Performance engineering as a guiding principle
for ef cient implementations of algorithms

in computational science

Habilitationsschrift
zur
Erlangung des akademischen Grades
doctor rerum naturalium habilitatus (Dr. rer. nat. habil.)
an der Mathematisch-Naturwissenschaftlichen Fakult
der

Ernst-Moritz-Arndt-Universit Greifswald

vorgelegt von
Georg Hager
geboren am 21.08.1970

in Hof/Saale

Greifswald, im Oktober 2013

Dekan:

1. Gutachter:

2. Gutachter:

3. Gutachter:

Tag der Habilitation:

Zusammenfassung

Rechnergesitzte Wissenschaften sind zusehends auf paralleles Rechnen arggwies
anspruchsvolle numerische Problersdn zu knnen. Die sindig steigende Leistungsfig-
keit paralleler Rechner efglicht es zusammen mit Fortschritten in der Algorithmik Modelle
zu nutzen, die eine quantitative Beschreibung der Natur erlaubenobleist auch im Zeitalter
der Peta op-Systeme der Bedarf nach Rechenzyklen imnid#egrals das Angebot, und Wis-
senschaftler sind gezwungen, die knappen Ressourcendagistimzu nutzen. Deshalb ist die
Ef zienz des parallelen Rechnens von entscheidender Bedeutuidgrhwird Ef zienz leicht
mit Skalierbarkeit verwechselt, was dann zu Problenigmtf wenn parallele Programme nur
deswegen skalieren, weil die Atigfrung des Codes in den Recheneinheiten so langsam ist.

Performance-ModellierungndPerformance-Engineeringuf der Ebene der Rechenknoten
sind die Hauptthemen dieser Arbeit. Performance Engineering wird als$¥oerstanden, der
ein tieferes Verstndnis der Wechselwirkung von Hardware mit Softwaredagiicht. Dies fihrt
zu einem wohlde nierten Konzept voybestndglicher Performance”. Zu diesem Zweck ver-
wendet Performance-Engineerirgssourcengetriebene Performancemodella die Laufzeit
des Codes und den Nutzen von Optimierungen vorherzusagen. EmrrRancemodell basiert
auf einem vereinfachten Maschinenmodell, das die wichtigsten ElementeR&obnerarchi-
tektur umfasst.

Diese Arbeit beginnt mit einetdberblickiiber die Architektur moderner multicore-Prozes-
soren und Rechenknoten, soweit sie relevantlfe ressourcengetriebene Performancemodellie-
rung ist. Nach einer Eifihrung in das bekannte Roo ine-Modell wird dgExecution-Cache-
Memory-Modell* (ECM-Modell) pasentiert, das als Verfeinerung des Roofline-Modailis f
multicore-CPUs gesehen werden kann. Das ECM-Modell ist insbesofédeg, die Einzelkern-
Performance und die Skalierung von Schleifenkonstrukten mit kontindiericSpeicherzugriff
Uber die Rechenkerne eines Chips vorherzusagen.

Da die Leistungsaufnahme von Grof3rechnern und damit der Eneilgiaueh der darauf
genutzten Codes wegen der steigenden Kosiedie Infrastruktur immer mehr in den Fokus
rickt, werden die Eigenschaften paralleler Programme im Hinblick auf dedgeren in naher
Zukunft von zentraler Bedeutung sein. Die Frage, mit welchen Mittelndimgespart werden
kann, ohne die Performance zu kompromittieren, kann mit Hilfe Ezoargiemodellergeklart
werden. Dazu wird ein ginomenologisches Energiemodélt multicore-Chips eingéihrt, das
den optimalen Arbeitspunkt in Bezug auf die Anzahl genutzter Kerne ien@iedtfrequenz vor-
hersagen kann. Als wichtigste Ein us€ifie geht dabei jedoch die Performance des Codes ein.
Folglich bekommt dasrace to idle“-Konzept im Rahmen des Energiemodells eine Doppelbe-
deutung: Energie kann sowohl durch ef zienten Code als auch chobb Taktfrequenz gespart
werden. Ersteres funktioniert immer, letzteres nur in einem bestimmten, dtattbche und
dynamische Leistungsaufnahme de nierten Bereich.

Performance- und Energiemodellérinen bei der Entwicklung ef zienter Software be-
hil ich sein, sie sollten jedoch in einen wohlstrukturierten Prozess eingebeteden, der
die Komplexitit der Hardware-Software-Wechselwirkung handhabbar mitiigtergeleitetes
Performance-Engineerinigt solch ein Prozess. Dazu wird eine Anzahl vorherrschendeotPerf
mancemuster auf Knotenebene identi ziert und auf Signaturen abgebiie@wekils aus einem
beobachtbaren Performanceverhalten und einer Kombination von Herddetriken besteht.
Diese Muster werden dann zur Konstruktion von Performancemodellgesstrt, die durch

Messungen bestigt oder widerlegt werden. Da es sich um einen iterativen Prozestelhan
fuhrt ein widerlegtes Modell zu neuen Einsichten, wenn ein neues Mustgew@hlt und/oder

ein neues Modell konstruiert wird. Andererseits hat ein erfolgreiéhedell das Potenzial zur
Vorhersage des aglichen Nutzens von Programmoptimierungen. Dadurch wird die Methode
»Versuch und Irrtum* durch ein wohlbagmndetes Vorgehen ersetzt.

Abstract

Computational science relies heavily on parallel computing to solve challengmgrical
problems. The ever-increasing performance of parallel computerthtrgeith algorithmic ad-
vances enables high-performance software to use models that provdgtative descriptions
of natural phenomena. However, the demand for compute cycles issllarggr than the supply
even in the petascale era, so scientists are hard-pressed to makeslz#shasscarce resources.
This is why theef ciency of parallel computing is paramount. Unfortunately, ef ciency is often
confused withscalability, which is problematic since it is easy to make a parallel program scale
by slowing down its code execution in the processors and compute nodeslde actual work.

Performance modeling and performance engineering approaches nodbdevel are the
main topics of this workPerformance engineering understood as a process that helps in de-
veloping a thorough understanding of the interactions between softweresadware, leading
to a well-de ned concept of “best performance.” To this end, penfance engineering builds
on resource-driven performance modédspredict the runtime of code and the bene t of opti-
mizations. Performance models are based on simpli ed machine models, whicimpass the
key features of a computer architecture.

This treatise starts with giving an overview on processor and node arthigeas far as it
is relevant for resource-driven performance modeling. After andioizton to the well-known
roofline model, the execution-cache-memory (ECM) performance modeégepted as a re-

nement of the roofline model that is especially useful in predicting the stogle performance
and multicore scalability of streaming loop kernels.

Since the power dissipation of computer systems, and hence the enegyrgaion of
running programs, is gaining attention due to growing costs for the infdateiof large instal-
lations, energy-awareness will be a cardinal quality of computer codesinghr future. How
to save energy with minimum loss of performance is the key question, which enagdwered
by power modeling techniques. For this purpose a phenomenological melgoarer model is
introduced. It can predict optimal operating points with respect to chig-lsancurrency and
processor clock speed for parallel code, but one of the main premastegalinto the model is
that code performance is the lowest-order energy-saving factoisggoently, theace to idle
concept has a double meaning in the model: Racing by code ef ciencyaamagrby clock
speed. While the former is always applicable, the latter only saves eneaigentain parameter
range of static vs. dynamic power.

Using performance (and power) modeling is a way to learn more aboueaf code exe-
cution, but such models should be embedded in a well-structured proegggiities the way
through the complexities of hardware-software interactidPettern-driven structured perfor-
mance engineeringrovides such a process. A number of prevalent node-level peafure
patterns is de ned, together with identifying signatures in performancevwehand hardware
metrics. These patterns are then used to construct models, which calidaéedaor falsi ed
using measurements. Since the process is iterative, a false model hasitive péfect that new
insights are gained as a new model is built or a new pattern is selected. Mgankdel, on the
other hand, has the potential to predict the possible gain of code optimizaimhsubstitutes
trial-and-error by well-founded decisions.

Clari cation about use of prior own work

This treatise contains new results as well as results that were previolsigtmad by the author
and his co-authors. In cases where larger portions of previouswendused literally or almost
literally, the section header has a reference to this prior own work. Tiigipge especially to
the following sections and publications:

» Sect. 2.4.1[1]

« Sect. 3.3.2[2, 3]
» Sect. 3.4 [4, 1]
» Chapter 4 [1]

e Sect. 5.2 [5]

» Chapter 6 [6]

e Chapter 7 [7]

Contents

List of acronyms and abbreviations 5
| Performance modeling and engineering 7
1 Introduction 9
1.1 Scienti c computing and code optimization 9
1.2 Performancemodeling 9
1.2.1 Lightspeed 10
1.2.2 Extrapolation 10
1.2.3 Machinemodel 11
1.3 Contributions 11
1.3.1 ECMModel 11
1.3.2 Multicorepowermodel 11
1.3.3 Pattern-guided structured performance engineering on the netle lev 12
1.3.4 Applications e 12
1.4 Related work in performance engineering 14
1.5 Organization of thisthesis 15
2 Computer architecture 17
2.1 COreS . . i e 17
2.1.1 Executionunitsandports. 0o 17
2.1.2 Registers 19
2.1.3 SIMDexecution 19
2.1.4 Instruction cacheanddecoders 20
2.15 SMT . . e 20
216 Datacache 21
2.1.7 Clock frequencyandturbomode 21
2.2 Multicorechips 21
2.21 Multiplecores e 21
222 MeMOryacCCeSS v v v v i i e e 22
2.3 Node and memory architecture 22
24 Testbedandtools 23
2.4.1 Intel Xeon “Sandy Bridge” processor 3 2
242 TOOIS 24
24.3 SuperMUC e e 24

3 White-box performance modeling on the chip level 27

3.1 Performanceandspeedup 27
3.1.1 Useful performance metrics 28
3.1.2 High-level scalability models. 28

3.2 Therooflinemodel 30
3.2.1 Buildingthemodel, 30
3.2.2 Model prerequisites and assumptions L. 31
3.2.3 Model-guided code optimizations 32

3.3 Examplesforroofline modeling 34
3.3.1 Purestreamingkernel 0. 34
3.3.2 Sparse matrix-vector multiplication 36
3.3.3 Divide-accumulatekernel 0oL 41
3.3.4 Conclusions and best practices for applying the roofline model . . . 42

3.4 The Execution-Cache-Memory (ECM) model: A re ned performanceehfmal
streaming loop kernels on multicore 43
3.4.1 The Execution-Cache-Memory (ECM) model: Singlecore 43
3.4.2 The ECM model: Multicorescaling 45
3.4.3 \Validation via streaming benchmarks 46
3.4.4 Conclusions and best practices for applying the ECM model 0 5

3.5 Chaptersummary e e e 51

4 Performance and power 53

4.1 Power dissipation and performance on multicore 53
4.1.1 Power and performance of benchmarks vs. active cores 53
4.1.2 Power and performance vs. clock frequency for all benchmarks. . 56
4.1.3 Conclusions from the benchmarkdata 58

4.2 Aqualitative powermodel 58
4.2.1 Minimum energy with respect to the number of active cores 60
4.2.2 Minimum energy with respect to code performance 60
4.2.3 Minimum energy with respect to clock frequency 61
4.2.4 Validation of the power model for the benchmarks 62

4.3 Consequences forsystemdesign 63

4.4 Chaptersummary e e e e 65

5 Structured performance engineering 67

5.1 The performance engineering process 67
5.1.1 Descriptionoftheprocess 67
5.1.2 Case study: An OpenMP-parallel 3D Jacobi smoother o 7

5.2 Identi cation of performance patterns onthe nodelevel 78
5.2.1 Hardware performancemetrics 78
5.2.2 likwid-perfctr 79
5.2.3 Performance patterns and event signatures 79.
5.2.4 Pattern categorization. 85

