay in
the atom-molecule correlation functions. We discuss these
observations for the bosonic Hamiltonian (3) within the
framework of the Ising description.

In order to investigate the possibility of counterflow
supercurrents [64,65] of atoms and molecules, the authors of
Ref. [41] consider the connected correlation function

Cam(n) = 〈m†(n)a(n)a(n)a†(0)a†(0)m(0)〉
− 〈m†(n)a(n)a(n)〉〈a†(0)a†(0)m(0)〉. (26)

Using the spin mapping (5) [32,33] this may be written in the
equivalent form

Cam(n) = 2[〈S+(n)S−(0)〉 − 〈S+(n)〉〈S−(0)〉]. (27)

Deep within the second Mott lobe one may therefore use
the Ising Hamiltonian (4) to gain a handle on the bosonic
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FIG. 11. Correlation function Cam(n)/2 at and away from criti-
cality obtained by DMRG on the 1D system (3) with L = 48 and
periodic boundaries. We use the same parameters as in Fig. 5. (a) At
criticality clear oscillations are present in conformity with the Ising
description. The solid line corresponds to the theoretical prediction
in Eq. (31). (b) Away from the critical point with � = 2�c, Cam(n)
shows a finite correlation length due to the Ising gap.

correlation function (26). To this end we may decompose the
first term in Eq. (27) as

〈
S+

i S−
i+n

〉 = 〈
Sx

i Sx
i+n

〉 + 〈
S

y

i S
y

i+n

〉
, (28)

where the mixed component terms cancel. It follows that

Cam(n) = 2
[〈
Sx

i Sx
i+n

〉 − 〈
Sx

i

〉〈
Sx

i+n

〉 + 〈
S

y

i S
y

i+n

〉]
, (29)

where we use the fact that 〈Sy

i 〉 = 0 for the transverse field
Ising model (4) in zero magnetic field. That is to say, Cam(n)
is the sum of the connected xx correlation function and
the yy correlation function. From our previous discussion in
Sec. VII these contributions generically decay exponentially,
in agreement with the findings of Ref. [41]. However, along
the locus of the Ising quantum phase transition one expects
power law contributions. Using Eqs. (18) and (19) one obtains

Cam(n) ∼ 2[(2πn)−2 − (−1)n(B/4)n−9/4]. (30)

In order to confirm this characteristic oscillatory dependence
we perform DMRG on the 1D bosonic Hamiltonian (3) with
L = 96 and periodic boundaries. Employing the finite-size
result (20) obtained by conformal transformation one obtains

Cam(n)

2
∼ 1

(2π )2

[
π/L

sin
(

πn
L

)
]2

− (−1)n
B
4

[
π/L

sin
(

πn
L

)
]9/4

.

(31)

As shown in Fig. 11 the results are in excellent agreement with
the underlying Ising correlation functions.

IX. CANONICAL SOFTCORE BOSONS

Having provided a discussion of the model (3) in the
reduced Hilbert space, with ra = 2 and rm = 1, we turn our
attention to the more general problem with canonical softcore
bosons. In this situation one must allow for the presence
of additional virtual intermediate states in the magnetic
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description. For example, in a configuration with two pairs
of a atoms on neighboring sites the softcore problem allows
virtual hopping to take place, in contrast to the problem with
ra = 2. This modifies the coefficients, Jzz, h, and C, but the
Ising description remains valid deep within the second Mott
lobe. One again obtains the effective magnetic Hamiltonian
given in Eq. (4) but with the modified coefficients,

Jzz = 4t2
a

Uam − Uaa

+ t2
m

Uam

− 12t2
a

Uaa

− 4t2
m

Umm

(32)

and

h = εm − 2εa − Uaa + z

2

(
12t2

a

Uaa

− 4t2
m

Umm

)
, (33)

together with

C = L

[
εm

2
+ εa + Uaa

2

− z

8

(
4t2

a

Uam − Uaa

+ t2
m

Uam

+ 12t2
a

Uaa

+ 4t2
m

Umm

)]
, (34)

as shown in Appendix A. Note in particular that the effective
longitudinal magnetic field, h, now depends on the hopping
parameters and is therefore already present at second order
in the strong coupling expansion. In order to see the effect
of these additional intermediate states it is instructive to
examine the change in the ground-state energy of the bosonic
Hamiltonian (3) upon increasing the local atomic Hilbert
space restriction, ra . For simplicity, we consider Umm → ∞,
corresponding to hardcore molecules with rm = 1. As shown
in Fig. 12(a), the ground-state energy changes on going from
ra = 2 to ra = 3 due to the additional hopping processes.
However, increasing the atomic restriction beyond ra = 3 has
no further effect, since higher occupations are not explored
at second order in perturbation theory within the second
Mott lobe. The excellent agreement of the bosonic results
with ra = 3 and ra = 4 therefore supports the applicability of
the second-order Ising description. The solid lines shown in
Fig. 12(a) correspond to the ground-state energy density of
the Ising model (4) obtained by exact diagonalization with the
appropriate coefficients. Our DMRG results are in excellent
agreement with these predictions. As shown in Fig. 12(b) this
agreement also extends to the generic softcore problem. At
second order in perturbation theory around the second Mott
lobe the maximum local occupation is ra = 3 and rm = 2. The
absence of any further change in the ground-state energy on
increasing the local Hilbert space justifies both the use of this
truncation and the Ising description. In Fig. 13 we show the
existence of an AFM Ising quantum phase transition within
the second Mott lobe for these restricted softcore bosons.
The entanglement entropy difference as given by Eq. (12)
exhibits a peak on transiting through the magnetic transition.
At criticality �S = c

