
Performance engineering as a guiding principle

for ef�cient implementations of algorithms

in computational science

Habilitationsschrift

zur

Erlangung des akademischen Grades

doctor rerum naturalium habilitatus (Dr. rer. nat. habil.)

an der Mathematisch-Naturwissenschaftlichen Fakultät

der

Ernst-Moritz-Arndt-Universiẗat Greifswald

vorgelegt von

Georg Hager

geboren am 21.08.1970

in Hof/Saale

Greifswald, im Oktober 2013

Dekan: .

1. Gutachter: .

2. Gutachter: .

3. Gutachter: .

Tag der Habilitation:

Zusammenfassung

Rechnergestützte Wissenschaften sind zusehends auf paralleles Rechnen angewiesen, um
anspruchsvolle numerische Probleme lösen zu k̈onnen. Die sẗandig steigende Leistungsfähig-
keit paralleler Rechner erm̈oglicht es zusammen mit Fortschritten in der Algorithmik Modelle
zu nutzen, die eine quantitative Beschreibung der Natur erlauben. Dennoch ist auch im Zeitalter
der Peta�op-Systeme der Bedarf nach Rechenzyklen immer größer als das Angebot, und Wis-
senschaftler sind gezwungen, die knappen Ressourcen bestmöglich zu nutzen. Deshalb ist die
Ef�zienz des parallelen Rechnens von entscheidender Bedeutung. Leider wird Ef�zienz leicht
mit Skalierbarkeit verwechselt, was dann zu Problemen führt, wenn parallele Programme nur
deswegen skalieren, weil die Ausführung des Codes in den Recheneinheiten so langsam ist.

Performance-ModellierungundPerformance-Engineeringauf der Ebene der Rechenknoten
sind die Hauptthemen dieser Arbeit. Performance Engineering wird als Prozess verstanden, der
ein tieferes Versẗandnis der Wechselwirkung von Hardware mit Software ermöglicht. Dies f̈uhrt
zu einem wohlde�nierten Konzept von

”
bestm̈oglicher Performance“. Zu diesem Zweck ver-

wendet Performance-Engineeringressourcengetriebene Performancemodelle, um die Laufzeit
des Codes und den Nutzen von Optimierungen vorherzusagen. Ein Performancemodell basiert
auf einem vereinfachten Maschinenmodell, das die wichtigsten Elemente einerRechnerarchi-
tektur umfasst.

Diese Arbeit beginnt mit einem̈Uberblicküber die Architektur moderner multicore-Prozes-
soren und Rechenknoten, soweit sie relevant für die ressourcengetriebene Performancemodellie-
rung ist. Nach einer Einführung in das bekannte Roo�ine-Modell wird das

”
Execution-Cache-

Memory-Modell“ (ECM-Modell) pr̈asentiert, das als Verfeinerung des Roofline-Modells für
multicore-CPUs gesehen werden kann. Das ECM-Modell ist insbesondere fähig, die Einzelkern-
Performance und die Skalierung von Schleifenkonstrukten mit kontinuierlichem Speicherzugriff
über die Rechenkerne eines Chips vorherzusagen.

Da die Leistungsaufnahme von Großrechnern und damit der Energieverbrauch der darauf
genutzten Codes wegen der steigenden Kosten für die Infrastruktur immer mehr in den Fokus
rückt, werden die Eigenschaften paralleler Programme im Hinblick auf diese Faktoren in naher
Zukunft von zentraler Bedeutung sein. Die Frage, mit welchen Mitteln Energie gespart werden
kann, ohne die Performance zu kompromittieren, kann mit Hilfe vonEnergiemodellengekl̈art
werden. Dazu wird ein pḧanomenologisches Energiemodell für multicore-Chips eingeführt, das
den optimalen Arbeitspunkt in Bezug auf die Anzahl genutzter Kerne und die Taktfrequenz vor-
hersagen kann. Als wichtigste Ein�ussgröße geht dabei jedoch die Performance des Codes ein.
Folglich bekommt das

”
race to idle“-Konzept im Rahmen des Energiemodells eine Doppelbe-

deutung: Energie kann sowohl durch ef�zienten Code als auch durchhohe Taktfrequenz gespart
werden. Ersteres funktioniert immer, letzteres nur in einem bestimmten, durchstatische und
dynamische Leistungsaufnahme de�nierten Bereich.

Performance- und Energiemodelle können bei der Entwicklung ef�zienter Software be-
hil�ich sein, sie sollten jedoch in einen wohlstrukturierten Prozess eingebettet werden, der
die Komplexiẗat der Hardware-Software-Wechselwirkung handhabbar macht.Mustergeleitetes
Performance-Engineeringist solch ein Prozess. Dazu wird eine Anzahl vorherrschender Perfor-
mancemuster auf Knotenebene identi�ziert und auf Signaturen abgebildet, die jeweils aus einem
beobachtbaren Performanceverhalten und einer Kombination von Hardware-Metriken besteht.
Diese Muster werden dann zur Konstruktion von Performancemodellen eingesetzt, die durch

Messungen bestätigt oder widerlegt werden. Da es sich um einen iterativen Prozess handelt,
führt ein widerlegtes Modell zu neuen Einsichten, wenn ein neues Muster ausgeẅahlt und/oder
ein neues Modell konstruiert wird. Andererseits hat ein erfolgreichesModell das Potenzial zur
Vorhersage des m̈oglichen Nutzens von Programmoptimierungen. Dadurch wird die Methode

”
Versuch und Irrtum“ durch ein wohlbegründetes Vorgehen ersetzt.

Abstract

Computational science relies heavily on parallel computing to solve challengingnumerical
problems. The ever-increasing performance of parallel computers together with algorithmic ad-
vances enables high-performance software to use models that provide quantitative descriptions
of natural phenomena. However, the demand for compute cycles is always larger than the supply
even in the petascale era, so scientists are hard-pressed to make best use of the scarce resources.
This is why theef�ciencyof parallel computing is paramount. Unfortunately, ef�ciency is often
confused withscalability, which is problematic since it is easy to make a parallel program scale
by slowing down its code execution in the processors and compute nodes doing the actual work.

Performance modeling and performance engineering approaches on thenode level are the
main topics of this work.Performance engineeringis understood as a process that helps in de-
veloping a thorough understanding of the interactions between software and hardware, leading
to a well-de�ned concept of “best performance.” To this end, performance engineering builds
on resource-driven performance modelsto predict the runtime of code and the bene�t of opti-
mizations. Performance models are based on simpli�ed machine models, which encompass the
key features of a computer architecture.

This treatise starts with giving an overview on processor and node architecture, as far as it
is relevant for resource-driven performance modeling. After an introduction to the well-known
roofline model, the execution-cache-memory (ECM) performance model is presented as a re-
�nement of the roofline model that is especially useful in predicting the single-core performance
and multicore scalability of streaming loop kernels.

Since the power dissipation of computer systems, and hence the energy consumption of
running programs, is gaining attention due to growing costs for the infrastructure of large instal-
lations, energy-awareness will be a cardinal quality of computer code in the near future. How
to save energy with minimum loss of performance is the key question, which may be answered
by power modeling techniques. For this purpose a phenomenological multicore power model is
introduced. It can predict optimal operating points with respect to chip-level concurrency and
processor clock speed for parallel code, but one of the main premises that go into the model is
that code performance is the lowest-order energy-saving factor. Consequently, therace to idle
concept has a double meaning in the model: Racing by code ef�ciency and racing by clock
speed. While the former is always applicable, the latter only saves energy ina certain parameter
range of static vs. dynamic power.

Using performance (and power) modeling is a way to learn more about ef�cient code exe-
cution, but such models should be embedded in a well-structured process that guides the way
through the complexities of hardware-software interactions.Pattern-driven structured perfor-
mance engineeringprovides such a process. A number of prevalent node-level performance
patterns is de�ned, together with identifying signatures in performance behavior and hardware
metrics. These patterns are then used to construct models, which can be validated or falsi�ed
using measurements. Since the process is iterative, a false model has the positive effect that new
insights are gained as a new model is built or a new pattern is selected. A working model, on the
other hand, has the potential to predict the possible gain of code optimizations, and substitutes
trial-and-error by well-founded decisions.

Clari�cation about use of prior own work

This treatise contains new results as well as results that were previously published by the author
and his co-authors. In cases where larger portions of previous workwere used literally or almost
literally, the section header has a reference to this prior own work. This pertains especially to
the following sections and publications:

• Sect. 2.4.1 [1]

• Sect. 3.3.2 [2, 3]

• Sect. 3.4 [4, 1]

• Chapter 4 [1]

• Sect. 5.2 [5]

• Chapter 6 [6]

• Chapter 7 [7]

Contents

List of acronyms and abbreviations 5

I Performance modeling and engineering 7

1 Introduction 9
1.1 Scienti�c computing and code optimization 9
1.2 Performance modeling . 9

1.2.1 Light speed . 10
1.2.2 Extrapolation . 10
1.2.3 Machine model . 11

1.3 Contributions . 11
1.3.1 ECM Model . 11
1.3.2 Multicore power model . 11
1.3.3 Pattern-guided structured performance engineering on the node level . . 12
1.3.4 Applications . 12

1.4 Related work in performance engineering .14
1.5 Organization of this thesis . 15

2 Computer architecture 17
2.1 Cores . 17

2.1.1 Execution units and ports . 17
2.1.2 Registers . 19
2.1.3 SIMD execution . 19
2.1.4 Instruction cache and decoders . 20
2.1.5 SMT . 20
2.1.6 Data cache . 21
2.1.7 Clock frequency and turbo mode . 21

2.2 Multicore chips . 21
2.2.1 Multiple cores . 21
2.2.2 Memory access . 22

2.3 Node and memory architecture . 22
2.4 Test bed and tools . 23

2.4.1 Intel Xeon “Sandy Bridge” processor 23
2.4.2 Tools . 24
2.4.3 SuperMUC . 24

1

3 White-box performance modeling on the chip level 27
3.1 Performance and speedup .27

3.1.1 Useful performance metrics . 28
3.1.2 High-level scalability models . 28

3.2 The roofline model . 30
3.2.1 Building the model . 30
3.2.2 Model prerequisites and assumptions 31
3.2.3 Model-guided code optimizations . 32

3.3 Examples for roofline modeling . 34
3.3.1 Pure streaming kernel . 34
3.3.2 Sparse matrix-vector multiplication 36
3.3.3 Divide-accumulate kernel . 41
3.3.4 Conclusions and best practices for applying the roofline model42

3.4 The Execution-Cache-Memory (ECM) model: A re�ned performance model for
streaming loop kernels on multicore . 43
3.4.1 The Execution-Cache-Memory (ECM) model: Single core 43
3.4.2 The ECM model: Multicore scaling 45
3.4.3 Validation via streaming benchmarks 46
3.4.4 Conclusions and best practices for applying the ECM model 50

3.5 Chapter summary . 51

4 Performance and power 53
4.1 Power dissipation and performance on multicore53

4.1.1 Power and performance of benchmarks vs. active cores 53
4.1.2 Power and performance vs. clock frequency for all benchmarks. . . . 56
4.1.3 Conclusions from the benchmark data 58

4.2 A qualitative power model . 58
4.2.1 Minimum energy with respect to the number of active cores 60
4.2.2 Minimum energy with respect to code performance 60
4.2.3 Minimum energy with respect to clock frequency 61
4.2.4 Validation of the power model for the benchmarks 62

4.3 Consequences for system design .. 63
4.4 Chapter summary . 65

5 Structured performance engineering 67
5.1 The performance engineering process .. . 67

5.1.1 Description of the process . 67
5.1.2 Case study: An OpenMP-parallel 3D Jacobi smoother 70

5.2 Identi�cation of performance patterns on the node level 78
5.2.1 Hardware performance metrics . 78
5.2.2 likwid-perfctr . 79
5.2.3 Performance patterns and event signatures79
5.2.4 Pattern categorization . 85

5.3 Patterns and models: Performance engineering re�ned 85

2

II Applications 89

6 A medical image reconstruction algorithm 91
6.1 Introduction . 91

6.1.1 Computed tomography . 91
6.2 Experimental testbed . 93
6.3 The algorithm . 93

6.3.1 Theory . 93
6.3.2 Code analysis . 94
6.3.3 Simple performance models . 96
6.3.4 Algorithmic optimizations . 97

6.4 Single core optimizations . 98
6.4.1 SIMD vectorization . 98
6.4.2 AVX implementation . 100

6.5 In-depth performance analysis .101
6.5.1 ECM performance model . 101
6.5.2 ILP optimization and SMT . 103

6.6 OpenMP parallelization . 103
6.6.1 ccNUMA placement . 104
6.6.2 Blocking/unrolling . 104

6.7 Results . 105
6.7.1 Validation of analytical predictions 105
6.7.2 Parallel results . 105

6.8 Conclusion . 106
6.8.1 Summary of results . 106
6.8.2 Reassessment in view of performance patterns 107

7 A performance- and energy-optimized lattice-Boltzmann �uid solver 109
7.1 Introduction . 109

7.1.1 Related work . 109
7.1.2 The lattice-Boltzmann method . 110
7.1.3 Implementation options and data traf�c analysis for LBM 111
7.1.4 Test bed and benchmark cases . 113

7.2 Chip-level performance and scaling .113
7.3 ECM model for the ILBDC code . 115

7.3.1 In-core analysis . 115
7.3.2 Data transfers and saturation behavior on the chip 115
7.3.3 Validation of the performance model 118

7.4 Power model . 118
7.4.1 Energy to solution for the LBM solver on the chip 119

7.5 Highly parallel LBM simulations . 121
7.5.1 MPI parallelization in ILBDC . 121
7.5.2 Performance and energy at strong scaling 122

7.6 Conclusion . 126
7.6.1 Summary of results . 126
7.6.2 Reassessment in view of performance patterns 127

3

8 Conclusion 129
8.1 Summary . 129
8.2 Outlook . 131

Bibliography 133

4

List of acronyms and abbreviations

AoS Array of structures
AVX Advanced vector extensions
BP Backprojection
ccNUMA Cache-coherent nonuniform memory access
CFD Computational �uid dynamics
CISC Complex instruction set computer
CL Cache line
CPI Cycles per instruction
CPU Central processing unit
CRS Compressed row storage
CT Computed tomography
DCT Dynamic concurrency throttling
DDR Double data rate
DP Double precision
DRAM Dynamic random access memory
ECM Execution-cache-memory
Flop Floating-point operation
FLUP Fluid lattice site update
FMA Fused multiply-add
FP Floating point
FPGA Field-programmable gate array
GPGPU General-purpose (computing on) graphics processing units
HPC High performance computing
HPM Hardware performance monitoring
HT HyperTransport
IACA Intel architecture code analyzer
IB In�niBand
ILP Instruction-level parallelism
IMB Intel MPI benchmarks
I/O Input/output

5

L1D Level 1 data cache
L1I Level 1 instruction cache
L2 Level 2 cache
L3 Level 3 cache
LD Locality domain
LIKWID Like I knew what I'm doing
LUP Lattice site update
MPI Message passing interface
MVM Matrix–vector multiplication
NT non-temporal
OLC Outer-level cache
OS Operating system
PCI Peripheral component interconnect
PDF Particle distribution function
QDR Quad data rate
QPI QuickPath interconnect
RAM Random access memory
RAPL Running average power limit
RCM Reverse Cuthill-McKee
RISC Reduced instruction set computer
RHS Right hand side
RFO Read for ownership
SIMD Single instruction multiple data
SMP Symmetric multiprocessing
SMT Simultaneous multithreading
SoA Structure of arrays
SP Single precision
spMVM Sparse matrix-vector multiplication
SSE Streaming SIMD extensions
TDP Thermal design power
TLB Translation lookaside buffer
TRT Two relaxation-time

6

Part I

Performance modeling and engineering

7

Chapter 1

Introduction

1.1 Scienti�c computing and code optimization

Computing has become the third pillar of scienti�c research besides theory and experiment. It is
today an indispensable tool, and deeply interwoven with most areas of science and engineering.
In many cases the required computing power is quite small and can be handledby a user's own
laptop; other applications need vast computational resources such as federal computing centers
in order to gain even qualitative results. Then it is necessary to think abouthow these systems
can be used most effectively, so that the money spent in their procurement and operation has the
highest possible impact.

Unfortunately, the domain scientists who write the software for parallel computers do not
have the required knowledge to write ef�cient code. Even if an appropriate algorithm has been
chosen, implementations often lack the ability to make best use of the resources. As a �rst step
to remedy this unsatisfactory situation, computing centers offer compact courses and lectures,
trying to teach at least the basic aspects of computer architecture, code parallelization, and
optimization. As a consequence, many domain scientists spend more time on their code in
an effort to make it “faster,” applying the strategies learned. While this is a commendable
endeavor, there is always the question when to stop optimizing, i.e., when the performance
of the application code is “good enough.” If the best possible performance level is unknown,
the invested time and resources may far outweigh the bene�t. This typical pattern is related to a
disregard for the “80/20 rule,” also called the “Pareto principle” [8]: Eighty percent of the effects
are due to twenty percent of the causes. Translated to high-performance software development
this means “twenty percent of the effort spent in optimization lead to eighty percent of the
possible bene�t.” But again, an unknown possible bene�t makes applying this rule impossible.

1.2 Performance modeling

Performance modeling in a broad sense means establishing a mathematical modelfor soft-
ware/hardware interaction in order to predict or explain the runtime characteristics of a pro-
gram on a given hardware. More speci�cally, performance modeling can have two different but
sometimes overlapping goals: light speed calculation or extrapolation.

9

1.2.1 Light speed

A realistic upper limit for the performance of a code on a particular hardware may be called its
light speed. Light speed allows a well-de�ned answer to the question whether an implementation
of an algorithm is “good enough.” A model leading to an accurate light speed estimate requires
thorough code analysis, knowledge of computer architecture, and experience on how software
interacts with hardware. The notion of light speed depends very much on the machine model
underlying the hardware model; if the machine model misses an important performance-limiting
detail, one might arrive at the (false) conclusion that light speed is not attained by the code at
hand, while it actually is. Which hardware features should be included to arrive at a good
balance between simplicity and predictive power is a crucial question, to which this work tries
to give useful answers.

We call this approachwhite-box performance modeling. In complex cases it may not be
possible to establish a model at all. If a model can be built, one can gain a deeper understanding
of the interactions between software and hardware. If the model works,this is an indication that
it describes certain aspects of this interaction accurately. If the model does not work (e.g., if
the predicted performance is much lower or higher than the measured performance), it must be
re�ned, leading to more insights.

A working model can help with predicting the possible gain of code optimizations.Chang-
ing the program code may require adjustments in the model, or even building a completely new
model when the underlying algorithm was changed.

1.2.2 Extrapolation

Another goal of performance modeling is to extrapolate performance behavior from one hard-
ware (e.g., a small system, or a given architecture) to different hardware (e.g., a large system,
or a different architecture), which may not even exist yet, and for which only the speci�cations
might be known. The assessment of performance characteristics on the known hardware can
take a variety of forms. One option is to build on the �rst goal above, and then change the model
parameters to accommodate the change to the new hardware. Alternatively one may take the
code on the known hardware “as is” and try to �gure out which hardware characteristics have
the most impact on its performance. We call thisblack-box performance modeling, because
the focus is not on understanding underlying mechanisms but on producing an accurate mathe-
matical description, with accuracy de�ned only in terms of predictive powerand not in terms of
precision in describing the true underlying mechanisms. Less insight into the hardware-software
interaction is gained by this approach, but there is the big advantage that it can often be used
in very complex scenarios, where the other strategies fail. The statistical nature of the models
thus obtained sometimes lead to the discovery of effects that would otherwise go unnoticed. See
Sect. 1.4 on related work below for an example.

Fortunately the “80/20 rule” also applies to the performance characteristicsof many pro-
grams in computational science: Most of the runtime is spent in a small part of the code. Conse-
quently, the performance pro�le of many applications, i.e., the distribution of timeover functions
or loops, tends to be simple, and light speed techniques are applicable.

10

1.2.3 Machine model

As mentioned above, the interaction of software with hardware can be modeled to various levels
of sophistication. Little variation exists in evaluating the requirements of the program code; the
worst that could happen is that the assembly code generated by a compiler must be analyzed to
uncover problems with inef�cient execution.

On the other hand, there is a considerable bandwidth of possible machine models. Parallel
computers are complex machines, but they are in principle deterministic. It would thus be pos-
sible to use a “cycle-accurate” simulator of the hardware to emulate the code execution and be
able to acquire every possible detail. In practice, this approach would be unrewarding. Firstly,
cycle-accurate models of real, modern processors exist but are intellectual property that is not
divulged by chip manufacturers. Beyond the chip level, the sheer complexity of system compo-
nents and their interactions rule out cycle-accurate models. Secondly, even if a cycle-accurate
model were available it would not be of much use, because it would requireconsiderable exper-
tise, even beyond the level of a professional HPC expert, to interpret the results.

As a compromise one can establish simpli�ed machine models, which are simple enough to
be understood completely but which also allow for suf�ciently predictive performance model-
ing. Applied in this sense, performance modeling is similar to the modeling techniques used in
the natural sciences: It is implicit that the model is “wrong,” i.e., that it does not encompass all
possible effects, and that there might be assumptions going into it that are in no way justi�ed.
However, it is useful enough to understand the key mechanisms and probably predict new ef-
fects that have not been encountered or looked at before. If the model fails, its assumptions and
simpli�cations are challenged, and new insight is gained.

1.3 Contributions

This section summarizes the essential contributions described in this treatise.

1.3.1 ECM Model

The “Execution-Cache-Memory” white-box performance model is a re�nement of the well-
known roofline model for predicting the performance and scalability of streaming loop kernels
on multicore processors. It is to date the only approach that uses a simple machine model to
arrive at an accurate single-core performance prediction for a realprocessor. Compared to the
roofline model it drops some crucial assumptions and needs less phenomenological input. The
roofline model can be seen as the “saturation limit” of the ECM model.

The ECM model has so far been applied to simple microbenchmark kernels [4,1], to stencil
algorithms of varying complexity [9, 10], to lattice-Boltzmann �ow solvers [1, 7], and to a
volume reconstruction algorithm from medical image processing [6]. Some of these applications
will be revisited here (see below).

1.3.2 Multicore power model

Energy consumption aspects of computing have been moving into the focus ofresearch in recent
years. The multicore power model is a phenomenological description of the energy consumption
of load-balanced parallel code on a multicore processor, taking into account the clock speed, the

11

number of utilized cores, the single-thread performance, and the maximum (saturated) perfor-
mance, and the static and dynamic power consumption (per core). When energy consumption
is an important metric, it answers questions such as “Is it better to use more cores at lower
frequency or fewer cores at higher frequency?”, “What is the optimum clock speed for a code
that scales/saturates across the cores?”, “Which in�uence does single-thread performance have
on energy consumption?”, etc. The model can also be used for design space exploration, and
allows to estimate the trade-offs between a system's size and its energy consumption over its
lifetime.

Combining the power model with the ECM model is especially interesting for saturating
(i.e., bandwidth-bound) codes, enabling energy and performance optimization at the same time
for an optimal selection of the operation point (number of cores used, clock speed).

1.3.3 Pattern-guided structured performance engineeringon the node level

Structured performance engineering can be seen as a part of software engineering. It is an
iterative process in which algorithm and code analysis, performance modeling, and optimization
are applied repeatedly to arrive at a well-de�ned concept of “best possible performance.” Its goal
is to replace “shot-in-the-dark” optimizations, for which the possible outcomeis unknown, with
code changes whose performance impact wasexpected. This kind of structured approach is vital
for the computational scientist, for whom programming is just a means to an end.It still requires
some expertise in modeling and computer architecture, however, but the process also provides
guidelines to how this knowledge may be best conveyed in courses and lectures.

The simple but instructive example of a 3D Jacobi smoother is used to show theadvan-
tages of structured performance engineering. While all optimizations and models applied to this
case are well known, the embedding in a performance engineering process is new, and can be
extrapolated to more complex cases.

The performance engineering process is supported byperformance patterns. A pattern is a
combination of observed performance behavior and data obtained from hardware performance
monitoring. Instead of blindly applying tools to �nd “problems,” the developeruses tools for the
speci�c purpose of validating or refuting a performance model. A collectionof relevant patterns
for node-level performance engineering is identi�ed and categorized into maximum resource
usage, hazards, andwork inef�ciency. With the help of patterns, “best performance” gets a well
de�ned meaning as “computing at a bottleneck.”

Although the process is generally applicable to all kinds of parallel computing, this work is
mostly restricted to the chip and node level, where the actual computational “work” is done.

1.3.4 Applications

The ECM model, the power model, and the concepts developed in the structured performance
engineering process are applied to several application cases.

Sparse matrix-vector multiplication

Many algorithms in computational science require sparse linear algebra: Sparse eigensolvers,
numerical methods for time evolution of quantum systems, �nite-difference and �nite-element

12

in �uid and structural mechanics, etc. These usually require high-performance sparse matrix-
vector multiplication (spMVM) as a dominating, or at least signi�cantly time-consuming com-
ponent. SpMVM is also an example where predictive modeling is problematic, but where the
general idea of a performance model can still be used with success. Theroofline model is used
to assess the quality of parallel spMVM implementations, establish upper performance limits,
and lead to a better understanding of how well resources are utilized. Taking into account how
much compute resources go into spMVM, a statement about when an implementation is “good
enough” can be of great value. Moreover, the performance of spMVM depends heavily on the
matrix structure, i.e., the location of the non-zero entries. Performance modeling is able to
predict the advantage from matrix reordering techniques.

A volume reconstruction algorithm in medical physics

Backprojection (BP) algorithms are used in 3D volume reconstruction from images delivered by
computed tomography (CT) devices. The performance of an implementation is strictly limited
from below due to the use of interventional CT imaging techniques in modern surgery. Perfor-
mance engineering can be used to understand the key requirements of a BPalgorithm implemen-
tation to the hardware. This is an especially interesting case since there is usually not a single
performance-limiting aspect like peak arithmetic throughput or data transfers. Via through per-
formance modeling one can identify shortcomings of current standard processor architectures
and propose improvements that could make a difference in reconstruction performance or enable
higher-resolution imaging at constant cost. Especially for the case of multicore processors, the
model predicts that it is possible to meet the required performance goal in current clinical CT
applications without resorting to special-purpose hardware like GPGPUs or FPGAs. It can also
identify a de�nite cross-over point where one or the other architecture ismore advantageous
with respect to performance or price/performance.

BP is a complex example where the �rst attempt at performance modeling via the roofline
model fails completely because of unjusti�ed assumptions about code execution on the hard-
ware and the applicable performance pattern. Changing the pattern, usingthe ECM model, and
applying guided code optimizations one is able to arrive at a code that ful�lls the clinical per-
formance limit (which happens to be a very precise de�nition of “good enough”). In the end, it
is not a single one but a combination of patterns that apply.

Performance and energy optimization of a lattice-Boltzmann algorithm

The lattice Boltzmann method (LBM) is today established as a successful alternative to tradi-
tional �ow solvers. LBM is traditionally believed to be memory-bound on all modern com-
puter architectures, but the details are complex to fathom. A sparse-lattice implementation of
a two-relaxation-time (TRT) LBM algorithm is used to answer the question for “best possi-
ble performance” on multicore systems. The in�uence of SIMD vectorization, the processor
clock frequency, and the propagation pattern on the performance and energy consumption of
the solver is studied using a combination of the ECM and power models. This enables an un-
derstanding of the complex interplay between in-core execution and data transfers, and leads to
de�nite predictions about the performance of an implementation and to the identi�cation of an
energy-performance optimization space.

13

Since this implementation is MPI-parallel it is also possible to study if and how the consis-
tent picture obtained on the socket level can be generalized to the highly parallel, distributed-
memory case with strong scaling. It turns out that non-negligible MPI communication intro-
duces not only overhead but also a core-bound component into the code execution characteris-
tics, which has decisive in�uence on the optimal performance/power operating point. Since the
energy consumption characteristics of memory-bound and core-bound codes are con�icting in
terms of the optimal clock speed, especially when the baseline power dissipationof the whole
system is taken into account, the optimization space for performance and power becomes very
sharply de�ned. High single-core performance and an optimal choice ofthe number of cores
used per socket are the dominant factors. In other words, mediocre-quality code running at a
low clock speed (because there is an implicit assumption about memory-boundedness) wastes
compute cycles and energy at the same time.

1.4 Related work in performance engineering

This section describes related work relevant for the performance modeling and engineering ap-
proaches. All other relevant related work, especially for the applicationcases in Part II, will be
covered in the respective sections.

White-box performance modeling has been used for a long time. In the times of single-core
in-order scalar processor architectures, where each instruction hada well-de�ned duration, ac-
curate runtime predictions on the chip level were possible without simpli�cations. Out-of-order
superscalar designs rendered this option impossible. The roofline model reduces machine and
code properties to a small number of parameters: computational intensity, memory bandwidth,
and peak performance. Although the term has been coined by Williams et al. [11], the model
has been in use since the 1980s [12], and was an integral part of performance optimization on
vector and early parallel computers [13].

Beyond the node level, a lot of effort has been invested in performancemodeling of mas-
sively parallel applications [14, 15, 16, 17]. The work of Petrini et al.[15] is especially interest-
ing since it used performance models to identify the previously unknown problem ofoperating
system noiseas a main factor limiting the scalability of large-scale bulk-synchronous code.It is
a supreme case for the notion that valuable insight is gained when a model fails.

In order to manage the complexity of modeling modern systems (also in the highly parallel,
distributed case) and to lower the required expertise for users, a numberof simulation-based sys-
tems have been devised, for example the Warwick Performance Prediction toolkit (WARPP) [18]
and its predecessors. They use a combination of compiler-based instrumentation, trace collec-
tion, and simulation to arrive at runtime predictions even for highly complex, massively parallel
applications. In contrast, the performance engineering process described in this work relies on
patterns, thorough manual or tool-based sequential code analysis, andexperience, to gain insight
into software-hardware interaction.

One of several interesting automatic tools that can help in identifying performance bot-
tlenecks also for inexperienced users is PerfExpert [19]. It provides node-level tuning advice
based on application tracing with hardware performance metrics. There is an implicit use of
patterns in the tool, and it exposes to the user the possible bottlenecks and their severity on a
loop-by-loop (or basic block) basis. Nevertheless, such an analysis can only be a starting point
and considerable experience is still required to take the necessary actions for improving code

14

performance. There are very few activities in the �eld of structured performance engineering
that do not build on automatic frameworks. One recent approach was described in [20], where a
useful work�ow was developed in the speci�c context of optimizing OpenMP code for modern
multicore systems and accelerators.

1.5 Organization of this thesis

This work is organized as follows. Chapter 2 gives a high-level overview on core, processor, and
node architecture, as far as it is required for the modeling approaches described later. The Intel
Xeon Sandy Bridge processor is the dominant architecture in current multicore-based systems,
and is hence described in more detail. Most of the examples and case studiesin later chapters
were conducted on Sandy Bridge systems.

Chapter 3 gives the details of white-box performance modeling. After a discussion of useful
performance metrics and high-level scalability laws, the roofline model is discussed, together
with a detailed account of its prerequisites and its potential for guided code optimizations. Mul-
tiple examples are given, including sparse matrix-vector multiplication. Using thefailure of the
roofline model in certain situation as a starting point, the ECM model is then developed and
validated using a streaming benchmark. Complex application scenarios are left for Part II.

Chapter 4 develops the multicore power model based on three simple benchmarks that are
prototypical for large classes of applications. Using the model, guidelines for energy-ef�cient
computation with respect to single-core performance, clock speed, and the number of active
cores are derived and validated using the benchmarks. Finally, the power model is used to
de�ne a design space for energy-ef�cient systems.

In Chapter 5 the structured performance engineering process is formulated, �rst in a coarse
form without the explicit use of patterns. It is applied to an in-depth performance analysis and
optimization study of a three-dimensional Jacobi smoother. De�ning and categorizing perfor-
mance patterns then paves the way for a re�ned view on performance engineering.

Chapter 6 uses performance engineering to develop an optimized implementationof a back-
projection algorithm for volume reconstruction in medical imaging. Starting froma simple
roofline model, which wrongly predicts a memory-bound situation, simple algorithmicand code
optimizations are applied before using the ECM model to arrive at a better description of the
performance of the code.

In Chapter 7 an implementation of the lattice-Boltzmann algorithm with two-relaxation-time
collision operator and a sparse lattice representation is analyzed in view of SIMD vectorization,
propagation pattern, and clock speed. The ECM and multicore power modelsare combined to
yield a prediction for a possible performance-energy optimization space, inwhich an optimal
operating point can be found. In the multi-node parallel case at strong scaling the in�uence of
MPI communication overhead on these chip-level results is studied and the optimization space
re-evaluated.

Finally, Chapter 8 gives a summary and an outlook to possible future work.

15

16

Chapter 2

Computer architecture

This chapter gives a brief overview of computer architecture, as far asit is relevant for the
performance modeling and engineering approaches described later. Since this work is mostly
about node-level issues, the focus is on the chip and node architecture. More detail can be found
in [21].

A vast literature, including long-standing standard works [22], exists about this topic, but is
mostly concerned with details that are for the most part irrelevant for the computational scientist.
It is one of the important prerequisites for a good understanding of performance issues that
architectural details should be exposed only as far as they are relevantfor the modeling approach
at hand.

2.1 Cores

Figure 2.1 shows a simpli�ed, high-level architectural view of a microprocessor core. It is
somewhat similar to current Intel designs, but suf�ciently general to cover the features of all
modern microprocessors. The components will be described brie�y in the following.

2.1.1 Execution units and ports

The execution units perform the actual work of the core in terms of carrying out the instructions
in the machine code. Usually there are units for carrying out �oating-pointmultiply and add op-
erations (MULT/ADD), loading and storing data from and to the memory hierarchy (LOAD or
STORE), for integer operations (ALU), for address generation (ADRS), for branching (JMP),
for moving, masking, and shuf�ing data (MOV/MASK), and for special operations such as
divide and square roots (DIV). Some of these functions share a unit; for instance, in the proto-
typical design shown in Fig. 2.1 the �oating-point MULT unit is shared with theDIV unit.

These units are usually pipelined, which means that a complex operation suchas a �oating-
point MULT is split into several small steps, which can be executed in a singlecycle (this
would not be possible for the full operation). Pipelining makes it possible to run the core at
higher clock frequencies, at the price of executionlatencies: The latency is the number of
clock cycles it takes after an operation was started until the result is available. For instance,
a double-precision �oating-point multiply has a latency (orpipeline depth) of �ve cycles on
current Intel processors. Nevertheless, the pipeline can deliver one result per cycle if enough

17

independent work is available and can be fed to it. In this case, the pipeline is�lled and operates
at its maximum throughput. Dependencies between operations cause pipelinebubbles, i.e., the
maximum throughput cannot be met because one pipeline stage has to wait for another (possible
in a different pipeline) to complete.

The cost for starting and stopping the pipeline counts as overhead, but isnegligible if the
number of independent operations is large compared to the pipeline depth. Not all operations
are effectively pipelined. For example, divide and square root tend to be very expensive because
their throughput is similar to their latency. On the other hand, multiple pipelines canpotentially
operate in parallel, leading to a maximum execution rate of more than one instruction per cycle.
This is calledsuperscalarityor instruction-level parallelism(ILP).

The execution units are fed via execution ports (which may be implemented as queues).
In modern out-of-order designs the operations can be executed in any order that is compatible
with the dependencies in the program �ow, but the completion of the instructions is always
in program order. Simpler architectures such as the Intel Xeon Phi coprocessor (in its current
design) have in-order execution, which means that the order of instructions in the machine
code is crucial, and software pipelining techniques mus be employed by the compiler or the

Control flow

L1 Icache

L1 Dcache

STORELOADLOAD

ADD ADRSADRS

ALUALUALU

Port 0 Port 5Port 4Port 3Port 2Port 1

Scheduler

Reorder buffer / Register renaming

DecoderDecoder Decoder

DIV

Memory control

MULT

E
xe

cu
tio

n
un

its

Decoder

fil
e

R
eg

is
te

r

MOV/MASK

JMP

Pot. bottleneck

Data flow

Figure 2.1: Simpli�ed high-level architectural view of a modern microprocessor core. The most
important execution units and potential bottlenecks are highlighted.

18

32 32 32 32

4 3 2 1

r r r r4 3 2 1

1xx x4 3 2 x

y y y y

Figure 2.2: A SIMD-
vectorized ADD instruc-
tion, operating on four
single-precision operands
simultaneously. The reg-
ister width is 128 bits in
this case. (Figure from
[21])

programmer.

2.1.2 Registers

All instructions that are executed by the core work with operands stored inprocessorregisters.
The access to data in a register is latency-free, but the number of registers is limited (e.g., current
x86 processors have 16 �oating-point and 16 general-purpose [integer] registers). The register
�le is usually larger than what is visible to the programmer, since the hardwareemploys register
renaming techniques to work around simple dependencies in the machine code.

It is one of the complex tasks in compilers to �gure out which variables shouldbe kept in
registers, and when they can be written out to the memory hierarchy. Usuallyone can make
valid assumptions, such as that an accumulation variable in a loop is kept in a register at least
until the loop is �nished. These assumptions go into the peak performance estimates required
for performance modeling (see Chapter 3).

2.1.3 SIMD execution

Single instruction multiple data (SIMD) allows for simultaneous execution of operations on
multiple operands by a single machine instruction. To this end, the architecture provides reg-
isters which are wider than they would have to be to store only a single operand. In modern
SIMD-equipped processors the SIMD width is between 128 bits and 512 bits, allowing for two
to eight “tracks” in double precision (four to 16 in single precision). Figure 2.2 shows the
example of an ADD instruction operating on two 128-bit registers and performing four single-
precision �oating-point additions at the same time. The termvectorizationis frequently used
when SIMD is employed. It is decisive for performance that the SIMD principle cannot only be
applied to arithmetic operations but also to data transfers, since the data throughput to and from
the L1 cache may be a bottleneck. In such a case, SIMD instructions shouldbe used for both
arithmetic and LOAD/STORE. If this is not possible because the operands are not consecutive
in memory, SIMD has limited bene�t. See Chapter 6.4.1 for an example.

If SIMD instructions cannot be used, one must revert toscalar instructions, which typically
use only the lowest part of a register. More advanced SIMD instruction sets allow for arbitrary
masking of operations, so that any combination of SIMD tracks can be blocked out. SIMD
is also no restricted to �oating-point computation. For instance, the 128-bit SSE (“Streaming
SIMD Extensions”) instruction set on modern x86 designs also contains integer operations.

Ideally, a SIMD width ofk elements increases the arithmetic peak performance of the core

19

L2 cache

L1I

cache
L1D Registers

Control

E
xe

cu
tio

n
un

its

Memory
cache

Figure 2.3: Simultaneous multi-threading allows the simultaneous execution of several (two in
this case) threads on the same core. The threads share all resources except the register set. One
thread can �ll the bubbles left in the pipeline(s) by the other. (Figure from[21])

by a factor ofk. Note that the SIMD concept is “orthogonal” to pipelining: There may be
pipelining issues even if a code is perfectly SIMD-vectorized, since eachSIMD track is a
pipeline of its own in lockstep with the others, working on the same instruction(s) but on differ-
ent data items.

2.1.4 Instruction cache and decoders

Instructions are read in program order from the Level 1 instruction cache, whose maximum
transfer rate is limited (although this is a bottleneck that does not very often apply in scienti�c
computing). All instructions must be decoded before they can be executed. A limited number
of decoders is available for this task. Intel and AMD x86 designs have thespecial feature that
the machine code read from the instruction cache is not the code that runs inthe execution units.
X86 machine instructions are translated by the hardware into so-called micro-ops (mops), which
correspond to RISC-like instructions. RISC (Reduced Instruction Set Computing) is a design
principle which allows only very simple instructions, so that they can be ef�ciently pipelined
and executed at high clock frequencies. The x86 machine instruction setdoes not adhere to this
principle, since it contains numerous complex instructions like the combination ofa LOAD and
an ADD. Splitting them tomops on the �y allows for more ef�cient execution in the core. Most
restrictions on instruction throughput apply to themops.

2.1.5 SMT

Simultaneous multi-threading (SMT) is used to increase the throughput of instructions on the
core in certain cases. With SMT, a single core is able to execute multiple independent instruction
streams at a time. To the applications and especially to the operating system it thusappears as
multiple cores. However, almost all the resources are shared between thethreads. The only
fully duplicated resource is the register set, since each running programrequires a full set of
registers. It is certainly possible to run multiple processes or threads on a single core without
SMT by time-sharing, but this is a feature of the operating system and not ofthe hardware.

The purpose of SMT is to make better use of the pipelines, which are often not fully utilized
even with well-optimized software. Bubbles left in the pipeline stages by one thread or process
can be �lled by another (see Fig. 2.3). This can boost the throughput per core considerably
in some cases (see Sect. 6 for an example). If the running threads are limitedby a common

20

bottleneck outside the core pipelines, such as memory bandwidth or a sharedqueue, no bene�t
is expected.

For the application programmer, SMT is �rst and foremost atopologyissue, because they
must decide to use or to ignore the feature by proper binding of threads and processes to the
resources.

2.1.6 Data cache

The results generated by executed instructions are either used from registers or eventually stored
to the memory hierarchy. In general, the Level 1 data cache is the target for all LOAD and
STORE operations. If a memory address is accessed whose contents arenot already in the L1
cache (this event is called amiss), the corresponding cache line is read (the cache line size on
x86 processors is 64bytes). This pertains to STOREs as well: The cacheline transfer initiated
by a store miss is called awrite-allocate.

2.1.7 Clock frequency and turbo mode

All operations in the execution core and the immediately connected caches runat the same clock
speed (outer-level caches may run at a different frequency). Thismeans that all performance
numbers scale linearly with the clock frequency if no resources outside thisarea are used by the
running code. Performance on this level is hence often discussed in termsof “amount of work
per clock cycle,” since this is a frequency-independent metric.

Modern processors often allow setting the clock frequency from user space. On Sandy
Bridge and earlier designs this setting is global across all cores. UpcomingIntel processors will
allow core-speci�c clock speeds.

A special feature found on all current x86 designs is “turbo mode” (“turbo core” for AMD).
In turbo mode the chip can run faster than its nominal clock frequency, depending on the num-
ber of active cores and the die temperature. Intel processors even allow for a violation of the
thermal design power (TDP) limit for a short amount of time. In view of Amdahl's Law, these
measures are a way not only to increase the performance of sequential code but also to improve
the scalability of parallel programs with non-negligible serial fraction.

2.2 Multicore chips

2.2.1 Multiple cores

To work around the power dissipation problems at high clock frequencies, processor manufac-
turers implement multiple cores on a die. This allows to make use of Moore's Law,i.e., the
exponentially increasing transistor count per chip, within a constant power envelope.

Standard multicore processors feature a number of cache levels (usuallytwo to three), most
of which are private to each core. All caches except the L1 cache aretraditionally uni�ed, i.e.,
they can store instructions and data at the same time. The outer-level cache (OLC) is usually
shared to allow for fast communication and synchronization between cores. When a cache line is
brought from memory into the cache hierarchy there are essentially two options: In aninclusive
cache hierarchy, any outer cache holds copies of all cache lines in the inner caches. Anexclusive
cache hierarchy always transfers cache lines to an inner level, from where they must be copied

21

Figure 2.4: Simpli�ed
high-level structure, or
“topology,” of a shared-
memory compute node
based on two eight-core
processors with Simulta-
neous Multi-Threading
(SMT). I/O resources
such as disks, network
interfaces, or accelerator
hardware, are connected
via special buses, e.g.,
PCI Express.

T

P
L2

L2

L3 cache

L3 cache

Memory

Memory Interface

Memory

L1D

L1D

T

TT

P
L2

L1D

TT

P
L2

L1D

TT

P
L2

L1D

T

Memory Interface

T

Q
P

I

P
T

P
L2

L1D

TT

P
L2

L1D

TT

P
L2

L1D

TT

L2

L2

P
T T

L1D

T

L1D

L2

P
T T

L1D

TT

P
L2

L1D

T

P

T

L2

L1D

L2

P
T T

L1D

L2

P
T T

L1D

L1D

L2

P
T T

P

GPGPU

GPGPU

GPGPU

NIC

down when replaced (evicted). A mixture of both concepts is also possible.Knowledge about
the details of data transfers between the caches is required for accurateperformance modeling
(see Chapter 3 for examples).

Whenever multiple cores operate on different caches, acache coherence protocolensures
that changes to different parts of the same cache line leave the caches in aconsistent state. This
can lead to performance problems if such changes happen in rapid succession, since cache lines
have to be moved back and forth through the system (“false sharing”).

2.2.2 Memory access

The memory interface is usually shared among the cores on a chip, so it is a typical candidate
for a bottleneck. Memorylatencyis the time it takes to set up a cache line transfer, and is
typically of the order of hundreds of core cycles. The overall time to transfer a cache line is
absolutely dominated by latency. Prefetching mechanisms, either in hardwareor in software,
help with hiding the memory latency and actually reach thebandwidthlimit of the memory
interface if the data access pattern is appropriate. Best results are achieved with regular, unit-
stride (“streaming”) memory access. If the access pattern is strided or erratic, the memory
bandwidth may not be exhausted and excess data transfers will occur due to the cache line
concept (a full cache line is transferred but only part of it may be usedbefore it gets evicted).
See Sect. 3.3.2 for an example on the consequences of erratic memory access.

The latency and bandwidth considerations for main memory also apply to the higher levels
of the cache hierarchy. Even though the latencies are shorter and the bandwidths are higher than
for memory, non-unit strides or erratic accesses lead to large penalties, too.

2.3 Node and memory architecture

Two-socket servers have been at the price-performance “sweet spot” in commodity-based high
performance computing for the last ten years. Figure 2.4 shows the structure of a typical com-
pute node. Usually there is one chip per socket, with its own memory interface (some current

22

AMD-based server processors are a notable exception with two chips per socket). The chips are
coupled via an interconnect network, which makes the whole setup a shared-memory system. In
the commodity sector this interconnect is eitherQuickPath(QPI) orHyperTransport(HT). All
the installed memory, no matter to which socket it is attached, can be accessed transparently by
any core, and cache coherence is automatic. This principle is calledccNUMA(cache coherent
non-uniform memory access).

A ccNUMA system is divided intolocality domains. If a core accesses memory in a distant
domain, this is more expensive (in terms of latency and bandwidth) than in the local domain
where the thread is running. The penalty for non-local access is typicallylarger in systems
with many domains, and is signi�cant in any case. In order to make sure that any memory
access is as local as possible, programs should make use of the �rst-touch principle, or “Golden
Rule of ccNUMA:” The mapping of physical to logical memory addresses takes place not at
the allocation, but at theinitialization of a memory page. A page gets mapped into the locality
domain of the core that writes to it �rst. Two crucial consequences arise from this: First, memory
should be initialized by the same thread that uses it in a parallel computation, andsecond,
threads should be bound to cores so that they cannot be migrated by the operating system to
another ccNUMA domain, thereby losing their locality of memory access.