5.3 Patterns and models: Performance engineeringrened 85

2

Il Applications 89

6 A medical image reconstruction algorithm 91
6.1 Introduction 91
6.1.1 Computedtomography 91
6.2 Experimentaltestbed 93
6.3 Thealgorithm 93
6.3.1 Theory e e 93
6.3.2 Codeanalysis 94
6.3.3 Simple performancemodels 96
6.3.4 Algorithmic optimizations 97
6.4 Single coreoptimizations 98
6.4.1 SIMDvectorization. 98
6.4.2 AVXimplementation 100
6.5 In-depth performance analysis 101
6.5.1 ECMperformancemodel, 101
6.5.2 ILPoptimizationand SMT 103
6.6 OpenMP parallelization 103
6.6.1 ccNUMAplacement 104
6.6.2 Blocking/unrolling 104
6.7 Results. e 105
6.7.1 Validation of analytical predictions 105
6.7.2 Parallelresults 105
6.8 Conclusion 106
6.8.1 Summaryofresults 106
6.8.2 Reassessment inview of performance patterns 7. 10
7 A performance- and energy-optimized lattice-Boltzmann uid soher 109
7.1 Introduction 109
7.1.1 Relatedwork 109
7.1.2 The lattice-Boltzmannmethod 110
7.1.3 Implementation options and data traf ¢ analysis forLBM 111
7.1.4 Testbedandbenchmarkcases 113
7.2 Chip-level performanceandscaling 113
7.3 ECMmodelforthelLBDCcode 115
7.3.1 In-coreanalysis 115
7.3.2 Data transfers and saturation behavioronthechip 15. 1
7.3.3 \Validation of the performancemodel 118
7.4 Powermodel 118
7.4.1 Energy to solution for the LBM solveronthechip 119
7.5 Highly parallel LBM simulations 121
7.5.1 MPIlparallelizationinILBDC 121
7.5.2 Performance and energy atstrongscaling 22 1
7.6 Conclusion 126
7.6.1 Summaryofresults 126
7.6.2 Reassessmentinview of performance patterns 7. 12

3

8 Conclusion 129
8.1 Summary e e e e 129
8.2 Outlook e 131

Bibliography 133

List of acronyms and abbreviations

A0S Array of structures

AVX Advanced vector extensions

BP Backprojection

ccNUMA Cache-coherent nonuniform memory access
CFD Computational uid dynamics
cisC Complex instruction set computer
CL Cache line

CPI Cycles per instruction

CPU Central processing unit

CRS Compressed row storage

CT Computed tomography

DCT Dynamic concurrency throttling
DDR Double data rate

DP Double precision

DRAM Dynamic random access memory
ECM Execution-cache-memory

Flop Floating-point operation

FLUP Fluid lattice site update

FMA Fused multiply-add

FP Floating point

FPGA Field-programmable gate array
GPGPU General-purpose (computing on) graphics processing units
HPC High performance computing
HPM Hardware performance monitoring
HT HyperTransport

IACA Intel architecture code analyzer

B In niBand

ILP Instruction-level parallelism

IMB Intel MPI benchmarks

I/0 Input/output

L1D
L1l
L2

L3
LD
LIKWID
LUP
MPI
MVM
NT
OoLC
0S
PCI
PDF
QDR
QPI
RAM
RAPL
RCM
RISC
RHS
RFO
SIMD
SMP
SMT
So0A
SP
spMVM
SSE
TDP
TLB
TRT

Level 1 data cache

Level 1 instruction cache

Level 2 cache

Level 3 cache

Locality domain
Like | knew what I'm doing
Lattice site update

Message passing interface
Matrix—vector multiplication
non-temporal

Outer-level cache

Operating system

Peripheral component interconnect
Particle distribution function
Quad data rate

QuickPath interconnect
Random access memory
Running average power limit
Reverse Cuthill-McKee
Reduced instruction set computer
Right hand side

Read for ownership

Single instruction multiple data
Symmetric multiprocessing
Simultaneous multithreading
Structure of arrays

Single precision

Sparse matrix-vector multiplication
Streaming SIMD extensions
Thermal design power
Translation lookaside buffer
Two relaxation-time

Part |

Performance modeling and engineering

Chapter 1

Introduction

1.1 Scienti c computing and code optimization

Computing has become the third pillar of scienti ¢ research besides thedmgxareriment. Itis
today an indispensable tool, and deeply interwoven with most areas ofs@ad engineering.
In many cases the required computing power is quite small and can be hagdiagser's own
laptop; other applications need vast computational resources suatheaalfeomputing centers
in order to gain even qualitative results. Then it is necessary to think &loeuthese systems
can be used most effectively, so that the money spent in their procuraménperation has the
highest possible impact.

Unfortunately, the domain scientists who write the software for parallel ctenpdo not
have the required knowledge to write ef cient code. Even if an appgatpalgorithm has been
chosen, implementations often lack the ability to make best use of the resofiscasrst step
to remedy this unsatisfactory situation, computing centers offer compactesand lectures,
trying to teach at least the basic aspects of computer architecture, caalkelzation, and
optimization. As a consequence, many domain scientists spend more time on theiinco
an effort to make it “faster,” applying the strategies learned. While this israntendable
endeavor, there is always the question when to stop optimizing, i.e., wheretftgrpance
of the application code is “good enough.” If the best possible perfocséavel is unknown,
the invested time and resources may far outweigh the bene t. This typicatip&telated to a
disregard for the “80/20 rule,” also called the “Pareto principle” [8]:HEjgpercent of the effects
are due to twenty percent of the causes. Translated to high-perfogrsafteare development
this means “twenty percent of the effort spent in optimization lead to eightyeperof the
possible bene t.” But again, an unknown possible bene t makes apglifirs rule impossible.

1.2 Performance modeling

Performance modeling in a broad sense means establishing a mathematicalfonddl-
ware/hardware interaction in order to predict or explain the runtime ctesiistics of a pro-
gram on a given hardware. More speci cally, performance modelimgheare two different but
sometimes overlapping goals: light speed calculation or extrapolation.

9

1.2.1 Light speed

A realistic upper limit for the performance of a code on a particular harelwey be called its
light speed Light speed allows a well-de ned answer to the question whether an implatin
of an algorithm is “good enough.” A model leading to an accurate lightdspsgmate requires
thorough code analysis, knowledge of computer architecture, andiexpe on how software
interacts with hardware. The notion of light speed depends very mucheomalchine model
underlying the hardware model; if the machine model misses an importantrparfoe-limiting
detail, one might arrive at the (false) conclusion that light speed is nahedtdy the code at
hand, while it actually is. Which hardware features should be includedriceaat a good
balance between simplicity and predictive power is a crucial question, tdwihig work tries
to give useful answers.

We call this approachvhite-box performance modelingn complex cases it may not be
possible to establish a model at all. If a model can be built, one can gain erdeejerstanding
of the interactions between software and hardware. If the model wibikss an indication that
it describes certain aspects of this interaction accurately. If the modslrmuevork (e.g., if
the predicted performance is much lower or higher than the measuredrpanice), it must be
re ned, leading to more insights.

A working model can help with predicting the possible gain of code optimizatiGhang-
ing the program code may require adjustments in the model, or even buildimg@eately new
model when the underlying algorithm was changed.

1.2.2 Extrapolation

Another goal of performance modeling is to extrapolate performancevtmetieom one hard-

ware (e.g., a small system, or a given architecture) to different haed{gay., a large system,
or a different architecture), which may not even exist yet, and for vbidy the speci cations

might be known. The assessment of performance characteristics ondive kardware can
take a variety of forms. One option is to build on the rst goal above, and thenge the model
parameters to accommodate the change to the new hardware. Alternatieetyagntake the

code on the known hardware “as is” and try to gure out which har@éwararacteristics have
the most impact on its performance. We call thlack-box performance modelingecause

the focus is not on understanding underlying mechanisms but on prgdaciaccurate mathe-
matical description, with accuracy de ned only in terms of predictive pcavet not in terms of

precision in describing the true underlying mechanisms. Less insight intatbesare-software
interaction is gained by this approach, but there is the big advantage tlaat d@fien be used
in very complex scenarios, where the other strategies fail. The statisticeera the models

thus obtained sometimes lead to the discovery of effects that would othemvisegticed. See
Sect. 1.4 on related work below for an example.

Fortunately the “80/20 rule” also applies to the performance character@ticeany pro-
grams in computational science: Most of the runtime is spent in a small pad obtte. Conse-
guently, the performance pro le of many applications, i.e., the distribution of tivee functions
or loops, tends to be simple, and light speed techniques are applicable.

10

1.2.3 Machine model

As mentioned above, the interaction of software with hardware can be ndddelarious levels
of sophistication. Little variation exists in evaluating the requirements of the@mogode; the
worst that could happen is that the assembly code generated by a compstdreranalyzed to
uncover problems with inef cient execution.

On the other hand, there is a considerable bandwidth of possible machimdsmBerallel
computers are complex machines, but they are in principle deterministic. Itlwais be pos-
sible to use a “cycle-accurate” simulator of the hardware to emulate the gedetion and be
able to acquire every possible detail. In practice, this approach wouldregvarding. Firstly,
cycle-accurate models of real, modern processors exist but are ittallpcoperty that is not
divulged by chip manufacturers. Beyond the chip level, the sheer coityptéxsystem compo-
nents and their interactions rule out cycle-accurate models. Seconellyjfew cycle-accurate
model were available it would not be of much use, because it would recpisderable exper-
tise, even beyond the level of a professional HPC expert, to intergreesults.

As a compromise one can establish simpli ed machine models, which are simplgtetoou
be understood completely but which also allow for suf ciently predictivefqmenance model-
ing. Applied in this sense, performance modeling is similar to the modeling teclsnitpeel in
the natural sciences: It is implicit that the model is “wrong,” i.e., that it da#sncompass all
possible effects, and that there might be assumptions going into it that avewaynjusti ed.
However, it is useful enough to understand the key mechanisms andhbygiredict new ef-
fects that have not been encountered or looked at before. If thel fiadldgits assumptions and
simpli cations are challenged, and new insight is gained.

1.3 Contributions

This section summarizes the essential contributions described in this treatise.

1.3.1 ECM Model

The “Execution-Cache-Memory” white-box performance model is a ement of the well-
known roofline model for predicting the performance and scalability oastieg loop kernels
on multicore processors. It is to date the only approach that uses a simgineawodel to
arrive at an accurate single-core performance prediction for goreaéssor. Compared to the
roofline model it drops some crucial assumptions and needs less pheviogieal input. The
roofline model can be seen as the “saturation limit” of the ECM model.

The ECM model has so far been applied to simple microbenchmark kernéls {d stencil
algorithms of varying complexity [9, 10], to lattice-Boltzmann ow solvers [1, @nd to a
volume reconstruction algorithm from medical image processing [6]. Some®é pplications
will be revisited here (see below).

1.3.2 Multicore power model

Energy consumption aspects of computing have been moving into the fomseafch in recent
years. The multicore power model is a phenomenological description ohérgyeconsumption
of load-balanced parallel code on a multicore processor, taking intaiatcttee clock speed, the

11

number of utilized cores, the single-thread performance, and the maxinadunaigd) perfor-
mance, and the static and dynamic power consumption (per core). Whieyy @osasumption
iS an important metric, it answers questions such as “Is it better to use m@® ablower
frequency or fewer cores at higher frequency?”, “What is the optirslock speed for a code
that scales/saturates across the cores?”, “Which in uence does-¢imgbed performance have
on energy consumption?”, etc. The model can also be used for desiga egploration, and
allows to estimate the trade-offs between a system's size and its energyrgaitguover its
lifetime.

Combining the power model with the ECM model is especially interesting for gatgra
(i.e., bandwidth-bound) codes, enabling energy and performance ogtiiomat the same time
for an optimal selection of the operation point (number of cores used sfoaed).

1.3.3 Pattern-guided structured performance engineeringn the node level

Structured performance engineering can be seen as a part of softwgineering. It is an
iterative process in which algorithm and code analysis, performancelimgdnd optimization
are applied repeatedly to arrive at a well-de ned concept of “bessibte performance.” Its goal
is to replace “shot-in-the-dark” optimizations, for which the possible outdasmeknown, with
code changes whose performance impactexaectedThis kind of structured approach is vital
for the computational scientist, for whom programming is just a means to aftetid requires
some expertise in modeling and computer architecture, however, but thespralso provides
guidelines to how this knowledge may be best conveyed in courses ankiectu

The simple but instructive example of a 3D Jacobi smoother is used to shoadvae-
tages of structured performance engineering. While all optimizations andsragg#ied to this
case are well known, the embedding in a performance engineeringsprizceew, and can be
extrapolated to more complex cases.