3 ln 2 + · · · and the peak height is in good
agreement with an Ising quantum phase transition with central
charge c = 1/2.

X. FERROMAGNETIC ISING TRANSITION

An interesting aspect of the canonical softcore result (32)
is that one may explore both AFM and FM Ising interactions

3.7995

3.7996

3.7997

3.7998
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E
0
/L

104Γ

(a)

(b)

ra = 2, rm = 1
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ra = 4, rm = 1

ra = 3, rm = 2
ra = 4, rm = 3

FIG. 12. Ground-state energy density of the Hamiltonian (3)
obtained by DMRG with L = 20 (to aid comparison with ED
results for the Ising model) and periodic boundaries. (a) We use
the parameters in Fig. 5 and increase the local atomic Hilbert space
restriction ra , with rm = 1 held fixed. The lines are results for
the energy density of the Ising Hamiltonian (4) obtained by ED
(L = 20) with Jzz = 5.02 × 10−4 and h = 0 for ra = 2 and with
Jzz = 4.23 × 10−4 and h = 7.89 × 10−5 for ra = 3 and 4. The change
from ra = 2 to ra = 3 is due to the presence of additional virtual
states which modify the Ising model coefficients. The absence of any
change beyond ra = 3 is consistent with second-order perturbation
theory around the second Mott lobe. (b) Ground-state energy density
for the same parameters as in panel (a) with the additional interaction
Umm = 4. We increase the local Hilbert space from ra = 3 and
rm = 2 to ra = 4 and rm = 3. The absence of any further change
is consistent with the maximum occupancy for virtual states explored
in second-order perturbation theory around the second Mott lobe. The
solid line is the energy density of the Ising Hamiltonian (4) obtained
by ED (L = 20) with Jzz = 4.16 × 10−4 and h = 7.27 × 10−5 as
given by Eqs. (32) and (33), respectively.

due to the relative minus signs. This is readily seen by
exact diagonalization on small systems using the techniques
employed in Refs. [32,33,69]. As shown in Fig. 14 an Ising
transition indeed persists with FM parameters and h = 0.
This is also confirmed by DMRG results for the ground-state
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/
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L = 64

FIG. 13. (Color online) Entanglement entropy difference
�S(L) ≡ SL(L/2) − SL/2(L/4) showing an Ising quantum phase
transition within the second Mott lobe for restricted softcore bosons.
We truncate the local Hilbert space to ra = 3 and rm = 2 which is the
maximum occupancy explored at second order in perturbation theory.
We use the same parameters as in Fig. 12(b) and set t = 0.005. The
peak height corresponds to a central charge c ≈ 1/2.
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FIG. 14. ED results for the Hamiltonian (3) with hardcore
molecules (rm = 1) and up to three atoms (ra = 3) per site. We
set εa = 0, Uaa = 2, Uam = 4, and ta = 2tm and take ta = 0.01
corresponding to FM exchange with Jzz 	 −3.94 × 10−4. For sim-
plicity we set h = εm − 2 + 6t2

a = 0 by taking εm = 1.9994. (a)
The rescaled energy gap �1 ≡ E1 − E0 shows a clear intersection
at �c ≈ 1.969 × 10−4 ≈ 0.4997|Jzz| corresponding to a FM transi-
tion. (b) Scaling collapse with the Ising critical exponent, ν = 1.
(c) The rescaled pseudomagnetization m = 〈|∑i S

z
i |〉/L indicates a

transition at the same value of �c. (d) Scaling collapse with the Ising
critical exponent β = 1/8.

energy of the bosonic Hamiltonian (3) with L = 64 and
periodic boundary conditions. In the thermodynamic limit,
the ground-state energy density of the Ising model (4) is given
by E0/L = C/L + e∞ (Ref. [66]), where

e∞ = − 1

4π

∫ π

0
dk

√
4�2 + J 2

zz + 4�Jzz cos k. (35)

Defining E′
0 ≡ E0 − C the result for E′

0/L is in good
agreement with Eq. (35) as shown in Fig. 15(a). In addition
the finite-size corrections to the ground-state energy are well
described by the conformal result [70,71]