As Fig. 2.4 shows, even a single current multicore, multi-socket system hasa rich “topol-
ogy.” Topology is the structure of a system in terms of the location of cores (and SMT threads)
and the resources that they share. SMT threads always share a core, cores on a chip share some
cache levels and the memory interface, and sockets share the coherent network and typical I/O
resources such as the network interface, disks, accelerators, etc. Since shared resources are
prone to become bottlenecks, topology is an essential component in performance assessment
and modeling. Knowing about the sensitivity of a parallel program to the typical hardware
bottlenecks leads the way to well-founded code optimization efforts. Chapter5 describes a
work�ow which is based on this idea.

2.4 Test bed and tools

2.4.1 Intel Xeon “Sandy Bridge” processor [1]

Most of the performance data in this work was measured on compute nodes and systems based
on the dual-socket eight-core Intel Sandy Bridge EP platform (Xeon E5-26XX). The Intel Sandy
Bridge microarchitecture contains numerous enhancements in comparison to itspredecessors,
e.g., the “Westmere” and “Nehalem” chips. The following features are most important for the
analysis in the following chapters [23]:

• Compared to SSE, the Advanced Vector Extensions (AVX) instruction setextension dou-
bles the SIMD register width from 128 to 256 bits. At the same time, the load throughput
of the L1 cache is doubled from 16 bytes to 32 bytes per cycle, so that a Sandy Bridge
core can sustain one full-width AVX load and one half-width AVX store per cycle. With
SSE or scalar execution, these limits are changed: In both cases the core can sustain either
one load and one store, or two loads per cycle, to the effect that many loops do not show
a 4� speedup of core execution when going from scalar mode to AVX (see Sect. 3.3.1 for
an example).

23

• The core can execute one ADD and one MULT instruction per cycle (pipelined). With
double-precision AVX instructions, this leads to a peak performance of eight �ops per cy-
cle (sixteen at single precision). In general, the core has a maximum instruction through-
put of sixmops per cycle.

• Each core can execute two concurrent streams of instructions using simultaneous multi-
threading (SMT).

• The L2 cache sustains re�lls and evicts to and from L1 at 256 bits per cycle (half-duplex).
A full 64-byte cache line re�ll or evict thus takes two cycles. This is the sameas on earlier
Intel designs.

• The L3 cache is segmented, with one segment per core. All segments are connected by a
ring bus. Each segment has the same bandwidth capabilities as the L2 cache,i.e., it can
sustain 256 bits per cycle (half-duplex) for re�lls and evicts from L2. This means that the
L3 cache is usually not a bandwidth bottleneck, which is an improvement compared to
previous Intel processors.

• All parts of the chip, including the L3 cache (which is part of the “Uncore”), run at the
same clock frequency, which can be set to a �xed value in the range from1.2–2.7 GHz.
The speed of the DRAM chips is constant and independent of the core clock.

• One Xeon E5-26XX socket has four DDR3-1333 or DDR3-1600 memory channels for
a theoretical peak bandwidth of 42:7GB/s or 51:2GB/s. In practice, between 36GB/s
and 42GB/s can be achieved with the standard STREAM benchmark [24] athigh clock
frequencies.

• Sandy Bridge is the �rst Intel processor exposing a power measurement infrastructure to
the user code. Power and energy measurements reported in this work arefor the “package”
only, i.e., they ignore the installed RAM. Preliminary results for the power dissipation of
installed DIMMs are between 2 and 9 W per socket (16 GB RAM in 4 DIMMs of4 GB
each), depending on the workload (memory-bound vs. cache-bound).

Some of these low-level hardware properties will be revisited when discussing performance
models and results.

2.4.2 Tools

Source code was compiled with the Intel compiler in version 12.1 or 13.1. The tools of the
LIKWID tool suite [25, 26] were employed for binding threads of OpenMPprograms to cores
(likwid-pin), for hardware performance monitoring (likwid-perfctr), and for energy
measurement (likwid-powermeter).

2.4.3 SuperMUC

The large-scale parallel runs of lattice-Boltzmann simulations used in Chapter7 to demonstrate
energy-ef�cient execution were conducted on the “SuperMUC” federal supercomputer at Leib-
niz Supercomputing Center (LRZ)1 in Garching near Munich. It is a tier-0 PRACE2 system and

1http://www.lrz.de/english/
2http://www.prace-ri.eu/

24

http://www.lrz.de/english/
http://www.prace-ri.eu/

one of the main federal compute resources in Germany. It is built from a number of 512-node
“islands,” with a fully non-blocking fat tree FDR10 In�niBand connectivity inside each island.
A compute node comprises two Intel Sandy Bridge EP (Xeon E5-2680) eight-core processors
with a base clock frequency of 2.7 GHz.

The actual clock speed of the processors in SuperMUC can be in�uenced by a so-called
“energy tag,” which is supplied upon job submission together with a parameterspecifying how
much performance degradation the user wants to tolerate for their job. A heuristic based on
hardware performance counter measurements of the user's previous jobs with the same energy
tag then sets the clock frequency for the job (turbo mode cannot be used). These measures try
to establish a user-friendly semi-automatic mechanism for saving energy.

25

26

Chapter 3

White-box performance modeling on
the chip level

As described in Chapter 1, performance modeling can be a powerful toolfor software engineer-
ing in computational science. Taking a modeling approach to the interaction of software with
hardware is, while not new, a concept that is not yet in wide use. Since performance for problem
solving is generated in the execution units of processor cores, and sinceall relevant computa-
tional resources are replicated when using multiple chips, modeling and optimization activities
must start at the chip level. After revisiting high-level scalability models, this chapter introduces
the well-knownroof line modeland the newECM performance model. These models are shown
to provide valuable insights into the performance properties of modern processor chips and the
code that runs on them. In Chapter 5 the models will be put into the larger context of node-level
performance engineering.

3.1 Performance and speedup

This section addresses performance and scalability of serial and parallel programs from an ab-
stract point of view. In computing,performanceis usually de�ned aswork divided by time,
where “work” is a problem (or a well-de�ned part thereof), and “time” isthe wall-clock time
required to solve it:

P =
W
T

(3.1)

An accurate de�nition of “work” is crucial for a sensible assessment ofperformance. For in-
stance, if solving the problem involves necessary overhead that takes timebut is not in itself part
of the result, this overhead does not constitute “work.” Communication or synchronization in
parallel computing are typical examples.

Parallel computing is often concerned with the question of how much more performance
can be achieved if the work is done with “accelerated” resources, suchas multiple cores, chips,
or nodes, or with special hardware like GPGPUs.Speedupcan thus be de�ned as

S=
Pa

P0
=

Wa

W0

T0

Ta
; (3.2)

wherePa denotes “accelerated” performance andP0 is a given baseline level. This de�nition
does not specify whether the same amount of work is done in the baseline and in the accelerated

27

case (W0 vs. Wa). The baseline performance is frequently chosen to be equal to one, sothat
speedup and accelerated performance are identical. Another popular choice isW0 = Wa, i.e., the
same problem is solved in both cases.

3.1.1 Useful performance metrics

Most simulation tasks are centered around algorithms that require �oating-point computations.
A natural unit to choose for “work” is thus the �oating-point operation, or �op . The peak
“speed” of processors or whole systems is also usually given in �op/s, since it is the most generic
and widely applicable measure for performance. It also allows for a rough �rst estimate of how
“effectively” the compute resources of a system are utilized: A large deviation of actual from
peak �op/s performancemightindicate a problem with code execution that should be addressed.
However, there are various objections to using �ops for assessing program performance:

• The �op/s metric can be easily manipulated. It is straightforward to rewrite implementa-
tions so that the �op count is strongly increased, without improving the time to solution
of the actual problem.

• Different implementations of one algorithm, or even machine codes generated by different
compilers from the same source, can exhibit strongly deviating �op counts.

• There are algorithms which do not exclusively rely on �oating-point computations.

Hence, one should be careful whenever the �ops metric is used. Alternatives exist in many
cases, such as in iterative solvers where one “iteration,” or “update,”may serve as a convenient
and implementation-independent unit of work.

3.1.2 High-level scalability models

It is clear that the concepts ofperformanceandspeedupmust be clearly separated. Especially
looking at speedup �gures alone may lead to false conclusions about the “quality” of parallel
or accelerated execution. In the end, all that counts is how much work perunit of time can be
done; ifP0 in (3.2) is small, the achievable speedupSmay be signi�cant even ifPa is mediocre.
If and how it can be determined whetherP0 or Pa are “good” will be the topic of Chapter 3.

Nevertheless, the speedup metric can still be useful, since it allows a quantitative judgment
about how ef�ciently resources are put to use when not all of a program's execution can be
accelerated. In many cases the speedup can be written as

S=
Wa

W0

Ts+ Tp

Ts+ Tacc
p + c

; (3.3)

whereT0 = Ts + Tp is the non-accelerated runtime of the program, andTp is a part which can
be perfectly accelerated so that this part takes a time ofTacc

p in the accelerated case. Note
that Tacc

p may also include any change in runtime caused byW0 6= Wa, e.g., if the accelerated
execution is performed on a bigger problem. The parameterc quanti�es any overhead that is
caused by the process of acceleration, such as communication or synchronization. Frequently
the non-accelerated runtimeT0 is normalized to one, so thatTs = s andTp = p become “non-
accelerated” and “accelerated” fractions, respectively, ands+ p = 1. At the same time one can

28

setW0 = s+ p = 1. If we �nally interpret a non-accelerated fraction as a part of the overhead,
(3.3) becomes

S=
Wa

pacc+ d
; (3.4)

with d = c+ s. The quantitypacc is “accelerated, normalized runtime” and describes the “per-
fect” part of execution, whiled contains all factors impeding good scalability.

Some important special cases are worth noting. IfW0 = Wa = 1 andd = s we havepacc =
p=a , wherea is an acceleration factor. This leads directly toAmdahl's Law[27],

S=
1

s+ 1� s
a

: (3.5)

It quanti�es thelaw of diminishing returns: The more effort is put into improving one part of
the problem (in this case the accelerated fractionp = 1� s), the less effect it has on the overall
time to solution. In the limita ! ¥ we getS! s� 1. If a = N, with N being the number of
“workers” used for solving the accelerated part, we speak ofstrong scaling, and “acceleration”
becomes “parallelization.” For �nitec > 0 the effective speedup is diminished:

S=
1

s+ 1� s
a + c

; (3.6)

and ifc0(a) > 0 this means that the speedup does not even increase when the acceleration factor
goes up. A typical example is OpenMP parallelization overhead, which is linear or logarithmic
in the number of threads used for parallelizing a loop. If the amount of workin an OpenMP-
parallel loop is too small, performance will go down when the number of threads is increased.

If Wa = s+ a p, i.e., the accelerated problem size is increased by a factor which is equivalent
to the achievable acceleration onp, (3.4) becomes

S=
s+ (1� s)a

c
; (3.7)

which isGustafson's Law. For a = N we speak ofweak scaling. The impact of the overhead
c on scalability is much weaker in this case. For largea it is suf�cient to havec0(a) < 1 for
getting a speedup that grows without bounds.

Although these high-level models are useful for deriving general guidelines and scaling
properties, they are completely detached from any concrete hardware,and can on �rst sight not
account for many of the effects seen on real systems. However, it is possible to modify and re�ne
the high-level scalability laws to accommodate many different performance-limiting factors.
For instance, the dependence of the overheadc on the acceleration factora (or the number of
workersN) can be modeled after some often-encountered patterns, such as halo exchange, or
be set to mimic the communication characteristics of special networks. A coverage of some
interesting cases can be found in [21].

It turns out that Amdahl's and Gustafson's Laws must be substituted by more speci�c models
when trying to describe and understand the performance behavior of modern chips. However,
there is one effect that can be described well by a slight modi�cation of Amdahl's Law with
overhead (3.6): Boosting scalability by code slowdown. Going back to (3.3) and normalizing
such thatTs+ Tp = m, (3.6) becomes

S=
m

m
�
s+ 1� s

a

�
+ c

=
1

s+ 1� s
a + cm� 1

: (3.8)

29

Figure 3.1: Roofline model for a processor
with a memory bandwidth ofbS = 10GB/s
running a code with an applicable peak per-
formance ofPmax = 3GF/s. The dashed
(dotted-dashed) line represents a computa-
tional intensity that leads to memory-bound
(core-bound) performance.

1/64 1/32 1/16 1/8 1/4 1/2 1 2
Computational intensity I [F/B]

0.25

0.5

1

2

4

8

16

P
er

fo
rm

an
ce

 P
 [G

F
/s

]

Pmax

I·b S

This change models a performance increase (m< 1) or decrease (m> 1) of the pure execution
time (non-accelerated plus accelerated parts). It is clear from this formulation that scalability is
improved form> 1 if c 6= 0: Whenever there is non-negligible overhead, slowing down code
execution boosts scalability. This is why white-box performance modeling based on hardware
parameters and code inspection is so important. It answers the question which bottleneck is
relevant and whether it has been reached, and scalability (or speedup) becomes subordinate.

3.2 The roofline model

The roofline model [12, 13, 11] is a well-established approach to predicting upper performance
limits for code execution on a processor. While it is possible to model arbitrarycode, the roofline
model works best when applied to loop kernels with streaming data access patterns. Due to its
generality it can be used with multicore processors, GPGPUs, and other hardware for which its
basic assumptions are valid.

3.2.1 Building the model

The central premise of the model is that the performance of a loop is either limitedby data
transfers or by code execution, whichever takes longer. A detailed account of the assumptions
and prerequisites will be given in Sect. 3.2.2 below.

The following steps are required to build the model for a speci�c loop:

1. By algorithm and code inspection, determinePmax, the applicable upper performance limit
for the loop code, assuming that all required data comes from the cache that is closest to
the core(s) (i.e., the L1 cache). Considerable knowledge about the hardware architecture
may be required to arrive at a realisticPmax value.

2. By algorithm and code inspection, determine thecomputational intensity1 I of the loop
code. This is the ratio of “work” performed and data volume required to do the “work.”

1The reciprocal of the computational intensity is calledcode balance: BC = I � 1.

30

Only the bottleneck data path is considered for the data volume (see next point).

3. Determine the applicable peak bandwidthbS of the data path that constitutes the bottle-
neck for transferring the necessary data to the core(s) and back. This step may require
measurements using microbenchmarks, either because of undocumented hardware fea-
tures or because some data path cannot be operated at 100% of its theoretical bandwidth.
Note that the L1 cache is not a bottleneck in this sense, since it is included in themodeling
of Pmax.

Once these quantities are known, the expected performance of the loop code is

P = min(Pmax; I � bS) : (3.9)

Figure 3.1 gives a graphical representation of the roofline model, for a hypothetical processor
with a maximum main memory bandwidth ofbS = 10GB/s and for an applicable peak per-
formance of 3GF/s. The minimum function in (3.9) is expressed by the rooflineshape (solid
line), while the inaccessible performance regions are shown as dotted lines. At a given compu-
tational intensity, the expected performance can be read off the diagram as shown by the dashed
(I = 0:125B/F) and dotted-dashed (I = 0:5B/F) lines.

In the �rst case the limiting factor is the main memory bandwidth, since the roofline is
hit in the sloped part. The expected performance ofP = 1:25GF/s is far belowPmax, i.e., the
computational units run idle most of the time. The second case shows a core-bound situation,
where the expected performance is determined by the code execution in the core(s).

Several aspects are worth noting here. First, the roofline model isresource-drivenin the
sense that the maximum available resources (bandwidth or execution) are the limiting factors
for code performance. It is not speci�ed how exactly these resources are put together on the chip;
for instance, the number of cores, the width and number of memory channels, the details of core
execution, etc., are not part of the model (3.9), although they can certainly be used to determine
the parametersbS andPmax. Second, we have implicitly assumed thatPmax is independent ofI ,
at least for the two cases shown in Fig. 3.1. This will not be the case in general, since different
algorithms (or even different implementations of the same algorithm) have usuallya different
composition in terms of low-level loop code (number of instructions, fraction of LOAD/STORE
vs. arithmetic operations, SIMD vs. scalar, etc.). Consequently, the roofline model must not be
seen as a machine that produces a correct number (P) when fed with an input (I); it is rather a
methodand must be revised whenever the code under consideration changes substantially, even
if I stays constant.

The roofline model can be helpful in performing guided code optimizations [11]. Optimiza-
tions such as unrolling and blocking [21] can in�uence the computational intensity of a loop.
On the other hand, modi�cations of the low-level machine code (software prefetching, SIMD
vectorization, etc.) can move the positions of both parts of the roofline withoutchanging the
computational intensity. Both will lead to an immediate prediction of the expected change in
performance. Hence, the model helps with judging whether an optimization would be worth the
effort. See Sect. 5.1.2 for an example.

3.2.2 Model prerequisites and assumptions

The roofline model is based on clear concepts of “work” and “data traf�c to do the work.” One
possible kind of “work” is “number of �oating-point operations,” but thisis not always desir-

31

able, as was shown in Sect. 3.1.1. Any other well-de�ned and countable quantity will also do,
including problem-speci�c metrics: loop iterations, solver iterations, lattice site updates, image
pixels, function evaluations, etc. The “data traf�c” across the bottleneckdata path includes all
data, not only the data that is seen by LOAD and STORE instructions in the code. See Sect. 3.3
for examples.

A number of critical assumptions go into the roofline model:

• Bottleneck assumption.The slowest data path, i.e., the bottleneck is modeled only; all
others are assumed to be in�nitely fast. “Slow” is not de�ned here in terms ofbandwidth
but of the time it takes to transfer the required data. Hence, a high-bandwidth data path
can still be the bottleneck if the data volume is large. For instance, if ten times the data
volume must be delivered by the L3 cache than by the main memory, the L3 cachewill
be the bottleneck, despite having a �ve times larger bandwidth.

• Overlap assumption.Data transfer and core execution overlap perfectly. If this assump-
tion did not hold, the roofline in Fig. 3.1 would change into a smooth “archline,”and there
would be no clear in�ection point atI � bS = Pmax.

• Saturation assumption.It is possible to fully utilize the bandwidth of the bottleneck (“sat-
uration”) if the model predicts a bandwidth limitation. The saturated bandwidth is either
a documented number or must be determined via microbenchmarking.2

• Streaming assumption.There are no latency effects, i.e., all data accesses use perfect
streaming mode. This assumes that hardware- or software-based prefetching mechanisms
work perfectly, and that the large latency for accessing a cache line canbe completely
hidden.

Any of these assumptions may not hold in some situations, but they are reasonably loose to
support many code patterns in scienti�c computing. The ECM model, which will be introduced
in Sect. 3.4, can handle some of the cases in which the roofline model fails to deliver useful
results.

3.2.3 Model-guided code optimizations

Building a performance model opens several possibilities for performance optimizations. In-
stead of blindly applying code changes and hoping for improvements,guideddecisions can be
made, using the model as a predictive tool for the expected gain. This is a crucial part of the
performance engineering process, which will be introduced in Chapter 5.

Figure 3.2 shows examples of typical code optimizations and their consequences in terms of
the roofline model. As a prerequisite, we assume that the model is always “correct” in the sense
that it re�ects the minimum requirements of the implementation utilizing the maximum capa-
bilities of the hardware. For instance, strided array access must alreadybe taken into account
by a correct assessment of the data traf�c. The labels (numbers) in the graph correspond to the
items in the following list:

2In the non-saturated case, measuredeffectivebandwidths can serve as a substitute for saturated bandwidth, but
the ECM model (see below) clearly shows that this approach delivers inaccurate results.

32

1/64 1/32 1/16 1/8 1/4 1/2 1 2
Computational intensity I [F/B]

0.25

0.5

1

2

4

8

16

P
er

fo
rm

an
ce

 P
 [G

F
/s

]

Pmax

I·b S

1

2

3

4

5

P'max

Figure 3.2: Typical optimization ap-
proaches in the roofline model.P0

max is a
new applicable performance limit, which
emerges from making use of architectural
features that were not accessible before.
Deviations from the model (hatched points)
are here caused by code de�ciencies and
not by �aws in the model, i.e, it is assumed
that the model is always “correct.” See text
for details.

1. Reaching bandwidth saturation.If the model predicts a limitation by memory bandwidth
but is too optimistic with regard to a measurement, this can point to de�ciencies in the
code, such as missing software prefetching instructions, which preventsaturation because
the streaming assumption cannot be met. Hardware performance monitoring (HPM) can
then reveal whether this conjecture is true (see Sect. 5.2 for more details onHPM-assisted
performance engineering).

2. Improving computational intensity at bandwidth saturation.If the loop is bandwidth-
bound and exhausts the memory bandwidth, increasing the computational intensity by
typical optimizations such as stride reduction, unrolling, and blocking [21] will lead to a
proportional gain in performance.

3. Improving computational intensity and going core bound.If an improvement of the com-
putational intensity does not cause a proportional gain in performance, chances are that
the in�ection point atI � bS = Pmax was crossed, and that the loop has become core bound.
A further increase ofI will then not lead to any speedup.

4. Improving in-core ef�ciency.A deviation from the core-bound applicable maximum per-
formancePmax usually points to suboptimal low-level loop code. This can be veri�ed by
careful inspection of the assembly code or the compiler's diagnostic messages. A typical
example is the lack of SIMD vectorization, which may be caused by the compiler missing
important information, such as the non-existence of array aliasing [21].

5. Improved use of architectural features.If the code or the algorithm can be changed so
that new, performance-critical architectural features become accessible, the model must
usually be adapted for a newP0

max > Pmax. For instance, stalls caused by pipeline hazards
may be removed by reformulating the algorithm to become purely data-parallel.

Using the model as a guide for expected performance gain it becomes possible to judge whether
some (possibly complex) code changes would be worth the effort. The following section high-
lights some instructive examples, and Chapter 5 embeds optimization approaches in a structured
performance engineering process.

33

Listing 3.1: Pseudo-code for the vector triad throughput benchmark, including performance
measurement. The actual benchmark loop is highlighted.
1 double precision, dimension(:),allocatable :: A,B,C,D
2 ! Intel-specific: 512-byte alignment of allocatables
3 !DEC$ ATTRIBUTES ALIGN: 512 :: A,B,C,D
4

5 call get_walltime(S)
6

7 !$OMP PARALLEL PRIVATE(A,B,C,D,i,j)
8 ...
9 do j=1,R

10 ! Intel-specific: Assume aligned moves
11 !DEC$ vector aligned
12 !DEC$ vector temporal
13 do i=1,N
14 A(i) = B(i) + C(i) * D(i)
15 enddo
16 ! prevent loop interchange
17 if(A(N/2).lt.0) call dummy(A,B,C,D)
18 enddo
19 !$OMP END PARALLEL
20

21 call get_walltime(E)
22

23 WT = E-S

3.3 Examples for roofline modeling

The following examples serve to demonstrate the roofline model in a simple situation(purely
streaming kernel) and a more complex setting, where the fourth of the above assumptions does
not hold (sparse matrix-vector multiplication). See [11] for a comprehensive coverage of appli-
cation cases.

3.3.1 Pure streaming kernel

A standard example for a streaming kernel that is limited by data transfers on any architecture
in any memory hierarchy level is theScḧonauer vector triad[13] as shown in Listing 3.1. Note
that there is no real work sharing in the benchmark loop (lines 13–15), since the purpose of the
code is to fathom the bottlenecks of the architecture. The code is equipped with Intel compiler
directives to point out some crucial choices: All array accesses are aligned to suitable address
boundaries (lines 3 and 11) to allow for aligned MOV instructions, which arefaster on some ar-
chitectures. Furthermore, the generation of nontemporal store instructions (“streaming stores”)
is prevented (line 12).3 For benchmarking purposes this kernel is executed many times with
the same data set, so that the data transfer capabilities of each memory level can be accurately
measured [21].

First we conduct a large-N (in-memory) roofline analysis for an eight-core Intel Sandy

3Intel compiler options-O3 -openmp -xAVX -opt-streaming-stores never -nolib-inl ine
-fno-inline were used for these tests.

34

10
6

0.0

0.4

0.8

1.2

1.6

2.0

T=1
T=2
T=4
T=8

10
2

10
3

10
4

10
5

10
6

Loop length N

0

10

20

30

40

50

60

70
P

er
fo

rm
an

ce
 [G

F
lo

ps
/s

]
Pmax

I·bS

I·bS
L2,L3

7.8x

Figure 3.3: Through-
put performance vs.
loop length per core
of the AVX-vectorized
Scḧonauer vector triad
on 1, 2, 4, and 8 cores
of an Intel Sandy Bridge
processor at 3:0GHz.
Inset: enlarged region
for N > 3� 105 (memory-
bound). The core-bound,
memory-bound, and
L2/L3-bound roofline
limits are highlighted.

Bridge chip running at a clock frequency of 3:0GHz. One core can sustain one full-width AVX
load and one half-width AVX store per cycle (see Sect. 2.4.1). Hence, theexecution bottleneck
on the core is the load port throughput, and four loop iterations can be done in three cycles (the
two half-wide stores needed for four consecutive elements ofA(:) can be overlapped with the
three loads for four consecutive elements ofB(:) , C(:) , andD(:)). The arithmetic instruc-
tions, i.e., one ADD and one MULT instruction, take only a single cycle, and there is suf�cient
superscalarity in the core so that they can be overlapped with the loads andstores. Thus, the
maximum performance for code execution if the data is in the L1 cache is 8�opsin 3cy, i.e.,
Pmax = 8GF/s per core or 64GF/s on eight cores (at 3GHz).

The loop code causes the same data traf�c per �op in all memory hierarchy levels beyond
the L1 cache, so the bottleneck is the main memory interface. The STORE on the elements
of A(:) causes a write miss on every cache line, triggering a write-allocate transfer. Thus
the actual data volume per iteration is not 32bytes but 40bytes. At a computational intensity of
2 �ops=40bytes (or 0:05B/F) and a maximum memory bandwidth ofbS = 36GB/s, the memory-
bound performance limit isI � bS = 1:8GF/s. This is far below thePmax limit on the cores, so
we expect a memory-bound performance ofP . 1:8GF/s. Figure 3.3 shows the performance
characteristic of the vector triad in “throughput mode,” i.e., every core runs an independent loop
with lengthN and there is no work sharing. The roofline prediction is very accurate when using
four cores or more, but is much too optimistic at one or two cores (see inset).Even for one core
the model still predicts the memory-bound limit (1:8GF/s< 8GF/s). Obviously one or more of
the assumptions above do not hold when using too few cores.

For small data sets (N � 1024) all arrays �t in the L1 cache and thePmax prediction applies.
It can be seen from Fig. 3.3 that the compiler was able to generate the “perfect” machine code
for this loop, since the maximum possible in-core performance is achieved (see Listing 3.2).
Every core has its own private L1 cache, so there is no bottleneck and thescalability from one
to eight cores is also optimal.

When the data is in the core-private L2 cache, whose bandwidth limit is 32bytes=cy per core
(bL2

S = 768GB/s), we getI � bL2
S = 38:4GF/s for the bandwidth prediction, which is far above the

35

Listing 3.2: “Perfect” AVX-vectorized assembly code for the bulk section of the Scḧonauer
vector triad (remainder loop omitted). The add and multiply instructions are highlighted. Not
that this is x86 assembly code, which does not re�ect the actual RISC-likemops which get
executed on the hardware. The compiler has unrolled the original loop 16 times (each AVX
instruction applies to four double-precision operands).
1 label:
2 vmovupd (%rdx,%r8,8), %ymm1
3 vmovupd 32(%rdx,%r8,8), %ymm4
4 vmovupd 64(%rdx,%r8,8), %ymm7
5 vmovupd 96(%rdx,%r8,8), %ymm10
6 vmulpd (%rcx,%r8,8), %ymm1, %ymm2
7 vmulpd 32(%rcx,%r8,8), %ymm4, %ymm5
8 vmulpd 64(%rcx,%r8,8), %ymm7, %ymm8
9 vmulpd 96(%rcx,%r8,8), %ymm10, %ymm11

10 vaddpd (%r13,%r8,8), %ymm2, %ymm3
11 vaddpd 32(%r13,%r8,8), %ymm5, %ymm6
12 vaddpd 64(%r13,%r8,8), %ymm8, %ymm9
13 vaddpd 96(%r13,%r8,8), %ymm11, %ymm12
14 vmovupd %ymm3, (%rdi,%r8,8)
15 vmovupd %ymm6, 32(%rdi,%r8,8)
16 vmovupd %ymm9, 64(%rdi,%r8,8)
17 vmovupd %ymm12, 96(%rdi,%r8,8)
18 addq $16, %r8
19 cmpq %r9, %r8
20 jb label

measurement. The same prediction applies for the L3 cache, which is sharedbut segmented, so
that its bandwidth scales across all cores. Again, some underlying assumptions of the roofline
model do not hold here. See Sect. 3.4 for a detailed account of these effects.

3.3.2 Sparse matrix-vector multiplication [2, 3]

Given the pivotal role that sparse matrix-vector multiplication (spMVM) playsfor many algo-
rithms in computational science, high-performance implementations of this kernel are of utmost
importance, and have been the subject of intense research over the lastdecade [28, 29, 30, 31,
32, 33, 2, 34, 35, 3]. For large data sets, the spMVM is strongly memory-bound. Many different
storage schemes exist to make data access to the matrix and LHS and RHS vectors as ef�cient as
possible. Most of these schemes are highly speci�c to certain hardware architectures, although
there is a recent development of a universal sparse matrix format [3].Here we highlight only
those aspects of the spMVM operation that are relevant in the context of the roofline model.
Figure 3.4 shows a sketch of an spMVM operation, without any speci�c choice of matrix data
format. Usually the access to the LHS and matrix data can be organized to be compatible with
the cache line structure, but the RHS accesses may incur large overheaddue to low spatial and/or
temporal locality. The streaming assumption for the roofline model may thus not be valid. This
section shows how one can deal with this problem and still employ the roofline model to gain
insight, although its predictions are “wrong.”

The most popular storage scheme, and the one that is suited for a wide range of matrices
on standard cache-based microprocessors, is the “Compressed Row Storage” (CRS) format (see

36

+= *

A(:,:) B(:)C(:) C(:) Figure 3.4: Sparse
matrix-vector multiply.
Dark elements visual-
ize entries involved in
updating a single LHS el-
ement. Unless the sparse
matrix rows have no gaps
between the �rst and last
nonzero elements, some
indirect addressing of the
RHS vector is inevitable.
(Figure from [21])

val

col_idx

row_ptr

-4 2 2 8 8 -5 10 -5 10 -6

1 2 1 3 2 4 5 3 3 5

1 83 5 9

-4 2

2 8

8 -5 10

-5

10 -6

1 2 3 4 5

1

2

3

4

5

Figure 3.5: CRS sparse matrix storage format. (Figure from [21])

Fig. 3.5). The nonzero entries of the matrix are stored consecutively, row by row, in an array
val(:) . The original column indices of those entries are stored in another consecutive (inte-
ger) arraycol_idx(:) , and the starting offsets of all rows are put in the arrayrow_ptr(:) .
Using this format, the spMVM kernel takes the form shown in Listing 3.3. It is characterized
mainly by data streaming (arraysval[(:) andcol_idx(:)) with partially indirect access
(RHS vectorB(:)). Under the assumptions given in Sect. 3.2.2, it is possible to establish
roofline-type performance models [11, 21]. For matrix formats that require some amount of
zero-padding to make the data layout compatible with the requirements of the hardware, such
as in SELL-C-s or ELLPACK, the required data traf�c can be adjusted [3].

Listing 3.3: OpenMP-parallel CRS spMVM kernel.
1 !$OMP parallel do
2 do i = 1, Nr
3 do j = row_ptr(i), row_ptr(i+1) - 1
4 C(i) = C(i) + val(j) * B(col _idx(j))
5 enddo
6 enddo
7 !$OMP end parallel do

37

The computational intensity can be read off from Listing 3.3 forsquare matrices: [2, 34]

IDP
CRS=

�
2 �ops

vmat+ vRHS+ vLHS

�
; (3.10)

wherevmat accounts for reading the matrix entries and column indices,vRHS is the traf�c in-
curred by reading the RHS vector (including excess traf�c due to insuf�cient spatial and/or
temporal locality), andvLHS is the data volume for updating one LHS element. Assuming dou-
ble precision matrix and vector data and four-byte integer indices we havevmat = (8+ 4) bytes
andvLHS = 16bytes=Nnzr, whereNnzr is the average number of nonzeros per row. The RHS vec-
tor must be read at least once, but the actual data volume may be much larger. This discrepancy
is quanti�ed by the parametera in vRHS = 8a bytes. Hence, we get:

IDP
CRS=

�
2

8+ 4+ 8a + 16=Nnzr

�
�ops
byte

: (3.11)

The following considerations are simpler to express in terms of the code balance, since individ-
ual effects can be easily attributed to distinct additive terms. The code balance is thus

BDP
CRS=

�
6+ 4a +

8
Nnzr

�
bytes
�op

: (3.12)

The value ofa is governed by a subtle interplay between the matrix structure and the memory
hierarchy on the compute device: If there is no cache, i.e., if each load to theRHS vector goes
to memory, we havea = 1 and the RHS causes the same traf�c as the matrix entries. A cache
may reduce the balance by some amount, to geta < 1. In the ideal situation whena = 1=Nnzr,
each RHS element has to be loaded only once from main memory per spMVM4. The worst
possible scenario occurs when the cache is organized in cache lines of lengthLC elements, and
each access to the RHS causes a cache miss. In this case we havea = LC, with LC = 8 or 16
on current processors. The locality of the RHS vector access and, consequently, the value ofa
can be improved by applying matrix bandwidth reduction algorithms, such as “Reverse Cuthill
McKee” (RCM) [36]. Note also that, depending on the algorithm and the problem size, the
RHS vector may reside in cache for multiple subsequent spMVM kernel invocations, although
the matrix must still be fetched from memory. In this special case we havea = 0.

The CRS-based roofline model (3.12) must be modi�ed for data formats thatrequire some
zero �ll-in. For instance, the SELL-C-s format cuts the matrix into horizontal stripes, whose
height (number of rows) is a small multiple of the applicable SIMD width (registerwidth on
standard processors, warp size on GPGPUs). These “chunks” arepadded with zeros to become
rectangular. This eliminates the need for conditionals in the inner loop and thusenables SIMD
vectorization and prevents warp divergence [34, 3].

The severity of the �ll-in overhead can be quanti�ed by an additional parameterb � 1,
which in case of SELL-C-s we call “chunk occupancy,” but which can certainly be de�ned
without reference to any speci�c storage format. The reciprocal ofb quanti�es the format-
inherent average data traf�c per non-zero matrix element. Note the excess traf�c for b < 1 only
arises for the matrix value and column index but not for the RHS element. This isbecause all
padded column indices should be set to zero; thus, the same (the �rst) RHS element is accessed

4This corresponds to thek = 0 case in [2]

38

Listing 3.4: Read-only microbenchmark for bandwidth assessment.
1 #pragma omp parallel for reduction(+:sum)
2 for(i = 0; i < N; ++i) {
3 sum += a[i];
4 }

for all padded elements and the corresponding relatively high access frequency will ensure that
this element stays in cache. The corrected code balance is then

BDP(a ;b ;Nnzr) =
�

1
b

�
8+ 4

2

�
+

8a + 16=Nnzr

2

�
bytes
�op

=
�

6
b

+ 4a +
8

Nnzr

�
bytes
�op

: (3.13)

The roofline model can now be used to predict the maximum achievable spMVMperformance
(we skip thePmax derivation since it is evident that spMVM is memory-bound):

P(a ;b ;Nnzr;bS) =
bS

BDP(a ;b ;Nnzr)
: (3.14)

As usual,bS is the achievable memory bandwidth as determined by a suitable microbenchmark.
Since the spMVM kernel is dominated by read operations unlessNnzr is very small, such a
microbenchmark should re�ect this behavior (see Listing 3.4). Usingb = 1 in (3.14) we obtain
the analogous expression for CRS or any other format without zero-padding overhead.

As a special case we focus on thea = 1=Nnzr scenario, which has been described above. In
many realistic scenarios, processors with large last-level caches can often hold the RHS vector
in the cache, even if it is updated frequently. Then the performance model reads:

P(1=Nnzr;b ;Nnzr;bS) =
bS

(6=b + 12=Nnzr)
bytes
�op

: (3.15)

For matrices with a suf�ciently large number of non-zeros per row (Nnzr � 12) one �nally
arrives at the best attainable performance for spMVM operations:

P̄ =
bSb

6 bytes
�op

: (3.16)

Note that these estimates are based on the optimistic assumptions of the roofline model. Never-
theless, (3.16) provides an upper bound for spMVM performance on all compute devices if the
matrix data comes from main memory.

In the most general case, the code balance depends ona andb , the latter of which can be
determined from the sparse matrix format. On the other hand,a can only be predicted in very
simple cases. Moreover, the value ofbS determined by the microbenchmark (Listing 3.4) could
be too optimistic because the streaming assumption for the roofline model may not besatis�ed
due to erratic access patterns. Hence it seems that the roofline model cannot be used for spMVM
kernels with less than optimal spatial and temporal locality. While this is true for performance

39

prediction, it is still valuable to think in terms of bandwidth limitations in oder to �nd outmore
about how well resources are used: The value ofa can be determined bymeasuringthe memory
bandwidth (or data volume) of the spMVM kernel using a tool such as likwid-perfctr [25, 26]
and setting the code balance equal to the ratio between the measured transferred data volume
Vmeasand the number of executed “useful” �ops, 2� Nnz. Note that this is only possible if the
code is limited by memory bandwidth. We then obtain

BDP =
�

6
b

+ 4a +
8

Nnzr

�
bytes
�op

=
Vmeas

Nnz � 2 �ops
; (3.17)

which can be solved fora :

a =
1
4

�
Vmeas

Nnz � 2bytes
�

6
b

�
8

Nnzr

�
: (3.18)

Oncea is known, (3.13) allows to determine what fraction of the memory bandwidth is used by
the RHS accesses.

As an example we pick the “kktpower” matrix from the University of Florida sparse matrix
collection.5 It originates from a non-linear optimization (Karush-Kuhn-Tucker) for�nding the
optimal power �ow. The matrix hasNnz = 14:6� 106 nonzeros andNr = 2:06� 106 rows, which
leads toNnzr = 7:1 nonzeros per row on average. An OpenMP-parallel CRS-based spMVM
with this matrix on an Intel Sandy Bridge chip yields an observed performanceof P = 4:1GF/s
and an overall memory traf�c volume of aboutVmeas� 258MB. InsertingVmeas into (3.18)
and settingb = 1 (no padding) we geta = 0:43. From the number of matrix rows one could
expect that the RHS vector should �t into the 20MiB last-level cache of the processor, leading
to amin . 1=Nnzr = 0:14. However, since the two million elements for the RHS would already
take 80% of the cache capacity, competition with other data (notably the matrix) causes capacity
misses and frequent evictions. A value ofa = amin would incur the minimum data volume for
loading the RHS (once), so the producta Nnzr � 3:1 quanti�es the actual data traf�c generated
by it. Every RHS element is thus loaded three times from memory. Using (3.13) wecan �nally
calculate the relative overhead for this:

BDP(a)
BDP(amin)

� 1:15 : (3.19)

If the extra RHS traf�c accounts for 15% overhead, this is also the optimization potential for
matrix reordering techniques such as RCM, assuming that the achievable memory bandwidth
stays the same. Note that the sparsity pattern of the matrix in�uences the access pattern. The
overhead may become very large if the nonzeros are very scattered. See [2] for a case study
involving matrix reordering to improve performance.

The ef�ciency of the memory access can be evaluated by comparing the achieved bandwidth
when running spMVM to the maximum bandwidth obtained with a microbenchmark:

emem=
PBDP(a)

bS
(3.20)

The numerator isPBDP(a) = 36:3GB/s in this case. Although the maximum read-only band-
width of the Intel Sandy Bridge chip used for these tests isbS = 43GB/s, the applicable baseline

5http://www.cise.u�.edu/research/sparse/matrices

40

Listing 3.5: Double-precision divide-accumulate kernel.
1 double precision :: sum, c
2 double precision, dimension(N) :: a
3 ! loop called many times with different c
4 sum = 0.d0
5 !$OMP parallel do reduction(+:sum)
6 do i = 1,N
7 sum = sum + c / a(i)
8 enddo
9 !$OMP end parallel do

is probably lower due to the low number of nonzeros per row. Nevertheless, the erratic RHS
access causes some inef�ciency, which may also be lowered by reducinga .

In summary, applying the roofline model to the sparse matrix-vector multiplication kernel
seems to be impossible at �rst sight. The uncertainties in assessing the actualdata traf�c caused
by accesses to the right-hand side vector can lead to an overly optimistic bandwidth-bound per-
formance prediction. Turning the model around, however, and measuring the performance and
the actual data traf�c, allows to �x the free parametera and estimate optimization opportunities.
Hence, the roofline model is still very useful, although it does not actually “work.”

3.3.3 Divide-accumulate kernel

A simple but instructive example for the prediction of the effect of optimizationsis the divide-
accumulate kernel in Listing 3.5. It is also a preview to the use of patterns in performance
modeling, which will be discussed in Chapter 5. We use a 3:0GHz six-core Intel Xeon “West-
mere” processor as a test platform.

The applicable peak performance of this kernel can be easily computed bytaking into ac-
count that the double-precision divide instruction on this processor hasa throughput of 22 cy,
since it is essentially non-pipelined. This means that a divide can be completedonly in every
22nd cycle [23]. All other execution units that are needed in this kernel (LOAD and ADD)
cannot be bottlenecks even if pipelining did not work, since their latency can be easily hidden
behind the 22-cycle divide. There is a vectorized double-precision divide in the SSE4.2 instruc-
tion set, which brings down the effective throughput to 11 cycles per loopiteration (2 �ops). At
3GHz and six cores we thus have

Pmax = 6�
3� 109cy=s

11cy=2�ops
= 3:27GF/s: (3.21)

For largeN the bandwidth limitation is given by the code balance ofB = 4B/F and the (mea-
sured) memory bandwidth ofbS = 21GB/s, so the roofline model is

P = min
�

3:27GF/s;
21GB/s
4B/F

�
= 3:27GF/s: (3.22)

Hence, this kernel is clearly core-bound on the Westmere chip (all other things being equal, it
would be memory-bound starting at ten cores). As a consequence, the performance of the loop
does not depend on the location of the data; even if the loop were short and all elements of

41

Listing 3.6: Optimized version of the divide-accumulate kernel with pre-computed reciprocals
in ra(:) .
1 double precision :: sum, c
2 double precision, dimension(N) :: a, ra
3 ! ra(:) is pre-computed once
4 !$OMP parallel do
5 do i = 1,N
6 ra(i) = 1.d0 / a(i)
7 enddo
8 !$OMP end parallel do
9 ...

10 ! loop called many times with different c
11 sum = 0.d0
12 !$OMP parallel do reduction(+:sum)
13 do i = 1,N
14 sum = sum + c * ra(i)
15 enddo
16 !$OMP end parallel do

a(:) came from the L1 cache, above performance limit would still apply. For veryshort loops
the overhead from the OpenMP parallelization would become a problem, of course. We can
calculate the array loop length where this will occur: At 11=6cy per loop iteration, and a typical
(measured) OpenMP overhead (barrier latency plus thread team start) of about 3000cy on the
full chip (which can be measured using, e.g., the EPCC OpenMP microbenchmarks [37]), the
penalty from OpenMP will have less than 10% impact atN & 16000. This data set would still �t
in the L1 cache of 32KiB per core. Since the OpenMP overhead is highly compiler-dependent,
this estimate can change when another compiler is used.

Often, additional knowledge about the processing of data outside the current loop of inter-
est is useful for optimizing code. For instance, if the parameterc changes between different
invocations of the loop kernel but the elements ofa(:) stay the same, it is more ef�cient to
pre-calculate the reciprocals and store them in a separate array (see Listing 3.6). With proper
unrolling in place to circumvent the stalls in the ADD pipeline, the applicable peak perfor-
mance of this new loop is the overall arithmetic peak of the processor, since one Westmere
core can sustain the LOAD, the ADD, and the MULT instructions in the same cycle. Hence,
Pmax = 6� 2� 2� 3GF/s= 72GF/s, and the loop is strongly memory-bound for largeN with an
expected performance ofP = 21=4GF/s= 5:2GF/s. If N is small and the data is in the L1
cache, it would take only 2048cy to process the full L1 cache size. Assuming again an OpenMP
penalty of 3000cy this means that the region of working set sizes where OpenMP overhead
plays a signi�cant role extends far into the L2 cache.

3.3.4 Conclusions and best practices for applying the roofline model

The roofline model is simple enough to enable a straightforward performance prediction in
simple cases, but often the problem is to determine a realisticPmax limit. In a �rst step one can
estimatePmax by assuming the hardware peak execution rate for arithmetic operations, i.e.,the
pure �ops. In terms of the architectural model of the single core described in Chapter 2 this
would mean that the ADD and MULT ports are the relevant bottleneck on the core level. Taking

42

LOADs and STOREs into account, as shown in the vector triad example above, will already
lead to a considerable re�nement, but there is still the implicit assumption that all instructions
in the loop body are independent and can be executed at the highest possible rate allowed by the
pipelines. If the critical code execution path contains dependencies (leading to, e.g., pipeline
bubbles), the prediction ofPmax becomes more involved and may require the use of tools except
for very simple situations. See Chapter 6 for an example from medical imaging.

In all but the most trivial cases the construction and validation of a performance model is an
iterative process, which may require several cycles of re�nement until a model is “good.”See
Chapter 5 for a general view on structured performance engineering.

3.4 The Execution-Cache-Memory (ECM) model: A re�ned per-
formance model for streaming loop kernels on multicore [4, 1]

For large data sets, typical memory-bound kernels in computational scienceshow a peculiar
scaling behavior across the cores of a multicore chip: Up to some critical number of corests
scalability is good, but fort > ts performance saturates and is capped by some maximum level.
Beyond the saturation point, the roofline model can often be used to predictthe performance, or
at least its qualitative behavior with respect to problem parameters, but it does not encompass
effects that occur between the cache levels. For the same reason it cannot correctly explain the
observed performance levels for streaming kernels if the bottleneck is withinthe cache hierarchy
(see Fig. 3.3 above). The “Execution-Cache-Memory” (ECM) model adds basic knowledge
about the cache bandwidths and organization on the multicore chip to arriveat a more accurate
description on the single-core level. Although the model can be used to predict the serial and
parallel performance of codes on multicore processors, its main purposeis to develop a deeper
understanding of the interaction of code with the hardware. This happenswhen the modelfails
to coincidewith the measurement (see Sect. 3.4.1 below).

The following sections give a brief account of this model and show how it connects to the
roofline model. It is then applied to parallel streaming kernels, and re�ned toaccount for some
unknown (or undisclosed) properties of the cache hierarchy. In Part II the model is applied to
several important algorithms in computational science: stencil smoothers, a lattice-Boltzmann
�ow solver, and a backprojection algorithm from medical imaging.