The performance engineering process is supportgaebiprmance patternsA pattern is a
combination of observed performance behavior and data obtained &imiware performance
monitoring. Instead of blindly applying tools to nd “problems,” the developses tools for the
speci ¢ purpose of validating or refuting a performance model. A colleabfelevant patterns
for node-level performance engineering is identi ed and categorizemnmaximum resource
usage hazards andwork inef ciency With the help of patterns, “best performance” gets a well
de ned meaning as “computing at a bottleneck.”

Although the process is generally applicable to all kinds of parallel computigwork is

mostly restricted to the chip and node level, where the actual computation&d™isaone.

1.3.4 Applications

The ECM model, the power model, and the concepts developed in the stdipenfermance
engineering process are applied to several application cases.

Sparse matrix-vector multiplication

Many algorithms in computational science require sparse linear algebreseSgigensolvers,
numerical methods for time evolution of quantum systems, nite-differenck rite-element

12

in uid and structural mechanics, etc. These usually require high-padace sparse matrix-
vector multiplication (spMVM) as a dominating, or at least signi cantly time-cansig com-
ponent. SpMVM is also an example where predictive modeling is problematieylimre the
general idea of a performance model can still be used with successodftine model is used
to assess the quality of parallel spMVM implementations, establish uppermarice limits,
and lead to a better understanding of how well resources are utilizethgTiako account how
much compute resources go into spMVM, a statement about when an implemeigédgood
enough” can be of great value. Moreover, the performance of ddM¥pends heavily on the
matrix structure, i.e., the location of the non-zero entries. Performancelinpde able to
predict the advantage from matrix reordering techniques.

A volume reconstruction algorithm in medical physics

Backprojection (BP) algorithms are used in 3D volume reconstruction fromamdelivered by
computed tomography (CT) devices. The performance of an implementatiwicily $imited
from below due to the use of interventional CT imaging techniques in modegersu Perfor-
mance engineering can be used to understand the key requirements aligBm implemen-
tation to the hardware. This is an especially interesting case since therally it a single
performance-limiting aspect like peak arithmetic throughput or data tramsfex through per-
formance modeling one can identify shortcomings of current standamgsor architectures
and propose improvements that could make a difference in reconstruetimnpance or enable
higher-resolution imaging at constant cost. Especially for the case of nreljicocessors, the
model predicts that it is possible to meet the required performance goatrantelinical CT
applications without resorting to special-purpose hardware like GPGPER®AS. It can also
identify a de nite cross-over point where one or the other architecturedee advantageous
with respect to performance or price/performance.

BP is a complex example where the rst attempt at performance modeling viadfiene
model fails completely because of unjusti ed assumptions about code teean the hard-
ware and the applicable performance pattern. Changing the patternthisieB@M model, and
applying guided code optimizations one is able to arrive at a code that fuldislinical per-
formance limit (which happens to be a very precise de nition of “good gl In the end, it
is not a single one but a combination of patterns that apply.

Performance and energy optimization of a lattice-Boltzmann algoribm

The lattice Boltzmann method (LBM) is today established as a successfulatilterto tradi-
tional ow solvers. LBM is traditionally believed to be memory-bound on all mwodeom-
puter architectures, but the details are complex to fathom. A sparse-latticanimgition of
a two-relaxation-time (TRT) LBM algorithm is used to answer the question fest' possi-
ble performance” on multicore systems. The in uence of SIMD vectorizatibe processor
clock frequency, and the propagation pattern on the performancenangyeconsumption of
the solver is studied using a combination of the ECM and power models. THitesran un-
derstanding of the complex interplay between in-core execution and daséetrsy, and leads to
de nite predictions about the performance of an implementation and to the idatitn of an
energy-performance optimization space.

13

Since this implementation is MPI-parallel it is also possible to study if and how th&iszo
tent picture obtained on the socket level can be generalized to the higlaljepadistributed-
memory case with strong scaling. It turns out that non-negligible MPI comratioitintro-
duces not only overhead but also a core-bound component into tieeegedution characteris-
tics, which has decisive in uence on the optimal performance/poweradipgrpoint. Since the
energy consumption characteristics of memory-bound and core-bauled @re con icting in
terms of the optimal clock speed, especially when the baseline power dissipatimwhole
system is taken into account, the optimization space for performance areat pesomes very
sharply de ned. High single-core performance and an optimal choitheofiumber of cores
used per socket are the dominant factors. In other words, mediaatiygcode running at a
low clock speed (because there is an implicit assumption about memory-dmngss) wastes
compute cycles and energy at the same time.

1.4 Related work in performance engineering

This section describes related work relevant for the performance mgdeithengineering ap-
proaches. All other relevant related work, especially for the applica@ses in Part Il, will be
covered in the respective sections.

White-box performance modeling has been used for a long time. In the timegtd-sore
in-order scalar processor architectures, where each instructioa watl-de ned duration, ac-
curate runtime predictions on the chip level were possible without simpli catiOng-of-order
superscalar designs rendered this option impossible. The roofline nemtlelas machine and
code properties to a small number of parameters: computational intensity, yneamaiwidth,
and peak performance. Although the term has been coined by Williams étLjltie model
has been in use since the 1980s [12], and was an integral part ofrparice optimization on
vector and early parallel computers [13].

Beyond the node level, a lot of effort has been invested in performaockeling of mas-
sively parallel applications [14, 15, 16, 17]. The work of Petrini ef28] is especially interest-
ing since it used performance models to identify the previously unknowslgmmoofoperating
system noisas a main factor limiting the scalability of large-scale bulk-synchronous dbe.
a supreme case for the notion that valuable insight is gained when a mitslel fa

In order to manage the complexity of modeling modern systems (also in the highlieha
distributed case) and to lower the required expertise for users, a nofrdigrulation-based sys-
tems have been devised, for example the Warwick Performance Predictikih (&/ARPP) [18]
and its predecessors. They use a combination of compiler-based instatiogrtrace collec-
tion, and simulation to arrive at runtime predictions even for highly complexsivelyg parallel
applications. In contrast, the performance engineering processhisar this work relies on
patterns, thorough manual or tool-based sequential code analyse@arience, to gain insight
into software-hardware interaction.

One of several interesting automatic tools that can help in identifying perfarenhot-
tlenecks also for inexperienced users is PerfExpert [19]. It pesvitbde-level tuning advice
based on application tracing with hardware performance metrics. Thereimpdicit use of
patterns in the tool, and it exposes to the user the possible bottlenecks arskveeity on a
loop-by-loop (or basic block) basis. Nevertheless, such an anabysierdy be a starting point
and considerable experience is still required to take the necessarysatidmproving code

14

performance. There are very few activities in the eld of structuredgoerance engineering
that do not build on automatic frameworks. One recent approach weshsin [20], where a
useful work ow was developed in the speci ¢ context of optimizing Opdnlgbde for modern
multicore systems and accelerators.

1.5 Organization of this thesis

This work is organized as follows. Chapter 2 gives a high-level overgiecore, processor, and
node architecture, as far as it is required for the modeling approaelsestakd later. The Intel
Xeon Sandy Bridge processor is the dominant architecture in current oreli@sed systems,
and is hence described in more detail. Most of the examples and case gtudies chapters
were conducted on Sandy Bridge systems.

Chapter 3 gives the details of white-box performance modeling. After asksan of useful
performance metrics and high-level scalability laws, the roofline model isis&d, together
with a detailed account of its prerequisites and its potential for guided qudwripations. Mul-
tiple examples are given, including sparse matrix-vector multiplication. Usinfailuee of the
roofline model in certain situation as a starting point, the ECM model is then gmatland
validated using a streaming benchmark. Complex application scenariostdos Rrt 1.

Chapter 4 develops the multicore power model based on three simple bekshhedrare
prototypical for large classes of applications. Using the model, guideloresriergy-ef cient
computation with respect to single-core performance, clock speed, antuthber of active
cores are derived and validated using the benchmarks. Finally, ther moadae! is used to
de ne a design space for energy-ef cient systems.

In Chapter 5 the structured performance engineering process is faehulist in a coarse
form without the explicit use of patterns. It is applied to an in-depth perémce analysis and
optimization study of a three-dimensional Jacobi smoother. De ning andjaaréeng perfor-
mance patterns then paves the way for a re ned view on performandesening.

Chapter 6 uses performance engineering to develop an optimized implemenfaiback-
projection algorithm for volume reconstruction in medical imaging. Starting feosimple
roofline model, which wrongly predicts a memory-bound situation, simple algoritamdecode
optimizations are applied before using the ECM model to arrive at a betteriplésn of the
performance of the code.

In Chapter 7 an implementation of the lattice-Boltzmann algorithm with two-relaxétios-
collision operator and a sparse lattice representation is analyzed in vieMDf\&ctorization,
propagation pattern, and clock speed. The ECM and multicore power naréet®mbined to
yield a prediction for a possible performance-energy optimization spaeehitch an optimal
operating point can be found. In the multi-node parallel case at straliggdthe in uence of
MPI communication overhead on these chip-level results is studied andtih@zaion space
re-evaluated.

Finally, Chapter 8 gives a summary and an outlook to possible future work.

15

16

Chapter 2

Computer architecture

This chapter gives a brief overview of computer architecture, as fériagelevant for the
performance modeling and engineering approaches described latee tBis work is mostly
about node-level issues, the focus is on the chip and node architeédimre detail can be found
in [21].

A vast literature, including long-standing standard works [22], existeitihis topic, but is
mostly concerned with details that are for the most part irrelevant for tiatational scientist.
It is one of the important prerequisites for a good understanding obimeaince issues that
architectural details should be exposed only as far as they are refevdre modeling approach
at hand.

2.1 Cores

Figure 2.1 shows a simpli ed, high-level architectural view of a micropssce core. It is
somewhat similar to current Intel designs, but suf ciently general tcecalie features of all
modern microprocessors. The components will be described brie y inoifeniing.

2.1.1 Execution units and ports

The execution units perform the actual work of the core in terms of cayign the instructions
in the machine code. Usually there are units for carrying out oating-pouitiply and add op-
erations (MULT/ADD), loading and storing data from and to the memory hibyafcOAD or
STORE), for integer operations (ALU), for address generation (8DRor branching (JMP),
for moving, masking, and shufing data (MOV/MASK), and for specialeogtions such as
divide and square roots (DIV). Some of these functions share a unigdtance, in the proto-
typical design shown in Fig. 2.1 the oating-point MULT unit is shared with EH¥® unit.
These units are usually pipelined, which means that a complex operatioasacbating-
point MULT is split into several small steps, which can be executed in a sl (this
would not be possible for the full operation). Pipelining makes it possiblertathe core at
higher clock frequencies, at the price of executlatencies The latency is the number of
clock cycles it takes after an operation was started until the result is aeail&br instance,
a double-precision oating-point multiply has a latency (mpeline depth of ve cycles on
current Intel processors. Nevertheless, the pipeline can deliveresult per cycle if enough

17

independent work is available and can be fed to it. In this case, the pipelilegli@nd operates
at its maximum throughput. Dependencies between operations cause pipddbiesi.e., the
maximum throughput cannot be met because one pipeline stage has tonaaitioer (possible
in a different pipeline) to complete.

The cost for starting and stopping the pipeline counts as overhead, thegligible if the
number of independent operations is large compared to the pipeline degtlall Mperations
are effectively pipelined. For example, divide and square root tend W@ty expensive because
their throughput is similar to their latency. On the other hand, multiple pipelinepat@mtially
operate in parallel, leading to a maximum execution rate of more than one ingtrpeticycle.
This is calledsuperscalarityor instruction-level parallelisnfILP).