E′
0

L
= e∞ − πcv

6L2
+ · · · , (36)

where v = |Jzz|/2 is the effective velocity and c is the central
charge. Going beyond our h = 0 parameter choice, this opens
up the exciting possibility of studying the celebrated E8 mass
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FIG. 15. (a) Rescaled ground-state energy E′
0 ≡ E0 − C of the

bosonic Hamiltonian (3) with the FM parameters used in Fig. 14.
The DMRG data are in good agreement with Eq. (35) for the
thermodynamic limit of the Ising model. (b) The residual finite-size
corrections, E′

0/L|Jzz| = e∞/|Jzz| − πc/12L2 + · · ·, are consistent
with the central charge c ≈ 0.499 of an Ising transition to a FM state
in the absence of a longitudinal magnetic field.

spectrum of the FM Ising model in a magnetic field [46].
As exemplified by recent experiments on the quasi-1D Ising
ferromagnet CoNb2O6 (cobalt niobate) [47,48], it would be
interesting to probe the dynamical correlation functions of the
1D bosonic Hamiltonian (1) in more detail. The nontrivial
excitations will manifest themselves at specific frequencies
dictated by the emergent E8 mass spectrum. Similar behavior
is also expected in the AFM case in the presence of a staggered
longitudinal magnetic field.

XI. CONCLUSIONS

We have investigated the Mott insulating state of bosonic
pairing Hamiltonians using analytical and numerical tech-
niques. We have described the behavior of a broad range of
physical observables, including local expectation values and
correlation functions, within the framework of the paradig-
matic quantum Ising model. As advocated in Refs. [32,33,41]
our results are consistent with the absence of super-Mott
behavior within the second Mott lobe. Our results differ
from those of the usual two-band Bose-Hubbard model which
exhibits counterflow superfluidity [64,65] since Feshbach
resonant pairing interactions favor a distinct Mott phase with
either two atoms or one molecule per site. As such, XY terms
generically appear at cubic order in the hopping strengths and
are intrinsically suppressed. An alternative way to see this is
to note that for finite Feshbach coupling, the symmetry of the
Hamiltonian is reduced from U(1) × U(1) down to U(1) × Z2.
As such, one naively expects Ising transitions to occur in a Mott
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phase with large phase fluctuations and an unbroken U(1)
symmetry. Nonetheless, one cannot rule out the possibility
of novel transitions in other regions of the phase diagram
due to higher-order terms in the strong coupling expansion
becoming appreciable. It would be interesting to explore this
in more detail. In addition, we highlight the possibility of
using these systems to explore the E8 mass spectrum of the
FM Ising model in a magnetic field. There are many directions
for further research including the influence of higher bands
and the possibility of realizing Ising transitions in Bose-Fermi
mixtures; see Appendix B.
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APPENDIX A: EFFECTIVE MAGNETIC HAMILTONIAN

To obtain the effective spin description within the second
Mott lobe we perform degenerate perturbation theory. We
partition the Hamiltonian as H = H0 + V , where

H0 =
∑

i

[H ′
i (1 − P0i) + (εm − h0/2)P0i] (A1)

and

V = −
∑
〈ij〉α

tα(b†iαbjα + H.c.) + HF + h0

∑
i

Sz
i P0i . (A2)

Here h0 = εm − 2εa − Uaa , P0i = |⇑〉i 〈⇑|i + |⇓〉i 〈⇓|i , and

H ′
i =

∑
α

εαniα +
∑
αα′

Uαα′

2
:niαniα′ : . (A3)

This approach is appropriate deep in the Mott lobe and in the
vicinity of the transition, where g, h0, and t2/U are small and
V may be treated perturbatively. Up to second order in V the
effective Hamiltonian is

Heff = P0

(
H0 + V + V (1 − P0)

1

E0 − H0
(1 − P0)V

)
P0,

(A4)

where E0 = L(εm − h0/2) and P0 = ∏
i P0i . Since the hop-

ping terms are the only source of coupling between the
degenerate subspace spanned by P0 and the remaining Hilbert
space, the second-order term reduces to

H
(2)
eff =

∑
〈ij〉α

t2
αP0b

†
iαbjα

1

E0 − H0
b
†
jαbiαP0 + H.c. (A5)

This acts on two sites so within the degenerate subspace P0,
we must consider its action on four basis states. The action of
H

(2)
eff on sites with neighboring molecules yields

H
(2)
eff |⇑〉i |⇑〉j = − 4t2

m

Umm + h0
|⇑〉i |⇑〉j , (A6)

and for an arrangement of neighboring atoms it gives

H
(2)
eff |⇓〉i |⇓〉j = − 12t2

a

Uaa − h0
|⇓〉i |⇓〉j . (A7)

When the neighboring species are different

H
(2)
eff |⇑〉i |⇓〉j = −

(
2t2

a

Uam − Uaa

+ t2
m

2Uam

)
|⇑〉i |⇓〉j . (A8)

In order to obtain the second-order contribution to the effective
Hamiltonian we collate these terms. In addition we exploit
the spin projection identities |⇑〉i〈⇑|iP0 = (1/2 + Sz

i )P0 and
|⇓〉i〈⇓|iP0 = (1/2 − Sz

i )P0 and expand the resulting expres-
sion to leading (zeroth) order in h0:

H
(2)
eff 	 P0

(
Jzz

∑
〈ij〉

Sz
i S

z
j + h2

∑
i

Sz
i + C2

)
P0, (A9)

where Jzz is given by Eq. (32) and

h2 = z

2

(
12t2

a

Uaa

− 4t2
m

Umm

)
. (A10)

The constant offset is given by

C2 = −zL

8

(
4t2

a

Uam − Uaa

+ t2
m

Uam

+ 12t2
a

Uaa

+ 4t2
m

Umm

)
.(A11)

Inclusion of the zeroth- and first-order contributions in V

yields the effective Ising Hamiltonian (4) with h = h0 + h2

and C = E0 + C2 as given by Eqs. (33) and (34). In order
to obtain the effective Hamiltonian with ra = 2 one must
exclude the contribution from Eq. (A7) as the intermediate
states involved in the perturbation do not satisfy the imposed
constraint. Similarly if rm = 1 the contribution from Eq. (A6)
must be excluded.

APPENDIX B: BOSE-FERMI HAMILTONIAN

Throughout this manuscript we have focused exclusively on
the bosonic homonuclear Hamiltonian (1) and the associated
Ising description. However, it is evident from the general
setup shown in Fig. 1 that similar results may also emerge
with more than one atomic species. For example, this is
confirmed in Refs. [32,33] for the heteronuclear bosonic case.
In this Appendix we note that a similar Ising description may
also apply with two-component fermionic atoms and bosonic
molecules. We consider the Bose-Fermi Hamiltonian

H =
∑
iα

εαniα −
∑
〈ij〉

∑
α

tα(d†
iαdjα + H.c.) + HF

+
∑

i,α �=α′

Uαα′

2
niαniα′ +

∑
i

Umm

2
nim(nim − 1), (B1)

where α =↓ ,↑ are fermionic atoms, α = m is a bosonic
molecule, niα = d

†
iαdiα , and HF = g

∑
i(d

†
imdi↓di↑ + H.c.).

Assuming the existence of a second Mott lobe as depicted in
Fig. 1, with either two fermionic atoms or a bosonic molecule
per site, one again obtains an Ising Hamiltonian (4) acting on
the states |⇓〉 = d

†
↑d

†
↓|0〉 and |⇑〉 = d

†
m|0〉. The parameters in
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Eq. (4) are now given by � = 2g and

Jzz

2
= t2

m

U↑m + U↓m

+ t2
↓

U↓m − U↑↓
+ t2

↑
U↑m − U↑↓

− 2t2
m

Umm

.

(B2)

The effective magnetic field is given by

h = εm − (ε↓ + ε↑ + U↑↓) − 2zt2
m

Umm

, (B3)

and the constant offset is

C = L

(
εm − h

2
+ zJ

8
− zt2

m

Umm

)
. (B4)

In the limit Umm → ∞ the results (B2), (B3), and (B4)
coincide with the results of Sec. III where we identify
U↑↓ = Uaa and U↓m = U↑m = Uam. In view of our findings in
the bosonic problems it would be interesting to examine the
Bose-Fermi mixture (B1) in more detail.
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Criticality at the Haldane-insulator charge-density-wave quantum phase transition
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Exploiting the entanglement concept within a matrix-product-state based infinite density-matrix renor-
malization group approach, we show that the spin-density-wave and bond-order-wave ground states of the
one-dimensional half-filled extended Hubbard model give way to a symmetry-protected topological Haldane
state in case an additional alternating ferromagnetic spin interaction is added. In the Haldane insulator, the lowest
entanglement level features a characteristic twofold degeneracy. Increasing the ratio between the nearest-neighbor
and local Coulomb interaction V/U , the enhancement of the entanglement entropy, the variation of the charge,
spin, and neutral gaps, and the dynamical spin and density response signal a quantum phase transition to a
charge-ordered state. Below a critical point, which belongs to the universality class of the tricritical Ising model
with central charge 7/10, the model is critical with c = 1/2 along the transition line. Above this point, the
transition between the Haldane insulator and charge-density-wave phases becomes first order.

DOI: 10.1103/PhysRevB.92.041120 PACS number(s): 64.70.Tg

Topological phases of matter have become one of the most
fascinating objects of investigation in solid state physics [1–3].
Topological states may arise from topological band structures
or interactions. The order associated with these phases can
be described by topological invariants that are insensitive
to gradual changes of the system parameters. As a generic
feature, topological ordered states contain gapless edge ex-
citations that encode all the information of bulk topological
order [4].

Symmetry-protected topological (SPT) phases are zero-
temperature quantum states with a given symmetry and a
finite energy gap. The Landau symmetry-breaking states
belong to this class. However, there are more interesting
SPT states that do not break any symmetry. For example,
in higher dimensions, the Kane-Mele band insulator [5,6]
is a topological state protected by U (1) and time-reversal
symmetries. In one dimension, a prominent representative
is the Haldane phase in the spin-1 Heisenberg chain [7],
which is protected by inversion, time-reversal, and dihedral
symmetries [8,9]. If at least one of these symmetries is
not explicitly broken, the odd-S Haldane insulator (HI) is
separated from the topologically trivial state by a quantum
phase transition. Relating topological order and entanglement
allows for a further classification of topological states [10].
While gapped quantum systems without any symmetry split
in short- and long-range entangled states, the SPT phases are
always short-range entangled.