3.4.1 The Execution-Cache-Memory (ECM) model: Single core

The main premise of the ECM model is that the runtime of a loop is composed of two contribu-
tions: (i) The “core time,” which is the time it takes to execute all instructions, with all operands
of loads or stores coming from or going to the L1 data cache. (ii) The “data delays,” which is the
time it takes to transfer the required cache lines into and out of the L1 cache.The model further
assumes, just like the roofline model, that hardware or software prefetching mechanisms are in
place, hiding all cache transfer latencies. Here we additionally assume thatthe cache hierarchy
is strictly inclusive, i.e., that the lines in each cache level are also contained inthe levels below
it. The model can accommodate exclusive caches as well; see [4] for examples.

Since all data transfers between cache levels occur in packets of one cache line, the model
always considers one cache line's worth of work. For instance, if a double precision array must
be read with unit stride for processing, the basic unit of work in the model is eight iterations at

43

a cache line size of 64 bytes. The execution time for one unit of work is then composed of the
in-core partTcore and the data delaysTdata, with potential overlap between them.

Tdatare�ects the time it takes to transfer data to the L1 cache through the memory hierarchy
and back. This value will be larger if the required cache line(s) are “faraway.” Note that, since
we have assumed perfect prefetching, this is not a simple latency effect: It comes about because
of limited bandwidth and several possibly non-overlapping contributions. This assumption does
not work, e.g., on GPGPUs, where latency is hidden by massive threading; the ECM model in
its current form is not appropriate for such architectures.

On a Sandy Bridge core, the transfer of a 64-byte cache line from L3 through L2 to L1
takes a maximum of four and a minimum of two cycles (32-byte wide buses between the cache
levels), depending on whether the transfers can overlap or not. Furthermore, the L1 cache of
Intel processors is “single-ported” in the sense that, in any clock cycle,it can either reload/evict
cache lines from/to L2 or communicate with the registers, but not both at the sametime.

The core timeTcore is more complex to estimate. In the simplest case, execution is dominated
by a clear bottleneck, such as load/store throughput or pipeline stalls. Someknowledge about the
core microarchitecture, like the kind and number of execution ports or the maximum instruction
throughput, is helpful for getting a �rst estimate. For example, in a code thatis completely
dominated by independent ADD instructions, the core time is, to �rst order, determined by the
ADD port throughput (one ADD instruction per cycle on modern Intel CPUs). In a complex loop
body, however, it is often hard to �nd the critical execution path that determines the number of
cycles. The Intel Architecture Code Analyzer (IACA) [38] is a tool thatcan derive more accurate
predictions by taking dependencies into account. See Sect. 6 for a detailedanalysis of a complex
loop body with IACA.

Putting together a prediction for the overall execution time requires making best-and worst-
case assumptions about possible overlaps of the different contributionsdescribed above. If the
measured performance data is far off those predictions, the model misses an important architec-
tural or execution detail, and must be re�ned. A simple example is the write-allocate transfer
on a store miss: A naive model for the execution of a store-dominated streaming kernel (like,
e.g., array initializationA(:)=0) with data in the L2 cache will predict a bandwidth level that
is much higher than the measurement. Only when taking into account that everycache line must
be transferred to L1 �rst will the prediction be correct.

Although an accurate determination ofTcore (or, equivalently,Pmax) is also required for the
roofline model, there are two crucial differences between the roofline model and the ECM
model:

• The roofline model only considers a single bottleneck, i.e.,onedata path or the in-core
code execution. The overlap and bottleneck assumptions ensure that whatever it is that
takes the longest time will determine the performance of the loop. Since the actual amount
of overlap depends on factors that are outside of the model (and which are mostly un-
known anyway), these assumptions is lifted in the ECM model. This allows for a range
of predicted performance values depending on how much overlap actuallyoccurs.

• The roofline model relies on the saturation assumption, which states that 100% of the
bandwidth of the slowest data path can be utilized. The ECM model, on the otherhand,
starts with a single-core analysis and thuspredictsnon-saturation for all data paths in-
volved, within the limits given by different assumptions for the overlap. This isthe case

44

where the roofline model often fails (see Sect. 3.3.1). See below for how multicore scaling
behavior is incorporated into the ECM model.

As shown in the vector triad example in Sect. 3.3.1, a single core cannot saturate the mem-
ory interface, although a roofline analysis of peak performance vs. memory bandwidth suggests
otherwise: The single-threaded triad benchmark only achieves about 840 MF/s, which corre-
sponds to a bandwidth of less than 17GB/s. The ECM model attributes this discrepancy to
non-overlapping contributions from core execution and data transfers. While loads and stores to
the four arrays are accessing the L1 cache, no re�lls or evicts betweenL1 and L2 can occur. The
same may be true for the lower cache levels and even memory, so that memory bandwidth is
not the sole performance-limiting factor anymore. Core execution and transfers between higher
cache levels are not completely hidden and the maximum memory bandwidth cannot be met.
See Sect. 3.4.3 below for a detailed account of how to apply the model to streaming kernels.

However, when multiple cores access main memory (or a lower cache level witha bandwidth
bottleneck, like the L3 cache of the Intel Westmere processor), the associated core times and data
delays can overlap among the cores, and a point will be reached where the bottleneck becomes
relevant. Thus, it is possible to predict when performance saturation setsin with increasing
number of cores.

3.4.2 The ECM model: Multicore scaling

The single-core ECM model predicts lower and upper limits for the bandwidth pressure on all
memory hierarchy levels. When multiple cores are executing a loop, shared data paths become
potential bottlenecks, since the combined “pressure” from all cores may exceed their capacity.
When the bandwidth of one data path is exhausted, performance starts to saturate [39]. This
principle is visualized in Fig. 3.6 using a timeline graph:Tchip encompassesTcore and all contri-
butions fromTdatathat emerge from scalable data paths, such as inner cache levels. The remain-
ing timeTmem is the time spent with transferring data over bottlenecks, whose bandwidth does
not scale with the number of cores. Here we assume no overlap between these contributions.
Once the number of cores is greater than

ts =
Tchip+ Tmem

Tmem
; (3.23)

saturation sets in and the performance is completely determined byTmem, which happens at three
cores in this example. We call this the “saturation point.” At this point, the bandwidth-based
prediction from the roofline model works well. The performance att cores is thus:

P(t) = min(tP0;Proof) ; (3.24)

whereP0 is the single-core performance (or ECM prediction) andProof is given by the bandwidth
limitation in the roofline model. On the Intel Sandy Bridge processor the only shared bandwidth
resource is the main memory interface.

Just as in the roofline model, the maximum main memory bandwidth is an input parameter.
In principle it is possible to use the known hardware properties of the memoryinterface (clock
speed, bus width, number of memory channels), but this is over-optimistic in practice. For
current Intel and AMD processors, the memory bandwidth achievable withstandard streaming
benchmarks like the McCalpin STREAM [40, 24] is between 65 and 90% of thetheoretical

45

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Tchip

Tchip

TchipTchip

Tmem Tchip

Tmem

Tmem

Tmem

Tmem

Tmem

Tmem

Tmem

Tchip

Tchip

Tchip

TchipTmem

Tmem

Tmem

Tmem Tchip

Tmem Tchip Tmem Tchip

Tmem Tchip Tmem Tchip

Tchip

Tmem

Tmem Tmem

Tchip

Tchip

Tchip

Tchip

Tchip

Tchip

(a)

(b)

(c)

core 0

core 0

core 1

core 1

core 0

core 1

core 2

core 3

core 2

time

Figure 3.6: ECM model multicore scaling and saturation on a chip with a memory bandwidth
bottleneck.Tchip is the time for running the loop with data from scalable resources, whileTmem

is the memory transfer time. In this example we assumeTchip=Tmem = 2. (a) With two cores,
memory access is not a bottleneck and scalability is perfect. (b) Three cores are needed to
saturate the memory interface. (c) Beyond three cores, performance does not increase since the
bottleneck is exhausted. This results in idle phases (hatched boxes).

maximum. Architectural peculiarities, however, may impede the optimal use of the memory
interface with certain types of code. One example are data streaming loops witha very large
number of concurrent load/store streams, which appear, e.g., in implementations of the lattice-
Boltzmann algorithm (see Sect. 7). The full memory bandwidth as seen with the STREAM
benchmarks cannot be achieved under such conditions. The reasonsfor this failure are as yet
unknown and are subject to further investigation.

3.4.3 Validation via streaming benchmarks

We validate the ECM model by using the Schönauer vector triad [13] as a throughput benchmark
(see Listing 3.1) on the Sandy Bridge architecture.

Single-core analysis

All loop iterations are independent. The in-core analysis is analogous to theroofline model, with
the exception that we now consider a unit of work of one cache line's length, i.e., comprising
eight scalar iterations (sixteen �ops). Six full-width AVX loads and two full-width AVX stores
are required to execute the unit of work. From the microarchitectural properties we know that
this takes six cycles. In Fig. 3.7 the LOADs and STOREs are represented by the arrows between
the L1D cache and the registers. The �oating-point instructions do not constitute a bottleneck,

46

T

T

& 128 bit ST
256 bit LD

256 bit

256 bit

107 bit
(@ 2.7 GHz)

max(2(B) + 2(C) + 2(D), 4(A)) cy = 6 cy

(2(B) + 2(C) + 2(D) + 4(A)) cy = 10 cy

(2(B) + 2(C) + 2(D) + 4(A)) cy = 10 cy

(5 · 64 B · 2.7 Gcy/s) / (36 GB/s) = 24 cy

P
er

-c
yc

le
 tr

an
sf

er
 w

id
th

s

data

coreA

B C D

A

B C D

A

B C D

A

B C D

L2

L3

Memory

Registers

L1D

Figure 3.7: Single-core ECM model for the Schönauer triad benchmark
(A(:)=B(:)+C(:) * D(:)) on an Intel Sandy Bridge processor at 2:7GHz. The indi-
cated cycle counts refer to eight loop iterations, i.e., a full cache line length per stream. The
transfer width per cycle for re�lls from memory to L3 is derived from the measured STREAM
bandwidth limit of 36 GB/s. Dashed arrows indicate write-allocate transfers.

because only two ADDs and two MULTs are needed. Overall, twelvemops must be executed per
unit of work, not counting the loop counter and branch “mechanics,” which is justi�ed because
its impact can be minimized by inner loop unrolling, and because the corresponding execution
ports have free resources anyway. Hence, the code has a (useful)instruction throughput of two
mops per cycle, which is far below the core's capabilities. The in-core performance is limited by
load/store throughput, and we haveTcore= 6cy. If the data set �ts into the L1 cache,Tdata= 0,
andTcore is all that is needed to predict an upper performance limit.

If the working set is larger than the L1 cache, calculatingTdatademands an accurate determi-
nation of the real data traf�c through the memory hierarchy. In addition to LOADs and STOREs
that can be found in the code, every write miss on arrayA(:) triggers a cache line write-allocate
transfer to the L1 cache. This is indicated by the dashed arrows in Fig. 3.7.Since the buses be-
tween cache layers can transfer half a cache line per cycle, ten cycles each are needed for the
data transfers between L2 and L1, and between L3 and L2, respectively. The achievable mem-
ory bandwidth of 36GB/s leads to a per-cycle effective transfer width of107 bits, which adds
another 24 cy. In the worst case, these contributions must be added up tothe memory hierarchy
level where the data resides. For instance, the most conservative limit fordata in memory would
beTmax

data = 44cy.

Figure 3.8 shows how the different parts can be put together to arrive at an estimate for the
execution time. In the worst case, the contributions toTdatacan neither overlap with each other
nor with Tcore, leading toT = 50cy for data in memory, 26cy for L3, and 16 cy for L2 (see
Fig. 3.8a). On the other hand, assuming full overlap beyond the L2 cache(see Fig. 3.8c), the
minimum possible execution times areT = 24cy, 16 cy, and 16 cy, respectively. The only well-

47

®
L1

R

®
L2

 L

1
®

L3

 L
2

M
em

or
y

L3

®

®
L1

R

®
L1

R

®
L2

 L

1

®
L3

 L

2

M
em

or
y

L3

®

Full overlap
beyond L2

All caches
single-ported

®
L2

 L

1

®
L3

 L

2
M

em
or

y

L3
®

0

6

16

26

34

50

24

20

Measured
cycles

(a) (b) (c) (d)

6.04

17.2

26.3

52.3

cycles

data in L1

data in L2

data in L3

data in memory

overlap
No

Figure 3.8: (a)–(c): Single-core timeline visualizations of the ECM model with cycle esti-
mates for eight iterations (length of one cache line) of the Schönauer triad benchmark on Sandy
Bridge, with different overlap assumptions: (a) no overlap between all contributions from data
transfers, (b) overlap under the condition that all caches are single-ported, i.e., can only talk to
one immediately neighboring cache level at a time, (c) full overlap of all cache line transfers
beyond L2. For comparison the rightmost column (d) shows measurements in cycles per eight
iterations at the base clock frequency of 2.7 GHz, with the working set residing in different
memory hierarchy levels.

known fact in terms of overlap is that the L1 cache is single-ported, which iswhy no overlap
is assumed even in the latter case. Note that this no-overlap condition is only valid for cycles
in which the L1 cache is actually busy serving either the L2 cache or the registers; if the core
executes instructions other than LOADs and STOREs, partial or full overlap ofTcore andTdata is
possible (see later for an example).

Assuming the non-overlap condition for all cache levels, we arrive at thesituation depicted
in Fig. 3.8b: Contributions can only overlap if they involve a mutually exclusiveset of caches.
We then get a prediction ofT = 34cy for in-memory data, 20 cy for L3, and again 16 cy for L2
(the latter cannot be shown in the �gure).

Figure 3.8d shows measured execution times for comparison. We must conclude that there
is no overlap taking place between any contributions toTcore andTdata. Note that this analysis
is valid for a single type of processor, and that other microarchitectures may show different
behavior.

48

1 2 3 4 5 6 7 8
cores

0

5

10

15

20

25

30

35

40

M
em

or
y

ba
nd

w
id

th
 [G

B
/s

]

Schönauer triad

ECM Model

(a)

1 2 3 4 5 6 7 8
cores

0

5

10

15

20

25

30

35

40

M
em

or
y

ba
nd

w
id

th
 [G

B
/s

]

DIV triad (AVX)
DIV triad (scalar)
ECM Model (AVX)
ECM Model (scalar)

(b)

Figure 3.9: Multicore scaling of (a) the memory-bound Schönauer triad benchmark and (b) the
modi�ed triad with a divide (A(:)=B(:)+C(:)/D(:)), in comparison with the correspond-
ing ECM models (dashed lines) on a 2.7 GHz Sandy Bridge chip. The model for (a) assumes no
overlap, while the model in (b) assumes full overlap ofTcore with Tdata.

Multicore scaling

All resources in the Sandy Bridge processor chip, except for the memoryinterface, scale with
the number of cores. Hence we predict good scalability of the benchmark loop up to eight cores
if the data resides in the L3 cache. Indeed we see a speedup of 7:8 from one to eight cores (see
the arrow in Fig. 3.3). In the memory-bound regime we expect scalability up to the bandwidth
limit of 107 bits/cy, which is a factor of 2.09 larger than the single-core bandwidth prediction
of 320bytes=50cy= 51:2bits=cy. The performance of the Schönauer triad loop should thus
saturate at three cores, with a small speedup from two to three. 3.9 shows acomparison of the
model with measurements on a Sandy Bridge chip at 2:7GHz. The model tracks the overall
scaling behavior well, especially the number of cores where saturation setsin. The perfect
scaling assumption is slightly optimistic, however, near the saturation point. Note that one can
expect the same general characteristics for all loop kernels that are strongly load/store-bound in
the L1 cache if the data traf�c volume between all cache levels is roughly constant. Att = 2,
the model over-predicts the performance by about 15%. This deviation is yet to be investigated.

The performance of the Schönauer vector triad is completely bound by data transfer in all
memory hierarchy levels including L1. The ECM model should also be able to predict the
performance and scaling behavior of loops that are limited by other resources. One example
is a modi�ed vector triad that uses a divide operation instead of the multiplication between
arraysC(:) and D(:) . The throughput of the double-precision full-width AVX divide on
the Sandy Bridge microarchitecture is 44 cycles if no shortcuts can be takenby the hardware
[23], while the throughput of a scalar divide is 22 cycles. All required loads and stores in
the L1 cache can certainly be overlapped with the large-latency divides, leading to an in-core
execution time of 88 cy and 172 cy, respectively, for one unit of work withthe AVX and scalar
variants. In this case, the single-portedness of the L1 cache is not applicable, since the in-core
code is not load/store-bound. Even if no overlap takes place in the rest of the hierarchy, the
10+ 10+ 24 = 44 additional cycles for data transfers (see Fig. 3.7) can be hidden behind the
in-core time. The results in Fig. 3.9b show a very good agreement of the ECMmodel with the

49

measurements. Interestingly, the prediction is now very accurate also nearthe saturation point.

3.4.4 Conclusions and best practices for applying the ECM model

Out of the four underlying assumptions in the roofline model (see Sect. 3.2.2), the ECM model
requires only the streaming assumption, since latency effects are not modeled. The model is
primarily suited for providing a prediction of the single-core performance of a loop. As was
shown in Sect. 3.4.3, the scalability prediction (3.24) works best if the in-core execution is not
dominated by LOADs and STOREs, i.e., if there is considerable “time slack” in thememory
hierarchy (see Fig. 3.9b). If the in-core execution is strongly limited by the LOAD and STORE
ports, the ECM model prediction, while still accurate for a single core, is too optimistic in the
vicinity of the saturation point, i.e., the linear scaling assumption in (3.24) works well only if
there is some bandwidth headroom left (see Fig. 3.9a). The reason for the overhead or contention
effect that causes this deviation is unknown and is not part of the ECM model. Note that non-
temporal stores, due to their strong coupling to the memory interface, can as of now not be
accurately incorporated into the model.

The question arises as to why it is so interesting to accurately predict the single-core per-
formance, especially if enough cores are available to eventually reach thesaturation point. This
was the case in Fig. 3.9b, where even the scalar code was able to saturate the memory inter-
face, if only just. It turns out that knowing about how much time goes into core execution vs.
data transfer opens the possibility for assessing the potential of code optimizations much more
accurately than with the roofline model:

• If Tcore � Tdata, avoiding slow data paths in the memory hierarchy (which is commonly
the most promising approach to code optimizations) will not result in a big performance
improvement. In this case bandwidth saturation can often not be achieved withthe avail-
able number of cores. Hence, as a rule of thumb, chip-scalable loops should be optimized
for more ef�cient code execution in the core, e.g., by SIMD vectorization,elimination of
pipeline stalls, simultaneous multi-threading (SMT), and avoiding costly operations such
as �oating-point divides, square roots, or more complex functions. Thinking in terms
of the roofline model, such optimizations would typically lead to increasingPmax. Since
performance is dominated by in-core effects, it will be roughly proportional to the clock
frequency of the processor unless saturation sets in. Another consequence is that typical
temporal blocking techniques for stencil algorithms, which are based on increasing the
computational intensity, will not improve performance if the stencil update code is very
complex or non-vectorizable.

• If Tcore � Tdata, data transfers are the limiting factor for chip performance. Moving less
data across slow data paths is then the most expedient option for speeding up the loop:
Non-temporal stores, outer loop unrolling, loop blocking, temporal blocking, are typical
strategies to follow. In terms of the roofline model, these optimizations will result inan
increased computational intensity. Surprisingly, even if a loop is strongly bound by data
transfers, a large fraction of the overall serial execution timeTcore+ Tdata is spent in parts
of the hardware whose performance is proportional to the clock speed.This was shown
prominently with the vector triad benchmark (see Fig. 3.8a), in which more than half of
the cycles came from on-chip data paths on the hardware under consideration. Hence, the
clock frequency has a big impact on the single-core performance even ifthe data comes

50

from main memory; to lowest order one can often assume that they are proportional unless
there is saturation, just as in the core-dominated case.

A further advantage of an accurate modeling of on-chip scaling behavioris that knowing the
scaling properties of a code leads to accurate guidelines for choosing anoptimal operating point
for minimal energy to solution with controlled (or predictable) loss in performance. The energy
consumption properties of processors depend crucially on how many cores are in use, on the
processor's clock speed, and on the type of code being executed. These issues will be covered
in detail in Chapter 4.

Finally it must be stressed that the ECM model is not only useful for simple benchmark
kernels. It has also been used successfully to describe the performance and scaling properties
of stencil smoothers [9, 10] and medical image reconstruction kernels [6](see also Chapter 6).
It is the �rst approach that can successfully model the single-thread performance and on-chip
scalability of data streaming applications on multicore processors.

3.5 Chapter summary

In this chapter, two approaches to white-box performance modeling on the chip level were pre-
sented: The well-known roofline model and the recently introduced Execution-Cache-Memory
(ECM) model. It was shown how erratic data access can be incorporatedinto the roofline model,
not for performance prediction but for learning more about data transfer overhead and optimiza-
tion opportunities. The ECM model can be seen as a re�nement of the roofline model, taking
into account not only core execution and a single bottleneck, but also the timefor data trans-
fers through the memory hierarchy and multicore scaling. It was demonstrated that the ECM
model can predict the single-core performance and intra-chip scaling ofstreaming loop kernels,
providing guidelines for optimization approaches.

To the author's knowledge, the ECM model is the �rst model that can successfully describe
single-threaded performance and multicore scaling for modern processors.

51

52

Chapter 4

Performance and power [1]

Power dissipation and energy consumption are aspects of scienti�c computing that have been
moving into the focus of research in recent years. Energy and cooling costs for running large-
scale clusters are comparable to the pure hardware costs, and bringing the dissipated heat out
of a server case is a challenge of its own. Scienti�c users seem to have little in�uence on these
matters, but they may be forced to �nd energy-optimal operating points for their software in the
very near future, when allocations on parallel systems are granted not interms of CPU cycles
but also in terms of consumed energy.

As it turns out, users who know about the performance properties of their implementations
can save a signi�cant amount of energy, without compromising time to solution,by taking care
that the serial program code is as fast as possible (most probably by applying a suitable white-
box performance model) and choosing some tunable parameters: clock speed and number of
cores used. In this chapter we develop a simple but meaningful power model for multicore
processors that captures the in�uence of these essential factors on the energy consumption of
running code. Combining this power model with the ECM model then enables combined, pre-
dictive energy and performance modeling on the chip level. The Intel “Sandy Bridge EP” server
processor is used for all benchmarks and energy measurements; it is the�rst Intel chip for which
accurate energy consumption information is accessible from user code.

4.1 Power dissipation and performance on multicore

In this section the power dissipation properties of the Sandy Bridge processor are investigated
by studying several benchmark codes. Then a simple power model is constructed and the most
interesting features for the “energy to solution” metric with respect to clock frequency, number
of cores utilized, and serial code performance are derived from it. While the model is too coarse
to provide quantitative predictions, the qualitative insights are extremely useful.

4.1.1 Power and performance of benchmarks vs. active cores

In order to study energy consumption for various different code patterns, a couple of test codes
were chosen. Each of those shows a somewhat typical performance behavior for a certain class
of applications. Performance, CPI (cycles per instruction), and powerdissipation were measured
on a Sandy Bridge EP (Xeon E5-2680) chip, with respect to the number ofcores used. The

53

1 2 3 4 5 6 7 8
cores

0

0.5

1

1.5

2

P
er

fo
rm

an
ce

 [M
P

/s
]

RAY
RAY SMT

(a)

1 2 3 4 5 6 7 8
cores

0

500

1000

1500

P
er

fo
rm

an
ce

 [M
LU

P
/s

]

Jacobi AVX
Jacobi scalar

(b)

1 2 3 4 5 6 7 8
cores

0

50

100

150

P
er

fo
rm

an
ce

 [G
F

/s
]

DGEMM

(c)

Figure 4.1: Performance of the benchmark codes on a Sandy Bridge chipwith respect to the
number of active cores at the base frequency of 2.7 GHz.

“turbo mode” feature was deliberately ignored, and the chip was given a suf�cient warm-up
time before the actual measurements were taken. Without the warm-up, variations of up to 10%
in power dissipation could be observed across multiple runs with the same code. The energy
measurements were done using thelikwid-perfctr tool from the LIKWID tool suite.

In the following, the benchmarks are brie�y described together with performance and power
data with respect to the number of cores used (see Figs. 4.1 and 4.2).

RAY

is a small, MPI-parallel, master-worker style ray-tracing program, which computes an image
of 150002 gray-scale pixels of a scene containing several re�ective spheres.Performance is
reported in million pixels per second (MP/s).

Scalability across the cores of a multicore chip is perfect (see Fig 4.1a), since all data comes

0 1 2 3 4 5 6 7 8
cores

0

20

40

60

80

100

120

P
ow

er
 [W

]

DGEMM
Jacobi AVX
Jacobi scalar
RAY
RAY SMT

(a)

1 2 3 4 5 6 7 8
cores

0

1

2

3

4

5

C
P

I p
er

 fu
ll

co
re

DGEMM
Jacobi AVX
Jacobi scalar
RAY
RAY SMT

(b)

Figure 4.2: (a) Power dissipation and (b) cycles per instruction of the benchmark codes with
respect to the number of cores used, at the base frequency of 2.7 GHz.

54

from the L1 cache, load imbalance is prevented by dynamic work distribution,there is no syn-
chronization, and only infrequent communication of computed tiles with the masterprocess,
which is pinned to another socket and thus not taken into account in the analysis. The code is
purely scalar and shows a mediocre utilization of the core resources with a CPI value of about
0:8 (see Fig 4.2b). It bene�ts to some extent from the use of simultaneous multi-threading
(SMT), which reduces the CPI to 0:65 per (full) core for a speedup of roughly 15%. At the
same time, power dissipation grows by about 8% and is roughly linear in the number of cores
used for both cases (see Fig. 4.2a).

Jacobi

is an OpenMP-parallel 2D Jacobi smoother (four-point stencil) used withan out-of-cache data
set (40002 lattice sites at double precision). Being bandwidth-bound with an effectivecode
balance of 6 B/F [21], it shows the typical saturation behavior describedby the ECM model for
streaming codes. Performance is reported in million lattice site updates per second (MLUP/s),
where one update comprises four �ops. Hence, we expect a saturationperformance of 6 GF/s
or 1500 MLUP/s on a full Sandy Bridge chip, which is fully in line with the measurement (see
Fig. 4.1b).

This benchmark was built in two variants, an AVX-vectorized version and ascalar version,
to see the in�uence of data-parallel instructions on power dissipation. Bothversions have very
similar scaling characteristics, with the scalar code being slightly slower below the saturation
point, as expected. The performance saturation is also re�ected in the CPIrate (Fig. 4.2b), which
shows a linear slope after saturation. Surprisingly, although there is a factor of 2:5-3 in terms
of CPI between the scalar and AVX versions, the power dissipation hardlychanges (Fig. 4.2a).
Beyond the saturation point, the slope of the power dissipation decreases slightly, indicating that
a large CPI value is correlated with lower power (cores waiting for data). However, the relation
is by no means inversely proportional, just as for the RAY benchmark.

Note that the particular choice of problem size causes the layer condition (see Sect. 5.1.2) to
fail in the L1 cache, leading to increased L2 cache traf�c compared to a perfect blocking strategy.
Together with the increased load/store throughput at scalar execution (see Sect. 2.4.1) this means
that both code variants show very similar serial performance. Moreover, the compiler employs
half-wide (i.e., SSE) LOAD instructions in the AVX case in order to decreasethe probability of
split loads across cache line boundaries, which incur penalty cycles [23]. This is the reason for
the CPI value not being a factor of four lower for AVX in the saturated case. These de�ciencies
could be �xed by proper data alignment and probably the use of SIMD intrinsics.

DGEMM

performs a number of multiplications between two dense double precision matrices of size
56002, using the thread-parallel Intel MKL library that comes with the Intel compiler(version
10.3 update 9). Performance is reported in GF/s.

The code scales almost perfectly with a speedup of 7:5 on eight cores, and reaches about
86% of the arithmetic peak performance on the full Sandy Bridge chip at a CPI of about 0:4 (i.e,
2:5 instructions per cycle). The power dissipation is almost linear in the number of cores used
(Fig. 4.2a).

DGEMM achieves the highest power dissipation of all codes considered here. Note that

55

at the base frequency of 2:7GHz, the thermal design power (TDP) of the chip of 130W is not
nearly reached, not even with the DGEMM code. With turbo mode enabled (3:1GHz at eight
cores) one can observe a maximum sustained power of 122W. The Sandy Bridge chip can
exceed the TDP limit for short time periods [41], but this was not investigatedhere.

Surprisingly, the power dissipation of DGEMM is identical to the Jacobi code(scalar and
AVX versions) as long as the latter is not bandwidth-bound, whereas the RAY benchmark draws
about 15% less power at low core counts. This can be attributed to the mediocre utilization of
the execution units in RAY, where some long-latency �oating-point divides incur pipeline stalls,
and the strong utilization of the full cache hierarchy by the Jacobi smoother.

4.1.2 Power and performance vs. clock frequency for all benchmarks

Figure 4.3a shows the power dissipation of all benchmarks with respect to the clock frequency
(f = 1:2: : :2:7GHz) when all cores are used (all virtual cores in case of the SMT variant of
RAY). The Sandy Bridge chip only allows for a “global” frequency setting, i.e., all cores run at
the same clock speed. The solid lines are least-squares �ts to a second-degree polynomial,

W(f) = W0 + w1 f + w2 f 2 ; (4.1)

for which the coef�cient of the linear term is very small compared to the constant and the
quadratic term. The quality of the �t suggests that the dependence of dynamic power dissipation
on frequency is predominantly quadratic with 7W=GHz2 < w2 < 10W=GHz2, depending on
the code characteristics. Note that one would naively expect a cubic dependence inf if the
core voltage were adjusted to always re�ect the lowest possible setting ata given frequency.
Since we cannot look into the precise algorithm that the hardware uses to set the core voltage,
we use the observed quadratic function as phenomenological input to the power model below,
without questioning its exact origins. The conclusions we draw from the model would not
change qualitatively ifW(f) were a cubic polynomial, or any other monotonically increasing
function with a positive second derivative.

It is plausible that the “baseline power”W0 � 25W is largely independent of the type of
code, since part of it can be associated with the chip leakage power. It may vary depending
on the actual state that idle cores assume, i.e., when not executing code. Modern processor
cores usually have several power-saving states, which differ greatlyin their power dissipation
per core and also in the time it takes to return to normal operation. One should also note that
an extrapolation tof = 0 is problematic here, so that the estimate forW0 is very rough. The
extrapolation to zero cores in Fig. 4.2 yields roughly the same value forW0, which is reassuring.
However, the actual power dissipation with all cores in the halt state would bemuch lower due to
advanced power gating techniques. Hence, givingW0 a concrete physical meaning is debatable
and we regard it as a pure model parameter that accommodates all power contributions that do
not vary with the number of active cores and the clock frequency. Whensystem components
beyond the chip are included in the model, their power dissipation is mostly constant and can
thus be included inW0 (see below).

Figure 4.3b shows the single-core performance of all benchmarks with respect to clock
frequency, normalized to the level atf = 2:7GHz. As expected, the codes with near-perfect
scaling behavior across cores show a strict proportionality of performance and clock speed,
since all required resources run with the core frequency. In case ofthe Jacobi benchmark the
linear extrapolation tof = 0 has a non-zeroy-intercept, because resources are involved that

56

0 0.5 1 1.5 2 2.5 3
Frequency [GHz]

0

20

40

60

80

100

120

P
ow

er
 [W

]

DGEMM
Jacobi AVX
Jacobi scalar
RAY
RAY SMT

(a)

0 0.5 1 1.5 2 2.5 3
Frequency [GHz]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
pe

rf
or

m
an

ce

DGEMM
Jacobi AVX
Jacobi scalar
RAY
RAY SMT

(b)

Figure 4.3: (a) Power dissipation of a Sandy Bridge chip with respect to clock speed for the
benchmark codes. All eight physical cores were used in all cases, and all 16 virtual cores for the
“RAY SMT” benchmark. The solid lines are least-squares �ts to a second-degree polynomial in
f . (b) Relative performance versus clock speed with respect to the 2:7GHz level of single-core
execution for the benchmark codes. Two processes on one physical core were used in case of
RAY SMT. The solid lines are linear �ts to the Jacobi AVX and DGEMM data, respectively.

are clocked independently of the CPU cores. The ECM model predicts this behavior if one
can assume that the maximum bandwidth of the memory interface is constant with varying
frequency.

Figure 4.4 shows the saturated memory bandwidth of a Sandy Bridge chip with respect
to clock speed. If we assume that the core frequency should not in�uence the memory inter-
face, there is no explanation for the drop in bandwidth below about 1:7GHz: The ECM model
predicts constant bandwidth for a streaming kernel like, e.g., the Schönauer triad (one may spec-
ulate whether a slow Uncore clock speed could cause a lack of outstandingrequests to the mem-
ory queue, reducing achievable bandwidth). For the purpose of developing a multicore power
model, we neglect these effects and assume a strictly linear behavior (with zero y-intercept) of

1 1.5 2 2.5 3
Clock speed [GHz]

0

5

10

15

20

25

30

35

S
at

ur
at

io
n

ba
nd

w
id

th
 [G

B
/s

]

Figure 4.4: Maximum memory
bandwidth (saturated) versus clock
frequency of a Sandy Bridge chip.
See [42] for a detailed account of
the in�uence of clock speed on
bendwidth.

57

performance vs. clock speed in the non-saturated case.

4.1.3 Conclusions from the benchmark data

In order to arrive at a qualitative model that connects the power and performance features of the
multicore chip, some generalizing conclusions must be drawn from the data that was discussed
in the previous sections.

From Fig. 4.3a, we conclude that the dynamic power dissipation is a quadraticpolynomial
in the clock frequency and parametrized byw2 in (4.1). w2 depends on the type of code ex-
ecuted, and there is some (inverse) correlation with the CPI value (see Fig.4.2), but a simple
mathematical relation cannot be derived. The linear partw1 is generally small compared tow2.

A linear extrapolation of power dissipation vs. the number of active cores tozero cores
(dashed lines in Fig. 4.2a) shows that the baseline power of the chip isW0 � 25W, independent
of the type of running code. In case of the bandwidth-limited Jacobi benchmark only the one-
and two-core data points were considered in the extrapolation. The resultfor W0 is also in
line with the quadratic extrapolations to zero clock frequency in Fig. 4.3a. Note thatW0, as a
phenomenological model parameter, is different from the documented “idlepower” of the chip,
which is considerably lower due to power gating mechanisms.

From the same data we infer a linear dependence of power dissipation on thenumber of
active corest in the non-saturated regime,

W(f ;t) = W0 + (W1 f + W2 f 2)t ; (4.2)

so thatw1;2 = t �W1;2. Although the power per core rises more slowly in the saturation regime,
we regard this as a second-order effect and neglect it in the following:The fact that a core
is active has much more in�uence on power dissipation than the characteristics of the running
code.

As Fig. 4.2a indicates, using both hardware threads (virtual cores) on aphysical Sandy
Bridge core increases power dissipation due to the improved utilization of the pipelines. The
corresponding performance increase depends on the code, of course, so it may be more power-
ef�cient to ignore the SMT threads. In case of the RAY code, however,the increase in power is
over-compensated by a larger boost in performance, as shown in Fig. 4.1a. See Sect. 4.2.4 for
further discussion.

One of the conclusions from the ECM model was that, in the non-saturated case, perfor-
mance is proportional to the core's clock speed. Fig. 4.3b suggests that this true for the scalable
benchmarks, and approximately true also for saturating codes like Jacobi.

4.2 A qualitative power model

Using the measurements and conclusions from the previous section a simple power model can be
derived, which describes the overall power properties of a multicore chip with respect to number
of cores used, the scaling properties of the code under consideration,and the clock frequency. As
a starting point we choose the “energy to solution” metric, which quanti�es theenergy required
to solve a certain compute problem and is thus restricted to strong scaling scenarios. This is not
a severe limitation, since weak scaling is usually applied in the massively (distributed-memory)
parallel case, where the relevant scaling unit is a node or a ccNUMA domain (which is usually

58

a chip). The optimal choice of resources and execution parameters on thechip level, where the
pertinent bottlenecks are different, are usually done at a constant problem size.

The following basic assumptions go into the model:

1. The wholeNc-core chip dissipates some baseline powerW0 when powered on, which is
independent of the number of active cores and of the clock speed.

2. An active core consumes a dynamic power ofW1 f + W2 f 2. We will also consider devia-
tions from some baseline clock frequencyf0 such thatf = (1+ Dn) f0, with Dn = Df =f0.

3. At the baseline clock frequency, the serial code under consideration runs at some per-
formanceP0. As long as there is no bottleneck, the performance is linear in the number
of cores used,t, and the normalized clock speed, 1+ Dn. The latter dependence will
not be exactly linear if some part of the hardware (e.g., the outer-level cache) runs at its
own clock speed. In presence of a bottleneck (like, e.g., memory bandwidth), the overall
performance with respect tot is capped by some maximum valueProof:

P(t) = min((1+ Dn)tP0;Proof) = min(tP0 f =f0;Proof) : (4.3)

This is just an extension of (3.24) for varying clock speed. Note that we have not included
an explicit frequency dependence of the saturated performance. If the applicable bottle-
neck is within the cache hierarchy, the model can be easily extended to accommodate this
case.

Since time to solution is inverse performance, the energy to solution becomes

E =
W0 + (W1 f + W2 f 2)t
min(tP0 f =f0;Proof)

: (4.4)

A direct consequence of this model is that any increase in performance (P0 or Proof) leads to
proportional savings in energy to solution. Performance is thus the �rst-order tuning parameter
for minimum energy. This general rule will be revisited several times in this work.

The model parametersW0, W1, andW2 must be determined by measurements, as shown
above for the example benchmarks. SinceW1 andW2 depend on the actual loop code, this mea-
surement must be repeated for every loop if the application is complex. For qualitative results it
is suf�cient to assume approximate values that re�ect general loop properties known from code
analysis and performance modeling (memory-boundedness, SIMD vectorization, pipeline uti-
lization). Choi et al. [43] have derived a “roofline model of energy,”which relies on microbench-
marking and a re�ned power measurement infrastructure to determine the energy consumption
of elementary operations such as �ops and data transfers, and then allows to parametrize the
power dissipation of a chip over a wide range of the computational intensity. Their model is
more targeted toward design space exploration and comparisons of different architectures, and
they do not explore the core and frequency dependence of energy consumption. In principle,
however, the parametersW0, W1, andW2 could be determined by their method as well.

Note that it is out of the scope of the model to study different strategies fordynamic voltage
and frequency scaling (DVFS); the exact algorithm a processor usesto set the core voltage at a
certain frequency is taken as-is, and is hidden in the model parametersW0, W1, andW2.

59

4.2.1 Minimum energy with respect to the number of active cores

Due to the assumed saturation of performance witht, we have to distinguish two cases:

Case 1:tP0 f =f0 < Proof Performance is linear in the number of cores, so that (4.4) becomes

E =
W0 + (W1 f + W2 f 2)t

tP0 f =f0
; (4.5)

andE is a decreasing function oft:

¶E
¶t

= �
W0

t2P0 f =f0
< 0 : (4.6)

Hence, the more cores are used, the shorter the execution time and the smallerthe energy to
solution.

Case 2:tP0 f =f0 > Proof Performance is constant in the number of cores, hence

E =
1

Proof

�
W0 + (W1 f + W2 f 2)t

�
(4.7)

)
¶E
¶t

=
1

Proof

�
W1 f + W2 f 2�

> 0 : (4.8)

In this case, energy to solution grows witht, with a slope that is proportional to the dynamic
power, while the time to solution stays constant; using more cores is thus a waste of energy.
Leaving cores idle to save energy is known as “dynamic concurrency throttling” (DCT) [44].

For codes that show performance saturation at somets, it follows that energy (and time) to
solution is minimal just at this point:

ts =
Proof

P0 f =f0
: (4.9)

If the code scales to the available number of cores, case 1 applies and oneshould use them all.

4.2.2 Minimum energy with respect to code performance

Since the serial code performanceP0 only appears in the denominator of (4.4), increasingP0

leads to decreasing energy to solution unlessP = Proof. A typical example for this scenario is
the SIMD vectorization of a bandwidth-bound code: Using data-parallel instructions (such as
SSE or AVX) will generally reduce the in-core execution time (Tcore), so thatP0 grows and the
saturation pointProof is reached at smallert (see (4.9)). Consequently, the potential for saving
energy is twofold: When operating below the saturation point, optimized code requires less
energy to solution. At the saturation point, one can get away with fewer active cores to solve the
problem at maximum performance.

The energy to solution is also inversely proportional to the saturated performanceProof (if
saturation applies), thusProof has the same energy-saving potential asP0. However, sinceProof

is typically determined by a bottleneck in the memory hierarchy, code optimizations toincrease
Proof are typically targeted toward higher computational intensity (see also Sect. 3.2.3).

60

4.2.3 Minimum energy with respect to clock frequency

We again have to distinguish two cases:

Case 1:tP0 f =f0 < Proof Energy to solution is the same as in (4.5) andf = (1+ Dn) f0, so that

¶E
¶Dn

=
f 2
0

tP0

�
W2t �

W0

f 2

�
: (4.10)

The derivative is positive for largef ; setting it to zero and solving forf thus yields the frequency
for minimal energy to solution:

fopt =

r
W0

W2t
: (4.11)

A large baseline powerW0 forces a large clock frequency to “get it over with” (“clock race to
idle”). Depending onW0 andW2, fopt may be larger than the highest possible clock speed of the
chip, so that there is no energy minimum. This may be the case if one includes the rest of the
system in the analysis (i.e., memory, disks, etc.). On the other hand, a large dynamic powerW2

allows for smallerfopt, since the loss in performance is over-compensated by the reduction in
power dissipation. The fact thatfopt does not depend onW1 just re�ects our assumption that the
serial performance is linear inf .

Sincet appears in the denominator in (4.11), it is tempting to conclude that a clock frequency
reduction can be compensated by using more cores, but the in�uence onE has to be checked by
inserting fopt from (4.11) into (4.5):

E(fopt) =
f0
P0

2

r
W0W2

t
+ W1

!

(4.12)

This con�rms the conjecture that more cores at lower frequency save energy below the saturation
point. At the same time, performance atfopt is

P(fopt) =
fopt

f0
tP0 =

P0

f0

r
W0t
W2

; (4.13)

hence it grows with the number of cores: trading cores for clock slowdown does not compromise
time to solution.

However, ift is �xed, (4.13) also tells us that, iffopt < f0, performance will be smaller than at
the base frequencyf0, although the energy to solution is also smaller. This may be problematic
if t cannot be made larger to compensate for the loss in performance. In this case the energy to
solution metric is insuf�cient and one has to choose a more appropriate costfunction, such as
energy multiplied by runtime:

C =
E
P

=
W0 + (W1 f + W2 f 2)t

(tP0 f =f0)2 : (4.14)

DifferentiatingC with respect toDn gives

¶C
¶Dn

= �
2W0 + W1 f t
(f =f0)3P2

0
< 0 ; (4.15)

61

becauseW0; W1 > 0. Hence, a higher clock speed is always better ifC is chosen as the relevant
cost function. Note that a large baseline powerW0 emphasizes this effect, e.g., when the whole
system is taken into account (see also above in the discussion offopt).

The question remains how to deal with the code slowdown, since a machine running at lower
clock speed will deliver less “science per day,” and this is what the usertypically cares about.
One option is to invest the money saved on the power bill in a larger system. SeeSect. 4.3 for
an analysis of this point of view.

Case 2: tP0 f =f0 > Proof Beyond the saturation point, energy to solution is the same as in
(4.7), so it grows with the frequency: The clock should be as slow as possible. Together with
the �ndings from case 1 this means that minimal energy to solution is achieved when using all
available cores, at a clock frequency which is so low (if possible) that thesaturation point is
right att = Nc.

These results re�ect the popular “clock race to idle” rule, which basicallystates that a pro-
cessor should run at maximum frequency to “get it over with” and go to sleep as early as possible
to eventually save energy. Using the energy to solution behavior as derived above, we now know
how this strategy depends on the number of cores used and the ratio of baseline and dynamic
power. “Clock race to idle” makes sense only in the sub-saturation regime, and whenf < fopt.
Beyondfopt (if such frequencies are allowed), the quadratic dependence of power on clock speed
will waste energy. Beyond the saturation point, i.e., ift > ts, lower frequency is always better.

4.2.4 Validation of the power model for the benchmarks

The multicore power model has been derived from the benchmarks' power dissipation using
considerable simpli�cations. Hence, it is now important to check whether the conclusions drawn
above are still valid for the benchmark codes when looking at the measuredenergy to solution
data with respect to the number of active cores, the clock speed, and the single-core performance.

Figure 4.5 shows energy to solution measurements for the scalable codes (Fig. 4.5a) and the
Jacobi AVX benchmark (Fig. 4.5b) versus clock frequency and number of cores, respectively.
Comparing the frequency for minimum energy to solution between DGEMM and RAY at eight
cores (solid symbols in Fig. 4.5a), we can identify the behavior predicted by(4.11): A large
dynamic power factorW2 leads to lowerfopt. The SMT version of RAY consumes more power
than the standard version, but, as anticipated above, the larger performance leads to lower energy
to solution: Better resource utilization on the core, i.e., optimized code, saves energy; this
provides another possible attitude towards the “race to idle” rule. Given thehuge amount of
optimization potential that is still hidden in many production codes on highly parallel systems,
this view must be regarded as even more relevant than optimizing clock speedfor a few percent
of energy savings.

Eq. (4.11) predicts a larger optimal frequencyfopt at fewer cores, which is clearly visible
when comparing the four- and eight-core energy data for DGEMM in Fig. 4.5a (solid vs. open
triangles). At the same time, fewer cores also lead to larger minimum energy to solution at fopt,
which was shown in (4.12).

The Jacobi benchmark shows all the expected features of a code whose performance sat-
urates at a certain number of corests: As predicted by the ECM model, the saturation point
is shifted to a larger number of cores as the clock frequency goes down;it was derived in
Sect. 4.2.1 that this is the point at which energy to solution is minimal. Lowering the frequency,

62

1.5 2 2.5
Frequency [GHz]

0

400

800

1200

1600

2000

2400

E
ne

rg
y

to
 s

ol
ut

io
n

[J
]

DGEMM 8C
DGEMM 4C
RAY 8C
RAY SMT 8C

(a)

1 2 3 4 5 6 7 8
cores

0

200

400

600

800

1000

E
ne

rg
y

to
 s

ol
ut

io
n

[J
]

Jacobi AVX 2.7 GHz
Jacobi AVX 2.0 GHz
Jacobi AVX 1.4 GHz

(b)

Figure 4.5: Energy to solution for (a) the scalable benchmarks DGEMM (eight and four cores)
and RAY (eight cores) versus clock frequency on a Sandy Bridge socket and (b) the Jacobi AVX
benchmark versus number of cores at different core frequencies.

ts gets larger, but energy to solution decreases (see (4.12)). Whent > ts, more cores and higher
clock speed both are a waste of energy. Att < ts the Jacobi code is largely frequency-bound and
there is an optimal frequencyfopt � 2GHz with minimal energy to solution. Here we substan-
tiate the prediction from Sect. 4.2.3 that “clock race to idle” is largely counterproductive if we
look at the chip's power dissipation only. See also Sect. 7 for a discussionof “race to idle” in
the context of a lattice-Boltzmann CFD solver.