The execution units are fed via execution ports (which may be implementedeasgju
In modern out-of-order designs the operations can be executed inrderytbat is compatible
with the dependencies in the program ow, but the completion of the instrigi®malways
in program order. Simpler architectures such as the Intel Xeon Phocegsor (in its current
design) have in-order execution, which means that the order of instradtiothe machine
code is crucial, and software pipelining techniques mus be employed by tingileo or the

L1 Icache
=P Reorder buffer / Register renaming D
(]
o o
D = Scheduler
(0]
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
c ARRRRARRARY ARRRRARRRY ARRRRARNY
S ., ALU ALU JLRA fﬂ JROARYY] RSTRRE ALU
g § Qi@g\& me\\& A ADRS ADRS MOV/MASK
w DIV 4 IJMP
1 A 4 I

1 1 =P Data flow
Control flow
L1 Dcache [« 7 > Memory control " Pot. bottleneck

Figure 2.1: Simpli ed high-level architectural view of a modern micropreogsore. The most
important execution units and potential bottlenecks are highlighted.

18

32

Figure 2.2: A SIMD-

| vectorized ADD instruc-
tion, operating on four

single-precision operands

| Va | Vs | V2 | V1 | §imu|ta_neogsly. Thg reg-

ister width is 128 bits in

this case. (Figure from

[21])

A

programmer.

2.1.2 Reqgisters

All instructions that are executed by the core work with operands storpbgessoregisters
The access to data in a register is latency-free, but the number of reggdtmited (e.g., current
x86 processors have 16 oating-point and 16 general-purposeypnteegisters). The register
le is usually larger than what is visible to the programmer, since the harderapoys register
renaming techniques to work around simple dependencies in the machine code

It is one of the complex tasks in compilers to gure out which variables shbaldéept in
registers, and when they can be written out to the memory hierarchy. Usundlgan make
valid assumptions, such as that an accumulation variable in a loop is keptgrsterat least
until the loop is nished. These assumptions go into the peak performartiogaéss required
for performance modeling (see Chapter 3).

2.1.3 SIMD execution

Single instruction multiple data (SIMD) allows for simultaneous execution of aijmers on

multiple operands by a single machine instruction. To this end, the architecovielgs reg-
isters which are wider than they would have to be to store only a single aberanmodern

SIMD-equipped processors the SIMD width is between 128 bits and 51 2bawing for two

to eight “tracks” in double precision (four to 16 in single precision). Fegdr2 shows the
example of an ADD instruction operating on two 128-bit registers and peifig) four single-

precision oating-point additions at the same time. The temwtorizationis frequently used
when SIMD is employed. It is decisive for performance that the SIMDggpie cannot only be
applied to arithmetic operations but also to data transfers, since the datghthubtio and from
the L1 cache may be a bottleneck. In such a case, SIMD instructions dbeuised for both
arithmetic and LOAD/STORE. If this is not possible because the operardsaconsecutive
in memory, SIMD has limited bene t. See Chapter 6.4.1 for an example.

If SIMD instructions cannot be used, one must revesdalarinstructions, which typically
use only the lowest part of a register. More advanced SIMD instrucétmadlow for arbitrary
masking of operations, so that any combination of SIMD tracks can be dafockt. SIMD
is also no restricted to oating-point computation. For instance, the 1283t §Streaming
SIMD Extensions”) instruction set on modern x86 designs also contairgeintgerations.

Ideally, a SIMD width ofk elements increases the arithmetic peak performance of the core

19

N \\\%\\%\\
N NP
NN ANNNUNNNNN

N
N I
N
N N
N
<
N
NN N
N _ NN\ NN N
SERRRY NS
NN AR |
\ NN NN RN N I B A A
§Q§ D AN (S 7
< B | N
N N N -
= NN 3 N
NN NN N cache 3 N XN]
Memory NN \\3\\\] | Y Control WY N N
NN RNRY NARIN

Figure 2.3: Simultaneous multi-threading allows the simultaneous executionesbséwo in
this case) threads on the same core. The threads share all resowegstiee register set. One
thread can Il the bubbles left in the pipeline(s) by the other. (Figure ffaij)

Execution units

by a factor ofk. Note that the SIMD concept is “orthogonal” to pipelining: There may be
pipelining issues even if a code is perfectly SIMD-vectorized, since &bID track is a
pipeline of its own in lockstep with the others, working on the same instructioo{®rbdiffer-

ent data items.

2.1.4 Instruction cache and decoders

Instructions are read in program order from the Level 1 instructiomesawhose maximum
transfer rate is limited (although this is a bottleneck that does not very offep @pscienti c
computing). All instructions must be decoded before they can be execiitialited number
of decoders is available for this task. Intel and AMD x86 designs havepbeial feature that
the machine code read from the instruction cache is not the code that thiessixecution units.
X86 machine instructions are translated by the hardware into so-called opsr@ops), which
correspond to RISC-like instructions. RISC (Reduced Instruction $aipgnting) is a design
principle which allows only very simple instructions, so that they can be efityepipelined
and executed at high clock frequencies. The x86 machine instructidosgnot adhere to this
principle, since it contains numerous complex instructions like the combinati@h.GAD and
an ADD. Splitting them tarops on the y allows for more ef cient execution in the core. Most
restrictions on instruction throughput apply to tieps.

215 SMT

Simultaneous multi-threading (SMT) is used to increase the throughput afidgtietis on the
core in certain cases. With SMT, a single core is able to execute multiple indlepenstruction
streams at a time. To the applications and especially to the operating systemapfgaass as
multiple cores. However, almost all the resources are shared betwe#dmehds. The only
fully duplicated resource is the register set, since each running progguires a full set of
registers. It is certainly possible to run multiple processes or threads iogle sore without
SMT by time-sharing, but this is a feature of the operating system and tio¢ dfardware.
The purpose of SMT is to make better use of the pipelines, which are oftéualiyaitilized

even with well-optimized software. Bubbles left in the pipeline stages by oeadtor process
can be lled by another (see Fig. 2.3). This can boost the throughputqre considerably
in some cases (see Sect. 6 for an example). If the running threads are layitedommon

20

bottleneck outside the core pipelines, such as memory bandwidth or a sjusnee], no bene t
is expected.

For the application programmer, SMT is rst and foremogbpologyissue, because they
must decide to use or to ignore the feature by proper binding of threablpranesses to the
resources.

2.1.6 Data cache

The results generated by executed instructions are either used fristeregr eventually stored

to the memory hierarchy. In general, the Level 1 data cache is the targell tdOAD and
STORE operations. If a memory address is accessed whose contentd aheady in the L1
cache (this event is calledraisg, the corresponding cache line is read (the cache line size on
x86 processors is 64 bytes). This pertains to STORESs as well: The taetiensfer initiated

by a store miss is calledwrite-allocate

2.1.7 Clock frequency and turbo mode

All operations in the execution core and the immediately connected cachatsthensame clock
speed (outer-level caches may run at a different frequency). means that all performance
numbers scale linearly with the clock frequency if no resources outsidartasare used by the
running code. Performance on this level is hence often discussed indéfarmount of work
per clock cycle,” since this is a frequency-independent metric.

Modern processors often allow setting the clock frequency from ysaces On Sandy
Bridge and earlier designs this setting is global across all cores. Upcomeigrocessors will
allow core-speci c clock speeds.

A special feature found on all current x86 designs is “turbo mode'tifticcore” for AMD).
In turbo mode the chip can run faster than its nominal clock frequencgndi#pg on the num-
ber of active cores and the die temperature. Intel processors evenfatl@a violation of the
thermal design power (TDP) limit for a short amount of time. In view of Amdab&w, these
measures are a way not only to increase the performance of sequedadbut also to improve
the scalability of parallel programs with non-negligible serial fraction.

2.2 Multicore chips

2.2.1 Multiple cores

To work around the power dissipation problems at high clock frequengiesessor manufac-
turers implement multiple cores on a die. This allows to make use of Moore's iLawthe
exponentially increasing transistor count per chip, within a constantipemelope.

Standard multicore processors feature a number of cache levels (usuatly three), most
of which are private to each core. All caches except the L1 cachieaatigionally uni ed, i.e.,
they can store instructions and data at the same time. The outer-level €doBgié usually
shared to allow for fast communication and synchronization between. dbitesn a cache line is
brought from memory into the cache hierarchy there are essentially twaeptimaninclusive
cache hierarchy, any outer cache holds copies of all cache lines imireciaches. Aexclusive
cache hierarchy always transfers cache lines to an inner level, fleenewthey must be copied

21

Figure2'4: Slmp“ed iT‘T R R (RS R T‘T§
high-level structure, or tellellellpiipllelel pPl @

“topology," Of a Shared- 3 L1D 110 L1D L1D L1D 11D 11D L1D
: L2 L2 L2 L2 L2 L2 L2 L2

memory compute node : L3 cache

based on two eight-core ‘

processors with Simulta-

neous Multi-Threading

(SMT). 1/O resources

[E—
:
LI

such as disks, network | !FRERGERIERGEEIGERIGEEGEE.
interfaces, or accelerator | I p il p il pllPpllPIlPIlPIl PI GPGPU
hardware, are connected Y e e e oo s | e s | e i

. . ! L2 L2 L2 L2 L2 L2 L2 L2 3
via special buses, e.g., | 13 cache 3 GPGPU
' ' [N

PCI EXpreSS. ‘ Memory Interface —
S [N RO SN R GPGPU
ilail
[Memory]

down when replaced (evicted). A mixture of both concepts is also pos¥blewledge about
the details of data transfers between the caches is required for aceerétenance modeling
(see Chapter 3 for examples).

Whenever multiple cores operate on different cacheschie coherence protocehsures
that changes to different parts of the same cache line leave the cachemnisistent state. This
can lead to performance problems if such changes happen in rapigsiacgeince cache lines
have to be moved back and forth through the system (“false sharing”).

2.2.2 Memory access

The memory interface is usually shared among the cores on a chip, so it ic@ tggndidate
for a bottleneck. Memoryatencyis the time it takes to set up a cache line transfer, and is
typically of the order of hundreds of core cycles. The overall time to fesres cache line is
absolutely dominated by latency. Prefetching mechanisms, either in hardwareoftware,
help with hiding the memory latency and actually reach aedwidthlimit of the memory
interface if the data access pattern is appropriate. Best results areeachigh regular, unit-
stride (“streaming”) memory access. If the access pattern is strided aiicethe memaory
bandwidth may not be exhausted and excess data transfers will oceup dhe cache line
concept (a full cache line is transferred but only part of it may be bsfdre it gets evicted).
See Sect. 3.3.2 for an example on the consequences of erratic mema@y. acce

The latency and bandwidth considerations for main memory also apply to ther téyels
of the cache hierarchy. Even though the latencies are shorter andhith@itdths are higher than
for memory, non-unit strides or erratic accesses lead to large penaltes, to

2.3 Node and memory architecture
Two-socket servers have been at the price-performance “swegtis commodity-based high

performance computing for the last ten years. Figure 2.4 shows the s&radta typical com-
pute node. Usually there is one chip per socket, with its own memory intesacee(current

22

AMD-based server processors are a notable exception with two chigegeet). The chips are
coupled via an interconnect network, which makes the whole setup alsmamory system. In
the commodity sector this interconnect is eitigarickPath(QPI) or HyperTranspori(HT). All
the installed memory, no matter to which socket it is attached, can be accessgzhtently by
any core, and cache coherence is automatic. This principle is caMdMA (cache coherent
non-uniform memory access).

A ccNUMA system is divided intdocality domains If a core accesses memory in a distant
domain, this is more expensive (in terms of latency and bandwidth) than in taedomain
where the thread is running. The penalty for non-local access is typieatjgr in systems
with many domains, and is signi cant in any case. In order to make sure tyam&mory
access is as local as possible, programs should make use of the rhtgoaciple, or “Golden
Rule of ccNUMA:” The mapping of physical to logical memory addressesst@kace not at
the allocation, but at thimitialization of a memory page. A page gets mapped into the locality
domain of the core that writes to it rst. Two crucial consequences amse this: First, memory
should be initialized by the same thread that uses it in a parallel computatiorseandd,
threads should be bound to cores so that they cannot be migrated byettairmg system to
another ccNUMA domain, thereby losing their locality of memory access.