Exploring the connection between topological band struc-
tures and interacting topological states, it has been demon-
strated that the topological invariants of gapped fermionic
systems described by the one-dimensional half-filled Peierls-
Hubbard model, deep in the Mott insulating regime, can be
efficiently computed numerically by adding a ferromagnetic
spin exchange [11]. On account of a topological invariant of 2,
the Peierls-Hubbard model—in a certain parameter regime—
possesses the same boundary states as the spin-1 Heisenberg
chain. This raises the question whether the spin-density-wave
(SDW) and bond-order-wave (BOW) ground states of the
half-filled extended Hubbard model (EHM) [12] also disappear
in favor of a SPT HI phase when a ferromagnetic spin
interaction is added. If the answer is yes, one should expect

a novel quantum phase transition from the SPT state to the
charge-density-wave (CDW) insulator.

In this Rapid Communication, we therefore investigate the
ground-state, spectral, and dynamical properties of the EHM
with additional, alternating, ferromagnetic spin coupling J ,
using the unbiased matrix-product-state (MPS) based infinite
density-matrix renormalization group (DMRG) technique
[13–16].

The Hamiltonian of the one-dimensional EHM is

HEHM = −t
∑
j,σ

(
c
†
jσ cj+1σ + H.c.

)

+U
∑

j

nj↑nj↓ + V
∑
jσσ ′

njσ nj+1σ ′ .

Here, c
†
jσ (cjσ ) creates (annihilates) an electron with spin

σ at site j , njσ = c
†
jσ cjσ , t is the transfer amplitude of the

particles, and U (V ) denotes their intrasite (intersite) Coulomb
repulsion. We focus on the half-filled band case.

The ground-state phase diagram of the EHM has been
worked out by various analytical [17,18] and numerical
[12,19–21] techniques. In the absence of V (Hubbard model),
the ground state is a quantum critical spin-density wave (SDW)
with gapless spin and gapped charge excitations ∀U > 0 [22].
If 2V/U � 1, the ground state resembles that at V = 0. For
2V/U � 1, the system becomes a 2kF CDW state, where
both spin and charge excitation spectra are gapful. The SDW
and CDW phases are separated by a narrow intervening
BOW phase [23,24] below the critical end point [Ue,Ve] =
[9.25t,4.76t] [12], where the ground state exhibits a staggered
modulation of the kinetic energy density (cf. the schematic
representations included in Fig. 2 below).

Here, we consider the extended Hamilton operator

H = HEHM + J

L/2∑
j=1

S2j−1 S2j , (1)

with Sj = (1/2)
∑

σσ ′ c
†
j,σ σ σσ ′cj,σ ′ . The nearest-neighbor

Heisenberg spin interaction is assumed to be alternating and
ferromagnetic, i.e., J < 0 on every other bond. Since the EHM

1098-0121/2015/92(4)/041120(5) 041120-1 ©2015 American Physical Society
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FIG. 1. (Color online) Correlation length ξχ (upper panels) and
entanglement spectrum εα (lower panels) as a function of V/t for
U/t = 4 (left panels) and U/t = 10 (right panels), where J/t =
−1.5. Data obtained by iDMRG. Dashed lines give the BOW-CDW
(SDW-CDW) transition for U/t = 4 (U/t = 10) in the EHM [12].

at large enough U/V can be thought of as a spin-1/2 chain, the
second term in (1) tends to form a spin-1 moment out of two
spins on sites 2j − 1 and 2j in this limit. Then, the resulting
spin-1 antiferromagnetic chain may realize a gapped Haldane
phase with zero-energy edge excitations [9].

To proceed, we perform an entanglement analysis of the
model (1). The concept of entanglement is inherent in the MPS-
based DMRG algorithms, too. The so-called entanglement
spectrum εα characterizes topological phases [25], which can
be obtained from the singular value decomposition. Dividing
a system into two subblocks, H = HL ⊗ HR , and considering
the reduced density matrix ρL = TrR[ρ], εα = −2 ln λα are
given by the singular values λα of the reduced density matrix
ρL. The εα spectrum also provides valuable information
about the criticality of the system. Adding up the singular
values λα , we have direct access to the entanglement entropy
SE = −∑

α λ2
α ln λ2

α . For a critical system with central charge
c, the entanglement entropy SE between the two halves of the
infinite chain scales as [26,27]

SE = c

6
ln ξχ + s0, (2)

where s0 is a nonuniversal constant. The correlation length
ξχ is determined from the second largest eigenvalue of the
transfer matrix for some bond dimension χ used in the infinite
DMRG (iDMRG) simulation [14–16]. At the critical point
the physical correlation length diverges, while ξχ stays finite
due to the finite-entanglement cutoff. Nevertheless, ξχ can be
used to determine the phase transition because it increases
rapidly with χ near the critical point. Here, we perform
iDMRG runs with χ up to 400, so that the effective correlation
length at criticality is ξχ � 400.