In conclusion, although considerable simpli�cations have been made in constructing the
model (4.4), it is able to describe the qualitative behavior of the benchmark applications with
respect to energy to solution.

Applying the model in practice to achieve minimum power consumption for a real applica-
tion may be complex if the code is composed of many parts that take only a small amount of
time. Every loop must be analyzed and modeled for performance and power, and clock speed
adjustments and DCT must be applied on a loop-by-loop basis via suitable libraries [45] or
automatic frameworks [44].

4.3 Consequences for system design

Interesting conclusions for system design can be drawn from the energy to solution model (4.4)
when typical requirements in computing center environments are taken into account. While the
model predicts that it is possible to save energy by reducing the clock speed to the point where a
bandwidth-bound code scales across all cores of the socket, the situation is more complex with
scalable code. As shown in Sect. 4.2.3, adjusting the clock speed to get minimumenergy to
solution may compromise the time to solution. Apart from choosing more appropriate metrics
such as the energy-delay product, one can also assume the point of viewthat a certain system is
running at the optimal clock frequencyfopt, which is given by (4.11), and then adjust the size
of the system to compensate for the performance loss (or gain, iffopt > f0). If one assumes that
the price for a system is roughly constant for constant peak performance, the only difference
between a system running atf0 and a system running atfopt is its energy consumption over its

63

lifetime. The question remains as to if and how much energy, and thus money, can be saved by
setting the optimal frequency.

The optimal frequencyfopt depends on the baseline powerW0, the dynamic powerW2, and
on the number of corest (see (4.11)). The ratio of power dissipation between the optimized and
the base clock frequencies is

W(fopt; t)
W(f0; t)

=
W0 + W2 f 2

optt

W0 + W2 f 2
0 t

=
2W0

W0 + W2 f 2
0 t

(4.16)

if we neglect the usually small linear part in the power law (4.2). Comparing systems of the
same size, this ratio is certainly smaller than one. However, if we adjust the sizeof the “opti-
mized” system by a factor that re�ects the chip performance ratio (and assume perfect scaling
for applications), we get

R=
W(fopt; t)
W(f0; t)

f0
fopt

=
2f0

p
W0W2t

W0 + W2 f 2
0 t

: (4.17)

The dimensionless ratioR quanti�es the energy saving potential of setting an optimal clock
speed and adjusting the size of the machine to compensate for the change in performance. It is
straightforward to show thatR= 1 for W0 = W2 f 2

0 t, andR< 1 otherwise.
Using theR metric we can explore the design space of possible parallel machines with

different values forW0, W2, andt. In the limit of very smallW0 � W2 f 2
0 t, which should be

regarded as a very desirable goal, we get

Rcool �
2
f0

r
W0

W2t
=

2fopt

f0
: (4.18)

A large numbert of cores per chip thus favors large, “cool” systems, sincefopt is inversely
proportional to

p
t. On the other hand, for “hot” machines whereW0 � W2 f 2

0 t we have

Rhot �
2f0

p
W2tp

W0
=

2f0
fopt

: (4.19)

Hence, energy can also be saved with a very high clock frequency ifW0 is large (“clock race to
idle”).

A value ofR= 1 marks the in�ection point where a machine is “optimal,” i.e., where it is
not possible to save energy by trading clock speed for machine size. If we plot R(W0), it is
the combinationW2 f 2

0 t which determines the shape of the curve, and especially the position of
the in�ection pointR= 1 (see Fig. 4.6). At a given value ofW2 f 2

0 t, the region left ofR= 1 is
where a clock slowdown (and a correspondingly larger machine) can save energy compared to
the baseline clock speed, because the baseline power is small. The region tothe right ofR= 1 is
where “clock race to idle” applies. Here the chip is so hot that it is bene�cial to run at very high
clock speed to “get it over with.” The size of the machine can be smaller in this case.1 Whether
these clock speeds are technically accessible is not predicted by the model,of course.

Figure 4.6 shows three different scenarios by choosing a different number of corest and
a different base clock speedf0. Note that any change inW2 can be mapped to a proportional
change int, soW2 was �xed to 1:5W=GHz2, which is roughly the measured value for the Intel

1The two regions can be associated with the limits mentioned Seymour Cray's famous quote “If you were plowing
a �eld, which would you rather use: two strong oxen or 1024 chickens?”

64

10 100
W0 [W]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

t=8, W2=1.5 W/GHz
2
, f0=2.7 GHz

t=8, W2=1.5 W/GHz
2
, f0=1.2 GHz

t=16, W2=1.5 W/GHz
2
, f0=2.7 GHz

7 GHz / 690 W
0.4x size

900 MHz / 100 W
3x size

Figure 4.6: Energy saving potentialR vs. baseline powerW0 for running a system (with a given
number of corest, a given default clock speedf0, and a given dynamic power parameterW2)
at the optimal clock speedfopt with a scalable code and adjusting the system size for constant
aggregate performance. The circle marks the federal supercomputer system at LRZ Garching
(SuperMUC). The baseline power is understood to include the chip's share of the whole system.

Sandy Bridge EP processors in the federal “SuperMUC” system at LRZ Garching. For the case
f0 = 2:7GHz andt = 8, theR= 1 point is atW0 � 90W. All other parameters being equal, a
small baseline power ofW0 = 10W leads to a system that can be made 3 times larger, runs at
f = 900MHz, and dissipates about 20W per chip (including the dynamic power). On the other
hand, ifW0 = 600W we get processors running atf = 7GHz and 1200W, but the system can be
built at 40% of its original size. The circle in Fig. 4.6 marks the position of SuperMUC, whose
base frequency is 2:7GHz at eight cores and an overall baseline power ofW0 � 73W per chip.
Since this point is very near the maximum whereR= 1, it is hardly possible to save energy on
this system by reducing the clock speed in favor of more hardware. In thissense, SuperMUC is
an “ideal machine” for scalable codes, i.e., for programs whose performance scales across the
cores of the chip.

These considerations stretch the power model very far, and it is not expected that the num-
bers derived above have any useful accuracy. However, the model is still good for qualitative
design space exploration.

4.4 Chapter summary

This chapter has described a phenomenological power model for multicore processors. By
taking the measured static (baseline) power and dynamic power per core asinput parameters,
the model can predict optimal operating points in terms of clock speed, the number of cores
used, and the code performance. Since the latter is the only quantity that goes linearly (or rather
inversely) into the model, it is one of the basic premises of the model that “fast”code saves
energy. This may be called the “code race to idle” principle.

65

The model distinguishesscalablefrom saturatingparallel code. It predicts that saturating
code should be run with a number of cores that is just able to reach saturation, at the lowest
possible clock speed. For scalable code, the model predicts an optimal clock frequency for
minimal energy to solution, which depends on the ratio of static vs. dynamic power dissipation.
This frequency may so large that it is not accessible by the hardware. Inthe latter case, the
“clock race to idle” principle applies.

For scalable code the model can be used for design space exploration, leading to a clear
concept of “hot” vs. “cool” systems when the baseline power is large or small.

66

Chapter 5

Structured performance engineering

Now that the concepts of performance, scalability, and white-box performance modeling (Chap-
ter 3), together with its implications on power dissipation (Chapter 4) have beenintroduced, they
can be embedded in a larger setting, which we callstructured performance engineering. Struc-
tured performance engineering can be regarded as a part of software engineering. It is a process
in which algorithm and code analysis, performance modeling, and optimization are applied re-
peatedly to arrive at a well-de�ned concept of “best possible performance.” Since all these
components require considerable experience to be applied, it is an accepted fact that structured
performance engineering will never be implemented as a turnkey software tool. As described in
Chapter 3, it is thefailure of a performance model that leads to new insights and challenges a
previous understanding of the interaction between software and hardware. Especially this point
is not compatible with automated tooling that can be applied by anyone.

This chapter summarizes the layout of the performance engineering process, repeating some
of the key concepts described earlier. Then, some typical performancepatterns are given to-
gether with their hardware metric signatures. Patterns support the performance engineering
process by formalizing some of its frequently recurring aspects.

5.1 The performance engineering process

The ultimate purpose of running simulation tasks on high performance computers is to solve nu-
merical problems. Theperformanceof an algorithm, or rather an implementation, is signi�cant
in several respects: Either a given problem should be solved in the leastpossible amount of time
or a larger problem should be solved in an “acceptable” time; in both cases,the used resources
must be utilized as ef�ciently as possible so that overall throughput and return on investment are
maximized for all users of a system. This goal was formulated as the “bottleneck computing”
paradigm in Chapter 3. Structured performance engineering is a process that helps to reach this
ideal situation.

5.1.1 Description of the process

Figure 5.1 summarizes a possible approach to structured performance engineering. The individ-
ual components are described in detail in the following.

67

Runtime profiling

Algorithm /
code analysis

Performance model

Code optimization

Machine characteristics

Microbenchmarking

Traces / HW metrics

Figure 5.1: The performance engineering process.

• Runtime pro�ling.All performance work with an application starts with runtime pro�ling.
Here the dominant parts of the program, i.e., the hot spots which take most of the runtime,
are identi�ed. Such hot spots are usually loops or loop nests. Code analysis then starts
with the dominant hot spot and works down from there, given that the goal of “optimal
performance” has been reached. Runtime pro�ling is thus the start and theend of all
performance engineering efforts.

• Algorithm/code analysis.Analyzing a hot spot requires looking at the algorithm, i.e., the
minimum steps to achieve the required task, as well as its speci�c implementation in the
code. In the ideal case, the minimum requirements of the algorithm towards the hardware
are already met by the implementation. This may mean, e.g., that the implementation
performs the same number of �oating-point operations as the algorithm or, more gener-
ally, the same amount of “work.” Note that there is some uncertainty to this analysis,
since the implementation is usually done in a high-level computer language; they way the
compiler translates this language to machine code may change above requirements con-
siderably. If the performance model validation (see below) reveals a substantial deviation
from expected results, it may be necessary to check the generated assembly code.

The algorithm and code analysis is one of the crucial inputs for the performance model,
and it is probably the step that is least suited for automation via tools.

• Machine characteristics.Some parameters of the machine under consideration are usu-
ally well documented, such as peak performance, superscalarity, SIMDwidth, pipeline
depths, cache bandwidths and latencies, etc. They can be used as inputsto the perfor-
mance model, usually making some assumptions about code execution. For instance, a
typical assumption could be that hardware prefetching mechanisms work perfectly such
that latency effects can be ignored (this is one of the crucial conditions for the ECM model

68

to work; see Sect. 3.4 for details).

• Microbenchmarking. Machine characteristics that cannot be obtained from documen-
tation but are required input for performance modeling may be �xed by accurate mi-
crobenchmarking. A prominent example is the maximum main memory bandwidth of a
processor chip, whose theoretical limit is often much higher than the achievable value.
The precise reasons for this deviation are usually not divulged by the manufacturers.

• Performance model.A loop-level performance model may be built with input from algo-
rithm/code analysis, machine characteristics, and microbenchmarking, as shown in Chap-
ter 3. The model should be able to accurately describe the performance of the loop for
a given data set, thereby identifying the relevant bottlenecks. This approach works best
if the minimum requirements of the algorithm with respect to work and resourcesare
also the minimum requirements of the implementation, and if these requirements can be
satis�ed by the maximum capabilities of the machine on which the code is executed.

If the model prediction deviates from performance measurements, the assumptions used
for building the model are challenged. Whatever the reasons may be, this is an opportunity
to re�ne and advance the model towards better accuracy, which leads to new insights. See
Part II for examples. Of course, in some situations it is very hard to come upwith an
accurate predictive model. One prominent example is sparse matrix-vector multiplication,
for which it was shown in Sect. 3.3.2 that, although predictive modeling is often ruled out
due to the erratic memory access, a model-based approach can still be usedto learn about
the exact overhead caused by this hazard.

There is an intimate two-way connection between modeling and microbenchmarking.
Sometimes it is not clear from the start which microbenchmark is most suitable forex-
ploring a certain aspect of an architecture. The model validation may thus lead to the
conclusion that some (measured) parameter must be determined in a different way. For
example, the achievable memory bandwidth can vary signi�cantly across different ratios
of load versus store streams; if the microbenchmark does not re�ect this ratio as given in
the modeled application code, the bottleneck is not accurately assessed. See Sect. 5.1.2
below for a similar case (non-temporal vs. standard STORE instructions).

• Traces and hardware metrics.Regardless of whether the model yields accurate predic-
tions or not, software tools can help to acquire more information about the interaction of
the software code with the hardware. Even if the prediction was accurate,it may still be
the case that several opposing effects cancel out. Hence, softwaretools, and especially
tools for measuring hardware metrics, are extremely helpful in validating or disproving
the model. As an example, the number of cache lines transferred between adjacent cache
levels in a certain phase of program execution can be counted. The ECM performance
model predicts this number, so that this aspect of the program execution is easily veri-
�ed. On the other hand, it is the model itself which selects the “interesting” metrics out
of the usually hundreds of available options on modern processors. SeeSect. 5.2.3 for a
systematic overview of hardware metrics and corresponding performancepatterns.

• Code optimization.With a working performance model it is often possible to predict
the consequences of code optimizations. For instance, the ECM model gives an accurate

69

account of how dominant the core execution time of a loop is in comparison to thecontri-
butions from data transfers through the cache hierarchy. If any of those contributions can
be reduced by some amount by means of a code optimization, it can be estimated whether
the gain is worth the effort. After applying the change, the model must be re-validated.

Once a certain hot spot has been handled in the way described, the cyclestarts anew with
the next most important loop.

5.1.2 Case study: An OpenMP-parallel 3D Jacobi smoother

The three-dimensional Jacobi solver for the �nite-difference discretization of the Laplace equa-
tion with Dirichlet boundary conditions on a regular lattice is a well-understoodalgorithm,
which is, while not in wide use for scienti�c computing, a very useful examplefor teaching the
basics of performance modeling and optimization. In fact, many of the lessonslearned with the
Jacobi smoother can be generalized to more complex scenarios with stencil-like update schemes,
such as the lattice-Boltzmann algorithm (LBM) [46, 47]. We revisit it here, taking the point of
view imposed by the performance engineering process.

Listing 5.1 shows a simple implementation. The convergence criterion is unimportant for
the modeling and was omitted. A two-grid implementation was chosen where the current time
stepphi(i,j,k,t1) is updated with values from the previous time stepphi(i,j,k,t0)
in the �rst loop nest, and the updated grid is copied back in the second loop nest. These two
loop nests are the only loops in the code (apart from initialization code).

We use a dual-socket server with Intel Sandy Bridge processors as described in Sect. 2.4.1,
running at a clock speed of 2:7GHz. In order to expose the in-socket bottlenecks we perform
full-socket runs (eight threads on eight cores) at a constant problem size of 5003 grid points, for
a working set of 2GB.

Runtime pro�ling

Pro�ling reveals that about 63% of the runtime goes into the �rst loop nest, whereas the remain-
ing 37% are taken up by the second loop nest. The performance model will thus be applied to
both loop nests. For brevity we consider both of them together.

Algorithm/code analysis

We choose a “lattice site update” (LUP) as the relevant work unit.
In the �rst loop, performing one AVX-vectorized update (4LUPs) fromthe L1 cache re-

quires six LOADs, �ve ADDs, one MULT, and one STORE, without any relevant dependencies.
For the data traf�c analysis we assume that all LOADs ans STOREs go to main memory (since
the data set does not �t in any cache) and must be sustained throughoutthe cache hierarchy. In
addition, each incurs a write-allocate transfer of the cache line, so we arrive at a code balance
of B1 = 64bytes=LUP, or a computational intensity ofI1 = 1=64LUPs=byte.

The second loop has a requirement of one AVX LOAD and one AVX STOREper AVX-
vectorized update (4LUPs), and a code balance ofB2 = 24bytes=LUP, orI2 = 1=24LUPs=byte.

70

Listing 5.1: Naive OpenMP-parallel implementation of the 3D Jacobi algorithm (adapted from
[21]).

1 double precision :: oos
2 double precision, dimension(:,:,:,:) :: phi
3 integer :: t0,t1
4 t0 = 0 ; t1 = 1 ; oos = 1.d0/6.d0
5

6 allocate(phi(0:imax+1,0:jmax+1,0:kmax+1,0:1))
7 ! initialization code omitted
8 ...
9 ! loop over sweeps

10 do s=1,ITER
11 ! sweep over grid
12 !$OMP parallel
13 !$OMP do schedule(static)
14 do k = 1,kmax
15 do j = 1,jmax
16 do i = 1,imax
17 ! stencil update
18 phi(i,j,k,t1) = oos * (&
19 phi(i-1,j,k,t0) +phi(i+1,j,k,t0) +phi(i,j-1,k,t0) + &
20 phi(i,j+1,k,t0) +phi(i,j,k-1,t0) +phi(i,j,k+1,t0))
21 enddo
22 enddo
23 enddo
24 !$OMP end do
25 ! copy back
26 !$OMP do schedule(static)
27 do k = 1,kmax
28 do j = 1,jmax
29 do i = 1,imax
30 phi(i,j,k,t0) = phi(i,j,k,t1)
31 enddo
32 enddo
33 enddo
34 !$OMP end do
35 !$OMP end parallel
36 enddo

71

Machine characteristics

As described in Sect. 2.4.1, the Sandy Bridge core can execute one AVX LOAD, one half AVX
STORE, one AVX MULT, and one AVX ADD per cycle. These are the relevant execution
units for the Jacobi kernel. The L3 cache size per core is 2:5MB. One socket has a theoretical
memory bandwidth of 51:2GB/s (with DDR3-1600 memory modules).

Microbenchmarking

It is known that the theoretical memory bandwidth cannot be met even underbest conditions,
so this parameter must be measured with a microbenchmark. The effective STREAM copy
bandwidth isbS = 40GB/s (including the write-allocate transfers) with eight threads .

Building and failure of a naive roofline model

For the �rst loop, the applicable peak performance can be estimated by assuming a simple
throughput limitation on the LOAD port, and we have a performance of 4LUPs(one AVX
update) in six cycles, leading toPmax;1 = 14:4GLUP/s on the full socket (eight cores). The
bandwidth limitation is atbS=B1 = 625MLUP/s. The second loop is limited by the STORE port
in L1 cache, because only one half AVX STORE can be sustained per cycle. Hence, we have
4LUPs in two cycles, orPmax;2 = 43:2GLUP/s on the socket. The bandwidth limitation is at
bS=B2 = 1670MLUP/s.

It follows from this analysis that both loops are strongly memory-bound, andthat the �rst
loop should take a fraction of

B1

B1 + B2
� 73% (5.1)

of the overall runtime. This prediction does not coincide with the pro�ling result of 63%. Al-
though this deviation seems minor, one should not stop here but check the validity of the roofline
model.

Both loops together have a code balance ofB1+ 2 = (64+ 24)bytes=LUP, since both are
necessary to perform a complete lattice update. Instead of the expected overall memory-bound
performance expectation ofbS=B1+ 2 = 455MLUP/s, however, the measurement is at about
612MLUP/s, raising more suspicions about the correctness of the model.

Using hardware metrics for validation

In order to explore the deviation from the model one can employ tools that canmeasure the
actual memory traf�c caused by a code, even on a loop-by-loop basis, by counting hardware
events on the chip (see Sect. 5.2.2 below for an example). Using such a toolone discovers that
the second loop indeed causes a memory traf�c of 24bytes=LUP, but the �rst loop needs only
40bytes=LUP instead of 64. These numbers are perfectly in line with the measured runtime
ratio of 63%. Hence, the performance model for the �rst loop needs to becorrected.

A direct measurement of the memory bandwidth achieved by the running codereveals that it
is close to the STREAM maximum, so the deviation from the model is not caused by insuf�cient
utilization of resources.

72

Update of the roofline model for the �rst loop

Investigating the �rst loop in Listing 5.1 more closely, it becomes clear that notall the loads to
the source are memory accesses. For instance,phi(i-1,j,k,t0) has usually been loaded
two i -iterations before asphi(i+1,j,k,t0) , so we can assume that it is still in cache.
This would lead to a code balance of 56bytes=LUP. If there is enough space in the cache to
accommodate at least two successive rows of the lattice (i.e.,phi(:,j:j+1,k,t0)), the
loads tophi(i+1,j,k,t0) andphi(i,j-1,k,t0) also come from cache, saving an-
other 16bytes for a balance of 40bytes=LUP. Finally, if the cache can even hold two successive
layers of the lattice (i.e.,phi(:,:,k:k+1,t0)), onlyphi(i,j,k+1,t0) must be fetched
from memory, and the balance goes down to 24bytes=LUP. Hence, these “layer conditions” de-
termine the actual balance. In terms of the lattice and cache sizes, the two-layer condition for
minimum balance (24bytes=LUP) att cores is

(jmax+ 2)(imax+ 2) � 8bytes� 2� t � Ceff ; (5.2)

whereCeff is an effective cache size. As a rule of thumb one can set it to half of the overall
cache size, but this depends on the code and how much other data is streamed through the cache
hierarchy. The two-row condition for 40bytes=LUP is

(imax+ 2) � 8bytes� 2� t � Ceff : (5.3)

According to the layer conditions it is the extension of the lattice in thei and j directions
(but not ink direction) which determines the balance. At the given problem size of 5003 grid
points and a cache size of 20MB, the condition (5.2) is not ful�lled, since twolayers require
approximately 32MB of cache. Hence, we fall back to the row condition (5.3) and expect a
balance of 40bytes=LUP, which is exactly the value measured by hardware counters.

We have now established an agreement between the model and the measurement. Since the
memory bandwidth is exhausted, both loops run at the maximum possible performance as given
by their code balance. Since both loop nests are required to perform a complete lattice update,
one can also determine an overall code balance of(40+ 24) bytes=LUP = 64bytes=LUP for an
expected performance of 625MLUP/s. The measurement of 612MLUP/s isin good agreement.

Optimization 1: Common sense

The fact that the performance model describes the actual performancewell does not mean that
there is no optimization potential. About 37% of the runtime goes into the second loop, which
does nothing but copy the updated grid points (phi(:,:,:,t1) back to the source array
(phi(:,:,:,t0). There is no real “work” involved, so one may think about this operationas
overhead. A simple way to avoid it is to substitute the second loop by a simple construct that
exchanges the values oft0 andt1 (see line 15 in Listing 5.2). This code has now an overall
code balance of 40bytes=LUP and we can expect a speedup of 60% (since 64=40= 1:6) for a
performance of 1000MLUP/s. The measurement of 980MLUP/s is in good agreement.

Optimization 2: Spatial blocking

At a grid size of 5003, the layer condition (5.2) cannot be met if the loop nest is executed as given
in the code. However, it is completely unimportant in which order the updates are performed

73

Listing 5.2: Improved implementation of the 3D Jacobi algorithm (adapted from [21]) with
the copy loop substituted by a simple swap of time variables (line 15). The relevant LOADs
and STOREs for failing the layer condition (5.2) and meeting the row condition (5.3) are also
highlighted.

1 ! loop over sweeps
2 do s=1,ITER
3 ! sweep over grid
4 !$OMP parallel do schedule(static)
5 do k = 1,kmax
6 do j = 1,jmax
7 do i = 1,imax
8 phi(i,j,k,t1) = oos * (&
9 phi(i-1,j,k,t0)+phi(i+1,j,k,t0)+phi(i,j-1,k,t0)+ &

10 phi(i,j+1,k,t0) +phi(i,j,k-1,t0) +phi(i,j,k+1,t0))
11 enddo
12 enddo
13 enddo
14 !$OMP end parallel do
15 i=t0 ; t0=t1; t1=i ! swap arrays
16 enddo

within a time step. In order to establish the layer condition it is thus suf�cient to update parts
of the grid at a time for which (5.2) is ful�lled. This can be achieved byspatial blockingof one
or both of the inner loop levels. Since the layer condition does not depend on kmax, blocking
in this dimension will not help. It turns out that blocking the inner loop leads to performance
breakdowns if the loop length is signi�cantly shorter than a page (512 elements) due to TLB
and prefetching issues, so we block the middle loop only (see Listing 5.3). Note that inner loop
blocking may still be necessary if the inner loop length is very large.

The choice of the block sizebj may be guided by solving the layer condition forjmax: At
an (estimated) effective cache size of 10MB we getbj � 156. To be on the safe side we choose
bj = 70 (due to the large number of streams hitting the L3 cache, the effective sizeis actually
just half of the above estimate). This brings the model down to a 24bytes=LUP balance and to
an expected performance of 1670MLUP/s, of which about 1550MLUP/scan be measured.

Optimization 3: Non-temporal stores

An important conclusion from the performance model is that exactly one thirdof the memory
bandwidth (8 out of 24bytes=LUP) is taken up by the write-allocate transfers. These do not
even appear as true LOAD instructions in the code but are a simple consequence of the fact that
the core can communicate directly only with the L1 cache.1

Intel and AMD x86 processors feature special instructions to circumvent the write-allocate
when writing to main memory, thenon-temporal stores. A non-temporal (“NT”) store instruc-
tion is a normal store, but it writes directly to memory instead of the L1 cache.2 There are some

1In certain situations it is possible for Intel Nehalem and later processors toautomatically circumvent the write-
allocate between the L2 and the L1 cache [48]. In case of a miss in L2 or L3, the write-allocate will occur.

2There is in fact a small number of write-combine buffers caching subsequent non-temporal stores, but for prac-

74

Listing 5.3: Further improvement of the 3D Jacobi algorithm (adapted from [21]) with spatial
blocking in thej direction. The additional outer loop over the blocks, the blockedj loop, and
the relevant LOADs and STOREs for meeting the layer condition (5.2) are highlighted.

1 ! loop over sweeps
2 do s=1,ITER
3 ! loop nest over blocks
4 do js=1,jmax,bj
5 ! sweep one block
6 !$OMP parallel do schedule(static)
7 do k = 1,kmax
8 do j = js,min(jmax,js+bj-1)
9 do i = 1,imax

10 phi(i,j,k,t1) = oos * (&
11 phi(i-1,j,k,t0)+phi(i+1,j,k,t0)+phi(i,j-1,k,t0)+ &
12 phi(i,j+1,k,t0)+phi(i,j,k-1,t0)+ phi(i,j,k+1,t0))
13 enddo
14 enddo
15 enddo
16 !$OMP end parallel do
17 enddo
18 i=t0 ; t0=t1; t1=i ! swap arrays
19 enddo

restrictions (for instance, the address to which the data is written must be aligned to a SIMD
width address boundary), but in many cases the compiler is able to employ these instructions
when allowed or directed to do so. In case of the Jacobi smoother, thephi(i,j,k,t1) ar-
ray in the inner loop is a candidate for non-temporal stores. There is a source code directive
which acts as a hint for the Intel compiler to employ NT stores if it is safe, i.e., if the alignment
constraint can be met.

Naively one would expect a speedup with respect to standard stores of50% in this case,
since the code balance would be 16bytes=LUP due to the missing write-allocate. It turns out,
however, that the memory interface is less ef�cient with NT stores, so the input from the mi-
crobenchmarking must be modi�ed: With NT stores, the STREAM copy bandwidth goes down
from 40GB/s to 36GB/s on a Sandy Bridge socket, leading to a performanceprediction of
2250MLUP/s for the Jacobi smoother. The measurement yields 1930MLUP/s, which is about
86% of the prediction, and 25% faster than the version with standard stores. Hence, this opti-
mization does not quite live up to the expectations.

A closer look at the STREAM benchmarks and the scaling of the smoother performance
reveals at least part of the problem: Figure 5.2a shows the bandwidth scaling behavior of the
STREAM copy benchmark within a Sandy Bridge chip with all four combinationsof standard
stores, NT stores, 2:7GHz clock speed, and “turbo mode” (see Sect. 2.1.7). As expected from
the ECM model, the clock speed has signi�cant in�uence on the bandwidth in the non-saturated
case (and also, albeit smaller, in the saturated case, which was already shown in Fig. 4.4). This
particular Sandy Bridge processor can run at up to 3:5GHz when only one or two cores are

tical purposes it can be assumed that the cache is ignored.

75

1 2 3 4 5 6 7 8
cores

0

5

10

15

20

25

30

35

40

B
an

dw
id

th
 [G

B
/s

]

Std. stores 2.7 GHz
Std. stores Turbo
NT stores 2.7 GHz
NT stores Turbo

(a)

1 2 3 4 5 6 7 8
cores

0

500

1000

1500

2000

P
er

fo
rm

an
ce

 [M
LU

P
/s

]

Std. stores 2.7 GHz
Std. stores Turbo
NT stores 2.7 GHz
NT stores Turbo

Std. stores limit

NT stores limit

(b)

Figure 5.2: (a) Bandwidth scaling of the STREAM copy benchmark acrossthe cores of one
Sandy Bridge socket, for a �xed clock speed of 2:7GHz and turbo mode (triangles vs. squares),
with and without non-temporal stores (open vs. �lled symbols). The bandwidth number is the
actual bandwidth over the memory bus, including write-allocate transfers. (b) Performance
scaling of the Jacobi smoother, same parameters.

used, and still at up to 3:1GHz with a full socket.3 With NT stores the impact is smaller but
still visible. The main conclusion from Fig. 5.2a is that the STREAM benchmark performance
saturates across the cores, regardless of whether turbo mode is used or not. The degradation
in saturated bandwidth with NT stores is clearly visible, but the effective bandwidth available
to the application code is still larger with NT stores. This is only true in the saturated case,
however; NT stores show no bene�t in the non-saturated regime.

The Jacobi code, on the other hand, shows no clear saturation with NT stores at 2:7GHz
(open triangles in Fig. 5.2b), while saturation is easily reached with standardstores (�lled trian-
gles). Although the ECM model is of not much help for NT stores, the general conclusion that
fewer cores are needed for saturation at higher clock speeds is still valid. Accordingly, we see
a 5% improvement in full-socket performance with NT stores when using turbo mode, for an
overall 90% of the prediction. There is still some headroom left, so a yet higher clock frequency
or a larger number of cores would result in somewhat better performance.

A summary of the improvements in comparison with the different performance models on a
single socket can be seen in Fig. 5.3a.

Optimization 4: Proper ccNUMA placement

A second CPU socket doubles the available memory bandwidth, so we expect a doubling of
the performance when running with 16 threads. However, the measurement shows a slow-
down to about 1610MLUP/s. This problem can again be investigated using hardware perfor-
mance metrics: All the memory traf�c in the system goes to the ccNUMA domain at the�rst
socket, and half of those transfers are initiated from the second socket.Hence, there seems to

3This data can be obtained withlikwid-powermeter from the LIKWID tool suite.

76

na
iv

e
m

od
el

im
pr

ov
ed

m
od

el

co
m

m
on

se
ns

e

j b
lo

ck
in

g

N
T

st
or

es
N

T
st

or
es

,
tu

rb
o

m
od

e0

500

1000

1500

2000

P
er

fo
rm

an
ce

 [M
LU

P
/s

]

model

measurement

(a)

se
ria

l
pl

ac
em

en
t

in
te

rle
av

ed
pl

ac
em

en
t

pa
ra

lle
l

pl
ac

em
en

t0

1000

2000

3000

4000

P
er

fo
rm

an
ce

 [M
LU

P
/s

]

expected

(b)

Figure 5.3: Summary of the modeling and optimization results for the performanceengineering
process applied to the 3D Jacobi smoother on (a) one Sandy Bridge socket and (b) on the whole
node (two sockets). Note the change of scale between the two graphs.

be a strong ccNUMA locality problem. Before trying to �x this in the code, one can double-
check by running the code with interleaved page placement across the ccNUMA nodes (using
numactl -i 0,1 as a wrapper), which boosts the performance to 3070MLUP/s. Interleaved
page placement ensures at least some parallel data access, although half of all memory requests
go to the remote domain. If a loop runs faster with interleaved pages, this is a clear indication
of a ccNUMA placement problem.

Fixing the placement problem completely is simple here and involves applying the ”Golden
Rule of ccNUMA” [21], a.k.a. the “�rst-touch principle:” After allocation thearrays must be
initialized in parallel, and in the exact same way as they are accessed later in thesolver loop.
Listing 5.4 shows the correct allocation and initialization code. Note that the middleloop in this
nest is blocked with the samej-block sizebj as the solver loop. This is to ensure that there is
absolutely no difference in the data access pattern. The initialization of the boundary layers (for
which at least one of the Cartesian indices is zero) must be done after the parallel �rst touch.

After this change the performance goes up to 4030MLUP/s on two sockets,i.e., perfect
scaling is achieved. A summary of the ccNUMA-related improvements can be seen in Fig. 5.3b.

Jacobi smoother summary

The steps taken above for modeling and optimization of the Jacobi smoother are by no means
new. Stencil update schemes have been a subject of intense study over the last decade [49, 50,
51, 52, 53, 54, 9, 55, 10], and there are many more optimizations that can be applied to the
serial and parallel code such as temporal blocking or communication hiding (in the distributed-

77

Listing 5.4: Initialization code for proper ccNUMA page placement. The codefor initializing
the boundaries on the faces of the domain must come after the parallel �rst touch, and is omitted.

1 double precision, dimension(:,:,:,:) :: phi
2

3 allocate(phi(0:imax+1,0:jmax+1,0:kmax+1,0:1)) ! loop n est over blocks
4 do js=1,jmax,bj
5 ! sweep one block
6 !$OMP parallel do schedule(static)
7 do k = 1,kmax
8 do j = js,min(jmax,js+bj-1)
9 do i = 1,imax

10 phi(:,j,k,:) = ...
11 enddo
12 enddo
13 enddo
14 !$OMP end parallel do
15 enddo
16 ! boundary initialization omitted

memory case) [21]. The example was chosen to show the usefulness of a model-guided approach
to optimizations. First, runtime pro�ling was used to get an impression of the importance of dif-
ferent code parts (�rst vs. second loop). A roofline model was established with input from code
analysis, machine characteristics (pipeline throughput), and microbenchmarking (STREAM).
Multiple adaptions of the model were necessary, �rst to get an agreementwith the measure-
ments at all (re�ned roofline model of the �rst loop), and later to predict the outcome of code
optimizations (common sense, spatial blocking, NT stores). Hardware metricswere used to
validate or refute models and hypotheses (memory bandwidth saturation, ccNUMA locality
problems), and the microbenchmarks were adapted to the requirements of theapplication code
(standard vs. NT stores). Hence, all the components of the performance engineering process
sketched in Fig. 5.1 were covered in this simple case study, some of them evenmultiple times.

5.2 Identi�cation of performance patterns on the node level [5]

While the performance engineering process laid out in the previous sectionis a useful guideline
for practical work with code analysis and optimizations, some details are still missing, especially
about how the performance model is built and re�ned, and how optimizationsinteract with the
model. It turns out that it is very helpful to think about modeling and optimizationin terms of
performance patterns. Patterns aid in building, re�ning, and validating performance models,
and in predicting the outcome of possible optimizations. This section develops thenotion of
node-level performance patterns.

5.2.1 Hardware performance metrics

Hardware performance monitoring (HPM) is available in every modern microprocessor design.
It allows for the measurement of many (sometimes hundreds) of metrics that are related to the
way code is executed on the hardware. Although many of those metrics are unimportant for

78

the developer writing numerical simulation code, some of them can be very useful in assessing
resource utilization and general performance properties, and can thusbe used to validate perfor-
mance models. A large variety of tools exist, from basic to advanced, that allow easy access to
HPM data, and some of them even give optimization advice derived from the measurements.

Fortunately, although there is considerable variation in the kinds of hardware events that
are available on different processors (even from the same manufacturer), a rather small subset
of them is suf�cient to identify the prevalent performance problems in serial and parallel code.
These are available on all modern processor designs. We call a speci�ccombination of hardware
event counts and possible other sources of information a “signature.” Together with information
about runtime performance behavior and code properties, signatures indicate the presence of so-
called “performance patterns,” which help to assess the quality of code and, most importantly,
identify relevant bottlenecks to enable a structured approach to performance optimizations.

5.2.2 likwid-perfctr

Given suf�cient experience, simple and lightweight tools are often adequate to accomplish the
goals described above. Hence the restriction to x86 architectures underthe Linux OS and the
use of thelikwid-perfctr tool from the LIKWID tool suite [25, 26]. LIKWID4 is a col-
lection of command line programs that facilitate performance-oriented program development
and production in x86 multicore environments under Linux. The concept ofevent sets with con-
nected derived metrics, which is implemented inlikwid-perfctr by means of performance
groups, �ts well to the signature approach presented here.

5.2.3 Performance patterns and event signatures

This section describes performance patterns that have been found to bemost useful when an-
alyzing scienti�c application codes on multicore-based nodes. Other application domains may
have different issues, but the basic principle could still be applied. The categorization is to some
extent arbitrary, and some patterns are frequently found together. Each of those patterns can be
mapped to one or more “signatures,” which consist of a combination of performance behavior
(scalability, sensitivity to problem size, etc.) and a particular pattern in raw orderived hard-
ware metrics. While the former is often independent of the underlying architecture, the latter
is very hardware-speci�c. Ideally a tool should provide these event sets and derived metrics in
a similar way on all supported processor architectures.likwid-perfctr [25, 26] tries to
support this by “performance groups.” Table 5.1 maps each performance pattern to its signa-
tures in the performance behavior and to the relevant anomalies in hardware metrics (together
with thelikwid-perfctr performance group, if available). In some cases the signature also
involves information from other sources such as microbenchmarks or staticcode analysis, since
some HPM signatures may be easily misinterpreted. Note that general optimizationhints are
problematic, even if they are based on patterns; optimization is only possible through a thorough
code review together with a suitable performance model.

In the following, each pattern is described in detail.

4“Like I Knew What I'm Doing”

79

S
ignature

P
attern

P
erform

ance
behavior

H
P

M
(and

likw
id-perfctr

group(s))

B
andw

idth
saturation

saturating
speedup

across
cores

sharing
a

data
path

bandw
idth

m
eets

B
W

ofsuitable
stream

ing
m

icrobenchm
ark

(M
E

M,L3
)

Lim
ited

instruction
throughput

P
ipeline

saturation
throughputatdesign

lim
it

low
C

P
I,1:1

ratio
ofcy

to
speci�c

instruction
counts

(F
LO

P
S

_*
,D

A
T

A,C
P

I)

P
ipelining

hazards
in-core

throughputfar
from

design
lim

it,
perform

ance
insensitive

to
data

size

(large)
integralratio

ofcy
to

speci�c
instruction

counts,high
C

P
I(F

LO
P

S
_*

,D
A

T
A,C

P
I)

C
ontrol�ow

issues
high

branch
rate,high

branch
m

iss
ratio

(
B

R
A

N
C

H)

Inef�cientdata
access

S
trided

access
sim

ple
B

W
m

odels
far

too
optim

istic
low

cache
hitratio,frequentcache

line
evicts/replacem

ents

E
rratic

access
see

above,plus
low

B
W

utilization
(latency)

(
C

A
C

H
E,D

A
T

A,
M

E
M)

M
icroarchitecturalanom

alies
large

discrepancy
from

sim
ple

perform
ance

m
odels

very
hardw

are-speci�c,e.g.,m
em

ory
aliasing

stalls,con�ict
m

isses,unaligned
LD

/S
T,requeue

events.
C

ode
review

re-
quired,w

ith
architecturalfeatures

in
m

ind.

F
alse

cache
line

sharing
very

low
speedup,or

slow
dow

n
/discrepancy

from
m

odelonly
in

parallelcase
frequent(rem

ote)
evicts

(CA
C

H
E)

B
ad

ccN
U

M
A

page
placem

ent
bad/no

scaling
across

locality
dom

ains,better
perform

ance
w

/interleaved
placem

ent
unbalanced

bandw
idth

on
m

em
ory

interfaces
/high

rem
ote

traf�c
(M

E
M)

Load
im

balance
saturating/sub-linear

speedup
differentam

ountof“w
ork”

across
cores

(
F

LO
P

S
_*

);instruc-
tion

countis
notreliable!

S
ynchronization/com

m
unication

overhead
speedup

going
dow

n
as

m
ore

cores
are

added
/no

speedup
w

ith
sm

allproblem
sizes

/cores
busy

butlow
perform

ance

large
non-“w

ork”
instruction

count(grow
ing

w
ith

num
ber

of
cores

used)
/Low

C
P

I(FLO
P

S
_*

,C
P

I)

C
ode

com
position

issues

Instruction
overhead

low
application

perform
ance,good

scaling
across

cores,perform
ance

insensitive
to

problem
size

low
C

P
Inear

theoreticallim
it/large

non-F
P

instruction
count

(constantvs.
num

ber
ofcores)

(
F

LO
P

S
_*

,D
A

T
A,C

P
I)

E
xpensive

instructions
large

C
P

I

Ineffective
instructions

scalar
instructions

dom
inating

in
data-parallelloops

(F
LO

P
S

_*
,C

P
I)

Table
5.1:

P
erform

ance
patterns

and
corresponding

signatures
for

pa
rallelcode

on
m

ulticore
system

s.
C

olor
code:

m
axim

um
resource

usage
(green),hazards

(red),w
ork-related

patterns
(blue).

80

Bandwidth saturation

Whenever the bandwidth of a shared data path is limited, there is a natural bound to scalability.
Most frequently this happens on the main memory interface or the (usually shared) outer-level
cache (OLC). Even if an algorithm is perfectly parallelizable in theory (in thesense of Amdahl's
Law (3.5)), bandwidth saturation can set a limit to its scalability, as was shown inFig. 3.9. The
roofline model can be used to predict whether the bandwidth bottleneck applies in the saturated
case (see Sect. 3.2), while the ECM model describes multicore scaling for streaming kernels
(see Sect. 3.4).

Using hardware performance monitoring, bandwidth saturation can be detected by mea-
suring the actual bandwidth utilization of a data path. If the measured bandwidth is close to
the maximum value, which can be obtained by a suitable streaming microbenchmarksuch as
STREAM [24], this is an indication that bandwidth limitations play some role.

Limited instruction throughput

There is always a limit for the overall number of instructions that can be executed per cycle on
a core, independent of their types. Even if a code does not hit this limit, it could still suffer from
a bottleneck in a speci�c execution port, such as LOAD or MULT (see Fig. 2.1). Depending on
whether the pipeline(s) is/are �lled or not, one can distinguish three cases:Pipeline saturation,
pipelining hazards, and control �ow issues.

Pipeline saturation If an execution unit is at its throughput limit, this is indicated by a
1:1 ratio of core cycles and executed instructions on this unit. As a consequence, the CPI value
is typically good (low).

Pipelining hazards True data dependencies, i.e., dependencies that cannot be resolved by
register renaming, cause pipeline bubbles, which further diminish the throughput. In this case
there is often an exact integral ratio (larger than one) between core cycles and executed instruc-
tions in the affected pipeline. Due to the additional latencies incurred by the badly pipelined
instructions, performance is rather insensitive to the location of the data. The CPI value is typi-
cally high, and a simple in-core performance model based on pipeline throughput will be far too
optimistic.

Control �ow issues This pattern is closely related to pipelining hazards, but the affected
pipeline is usually not a single one of the core pipelines but the overall fetch/decode/execute
pipeline. The HPM signature is also similar, but there is usually no integer ratio between clock
cycles and instructions. Control �ow issues arise, e.g., when the branchprediction hardware can
not work or when branches depend on the result from previous instructions and the resulting
bubbles cannot be �lled by other useful work.

In all three cases, HPM or even simple timing measurements can reveal the bottleneck. In
general, if code execution performance is limited by instruction throughput on a single pipeline,
there is a clear bottleneck on the core level. This simpli�es the execution part of ECM modeling,
and usually leads to clear indications of what should be done to improve performance. If, e.g.,
the limiting resource in a loop on an Intel Sandy Bridge core is the LOAD port throughput

81

on double-precision �oating-point data, and all loads in the loop are of scalar type, the core
executes two LOADs per cycle. Execution may be sped up by using AVX loadinstructions
instead. This will double the data throughput since now one full-width AVX LOAD (32 bytes)
can be performed per cycle. See also the “code composition” pattern below. Control �ow issues
can sometimes be resolved by reformulating the algorithm so that branches are eliminated from
inner loops [21].

Inef�cient data access

Cache-based architectures require contiguous data accesses to make ef�cient use of bandwidth
due to the cache line concept. One needs to distinguish strided access fromerratic access, since
the latter often prevents the ef�cient use of hardware or software prefetching. In both cases will
simple bandwidth-based performance models assuming unit stride be too optimistic.

Strided access Strided data access is often caused by inappropriate data structures or
badly ordered loop nests, and is one of the most frequent causes for low data transfer ef�ciency
between cache levels and to/from memory. The cache miss ratio is lower than for unit stride, but
can be easily predicted by taking the low cache line utilization into account. A bandwidth-based
model can usually be made to work if the prefetching mechanisms can accommodate the strided
accesses.

Erratic access If the access pattern is not just strided but erratic (e.g., caused by an in-
dexed array access as in the sparse matrix-vector multiply kernel described in Sect. 3.3.2), au-
tomatic or compiler-based prefetch mechanisms may fail, incurring not only lossof effective
bandwidth but also exposing memory latency. Bandwidth-based models are hard to reconcile
with truly erratic data access, and it is hard or impossible to predict cache missratios.

Microarchitectural anomalies

This is a very architecture-speci�c pattern, which may have different manifestations depending
on the hardware. The measured performance will deviate strongly from any model based on
“simple” architectural features, such as the ECM model. Typical examples for anomalies are
false store forward aliasing, unaligned data accesses or instruction code, a shortage of load/store
buffers, cache thrashing due to insuf�cient cache associativity, bank con�icts in cache or mem-
ory, violation of pairing rules,5 limited reorder buffer size, a limited number of concurrent
prefetch streams, etc. Correspondingly, the HPM signature is also very hardware-speci�c.

False cache line sharing

Different threads accessing a cache line (and at least one of them modifying it) lead to frequent
evictions and reloads, impacting performance a lot. False sharing is usually easy to identify
using HPM, since frequent remote cache line evicts will occur and speedup will be small or

5This effect is speci�c to the Intel Xeon Phi coprocessor [56]. On this in-order two-way superscalar architecture,
pairs of instructions may be scheduled in the same cycle on the same core,but there are limitations on which types
can be paired. If the order of instructions in the machine code is not in accordance with the pairing rules, the
maximum throughput goes down to one instruction per cycle.

82

even smaller than one. Once spotted, false sharing is usually simple to remedy by well-known
code optimizations such as padding or privatization [21].