As Fig. 2.4 shows, even a single current multicore, multi-socket systera ek “topol-
ogy.” Topology is the structure of a system in terms of the location of cened SMT threads)
and the resources that they share. SMT threads always share aareseon a chip share some
cache levels and the memory interface, and sockets share the coletrenitkrand typical I/O
resources such as the network interface, disks, accelerators, iate shared resources are
prone to become bottlenecks, topology is an essential component inmarfoe assessment
and modeling. Knowing about the sensitivity of a parallel program to the aypiardware
bottlenecks leads the way to well-founded code optimization efforts. Ch&pdescribes a
work ow which is based on this idea.

2.4 Test bed and tools

2.4.1 Intel Xeon “Sandy Bridge” processor [1]

Most of the performance data in this work was measured on compute nodilsystems based
on the dual-socket eight-core Intel Sandy Bridge EP platform (Xeeg@6X). The Intel Sandy
Bridge microarchitecture contains numerous enhancements in comparisoptedésessors,
e.g., the “Westmere” and “Nehalem” chips. The following features are mosiriaqt for the
analysis in the following chapters [23]:

» Compared to SSE, the Advanced Vector Extensions (AVX) instructioexd¢ehsion dou-
bles the SIMD register width from 128 to 256 bits. At the same time, the load thpauig
of the L1 cache is doubled from 16 bytes to 32 bytes per cycle, so thatgy &xidge
core can sustain one full-width AVX load and one half-width AVX store perie. With
SSE or scalar execution, these limits are changed: In both cases thactestain either
one load and one store, or two loads per cycle, to the effect that many dwopot show
a4 speedup of core execution when going from scalar mode to AVX (sde®ad. for
an example).

23

» The core can execute one ADD and one MULT instruction per cycle I{pgm). With
double-precision AVX instructions, this leads to a peak performance bf @gs per cy-
cle (sixteen at single precision). In general, the core has a maximum itistrttorough-
put of six nops per cycle.

» Each core can execute two concurrent streams of instructions usintjssisaus multi-
threading (SMT).

» The L2 cache sustains re lls and evicts to and from L1 at 256 bits pde ¢half-duplex).
A full 64-byte cache line re Il or evict thus takes two cycles. This is the sasen earlier
Intel designs.

» The L3 cache is segmented, with one segment per core. All segmentsnaected by a
ring bus. Each segment has the same bandwidth capabilities as the L2ia@clitecan
sustain 256 bits per cycle (half-duplex) for re lls and evicts from L2isTineans that the
L3 cache is usually not a bandwidth bottleneck, which is an improvement cechpa
previous Intel processors.

 All parts of the chip, including the L3 cache (which is part of the “Unéjraeun at the
same clock frequency, which can be set to a xed value in the range fr@rR.7 GHz.
The speed of the DRAM chips is constant and independent of the cae clo

* One Xeon E5-26XX socket has four DDR3-1333 or DDR3-1600 mgnabannels for
a theoretical peak bandwidth of ZXB/s or 512 GB/s. In practice, between 36 GB/s
and 42 GB/s can be achieved with the standard STREAM benchmark [Bdjratlock
frequencies.

» Sandy Bridge is the rst Intel processor exposing a power measureimeastructure to
the user code. Power and energy measurements reported in this wimkthespackage”
only, i.e., they ignore the installed RAM. Preliminary results for the power disisip of
installed DIMMs are between 2 and 9 W per socket (16 GB RAM in 4 DIMM4 &B
each), depending on the workload (memory-bound vs. cache-bhound)

Some of these low-level hardware properties will be revisited when dismuperformance
models and results.

2.4.2 Tools

Source code was compiled with the Intel compiler in version 12.1 or 13.1. Tdie &b the
LIKWID tool suite [25, 26] were employed for binding threads of OpenpBgrams to cores
(likwid-pin), for hardware performance monitorinigkgvid-perfctr), and for energy
measurementikwid-powermeter).

2.4.3 SuperMUC

The large-scale parallel runs of lattice-Boltzmann simulations used in Chapdetemonstrate
energy-ef cient execution were conducted on the “SuperMUC” fablsupercomputer at Leib-
niz Supercomputing Center (LRZ)n Garching near Munich. Itis a tier-0 PRAEEystem and

http://www.Irz.de/english/
2http://www.prace-ri.eu/

24

http://www.lrz.de/english/
http://www.prace-ri.eu/

one of the main federal compute resources in Germany. It is built fromrédeuof 512-node
“islands,” with a fully non-blocking fat tree FDR10 In niBand connedtivinside each island.
A compute node comprises two Intel Sandy Bridge EP (Xeon E5-2680)-eigh processors
with a base clock frequency of 2.7 GHz.

The actual clock speed of the processors in SuperMUC can be ineaehg a so-called
“energy tag,” which is supplied upon job submission together with a paramsgeerfying how
much performance degradation the user wants to tolerate for their job. stiebased on
hardware performance counter measurements of the user's previmuwih the same energy
tag then sets the clock frequency for the job (turbo mode cannot be. UBeee measures try
to establish a user-friendly semi-automatic mechanism for saving energy.

25

26

Chapter 3

White-box performance modeling on
the chip level

As described in Chapter 1, performance modeling can be a powerfibtosftware engineer-
ing in computational science. Taking a modeling approach to the interactiaftofase with
hardware is, while not new, a concept that is not yet in wide use. Seréermance for problem
solving is generated in the execution units of processor cores, andadimetevant computa-
tional resources are replicated when using multiple chips, modeling and optoniaativities
must start at the chip level. After revisiting high-level scalability models, théptdr introduces
the well-knownroofline modelnd the neECM performance modeTlhese models are shown
to provide valuable insights into the performance properties of moderegsocchips and the
code that runs on them. In Chapter 5 the models will be put into the largextofteode-level
performance engineering.

3.1 Performance and speedup

This section addresses performance and scalability of serial and ppratieams from an ab-
stract point of view. In computinggerformanceis usually de ned asvork divided bytime,
where “work” is a problem (or a well-de ned part thereof), and “time’tlie wall-clock time

required to solve it:
W

P= T (3.1)
An accurate de nition of “work” is crucial for a sensible assessmerperformance. For in-
stance, if solving the problem involves necessary overhead that takesuinsenot in itself part
of the result, this overhead does not constitute “work.” Communication retspnization in
parallel computing are typical examples.
Parallel computing is often concerned with the question of how much morerpehce
can be achieved if the work is done with “accelerated” resources,ainfultiple cores, chips,

or nodes, or with special hardware like GPGPBpeedugan thus be de ned as
_ Pa _ Wa TO 3
"R W
whereP, denotes “accelerated” performance dhds a given baseline level. This de nition
does not specify whether the same amount of work is done in the basedtiine the accelerated

(3.2)

27

case \\p vs. W,). The baseline performance is frequently chosen to be equal to onleatso
speedup and accelerated performance are identical. Another popoiee sWo = W, i.e., the
same problem is solved in both cases.

3.1.1 Useful performance metrics

Most simulation tasks are centered around algorithms that require oatiTtg-pomputations.

A natural unit to choose for “work” is thus the oating-point operatiom, op. The peak
“speed” of processors or whole systems is also usually given in oprisest is the most generic
and widely applicable measure for performance. It also allows for drasgestimate of how
“effectively” the compute resources of a system are utilized: A largéatien of actual from
peak op/s performancenightindicate a problem with code execution that should be addressed.
However, there are various objections to using ops for assessirgygmoperformance:

» The op/s metric can be easily manipulated. It is straightforward to rewrite implga-
tions so that the op count is strongly increased, without improving the time litisa
of the actual problem.

« Differentimplementations of one algorithm, or even machine codes gedéatifferent
compilers from the same source, can exhibit strongly deviating op counts.

» There are algorithms which do not exclusively rely on oating-point catagons.

Hence, one should be careful whenever the ops metric is used. Atteesaexist in many
cases, such as in iterative solvers where one “iteration,” or “updai@y’serve as a convenient
and implementation-independent unit of work.

3.1.2 High-level scalability models

It is clear that the concepts performanceandspeedupnust be clearly separated. Especially
looking at speedup gures alone may lead to false conclusions abougtiaity” of parallel
or accelerated execution. In the end, all that counts is how much wonkniteof time can be
done; if Py in (3.2) is small, the achievable speedBimay be signi cant even iP, is mediocre.
If and how it can be determined wheth&ror P, are “good” will be the topic of Chapter 3.

Nevertheless, the speedup metric can still be useful, since it allows a gtiamfitl@gment
about how ef ciently resources are put to use when not all of a piogr execution can be
accelerated. In many cases the speedup can be written as

Wy T+ T,

5% WpTor e e &)

whereTo = Ts+ Ty is the non-accelerated runtime of the program, &na a part which can
be perfectly accelerated so that this part takes a timTGpaé‘fin the accelerated case. Note
that T2°“ may also include any change in runtime caused\by¥ W, e.g., if the accelerated
execution is performed on a bigger problem. The paranetgranti es any overhead that is
caused by the process of acceleration, such as communication or@yizelion. Frequently
the non-accelerated runtinig is normalized to one, so thdt = sandT, = p become “non-
accelerated” and “accelerated” fractions, respectively,sang = 1. At the same time one can

28

setWp = s+ p= 1. If we nally interpret a non-accelerated fraction as a part of thetosad,
(3.3) becomes
W
Pacct d
with d = c+ s. The quantityp,ccis “accelerated, normalized runtime” and describes the “per-
fect” part of execution, whil@ contains all factors impeding good scalability.
Some important special cases are worth noting\plE Wy = 1 andd = swe havepac.=
p=a, wherea is an acceleration factor. This leads directlyNmdahl's Lanf27],

1
S= —— _: (3.5)
1
s+ =2

(3.4)

It quanti es thelaw of diminishing returnsThe more effort is put into improving one part of
the problem (in this case the accelerated frachen1l 9), the less effect it has on the overall
time to solution. In the limita ! ¥ we getS! s % If a = N, with N being the number of
“workers” used for solving the accelerated part, we speadtrohg scalingand “acceleration”
becomes “parallelization.” For nite > 0 the effective speedup is diminished:

S= — ~ (3.6)

and ifc{a) > 0 this means that the speedup does not even increase when the accelacidio
goes up. A typical example is OpenMP parallelization overhead, which ig lovdagarithmic
in the number of threads used for parallelizing a loop. If the amount of woan OpenMP-
parallel loop is too small, performance will go down when the humber of terisaidcreased.
If W= s+ ap, i.e., the accelerated problem size is increased by a factor which is kptiva
to the achievable acceleration pn(3.4) becomes
s+(1 9a

S= (3.7)

which is Gustafson's Law Fora = N we speak ofveak scaling The impact of the overhead
c on scalability is much weaker in this case. For lasgé is suf cient to havec{a) < 1 for
getting a speedup that grows without bounds.

Although these high-level models are useful for deriving generalginiels and scaling
properties, they are completely detached from any concrete hardwatean on rst sight not
account for many of the effects seen on real systems. However, gsipp@to modify and re ne
the high-level scalability laws to accommodate many different performance-Igridictors.
For instance, the dependence of the overlead the acceleration factar (or the number of
workersN) can be modeled after some often-encountered patterns, such as tlzdm@s, or
be set to mimic the communication characteristics of special networks. A gavefssome
interesting cases can be found in [21].

It turns out that Amdahl's and Gustafson's Laws must be substituted bg spaci ¢ models
when trying to describe and understand the performance behavior armodips. However,
there is one effect that can be described well by a slight modi cation of @niisl Law with
overhead (3.6): Boosting scalability by code slowdown. Going back t9 &8 normalizing
such thaffs+ T, = m (3.6) becomes

m _ 1 .
ms+L12 +c s+tLS+cml’

S= (3.8)

29

Figure 3.1: Roofline model for a processor
with a memory bandwidth dfs = 10GB/s 16l]
running a code with an applicable peak per-
formance ofPnax = 3GF/s. The dashed _8F \"i?" —
(dotted-dashed) line represents a computag L
tional intensity that leads to memory-bound % Ar o Phac |
(core-bound) performance. e L i |
£ |
S |mmm———— :
T 1 I ! =
o | |
I :
0.5 ! ! -
| :
I :
0.25(- ' ! -
|
| l ! !