Let us first discuss the entanglement properties of the
model (1). Figure 1 shows ξχ and εα in dependence on V/t

and U/t for fixed J/t = −1.5. In the weak-to-intermediate
interaction regime, U/t = 4, we find a pronounced peak
in the correlation length at Vc/t � 2.321, which shoots up
as χ grows from 100 to 200, indicating a divergency as
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first order

Ising (c = 1/2)

FIG. 2. (Color online) iDMRG ground-state phase diagram of
the one-dimensional (half-filled) extended Hubbard model with
ferromagnetic spin interaction. The red solid (dotted-dashed) lines
give the HI-CDW phase boundaries for J/t = −1.5 (−0.5). The
quantum phase transition is continuous (first order) below (above)
the tricritical Ising point [Ut,Vt ] marked by the star symbol. For
comparison, the results for the BOW-CDW (blue dashed line),
SDW-BOW (green dotted line), and SDW-CDW (green double-dotted
dashed line) transitions of the pure EHM were included [12].

ξχ → ∞. Obviously the system passes a continuous quantum
phase transition. By contrast, in the strong interaction regime,
U/t = 10, the peak height stays almost constant when χ is
raised. Decreasing |J |, the transition points will approach
those of the pure EHM, e.g., for J/t = −0.5 we find
Vc/t � 2.242, with a simultaneous reduction of the ξχ ’s peak
heights. The corresponding entanglement spectra denote that
the nontrivial phase realized for V < Vc resembles the SPT
Haldane phase of the spin-1 XXZ model [28], in that the
lowest entanglement level exhibits a characteristic double
degeneracy [29]. For V > Vc, in the CDW phase, this level is
nondegenerate.

According to Fig. 1, the maximum in the correlation length
ξχ can be used to pinpoint the HI-CDW quantum phase
transition, and with it map out the complete ground-state phase
diagram of the EHM with ferromagnetic spin coupling (1).
The outcome is given in Fig. 2, which also includes the
result for the pure EHM (blue and green lines). The first
striking result is that the HI phase completely replaces the
SDW and BOW states. That is, the HI even survives in the
weak-coupling regime until U/t = 0 for any finite J < 0
[provided that V < Vc(U,J )]. According to this, the itinerant
model (1) behaves as a spin-1 model, even at very small
U/t where double occupancy is not largely suppressed.
In the intermediate-to-strong coupling regime, the HI-CDW
transition approaches the BOW/SDW-CDW transition of the
EHM. The transition is continuous up to a tricritical Ising
point [Ut,Vt ](J ), which converges to the tricritical point of the
EHM as J → 0. In the strong-coupling regime above [Ut,Vt ],
the HI-CDW transition becomes first order. For very large
U/t , the phase boundaries of the HI/SDW-CDW transitions
are indistinguishable.

We now characterize the different states and the HI-CDW
quantum phase transition in more detail. For this we first
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FIG. 3. (Color online) Charge (	c), spin (	s), and neutral (	n) gaps as functions of V/t for (a) U/t = 4 and (b) U/t = 10. The HI (CDW)
phase is marked in gray (white). (c) gives the scaling of the entanglement entropy SE(χ ) with the correlation length ξχ at the SPT-CDW
transition Vc/t � 2.321 for U/t = 4. The solid line is a linear fit of the data to Eq. (2), indicating an Ising phase transition with c = 1/2.
Results shown are obtained for J/t = −1.5.

consider the various excitation gaps, 	c = [E0(N + 2,0) +
E0(N − 2,0) − 2E0(N,0)]/2 [(two-particle) charge gap],
	s = E0(N,1) − E0(N,0) [spin gap], and 	n = E1(N,0) −
E0(N,0) [neutral gap], where E0(Ne,S

z
tot) is the ground-

state energy of the finite system with L sites for a given
number of electrons Ne and z component of total spin Sz

tot,
and E1(Ne,S

z
tot) is the corresponding energy of the first

excited state. For the pure EHM, 	c and 	n vanish at the
BOW-CDW transition, whereas 	s stays finite. Here, the
excitation gaps were determined using DMRG in combination
with the infinite MPS representation with “infinite boundary
conditions” [30–32], where both finite-size and boundary
effects are significantly reduced. Thereby, the whole lattice
is divided into three parts: a window part, containing LW

sites, and two semi-infinite chains. While the LW dependence
persists, the LW finite-size scaling is more easy to handle
than the finite-size scaling in the traditional DMRG method.
Figure 3 shows the variation of the different excitation gaps
across the HI-CDW transition in the weak-coupling [Fig. 3(a)]
and strong-coupling [Fig. 3(b)] regime. In the former case,
the charge and spin gaps feature weak minima at the transition
point, but stay finite. The neutral gap, on the other hand, closes
[see Fig. 3(a)]. This is evocative of the Ising transition between
the Haldane and antiferromagnetic phases in the spin-1 XXZ

model with single-ion anisotropy [28]. For U/t = 4, we find
Vc/t � 2.321. In the latter case, also the neutral gap stays
finite passing the phase transition [see Fig. 3(b)]. However,
the jump of the spin gap δs ≡ 	s(V +

c ) − 	s(V −
c ) is striking,

indicating a first-order transition. We obtain Vc/t � 5.155 for
U/t = 10.