Bad page placement on ccNUMA

All modern multi-socket servers are of ccNUMA type. Memory-bound codes must implement
proper �rst-touch page placement in order to pro�t from the bandwidth advantages that cc-
NUMA provides. The two main problems with bad page placement are nonlocaldata accesses
and bandwidth contention, with load imbalance as a possible secondary effect.

Bad ccNUMA page placement is only a problem for memory-bound code, and usually leads
to small or no speedup across ccNUMA domains. HPM measurements will report a large vol-
ume of non-local traf�c across the inter-domain NUMA network, and probably an unbalanced
utilization of the memory interfaces.

Load imbalance

Load balancing issues are an impediment for parallel scalability, and henceperformance, and
they should be resolved �rst. There are many possible sources of load imbalance, but all include
some sort of synchronization or coordination between workers. As an example, a global barrier,
i.e., a synchronization point that requires all workers to arrive beforeany work can proceed,
often makes load imbalance manifest. But even without global synchronization, differences
in other overhead such as point-to-point communication can lead to imbalancedexecution of
useful work. This well-known effect has been demonstrated on multicoresystems in [2] for the
important sparse matrix-vector multiply operation.

Load imbalance does not lead to a drop in performance when more workersare added,
unless there are other factors such as communication overhead. Using hardware performance
monitoring, this pattern is readily identi�ed by a different amount of “work” performed by
different workers. This depends crucially on whether “work” is a well-de�ned concept in the
code; e.g., �oating-point operations are usually a good metric in this context,but the number
of executed instructions is not, because typical synchronization and communication overhead
tends to lead to tight spin-waiting loops, which execute lots of instructions but do not count as
“work.”

Note that a non-negligible sequential, i.e., non-parallelizable part in an algorithm, and the
corresponding limitation of speedup (Amdahl's Law) is only a special case of load imbalance,
even if “speedup” is obtained not by using more identical workers but byputting part of the
problem onto an accelerator.

Synchronization overhead

Barriers at the end of parallel loops or locks protecting shared resources may have a large per-
formance impact if the workload between such synchronization points is too small. This pattern
may also incur secondary effects like load imbalance or code composition issues.

Synchronization overhead typically grows with the number of participating workers, so it is
often a fundamental obstacle for strong but also weak scalability [21]. Especially with strong
scaling, adding workers inevitably leads to slower execution at some point. In the worst case,

83

any parallelization, even with only two workers, will slow down the program. HPM measure-
ments typically show a large number of instructions that are not directly associated with appli-
cation code, and a low CPI value.

There is a broad consent in the supercomputing community that global synchronization (of
which global, collective communication is a variant) must be avoided by all meansif algorithms
are ever going to be exascale-ready [57].

Communication overhead

Communication overhead is usually seen as separate from synchronizationoverhead, although
they are certainly related. Whenever different parts of a system have tocommunicate in or-
der to work cooperatively, some overhead is to be expected. These parts may even be close
together (such as accelerator hardware and the associated host system). Simple point-to-point
communication can often be described by a latency-bandwidth model, even in non-trivial cases
like halo exchange. An abundance of communication overhead generally manifests itself in a
non-linear speedup, especially with strong scaling. The details are very problem-speci�c, how-
ever (see [21] for an overview). The metric signature of communication overhead is similar to
synchronization overhead: many non-essential instructions and low CPI.

Code composition issues

Often, the machine code comprises an instruction mix that is inadequate to solve the prob-
lem ef�ciently. A possible symptom of a bad instruction mix is an over-optimistic algorithm-
based performance model (which only considers the minimum required amount of work and
resources). The difference between prediction and measurement is typically larger when the
data set is close to the core, i.e., if it �ts in a cache. Consequently, inef�cient code execution
often manifests itself in an insensitivity of performance to the problem size, just like pipeline
hazards and control �ow problems. Again we can distinguish several cases:

Instruction overhead General-purpose instruction overhead is caused by inef�cient com-
piler code, which often occurs in over-abstracted C++ frameworks, orwith programming lan-
guages that are inappropriate for generating ef�cient low-level code. In this case a code or
runtime HPM analysis reveals that the execution bottleneck lies in an abundance of machine in-
structions that do not do actual “work,” such as index arithmetic, inter-register moves, branches,
etc. The CPI will typically be low, indicating “good” utilization of the pipelines. Note that syn-
chronization constructs (barriers, locks) and communication overhead (waiting for messages)
can have the same effect because the CPU often ends up in tight spin-waiting loops.

Expensive instructions The use of expensive operations like divide and square root can
have the opposite effect: The CPI value will be large, since most of the time is spent in long-
latency, badly pipelined execution units. This can be observed in the single-core data in Fig. 3.9,
where the substitution of the multiply by a divide operation causes a drop in performance of
almost a factor of two. Note that modern x86 processors have special instructions for opti-
mized, low-latency, pipelined divides with reduced precision (11 bits insteadof 23 in single
precision) [23]. These can be used if performance is crucial and accuracy is secondary. See
Chapter 6 for an application example.

84

Ineffective instructions Another source of inef�cient low-level code is a low degree of
SIMD vectorization with algorithms that are actually (or can be formulated as) data-parallel.
The measured CPI value in these cases will be generally low, i.e., many instructions per cycle
are executed. If the HPM architecture supports it, scalar and SIMD operations can be counted
independently, giving a clear indication of the code composition.

5.2.4 Pattern categorization

The patterns described above help in identifying the relevant bottlenecks of a given loop, and
may point to code that is “particularly slow,” and could be improved. Slow code has important
consequences for scalability. It follows from the ECM model that more cores will be needed to
saturate a bandwidth bottleneck if the code runs slower on a single core (see Fig. 3.9b). If there
is no chip-level bottleneck (or if it cannot be exhausted), slowing down the code will also impact
the large-scale (multi-node) performance; as a side effect, communication and synchronization
overhead will be less important and speedup (not performance) will improve. See also the
discussion on “slow computing” in [21].

A loose categorization of all identi�ed patterns is shown by the color code in Table 5.1:

• Maximum resource usage.Pipeline or bandwidth saturation may be seen as “positive”
patterns, since it is not possible to exhaust the respective resource any further. This does
not mean, however, that there are no other resources that could be used. For instance, if
the ADD pipeline is at its limit but the loop does not execute MULT instructions, fusing
loops could lead to a good utilization of both pipelines at the same time.

• Hazards.A “hazard” is a condition that leads to sub-optimal utilization of the hardware
due to the particular way code is executed or data is accessed. The exactimpact of such
a pattern is often not directly related to an algorithm but to a speci�c implementationon
speci�c hardware.

• Work inef�ciency.The “work” to be done as de�ned by the algorithm may be executed in
a way that prevents ef�cient use of the hardware. These patterns address general issues
and tend to be rather hardware-independent.

It is evident that the “negative patterns” in the last two categories are notclearly separated.

5.3 Patterns and models: Performance engineering re�ned

Although the patterns described above are useful in the performance engineering work �ow, it
is still not entirely clear how the interaction of patterns, performance models, and optimizations
works in practice. In Fig. 5.1 the details of pattern usage are hidden in the “Performance model”
box.

The examples have so far shown that, once a performance model has been built, it can be
used for two purposes:

1. If the model “works,” i.e., if it can be validated using performance measurements (and, if
applicable, HPM data), it describes the relevant bottleneck of the loop correctly. Then it
can guide optimizations by predicting the possible bene�t of a code change.This predic-
tion can have one of two consequences:

85

(a) The optimized code is limited by the same bottleneck as the original code (i.e., the
same pattern applies).
One example for this was the application of spatial blocking to the 3D Jacobi
smoother in Sect. 5.1.2: Before the optimization,memory bandwidth saturation
was identi�ed as the relevant performance pattern. Blocking thej loop led to a
reduction of the code balance from 40bytes=LUP to 24bytes=LUP, but the pattern
(and thus the bottleneck) stayed the same.

(b) The optimized code hits another bottleneck, which implies a shift to another pattern.
This case was encountered with the divide-accumulate kernel in Sect. 3.3.3: While
the original code was core-bound for all but very small problem sizes on the West-
mere chip due to the long-latency divides in the loop kernel (expensive instructions
pattern), the optimized version was strongly memory-bound at large problemsizes
(memory bandwidth saturationpattern). With a working set �tting in the L1 cache
we could potentially expect arithmetic peak for the optimized code (pipeline satu-
ration pattern), but we have estimated that the OpenMP overhead will dominate the
runtime (synchronization overheadpattern).

2. If there is a discrepancy between the performance measurement and the model, the model
has “failed.” There are two possible reasons for such a mismatch:

(a) The wrong pattern was used for building the model, i.e., the relevant bottleneck was
not identi�ed correctly. Fixing this issue either implies a change of pattern, and
probably building a new model, or a code optimization that keeps the pattern and
makes the performance “�t” to it.
The latter case was observed with the bad (or rather non-existent) scalingacross
sockets for the 3D Jacobi smoother, wherememory bandwidth saturationwas ex-
pected butbad ccNUMA page placementwas encountered. Fixing this problem by
proper parallel �rst touch initialization shifted the model back tomemory bandwidth
saturation.
The failed roofline modeling of the single-threaded vector triad in main memory
(Sect. 3.4.1) led to the development of the ECM model, which can encompass sev-
eral patterns, depending on the code characteristics. More complex examples for
this case will be covered in Chapters 6 and 7.

(b) The pattern was correct, but the input to the model was wrong. Since amodel
has several inputs (code analysis, microbenchmarks, and machine characteristics),
there are several options, such as adjusting the assumed resource requirements of
the code, choosing a different microbenchmark, or correcting a probably unjusti�ed
assumption about machine characteristics.
In the 3D Jacobi smoother example in Sect. 5.1.2, the �rst attempt at roofline mod-
eling failed because the amount of data traf�c over the memory interface wasin fact
lower than estimated, although the pattern (bandwidth saturation) and even the data
path (memory) was correct. In this case the code analysis was the problem.

In Sect. 3.3.2 we also studied the sparse matrix-vector multiplication, in which common lore
suggests thaterratic accessshould be the relevant pattern. The analysis showed that this is not

86

necessarily the case, and thatmemory bandwidth saturationmay also apply. The “severity” of
the erratic access pattern could be determined by “reverse modeling,” i.e., by measuring certain
performance properties of the kernel and then �xing the free parametera , which describes the
overall volume of the data traf�c caused by the access to the right-hand side. This example
shows that it is not always just a single pattern that applies, but that several patterns may overlap
(which is, by design, often the case when the ECM model is used).

Figure 5.4 shows a re�ned performance engineering cycle, with all activities exposed that
employ patterns. The pro�ling component was omitted for brevity.

OK?

C
ha

ng
e

pa
tte

rn
 o

r
co

de
 (

2a
)

Performance model

ad
ju

st
m

en
t

M
od

el

correct pattern
Identify

model input
Adjust

code analysis
Algorithm /Microbenchmarking

characteristics
Machine

Eliminate non-
expedient activity

resource utilization
Optimize for better

HW metrics
Traces /Model validation

Yes

No

M
od

el
 b

ui
ld

in
g

O
pt

im
iz

at
io

n

Pattern

S
am

e
pa

tte
rn

 (
1a

)

C
ha

ng
e

pa
tte

rn
 (

1b
)

S
am

e
pa

tte
rn

 (
2b

)

Validation

Figure 5.4: A re�ned performance engineering process, with pattern-related activities exposed.
The labels (1a . . . 2b) correspond to the list items in Sect. 5.3.

87

88

Part II

Applications

89

Chapter 6

A medical image reconstruction
algorithm [6]

6.1 Introduction

6.1.1 Computed tomography

Computed tomography (CT) [58] is an established technology to non-invasively determine a
three-dimensional (3D) structure from a series of projections of an object. Beyond its classic
application area of static analysis in clinical environments the use of CT has accelerated substan-
tially in recent years, e.g., toward material science or time-resolved scans supporting interven-
tional cardiology. The numerical volume reconstruction scheme is a key component of modern
CT systems and is known to be very compute-intensive. Acceleration through special-purpose
hardware such as FPGAs [59] is a typical approach to meet the constraints of real-time pro-
cessing. Integrating nonstandard hardware into commercial CT systems adds considerable costs
both in terms of hardware and software development, as well as system complexity. From an
economic view the use of standard x86 processors would thus be preferable. Driven by Moore's
law the compute capabilities of standard CPUs have now the potential to meet the requested CT
time constraints.

The volume reconstruction step for recent C-arm systems with �at panel detector can be
considered a prototype for modern clinical CT systems. Interventional C-arm CTs, such as the
one sketched in Fig. 6.1, perform the rotational acquisition of 496 high resolution X-ray pro-
jection images (1248� 960 pixels) in 20 seconds [60]. This acquisition phase sets a constraint
for the maximum reconstruction time to attain real-time reconstruction. In practice �ltered
backprojection (FBP) methods such as the Feldkamp algorithm [61] are widely used for per-
formance reasons. The algorithm consists of 2D pre-processing steps, backprojection, and 3D
post-processing. Volume data is reconstructed in the backprojection step,making it by far the
most time-consuming part [59]. It is characterized by high computational intensity, nontrivial
data dependencies, and complex numerical evaluations but also offers an inherent embarrass-
ingly parallel structure. In recent years hardware-speci�c optimizationof the Feldkamp algo-
rithm has focused on GPUs [62, 63, 64, 65, 66] and IBM Cell processors [67, 68]. For GPUs in
particular, large performance gains compared to CPUs were reported [63] or documented by the
standardized RABBITCT benchmark [69, 70]. Available studies with standard CPUs indicate
that large servers are required to meet GPU performance [71]. RABBITCT is an open competi-

91

Figure 6.1: C-arm system
illustration (Axiom Artis
Zeego, Siemens Health-
care, Forchheim, Ger-
many).

tion benchmark based on C-arm CT images of a rabbit (see Fig. 6.2). It allows to compare the
manifold of existing hardware technologies and implementation alternatives forreconstruction
scenarios by applying them to a �xed, well-de�ned problem. This chapter concentrates on the
optimal implementation of the FBP algorithm on multicore processors. See [6] fora detailed
account of related work.

This chapter highlights, in condensed form, the aspects of Ref. [6] that are related to the
performance engineering approach: Starting from a �rst rough analysis of the code, which points
to a strongly memory-bound problem on modern multicore chips, obvious optimizations such as
work reduction and SIMD vectorization are applied. Using the optimized codeas a baseline, an
ECM performance model is built which leads to the conclusion that the algorithmis memory-
bound only on older, bandwidth-starved processors, but not on modern CPUs like the Intel
Sandy Bridge. Consequently, blocking or unrolling techniques only pay off when bandwidth
limitation applies. Performance results are presented for a number of modernand older Intel
multicore CPUs.

Figure 6.2: Volume rendering based on the recon-
struction of 2D X-ray projections of a rabbit.

92

6.2 Experimental testbed

A selection of modern Intel x86-based multicore processors (see Table 6.1) was chosen to test
the performance potential of optimized implementations of the algorithm. All of thesechips
feature a large outer level cache, which is shared by two (Core 2 Quad “Harpertown”), four
(Sandy Bridge), six (Westmere EP), or ten cores (Westmere EX). The maximum number of
cores sharing an outer level L2/L3 cache is called an “L2/L3 group.”

With the introduction of the Core i7 architecture the memory subsystem of Intel proces-
sors was redesigned to allow for a substantial increase in memory bandwidth, at the price of
introducing ccNUMA on multisocket servers. At the same time Intel also relaunched simulta-
neous multithreading (SMT) with two threads per physical core. The SandyBridge processor is
equipped with a new instruction scheduler, supports the new AVX SIMD instruction set exten-
sion, and has a new last level cache subsystem (which was already present in Nehalem EX). The
10-core Intel Westmere EX is not mainly targeted at HPC clusters but re�ects the performance
maximum for x86 shared-memory nodes. A summary of the most important processor features
is presented in Table 6.1. Note that the Sandy Bridge model used here is a desktop variant,
while the other processors are of the server (“Xeon”) type. Table 6.1 also contains bandwidth
measurements for a simple update benchmark:

1 for(int i=0; i<N; ++i)
2 a[i] = s * a[i];

This benchmark re�ects the data streaming properties of the reconstructionalgorithm and is thus
better suited than STREAM [72] as a baseline for a quantitative performance model.

Since most of the performance-critical code was written in assembly language, the choice
of compiler is marginal (the Intel compiler in version 12.0 was used). Threadaf�nity, hard-
ware performance monitoring, and low-level benchmarking was implemented via the LIKWID
tool suite [73, 74], using the toolslikwid-pin , likwid-perfctr , andlikwid-bench ,
respectively.

6.3 The algorithm

6.3.1 Theory

The RABBITCT dataset consists ofN = 496 projection imagesIn acquired by a C-arm system.
The projections are already pre-processed and �ltered. Hence, onlythe backprojection step
is considered in the presented work. Each projection image is accompanied by a projection
matrixAn 2 R3� 4 [75, 76]. It encodes the complete projection geometry, including reproducible
deviations from the ideal Feldkamp geometry [76]. UsingAn, the perspective projection of an
arbitrary point~x = (x;y;z)T in 3D space onto the point~p in theu-v image plane of then-th view
can be expressed as [77]

~̃pn
�= An~̃x; (6.1)

93

Table 6.1: Test machine speci�cations. The cacheline size is 64 bytes for all processors and
cache levels. The update benchmark results were obtained with the likwid-bench tool.

Microarchitecture Intel Harpertown Intel Westmere Intel Westmere EX Intel Sandy Bridge

Model Xeon X5482 Xeon X5670 Xeon E7- 4870 Core i7-2600

Label HPT WEM WEX SNB

Clock [GHz] 3.2 2.66 (2.93 turbo) 2.40 3.4 (3.5 turbo)

sockets/cores/threads 2/8/- 2/12/24 4/40/80 1/4/8

SIMD extension SSE3 SSE4.2 SSE4.2 AVX

SIMD register [bytes] 16 16 16 32

Socket L1/L2/L3 4� 32k/2� 6M/- 6� 32k/6� 256k/12M 8� 32k/8� 256k/30M 4� 32k/4� 256k/8M

Bandwidths [GB/s]:

Theoretical socket BW 12.8 32.0 34.2 21.3

Update (1 thread) 5.9 15.2 8.3 16.5

Update (socket) 6.2 20.3 24.6 17.3

Update (node) 8.4 39.1 98.7 -

where~̃x = (~xT ;1)T and~̃p = (u;v;1)Tw. Note that the equality is in homogeneous coordinates
and therefore up to scale. For convenience, we further de�ne

un(~x) = ~̃pn;0=wn(~x); (6.2)

vn(~x) = ~̃pn;1=wn(~x);and (6.3)

wn(~x) = ~̃pn;2: (6.4)

TheN �ltered projection imagesIn are backprojected into the volumeF. The value of a voxel
at position~x = (x;y;z) is determined as

F(~x) =
N

å
n= 1

1
wn(~x)2 � In(un(~x);vn(~x)) : (6.5)

Since equation (6.1) is only de�ned up to scale,An can be constructed such that the scaling
factor~̃pn;2 corresponds to the distance weightw in the backprojection formula (6.5) [76].

Note that in practice one deals with image data that has a �nite pixel resolution. The pro-
jection of a voxel will in general not hit one pixel of the 2D CT image exactly.Therefore, the
projection value is computed by bilinear interpolation of the four closest pixels.

6.3.2 Code analysis

The basic backprojection algorithm (as provided by the RabbitCT framework [70], see List-
ing 6.1) is usually implemented in single precision (SP) and exhibits a streaming access pattern
for most of its data traf�c. One volume reconstruction uses 496 CT images (denoted byI) of
1248� 960 pixels each (ISX � ISY). The volume size is 2563 mm3. MMis the voxel size and
changes depending on the number of voxels. The most common resolution in present clinical

94

Listing 6.1: Voxel update loop nest for the plain backprojection algorithm. This gets executed
for each projectionI . All variables are of typefloat unless indicated otherwise. The division
into parts (see text) is only approximate since there is no 1:1 correspondence to the SIMD-
vectorized code.
1 wz = offset_z;
2 for(int z=0; z<L; z++, wz+=MM) {
3 wy = offset_y;
4

5 for (int y=0; y<L; y++, wy+=MM) {
6 wx = offset_x;
7 valtl=0.0f; valtr=0.0f;
8 valbl=0.0f; valbr=0.0f;
9

10 // Part 1 --------------------------
11 for (int x=0; x<L; x++, wx+=MM) {
12 uw = (A[0] * wx+A[3] * wy+A[6] * wz+A[9]);
13 vw = (A[1] * wx+A[4] * wy+A[7] * wz+A[10]);
14 w = (A[2] * wx+A[5] * wy+A[8] * wz+A[11]);
15

16 u = uw * 1.0f/w; v = vw * 1.0f/w;
17

18 int iu = (int)u, iv = (int)v;
19

20 scalu = u - (float) iu;
21 scalv = v - (float) iv;
22 // Part 2 ---------------------------
23 if (iv>=0 && iv<ISY) {
24 if (iu>=0 && iu<ISX)
25 valtl = I[iv * ISX + iu];
26 if (iu>=-1 && iu<ISX-1)
27 valtr = I[iv * ISX + iu+1];
28 }
29

30 if (iv>=-1 && iv<ISY-1) {
31 if (iu>=0 && iu<ISX)
32 valbl = I[(iv+1) * ISX + iu];
33 if (iu>=-1 && iu<ISX-1)
34 valbr = I[(iv+1) * ISX + iu+1];
35 }
36 // Part 3 ---------------------------
37 vall = scalv * valbl + (1.0f-scalv) * valtl;
38 valr = scalv * valbr + (1.0f-scalv) * valtr;
39 fx = scalu * valr + (1.0f-scalu) * vall;
40

41 VOL[z * L* L + y * L + x] += 1.0f/(w * w) * fx;
42 } // x
43 } // y
44 } // z

95

Figure 6.3: Setup geome-
try for generating the CT
projection images. The
size of the volume is al-
ways 2563 mm3, but the
number of voxels may
vary. Thex-y-zspace rep-
resents the volume while
theu-v plane represents a
�ltered projection. z

y

x

v

u

X-ray
source

detector

volume

applications is 512 voxels in each direction (denoted by the problem sizeL). The algorithm
computes the contributions to each voxel across all projection images, and the reconstructed
volume is stored in arrayVOL. Voxel coordinates (indices) are denoted byx, y, andz, while
pixel coordinates are calledu andv. See Fig. 6.3 for the geometric setup.

The aggregate size of all projection images is about 2:4GB. One voxel sweep incurs a
data transfer volume consisting of the loads from the projection image and an update operation
(VOL[i]+=s , see line 41 in Listing 6.1) to the voxel array. The latter causes 8bytes of traf-
�c per voxel and results (for problem size 5123) in a data volume of 1GB, or 496GB for all
projections. The traf�c caused by the projection images is not easy to quantify since it is not a
simple stream; it is de�ned by a “beam” of locations slowly moving over the projection pixels
as the voxel update loop nest progresses. It exhibits some temporal andspatial locality since
neighboring voxels are projected on proximate pixels of the image, but theremay also be multi-
ple streams with large strides. Nevertheless, the above estimates suggest that the memory traf�c
caused by the projection images is small compared to the updates to the voxel volume. On the
computational side, the basic version of this algorithm performs 13 additions,5 subtractions, 17
multiplications, and 3 divides.

6.3.3 Simple performance models

Based on this knowledge about data transfers and arithmetic operations one can build a roofline
model for a rough upper performance bound on the compute node. The arithmetic limitation
results in 20 cycles per vectorized update (four and eight inner loop iterations for SSE and
AVX, respectively), assuming full vectorization, and a throughput of one divide per cycle. This
takes into account that all architectures under consideration can execute one addition and one
multiplication per cycle and assumes that the pipelinedrcpps instruction can be employed
for the divisions (see Sect. 6.4.1 for details) and shares an execution port with the multiply

96

instructions. Knowing the number of cyclesc per vectorized update, the most optimistic in-core
performance (in voxel updates per time unit) is

Pmax =
f � s� n

c
; (6.6)

where f is the clock frequency,s is the SIMD width, andc is the number of cores per node.
The performance limitation due to data transfers is given byI � bS, whereI is the computa-

tional intensity of one update per eight bytes (see above), andbS is the node memory bandwidth
as measured with the synthetic update benchmark described in Sect. 6.2 (seeTable 6.1). The
following table shows upper performance bounds for a full reconstruction based on in-core and
bandwidth limitations on the four systems in the testbed (full nodes; see Table 6.1for label
de�nitions):

HPT WEM WEX SNB

Pmax [GUP/s] 5.12 7.03 19.2 5.60

I � bS [GUP/s] 1.05 4.89 11.2 2.16

Performance is given in billions of voxel updates per second (GUP/s),1 where one “update”
represents the reconstruction step of one voxel using a single image. Thelarge expected perfor-
mance for the single socket (quad-core) Sandy Bridge under the in-core arithmetic limitation is
caused by its wide AVX vector size and its fast clock speed.

Above predictions indicate a strongly memory-bound situation, but it will be shown later that
they are far from accurate: It is much too optimistic to assume perfectly independent instruc-
tions and perfect SIMD vectorization. Moreover, counting only “useful” work, i.e., arithmetic
operations, is wrong since this algorithm is nontrivial to vectorize due to the scattered load of
the projection image data; it therefore involves many more non-arithmetic instructions. A more
careful analysis will lead to a completely different picture, and further optimizations can change
the bottleneck analysis considerably.

In order to have a better view on low-level optimizations we divide the algorithminto three
parts:

1. Geometry computation: Calculate the index of the projection of a voxel in pixel coordi-
nates

2. Load four corner pixel values from the projection image

3. Interpolate linearly for the update of the voxel data

6.3.4 Algorithmic optimizations

The �rst optimizations for a given algorithm must be on a hardware-independent level. Beyond
elementary steps like moving invariant computations out of the inner loop body and reducing
the divides to one reciprocal (thereby reducing the �op count to 31), amain optimization is to
minimize the workload. Voxels located at the corners and edges of the volume are not visible
on every projection, and can thus be “clipped off” and skipped in the inner loop. This is not a

1SI pre�xes are used, i.e., 1GUP/s stands for 109 updates per second. This is inconsistent with a large part of the
literature on medical image reconstruction, where “G” is used as a binarypre�x for 230 � 1:074� 109 [78]

97

new idea, but the approach presented here improves the work reductionfrom 24% [79] to nearly
39%.

The basic building block for all further steps is the update of a consecutive line of voxels in
x direction, covered by the inner loop level in Listing 6.1. This is called the “line update kernel.”
The geometry, i.e., the position of the �rst and the last relevant voxel for each projection image
and line of voxels is precomputed. This information is speci�c for a given geometric setup, so
it can be stored and used later during the backprojection loop. Reading thisextra data from
memory incurs an additional transfer volume of 5122� 496� 4 bytes= 496MB (assuming 16-
bit indexing), which is negligible compared to the other traf�c. The advantage of line-wise
clipping is that the shape of the clipped voxel volume is much more accurately tracked than
with the blocking approach described in [79].

The conditionals (lines 23 and 30 in Listing 6.1), which ensure correct access to the pro-
jection image, involve no measurable overhead for the scalar case due to thehardware branch
prediction. However, for vectorized code they are potentially costly sincean appropriate mask
must be constructed whenever there is the possibility that a SIMD vector instruction accesses
data outside the projection [79]. To remove this complication, separate buffers are used to hold
suitably zero-padded copies of the projection images, so that there is no need for vector masks.
The additional overhead is far outweighed by the performance advantage for fully vectorized
code execution. The conditionals are also effectively removed by the clipping optimization
described above, but we need a code version without clipping for validating our performance
model later.

Note that a similar effect could be achieved by peeling off scalar loop iterations to make the
length of the inner loop body a multiple of the SIMD vector size and ensure aligned memory
access. However, this may introduce a signi�cant scalar component especially for small problem
sizes and large vector lengths.

6.4 Single core optimizations

For all further optimizations an implementation of the line update kernel in C is chosen as the
performance baseline, with all algorithmic optimizations from Sect. 6.3.4 alreadyapplied.

6.4.1 SIMD vectorization

No current compiler is able to ef�ciently vectorize the backprojection algorithm, so the code
was implemented directly in x86 assembly language. Using SIMD intrinsics could ease the
vectorization but adds some uncertainties with regard to register schedulingand hence does not
allow full control over the instruction code. All data is aligned to enable packed and aligned
loads/stores of vector registers (16 or 32 bytes with one instruction).

The line update kernel operates on consecutive voxels. For part 1 ofthe algorithm clas-
sic vectorization, i.e., working on multiple voxels at the same time, is straightforward (see
Sect. 6.3.3). This part is arithmetically limited and fully bene�ts from the increased register
width. The divide is replaced by a reciprocal. SSE provides the fully pipelinedrcpps instruc-
tion for an approximate reciprocal with reduced accuracy (11 bits) compared to a full divide
(24 bits). This approximation is suf�cient for this algorithm, and results in an accuracy similar
to GPGPU implementations. The integer type cast (line 18) is implemented via the vectorized
hardware rounding instructionroundps , which was introduced with SSE4.

98

� � � � � � � �
� � � �

� � � �
� � � �

�� ��

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �

� � � �
� � � �

��������	
���
	
��

�����
���
����
���
�����
����
������������

�����	����������
�����������������	
���
��������

��������� �����
����������
����
����������
����
���������
����

�
�
�
�

�
�
�
�

���	
�
�
�
�

�
�
�
�

���

�
�
�
�

�����
�
�
�
�

�
�
�
�
�
�

�����

� ���

� � � �

� �

Figure 6.4: Vectorization
of part 2 of the algorithm:
The data is loaded pair-
wise into the vector reg-
isters. The interpolation
of iterations 0,2 and 1,3
are computed simultane-
ously. Afterwards the re-
sults must be reordered
for the second interpola-
tion step.

Part 2 of the algorithm cannot be directly vectorized. The projection valueis computed by
bilinear interpolation of the four closest pixels (top left (valtl), top right (valtr), and bot-
tom left (valbl), bottom right (valbr)). As illustrated in Fig. 6.5,valtl andvaltr as well
asvalbl andvalbr can be loaded in pairs. Moreover, the classic vectorization approach of
part 1 – operating on multiple voxels at the same time – cannot be retained here since neigh-
boring voxels will in general not be projected onto consecutive pixels. Fig. 6.4 shows the steps
involved in vectorizing part 2 and the �rst linear interpolation in more detail. For the sake of
simplicity, we consider a vector of four voxels with indices 0–3, but the scheme can be easily
extended to wider vectors. Since the pixel coordinates from step 1 are already in a vector reg-
ister, the index calculation for, e.g.,iv * ISX+iu and(iv+1) * ISX+iu (lines 25, 27, 32, and
34 in Listing 6.1) uses packed SIMD instructions. We compute the �rst part of the interpolation
for voxels 0 and 2 simultaneously, and then for voxels 1 and 3. Therefore, we duplicate the

�����

�����
�����

�����

���������	�

��

�
���
��

��	��	�
 Figure 6.5: Projection of a voxel center onto
the detector. The labeled (four) pixels are
used for bilinear interpolation.

99

weighting vectorscalv such that one copy contains the weights for voxels 0 and 2 (twice),
and the other one for voxels 1 and 3 (step 1 in Fig. 6.4). With one load at the index ofvaltl
we implicitly load valtr into the second vector element. Again we create two vectors, one
containing the top left and right pixel values for voxels 0 and 2, and one for 1 and 3 (step 2 in
Fig. 6.4). The same is done for the bottom values. The resulting vectors arecalledvalt and
valb , respectively, in Fig. 6.4. Note that the cost for this construct increases with wider SIMD
registers because two load operations are required per voxel. Next, wemultiply those vectors
with the correspondingscalv vector in step 3 of Fig. 6.4 and get vectors with the interpolation
result inv direction. The elements are still alternating left and right, and for voxels 0 and 2, or
1 and 3. Therefore, in step 4, we reorder the elements to get a vector containing only the left
values for all voxels and one containing the right values. This scheme is implemented using the
SSE3 instructionsmovsldup andmovshdup for duplication of thescalv values. The �nal
reordering to enable classic vectorization in part 3 of the algorithm also uses those instructions,
together withblendps , which interleaves the values to bring them into the correct order again.
The conversion of the index into a general purpose register, which is needed for addressing the
load of the data and the scattered pairwise loads, is costly in terms of necessary instructions.
Moreover, the runtime increases linearly with the width of the registers due to the pairwise
loads. This implies that the whole operation is limited by instruction throughput.

We consider two SSE implementations, which only differ in part 2 of the algorithm.Version
1 (V1) converts the �oating point values in the vector registers to four quadwords and stores the
result back to memory (cache, actually). Single index values are then loaded to general purpose
registers one by one. Version 2 (V2) does not store to memory but insteadshifts all values in
turn to the lowest position in the SSE register, from where they are moved directly to a general
purpose register using thecvtss2si instruction.

The remainder of part 3 – the second part (u direction) of the bilinear interpolation, and the
voxel update – is again trivially vectorizable and fully bene�ts from wider SIMD registers.

Note that any further inner loop unrolling beyond what is required by SIMD vectorization
would not show any bene�t due to register shortage; however, as will be shown later, SMT can
be used to achieve a similar effect.

6.4.2 AVX implementation

In theory, the AVX instruction set extension doubles the peak performance per core as compared
to SSE. The backprojection cannot fully bene�t from this advantage because the number of
required instructions increases linearly with the register width in part 2 of thealgorithm. For
arbitrary SIMD vector lengths a hardware gather operation would be required to prevent this
part from becoming a severe bottleneck.2

The limited number of AVX instructions that natively operate on 256-bit registers prohibits
more sophisticated variants of part 2; only the simple version (V1) could be implemented. A
register-to-register variant would be possible only at the price of a much larger instruction count,
so this alternative was not considered. Despite these shortcomings, an improvement of 25%
could be achieved with the AVX kernel on Sandy Bridge (see Sect. 6.7 fordetailed performance
results).

2The Intel Xeon Phi coprocessor and the Intel Haswell processor dohave such instructions. See [80] for a detailed
analysis of the backprojection algorithm on the Intel Xeon Phi.

100

����

��

��

��	
��
���

���	�
����	
���	���������

�	�
����
����	

���

����	

�	
����	�
���

��	���	�
����	
�	�� 	��	�
����

(a) Harpertown

����

��

��

��	
��
���

�� �	�
����	
���	���������

�	�
����
����	

��

��	
��
�������	

�	�
����

���

����	

��	
����	�
���

���	���	�
����	
�	���	��	�
����

(b) Westmere

����

��

��

��	
��
���

�� �	�
����	
���	���������

�	�
����
����	

��

��	
��
�������	

�	�
����

���

����	
 ��	
����	�
���

�	���	�
����	
�	���	��	�
����

(c) Sandy Bridge (SSE)

����

��

��

��	
��
���

�� �	�
�� ��	
���	���������

�	�
����
����	

��

��	
��
�������	

�	�
����

���

����	
 ��	
� ���	�
���

�	 ���	�
� ���	
�	���	�	�
����

(d) Westmere EX

Figure 6.6: ECM model analysis: Runtime contributions from instruction execution and neces-
sary cache line transfers. The total data volume in bytes is indicated on the left of each group of
arrows. On the right we show the data transfer capabilities between hierarchy levels and the re-
sulting transfer time in core cycles. In-core execution times are measured values from Table 6.2,
scaled to a complete cache line.

6.5 In-depth performance analysis

6.5.1 ECM performance model

As shown in Sect. 6.3.3, a simple roofline model analysis based on arithmetic instruction
throughput and the memory bottleneck alone can be done for the backprojection algorithm.
It predicts a strong bandwidth limitation on all considered architectures, buta simple measure-
ment of the utilized memory bandwidth proves that the memory bandwidth is far from saturated
in most cases. Hence, the ECM model introduced in Sect. 3.4 is employed to arrive at a more
complete picture.

The starting point for all further analysis is the single-thread runtime spentexecuting instruc-
tions with data loaded from L1 cache, since this is what determinesPmax. Due to the complexity
of the loop body, the Intel Architecture Code Analyzer (IACA) [38] wasused to analytically
determine the runtime of the loop body. This tool determines the runtime of the loop body in
cycles, calculating either raw throughput (no dependencies) or the critical path length, according
to the architectural properties of the processor under the assumption thatall data resides in the
L1 cache. It supports Westmere and Sandy Bridge (including AVX) as target architectures. The
results for Westmere are shown in the following table for the two SSE kernel variants described
above (all entries exceptmops are in core cycles):

Issue port
Variant 0 1 2 3 4 5 TP mOPs CP

V1 15 21 24 3 3 19 24 85 54
V2 20 27 16 1 1 20 27 85 71

Execution times are calculated separately for all six issue ports (0. . . 5). (A mop is a RISC-like

101

“micro-instruction;” x86 processors perform an on-the-�y translation of machine instructions
to mops, which are the “real” instructions that get executed by the core.) Apart from the raw
throughput (TP) and the total number ofmops the tool also reports a runtime prediction taking
into account latencies on the critical path (CP). Based on this prediction V1 should be faster
than V2 on Westmere. However, the measurements in Table 6.2 show the opposite result. The
high pressure on the load issue port (2) together with an overall high pressure on all ALU issue
ports (0, 1, and 5) seems to be decisive. In V2 the pressure on port 2 ismuch lower, although
the overall pressure on all issue ports is slightly larger.

Below we report the results for the Sandy Bridge architecture with SSE andAVX. The
pressure on the ALU ports is similar, but due to the doubled SSE load performance Sandy
Bridge needs only half the cycles for the loads in kernel V1. V1 is therefore faster than V2 on
Sandy Bridge (see Table 6.2).

Issue port
Variant 0 1 2 3 4 5 TP mOPs CP

V1 SSE 16 20 14 13 3 19 20 85 56
V2 SSE 20 26 9 8 1 21 26 85 72
V1 AVX 18 20 22 21 6 30 30 114 90

So far we have assumed that all data resides in the L1 cache. The data transfers required
to bring cachelines into L1 and back to memory are modeled separately. We assume that there
is no overlap between data transfers and instruction execution. This is trueat least for the L1
cache: It can either communicate with L2 to load or evict a cacheline, or it candeliver data to
the registers, but not both at the same time. As a �rst approximation we also (pessimistically)
assume that this “no-overlapping” condition holds for all caches, and that a data transfer between
any two adjacent levels in the memory hierarchy does not overlap with anything else. Since the
smallest transfer unit is a 64-byte cacheline, the analysis will from now on be based on a full
“cacheline update” (16 four-byte voxels), which corresponds to four (two) inner loop iterations
when using SSE (AVX).

We only consider the data traf�c for voxel updates; the image data traf�c isnegligible in
comparison, hence we assume that all image data comes from L1 cache. It takes two cycles to
transfer one cacheline between adjacent cache levels over the 256-bitunidirectional data path.
Every modi�ed line must eventually be evicted, which takes another two cycles. Figure 6.6
shows a full analysis, in which the core execution time for a complete cachelineupdate is based
on the measured cycles from Table 6.2. On the three architectures with L3 cache the simpli�ca-
tion is made that the “Uncore” part (L3 cache, memory interface, and QuickPath interconnect)
runs at the same frequency as the core, which is not strictly true but doesnot change the re-
sults signi�cantly. It was shown for the Nehalem-based architectures (Westmere and Westmere

HPT WEM WEX SNB

V1 SSE 62.6 61.6 59.6 44.4

V2 SSE 57.4 51.5 54.7 50.0

V1 AVX 76.2

Table 6.2: Measured execution times (one core) in cycles for one iteration of the SIMD-
vectorized kernel (i.e., 4 or 8 voxel updates) with all operands residingin L1 cache.

102

EX) that they can overlap instruction execution with reloading data from memory to the last
level cache [81]. Hence, the model predicts that the in-core execution timeis much larger than
all other contributions, which makes this algorithm limited by instruction throughputfor single
core execution. On Sandy Bridge, the AVX kernel requires 76.2 cyclesfor one vectorized loop
iteration (eight updates). This results in 152 cycles instead of 178 cycles (SSE) for one cacheline
update.

Based on the runtime of the loop kernel we can now estimate the total required memory
bandwidth for multithreaded execution if all cores on a socket are utilized, and also derive the
expected performance (we consider the full volume without clipping):

HPT WEM WEX SNB SNB
(AVX)

BW/core [GB/s] 1.7 1.9 1.5 2.5 3.0
BW/socket [GB/s] 6.8 11.2 11.6 10.0 12.0
Perf. [GUP/s] 0.85 1.42 1.45 1.25 1.51

We conclude that the multithreaded code is bandwidth-limited only on Harpertown, since the
required socket bandwidth is above the practical limit given by the update benchmark (see Ta-
ble 6.1). All other architectures are below their data transfer capabilities for this operation and
should show no bene�t from further bandwidth-reducing optimizations (see Sect. 6.6.2).

6.5.2 ILP optimization and SMT

At this point the analysis still neglects the possible bene�t from Simultaneous multi-threading.
As described in Sect. 2.1.5, SMT can improve the pipeline utilization for codes that suffer from
dependencies, long-latency loads, instruction scheduling issues, or resource contention. At the
same time it is important to understand that there can be no bene�t if all threadsrunning on the
same core compete for a shared resource like, e.g., a request queue.

As shown in the previous section, our implementation of the backprojection algorithm ex-
hibits a strong discrepancy between the IACA “throughput” and “critical path” predictions. Due
to the complex loop body, register dependencies are unavoidable, resulting in many pipeline
bubbles. Outer loop unroll and jam (interleaving two outer loop iterations in theinner body) is
out of the question due to register shortage, but SMT can do a similar job andprovide indepen-
dent instruction streams using independent register sets. Since there is noshared resource apart
from the core pipelines, running two threads on the two virtual cores of each physical core is
expected to reduce the cycles taken for the cacheline update. However,the effect of using SMT
is dif�cult to estimate quantitatively. See Sect. 6.7 below for complete parallel results.

6.6 OpenMP parallelization

OpenMP parallelization of the algorithm is straightforward and works with all optimizations
discussed so far. For the thread counts and problem sizes under consideration here it is suf�cient
to parallelize the loop that iterates over all voxel volume slices (loop variablez in Listing 6.1).
However, due to the clipped-off voxels at the edges and corners of thevolume, simple static
loop scheduling with default chunk size leads to a strong load imbalance. Thiscan be easily
corrected by using block-cyclic scheduling with a small chunk size (e.g.,static,1).

103

Images are produced one by one during the C-arm rotation, and could atbest be delivered
to the application in batches. Since the reconstruction should start as soon as images become
available, a parallelization across images was not considered.

As shown in Sect. 6.5, the socket-level performance analysis does not predict strong ben-
e�ts from bandwidth-reducing optimizations except on the Harpertown platform. However,
since one can expect to see more bandwidth-starved processor designs with a more unbalanced
ratio of peak performance to memory bandwidth in the future, we still considerbandwidth op-
timizations important for this algorithm. Furthermore, ccNUMA architectures have become
omnipresent even in the commodity market, making locality and bandwidth awareness manda-
tory. In the following sections we will describe a proper ccNUMA page placement strategy for
voxel and image data, and a blocking optimization for bandwidth reduction. The reason why we
present those optimizations in the context of shared-memory parallelization is that they become
relevant only in the parallel case, since bandwidth is not a problem on all architectures for serial
execution (see Sect. 6.5.1).

6.6.1 ccNUMA placement

The reconstruction algorithm uses essentially two relevant data structures: the voxel array and
the image data arrays. Upon voxel initialization one can easily employ �rst-touch initialization,
using the same OpenMP loop schedule (i.e., access pattern) as in the main program loop. This
way each thread has local access (i.e., within its own ccNUMA domain) to its assigned voxel
layers, and the full aggregate bandwidth of a ccNUMA node can be utilized.

Although the access to the projection image data is much less bandwidth-intensive than the
memory traf�c incurred by the voxel updates, ccNUMA page placement was implemented here
as well. As mentioned in Sect. 6.3.4, the padded projection buffers are explicitly allocated and
initialized in each locality domain, and a local copy is shared by all threads withina domain.
Since the additional overhead for the duplication is negligible, this ensures con�ict-free local
access to all image data. The time taken to copy the images to the local buffers is included in
the runtime measurements.

6.6.2 Blocking/unrolling

In order to reduce the pressure on the memory interface we use a simple blocking scheme for the
outer loop over all images: Projections are loaded and copied to the paddedprojection buffers
in small chunks, i.e.,b images at a time. The line update kernel (see Sect. 6.4) for a certain
pair of (y;z) coordinates is then executedb times, once for each projection. This corresponds
to ab-way unrolling of the image loop and a subsequent jam into the next-to-innermost voxel
loop (across they voxel coordinate). At the problem sizes studied here, all the voxel datafor
this line can be kept in the L1 cache and reusedb� 1 times. Hence, the complete volume is
only updated in memory 496=b instead of 496 times. Relatively small unrolling factors between
2 and 8 are thus suf�cient to reduce the bandwidth requirements to uncritical levels even on
“starved” processors like the Intel Harpertown.

This optimization is so effective that it renders proper ccNUMA placement all but obsolete;
we will thus not report the bene�t of ccNUMA placement in our performance results, although
it is certainly performed in the code.

104

6.7 Results

In order to evaluate the bene�t of our optimizations we have benchmarked different code ver-
sions with the 5123 case on all test machines. RABBITCT includes a benchmarking application,
which takes care of timing and error checking. It reports total runtime in seconds for the com-
plete backprojection. We performed additional hardware performance counter measurements
using the likwid-perfctr tool. likwid-perfctr can produce high-resolution timelines of counter
data and useful derived metrics on the core and node level without changes to the source code.
Unless stated otherwise we always report results using two SMT threads per core. For all archi-
tectures apart from Sandy Bridge the line update kernel version V2 wasused. On Sandy Bridge
results for the SSE kernel V1 as well as for the AVX port of the V1 kernel are presented.

6.7.1 Validation of analytical predictions

To validate the predicted performance of the analytic model (see Sect. 6.5),single-socket runs
were performed without the clipping optimization and SMT. Blocking was used on the Harper-
town platform only, to ensure that execution is not dominated by memory access. The following
table shows the measured performance and the deviation against the model prediction:

HPT WEM WEX SNB SNB
(AVX)

Perf.
[GUP/s]

0.75 1.20 1.30 1.11 1.28

deviation-13.3% -18.3% -11.5% -12.6% -18.0%

This demonstrates that the model has a reasonable predictive power. It has been con�rmed that
the contribution of data transfers indeed vanishes against the core runtime, despite the fact that
the total transfer volume is high and a �rst rough estimate based on data transfers and arithmetic
throughput alone (Sect. 6.3) predicted a bandwidth limitation of this algorithm onall machines.

As a general rule, the IACA tool can provide a rough estimate of the innermost loop kernel
runtime via static code analysis. Still it is necessary to further enhance the machine model to
improve the accuracy of the predictions. Especially the ability of the out of order scheduler to
exploit superscalar execution was overestimated and has led to qualitativelywrong predictions.