\ \ \
1/64 1/32 1/16 1/8 1/4 1/2 1 2
Computational intensity [F/B]

This change models a performance increase (1) or decreaseni> 1) of the pure execution
time (non-accelerated plus accelerated parts). It is clear from this faiorutaat scalability is
improved form> 1 if c6 0: Whenever there is non-negligible overhead, slowing down code
execution boosts scalability. This is why white-box performance modelingdbas hardware
parameters and code inspection is so important. It answers the questidn batileneck is
relevant and whether it has been reached, and scalability (or spdmsigmes subordinate.

3.2 The roofline model

The roofline model [12, 13, 11] is a well-established approach to prediotiper performance
limits for code execution on a processor. While it is possible to model arbitcaty, the roofline

model works best when applied to loop kernels with streaming data acdésspaDue to its
generality it can be used with multicore processors, GPGPUs, and otidevara for which its

basic assumptions are valid.

3.2.1 Building the model

The central premise of the model is that the performance of a loop is either lilmjitedta
transfers or by code execution, whichever takes longer. A detaileniatof the assumptions
and prerequisites will be given in Sect. 3.2.2 below.

The following steps are required to build the model for a speci c loop:

1. By algorithm and code inspection, determifigy, the applicable upper performance limit
for the loop code, assuming that all required data comes from the cadhe thasest to
the core(s) (i.e., the L1 cache). Considerable knowledge about tte/duar architecture
may be required to arrive at a realisBgax vValue.

2. By algorithm and code inspection, determine ¢oenputational intensityl of the loop
code. This is the ratio of “work” performed and data volume required to ddwlork.”

IThe reciprocal of the computational intensity is caltedle balanceBc = | 1.

30

Only the bottleneck data path is considered for the data volume (see nejt poin

3. Determine the applicable peak bandwibghof the data path that constitutes the bottle-
neck for transferring the necessary data to the core(s) and badék.stEp may require
measurements using microbenchmarks, either because of undocumenhedrbaea-
tures or because some data path cannot be operated at 100% of ittichebamdwidth.
Note that the L1 cache is not a bottleneck in this sense, since it is includednotieling
of Pnax-

Once these quantities are known, the expected performance of the ldejsco
P = min(Pnax ! bs) : (3.9)

Figure 3.1 gives a graphical representation of the roofline model, fgpathetical processor
with a maximum main memory bandwidth b§ = 10GB/s and for an applicable peak per-
formance of 3GF/s. The minimum function in (3.9) is expressed by the rodfhape (solid
line), while the inaccessible performance regions are shown as dottedAin@given compu-
tational intensity, the expected performance can be read off the diagranoan by the dashed
(I = 0:125B/F) and dotted-dashed< 0:5B/F) lines.

In the rst case the limiting factor is the main memory bandwidth, since the roofline is
hit in the sloped part. The expected performanc® ef 1:25GF/s is far belowPyay, i.€., the
computational units run idle most of the time. The second case shows aaand-bituation,
where the expected performance is determined by the code execution oréi(€) c

Several aspects are worth noting here. First, the roofline modek@urce-driverin the
sense that the maximum available resources (bandwidth or executionedmniting factors
for code performance. Itis not speci ed how exactly these ressuameput together on the chip;
for instance, the number of cores, the width and number of memory chatireetietails of core
execution, etc., are not part of the model (3.9), although they can dgi@insed to determine
the parameterbs andPnhax. Second, we have implicitly assumed tlRaty is independent of,
at least for the two cases shown in Fig. 3.1. This will not be the case in@esmce different
algorithms (or even different implementations of the same algorithm) have usudifferent
composition in terms of low-level loop code (humber of instructions, fractfd&tGAD/STORE
vs. arithmetic operations, SIMD vs. scalar, etc.). Consequently, thinm@aofiodel must not be
seen as a machine that produces a correct nunfevi{en fed with an inputl{; it is rather a
methodand must be revised whenever the code under consideration chaibgeansially, even
if | stays constant.

The roofline model can be helpful in performing guided code optimizatioll Rptimiza-
tions such as unrolling and blocking [21] can in uence the computationahgitie of a loop.
On the other hand, modi cations of the low-level machine code (softwagéefmhing, SIMD
vectorization, etc.) can move the positions of both parts of the roofline wittiwariging the
computational intensity. Both will lead to an immediate prediction of the expectatheha
performance. Hence, the model helps with judging whether an optimizatiold wewvorth the
effort. See Sect. 5.1.2 for an example.

3.2.2 Model prerequisites and assumptions

The roofline model is based on clear concepts of “work” and “data ¢red do the work.” One
possible kind of “work” is “number of oating-point operations,” but this not always desir-

31

able, as was shown in Sect. 3.1.1. Any other well-de ned and countakbletigiwill also do,
including problem-speci ¢ metrics: loop iterations, solver iterations, lattice sitlates, image
pixels, function evaluations, etc. The “data traf c” across the bottlergatk path includes all
data, not only the data that is seen by LOAD and STORE instructions in tlee See Sect. 3.3
for examples.

A number of critical assumptions go into the roofline model:

» Bottleneck assumptionThe slowest data path, i.e., the bottleneck is modeled only; all
others are assumed to be in nitely fast. “Slow” is not de ned here in ternmsaofdwidth
but of the time it takes to transfer the required data. Hence, a high-bathdeath path
can still be the bottleneck if the data volume is large. For instance, if ten times thhe da
volume must be delivered by the L3 cache than by the main memory, the L3 aéthe
be the bottleneck, despite having a ve times larger bandwidth.

» Overlap assumptionData transfer and core execution overlap perfectly. If this assump-
tion did not hold, the roofline in Fig. 3.1 would change into a smooth “archlised there
would be no clear in ection point dt bs = Prax.

 Saturation assumptiorit is possible to fully utilize the bandwidth of the bottleneck (“sat-
uration”) if the model predicts a bandwidth limitation. The saturated bandwidilthisre
a documented number or must be determined via microbenchmarking.

» Streaming assumptionThere are no latency effects, i.e., all data accesses use perfect
streaming mode. This assumes that hardware- or software-basediprefenechanisms
work perfectly, and that the large latency for accessing a cache linbeaompletely
hidden.

Any of these assumptions may not hold in some situations, but they are abasdoose to
support many code patterns in scienti ¢ computing. The ECM model, which wilhbroduced
in Sect. 3.4, can handle some of the cases in which the roofline model failditerdeseful
results.

3.2.3 Model-guided code optimizations

Building a performance model opens several possibilities for perforenaptimizations. In-
stead of blindly applying code changes and hoping for improvemguigeddecisions can be
made, using the model as a predictive tool for the expected gain. This igialgpart of the
performance engineering process, which will be introduced in Chapter 5

Figure 3.2 shows examples of typical code optimizations and their conssggi@rterms of
the roofline model. As a prerequisite, we assume that the model is alwayec¢tdn the sense
that it re ects the minimum requirements of the implementation utilizing the maximum capa-
bilities of the hardware. For instance, strided array access must alpeatdken into account
by a correct assessment of the data traf c. The labels (numbers) indpé gorrespond to the
items in the following list:

2|n the non-saturated case, measteffdctivebandwidths can serve as a substitute for saturated bandwidth, but
the ECM model (see below) clearly shows that this approach delivesstirate results.

32

Performancé [GF/s]

] Figure 3.2: Typical optimization ap-
161 7| proaches in the roofline modelP,, is a
\Q(o new applicable performance limit, which
8|~ P .. 1 emerges from making use of architectural
= @= == features that were not accessible before.
A Peac s 7 Deviations from the model (hatched points)
L A4 | are here caused by code de ciencies and
/@ not by aws in the model, i.e, it is assumed
1 y | that the model is always “correct.” See text
for details.
0.5 Tl -
0.25(- @ —
| | | |

| | \
1/64 1/32 1/16 1/8 1/4 1/2 1 2
Computational intensity [F/B]

. Reaching bandwidth saturatioff.the model predicts a limitation by memory bandwidth

but is too optimistic with regard to a measurement, this can point to de ciencies in the
code, such as missing software prefetching instructions, which preauration because
the streaming assumption cannot be met. Hardware performance monitoRiM) @¢&n

then reveal whether this conjecture is true (see Sect. 5.2 for more detkiRMrassisted
performance engineering).

. Improving computational intensity at bandwidth saturatiolfi.the loop is bandwidth-

bound and exhausts the memory bandwidth, increasing the computationaitintan
typical optimizations such as stride reduction, unrolling, and blocking [2ll]emad to a
proportional gain in performance.

. Improving computational intensity and going core boulién improvement of the com-

putational intensity does not cause a proportional gain in performaheaces are that
the in ection point atl bs = PnaxWwas crossed, and that the loop has become core bound.
A further increase of will then not lead to any speedup.

. Improving in-core ef ciencyA deviation from the core-bound applicable maximum per-

formancePrax usually points to suboptimal low-level loop code. This can be veri ed by
careful inspection of the assembly code or the compiler's diagnostic messadypical
example is the lack of SIMD vectorization, which may be caused by the compilsinmis
important information, such as the non-existence of array aliasing [21].

. Improved use of architectural feature#f.the code or the algorithm can be changed so

that new, performance-critical architectural features become alsesbe model must
usually be adapted for a ne®@,.> Pnax. FOr instance, stalls caused by pipeline hazards
may be removed by reformulating the algorithm to become purely data-parallel.

Using the model as a guide for expected performance gain it becomeéslpdsgudge whether
some (possibly complex) code changes would be worth the effort. Thevinticsection high-
lights some instructive examples, and Chapter 5 embeds optimization apm aaalstructured
performance engineering process.

33

Listing 3.1: Pseudo-code for the vector triad throughput benchmarkydimg performance
measurement. The actual benchmark loop is highlighted.
double precision, dimension(:),allocatable :: A,B,C,.D

! Intel-specific: 512-byte alignment of allocatables
IDEC$ ATTRIBUTES ALIGN: 512 :: AB,C,D

call get_walltime(S)

I$OMP PARALLEL PRIVATE(A,B,C,D,i,j)

© 0w N O g b W NP

do j=1,R
! Intel-specific: Assume aligned moves
IDEC$ vector aligned
IDEC$ vector temporal
do i=1,N
A() = B(i) + C(i) * D(i)
enddo
! prevent loop interchange
if(A(N/2).1t.0) call dummy(A,B,C,D)
enddo
I$OMP END PARALLEL

I T i T e S ~ S S S =
S © ®»m N o A W N B O

call get_walltime(E)

NN
N P

WT = E-S

N
w

3.3 Examples for roofline modeling

The following examples serve to demonstrate the roofline model in a simple sitaticely
streaming kernel) and a more complex setting, where the fourth of the abswmptions does
not hold (sparse matrix-vector multiplication). See [11] for a comprekiertsiverage of appli-
cation cases.

3.3.1 Pure streaming kernel

A standard example for a streaming kernel that is limited by data transfensyaarehitecture
in any memory hierarchy level is ti&ctonauer vector triad13] as shown in Listing 3.1. Note
that there is no real work sharing in the benchmark loop (lines 13-1%k e purpose of the
code is to fathom the bottlenecks of the architecture. The code is equipitethiel compiler
directives to point out some crucial choices: All array accessesligreed to suitable address
boundaries (lines 3 and 11) to allow for aligned MOV instructions, whicHastr on some ar-
chitectures. Furthermore, the generation of nontemporal store instrsi¢t&ireaming stores”)
is prevented (line 12. For benchmarking purposes this kernel is executed many times with
the same data set, so that the data transfer capabilities of each memory teliel aecurately
measured [21].

First we conduct a larght (in-memory) roofline analysis for an eight-core Intel Sandy

3Intel compiler optionsO3 -openmp -XAVX -opt-streaming-stores never -nolib-inl ine
-fno-inline were used for these tests.