Next, we ascertain the universality class of the HI-CDW
quantum phase transition. When the system becomes critical,
the central charge c can easily be determined from the DMRG
entanglement entropy. Utilizing Eq. (2), Fig. 3(c) demonstrates
that c∗ indeed follows a linear fit to the DMRG data at
the critical point (for 140 � χ � 400), provided that prior
to that the transition point was determined with extremely

high precision. At U/t = 4 and J/t = −1.5, we have c∗ �
0.499(1), suggesting the system to be in the Ising univer-
sality class where c = 1/2. For U/t = 4 and J/t = −0.5
(not shown), we get c∗ � 0.496(3). From conformal field
theory [26] the von Neumann entropy for a system
with periodic boundary conditions takes the form SL(�) =
(c/3) ln{(L/π ) sin[(π�/L)]} + s1 with another nonuniversal
constant s1. With a view of the doubled unit cell of the HI
phase we slightly modify the related formula for c∗ [33]:

c∗(L) ≡ 3[SL(L/2 − 2) − SL(L/2)]

ln{cos[π/(L/2)]} . (3)

Figure 4 displays c∗(L) when moving along the HI-CDW
transition line by varying U and V simultaneously. Remark-
ably, when U is raised, we find evidence for a crossover from

8 9 10
0

0.2

0.4

U/t

δ s

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

U/t

c∗
(L

)

L=30

L=50

L=70

J/t = −1.5

FIG. 4. (Color online) Central charge c∗(L) along the HI-CDW
transition line for J/t = −1.5. DMRG data (obtained with periodic
boundary conditions) indicate the Ising universality class (c = 1/2)
for U < Ut and, most notably, a tricritical Ising point with c = 7/10
at Ut (red dotted line). Inset: Magnitude of the jump of the spin gap as
U further increases for U � Ut . The infinite MPS data—for a system
with infinite boundary conditions—point to a first-order transition.
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0 π/2 π
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0 π/2 π
k

FIG. 5. (Color online) Intensity plots of the dynamical spin
structure factor Szz(k,ω) (top) and density structure factor S(k,ω)
(bottom) in the SPT HI phase (left), at the HI-CDW transition point
(middle), and in the CDW phase (right). Dashed lines connect the
intensity maxima at given k. Other model parameters are U/t = 4
and J/t = −1.5.

c∗(L) � 1/2 to c∗(L) � 7/10, which can be taken as a sign
for an emergent supersymmetry at the boundary of the SPT HI
phase [34–36].

Finally, we analyze the dynamical charge (spin) structure
factor of the model (1),

S(zz)(k,ω) =
∑

n

|〈ψn|Ôk|ψ0〉|2δ(ω − ωn), (4)

where Ôk = n̂k (Ôk = Ŝz). In Eq. (4), |ψ0〉 (|ψn〉) denotes
the ground (nth excited) state, and ωn = En − E0. Following
Ref. [30], we first evaluate the related two-point correlation
functions 〈ψ0|Ôj (τ )Ô0(0)|ψ0〉 by way of real-time evolution
of the ground-state infinite MPS |ψ0〉. Thereby, we apply
infinite boundary conditions to a finite window of sites
(LW = 128). After Ô is applied to a given site, the system is
evolved at least up to τ = 30/t , where a time step δτ = 0.05/t

is used in the fourth-order Suzuki-Trotter decomposition.
Fourier transformation then gives the dynamical structure
factors.

For the spin-1 chain and extended Bose-Hubbard models
it has been demonstrated that the dynamical spin and density
structure factor reveal distinguishing features in the SPT and
topologically trivial phases [28,37,38]. Figure 5 illustrates
the intensity of the dynamical wave-vector-resolved spin and
density response in the k-ω plane. In the HI phase, both
Szz(k,ω) and S(k,ω) exhibit an essentially symmetric line
shape with respect to k = π/2 and gaps at k = 0 and π , but
the spectral weight of the excitations is higher for k > π/2;
see Figs. 5(a) and 5(b). While the spin response remains
unaffected at the Ising transition point [Fig. 5(c)], the gaps
in the charge response closes at k = π , reflecting the doubling
of the lattice period CDW phase [Fig. 5(d)]. Obviously S(k,ω)

follows the behavior of the neutral gap rather than those of
the charge gap [cf. Fig. 3(b)]. In the CDW phase, the overall
line shape of Szz(k,ω) is asymmetric with a larger excitation
gap at k = π . Note that we find now two dispersive features
(branches) in Szz(k,ω) and S(k,ω), where a changeover of
the intensity maximum takes place at k = π/2 [cf. Figs. 3(e)
and 3(f)].