Note that this example is an extreme case with all data transfers vanishing against core
runtime. However, the approach also works for bandwidth-limited codes, as was shown in [4].

6.7.2 Parallel results

Figures 6.7 (a)–(d) display a summary of all performance results on nodeand socket levels, and
parallel scaling inside one socket for the best version on each architecture. All machines show
nearly ideal scaling inside one socket when using physical cores only.With SMT, the bene�t
is considerable on Sandy Bridge (33%) and Westmere (31%), and a little smaller on Westmere
EX (25%). The large effect on Sandy Bridge may be attributed to a higher number of bubbles
in the pipeline, as indicated by the larger discrepancy between the “throughput” and “critical
path” cycles in the AVX loop kernel (see Sect. 6.5.2). Scalability from one toall sockets of the
node is also close to perfect for the multisocket machines, with the exception of Westmere EX,
on which there is a slight load imbalance due to 80 threads working on only 512slices.

105

1 2 4 8
threads

0

0.5

1

1.5

2

2.5

P
er

fo
rm

an
ce

 [G
U

P
/s

]

blocking
load balancing
clipping
SSE
Plain C

64.0 GFlop/s

(a) Harpertown

1 2 4 8
(SMT)

0

0.5

1

1.5

2

2.5
AVX
blocking
load balancing
clipping
SSE
Plain C

69.4 GFlop/s

(b) Sandy Bridge

1 2 4 6 12
(SMT)

 24
(SMT)

0

2

4

6

8

10

blocking
load balancing
clipping
SSE
Plain C

20 sec reconstr.

130 GFlop/s

(c) Westmere

1 2 4 6 8 10 20
 (SMT)

80
0

2

4

6

8

10

blocking
load balancing
clipping
SSE
Plain C

20 sec reconstr.

286 GFlop/s

(d) Westmere EX

Figure 6.7: Scalability and performance results for the 5123 test case on all platforms. In-socket
scalability was tested using the best version of the SIMD-vectorized line update kernel on each
system (AVX-V1 on Sandy Bridge, SSE-V2 on all others). The practical performance goal for
complete reconstruction (20 seconds runtime, corresponding to 3.33 GUP/s) is indicated as a
dashed line. GF/s numbers have been computed assuming 31 �ops per optimized (scalar) inner
loop iteration. Note the scale change between the left and right pairs of graphs.

Depending on the architecture, SSE vectorization boosts performance bya factor of 2–3 on
the socket level. As explained earlier (see Sect. 6.4), part 2 of the algorithm prohibits the optimal
speedup of 4 because its runtime is linear in the SIMD vector length. Work reduction through
clipping alone shows only limited effect due to load imbalance, but this can be remedied by an
appropriate cyclic OpenMP scheduling, as described in Sect. 6.6. This kind of load balancing
not only improves the work distribution but also leads to a more similar access pattern to the
projection images across all threads.

Cache blocking has little to no effect on all architectures except Harpertown, as predicted
by the analysis.

The bene�t of AVX on Sandy Bridge falls short of expectations for the same reason as in
the SSE case. Still it is remarkable that the desktop Sandy Bridge system outperforms the dual-
socket Harpertown server node, which features twice the number of cores at a similar clock
speed. Both Westmere and Westmere EX meet the performance requirements of at most 20 sec
for a complete volume reconstruction. The Westmere EX node is, however, not competitive due
to its unfavorable price to performance ratio. It is an option if absolute performance is the only
criterion.

6.8 Conclusion

6.8.1 Summary of results

Several algorithmic and low-level optimizations for a CT backprojection algorithm were demon-
strated on current Intel x86 multicore processors. Highly optimizing compilers were not able
to deliver useful SIMD-vectorized code. The chosen implementation is thusbased on assembly
language and vectorized using the standard instruction set extensions SSE and AVX. The results

106

show that commodity hardware can be competitive with special-purpose hardware clinically rel-
evant 5123 voxel case at the same level of accuracy. Nonpipelined divide instructions (divps)
or a fast pipelined version (rcpps) with subsequent Newton-Raphson iteration proved to be
equivalent in terms of accuracy and performance. Compared to a pure reciprocal they provide
better accuracy at a 10% performance penalty. The standard dual-socket server system Intel
Westmere EP is easily able to beat the 20 s limit for the full backprojection, reaching 15.8 s.
Preliminary tests on an Intel Sandy Bridge EP Xeon platform (8 cores per socket) showed that
runtimes close to the GPU results are in reach for modestly priced dual-socket servers.

It was shown that it is necessary to consider all aspects of processorand system architec-
ture in order to reach best performance, and that the effects of different optimizations are closely
connected to each other. The bene�t of the AVX instruction set on SandyBridge was limited due
to the lack of a gathered load and the small number of instructions that nativelyoperate on the
full SIMD register width. This relevant algorithm can achieve very good ef�ciency on commod-
ity processors and it would be a natural step to further improve performance with a distributed
memory implementation. At higher resolutions, which are used in industrial applications, mul-
ticore systems are frequently the only choice (apart from expensive custom solutions).

6.8.2 Reassessment in view of performance patterns

The �rst shot at performance modeling for the backprojection used the roofline model, based
on arithmetic throughput and memory bandwidth as the applicable bottlenecks. The model pre-
dicted bandwidth limitationas the relevant pattern on all architectures at hand, which could
easily be ruled out by a simple runtime measurement. After some basic optimizations,notably
work reduction and SIMD vectorization, an ECM model was set up. Using the output from
the IACA tool as the in-core baseline, the conclusion was that in-core execution was the bottle-
neck even with a full socket on all but the very bandwidth-starved IntelHarpertown platform.
A combination of patterns applied, frompipelining hazards(dependencies along the critical
code path) toinstruction overheadandineffective instructions(SIMD-incompatible gather op-
erations). Loop blocking was applied but only effective – as expected by the patterns – on the
Harpertown CPU. The work reduction optimization mentioned above resulted ina strongload
imbalancepattern with OpenMP-parallel code, which was identi�ed by mediocre scalability
across cores and con�rmed by HPM measurements. The imbalance could beeasily �xed by
choosing an appropriate OpenMP loop schedule. In the end, the performance model was well
within a 20% margin on all four architectures.

107

108

Chapter 7

A performance- and energy-optimized
lattice-Boltzmann �uid solver [7]

Algorithms with low computational intensity show interesting performance and power con-
sumption behavior on multicore processors. This has been demonstrated in Chapter 4 using
the simple vector triad and Jacobi smoother benchmarks. The lattice-Boltzmann method (LBM)
is widely used in computational �uid dynamics, and a prototype for many other memory-bound
algorithms. It has gained popularity due to its ease of implementation and suitability for com-
plex geometries. Despite its seeming simplicity, optimizing LBM on recent hardwareplatforms
and for different application cases has been the subject of intense research in the last ten years
[82, 83, 84, 85, 86, 47, 87, 88, 89, 90, 91, 92, 93]. In this chapter, a speci�c version of the LBM
is used to show if and how single-chip performance and power characteristics can be generalized
to the highly parallel case.

After a thorough analysis of a sparse-lattice two-relaxation-time (TRT) LBMimplemen-
tation on the Intel Sandy Bridge processor, we use the ECM model and the multicore power
model to describe the intra-chip saturation characteristics of the code and itsoptimal operating
point in terms of energy to solution as a function of the propagation method [93], the clock
frequency, and the SIMD vectorization. These �ndings are then extrapolated to the multi-node
level on SuperMUC, where the energy-saving potential of various optimizations is quanti�ed.
One surprising result of this analysis is that the memory-bound nature of theLBM algorithm is
partly lost when communication plays a signi�cant role, and that it is then evenmore important
to select the optimal operating point (number of cores, clock speed) to getminimal energy to
solution. Adding a power capping condition will complicate matters and may make otherwise
sensible decisions for an operating point inaccessible. It is found that simplistic measures often
applied by users and computing centers, such as setting a low clock speed for memory-bound
applications, have limited impact.

7.1 Introduction

7.1.1 Related work

Performance modeling and prediction especially in the context of LBM are anongoing research
topic of many groups in engineering and computer science [94, 95]. Auto-tuning was used, e.g.,

109

in [96] for a magnetohydrodynamics LBM. The “ILBDC”1 LBM code used here has been op-
timized previously [97] and its sustained performance is close to predictions from the roofline
model [93]. Research in the direction of energy-saving hardware andsoftware mechanisms
focuses on models and algorithms for dynamic voltage and frequency scaling (DVFS) and dy-
namic concurrency throttling (DCT) [44].

The unique combination of the ECM model and the multicore power model used here al-
lows a new view on energy consumption issues of LBM and other memory-bound algorithms.
The observation that MPI (inter- and intra-node) communication must be viewed as a highly
frequency-dependent overhead adds a new twist.

7.1.2 The lattice-Boltzmann method

The lattice-Boltzmann method is an algorithm for computational �uid dynamics (CFD). Instead
of discretizing and solving the Navier-Stokes equations, which contain macroscopic entities
such as pressure and velocity, the LBM is based on the Boltzmann equation,which describes the
temporal evolution of a time-dependentsingle-particle distribution function(PDFs) f (~x;~x ; t).
The PDF quanti�es the probability density for �nding a particle at position~x with microscopic
velocity~x . The Boltzmann equation forf is

¶ f
¶t

+ ~x
¶ f
¶~x

+ ~F
¶ f
¶x

= Q(f ; f) ; (7.1)

where~F = ~K=m, with ~K being external forces exerted on particles with massm. The left-
hand side of this equation describes advection processes, while the right-hand side is acollision
integral, whose dependence on(f ; f) is written to clarify that only two-particle collisions are
considered. Eq. (7.1) is thus an integral-differential equation. Since thecollision integral makes
solving this equation very complex, approximations have been developed, which keep important
properties such as energy and momentum conservation but are simple enough to be applied in
practice. One prominent example is the Bhatnagar-Gross-Krook operator [98]

Q BGK(f ; f) = �
1
t

�
f � f (0)

�
; (7.2)

where therelaxation time t quanti�es how quickly the local thermodynamic equilibrium
(Maxwell-Boltzmann) distributionf (0) can be attained. Macroscopic quantities can be obtained
from the PDF by calculating moments. For pressure and velocity one has, e.g.,

r (~x;t) =
ZZZ ¥

� ¥

~x 0 f (~x;~x ; t) d~x (7.3)

r (~x;t)~u(~x;t) =
ZZZ ¥

� ¥

~x 1 f (~x;~x ; t) d~x : (7.4)

The lattice-Boltzmann equation is obtained through a discretization of the velocityspace
and the spatial and temporal derivatives in the Boltzmann equation (7.1), which leads to [99]

fi(~x+ ~eiDt;t + Dt) = fi(~x;t) + W(fi(~x;t); fi(~x;t)) : (7.5)

1International Lattice-Boltzmann Development Consortium

110

Since there is now a number of discrete velocity vectors~ei , there is one PDFfi for each of them.
The basic properties of the so obtained discrete phase space are usuallylabeled by DnQm, where
n is the number of spatial dimensions andm is the number of discrete velocity directions. In
the following we will concentrate on the D3Q19 model, which is a three-dimensional with 19
discrete PDFs. Macroscopic quantities can be obtained by discrete sums over the PDFs.

The right-hand side of (7.5) contains thecollision operatorW, which takes the role of the
collision integral in (7.1). Beyond a straightforward discretization of the BGK operator (7.2),
several other schemes for the collision operator have been devised, which enhance the stability
of the algorithm. The variant used here is the (TRT) approximation of the collision process,
which [100, 99, 101, 102] is based on the evolution operator

WTRT
i (r (~x;t);~u(~x;t)) = l e(f +

i � f eq+
i) + l D(f �

i � f eq�
i); (7.6)

with f �
i =

1
2

[fi(~x;t) � f�̄(~x;t)]

and f eq�
i =

1
2

�
f eq
i (r (~x;t);~u(~x;t)) � f eq

�̄ (r (~x;t);~u(~x;t))
�

:

Here, i and ¯� denote opposite directions, so that~ē� = � ~ei . In the low Mach number limit, an
appropriate discretized equilibrium distribution function is [102]

f eq
i (r ;~u) = wi

�
p+

�
3
c2~ci~u+

9
2c4 (~ci~u)2 �

3
2c2~u~u

��
: (7.7)

The weightswi depend on the model (i.e., DnQm) and the directioni.

7.1.3 Implementation options and data traf�c analysis for LBM

Lattice-Boltzmann methods have become a popular approach in computational �uid dynamics.
However, they are also an interesting �eld of study for computer science,as the core algorithm
uses a stencil-like access pattern with vector instead of scalar data, resulting in many concur-
rent memory streams and no reuse of data in a single iteration. The LBM is straightforward to
parallelize, in shared memory as well as distributed memory. In the latter case, domain decom-
position and simple halo-based next-neighbor communication is employed.

TheILBDC code [97] uses a D3Q19 lattice model and implements the two-relaxation-time
(TRT) collision operator (7.6). All calculations are performed in double-precision �oating point
arithmetic. The algorithm with the D3Q19 model can be viewed as a 19-point stencil in 3-D
accessing only nearest neighbors, but has two important differencesto common stencil algo-
rithms: (i) each lattice node consists not only of one, but of 19 values (the PDFs); (ii) each PDF
read from or updated in memory is only accessed again in the next time step, which prevents
data reuse (unless complex temporal blocking schemes are employed).

The performance of a given LBM approach depends at least on the data layout and memory
access patterns, the scale of arithmetic operations (i.e., how well numerical expressions are sim-
pli�ed and combined to avoid unnecessary operations), and their degreeof SIMD vectorization.
A thorough overview of popular propagation step implementations and their memory access
characteristics can be found in [88, 93].

It seems natural to store the PDFs in a 4-D array with an additional Boolean array, which
is used to distinguish �uid and solid nodes. This is known as themarker-and-cellapproach.
However, LBM simulations of domains with a large fraction of solid nodes can bene�t from

111

a sparse representationof the domain [82, 83, 86, 87, 91, 92], where only the �uid nodes are
kept in a 1-D vector. Indirect accesses to PDFs of neighboring nodesare then required and
accomplished through an adjacency list (IDX), which represents the topological connections of
the nodes. ILBDC uses such a sparse representation.

For updating one node, optimized implementations read one PDF from each of the 19 sur-
rounding neighbors (streaming step), compute updated values (collision step), and write the
results to the PDFs of the local node. This is known as thepull scheme [47]. It is implemented
in the ILBDC code together with astructure-of-arrays(SoA) data layout where all PDFs of a
direction are stored consecutively in memory before the next direction follows.

We choose �uid-only lattice site updates as the sensible unit of work. To work around the
data dependency problems of a combined stream-collide step, two lattices are often used, one
as the source and one as the destination. Then, a �uid lattice-node update (FLUP) requires
19 PDF loads, 19 additional PDF loads because of write-allocate transfers, 19 PDF stores and
18 IDX loads of the adjacency list. Assuming double-precision �oating-point numbers (eight
bytes) for PDF and four-byte integers forIDX , the total number of bytes that must be transferred
between CPU and memory for one FLUP is 3� 19� 8 (PDF)+ 18� 4 (IDX) bytes= 528 bytes.
With non-temporal store instructions the write-allocates are avoided and the data is directly
written from the processor into memory, bypassing the cache hierarchy. The number of bytes
required for one FLUP decreases then to 2� 19� 8 (PDF)+ 18� 4 (IDX) bytes= 376 bytes.
Current standard processors have dif�culties sustaining the full memorybandwidth with 19
concurrent write streams, in particular if they consist of non-temporal stores. As a remedy,
a blocking/stripmining scheme can be applied so that a node's PDFs are readin chunks and
updated values are stored in a small temporary buffer, which should be small enough to �t in
the L1 cache. From this buffer, two directions of the updated PDFs at a time are written with
non-temporal stores to the destination lattice. We call this implementationpull-split no-NTor
pull-split NT, depending on whether normal stores or non-temporal stores are used.

BAILEY ' S AA pattern[90] for the PDF access allows using one single lattice only (instead
of separate source and destination grids) while maintaining the possibility to update all cells in
any order and in parallel. It was originally conceived for optimizing LBM onGPGPU platforms,
but can be applied on multicore processors as well. The iterations over the lattice are divided
into even and odd time steps. During an even step only PDFs of the current node are accessed
in each lattice site update. At the following odd step only PDFs of the neighboring nodes are
accessed, which requires indirect addressing in our case of the sparse representation. With this
update scheme only stores to locations in memory occur which have previously been read. No
write-allocate will be performed as the data to be updated already resides in the cache. We use
an optimized version where the even time step is completely SIMD-vectorizable (SSE/AVX),
which can easily be accomplished as all PDFs are accessed consecutively and no indirect access
is required. In the odd time step a partial vectorization is performed, which can avoid the
indirect addressing and allows for vectorized execution of consecutively stored chunks of PDFs.
Nodes that cannot be treated in this way are updated without SIMD vectorization (i.e., in scalar
mode). The fraction of nodes which can be updated with SIMD operations depends on the
geometry used for the simulation. During even time steps 2� 19� 8 (PDF) bytes= 304 bytes
per FLUP are required. In the odd time step the number of bytes needed forone FLUP depends
on the fraction of vectorizable updates. The lower bound is the case whenall updates can be
vectorized. Here only 2� 19� 8 bytes= 304 bytes are required. The upper bound is reached
when all updates must be scalar and indirect accesses are required, which results in 2� 19�

112

Figure 7.1: Visualization
of the packed bed reac-
tor geometry used in the
benchmarks.

8 (PDF)+ 18� 4 (IDX) bytes= 376 bytes.
In order to have full control over the code vectorization, all performance-critical parts were

implemented using SIMD compiler intrinsics.

7.1.4 Test bed and benchmark cases

Since SuperMUC does not easily allow an arbitrary frequency setting, and turbo mode is
inaccessible at all, all single-node benchmark tests were run on a standalone Sandy Bridge
EP node (see Sect. 2.4.1) with the same type of CPU and otherwise similar characteristics
as one SuperMUC node Each MPI process was explicitly pinned to its physical core using
sched_setaffinity() within the code. All benchmarks were run inside a single island to
guarantee that communication is performed through the fully non-blocking fat tree.

Two geometries were selected for the benchmarks. The �rst is an empty channel consisting
only of �uid nodes except for the walls. The second geometry is apacked bed reactor,i.e., a tube
�lled with spheres (see Fig. 7.1). It represents a real world application case for �ow simulation
with this type of code. Both geometries have dimensions of 4000� 80� 80 nodes, resulting in
25�106 �uid nodes (� 3:8 GB lattice+ 1:8 GB adjacency list) and 19�106 �uid nodes (� 2:9 GB
lattice+ 1:4 GB adjacency list) for the channel and the reactor geometry, respectively.

With these dimensions both geometries �t into the NUMA locality domain of one socket
on SuperMUC. For strong scaling runs the reactor geometry was enlarged to 8000� 160� 160
nodes, as the smaller lattice �ts in the L3 caches of 128 compute nodes and above. The large
reactor geometry consists of 157� 106 �uid nodes and requires around 24 GB of memory for the
lattice and around 11 GB for the adjacency list.

The ILBDC code is purely MPI-parallel. All single-node measurements were thus per-
formed with intra-node MPI only; no signi�cant changes are expected from a hybrid MPI/OpenMP
version, but this will be investigated in the future. Details abut the MPI parallelization can be
found in Sect. 7.5.1.

7.2 Chip-level performance and scaling

As a motivation for a thorough performance analysis, Fig. 7.2 shows the intra-socket scaling
of the empty channel test case with the AA pattern for the two “extremal” clock frequencies of
2:7GHz and 1:2GHz, respectively, in three variants: AVX-vectorized (full 256-bit loads/stores),

113

Figure 7.2: Intra-socket
strong scaling of the AA
pattern LBM implemen-
tation for an empty chan-
nel, comparing AVX,
SSE, and scalar code at
the clock frequencies of
2:7GHz (triangles) and
1:2GHz (circles). The
corresponding memory
bandwidths are indicated
for selected cases.

1 2 3 4 5 6 7 8
Cores

0

25

50

75

100

125

P
er

fo
rm

an
ce

 [M
F

LU
P

/s
]

2.7 GHz AVX
2.7 GHz SSE
2.7 GHz scalar
1.2 GHz AVX
1.2 GHz SSE
1.2 GHz scalar

17.8 GB/s

35.3 GB/s

28.9 GB/s

SSE-vectorized, and scalar. The data indicates that SIMD vectorization has a large impact in
the serial case; in fact, the serial performance differs by more than a factor of two between the
AVX and the scalar code. At 2.7 GHz, the gap closes as the number of cores is increased. On
the full socket the scalar code is hardly 10% slower than the AVX variant. The latter, however,
reaches the same level already with four cores, which opens an opportunity for saving energy
by leaving cores idle.

At 1.2 GHz, the situation in the serial case is similar, but on a lower level. The single-core
performance of all code variants is roughly proportional to clock speed. However, only the AVX-
vectorized code shows a saturation pattern, while the SSE and scalar variants scale linearly up
to eight cores without reaching a bandwidth barrier. Hence, lack of vectorization (“slow code”)
cannot be compensated by using more cores in this case. Moreover, the maximum memory
bandwidth is correlated with the core clock frequency and varies by about 20% across the full
frequency range [42].

Figure 7.3 shows a socket-level performance comparison of the scalar and vectorized AA
pattern implementation with the pull-split pattern for both application cases (empty channel vs.
packed reactor) at a clock speed of 2.7 GHz. Although there is a large fraction of obstacles in
the packed reactor geometry, their presence hardly in�uences the performance, independent of
the propagation pattern. This shows the clear superiority of the sparse lattice representation in
the ILBDC code over the simple marker-and-cell approach. When a largefraction of the cells
are obstacles, marker-and-cell inevitably loses performance becauseof a low vectorization ratio,
leading to late (or no) saturation. We also see that the pull-split pattern is not competitive, since
it cannot by far saturate the memory bandwidth of the chip.

The intention of applying the ECM model is to gain deeper insight into this performance
behavior, and to pave the way for a practically useful energy consumption analysis.

114

1 2 3 4 5 6 7 8
Cores

0

25

50

75

100

P
er

fo
rm

an
ce

 [M
F

LU
P

/s
]

AA AVX channel
AA scalar channel
Pull-Split AVX NT channel
Pull-Split AVX noNT channel

dashed: reactor

Figure 7.3: Intra-socket
scaling at 2.7 GHz: AA
pattern in AVX and
scalar variants (triangles)
and pull-split pattern
with AVX vectorization
with and without non-
temporal stores (squares),
for the empty channel
application case (solid
lines). The performance
numbers for the packed
reactor case are shown
with dashed lines.

7.3 ECM model for the ILBDC code

7.3.1 In-core analysis

An IACA [38] throughput analysis for the AA pattern kernel shows thatthe ADD port of the
SNB core is the sole bottleneck of core execution for all variants (scalar,SSE, AVX), as well
as for even and odd time steps, and that one loop iteration (four updates withAVX, two with
SSE, one for scalar) should take about 135 cycles. In contrast, a critical path analysis reports
somewhat longer execution times due to dependencies in the instruction and data �ow. The
critical path depends on the type of time step and has a maximum length of 163 cycles (even,
AVX), 212 cycles (odd, AVX), 160 cycles (even, scalar), and 187 cycles (odd, scalar). This
prediction roughly coincides with direct measurements, which we will use as an input in the
following (160, 212, 158, and 160 cycles, respectively). These numbers must be multiplied by
two (for AVX) or eight (for scalar) for getting execution times for one unitof work, i.e., a cache
line (see the table in Fig. 7.4).

The analysis for the packed reactor case is surprisingly similar: The eventime step does
not change at all, since no index access is required. In the odd time step, even when assuming
no potential for vectorization (as would be the case for an extremely porous geometry) there is
ample room for hiding the additional loads for the index array due to the bottleneck on the ADD
port. This step is necessarily scalar, however, so the execution time is about four times longer
per unit of work. The actual impact of this slowdown depends on the fraction of vectorizable
updates. In the applications covered here, this fraction is roughly 97% for the empty channel
and 92% for the packed reactor case, leading to a very small performancepenalty for the latter,
which was already observed in Fig. 7.3. Hence, only the empty channel case will be considered
for the rest of the chip-level analysis.

7.3.2 Data transfers and saturation behavior on the chip

The ECM model requires the maximum attainable memory bandwidth as an input parameter. It
is known that this value depends on the number of parallel read/write streamsas well as the CPU

115

Listing 7.1: Parallel multi-stream update benchmark with 19 streams.N is chosen such that the
arrays do not �t in any cache.
1 double a01[N], a02[N],..., a19[N], s=2.0;
2 #pragma omp parallel for
3 for(int i=0; i<N; ++i) {
4 a01[i] = s * a01[i];
5 a02[i] = s * a02[i];
6 ...
7 a19[i] = s * a19[i];
8 }

clock speed. From a data transfer perspective, the AA-pattern implementation of the D3Q19
LBM algorithm reads 19 arrays from memory, modi�es their contents, and writes them back.
In order to get the maximum memory bandwidth on the socket we hence use a parallel multi-
stream array update benchmark (see Listing 7.1). It is designed to mimic the data streaming
behavior of the LBM algorithm.

Figure 7.5 shows the achieved memory bandwidth on one SNB socket with varying number
of threads (cores) and clock frequencies between 1.2 GHz and 2.7 GHz(plus turbo mode). As

or

2 · 19 · 2 cy [+ 18 cy] = 76 cy [+ 18 cy]

 = 125 cy [+ 30 cy] @ 1.7 GHz

2 · 19 · 2 cy [+ 18 cy] = 76 cy [+ 18 cy]

320 cy 424 cy

1264 cy 1280 cy

(2 · 19 · 64) B · 2.7 Gcy/s / 36 GB/s) [+ 43 cy]

 = 182 cy [+ 43 cy] @ 2.7 GHz

(2 · 19 · 64) B · 1.7 Gcy/s / 33 GB/s) [+ 30 cy]

1919 18

1919 18

1919 18

even odd

AVX

scalar

Registers

L2

L3

Memory

L1D

Figure 7.4: Single-core ECM model of the AA propagation pattern for D3Q19 LBM (eight
FLUPs). Even and odd time steps have different in-core timings. One arrow represents the num-
ber of full cache line transfers indicated; dashed arrows stand for half-wide (32-byte) transfers
and are required for loading the adjacency information in the odd time step when vectorization
is not possible. One half-wide cache line transfer takes one cycle. Numbers in square brackets
denote contributions from the adjacency list, and can be ignored for the empty channel case.

116

1 2 3 4 5 6 7 8
Cores

0

10

20

30

40
B

an
dw

id
th

 [G
B

/s
]

f = 1.2 GHz
f = 1.4 GHz
f = 1.7 GHz
f = 2.3 GHz
f = 2.7 GHz
Turbo Mode

Standard update kernel (saturation)

Figure 7.5: Multi-stream
update benchmark per-
formance scaling on
one SNB socket with
different CPU frequency
settings. 19 update
streams were run per
thread. The dashed line
indicates the maximum
achievable bandwidth
with a simple single-
array update kernel.

predicted by the ECM model, the single-thread performance is proportionalto the clock speed,
and the saturation point is shifted to larger thread counts as the clock speeddecreases: While
saturation is reached near three cores with turbo mode, up to six cores areneeded at the low-
est frequencies. Due to the large number of read/write streams, the maximum bandwidth is
signi�cantly lower than with a standard single-stream update kernel (dashed line in Fig. 7.5).
At the same time, the maximum (saturation) memory bandwidth drops by about 25% over the
whole frequency range; there is another substantial drop when using the full socket (eight cores)
at the lowest frequency. As of now there is no conclusive explanation for these latter effects.
They do, however, in�uence the considerations on energy dissipation,which will be discussed in
Sect. 7.4. In the following, the maximum bandwidths as measured at the respective frequencies
will be used as an input to the ECM model in order to calculate the number of cycles required
to transfer cache lines between memory and L3 cache.

Figure 7.4 shows the complete ECM model analysis at 2:7 and 1:7GHz, respectively.
The cycle counts in square brackets are contributions from loading the adjacency informa-
tion (dashed arrows), and can be ignored for the empty channel case.The achievable memory
bandwidth (36GB/s and 33GB/s, respectively) and the clock speed enterthe model when calcu-
lating the cycles for data transfers to and from main memory. Data transfers between adjacent
cache levels are assumed occur at 32bytes per cycle, so these cycle counts are independent of
the clock frequency. The various execution and data transfer times may becombined in different
ways to arrive at a performance prediction for the serial program:

1. The most conservative (worst case) assumption is that none of thosecontributions overlap
with each other, so that the execution time is equal to their sum (e.g., 320+2�76+182=654
cycles for the even time step with AVX at 2:7GHz).

2. The most optimistic assumption is that the cycles in which the L1 cache is occupied by
loads and stores from the core cannot be used for reloads and evicts toL2, but all other
contributions do overlap.

3. Lastly one may assume that the pure in-core execution part (everythingexcept loads and

117

Figure 7.6: Performance
of the AVX implemen-
tation of the AA pat-
tern (empty channel) at
2:7GHz (triangles). The
ECM model predictions
for AVX with full over-
lap assumption (dashed
line), no overlap (dotted-
dashed line), and partial
overlap at L1 (solid line)
are shown for compari-
son.

1 2 3 4 5 6 7 8
Cores

0

25

50

75

100

125

P
er

fo
rm

an
ce

 [M
F

LU
P

/s
]

AVX
ECM AVX L1 overlap
ECM AVX best
ECM AVX worst

stores) can overlap with loads and evicts from/to the L2 cache, but that there is no overlap
beyond that.

None of these assumptions coincides with the roofline model, which requires the achievable
memory bandwidth for each number of cores as an input parameter. The ECM model only
requires the maximum (saturated) bandwidth, and predicts the scaling.

7.3.3 Validation of the performance model

Figure 7.6 shows a comparison of the measured performance for the AVX-vectorized AA pat-
tern implementation with the three models described above. Apart from the region around the
saturation point (3–4 cores), the third assumption provides the best �t to the data.

It was already shown in Fig. 7.3 that the pull-split propagation pattern (with and without
NT stores) is not competitive since it cannot saturate the memory bandwidth, although the NT
version has almost the same computational intensity as the AA pattern. This failure can mainly
be attributed to the fact that the pull-split variant cannot be ef�ciently SIMD-vectorized on the
Sandy Bridge architecture due to the indirect access in every lattice site update. More speci�-
cally, the loop which loads the neighboring distribution functions and stores intermediate results
into temporary buffers is scalar. The pull-split pattern will thus be ignored from now on, and the
focus of the following discussion will be on the AA pattern.

7.4 Power model

Many applications in computational science are memory-bound on modern processors, LBM
being but a prominent example. The prevalent questions arising in this context are (i) How can
a parallel code be run so that its overall energy consumption until a solutionis reached can be
minimized, preferably under the constraint of constant time to solution? and (ii)How can a
parallel computer be operated in a production environment so that overallpower dissipation is
minimized or kept below a given maximum?

118

0 20 40 60 80 100 120
Performance [MFLUP/s]

0.0

0.5

1.0

1.5

E
ne

rg
y

to
 s

ol
ut

io
n

[a
rb

. u
ni

ts
]

1.2 GHz AVX
2.0 GHz AVX
2.7 GHz AVX
Turbo AVX

(a) model

open symbols:
scalar, full socket

20 40 60 80 100 120
Performance [MFLUP/s]

E/P = const.

(b) measured

Figure 7.7: Energy to solution vs. performance (“Z-plot”) of the AVX-vectorized LBM AA
pattern implementation (empty channel case) of one SNB socket for different clock frequencies
(lines and �lled symbols). The number of cores used is the parameter along each data set. (a)
Predictions by the ECM performance model and the chip-level power model. (b) Measured data.
For comparison, the big open symbols mark the energy and performance of the scalar code on
a full socket. The shaded area is the region de�ned by absolute minimum energy and saturated
performance for he AVX versions. The dashed line is the line of constantenergy-delay product
that hits the saturation point of the lowest-frequency run.

We concentrate on the �rst question here, and employ the ECM model together with the
multicore power model developed in Chapter 4. For simplicity we neglect the linear power
coef�cient W1 in (4.4), since it is usually small compared toW0 andW2.

7.4.1 Energy to solution for the LBM solver on the chip

The ECM model and the power model enable a combined analysis of the energy and perfor-
mance properties of the LBM algorithm. It is useful to put energy and performance data in
a single graph, which we call a “Z-plot.”2 Energy to solution is plotted versus performance,
with the number of cores used as a parameter within a data set for a speci�c frequency, SIMD
vectorization variant, propagation method, or other property. This has been done in Fig. 7.7a
for three different clock frequencies and turbo mode, using the AA pattern in AVX and scalar
variants. In turbo mode, each data point was computed using the maximum allowed frequency
for each number of active cores. The corresponding measurements are shown in Fig 7.7b. Note
that we always show energy to solution in arbitrary units, but the values shown are coherent for

2The “Z” goes back to Dr. ThomasZeiser, who �rst had the idea to present performance and energy datain this
way.

119

Figure 7.8: Same data as
in Fig. 7.7b but with a
power baseline of 50 W
added to the socket. The
circle marks a possible
operating point for al-
most minimal energy
with a tolerable loss in
performance. For refer-
ence, the best pull-split
data (vectorized, full
socket) for 1.2, 2.0, and
2.7 GHz is also shown
(�lled squares).

0 10 20 30 40 50 60 70 80 90 100 110 120
Performance [MFLUP/s]

0.0

0.5

1.0

1.5

2.0

2.5

E
ne

rg
y

to
 s

ol
ut

io
n

[a
rb

. u
ni

ts
]

1.2 GHz AVX
2.0 GHz AVX
2.7 GHz AVX
Turbo AVX

open symbols:
scalar, full socket

squares:
best pull-split, full socket

a speci�c problem size (geometry and number of iterations).
The models are able to describe the qualitative features of energy and performance. The

observed deviations are caused by (i) the inability of the ECM model to accurately describe the
performance behavior in the vicinity of the saturation point, (ii) the inaccuracy in determining
W2 andW0, and (iii) the approximation of linear power behavior with respect to core count even
with saturated codes like LBM at higher clock speeds. In addition, turbo mode does not �t
perfectly into the model (4.4) since the SNB chip can operate beyond its thermal design power
(TDP) for a limited amount of time [41]. This is why the deviation from the measurements is
especially large with turbo mode (right-pointing triangles in Fig. 7.7). Looking atthe minimum
energy point with respect to clock frequency and number of cores in theregime where perfor-
mance is not saturated, we see that this point moves to smaller frequency as the core count goes
up, as described by (4.11).

In general, all other things being equal, a faster sequential code (AVX instead of scalar)
saves energy. Comparing energy to solution for the AVX codes at their respective saturation
points, we can identify an “optimization space” (shaded area in Fig. 7.7b), inwhich the desired
optimal operating point should be found. Depending on the emphasis one wants to put on
energy minimization vs. maximum performance, this point may be in the lower left corner of
the area. In this case one would use all cores at the lowest frequency (1.2 GHz, �lled circles)
and sacri�ce about 20% of performance compared to the right edge of the area, which is de�ned
by the saturation point at higher frequencies (2.0 GHz to turbo mode). Another clear conclusion
is that turbo mode is of no good use for the LBM implementations studied here, neither from a
performance nor from an energy point of view.

There is no single, well-de�ned criterion for identifying the optimal operatingpoint on the
chip level. One may certainly employ cost models such as the energy-delay product (ratio of
energy and performance), but this is only one possible choice. For reference we have included
a line of constant energy-delay product in Fig. 7.7b. From the data we have collected, using
5–6 cores at 2.0–2.3 GHz seems to provide a good compromise between performance loss and
energy consumption (“as far on the lower right as possible”).

While the model and the measurements yield a consistent picture on the chip level,it is clear

120

that the chip contributes only a (however signi�cant) part to the overall power consumption of
a compute node. As mentioned in the derivation of the power model, the rest ofthe system
should be taken into account when assessing the real energy demand for running an application.
We do this by settingW0 = 73W for the chip-level baseline power, which amounts to roughly
300 W of node power (assuming two-socket nodes). This is also the valuemeasured during a
LINPACK run on SuperMUC [103]. With this change we can offset the energy measurements
from Fig. 7.7 to arrive at the data shown in Fig. 7.8.

As expected, the modi�ed baseline power leads to a reduction of the verticalspread between
the measurements for different clock frequencies. While it was possible with the chip-level (i.e.,
small)W0 to have a situation where energy to solution was heavily in�uenced by frequency and
SIMD vectorization even at a speci�c performance level (with a spread of up to 2� within the
optimization space shown in Fig. 7.7), a largeW0 reduces the spread to about 25%. Hence, a
large baseline power favors the “race to idle” principle where the most in�uential parameter is
performance; optimizations that favor a larger saturation performance (such as the AA propa-
gation pattern, or blocking schemes which increase the computational intensity) have the most
potential for saving energy. In addition, optimized clock speed and a reduction of the number
of cores used can yield second-order but still signi�cant savings. Withinthe transformed opti-
mization space (shaded area in Fig. 7.8) we can identify a possible optimal operating point at
about 2.0 GHz and six cores, with almost minimal energy to solution and a performance loss of
about 6% compared to the highest possible saturation level. In comparison toa naive strategy
of running on all cores with turbo mode enabled and a scalar kernel, more than one third of the
energy can be saved.

The “race to idle” principle with respect to maximum code performance is evident from a
comparison with the energy-performance data for the pull-split pattern (�lled squares) in the best
variant (SSE or AVX vectorized, non-temporal stores, full socket) atthree different frequencies
in Fig. 7.8: The pull-split pattern can neither compete with AA in the performancenor in the
energy dimension. Using AA, almost a factor of two in energy and 30–40% of runtime can be
saved in comparison to pull-split.

7.5 Highly parallel LBM simulations

7.5.1 MPI parallelization in ILBDC

ILBDC uses an MPI parallelization with a static load balancing scheme. The sparse represen-
tation of the lattice is cut into equally sized chunks, so that each MPI rank receives the same
number of �uid nodes (probably off by one). The interfaces of such generated partitions can
be arbitrarily formed with different numbers of partition neighbors, as the simple cutting of the
sparse representation does not consider any topological information. However, in the case of
the channel and reactor benchmark geometries this method results only in a 1-D decomposition,
where each rank only needs to exchange ghost PDFs with its two direct neighbors. A more
extensive description of this approach can be found in [104]. We distribute the ranks linearly
across the compute nodes, so that consecutive ranks are located nearby on the same node. In
case of strong scaling the communication volume of a process stays constant,since each rank
only gets a smaller segment of the long geometries when the number of processes goes up.

The packed bed reactor geometry was used for all the multi-node experiments, since it is
the application scenario that is relevant in practice. We have shown earlierthat the node-level

121

4 8 16 32 64 128
0.6

0.7

0.8

0.9

1.0
P

ar
al

le
l e

ffi
ce

nc
y

1.2 GHz

PPC=4
PPC=5
PPC=6
PPC=7
PPC=8

8 16 32 64 128

1.7 GHz

8 16 32 64 128

2.7 GHz

8 16 32 64 128

2.3 GHz

Nodes

Figure 7.9: Parallel ef�ciency of the large packed bed reactor application case (8000� 160�
160 lattice nodes) for different frequency settings and different number of processes per chip
(PPC) on up to 128 nodes of SuperMUC. The ef�ciency calculation was based on the four-node
performance baseline.

performance (and thus power) properties are very similar to the empty channel case. All multi-
node measurements were conducted on a single island of SuperMUC. Note also that “turbo
mode” cannot be activated on SuperMUC, so we stick to the �xed frequencies of 1.2, 1.7, 2.3,
and 2.7 GHz in the following.

7.5.2 Performance and energy at strong scaling

Parallel ef�ciency and communication performance

All variants of the AA pattern scale well up to 32 nodes (512 cores) at all frequencies, and
parallel ef�ciency only starts to degrade below 90% beyond that point. Scaling experiments
were performed on up to 128 nodes (2048 cores), since this is where some variants start to show
ef�ciencies as low as 60%. We assume a sensible limit of 50–60% of parallel ef�ciency for
production use in a computing center environment. A lower ef�ciency, whichmust be regarded
as a waste of resources, should be justi�ed by special needs, for instance when large aggregate
memory is required. In Fig. 7.9 we show the parallel ef�ciency of the strongscaling runs versus
the number of nodes at the four chosen frequencies and with between four and eight processors
per chip (PPC). Since the application case is too large to �t on a single node,all ef�ciency
numbers were normalized to the four-node run.

Usually one would expect the parallel ef�ciency to increase as the node-level performance
goes down, because communication and synchronization overheads become less important

122

100 1 k 10 k 100 k 1 M 10 M
Message size [bytes]

0

500

1000

1500

2000

2500

3000

3500

B
an

dw
id

th
 [M

B
/s

]
2.7 GHz PPN=1
1.2 GHz PPN=1
2.7 GHz PPN=16
1.7 GHz PPN=16
1.2 GHz PPN=16

Figure 7.10: IMB
sendrecv benchmark on
two SuperMUC nodes at
1:2 and 2:7GHz with 16
(�lled symbols) and one
process per node (open
symbols). MPI ranks
were mapped to cores
for minimum inter-node
traf�c. The shaded area
indicates the range of
message sizes for the
application test case
(reactor).

when the pure compute time goes up. On SuperMUC, the opposite is the case: The minimum
parallel ef�ciency (at 128 nodes) varies between 76% and 63% (depending on the number of
cores per chip) for 2.7 GHz, but between 69 and 61% at 1.2 GHz. We conclude that there must
be a frequency-dependent factor which impedes scalability whenever communication overhead
plays a signi�cant role.

In order to explore the reasons for this effect we have conducted experiments with “sendrecv”
from the Intel MPI benchmark suite (IMB) [105], since it mimics the ringshift-like halo-
exchange communication pattern of the ILBDC code. Each MPI process exchanges data with its
neighbors: MPI Sendrecv(to right neighbor, from left neighbor) . The
benchmark reports the available communication bandwidth per process. In Fig. 7.10 we show
the results for two SuperMUC nodes in the two corner cases of one process (PPN=1) and 16
processes per node (PPN=16) for the two extremal frequencies of 1.2and 2.7 GHz. The place-
ment of the MPI ranks was done in the same way as for the ILBDC benchmarks: Neighboring
ranks were “packed” to the same node to minimize inter-node traf�c.

Although both scenarios show a dependence of the effective MPI bandwidth on the clock
speed, this is especially pronounced at PPN=16, and we see a breakdown of about 35% in
communication bandwidth within the region of message sizes relevant for the ILBDC packed
reactor benchmark (shaded area). Moreover, the bandwidth of the FDR-10 IB interface cannot
be saturated even at the highest frequency setting with PPN=16. We attribute both effects to
the dominance of intra-node communication, which has a strong dependenceon clock speed.
In contrast, the saturated LBM performance with the AA pattern and AVX vectorization only
drops by about 20% over the whole frequency range (see Fig. 7.2). This explains the stronger
breakdown of parallel ef�ciency at strong scaling for low clock speedand for a large number of
cores per chip.

Energy and performance at scale

The question remains whether one can extrapolate the �ndings about energy to solution and
performance from the chip to the multi-node level, and especially whether single-core opti-
mizations, notable SIMD vectorization, have a similar impact. Figure 7.11 shows aggregated

123

Figure 7.11: Multi-node
energy to solution vs.
performance for the AA
pattern AVX LBM imple-
mentation (large reactor
case) across clock speeds
and node counts. The pa-
rameter along each curve
is the number of pro-
cesses per chip (4 . . . 8).
For comparison, the open
symbols show data for
the scalar implementation
on full sockets.

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5
Performance [GFLUP/s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ne

rg
y

to
 s

ol
ut

io
n

32 nodes 64 nodes 128 nodes

PPC 4

PPC 8

PPC 7

PPC 6

PPC 5

1.2 GHz
1.7 GHz
2.3 GHz
2.7 GHz

socket-level energy (as measured via RAPL) vs. performance with AVXfor the three node
counts (32, 64, and 128) at which parallel ef�ciency is between 90 and60%. Along each curve,
the number of processes per chip is increased from four to eight, and thehighest energy point at
the top of each curve is at PPC=8. For reference the corresponding lowest-energy data points for
the scalar implementation are included (open symbols). The overall rise in energy to solution
with growing node count is a trivial consequence of the decreasing parallel ef�ciency.

The most striking difference to the chip-level results is the notable performance degradation
after the saturation point, especially at the larger node counts (32 and 64). It is caused by
the drop in ringshift bandwidth (as described in the previous section) with growing PPC, and
directly leads to a fast rise in energy to solution, much steeper than would be expected by the
power model without communication component. Hence, it is even more crucialin the highly
parallel case to select the optimal operating point, since each expendable core costs an over-
proportional amount of energy: At 128 nodes and 2.7 GHz, the reduction in energy consumption
when going from the full socket to the saturation point is over 40%, but only about 25% on a
single chip (see the 2.7 GHz data in Fig. 7.7b).

The strong disadvantage of scalar execution can also be seen on the highly parallel level
(open symbols in Fig. 7.11 show the “naive” operating point of PPC=8 forthis case). Since more
processes are needed to reach saturation – if this is possible at all –, the slowdown at larger PPC
contributes strongly to the low performance and high energy consumption. As a consequence,
a well-vectorized LBM code is instrumental for optimal energy to solution, particularly in the
highly parallel case when communication plays a noticeable (but not dominant)role.

The question remains how these �ndings change if a realistic baseline poweris used. Fig-
ure 7.12 shows the same data as Fig. 7.11 but with 100 W of constant power added per node.
The results are very similar to the chip-level discussion in Sect. 7.4.1 above:All differences in
energy to solution are damped by the larger idle power, but there is still more than 30% gain
between a naive scalar code run with PPC=8 and the possible optimal operating point (marked
in Fig. 7.12) with PPC=4 and 2.3 GHz. In contrast to the case where only the chip power is
considered, the lowest frequency setting of 1.2 GHz is very unfavorable: The large performance
degradation together with the communication bandwidth breakdown problem and the large base-

124

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5
Performance [GFLUP/s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
E

ne
rg

y
to

 s
ol

ut
io

n

32 nodes 64 nodes 128 nodes

PPC 4

PPC 8

PPC 7

PPC 6

PPC 5

1.2 GHz
1.7 GHz
2.3 GHz
2.7 GHz

Figure 7.12: Same data
as in Fig. 7.11 but with
a realistic baseline power
of 100 W added per node.
The green circle marks a
possible optimal operat-
ing point.

line power prohibit the use of very small frequencies, even if energy to solution were the only
relevant metric. On the other hand, energy is practically constant between1.7 and 2.7 GHz when
the best PPC value is chosen, but performance is boosted by 15% at 128nodes.