34

70pT EaEas EaEas EaEas —T1 Figure 3.3: Through-
T Pinax - . 1 put performance vs.
60~ I ol " 1 1 loop length per core
@ [[— T1=1] | S Se=w—w=r | Of the AVX-vectorized
2l T=21 Y UN\eeeeee-e 7] Schbnauer vector triad
o | |—-— T=4] . 1213 1
5407 —. T=8| | 'bs L2 1] on 1, 2, 4, and 8 cores
g | I 0.8l = of an Intel Sandy Bridge
g 30/ — — — —4| 0.4] | processor at BGHz.
g 1\| L L Inset: enlarged region
< | [0.0 ¢ 1 for N> 3 10° (memory-
a 20/ | N 7| bound). The core-bound,
T W = ~ 1 memory-bound, and
10;——{ ________ T~ _Tlsi__\ L2/L3-bound roofline
ol i — b, 1 limits are highlighted.
10° 10° 10" 10° 10°

Loop lengthN

Bridge chip running at a clock frequency ab35Hz. One core can sustain one full-width AVX
load and one half-width AVX store per cycle (see Sect. 2.4.1). Hencexdmution bottleneck
on the core is the load port throughput, and four loop iterations can beiddhree cycles (the
two half-wide stores needed for four consecutive elementg:9f can be overlapped with the
three loads for four consecutive element8¢f) , C(:) , andD(:)). The arithmetic instruc-
tions, i.e., one ADD and one MULT instruction, take only a single cycle, anetisesuf cient
superscalarity in the core so that they can be overlapped with the loaddaed. Thus, the
maximum performance for code execution if the data is in the L1 cache is 8roBsy, i.e.,
Pmax= 8 GF/s per core or 64 GF/s on eight cores (at 3GHz).

The loop code causes the same data traf c per op in all memory hierarc@ysideyond
the L1 cache, so the bottleneck is the main memory interface. The STORE olethents
of A(}) causes a write miss on every cache line, triggering a write-allocate trangfieirs
the actual data volume per iteration is not 32 bytes but 40 bytes. At a compatdtitensity of
2 ops=40bytes (or @05 B/F) and a maximum memory bandwidthef= 36 GB/s, the memaory-
bound performance limit is bg= 1:8GF/s. This is far below thEnax limit on the cores, so
we expect a memory-bound performancePof 1:8 GF/s. Figure 3.3 shows the performance
characteristic of the vector triad in “throughput mode,” i.e., every came an independent loop
with lengthN and there is no work sharing. The roofline prediction is very accuragmwiing
four cores or more, but is much too optimistic at one or two cores (see iEset). for one core
the model still predicts the memory-bound limit§GF/s< 8 GF/s). Obviously one or more of
the assumptions above do not hold when using too few cores.

For small data setdN(1024) all arrays tin the L1 cache and tliax prediction applies.
It can be seen from Fig. 3.3 that the compiler was able to generate the¢garfachine code
for this loop, since the maximum possible in-core performance is achieeedL{sting 3.2).
Every core has its own private L1 cache, so there is no bottleneck asdakability from one
to eight cores is also optimal.

When the data is in the core-private L2 cache, whose bandwidth limit is 3&daytper core
(bs? = 768 GB/s), we gett bk? = 38:4 GF/s for the bandwidth prediction, which is far above the

35

Listing 3.2: “Perfect” AVX-vectorized assembly code for the bulk sectibnhe Sclonauer
vector triad (remainder loop omitted). The add and multiply instructions are higbtdg Not
that this is x86 assembly code, which does not re ect the actual RISCntikes which get
executed on the hardware. The compiler has unrolled the original loop 16 {eaeh AVX
instruction applies to four double-precision operands).

1 label:

2 vmovupd (%rdx,%r8,8), %ymml

3 vmovupd 32(%rdx,%r8,8), %ymm4

4 vmovupd 64(%rdx,%r8,8), %ymm?7

5 vmovupd 96(%rdx,%r8,8), %ymm10

6 vmulpd (%rcx,%r8,8), %ymml, %ymm2

7 vmulpd 32(%rcx,%r8,8), %ymm4, %ymmb5

8 vmulpd 64(%rcx,%r8,8), %ymm7, %ymm3

9 vmulpd 96(%rcx,%r8,8), %ymm10, %ymmll

vaddpd (%r13,%r8,8), %ymm2, %ymm3
vaddpd 32(%r13,%r8,8), %ymmb5, %ymm6
vaddpd 64(%r13,%r8,8), %ymm38, %ymm9
vaddpd 96(%r13,%r8,8), %ymmll, %ymm1l2
vmovupd %ymm3, (%rdi,%r8,8)

vmovupd %ymm6, 32(%rdi,%r8,8)

vmovupd %ymm9, 64(%rdi,%r8,8)

vmovupd %ymm12, 96(%rdi,%r8,8)

N L O
N o o hA W N R O

18 addq $16, %r8
19 cmpq %r9, %r8
20 jb label

measurement. The same prediction applies for the L3 cache, which is shassshmented, so
that its bandwidth scales across all cores. Again, some underlying assusngf the roofline
model do not hold here. See Sect. 3.4 for a detailed account of thestseff

3.3.2 Sparse matrix-vector multiplication [2, 3]

Given the pivotal role that sparse matrix-vector multiplication (spMVM) plmysnany algo-
rithms in computational science, high-performance implementations of thisl keenaf utmost
importance, and have been the subject of intense research over tdedade [28, 29, 30, 31,
32, 33, 2, 34, 35, 3]. For large data sets, the spMVM is strongly memaouypdh Many different
storage schemes exist to make data access to the matrix and LHS and RHSagefaient as
possible. Most of these schemes are highly speci ¢ to certain hardwetnéextures, although
there is a recent development of a universal sparse matrix formaHgk we highlight only
those aspects of the spMVM operation that are relevant in the contexe abdfline model.
Figure 3.4 shows a sketch of an spMVM operation, without any speciagaghof matrix data
format. Usually the access to the LHS and matrix data can be organized tonpatioe with
the cache line structure, but the RHS accesses may incur large oveteetdow spatial and/or
temporal locality. The streaming assumption for the roofline model may thusengatliol. This
section shows how one can deal with this problem and still employ the rooflimento gain
insight, although its predictions are “wrong.”

The most popular storage scheme, and the one that is suited for a wigkeafnmtrices
on standard cache-based microprocessors, is the “Compresseddtage3 (CRS) format (see

36

ck CO A() B() Figure 3.4: Sparse
]] matrix-vector multiply.
Dark elements visual-
. . ize entries involved in
updating a single LHS el-

ement. Unless the sparse
- + | | % matrix rows have no gaps

between the rst and last
| | nonzero elements, some
— — indirect addressing of the
— — RHS vector is inevitable.
|| || || (Figure from [21])

1 2 3 4 5
=z T B al2f2]s]sfshofs 0ok | va

21| 2 8

3 2 B |l 1l2]1]sf2]4]5]3[3]5] coliox
DB NENENEY

5" 10 -6 1 3 5 8 9 row_ptr

Figure 3.5: CRS sparse matrix storage format. (Figure from [21])

Fig. 3.5). The nonzero entries of the matrix are stored consecutivelybyaow, in an array
val(:) . The original column indices of those entries are stored in another adge(inte-

ger) arraycol_idx(:) , and the starting offsets of all rows are putin the amay_ptr(:)

Using this format, the spMVM kernel takes the form shown in Listing 3.3. Ithiaracterized
mainly by data streaming (arrayal[(:) andcol_idx(:)) with partially indirect access
(RHS vectorB(:)). Under the assumptions given in Sect. 3.2.2, it is possible to establish
roofline-type performance models [11, 21]. For matrix formats that reqggeme amount of
zero-padding to make the data layout compatible with the requirements of tthedrar such

as in SELLEC-s or ELLPACK, the required data traf ¢ can be adjusted [3].

Listing 3.3: OpenMP-parallel CRS spMVM kernel.

I$OMP parallel do

1

2 doi =1, N

3 do j = row_ptr(i), row_ptr(i+1) - 1

4 C(i) = C(i) + val(j) * B(col _idx(j))
5 enddo

6 enddo

7

I$OMP end parallel do

37

The computational intensity can be read off from Listing 3.3dfguare matrices[2, 34]

2 ops
185 = P ; (3.10)
Vmatt VRHS* VLHS

wherevmat accounts for reading the matrix entries and column indiggss is the traf ¢ in-
curred by reading the RHS vector (including excess traf ¢ due to ingaht spatial and/or
temporal locality), and ys is the data volume for updating one LHS element. Assuming dou-
ble precision matrix and vector data and four-byte integer indices wewhayve (8+ 4) bytes
andvys = 16 bytesN,,,, whereN,, is the average number of nonzeros per row. The RHS vec-
tor must be read at least once, but the actual data volume may be muchTénigatiscrepancy

is quanti ed by the parametex in vrys = 8a bytes. Hence, we get:

0P — 2 ops

= : 3.11
CRS™ 8+ 4+ 8a+ 16=N,,, byte (3.11)

The following considerations are simpler to express in terms of the codeckakince individ-
ual effects can be easily attributed to distinct additive terms. The codedeakathus
8 Dbytes

BRRs= 6+4a+ —

3.12
Nnzr 0P ()

The value ofa is governed by a subtle interplay between the matrix structure and the memory
hierarchy on the compute device: If there is no cache, i.e., if each load RHBevector goes

to memory, we hava = 1 and the RHS causes the same traf ¢ as the matrix entries. A cache
may reduce the balance by some amount, taagetl. In the ideal situation whea = 1=N,

each RHS element has to be loaded only once from main memory per sfMWMi worst
possible scenario occurs when the cache is organized in cache linegtflle elements, and
each access to the RHS causes a cache miss. In this case wa haveg, with Lc = 8 or 16

on current processors. The locality of the RHS vector access ansegoently, the value af

can be improved by applying matrix bandwidth reduction algorithms, suchegfRe Cuthill
McKee” (RCM) [36]. Note also that, depending on the algorithm and thélpro size, the
RHS vector may reside in cache for multiple subsequent spMVM kernetatioms, although

the matrix must still be fetched from memory. In this special case we aaveé.

The CRS-based roofline model (3.12) must be modi ed for data formatseigaire some
zero ll-in. For instance, the SELIC-s format cuts the matrix into horizontal stripes, whose
height (number of rows) is a small multiple of the applicable SIMD width (regisidth on
standard processors, warp size on GPGPUSs). These “chunkséadded with zeros to become
rectangular. This eliminates the need for conditionals in the inner loop anétases SIMD
vectorization and prevents warp divergence [34, 3].

The severity of the ll-in overhead can be quanti ed by an additional pseterb 1,
which in case of SELLC-s we call “chunk occupancy,” but which can certainly be de ned
without reference to any speci c storage format. The reciprocab afuanti es the format-
inherent average data traf ¢ per non-zero matrix element. Note the ekeds for b < 1 only
arises for the matrix value and column index but not for the RHS element. Thecause all
padded column indices should be set to zero; thus, the same (the rst) RrSr& is accessed

4This corresponds to the= 0 case in [2]

38

Listing 3.4: Read-only microbenchmark for bandwidth assessment.

#pragma omp parallel for reduction(+:sum)
fori = 0; i < N; ++i) {
sum += a[i];

A W N P

}

for all padded elements and the corresponding relatively high acesgsefncy will ensure that
this element stays in cache. The corrected code balance is then

1 8+4 N 8a + 16=N,,, bytes

BPP(a;b;Nnz)

b 2 2 op
6 8 bytes

= Z+da+r— 2 3.13
b NI’]ZI’ Op ()

The roofline model can now be used to predict the maximum achievable sppBrfdrmance
(we skip thePnax derivation since it is evident that spMVM is memory-bound):

bs

P(a;b;Nnzr; bs) = B5P(a:b: Nog) :
] » INNZr,

(3.14)
As usual bs is the achievable memory bandwidth as determined by a suitable microbenchmark.
Since the spMVM kernel is dominated by read operations uriNagsis very small, such a
microbenchmark should re ect this behavior (see Listing 3.4). Using 1 in (3.14) we obtain
the analogous expression for CRS or any other format without zefdipgoverhead.