To summarize, exploiting the link between topological
order and entanglement properties, we examined the ground-
state and spectral properties of the paradigmatic one-
dimensional extended Hubbard model (EHM) with alternating
ferromagnetic spin coupling J by numerically exact (DMRG)
techniques. We showed that any finite spin interaction J < 0
stabilizes a symmetry-protected topological Haldane insulator
(SPT HI) that replaces the spin-density-wave and bond-
order-wave ground states existing in the pure EHM below a
critical ratio of nearest-neighbor (V ) to intrasite (U ) Coulomb
interaction. The HI manifests the twofold degeneracy of the
lowest entanglement level and, regarding the dynamical spin-
density response, reveals a similar behavior as the SPT state of
the spin-1 chain [28] and the HI of the extended Bose-Hubbard
model [37,38]. Furthermore, analyzing the correlation length,
entanglement spectrum, and many-body excitation gaps, we
found clear evidence for a quantum phase transition from the
SPT HI phase to a CDW when the V/U ratio is raised. Using
iDMRG, the HI-CDW boundary and therefore the complete
ground-state phase diagram could be determined with very
high accuracy. In the weak-to-intermediate interaction regime,
the HI-CDW transition belongs to the Ising universality
class. Here, the central charge c = 1/2, and only the neutral
gap vanishes. This is reflected in the dynamical density
structure factor, where the gap closes at momentum k = π ,
just as for the HI-antiferromagnet transition of the spin-1
chain. In the strong interaction regime we found a first-order
phase transition characterized by a jump in the spin gap.
Decreasing the magnitude of J , the HI-CDW phase boundary
approaches the BOW-CDW transition line in the pure EHM;
thus, making the system topological, this changeover can be
determined more precisely. Perhaps most interesting, tracing
the central charge along the HI-CDW transition line, we
detect a tricritical Ising point with c = 7/10 that separates
the continuous and first-order transition regimes. A further
field theoretical study would be highly desirable to elucidate
the origin of the tricritical Ising point. In either case the
EHM with additional ferromagnetic spin exchange provides
valuable insights into the criticality and nontrivial topological
excitations of low-dimensional correlated electron systems.
Note that we applied the ferromagnetic spin exchange in order
to easily realize an effective spin-1 state. Including a physically
more relevant dimerization of the transfer intergrals (hopping)
will also stabilize the HI phase, so that the Ising quantum phase
transition occurs between the HI and CDW phases [39]. Then,
in this extended Peierls-Hubbard model, the tricritical Ising
point with c = 7/10 will separate the HI-CDW transition line
into continuous and first-order lines [40].

Note added in proof. Due to the quantum-classical corre-
spondence, D-dimensional quantum and (D + 1) dimensional
classical systems share important physical properties. So it
is well known that the quantum spin-1 chain is related to
the classical two-dimensional restricted-solid-on solid (RSOS)

041120-4

8 Thesis Articles

248



RAPID COMMUNICATIONS

CRITICALITY AT THE HALDANE-INSULATOR CHARGE- . . . PHYSICAL REVIEW B 92, 041120(R) (2015)

model [41]. It has been shown that a Fibonacci anyonic chain
can be mapped-using the RSOS representation of the algebra-
onto the tricritical Ising model with c = 7/10. The transitions
observed in our model can be understood as transitions from a
low-density phase to a high-density phase of doubly occupied
sites. Interestingly in the hard squares model first and second
order transitions from low to high densities also occur with
a tricritical point with the same central charge c = 7/10, see
[42] and references therein. This connects—at the tricritical

point—our model, hard squares and the so-called golden chain
[43].

The authors would like to thank F. Göhmann, T. Kaneko,
and A. Klümper for valuable discussions. The iDMRG simu-
lations were performed using the ITensor library [44]. This
work was supported by Deutsche Forschungsgemeinschaft
(Germany) through SFB 652.
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[19] A. M. Läuchli and C. Kollath, J. Stat. Mech. page P05018 (2008). 18

[20] S. Nishimoto, Phys. Rev. B 84, 195108 (2011). 18

[21] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008). 18, 49

[22] F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa, Phys. Rev. B 81, 064439
(2010). 19, 49

[23] F. Pollmann, E. Berg, A. M. Turner and M. Oshikawa, Phys. Rev. B 85, 075125
(2012). 19, 49

[24] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, M. Arita, H. Namatame,
M. Taniguchi, N. Katayama, M. Nohara and H. Takagi, Phys. Rev. Lett. 103,
026402 (2009). 21, 24

[25] Y. Ohta, T. Shimozato, R. Eder and S. Maekawa, Phys. Rev. Lett. 73, 324 (1994).
21, 23

[26] Y. Ohta, A. Nakauchi, R. Eder, K. Tsutsui and S. Maekawa, Phys. Rev. B 52,
15617 (1995). 21, 23

[27] L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997 (1969). 21
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