Power capping

Up to now we have only considered energy or time to solution, which are certainly important
factors for current and future high-performance systems and their users. However, designing
data centers with minimum overhead for infrastructure is another crucial goal: Since the dy-
namic power of processors and systems may vary signi�cantly, power supply and cooling must
be planned to accommodate the “hottest” operating point, which is almost never reached. Sig-

0 5 10 15 20
Performance [GFLUP/s]

0

50

100

150

200

250

P
ow

er
 d

is
si

pa
tio

n
pe

r
no

de
 [W

]

202 W

175 W

250 W

1.2 GHz
1.7 GHz
2.3 GHz
2.7 GHz

Figure 7.13: Power dissipation (per node, including full
baseline power) of the AA pattern AVX LBM imple-
mentation (�lled symbols) at 128 nodes across clock
speeds and number of cores per chip (PPC=4. . . 8 from
top to bottom along each curve). For comparison the
full-socket scalar implementation is also shown. Dif-
ferent power caps are indicated by horizontal lines.

125

ni�cant cost savings are possible if the power dissipation of a system is capped to a value that
is acceptable for most of the applications, probably to the point where capping can have prece-
dence over lowest energy to solution. For each particular application, theoperating point should
then be chosen so as to get best performance within the power cap.

Figure 7.13 shows the performance and power dissipation per node for a128-node run of
the AA pattern LBM implementation with different PPC values and clock speeds.A possible
power cap of 202W can be met by either running with seven cores at 1:2GHz, with six cores at
1:7GHz, or with four cores at 2:3GHz; the latter corresponds to the suggested optimal operating
point in Fig. 7.12. Comparing the options closest to the cap (1:7 and 2:3GHz, respectively), the
faster clock speed is clearly favorable since it provides about 8% more performance. However,
using �ve cores instead of four will exceed the power cap by more than 10W at a minor per-
formance gain of less than 3%. The full-socket scalar run (open square) is also below the cap,
albeit at an unacceptable performance loss.

Of course, such considerations depend very much on the particular value of the cap: At a cap
of 250W, for instance, there is almost no restriction and one can go for maximum performance
(�ve cores at 2:3GHz). At a very stringent cap of 175W there is no choice but to run with seven
cores at 1:2GHz, which is certainly far from the optimum in terms of performance and energy.
This kind of power capping would be too tight.

In conclusion, staying inside a power cap requires the same awareness of the power and
performance properties of an application as optimizing for performance and/or energy, but can
lead rule out or allow certain operating points which would or would not be chosen without
power capping.

7.6 Conclusion

7.6.1 Summary of results

The scalar and AVX-vectorized single-core performance and intra-chip saturation of an LBM
implementation with AA propagation pattern was successfully modeled using the ECM model,
and compared to the popular “pull-split” propagation model. The superiority of the AA pattern
in terms of performance and memory bandwidth saturation was demonstrated, and it was shown
that “best possible” performance is achieved on the chip with properly AVX-vectorized code,
meaning that bandwidth saturation is reached at the lowest number of cores.

The energy consumption of the LBM algorithm with AA propagation pattern wasthen mod-
eled on the chip level for a range of clock frequencies. Together with theECM model a coherent
picture of the performance and power properties of the LBM algorithm on the chip was gained,
and good qualitative agreement was achieved with measurements. A region of optimal operat-
ing points w.r.t. clock speed and number of cores was identi�ed. The system's baseline power
(power consumption of everything apart from the CPUs, i.e., memory, chip sets, network, disks,
etc.) was taken into account and shown to have a damping in�uence on the differences in energy
consumption (as predicted by the power model). Even then, potential energy savings of up to
50% could be achieved compared to a naive operating point with the inferiorpull-split propa-
gation model. Single-thread code performance and the selection of an optimalnumber of cores
per chip (the latter depending on the former) were shown to have the largest in�uence on energy
consumption.

126

In highly parallel LBM runs, a loss in parallel ef�ciency was observed when the CPU clock
speed was reduced. This unexpected result could be explained by a strong dependence of effec-
tive inter-node and intra-node MPI communication bandwidth on the clock speed. The effective
bandwidth also shows a strong negative correlation with the number of MPI processes per node.
Hence, non-negligible MPI communication introduces a core-bound component into the per-
formance characteristics of the LBM algorithm. As a consequence, minimal energy to solution
in the highly parallel case depends even more strongly on the proper choice of the operating
point, especially on the number of cores per chip (and thus the single-thread performance). Pos-
sible power-capping conditions may modify this decision, especially when theyare very loose
or very stringent. In any case will a simple non-re�ective reduction of theclock speed reduce
performance and consume more energy at the same time.

7.6.2 Reassessment in view of performance patterns

The LBM algorithm is traditionally assumed to be limited bymemory bandwidth saturationon
all processor architectures. This assumption was shown to be valid with the ILBDC code on
the modern Sandy Bridge processor only when properly SIMD vectorized. With scalar code,
or with a propagation pattern that inhibits vectorization because of the sparse lattice represen-
tation, memory bandwidth saturation could not be achieved andlimited instruction throughput
or ineffective executionapplies. The fact that the scalability across cores is much better in this
case is of no signi�cance.

The ECM model and the power model were shown to be in line with measurements across
a range of clock frequencies. Going to strong scaling across nodes, MPI overhead added acode
compositionpattern, which made the code partially core-bound, along with consequences for
energy consumption. Just as in the case of the backprojection algorithm studied in Chapter 6, a
combination of patters applies. However, these are not encountered in thesame loop here but in
different code parts (lattice updates vs. MPI communication).

127

128

Chapter 8

Conclusion

This chapter summarizes the main points of this treatise and gives an outlook to possible future
research. Note that a precise account of all contributions can be found in Sect. 1.3.

8.1 Summary

This work demonstrates the use and usefulness of performance models embedded in an iter-
ative, structured performance engineering process when assessing, predicting, and optimizing
implementations of algorithms in computational science. Using the process, domainscientists
can arrive at a well-de�ned notion of the meaning of “best performance” instead of blindly ap-
plying code changes in hope for performance improvements. One centralidea of the process is
that thefailure of a model should be embraced as something that challenges assumptions and
paves the way for new insights. Although the process was developed speci�cally for node-level
performance engineering, its principles are universal.

After a brief coverage of computer architecture in Chapter 2, the principles of white-box
performance modeling on the chip level were presented in Chapter 3. White-box performance
modeling uses abstractions in different levels of sophistication to describe the interaction of soft-
ware with hardware. The prime example for this approach is the well-known roofline model,
which predicts the performance of loops by reducing the interaction to two possible bottlenecks:
in-core performance and data transfer bandwidth. Hence, the model isresource driven, because
it is the exhaustion of either one of those bottlenecks which determines the runtime of a loop.
It is also the simplest model that assumes the notion of high performance computing ascom-
puting at a bottleneck. The ability of the roofline model to predict performance and to guide
performance analysis and optimization were demonstrated using simple examples.

The roofline model builds on four critical assumptions (bottleneck, overlap, saturation, and
streaming), which limit its applicability but also allow for a clear account of when and why
the model will probably fail. The ECM model can be regarded as a re�nement of the roofline
model. It only keeps the streaming assumption andpredictsthe occurrence of saturation effects,
overlapping of execution and data transfers, and the hitting of bottlenecksby taking the time
contribution of data transfers throughout the memory hierarchy into account. It is the only
approach to date which uses a simpli�ed machine model for the prediction of thesingle-core
performance and scaling properties of loop kernels on a multicore chip. Since not all details
of a microarchitecture are known (or obtainable), the ECM model is not entirely predictive. It

129

rather provides a prediction interval, in which the measured performance should be found. A
comparison of measurement and prediction then hints at possible re�nements.

In Chapter 4 a phenomenological multicore power model was developed, which can be used
to select the optimal operating point in terms of clock frequency and number of cores used for
minimum energy to solution. This model is not an immediate part of the performanceengi-
neering process, but it can be expected that CPU cycles will soon not be the only cost function
that scienti�c users on large-scale systems have to take into account. One of the main prereq-
uisites of the model is that code performance is the paramount in�uencing variable for energy
consumption; all other measures are subordinate (code race to idleprinciple). The model dis-
tinguishesscalablefrom saturatingcode. The latter hits a bottleneck when the number of cores
is increased, while the former does not. They both show very different energy consumption
behavior with respect to the parameters, which makes optimizing for energy incomplex appli-
cations a challenge. For scalable code, the model predicts that energy is minimized when using
all cores at an optimal frequency, which may or may not be actually availablein the system. This
frequency depends on the ratio of static to dynamic power consumption, andcan thus be large
when the system is “hot” (clock race to idleprinciple). There are some interesting consequences
for system design in this limit: Depending on the static (or baseline) power, onecan distinguish
design space limits for “hot” and “cool” systems, which can be identi�ed with Cray's “oxen and
chickens.” For saturating code, the situation is simpler, because the minimal energy strategy is
to use as many cores as required for saturation, at the lowest possible frequency. Baseline and
dynamic power do not play a role.

Chapter 5 described the design of the pattern-based structured node-level performance engi-
neering process. The main goal of this approach is to take guesswork out of high-performance
code development. Starting from a �rst version without performance patterns it was shown how
to apply the process to the textbook example of an OpenMP-parallel three-dimensional Jacobi
smoother. Already at this stage the process is useful enough to be appliedto realistic prob-
lems, but a signi�cant enhancement is added byperformance patterns. A pattern is identi�ed
by its signature, a combination of observed performance behavior (e.g., intra-chip scalability
or dependence of performance on problem size) and hardware performance metrics. A perfor-
mance model can then be built for every loop in the code from the correctly identi�ed pattern
(or combination of patterns) and input from code analysis, hardware characteristics, and prob-
ably microbenchmarking. Hardware performance metrics are used for validating or disproving
the model. If the model is valid, optimizations can be targeted, which may or may notchange
the applicable pattern(s). In any case, the model gives a prediction of thepossible performance
bene�t. If the model is not valid, it must be adjusted, either by changes in theinput data or by
choosing an entirely different pattern.

Chapter 6 described the application of performance modeling and engineering to a computed
tomography backprojection algorithm on current Intel x86 multicore processors. A �rst attempt
with the roofline model predicted a strong bandwidth limitation, but measurements stayed far
behind this expectation. A more thorough code inspection (after some “commonsense” and
low-level optimizations) revealed that the bandwidth limitation did not apply but that code exe-
cution in the core is the actual bottleneck. In view of this insight it could be shown that the CM
performance model is able to describe the performance and scalability features of the algorithm,
and that only one out of the our considered processor architectures isbandwidth-limited for
this algorithm. Consequently, a popular optimization often applied to loop nests (spatial block-
ing) was proven to be relevant only on this architecture. The analysis alsouncovered a major

130

problem with the AVX SIMD instruction set on Intel Sandy Bridge processors, which lacks
a gather instruction. Hence, the bene�t from AVX over SSE was not as large as anticipated.
Future Intel designs will feature gather instructions and thus promise a signi�cant performance
improvement. Finally, using the optimized code on a standard two-way Intel Xeon server the
clinical upper runtime limit of twenty seconds could be met without reverting to special-purpose
hardware.

In Chapter 7, the scalar and AVX-vectorized single-core performanceand intra-chip satura-
tion of a lattice-Boltzmann (LBM) �ow solver implementation with AA propagation pattern was
successfully modeled using the ECM model, and compared to the popular “pull-split” propaga-
tion model. “Best possible” performance in terms of bottleneck exhaustion was achieved on the
chip. The chip-level energy consumption of the best implementation was then modeled using
the multicore power model for a range of clock frequencies. Combining the twomodels, a re-
gion of optimal operating points with respect to clock speed and number of active cores could be
identi�ed. The system's baseline power had the expected damping in�uenceon the differences
in energy consumption. Single-thread code performance and the selectionof an optimal number
of cores per chip were shown to have the largest in�uence on energy consumption. Extrapolat-
ing these results to highly parallel strong scaling runs yielded the interesting observation that
a core-bound component was introduced by the MPI communication overhead, sharpening the
identi�cation of the optimal operating point. Hence, the guidelines developed on the chip level
were not invalidated, but the opposite was the case: Saving energy with tolerable loss in perfor-
mance leaves very little room for variation in the tunable parameters. Finally, power-capping
measures often imposed by computing centers were discussed, and it was shown that these do
not have much in�uence on the choice of the optimal operating point if they are not uselessly
stringent. Not that, although these results were obtained speci�cally for anLBM algorithm, they
are expected to be generally applicable to many bandwidth-bound scenarios.

8.2 Outlook

Many possible options exist for extending the concepts developed here toa broader context.
The ECM model does not accurately describe the performance characteristics of bandwidth-

bound code near the saturation point, especially when there is hardly any overlap in the cache
hierarchy. This discrepancy must be studied further, although it does not signi�cantly change the
general applicability of the model. One crucial prerequisite for the model is that latency effects
can be ignored, which is certainly not true for all loop structures, sparse matrix-vector multiply
being the most prominent example. It would be worthwhile extending the model toward latency-
in�uenced data accesses, so that the corresponding performance penalties can be estimated.
This will especially be interesting on platforms having less advanced out-of-order and latency-
hiding mechanisms, such as the IBM Blue Gene/Q processor or the Intel Xeon Phi Coprocessor
platform, where the streaming assumption is frequently invalid.

The multicore power model assumes perfect load balancing and a constantclock speed
across all cores of a chip. In the light of upcoming processor generations, which have the ability
to set core-individual clock frequencies, the model will have to be revised. Under unbalanced
load the power dissipation of “idle” cores depends very much on the details of the programming
model. The power model should be extended to accommodate this situation.

While it is generally applicable to any performance analysis and optimization effort in com-

131

putational science, the structured performance engineering process was formulated speci�cally
for node-level issues on multicore processors. However, it was intentionally not speci�ed which
particular models should be used. Extending it to other setups such as accelerators or massively
parallel machines is mainly a matter of identifying the relevant patterns in these cases, which
might be complex. For instance, MPI communication overhead alone is prone toseveral typical
performance issues, which are nowadays identi�ed using tools, but which should be embedded
in the performance engineering process. It is also to be expected that there will be a mixture of
applicable patterns in complex codesespeciallyat the large scale.

132

Bibliography

[1] G. Hager, J. Treibig, J. Habich and G. Wellein.Exploring performance and power prop-
erties of modern multicore chips via simple machine models. Accepted for publication in
Concurrency and Computation: Practice and Experience . http://arxiv.org/abs/1208.2908

[2] G. Schubert, H. Fehske, G. Hager and G. Wellein.Hybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-basedsystems.
Parallel Processing Letters21, (2011) 339–358.

[3] M. Kreutzer, G. Hager, G. Wellein, H. Fehske and A. R. Bishop.A uni�ed
sparse matrix data format for modern processors with wide SIMD unitsSubmitted.
http://arxiv.org/abs/1307.6209

[4] J. Treibig and G. Hager.Introducing a performance model for bandwidth-limited loop
kernels. In: R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski (eds.),
Parallel Processing and Applied Mathematics, vol. 6067 ofLecture Notes in Computer
Science(Springer Berlin / Heidelberg). ISBN 978-3-642-14389-2, 615–624, (2010).

[5] J. Treibig, G. Hager and G. Wellein.Performance patterns and hardware metrics
on modern multicore processors: Best practices for performance engineering. In:
I. Caragiannis, M. Alexander, R. Badia, M. Cannataro, A. Costan, M.Danelutto,
F. Desprez, B. Krammer, J. Sahuquillo, S. Scott and J. Weidendorfer (eds.), Euro-
Par 2012: Parallel Processing Workshops, vol. 7640 of Lecture Notes in Computer
Science(Springer Berlin Heidelberg). ISBN 978-3-642-36948-3, 451–460, (2013).
http://dx.doi.org/10.1007/978-3-642-36949-050

[6] J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger and G. Wellein.Pushing the limits
for medical image reconstruction on recent standard multicore processors. Int. J. High
Perform. Comp. Appl.27(2), (2013) 162–177.

[7] M. Wittmann, G. Hager, T. Zeiser and G. Wellein.An analysis of energy-optimized
lattice-Boltzmann CFD simulations from the chip to the highly parallel levelSubmitted.
http://arxiv.org/abs/1304.7664

[8] M. Gen and R. Cheng.Genetic Algorithms and Engineering Optimization(John Wiley
& Sons), 1999. ISBN 978-0471315315.

[9] M. Wittmann, G. Hager, J. Treibig and G. Wellein.Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters. Parallel Process-
ing Letters20(4), (2010) 359–376. http://dx.doi.org/10.1142/S0129626410000296

133

[10] A. Scḧafer and D. Fey.A predictive performance model for stencil codes on multicore
cpus. In: M. Dayd́e, O. Marques and K. Nakajima (eds.),High Performance Computing
for Computational Science - VECPAR 2012, vol. 7851 ofLecture Notes in Computer
Science(Springer Berlin Heidelberg). ISBN 978-3-642-38717-3, 451–466,(2013).

[11] S. W. Williams, A. Waterman and D. A. Patterson.Roo�ine: An insightful visual per-
formance model for �oating-point programs and multicore architectures. Tech. Rep.
UCB/EECS-2008-134, EECS Department, University of California, Berkeley, Oct 2008.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html

[12] R. W. Hockney and I. J. Curington.f1=2: A parameter to characterize memory and
communication bottlenecks. Parallel Computing10(3), (1989) 277–286.

[13] W. Scḧonauer. Scienti�c Supercomputing: Architecture and Use of
Shared and Distributed Memory Parallel Computers(Self-edition), 2000.
http://www.rz.uni-karlsruhe.de/� rx03/book

[14] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman and M. Gittings.Pre-
dictive performance and scalability modeling of a large-scale application. In: Proceed-
ings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing
'01 (ACM, New York, NY, USA). ISBN 1-58113-293-X, 37–37, (2001).

[15] F. Petrini, D. J. Kerbyson and S. Pakin.The case of the missing supercomputer perfor-
mance: Achieving optimal performance on the 8,192 processors of ASCI Q. In: SC '03:
Proceedings of the 2003 ACM/IEEE conference on Supercomputing(IEEE Computer So-
ciety, Washington, DC, USA). ISBN 1-58113-695-1, 55, (2003).

[16] P. F. Spinnato, G. van Albada and P. M. Sloot.Performance modeling of distributed
hybrid architectures. IEEE Trans. Parallel Distrib. Systems15(1), (2004) 81–92.

[17] D. J. Kerbyson and P. W. Jones.A performance model of the Parallel Ocean Program.
Int. J. High Perform. Comp. Appl.19, (2005) 261–276.

[18] S. Hammond, G. Mudalige, J. Smith, S. Jarvis, J. Herdman and A. Vadgama. WARPP:
A toolkit for simulating high performance parallel scienti�c codes. In: 2nd In-
ternational Conference on Simulation Tools and Techniques (SIMUTools09). (2009).
http://eprints.dcs.warwick.ac.uk/38/

[19] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke andJ. Browne.PerfEx-
pert: An easy-to-use performance diagnosis tool for HPC applications. In: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC '10 (IEEE Computer Society, Washington, DC, USA).
ISBN 978-1-4244-7559-9, 1–11, (2010).

[20] D. Schmidl, C. Iwainsky, C. Terboven, C. H. Bischof and M. S. Müller. Towards a
performance engineering work�ow for OpenMP 4.0. In: Proc. International Conference
on Parallel Computing (ParCo 2013). Accepted.

[21] G. Hager and G. Wellein.Introduction to High Performance Computing for Scientists
and Engineers(CRC Press, Inc., Boca Raton, FL, USA), 1st ed., 2010. ISBN 978-
1439811924.

134

[22] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach
(Morgan Kaufmann), 4th ed., 2006. ISBN 978-0123704900.

[23] Intel 64 and IA-32 architectures optimization reference manual, April 2012.
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-
manual.pdf.

[24] J. D. McCalpin.STREAM: Sustainable memory bandwidth in high performance comput-
ers. Tech. rep., University of Virginia, Charlottesville, VA, 1991-2007. A continually
updated technical report. http://www.cs.virginia.edu/stream/

[25] J. Treibig, G. Hager and G. Wellein.LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. In: PSTI2010, the First International Workshop on
Parallel Software Tools and Tool Infrastructures(IEEE Computer Society, Los Alamitos,
CA, USA), 207–216, (2010).

[26] J. Treibig.Likwid: Linux tools to support programmers in developing high performance
multi-threaded programs. http://code.google.com/p/likwid/

[27] G. M. Amdahl.Validity of the single processor approach to achieving large scale comput-
ing capabilities. In: AFIPS '67 (Spring): Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference(ACM, New York, NY, USA), 483–485, (1967).

[28] G. Wellein, G. Hager, A. Basermann and H. Fehske.Exact Diagonalization of Large
Sparse Matrices: A Challenge for Modern Supercomputers. In: CD CUG Summit 2001,
Indian Wells, USA. (2001).

[29] G. Wellein, G. Hager, A. Basermann and H. Fehske.Fast sparse matrix-vector multipli-
cation for TeraFlop/s computers. In: J. Palmaet al.(eds.),High Performance Computing
for Computational Science — VECPAR2002, LNCS 2565(Springer-Verlag, Berlin, Hei-
delberg). ISBN 3-540-00852-7, 287–301, (2003).

[30] G. Schubert, G. Hager and H. Fehske.Performance limitations for sparse matrix-vector
multiplications on current multicore environments. In: S. Wagneret al. (eds.),High
Performance Computing in Science and Engineering, Garching/Munich 2009 (Springer-
Verlag, Berlin, Heidelberg), (2010). To appear. http://arxiv.org/abs/0910.4836

[31] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. A. Yelick and J. Demmel.Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Computing35(3), (2009) 178–194.

[32] M. Mohiyuddin, M. Hoemmen, J. Demmel and K. Yelick.Minimizing communication in
sparse matrix solvers. In: SC '09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis(ACM, New York, NY, USA). ISBN 978-
1-60558-744-8, 1–12, (2009).

[33] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC '09: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis(ACM, New York, NY, USA).
ISBN 978-1-60558-744-8, 1–11, (2009).

135

[34] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann andA. Bishop. Sparse
matrix-vector multiplication on GPGPU clusters: A new storage format and a scalable
implementation. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1696–1702, (2012).

[35] pOSKI: parallel optimized sparse kernel interface. http://bebop.cs.berkeley.edu/poski

[36] E. Cuthill and J. McKee.Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the 1969 24th national conference (ACM '69), ACM, New York, NY, USA.
157–172, (1969).

[37] The EPCC OpenMP Microbenchmarks. http://www2.epcc.ed.ac.uk/computing/research
activities/openmpbench/openmpindex.html

[38] Intel architecture code analyzer. http://software.intel.com/en-us/articles/intel-
architecture-code-analyzer.

[39] M. A. Suleman, M. K. Qureshi and Y. N. Patt.Feedback-driven threading: power-
ef�cient and high-performance execution of multi-threaded workloadson CMPs.
SIGARCH Comput. Archit. News36(1), (2008) 277–286. ISSN 0163-5964.

[40] J. D. McCalpin.Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, December 1995. http://tab.computer.org/tcca/NEWS/DEC95/dec95
mccalpin.ps

[41] E. Rotem, A. Naveh, A. Ananthakrishnan, D. Rajwan and E. Weissmann. Power-
management architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE
Micro 32, (2012) 20–27. ISSN 0272-1732.

[42] R. Scḧone, D. Hackenberg and D. Molka. Memory performance at reduced
CPU clock speeds: An analysis of current x8664 processors. In: Pro-
ceedings of the 2012 USENIX conference on Power-Aware Computing and Sys-
tems, HotPower'12 (USENIX Association, Berkeley, CA, USA), 9–9, (2012).
http://dl.acm.org/citation.cfm?id=2387869.2387878

[43] J. W. Choi, D. Bedard, R. Fowler and R. Vuduc.A roo�ine model of energy. In: Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on. ISSN
1530-2075, 661–672, (2013).

[44] D. Li, B. R. de Supinski, M. Schulz, D. S. Nikolopoulos and K. W. Cameron.Strategies
for energy ef�cient resource management of hybrid programming models. IEEE Trans-
actions on Parallel and Distributed Systems99(PrePrints). ISSN 1045-9219.

[45] C. Navarrete, C. Guillen, W. Hesse and M. Brehm. Optimiz-
ing the energy-to-solution on SandyBridge systems. inSiDE – In-
novatives Supercomputing in Deutschland 10(2), (2012) 62–65.
http://www.autotune-project.eu/sites/default/�les/Materials/Papers/inSiDE
autumn2012.pdf

136

[46] S. Donath.On Optimized Implementations of the Lattice-Boltzmann Method on Contem-
porary High Performance Architectures. Bachelor thesis, Universität Erlangen-N̈urnberg,
Department Informatik, 2004.

[47] G. Wellein, T. Zeiser, S. Donath and G. Hager.On the Single Processor Performance of
Simple Lattice Boltzmann Kernels. Comput. & Fluids35, (2006) 910–919.

[48] I. Steiner. Intel, private communication.

[49] D. Wonnacott.Using time skewing to eliminate idle time due to memory bandwidth and
network limitations. In: Proc. 14th International Parallel and Distributed Processing
Symposium (IPDPS 2000). 171–180, (2000).

[50] M. Frigo and V. Strumpen.Cache oblivious stencil computations. In: ICS '05: Proceed-
ings of the 19th annual international conference on Supercomputing(ACM, New York,
NY, USA). ISBN 1-59593-167-8, 361–366, (2005).

[51] M. Frigo and V. Strumpen.The memory behavior of cache oblivious stencil computations.
J. Supercomput.39(2), (2007) 93–112. ISSN 0920-8542.

[52] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf and K. Yelick.Optimization and per-
formance modeling of stencil computations on modern microprocessors. SIAM Review
51, (2009) 129–159.

[53] G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske.Ef�cient temporal block-
ing for stencil computations by multicore-aware wavefront parallelization. Annual In-
ternational Computer Software and Applications Conference (COMPSAC09) 1, (2009)
579–586. ISSN 0730-3157.

[54] J. Treibig, G. Wellein and G. Hager.Ef�cient multicore-aware parallelization strate-
gies for iterative stencil computations. Journal of Computational Science2(2),
(2011) 130–137. ISSN 1877-7503. Simulation Software for Supercomputers.
http://www.sciencedirect.com/science/article/pii/S1877750311000172

[55] R. de la Cruz and M. Araya-Polo.Towards a multi-level cache performance model
for 3D stencil computation. Procedia Computer Science4(0), (2011) 2146 – 2155.
Proceedings of the International Conference on Computational Science, ICCS 2011.
http://www.sciencedirect.com/science/article/pii/S1877050911002936

[56] J. Jeffers and J. Reinders.Intel Xeon Phi Coprocessor High Performance Programming
(Morgan Kaufmann), 2013. ISBN 978-0124104143.

[57] W. Gropp and M. Snir.Programming for exascale computers. Computing in Science
EngineeringPP(99), (2013) 1–1. ISSN 1521-9615.

[58] A. Kak and M. Slaney.Principles of Computerized Tomographic Imaging(SIAM), 2001.

[59] B. Heigl and M. Kowarschik.High-speed reconstruction for C-arm computed tomogra-
phy. In: 9th International Meeting on Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine(www.fully3d.org, Lindau), 25–28, (2007).

137

[60] N. Strobel and et al.3D Imaging with Flat-Detector C-Arm Systems. In: Multislice CT
(Springer, Berlin / Heidelberg), 3rd ed. ISBN 978-3-540-33125-4, 33–51, (2009).

[61] L. Feldkamp, L. Davis and J. Kress.Practical Cone-Beam Algorithm. Journal of the
Optical Society of AmericaA1(6), (1984) 612–619.

[62] K. Mueller and R. Yagel.Rapid 3D cone-beam reconstruction with the Algebraic Re-
construction Technique (ART) by utilizing texture mapping graphics hardware. Nuclear
Science Symposium, 1998. Conference Record.3, (1998) 1552–1559.

[63] K. Mueller, F. Xu and N. Neophytou.Why do Commodity Graphics Hardware Boards
(GPUs) work so well for acceleration of Computed Tomography?In: SPIE Electronic
Imaging Conference, vol. 6498 (San Diego), 64980N.1–64980N.12, (2007).

[64] H. Scherl, B. Keck, M. Kowarschik and J. Hornegger.Fast GPU-Based CT Reconstruc-
tion using the Common Uni�ed Device Architecture (CUDA). In: E. C. Frey (ed.),Nu-
clear Science Symposium Conference Record, 2007. NSS '07. IEEE, vol. 6 (Honolulu,
HI). ISSN 1082-3654, 4464–4466, (2007).

[65] Okitsu, Ino and Hagihara.High-performance cone beam reconstruction using cuda com-
patible gpus. Par. Comp.36, (2010) 129–141.

[66] E. Papenhausen, Z. Zheng and K. Mueller.GPU-Accelerated Back-Projection Revis-
ited: Squeezing Performance by Careful Tuning. Workshop on High Performance Image
Reconstruction (HPIR), 2011.

[67] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschik and J. Hornegger.Im-
plementation of the FDK algorithm for cone-beam CT on the cell broadband engine ar-
chitecture. In: J. Hsieh and M. J. Flynn (eds.),SPIE Medical Imaging Conference Proc.,
vol. 6510 (SPIE), 651058, (2007).

[68] M. Kachelrieß, M. Knaup and O. Bockenbach.Hyperfast parallel-beam and cone-beam
backprojection using the CELL general purpose hardware. Medical Physics34(4), (2007)
1474–1486.

[69] C. Rohkohl, B. Keck, H. G. Hofmann and J. Hornegger.RabbitCT—An Open Platform
for Benchmarking 3-D Cone-beam Reconstruction Algorithms. Medical Physics36(9),
(2009) 3940–3944. http://link.aip.org/link/?MPH/36/3940/1

[70] RabbitCT Benchmark. http://www.rabbitct.com/.

[71] H. G. Hofmann, B. Keck, C. Rohkohl and J. Hornegger.Comparing Performance of
Many-core CPUs and GPUs for Static and Motion Compensated Reconstruction of C-
arm CT Data. Medical Physics38(1), (2011) 3940–3944.

[72] The Stream Benchmark. http://www.streambench.org/, Mar 2011.

[73] J. Treibig, G. Hager and G. Wellein.LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. 2012 41st International Conference on Parallel
Processing Workshops0, (2010) 207–216. ISSN 1530-2016.

138

[74] LIKWID performance tools. http://code.google.com/p/likwid

[75] N. Navab, A. Bani-Hashemi, M. Nadar, K. Wiesent, P. Durlak, T. Brunner, K. Barth
and R. Graumann.3D Reconstruction from Projection Matrices in a C-Arm Based
3D-Angiography System. In: W. Wells, A. Colchester and S. Delp (eds.),Medical Im-
age Computing and Computer-Assisted Interventation MICCAI 98, vol. 1496 ofLecture
Notes in Computer Science(Springer Berlin / Heidelberg). ISBN 978-3-540-65136-9,
119–129, (1998). 10.1007/BFb0056194. http://dx.doi.org/10.1007/BFb0056194

[76] K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz and W. Seissler.
Enhanced 3-D-reconstruction algorithm for C-arm systems suitable for interventional
procedures. IEEE Transactions on Medical Imaging19(5), (2000) 391–403.

[77] R. Hartley and A. Zissermann.Multiple View Geometry in Computer Vision, 2nd Edition
(Cambridge University Press, Cambridge), 2004.

[78] I. Goddard, A. Berman, O. Bockenbach, F. Lauginiger, S. Schuberth and S. Thieret.
Evolution of computer technology for fast cone beam backprojection. In: Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6498. (2007).

[79] H. G. Hofmann, B. Keck and J. Hornegger. Accelerated C-arm Reconstruc-
tion by Out-of-Projection Prediction. In: T. M. Deserno, H. Handels, H.-
P. Meinzer and T. Tolxdorff (eds.),Bildverarbeitung f̈ur die Medizin 2010
(Berlin). ISBN 978-3-642-11967-5, 380–384, (2010). http://www5.informatik.uni-
erlangen.de/Forschung/Publikationen/2010/Hofmann10-ACR.pdf.

[80] J. Hofmann. Performance Evaluation of the Intel Many Integrated Core Architecture
for 3D Image Reconstruction in Computed Tomography. Master's thesis, Universität
Erlangen-N̈urnberg, Department Informatik, 2013.

[81] J. Treibig, G. Hager and G. Wellein.Complexities of performance prediction for
bandwidth-limited loop kernels on multi-core architectures. In: S. W. et al. (ed.),High
Performance Computing in Science and Engineering, Garching/Munich 2009 (Springer,
Berlin / Heidelberg, Garching/Munich). ISBN 978-3642138713, 3–12, (2010).

[82] M. Schulz, M. Krafczyk, J. T̈olke and E. Rank. Parallelization strategies and ef�-
ciency of CFD computations in complex geometries using lattice Boltzmann methods
on high performance computers. In: M. Breuer, F. Durst and C. Zenger (eds.),High
Performance Scienti�c and Engineering Computing Proceedings of the 3rd International
FORTWIHR Conference on HPSEC, Erlangen, March 12-14, 2001, vol. 21 of Lecture
Notes in Computational Science and Engineering(Springer-Verlag, Berlin, Heidelberg),
115–122, (2002).

[83] C. Pan, J. F. Prins and C. T. Miller.A high-performance lattice Boltzmann implementation
to model �ow in porous media. Computer Physics Communications158(2), (2004) 89–
105.

[84] T. Pohl, F. Deserno, N. Tḧurey, U. R̈ude, P. Lammers, G. Wellein and T. Zeiser.
Performance evaluation of parallel large-scale lattice Boltzmann applica-
tions on three supercomputing architectures. In: SC '04: Proceedings of

139

the 2004 ACM/IEEE conference on Supercomputing. (2004). http://www.sc-
conference.org/sc2004/schedule/index.php?module=Default&action= ShowDe-
tail&eventid=13#2.

[85] T. Zeiser, G. Wellein and P. Lammers.Is there still a need for tailored HPC systems
or can we go with commodity off-the-shelf clusters — Some comments basedon per-
formance measurements using a lattice Boltzmann �ow solver. InSiDE – Innovatives
Supercomputing in Deutschland2(2), (2004) 10–15.

[86] J. Wang, X. Zhang, A. G. Bengough and J. W. Crawford.Domain-decomposition method
for parallel lattice Boltzmann simulation of incompressible �ow in porous media. Phys.
Rev. E72(1), (2005) 016706.

[87] M. Bernaschi, S. Succi, M. Fyta, E. Kaxiras, S. Melchionna and J. Sircar. MUPHY: A
parallel high performance MUlti PHYsics/Scale code. In: IEEE International Symposium
on Parallel and Distributed Processing, 2008. IPDPS 2008.1–8, (2008).

[88] K. Mattila, J. Hyvaluoma, J. Timonen and T. Rossi.Comparison of implementations
of the lattice-Boltzmann method. Computers & Mathematics with Applications55(7),
(2008) 1514–1524.

[89] T. Zeiser.Simulation und Analyse von durchströmten Kugelscḧuttungen in engen Rohren
unter Verwendung von Hochleistungsrechnern. Ph.D. thesis, Universität Erlangen-N̈urn-
berg, Technische Fakultät, 2008.

[90] P. Bailey, J. Myre, S. Walsh, D. Lilja and M. Saar.Accelerating lattice Boltzmann �uid
�ow simulations using graphics processors. In: International Conference on Parallel
Processing 2009 (ICPP'09). 550–557, (2009).

[91] D. Vidal, R. Roy and F. Bertrand.On improving the performance of large parallel lattice
Boltzmann �ow simulations in heterogeneous porous media. Computers & Fluids39(2),
(2010) 324–337.

[92] J. Zudrop, H. Klimach, M. Hasert, K. Masilamani and S. Roller.A fully distributed
CFD framework for massively parallel systems. In: Cray Users Group Conference 2011.
(2012). April 29 to May 3, Stuttgart, Germany. https://cug.org/proceedings/attendee
programcug2012/includes/�les/pap136.pdf

[93] M. Wittmann, T. Zeiser, G. Hager and G. Wellein.Comparison of different propagation
steps for lattice Boltzmann methods. Computers & Mathematics with Applications65(6),
(2013) 924–935.

[94] A. Peters, S. Melchionna, E. Kaxiras, J. Lätt, J. K. Sircar, M. Bernaschi, M. Bisson and
S. Succi. Multiscale simulation of cardiovascular �ows on the IBM Bluegene/P: Full
heart-circulation system at red-blood cell resolution. In: Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking and Storage, SC
2010, New Orleans, LA, USA, November 13-19, 2010(IEEE), 1–10, (2010).

[95] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G.Vahala, L. Vahala and A. Macnab. Magneto-
hydrodynamic turbulence simulations on the earth simulator using the lattice Boltzmann

140

method. In: Proceedings of the ACM/IEEE International Conference for High Perfor-
mance Computing, Networking and Storage (SC05), Seattle, WA, November 12-18, 2005.
(2005).

[96] S. Williams, J. Carter, L. Oliker, J. Shalf and K. Yelick.Optimization of a lattice Boltz-
mann computation on state-of-the-art multicore platforms. J. Parallel Distrib. Comput.
69(9), (2009) 762–777.

[97] T. Zeiser, G. Hager and G. Wellein.Benchmark analysis and application results for
lattice Boltzmann simulations on NEC SX vector and Intel Nehalem systems. Parallel
Processing Letters19(4), (2009) 491–511.

[98] P. Bhatnagar, E. P. Gross and M. K. Krook.A model for collision processes in gases. I.
small amplitude processes in charged and neutral one-component systems. Phys. Rev.
94(3), (1954) 511525.

[99] S. Succi.The Lattice Boltzmann Equation – For Fluid Dynamics and Beyond(Clarendon
Press), 2001.

[100] D. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Models, vol.
1725 ofLecture Notes in Mathematics(Springer, Berlin), 2000.

[101] S. Chen and G. Doolen.Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid
Mech.30, (1998) 329–364.

[102] Y. Qian, D. d'Humi�eres and P. Lallemand.Lattice BGK Models for Navier-Stokes Equa-
tion. Europhys. Lett.17(6), (1992) 479–484.

[103] H. Huber. LRZ, private communication.

[104] M. Wittmann, T. Zeiser, G. Hager and G. Wellein.Domain decomposition and local-
ity optimization for large-scale lattice Boltzmann simulations. Computers & Fluids80,
(2013) 283–289. ISSN 0045-7930. Selected contributions of the 23rdInternational Con-
ference on Parallel Fluid Dynamics ParCFD2011.

[105] Intel MPI benchmarks. http://software.intel.com/en-us/articles/intel-mpi-benchmarks/

141

Index

80/20 rule, 9, 10

AA pattern, 112
acceleration, 28
adjacency list, 112
Amdahl's Law, 29, 83
applicable peak

bandwidth, 31
performance, 30

AVX, 23, 55

backprojection, 13, 91
baseline power, 56, 58, 61, 62, 64, 65, 121
binding, 21
black-box modeling, 10
Boltzmann equation, 110
bottleneck assumption, 32

C-arm CT, 91
cache, 21

coherence, 22
line, 21

eviction, 22
miss, 21

ccNUMA, 23
page interleaving, 77
page placement, 76, 83

chickens, 64
chunk occupancy, 38
clock speed, 21
code

balance, 30, 39, 41, 55, 70, 73, 75
optimization, 69

code composition, 84
collision

integral, 110
operator, 111
step, 112

communication

overhead, 84
computational intensity, 30, 33, 50, 60
compute node, 22
computed tomography, 91

seeCT, 13
control �ow, 81
CRS format, 36
CT, 13, 91

DCT, seedynamic concurrency throttling, 110
DGEMM, 55
DVFS, 59, 110
dynamic concurrency throttling, 60, 63
dynamic power, 56, 59, 60, 62, 64

ECM model, 11, 43–51, 86, 87
for backprojection, 101
for LBM, 115–118
for vector triad, 46

ELLPACK, 37
energy

to solution, 59–63
erratic access, 82
event signatures, 79, 80
exclusive cache, 21
execution units, 17
expensive instructions, 84

false sharing, 22, 82
�rst-touch, 23
�rst-touch principle, 77, 83, 104
Flop, 28
�uid lattice site update,seeFLUP
FLUP, 112
FPGA, 13, 91

Golden Rule, 23, 77
GPGPU, 13, 44, 112
Gustafson's Law, 29

142

hardware metrics, 69
hardware performance monitoring,seeHPM
Harpertown, 93, 103, 104, 106
hazards, 85
HPM, 24, 33, 78
HyperTransport, 23

IACA, 101, 103, 115
ILBDC, 110, 111
ILP, 18, 103
inclusive cache, 21, 43
ineffective instructions, 85
instruction

cache, 20
overhead, 84
throughput, 81

instruction-level parallelism,seeILP
Intel MPI benchmark suite, 123

Jacobi smoother, 55, 70

lattice site update,seeLUP
lattice-Boltzmann

equation, 110
lattice-Boltzmann method,seeLBM
layer condition, 55, 73
LBM, 13, 70, 109–127
leakage power, 56
light speed, 10
LIKWID, 24, 54, 76, 79
line update kernel, 98
load imbalance, 83
locality domain, 23
LUP, 70

machine model, 11
cycle-accurate, 11

marker-and-cell, 111, 114
memory

bandwidth, 22, 33, 35
interface, 22, 35
latency, 22

micro-ops, 20, 47
microarchitecture

anomalies, 82
microbenchmarking, 31, 69
Moore's Law, 21

multi-stream benchmark, 116

non-temporal stores, 50, 74, 76, 112
numactl , 77

OLC, 21, 81
OpenMP, 40, 70

load balancing, 103
overhead, 29, 42

out-of-order execution, 18
outer-level cache,seeOLC
overlap assumption, 32
oxen, 64

parallel �rst touch, 77, 86
particle distribution function,seePDF
PDF, 110, 111
performance, 27

accelerated, 27
engineering, 12, 33, 67, 87
model, 9, 69
patterns, 12, 78–87
pro�le, 10

pipeline, 17
bubbles, 18, 20
depth, 17
hazard, 81
saturation, 81
throughput, 18

power
capping, 125
gating, 56
model, 11, 59

for LBM, 118–121
prefetching, 22, 43, 82
pro�ling, 68
pull scheme, 112
pull-split, 112, 121

QuickPath, 23

RabbitCT, 91
race to idle, 121

clock ~, 61–64
code ~, 62, 121

RAPL, 124
raytracer, 54

143

RCM algorithm, 38
register, 19
relaxation time, 110
roo�ine model, 30–43, 50, 118

assumptions, 32
of energy, 59

Sandy Bridge, 15, 23, 34, 40, 44–46, 49, 53,
56, 57, 72, 92, 102, 113, 127

saturation assumption, 32
saturation point, 45, 49, 50
Scḧonauer triad, 34

ECM model, 46
multicore scaling, 49

SELL-C-s , 37
sendrecv benchmark, 123
shot-in-the-dark optimizations, 12
SIMD, 13, 19, 33, 60, 85, 111

intrinsics, 55, 98
width, 19, 97

single instruction multiple data,seeSIMD
slow computing, 85
SMT, 20, 24, 50, 93, 103, 105
SoA, 112
sparse lattice, 112
sparse matrix

storage schemes, 36
vector multiply, 13, 36, 69, 86

spatial blocking, 74
speedup, 27
SSE, 19, 41
stencil, 70, 77
store miss, 70
STREAM, 45, 72, 93
streaming step, 112
streaming assumption, 32
strided access, 82
strong scaling, 14, 29
structure of arrays,seeSoA
SuperMUC, 65, 109, 113, 121–123
superscalarity, 18
synchronization overhead, 83

TDP, 21, 56, 120
temporal blocking, 50
thermal design power,seeTDP

topology, 21
TRT, 13, 111
turbo mode, 21, 25, 54, 75, 76, 116, 119–122
two-relaxation-time,seeTRT

vector triad,seeScḧonauer triad
vectorization, 19

wall-clock time, 27
weak scaling, 29
Westmere, 23, 41, 101
white-box modeling, 10
work, 27
write-allocate, 21, 35, 44, 47, 70, 72, 74, 76,

112
write-combine buffers, 74

Xeon Phi, 18

Z-plot, 119

144

Curriculum Vitae

Pers̈onliche Daten

Name Georg Hager

Geboren am 21. August 1970

in Hof an der Saale

Staatsangeḧorigkeit Deutsch

Adresse Danteweg 16
90427 N̈urnberg

Telefon 0911/3008663

E-Mail georg.hager@fau.de

Familienstand verheiratet, zwei Kinder

Ausbildung

1976–1980 Grundschule Hof-Moschendorf

1980–1989 Schiller-Gymnasium Hof

Mai 1989 Allgemeine Hochschulreife (Abitur)

Juni 1989 – August 1990 Grundwehrdienst

WS 1990 – SS 1996 Studium der Physik mit Ziel Diplom an der Universität
Bayreuth

Oktober 1993
– März 1994

Auslandsstudium (ERASMUS-Stipendium) an der
University of St Andrews, Schottland

13. Mai 1996 Diplom in Physik an der Universität Bayreuth
Thema der Diplomarbeit:

”
Quasiperiodische L̈osungen

der komplexen eindimensionalen
Ginzburg-Landau-Gleichung“
Betreuer: Prof. Dr. Lorenz Kramer

24. Oktober 2005 Promotion an der Ernst-Moritz-Arndt-Universität
Greifswald
Titel der Dissertation:

”
A parallelized density matrix

renormalization group algorithm and its application to
strongly correlated quantum systems“
Betreuer: Prof. Dr. Holger Fehske
URN:urn:nbn:de:gbv:9-000024-1

Beruflicher Werdegang

Mai 1996 – Mai 1999 Stipendiat des Graduiertenkollegs
”
Physik der starken

Wechselwirkung“ an der Friedrich-Alexander-Universität
Erlangen-N̈urnberg (FAU)

Mai 1999 – M̈arz 2000 Wissenschaftliche Hilfskraft am Institut für Theoretische
Physik III der FAU

April 2000 – heute Wissenschaftlicher Mitarbeiter in der HPC-Gruppe des
Regionalen Rechenzentrums Erlangen (RRZE) der FAU

2000–2001 Mitarbeiter im KONWIHR-Projekt
”
cxHPC“ (Center of

Excellence for High Performance Computing),
Projektleiter: Dr. Gerhard Wellein

2002–2004 Mitarbeiter im KONWIHR-Projekt
”
HQS@HPC“

(hochkorrelierte Quantensysteme auf
Hochleistungsrechnern), Projektleiter: Prof. Dr. Holger
Fehske

Oktober 2002 – heute Lehrbeauftragter an der Technischen Hochschule (früher
Fachhochschule) N̈urnberg

Mai 2010 Ernennung zum Akademischen Rat undÜbernahme in
das Beamtenverhältnis auf Probe

Dezember 2011 Übernahme in das Beamtenverhältnis auf Lebenszeit

Eingeworbene Drittmittel

2013–2015 219200e als PI im Projekt
”
ESSEX“ (Equipping Sparse Solvers

for Exascale) des DFG-Schwerpunktprogrammes 1648
(SPPEXA)

2012 25000e für das KONWIHR-Projekt
”
SparseLib“

2009 50000e für das KONWIHR-Projekt
”
HQS@HPC-II“

Lehrt ätigkeit

Lehre an Hochschulen

WS 2012/13 Performance-Optimierung und -Modellierung auf modernern
Rechnerarchitekturen
Vorlesung undÜbung im Institut f̈ur Physik der
Ernst-Moritz-Arndt-Universiẗat Greifswald

WS 2011/12 Parallelprogrammierung auf Hochleistungsrechnern
Vorlesung undÜbung im Institut f̈ur Physik der
Ernst-Moritz-Arndt-Universiẗat Greifswald

SS 2000 – heute Programming Techniques for Supercomputers
Vorlesung undÜbung (zusammen mit Prof. G. Wellein) im
Studiengang Computational Engineering an der Technischen
Fakulẗat der FAU

WS 2009 – heute Ef�cient numerical simulation on multi- and manycore
processors
Seminar (zusammen mit Mitarbeitern der HPC-Gruppe des
RRZE) im Studiengang Computational Engineering an der
Technischen Fakultät der FAU

WS 2010 – heute Elementary Numerical Mathematics
Leitung und Durchf̈uhrung derÜbungen f̈ur die Vorlesung im
Studiengang Computational Engineering an der Technischen
Fakulẗat der FAU

WS 2007 – heute Parallele Programmierung
Blockvorlesung mitÜbungen (zusammen mit Prof. G. Wellein)
an der Fakulẗat für Elektrotechnik, Feinwerktechnik und
Informationstechnik (EFI) der TH N̈urnberg

SS 2011 – heute Parallele Programmierung von Multicore-Systemen
Blockvorlesung mitÜbungen im Studiengang Informatik und
Wirtschaftsinformatik der Fakultät für Informatik an der TH
Nürnberg

März 2011 Ef�cient multithreaded programming on modern CPUs and
GPUs
Blockvorlesung mitÜbungen an der K̈oniglichen Technischen
Hochschule (KTH) in Stockholm, Schweden

WS 2002
– SS 2006

Programmieren 1 & 2 (C/C++)
Vorlesungen miẗUbungen im Studiengang Informatik und
Wirtschaftsinformatik der Fakultät für Informatik an der
Ohm-Hochschule N̈urnberg

Betreute Arbeiten

WS 2013 J. Bleisteiner:
Porting and optimizing a lattice-Boltzmann algorithm for the
Intel Xeon Phi accelerator.Masterarbeit im Fach Computational
Engineering an der FAU Erlangen-Nürnberg

WS 2012 T. Scharpff:
Analyse und Optimierung von Operationen auf dünn besetzten
Matrizen.Studienarbeit im Fach Informatik an der FAU
Erlangen-N̈urnberg

WS 2011 K. Sembritzki:
Evaluation of the Coarray Fortran Programming Model on the
Example of a Lattice Boltzmann Code.Masterarbeit im Fach
Informatik an der FAU Erlangen-N̈urnberg

SS 2010 –
WS 2010

J. Daschke, T. Gohla, S. Heidingsfelder:
Erstellung eines Datenbanksystems zur Verwaltung
wissenschaftlicher Publikationen.IT-Masterprojekt an der
Ohm-Hochschule N̈urnberg

WS 2009 H. Stengel:
Paralleles Programmieren auf hybrider Hardware: Modelle und
Anwendungen.Masterarbeit im Fach Informatik an der
Ohm-Hochschule N̈urnberg

WS 2008 M. Wittmann:
Potentials of temporal blocking for stencil-based computations
on multi-core systems.Masterarbeit im Fach Informatik an der
Ohm-Hochschule N̈urnberg

SS 2008 –
WS 2008

M. Wittmann, H. Stengel, O. Narr:
RRZE Accounting- und Kontingentreports, Teil II.
IT-Masterprojekt an der Ohm-Hochschule Nürnberg

SS 2007 H. Stengel:
C++-Programmiertechniken f”ur High Performance Computing
auf Systemen mit nichteinheitlichem Speicherzugriff unter
Verwendung von OpenMP.Diplomarbeit im Fach Informatik an
der Ohm-Hochschule N̈urnberg

SS 2006 M. Wittmann, H. Stengel, F. Waldheim, M. Schloyer, S. Witter:
RRZE Accounting- und Kontingentreports.IT-Studentenprojekt
an der Ohm-Hochschule N̈urnberg

WS 2005 H. Stengel:
Erstellung einer Benchmarksuite für Anwendungen im
Hochleistungsrechnen.Praktisches Studiensemester am RRZE
für die Ohm-Hochschule N̈urnberg

Kurse, Workshops, Tutorials

Dezember 2013 Node-level performance engineering
Zweitägiger Kurs im Rahmen des

”
PRACE Advanced Training

Centre“ (zusammen mit Prof. G. Wellein) am LRZ Garching

November 2013 The practitioner's cookbook for good parallel performance on
multi- and manycore systems
Ganzẗagiges Tutorial (zusammen mit Prof. G. Wellein und Dr. J.
Treibig) bei der

”
Supercomputer Conference 2013“ (SC13) in

Denver, CO, USA

Oktober 2013 Node-Level Performance Engineering
Ganzẗagiges Tutorial beim

”
aiXcelerate 2013 HPC tuning

workshop“ an der RWTH Aachen

September 2013 Node-Level Performance Engineering
Halbẗagiges Tutorial bei der

”
10th International Conference on

Parallel Processing and Applied Mathematics“ (PPAM 2013) in
Warschau, Polen

Node-Level Performance Engineering
Ganzẗagiges Tutorial (zusammen mit Prof. G. Wellein) beim

”
SPPEXA Doctoral Retreat“ an der TU Darmstadt

Juni 2013 Performance Engineering on Multicore Platforms
Dreitägiges Tutorial (zusammen mit Dr. J. Treibig) im IBM
Toronto Lab, Markham, ON, Kanada

Node-Level Performance Engineering
Ganzẗagiges Tutorial (zusammen mit Dr. J. Treibig und Prof. G.
Wellein) bei der

”
International Supercomputer Conference

2013“ (ISC13) in Leipzig

April 2013 Specialist Workshops in Parallel Computing 2013: Advanced
Multicore
Zweitägiger Blockkurs (zusammen mit Dr. J. Treibig) an den
Universiẗaten Gent und Leuven, Belgien

März 2013 Node-level performance engineering
Zweitägiger Kurs (zusammen mit Prof. G. Wellein und M.
Kreutzer) beim DLR K̈oln

Dezember 2012 Performance engineering on multi-and manycores
Halbẗagiges Tutorial bei der

”
3rd Saudi-Arabian HPC Users

Conference“ (SAHPC 2012) an der King Abdullah University of
Science and Technology (KAUST), Thuwal, Saudi-Arabien

Node-level performance engineering
Zweitägiger Kurs im Rahmen des

”
PRACE Advanced Training

Centre“ (zusammen mit Prof. G. Wellein) am LRZ Garching

November 2012 The practitioner's cookbook for good parallel performance on
multi- and manycore systems
Ganzẗagiges Tutorial (zusammen mit Prof. G. Wellein) bei der

”
Supercomputer Conference 2012“ (SC12) in Salt Lake City,

UT, USA

Juni 2012 Performance-oriented programming on multicore-based
Clusters with MPI, OpenMP, and hybrid MPI/OpenMP
Halbẗagiges Tutorial (zusammen mit Dr. R. Rabenseifner, Dr. J.
Treibig und Dr. G. Jost) bei der

”
International Supercomputer

Conference 2012“ (ISC12) in Hamburg

April 2012 Specialist Workshops in Parallel Computing: Multithreading
and Multiprocessing
Zweitägiger Blockkurs (zusammen mit Dr. J. Treibig) an der
Universiẗat Gent, Belgien

April 2012 – heute Performance-oriented programming on multicore-based
systems, with a focus on the Cray XE6
Ganzẗagiges Tutorial (einmal pro Semester, zusammen mit Dr. J.
Treibig) beim Cray Optimization Workshop, HLRS Stuttgart

2007–2013 Hybrid MPI and OpenMP parallel programming
Halbẗagiges Tutorial (zusammen mit Dr. R. Rabenseifner und
Dr. G. Jost) bei allen

”
Supercomputing“ Konferenzen SC07 bis

SC13

Juni 2011 Performance-oriented programming on multicore-based
Clusters with MPI, OpenMP, and hybrid MPI/OpenMP
Ganzẗagiges Tutorial (zusammen mit Dr. G. Jost, Dr. J. Treibig
und Prof. G. Wellein) bei der

”
International Supercomputing

Conference 2011“ (ISC11) in Hamburg

Februar 2011 Ingredients for good parallel performance on multicore-based
systems
Halbẗagiges Tutorial beim

”
16th SIGPLAN Symposium on

Principles and Practice of Parallel Programming“ (PPoPP11) in
San Antonio, TX, USA

November 2010 Ingredients for good parallel performance on multicore-based
systems
Halbẗagiges Tutorial bei der

”
Supercomputer Conference 2010“

(SC10) in New Orleans, LA, USA

Oktober 2010 C++ f ür Programmierer
Fünftägiger Kurs mitÜbungen am LRZ M̈unchen

März 2009 C++ for C programmers
Viertägiger Kurs mitÜbungen bei CD-Adapco, N̈urnberg

2004/06/08 Ef�ziente Nutzung von Hochleistungsrechnern in der
numerischen Strömungsmechanik
Vortrag beim NUMET-Kurzlehrgang des Lehrstuhls für
Strömungsmechanik (LSTM) der FAU

September 2006 High Performance Computing: Sequential Code Optimization by
ExampleundHigh Performance Computing: Selected Topics in
Shared Memory Parallelization
Vorträge bei der Wilhelm und Else Heraeus Sommerschule zu
Computational Many Particle Physics an der
Ernst-Moritz-Arndt-Universiẗat Greifswald

2000 – heute Parallel Programming for High Performance Systems
Jährlicher Blockkurs zusammen mit dem LRZ München

Mitarbeit in Programmkomitees

2013 Workshop on Energy-Ef�cient Supercomputing (E2SC)
Workshop at SC13, Denver, CO, USA, November 2013

Workshop on Power-aware Algorithms, Systems, and Architectures (PASA)
Workshop at ICPP13, Lyon, Frankreich, Oktober 2013

International Conference on Parallel Programming and Applied Mathematics
Research Paper Committee, Warschau, Polen, September 2013

Workshop on Unconventional High Performance Computing (UCHPC)
Workshop at Euro-Par 2013, Aachen, August 2013

2012 International Supercomputer Conference 2012 (ISC'12)
Research Paper Committee, Hamburg, Germany, Juni 2012

Workshop on Large-Scale Parallel Processing 2012
Workshop at IPDPS, Shanghai, China, Mai 2012

2011 Facing the Multi-Core Challenge II
Workshop for young researchers, KIT Karlsruhe, September 2011

Workshop on Unconventional High Performance Computing
Workshop at Euro-Par 2011, Bordeaux, France, August 2011

Workshop on High Performance Hardware-Aware Computing
Workshop at PPoPP11, San Antonio, TX, USA, Februar 2011

Vortr äge

Eingeladene Vorträge

2013 More Science per Joule: Bottleneck Computing
10th International Conference on Parallel Processing and Applied
Mathematics (PPAM 2013), Warschau, Polen, 9. September 2013

Performance and Power Engineering on Multicore Systems
German Research School for Simulation Sciences, RWTH Aachen, 11. März
2013

2012 Energy ef�ciency: A down-to-earth perspective

”
Cool Supercomputing“ BoF, Supercomputing 2012 (SC12), Salt Lake City,

UT, USA, 14. November 2012

Performance Engineering: From Numbers to Insight
Workshop on Productivity and Performance (PROPER) at Euro-Par 2012,
Rhodos, Griechenland, 28. August 2012

Performance Engineering for Multi-/Manycores: Unveiling the Mysteries of
Application Performance
International Supercomputer Conference 2012 (ISC12), Hamburg, 18. Juni
2012

Simulating Incompressible Flows With the Lattice-Boltzmann Method:
Algorithm, Implementation, Performance
Physikalisches Kolloquium der Universität Greifswald, 5. Januar 2012

2011 Common sense in high performance computing
Leogang HPC Workshop, 2. M̈arz 2011

Monitoring, Accounting und Nutzerverwaltung auf den HPC-Systemen des
RRZE
ZIH Kolloquium, Technische Universität Dresden, 25. August 2011

Teaching High Performance Computing to Scientists and Engineers: A
Model-Based Approach
7th European Computer Science Summit (ECSS 2011), Milan, Italy, 8.
November 2011

Hybrid-parallel sparse matrix-vector multiplication.
SC11 BoF

”
1000x0=0. Single-node optimisation does matter“, Seattle, WA,

USA, 17. November 2011

2010 MPI/OpenMP hybrid computing (on modern multicore systems)
39th SPEEDUP Workshop on High Performance Computing, ETH Zürich, 6.
September 2010

Thirteen modern ways to fool the masses with performance results on
parallel computers
6th Erlangen International High End Computing Symposium, RRZE, 4. Juni
2010, und 12th Tera�op Workshop, HLRS Stuttgart, 15. März 2010

Hybrid applications on modern architectures: Things to consider
SIAM Conference on Parallel Processing for Scienti�c Computing (PP10),
Seattle, WA, USA, 26. Februar 2010

2009 Wavefront Parallel Temporal Blocking on Multi-Core Processors with Shared
Caches
Los Alamos National Laboratory, Performance Architecture Lab (PAL),26.
August 2009

2007 Are the Killer Micros Still Attacking?
NEC User Group (NUG) XIX. General Meeting, Cetraro (Italien), 24. Mai
2007

Cluster OpenMP
1st HLRS Parallel Tools Workshop, HLRS Stuttgart, 10. Juli 2007

High Performance Computing at RRZE
Computer Chemistry Center (CCC) Seminar, FAU, 23. April 2007

Fachvortr äge

2012 Performance patterns and hardware metrics on modern multicore processors:
Best practices for performance engineering
Workshop on Productivity and Performance (PROPER) at Euro-Par 2012,
Rhodos, Griechenland, 28. August 2012

Simulating incompressible �ows with the lattice-Boltzmann method:
Algorithm, implementation, performance
SIAM Conference on Parallel Processing for Scienti�c Computing (PP12)
Minisymposium MS14, Savannah, GA, USA, 15. Februar 2012

2011 Prospects for Truly Asynchronous Communication with Pure MPI and Hybrid
MPI/OpenMP on Current Supercomputing Platforms
Cray User Group Conference 2011, Fairbanks, AK, USA, 25. Mai 2011

Parallel sparse matrix-vector multiplication as a test case for hybrid
MPI+OpenMP programming
Workshop on Large-Scale Parallel Processing (LSPP 2011), Anchorage, AK,
USA, 20. Mai 2011

2009 Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP
Nodes
17th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP 2009), Weimar, 20. Februar 2009

2007 Erste Erfahrungen mit Windows Compute Cluster Server 2003
ZKI Arbeitskreis Supercomputing, Gesellschaft für wissenschaftliche
Datenverarbeitung G̈ottingen (GWDG), 25. Oktober 2007

Erste Erfahrungen mit dem Sun UltraSPARC T2 Prozessor
SunDay, RRZE, 6. November 2007

Performance Evaluation of Current HPC Architectures Using Low-Level and
Application Benchmarks
HLRB2/KONWIHR Result and Review Workshop, 3. Dezember 2007, LRZ
München

2006 Why is performance productivity poor on modern architectures?
Dagstuhl Seminar on Petacomputing, Dagstuhl, 16. Februar 2006

First Experiences with Cluster OpenMP
Cluster OpenMP workshop, HLRS Stuttgart, 19. Mai 2006

2005 Erfahrungen und Benchmarks mit Dual-Core Prozessoren
ZKI Arbeitskreis Supercomputing, Universität Karlsruhe, 22. September
2005

Betrieb eines heterogenen Clusters
ZKI Arbeitskreis Supercomputing, Universität Karlsruhe, 22. September
2005

Benchmarks on Current Dual Core CPUs (and some comments on OpenMP,
C++, Tools etc.)
Videokonferenz mit ZIH Dresden am RRZE, 10. Oktober 2005

2004 Investigation of Stripe Formation in Hubbard Ladders using Parallel DMRG
KONWIHR Result and Review Workshop, Technische Universität München,
2. März 2004

Application Performance: Altix vs. the Rest
SGI User Group Conference, Orlando, FL, USA, 27. Mai 2004

Intel VTune f̈ur Linux
Videokonferenz mit HLRS Stuttgart am RRZE, 14. Juli 2004

2003 Parallelization Strategies for Density Matrix Renormalization Group
Algorithms on Shared-Memory Systems
DMRG workshop, RRZE, 7. Mai 2003

Writing Ef�cient Programs in Fortran, C and C++: Selected Case Studies
Workshop on ef�cient HPC programming, LRZ M̈unchen, 21. Juli 2003

Preise und Ehrungen

2011 Informatics Europe Curriculum Best Practices Award 2011: Parallelism and
Concurrencyfür den Beitrag

”
Teaching high performance computing to

scientists and engineers: A model-based approach“

2009 Best Paper Awardbei COMPSAC 2009, the 33rd Annual IEEE International
Computer Software and Applications Conference, July 20–24, 2009, Seattle,
WA, zusammen mit Prof. G. Wellein, Dr. T. Zeiser, Prof. H. Fehske und M.
Wittmann.

Publikationen

Buchveröffentlichung

• Georg Hager and Gerhard Wellein:

Introduction to High Performance Computing for Scientists and Engineers

CRC Press, Juli 2010, ISBN 978-1439811924, 356 Seiten.

DOI:10.1201/EBK1439811924

Artikel in Journalen und Tagungsbeitr äge mit Peer Review

2013

• M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein:Chip-level and multi-
node analysis of energy-optimized lattice-Boltzmann CFD simulations.Submitted. ar-
Xiv:1304.7664

• M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop:A uni�ed sparse matrix
data format for modern processors with wide SIMD units.Submitted. arXiv:1307.6209

• T. Scharpff, K. Iglberger, G. Hager, and U. Rüde:Model-guided Performance Analysis
of the Sparse Matrix-Matrix Multiplication.Proc. 2013 International Conference on High
Performance Computing & Simulation (HPCS 2013), July 1–5, 2013, Helsinki,Finland.
DOI:10.1109/HPCSim.2013.6641452

• G. Hager, J. Treibig, J. Habich, and G. Wellein:Exploring performance and power pro-
perties of modern multicore chips via simple machine models.Accepted for publication
in Concurrency and Computation: Practice and Experience. arXiv:1208.2908

• F. Shahzad, M. Wittmann, T. Zeiser, G. Hager, and G. Wellein:An Evaluation of Diffe-
rent IO Techniques for Checkpoint/Restart.Accepted for the Workshop on Large-Scale
Parallel Processing 2013 (LSPP13).

• J. Treibig, G. Hager, and G. Wellein:Performance patterns and hardware metrics on mo-
dern multicore processors: Best practices for performance engineering. Proc. 5th Work-
shop on Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28,
2012, Rhodes Island, Greece. Lecture Notes in Computer Science 7640, 451-460 (2013),
Springer, ISBN 978-3-642-36948-3. DOI:10.1007/978-3-642-36949-050

• M. Wittmann, T. Zeiser, G. Hager, and G. Wellein:Comparison of Different Propagation
Steps for Lattice Boltzmann Methods.Computers & Mathematics with Applications65(6),
924–935 (2013). DOI:10.1016/j.camwa.2012.05.002

2012

• K. Sembritzki, G. Hager, B. Krammer, J. Treibig, and G. Wellein:Evaluation of the Coar-
ray Fortran Programming Model on the Example of a Lattice Boltzmann Code.Accepted
for PGAS '12, The 6th Conference on Partitioned Global Address Space Programming
Models, Oct 10–12, 2012, Santa Barbara, CA, USA.

• K. Iglberger, G. Hager, J. Treibig, and U. Rüde: High Performance Smart Expression
Template Math Libraries.Proc. Workshop on New Algorithms and Programming Mo-
dels for the Manycore Era (APMM 2012) at HPCS 2012, July 2-6, 2012, Madrid, Spain.
DOI:10.1109/HPCSim.2012.6266939

• J. Habich, C. Feichtinger, H. K̈ostler, G. Hager, and G. Wellein:Performan-
ce engineering for the Lattice Boltzmann method on GPGPUs: Architectural re-
quirements and performance results.Computers & Fluids 80, 276–282 (2013).
DOI:10.1016/j.comp�uid.2012.02.013

• J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein:Pushing the li-
mits for medical image reconstruction on recent standard multicore processors.Inter-
national Journal of High Performance Computing Applications27(2), 162–177 (2013).
DOI:10.1177/1094342012442424

• K. Iglberger, G. Hager, J. Treibig, and U. Rüde:Expression Templates Revisited: A Perfor-
mance Analysis of the Current ET Methodology.SIAM Journal of Scienti�c Computing
34(2), C42–C69 (2012). DOI:10.1137/110830125

• M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A.R. Bishop:Sparse
matrix-vector multiplication on GPGPU clusters: A new storage format and a scalable
implementation.Proc. LSPP12, the Workshop on Large-Scale Parallel Processing atIPD-
PS 2012, May 25, 2012, Shanghai, China. DOI:10.1109/IPDPSW.2012.211

2011

• G. Schubert, H. Fehske, G. Hager, and G. Wellein:Hybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-basedsystems.
Parallel Processing Letters21(3), 339-358 (2011). DOI:10.1142/S0129626411000254

• G. Schubert, G. Hager, H. Fehske and G. Wellein:Parallel sparse matrix-vector multipli-
cation as a test case for hybrid MPI+OpenMP programming.Proc. LSPP11, the Work-
shop on Large-Scale Parallel Processing at IPDPS 2011, May 20th, 2011, Anchorage,
AK. DOI:10.1109/IPDPS.2011.332

• J. Treibig, G. Wellein and G. Hager:Ef�cient multicore-aware parallelization strategies
for iterative stencil computations.Journal of Computational Science2, 130–137 (2011).
DOI:10.1016/j.jocs.2011.01.010

• C. Feichtinger, J. Habich, H. K̈ostler, G. Hager, U. R̈ude and G.Wellein:A Flexible Patch-
Based Lattice Boltzmann Parallelization Approach for Heterogeneous GPU-CPU Clu-
sters.Parallel Computing37(9), 536–549 (2011). DOI:10.1016/j.parco.2011.03.005

• J. Habich, T. Zeiser, G. Hager and G. Wellein:Performance analysis and
optimization strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA
GPUs using CUDA.Advances in Engineering Software42(5), 266–272 (2011).
DOI:10.1016/j.advengsoft.2010.10.007

2010

• M. Wittmann, G. Hager, J. Treibig and G. Wellein:Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters.Parallel Proces-
sing Letters20(4), 359–376 (2010). DOI:10.1142/S0129626410000296

• J. Treibig, G. Hager and G. Wellein:LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments.Proc. PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego CA, USA, September 13,
2010. DOI:10.1109/ICPPW.2010.38

• J. Treibig, G. Hager and G. Wellein:Complexities of Performance Prediction for
Bandwidth-Limited Loop Kernels on Multi-Core Architectures.In: S. Wagner et al. (eds.),
High Performance Computing in Science and Engineering, Garching/Munich2009.
Springer, ISBN 978-3642138713, 3–12 (2010). DOI:10.1007/978-3-642-13872-01, Pre-
print (Multi-core architectures: Complexities of performance prediction and the impact of
cache topology): arXiv:0910.4865

• M. Wittmann, G. Hager and G. Wellein:Multicore-aware parallel temporal blocking
of stencil codes for shared and distributed memory.Proc. LSPP10, the Workshop on
Large-Scale Parallel Processing at IPDPS 2010, April 23rd, 2010,Atlanta, GA, USA.
DOI:10.1109/IPDPSW.2010.5470813

2009

• T. Zeiser, G. Hager and G. Wellein:Benchmark analysis and application results for lattice
Boltzmann simulations on NEC SX vector and Intel Nehalem systems.Parallel Processing
Letters19(4), 491–511 (2009). DOI:10.1142/S0129626409000389

• J. Treibig and G. Hager:Introducing a Performance Model for Bandwidth-Limited Loop
Kernels.Proc. Workshop “Memory issues on Multi- and Manycore Platforms” at PPAM
2009, the 8th International Conference on Parallel Processing and Applied Mathematics,
Wroclaw, Poland, September 13–16, 2009. DOI:10.1007/978-3-642-14390-864

• T. Zeiser, G. Hager and G. Wellein:The world's fastest CPU and SMP node:
Some performance results from the NEC SX-9.Proc. LSPP 2009, the Workshop
on Large-Scale Parallel Processing at IPDPS 2009, May 29, 2009, Rome, Italy.
DOI:10.1109/IPDPS.2009.5161089

• G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske:Ef�cient temporal blocking
for stencil computations by multicore-aware wavefront parallelization.Proceedings of
COMPSAC 2009, the 33rd Annual IEEE International Computer Softwareand Applica-
tions Conference, July 20–24, 2009, Seattle, WA. DOI:10.1109/COMPSAC.2009.82

• J. Habich, T. Zeiser, G. Hager, and G. Wellein:Speeding up a Lattice Boltzmann Ker-
nel on nVIDIA GPUs.Proc. PARENG09-S01, the First International Conference on
Parallel, Distributed and Grid Computing for Engineering, Pecs, Hungary,April 2009.
DOI:10.4203/ccp.90.17

• S. Ejima, G. Hager, and H. Fehske:Quantum phase transition in a 1D transport model
with boson affected hopping: Luttinger liquid versus charge-density-wave behavior.Phys.
Rev. Lett.102, 106404 (2009). DOI:10.1103/PhysRevLett.102.106404

2008

• N. Schindzielorz, J. Erler, P. Klüpfel, P.-G. Reinhard and G. Hager:Fission of super-
heavy nuclei explored with Skyrme forces.Int. J. Mod. Phys. E18(4), 773–781 (2009).
DOI:10.1142/S0218301309012860

• H. Fehske, G. Hager and J. Jeckelmann:Metallicity in the half-�lled Holstein-Hubbard
model.Europhys. Lett.84, 57001 (2008). DOI:10.1209/0295-5075/84/57001

• G. Hager, T. Zeiser and G. Wellein:Data access optimizations for highly threaded
multi-core CPUs with multiple memory controllers.Proc. LSPP08, the Workshop on
Large-Scale Parallel Processing at IPDPS 2008, Miami, FL, USA, April18, 2008.
DOI:10.1109/IPDPS.2008.4536341

• G. Hager, T. Zeiser and G. Wellein:Data access characteristics and optimizations for
Sun UltraSPARC T2 and T2+ systems.Parallel Processing Letters18(4), 471–490 (2008).
DOI:10.1142/S0129626408003521

2007

• G. Hager, A. Weiße, G. Wellein, E. Jeckelmann and H. Fehske:The spin-Peierls
chain revisited.Proc. of ICM 2006, the 17th International Conference on Magnetism,
August 20–25 2006, Kyoto, Japan. J. Magn. Magn. Mater.310, 1380–1382 (2007),
DOI:10.1016/j.jmmm.2006.10.399. Erratum: J. Magn. Magn. Mater.316, 43 (2007),
DOI:10.1016/j.jmmm.2007.03.184.

• M. Hohenadler, G. Hager, G. Wellein and H. Fehske:Carrier-density ef-
fects in many-polaron systems.J. Phys.: Condens. Matter19, 255202 (2007).
DOI:10.1088/0953-8984/19/25/255202

• T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rüde and G. Hager:Introducing a
parallel cache oblivious blocking approach for the lattice Boltzmann method.Proceedings
of ICMMES 2006. Progress in Computational Fluid Dynamics, An Int. J.8(1/2/3/4), 179–
188 (2008). DOI:10.1504/PCFD.2008.018088

2006

• H. Fehske, G. Hager, G. Wellein and E. Jeckelmann:Hole-doped Hubbard ladders.Phy-
sica B378–380, 319–320 (2006). DOI:10.1016/j.physb.2006.01.136

• A. Weiße, G. Hager, A. R. Bishop and H. Fehske:Phase diagram of the spin-Peierls chain
with local coupling.Phys. Rev. B74, 214426 (2006). DOI:10.1103/PhysRevB.74.214426

2005

• G. Hager, G. Wellein, E. Jeckelmann and H. Fehske:Stripe formation in doped Hubbard
ladders.Phys. Rev. B71, 075108 (2005). DOI:10.1103/PhysRevB.71.075108

• H. Fehske, G. Wellein, G. Hager, A. Weiße, K.W. Becker and A.R. Bishop: Luttinger li-
quid versus charge density wave behaviour in the one-dimensional spinless fermion Hol-
stein model.Physica B359–361, 699–701 (2005). DOI:10.1016/j.physb.2005.01.198

• G. Wellein, T. Zeiser, S. Donath and G. Hager:On the Single Processor Performance of
Simple Lattice Boltzmann Kernels.Proc. ICMMES 2004. Computers & Fluids35, 910–
919 (2006). DOI:10.1016/j.comp�uid.2005.02.008

2004

• G. Hager, E. Jeckelmann, H. Fehske and G. Wellein:Parallelization Strategies for Density
Matrix Renormalization Group Algorithms on Shared-Memory Systems.J. Comput. Phys.
194(2), 795–808 (2004). DOI:10.1016/j.jcp.2003.09.018

• H. Fehske, G. Wellein, G. Hager, A. Weiße and A. R. Bishop:Quantum Lattice Dynamical
Effects on Single-Particle Excitations in One-dimensional Mott and Peierls Insulators.
Phys. Rev. B69, 165115 (2004). DOI:10.1103/PhysRevB.69.165115

2003

• G. Wellein, G. Hager, A. Basermann and H. Fehske:Fast sparse matrix-vector multipli-
cation for TFlop/s computers.In: J.M.L.M. Palma et al. (eds.): High Performance Com-
puting for Computational Science – VECPAR2002, Porto, Portugal, 26–28June 2002.
Berlin: Springer, ISBN 3-540-00852-7, 205–207 (2003). DOI:10.1007/3-540-36569-918

Beitr äge ohne (vollsẗandiges) Peer Review und technische Berichte

2013

• G. Hager:Performance engineering: From numbers to insight.Proc. 5th Workshop on
Productivity and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012, Rho-
des Island, Greece. Lecture Notes in Computer Science 7640, 393–394(2013), Springer,
ISBN 978-3-642-36948-3. DOI:10.1007/978-3-642-36949-044

• M. Wittmann, G. Hager, G. Wellein, T. Zeiser, and B. Krammer:MPC and Coarray Fort-
ran: Alternatives to Classic MPI Implementations on the Examples of ScalableLattice
Boltzmann Flow Solvers.In: W. E. Nagel et al. (eds.), High Performance Computing
in Science and Engineering '12, Springer, ISBN 978-3-642-33373-6 (2013) 367–372.
DOI:10.1007/978-3-642-33374-327

• M. Wittmann, G. Hager, T. Zeiser, and G. Wellein:Asynchronous MPI for the Masses.
Technical report, arXiv:1302.4280

2011

• G. Hager, G. Schubert, T. Schoenemeyer, and G. Wellein:Prospects for Truly Asynchro-
nous Communication with Pure MPI and Hybrid MPI/OpenMP on Current Supercompu-
ting Platforms.Proc. CUG 2011, the Cray Users Group Conference 2011, May 23–26,
2011, Fairbanks, AK.

• J. Treibig, G. Hager, and G. Wellein:LIKWID performance tools.Accepted for publica-
tion in G. Wittum et al. (eds): Competence in High Performance Computing. Springer
(2011). arXiv:1104.4874

2010

• M. Wittmann and G. Hager:Optimizing ccNUMA locality for task-parallel execution un-
der OpenMP and TBB on multicore-based systems. Technical report, arXiv:1101.0093

• J. Treibig, G. Hager, M. Meier and G. Wellein:LIKWID performance tools.InSiDE8(1),
50–53 (2010).

• G. Schubert, G. Hager and H. Fehske:Performance limitations for sparse matrix-vector
multiplications on current multicore environments.In: S. Wagner et al. (eds.), High Perfor-
mance Computing in Science and Engineering, Garching/Munich 2009. Springer, ISBN
978-3642138713, 13–26 (2010). DOI:10.1007/978-3-642-13872-0 2

• H. Fehske and G. Hager:Luttinger, Peierls or Mott? Quantum Phase Transitions in
Strongly Correlated 1D Electron-Phonon Systems. In: F. Hensel et al. (eds.), Metal-to-
Nonmetal Transitions. Springer Series in Material Sciences, Vol. 132, (Springer), 1–22
(2010). DOI:10.1007/978-3-642-03953-91

2009

• G. Hager, G. Jost, and R. Rabenseifner:Communication Characteristics and Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodes.Proc. CUG
2009, the Cray Users Group Conference 2009, Atlanta, GA, USA, May4-7, 2009.

• M. Wittmann and G. Hager:A Proof of Concept for Optimizing Task Parallelism by Lo-
cality Queues.Technical report, arXiv:0902.1884

• R. Rabenseifner, G. Hager, and G. Jost:Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-Core SMP Nodes.In: Didier El Baz et al. (eds.), Proceedings of the 17th
Euromicro International Conference on Parallel, Distributed, and network-based Proces-
sing (PDP 2009), Weimar, Germany, February 18–20, 2009 (Computer Society Press)
427–236. DOI:10.1109/PDP.2009.43

• T. Zeiser, G. Hager, and G. Wellein:Vector computers in a world of commodity clusters,
massively parallel systems and many-core many-threaded CPUs: recent experience based
on advanced lattice Boltzmann �ow solvers.In: W. E. Nagel et al. (eds.), High Perfor-
mance Computing in Science and Engineering 08, Transactions of the High Performance
Computing Center, Stuttgart (HLRS) 2008, Springer, ISBN 978-3-540-88301-2, (2009)
333-347. DOI:10.1007/978-3-540-88303-6

2008

• M. Breuer, P. Lammers, T. Zeiser, G. Hager and G. Wellein:Towards the simula-
tion of the turbulent �ow over dimples – Code evaluation and optimization for the
NEC SX-8.In: W. E. Nagel et al. (eds.), High Performance Computing in Science
and Engineering 07, Transactions of the High Performance Computing Center, Stuttgart
(HLRS) 2007, Springer, ISBN 978-3-540-74739-0 / 978-3-540-74738-3, 303–318 (2008).
DOI:10.1007/978-3-540-74739-021

2007

• G. Hager and G. Wellein:Architectures and Performance Characteristics of Modern High
Performance Computers.In: H. Fehske et al. (eds.), Lect. Notes Phys.739, 681–730
(2008), ISBN: 978-3-540-74685-0. DOI:10.1007/978-3-540-74686-726

• G. Hager and G. Wellein: Optimization Techniques for Modern High Performance Com-
puters. In: H. Fehske et al. (eds.), Lect. Notes Phys.739, 731–767 (2008), ISBN: 978-3-
540-74685-0. DOI:10.1007/978-3-540-74686-727

• G. Hager, H. Stengel, T. Zeiser and G. Wellein:RZBENCH: Performance evaluation of
current HPC architectures using low-level and application benchmarks. In: S. Wagner
et al. (eds.), High Performance Computing in Science and Engineering, Garching/Mu-
nich 2007. Transactions of the Third Joint HLRB and KONWIHR Status andResult
Workshop, LRZ Garching, Dec 3–4, 2007, Springer, ISBN 978-3-540-69181-5, 485–501
(2009). DOI:10.1007/978-3-540-69182-239

• M. Stürmer, G. Wellein, G. Hager, H. K̈ostler and U. R̈ude: Challenges and po-
tentials of emerging multicore architectures.In: S. Wagner et al. (eds.), High Per-
formance Computing in Science and Engineering, Garching/Munich 2007. Tran-
sactions of the Third Joint HLRB and KONWIHR Status and Result Workshop,
LRZ Garching, Dec 3–4, 2007, Springer, ISBN 978-3-540-69181-5, 551–566 (2009).
DOI:10.1007/978-3-540-69182-243

2006

• G. Wellein, P. Lammers, G. Hager, S. Donath and T. Zeiser:Towards optimal performance
for lattice Boltzmann applications on terascale computers.In: A. Deane et al. (eds.),
Parallel Computational Fluid Dynamics – Theory and Applications. Proceedings of the
Parallel CFD 2005 Conference, College Park, MD, USA, May 24–27, 2005. Elsevier,
ISBN 0-444-52206-9 (2006) 31–40.

• G. Schubert, A. Alvermann, A. Weiße, G. Hager, G. Wellein and H. Fehs-
ke: Spectral Properties of Strongly Correlated Electron Phonon Systems.In: G.
Münster et al. (eds.), NIC Symposium 2006, John von Neumann Institute for
Computing, J̈ulich, NIC Series, Vol. 32, ISBN 3-00-017351-X, 201-210 (2006).
http://www2.fz-juelich.de/nic-series/volume32/schubert.pdf

• A. Nitsure, K. Iglberger, U. R̈ude, C. Feichtinger, G. Wellein, G. Hager:Optimization of
Cache Oblivious Lattice Boltzmann Method in 2D and 3D.In: M. Becker et al. (eds.):
ASIM 2006 – 19. Symposium Simulationstechnik, Hannover, 12.–14. September 2006.
SCS Publishing House, Frontiers in Simulation16, 265–270 (2006).

• P. Lammers, G. Wellein, T. Zeiser, G. Hager and M. Breuer:Have the vectors the
continuing ability to parry the attack of the killer micros?In: M. Resch et al. (eds.):
High Performance Computing on Vector Systems. Proceedings of the High Performance
Computing Center Stuttgart, March 2005, Springer, ISBN 3-540-29124-5, 25-39 (2006).
DOI:10.1007/3-540-35074-82

2005

• G. Hager, T. Zeiser and H. Heller:Setting up ByGRID – First Steps Towards an e-Science
Infrastructure in Bavaria.In: A. Bode et al. (eds.): High Performance Computing in
Science and Engineering, Garching 2005. Transactions of the KONWIHR Result Work-
shop, October 14–15, 2004, Technical University of Munich, Garching, Springer, ISBN
3-540-26145-1, 97–102 (2005). DOI:10.1007/3-540-28555-59

• G. Hager, T. Zeiser, J. Treibig and G. Wellein:Optimizing performance on modern HPC
systems: learning from simple kernel benchmarks.(In: E. Krause et al. (eds.), Computa-
tional Science and High Performance Computing II: The 2nd Russian-German Advan-
ced Research Workshop, Stuttgart, Germany, March 14–16, 2005), Notes on Numeri-
cal Fluid Mechanics and Multidisciplinary Design91, Springer, ISBN 3-540-31767-8,
(2006). DOI:10.1007/3-540-31768-623

• S. Donath, T. Zeiser, G. Hager, J. Habich and G. Wellein:Optimizing Performance of the
Lattice Boltzmann Method for Complex Structures on Cache-based Architectures.In: F.
Huelsemann et al. (eds.): Frontiers in Simulation: Simulation Techniques – 18th Sympo-
sium in Erlangen, September 2005 (ASIM), SCS Publishing, Fortschritte in der Simulati-
onstechnik, ISBN 3-936150-41-9, 728–735 (2005)

• G. Hager, B. Bergen, P. Lammers and G. Wellein:Taming the Bandwidth Behemoth –
First Experiences on a Large SGI Altix System.InSiDE3(2), 24–25 (2005).

• G. Hager, E. Jeckelmann, H. Fehske and G. Wellein:Exact Numerical Treat-
ment of Finite Quantum Systems using Leading-Edge Supercomputers.In: H.G.
Bock et al. (eds.): Modelling, Simulation and Optimization of Complex Processes,
Springer-Verlag Berlin Heidelberg (2005), ISBN 978-3-540-27170-3, 165–175 (2005).
DOI:10.1007/3-540-27170-813

2004

• G. Hager, G. Wellein, E. Jeckelmann and H. Fehske:DMRG Investigation of Stripe For-
mation in Doped Hubbard Ladders.In: S. Wagner at el. (eds.): High Performance Com-
puting in Science and Engineering 2004 – Transactions of the Second Joint HLRB and
KONWIHR Result and Reviewing Workshop (Second Joint HLRB and KONWIHR Re-
sult and Reviewing Workshop Munich, Germany, 2–3 March 2004). Berlin: Springer,
ISBN 978-3-540-26657-0, 339–347 (2004). DOI:10.1007/3-540-26657-731

• G. Wellein, T. Zeiser, G. Hager and P. Lammers:Application Performance of Mo-
dern Number Crunchers.CSAR Focus, Ed. 12, Summer-Autumn 2004, 17–19 (2004).
http://www.csar.cfs.ac.uk/about/csarfocus/focus12/applicationperformance.pdf

2003

• H. Fehske, G. Wellein, A. P. Kampf, M. Sekania, G. Hager, A. Weiße, H. Büttner and A. R.
Bishop:One-dimensional electron-phonon systems: Mott- versus Peierls-insulators.In: S.
Wagner et al. (eds.) : High Performance Computing in Science and Engineering 2002 –
Transactions of the First Joint HLRB and KONWIHR Result and ReviewingWorkshop,
Garching, Germany, 10–11 October 2002. Berlin: Springer, ISBN 3-540-00474-2, 339–
349 (2003).

• G. Hager, F. Deserno and G. Wellein:Pseudo-Vectorization and RISC Optimization Tech-
niques for the Hitachi SR8000 architecture.In: S. Wagner et al. (eds.) : High Performance
Computing in Science and Engineering 2002 – Transactions of the First Joint HLRB and
KONWIHR Result and Reviewing Workshop, Garching, Germany, 10–11October 2002.
Berlin: Springer, ISBN 3-540-00474-2, 425–442 (2003).

• G. Hager, F. Brechtefeld, P. Lammers and G. Wellein:Processor Architecture and Appli-
cation Performance in Modern Supercomputers.InSiDE1(1), 8–13 (2003).

2001

• G. Wellein, G. Hager, A. Basermann and H. Fehske:Exact Diagonalization of Large
Sparse Matrices: A Challenge for Modern Supercomputers.Proc. CUG 2001, the Cray
Users Group Summit 2001, Indian Wells, CA, USA, May 21–23, 2001.

Dr. Georg Hager

Erkl ärung

Hiermit erkl̈are ich, dass diese Arbeit bisher von mir weder der Mathematisch-
Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald noch einer an-
deren wissenschaftlichen Einrichtung zum Zwecke der Habilitation eingereicht wurde. Ferner
erkläre ich, dass ich diese Arbeit selbständig verfasst, keine anderen als die darin angegebenen
Hilfsmittel benutzt und insbesondere die wörtlich oder dem Sinne nach anderen Veröffentli-
chungen entnommenen Stellen kenntlich gemacht habe.

Dr. Georg Hager

Danksagung

Mein Dank gilt in erster Linie Herrn Prof. Holger Fehske, der mich schon als Doktorvater beglei-
tet hatte und mich auch zur Anfertigung dieser Arbeit ermutigte. Er hat maßgeblichen Anteil an
meinem wissenschaftlichen Werdegang und schuf die Rahmenbedingungen für eine fruchtbare
Zusammenarbeiẗuber viele Jahre.

Den aktuellen und ehemaligen Mitarbeitern der Gruppe für High Performance Computing
am Regionalen Rechenzentrum Erlangen, insbesondere Gerhard Wellein, Jan Treibig, Thomas
Zeiser, Michael Meier, Markus Wittmann, Moritz Kreutzer, Holger Stengel, Faisal Shahzad, Jo-
hannes Habich und Gerald Schubert danke ich für ein diskussionsfreudiges und aktives Umfeld,
das in dieser Form sicher außergewöhnlich ist. Speziell die Zusammenarbeit mit Dr. Jan Treibig
war entscheidend für die Entwicklung des ECM-Modells und des multicore-Powermodells.

Ich danke außerdem dem Kompetenznetzwerk für wissenschaftliches Hoch- und
Höchstleistungsrechnen in Bayern (KONWIHR) für die �nanzielle Untersẗutzung der Projek-
te HQS@HPC und HSMB. KONWIHR hatüber mehr als zehn Jahre durch die Förderung von
Projekten zur Code-Parallelisierung und -Optimierung wesentlich dazu beigetragen, das Wissen
und die Erfahrung auf diesem Gebiet zu erweitern und in den Rechenzentren zu erhalten.

Weiterhin m̈ochte ich den Initiatoren des DFG-Schwerpunktprogrammes
”
SPPEXA“ daf̈ur

danken, eine Initiative auf den Weg gebracht zu haben, die von unschätzbarem Wert f̈ur die Ent-
wicklung hochskalierender numerischer Software sein wird. Dank des aus SPPEXA �nanzierten
Projekes

”
ESSEX“ kann die Arbeit an ef�zienten L̈osern f̈ur dünn besetzte Probleme auch in

den folgenden Jahren weitergehen.
Schließlich danke ich meiner Familie, insbesondere meiner Ehefrau Andrea,für die vorbe-

haltlose Untersẗutzung aller meiner beruflichen Aktivitäten. Ohne diesen Rückhalt ẅare eine
erfolgreiche wisenschaftliche Arbeit nicht möglich.

	List of acronyms and abbreviations
	I Performance modeling and engineering
	Introduction
	Scientific computing and code optimization
	Performance modeling
	Light speed
	Extrapolation
	Machine model

	Contributions
	ECM Model
	Multicore power model
	Pattern-guided structured performance engineering on the node level
	Applications

	Related work in performance engineering
	Organization of this thesis

	Computer architecture
	Cores
	Execution units and ports
	Registers
	SIMD execution
	Instruction cache and decoders
	SMT
	Data cache
	Clock frequency and turbo mode

	Multicore chips
	Multiple cores
	Memory access

	Node and memory architecture
	Test bed and tools
	Intel Xeon ``Sandy Bridge'' processor
	Tools
	SuperMUC

	White-box performance modeling on the chip level
	Performance and speedup
	Useful performance metrics
	High-level scalability models

	The roofline model
	Building the model
	Model prerequisites and assumptions
	Model-guided code optimizations

	Examples for roofline modeling
	Pure streaming kernel
	Sparse matrix-vector multiplication
	Divide-accumulate kernel
	Conclusions and best practices for applying the roofline model

	The Execution-Cache-Memory (ECM) model: A refined performance model for streaming loop kernels on multicore
	The Execution-Cache-Memory (ECM) model: Single core
	The ECM model: Multicore scaling
	Validation via streaming benchmarks
	Conclusions and best practices for applying the ECM model

	Chapter summary

	Performance and power
	Power dissipation and performance on multicore
	Power and performance of benchmarks vs. active cores
	Power and performance vs. clock frequency for all benchmarks
	Conclusions from the benchmark data

	A qualitative power model
	Minimum energy with respect to the number of active cores
	Minimum energy with respect to code performance
	Minimum energy with respect to clock frequency
	Validation of the power model for the benchmarks

	Consequences for system design
	Chapter summary

	Structured performance engineering
	The performance engineering process
	Description of the process
	Case study: An OpenMP-parallel 3D Jacobi smoother

	Identification of performance patterns on the node level
	Hardware performance metrics
	likwid-perfctr
	Performance patterns and event signatures
	Pattern categorization

	Patterns and models: Performance engineering refined