As a special case we focus on the= 1=N,,, scenario, which has been described above. In
many realistic scenarios, processors with large last-level cachesteanhold the RHS vector
in the cache, even if it is updated frequently. Then the performance nmestig.r

bs .
(6=b + 12=Nny) bOLpeS

P(1=anr; b, anr; bs) = (315)

For matrices with a suf ciently large number of non-zeros per rdig,(12) one nally
arrives at the best attainable performance for spMVM operations:
— bsb
P= 6b7ytes : (3.16)
op

Note that these estimates are based on the optimistic assumptions of the rooflele Never-
theless, (3.16) provides an upper bound for spMVM performancel compute devices if the
matrix data comes from main memory.

In the most general case, the code balance dependsamu b, the latter of which can be
determined from the sparse matrix format. On the other harchn only be predicted in very
simple cases. Moreover, the valuelgfdetermined by the microbenchmark (Listing 3.4) could
be too optimistic because the streaming assumption for the roofline model may satided
due to erratic access patterns. Hence it seems that the roofline modet barused for spMVM
kernels with less than optimal spatial and temporal locality. While this is true féonpeance

39

prediction, it is still valuable to think in terms of bandwidth limitations in oder to nd mre
about how well resources are used: The valug oan be determined byeasuringhe memory
bandwidth (or data volume) of the spMVM kernel using a tool such as likvedetr [25, 26]
and setting the code balance equal to the ratio between the measuredredndéta volume
Vimeasand the number of executed “useful” ops, 2N,,. Note that this is only possible if the
code is limited by memory bandwidth. We then obtain

BDP = E_'_ 4a + 8 bytes: Vmeas

b Nhzr Op Nn; 2 ops ! (3.17)

which can be solved faoa:
1 Vimeas 6 8

=2 _ Vmeas ° 3.18
27 4 N 2bytes b Nog (3.18)

Oncea is known, (3.13) allows to determine what fraction of the memory bandwidtreid g
the RHS accesses.

As an example we pick the “klgpower” matrix from the University of Florida sparse matrix
collection® It originates from a non-linear optimization (Karush-Kuhn-Tucker) fating the
optimal power ow. The matrix hadl,, = 14:6 10° nonzeros and\, = 2:06 10° rows, which
leads toNnz = 7:1 nonzeros per row on average. An OpenMP-parallel CRS-badd¥dp
with this matrix on an Intel Sandy Bridge chip yields an observed performaifee 4.1 GF/s
and an overall memory traf ¢ volume of aboMyeas 258 MB. InsertingVimeasinto (3.18)
and settingb = 1 (no padding) we ged = 0:43. From the number of matrix rows one could
expect that the RHS vector should t into the 20 MiB last-level cache of tioegssor, leading
to @min . 1=Nnz = 0:14. However, since the two million elements for the RHS would already
take 80% of the cache capacity, competition with other data (notably the mausg£aapacity
misses and frequent evictions. A valueaf an,, would incur the minimum data volume for
loading the RHS (once), so the prodady,,, 3:1 quanti es the actual data traf c generated
by it. Every RHS element is thus loaded three times from memory. Using (3.18amweanally
calculate the relative overhead for this:

BDP(a)

—— 1.15: 3.19
BDP(amin) ()

If the extra RHS traf ¢ accounts for 15% overhead, this is also the optimizgiaiential for
matrix reordering techniques such as RCM, assuming that the achievableryrieanolwidth
stays the same. Note that the sparsity pattern of the matrix in uences thesgatésrn. The
overhead may become very large if the nonzeros are very scattered2]Ser a case study
involving matrix reordering to improve performance.

The ef ciency of the memory access can be evaluated by comparing tlevadtbandwidth
when running spMVM to the maximum bandwidth obtained with a microbenchmark:

PB°P(a)

Enem= bs

(3.20)

The numerator i®B°P(a) = 36:3GB/s in this case. Although the maximum read-only band-
width of the Intel Sandy Bridge chip used for these tesks; is 43 GB/s, the applicable baseline

Shttp://www.cise.u .edu/research/sparse/matrices

40

Listing 3.5: Double-precision divide-accumulate kernel.

double precision :: sum, c
double precision, dimension(N) :: a
! loop called many times with different c
sum = 0.d0
I$OMP parallel do reduction(+:sum)
doi = 1,N
sum = sum + ¢ / a(i)
enddo
ISOMP end parallel do

© 0 N o g b W N P

is probably lower due to the low number of nonzeros per row. Neverthelles erratic RHS
access causes some inef ciency, which may also be lowered by redacing

In summary, applying the roofline model to the sparse matrix-vector multiplicagomek
seems to be impossible at rst sight. The uncertainties in assessing thedataélaf c caused
by accesses to the right-hand side vector can lead to an overly optimistiwidémdound per-
formance prediction. Turning the model around, however, and megsimerperformance and
the actual data traf c, allows to x the free parameterand estimate optimization opportunities.
Hence, the roofline model is still very useful, although it does not actualyk.”

3.3.3 Divide-accumulate kernel

A simple but instructive example for the prediction of the effect of optimizatisiise divide-
accumulate kernel in Listing 3.5. It is also a preview to the use of patternsriarpmnce
modeling, which will be discussed in Chapter 5. We useCeGHz six-core Intel Xeon “West-
mere” processor as a test platform.

The applicable peak performance of this kernel can be easily computedking into ac-
count that the double-precision divide instruction on this processoa tlaoughput of 22 cy,
since it is essentially non-pipelined. This means that a divide can be compldieth every
22nd cycle [23]. All other execution units that are needed in this kett®AD and ADD)
cannot be bottlenecks even if pipelining did not work, since their latencybeaeasily hidden
behind the 22-cycle divide. There is a vectorized double-precisiadalin the SSE4.2 instruc-
tion set, which brings down the effective throughput to 11 cycles periteogtion (2 ops). At
3 GHz and six cores we thus have

3 10%cy=s

Tloy2 ops 3:27GF/s: (3.21)

Prax=

For largeN the bandwidth limitation is given by the code balancéBaf 4B/F and the (mea-
sured) memory bandwidth &k = 21 GB/s, so the roofline model is

21GB/s
4B/F

P=min 3:27GF/s = 3:27GFl/s: (3.22)

Hence, this kernel is clearly core-bound on the Westmere chip (all otimgstbeing equal, it
would be memory-bound starting at ten cores). As a consequence rfbeymnce of the loop
does not depend on the location of the data; even if the loop were shbdllaelements of

41

Listing 3.6: Optimized version of the divide-accumulate kernel with pre-cdetpreciprocals
inra(:)
double precision :: sum, c
double precision, dimension(N) :: a, ra
! ra(:) is pre-computed once
ISOMP parallel do
doi=1N
ra(i) = 1.d0 / a(i)
enddo
I$OMP end parallel do

© 0w N O g b W NP

! loop called many times with different c
sum = 0.d0
I$OMP parallel do reduction(+:sum)
doi = 1N
sum = sum + c * ra(i)
enddo
ISOMP end parallel do

T e
o o A W N B O

a(:) came from the L1 cache, above performance limit would still apply. For skeoyt loops
the overhead from the OpenMP parallelization would become a problem,uofecoWe can
calculate the array loop length where this will occur: Attty per loop iteration, and a typical
(measured) OpenMP overhead (barrier latency plus thread team $tabdut 3000cy on the
full chip (which can be measured using, e.g., the EPCC OpenMP microfemnks [37]), the
penalty from OpenMP will have less than 10% impadil@& 16000. This data set would still t
in the L1 cache of 32KiB per core. Since the OpenMP overhead is hightpiter-dependent,
this estimate can change when another compiler is used.

Often, additional knowledge about the processing of data outside thentlwop of inter-
est is useful for optimizing code. For instance, if the parametehanges between different
invocations of the loop kernel but the elementsa@) stay the same, it is more ef cient to
pre-calculate the reciprocals and store them in a separate array (§ag Bi§). With proper
unrolling in place to circumvent the stalls in the ADD pipeline, the applicable peatop
mance of this new loop is the overall arithmetic peak of the processor, sireé\estmere
core can sustain the LOAD, the ADD, and the MULT instructions in the samie.cytence,
Pnax= 6 2 2 3GF/s= 72GF/s, and the loop is strongly memory-bound for laxgeith an
expected performance &f = 21=4GF/s= 5:2GF/s. IfN is small and the data is in the L1
cache, it would take only 2048 cy to process the full L1 cache size.misguagain an OpenMP
penalty of 3000cy this means that the region of working set sizes wheeeNIp overhead
plays a signi cant role extends far into the L2 cache.

3.3.4 Conclusions and best practices for applying the roafie model

The roofline model is simple enough to enable a straightforward perfomngregliction in
simple cases, but often the problem is to determine a reaRgticlimit. In a rst step one can
estimatePyax by assuming the hardware peak execution rate for arithmetic operationthe.e.,
pure ops. In terms of the architectural model of the single core destribbe&Chapter 2 this
would mean that the ADD and MULT ports are the relevant bottleneck on tied@eel. Taking

42

LOADs and STOREs into account, as shown in the vector triad example abvivalready
lead to a considerable re nement, but there is still the implicit assumption thatsalliztions
in the loop body are independent and can be executed at the highsisi@oate allowed by the
pipelines. If the critical code execution path contains dependenciesnietn] e.g., pipeline
bubbles), the prediction d¥,ax becomes more involved and may require the use of tools except
for very simple situations. See Chapter 6 for an example from medical imaging.

In all but the most trivial cases the construction and validation of a pagnce model is an
iterative processwhich may require several cycles of re nement until a model is “go&@k%
Chapter 5 for a general view on structured performance engineering.

3.4 The Execution-Cache-Memory (ECM) model: A re ned per-
formance model for streaming loop kernels on multicore [4, 1]

For large data sets, typical memory-bound kernels in computational scs&oeea peculiar
scaling behavior across the cores of a multicore chip: Up to some critical eruohlzorests
scalability is good, but for > ts performance saturates and is capped by some maximum level.
Beyond the saturation point, the roofline model can often be used to ptiediperformance, or
at least its qualitative behavior with respect to problem parameters, bostmbt encompass
effects that occur between the cache levels. For the same reasonat camectly explain the
observed performance levels for streaming kernels if the bottleneck is whthtache hierarchy
(see Fig. 3.3 above). The “Execution-Cache-Memory” (ECM) moddkauhsic knowledge
about the cache bandwidths and organization on the multicore chip to ati@more accurate
description on the single-core level. Although the model can be used t@iptiee serial and
parallel performance of codes on multicore processors, its main puigptsdevelop a deeper
understanding of the interaction of code with the hardware. This happess the modefails
to coincidewith the measurement (see Sect. 3.4.1 below).

The following sections give a brief account of this model and show howrihects to the
roofline model. It is then applied to parallel streaming kernels, and re neattount for some
unknown (or undisclosed) properties of the cache hierarchy. nlP#e model is applied to
several important algorithms in computational science: stencil smoothetsica-Boltzmann
ow solver, and a backprojection algorithm from medical imaging.

3.4.1 The Execution-Cache-Memory (ECM) model: Single core

The main premise of the ECM model is that the runtime of a loop is composed of tvilre
tions: (i) The “core time,” which is the time it takes to execute all instructions, Withperands
of loads or stores coming from or going to the L1 data cache. (ii) The “ddéys,” which is the
time it takes to transfer the required cache lines into and out of the L1 c@bkanodel further
assumes, just like the roofline model, that hardware or software préfgtofechanisms are in
place, hiding all cache transfer latencies. Here we additionally assumtba¢hediche hierarchy
is strictly inclusive, i.e., that the lines in each cache level are also contairikd iavels below
it. The model can accommodate exclusive caches as well; see [4] for Bamp

Since all data transfers between cache levels occur in packets of dme loze, the model
always considers one cache line's worth of work. For instance, ifudbl@égprecision array must
be read with unit stride for processing, the basic unit of work in the modéijig gerations at

43

a cache line size of 64 bytes. The execution time for one unit of work is theyposed of the
in-core parfl;qre and the data delaygiai, With potential overlap between them.

Tyatale €cts the time it takes to transfer data to the L1 cache through the memorydhigra
and back. This value will be larger if the required cache line(s) aredifiay.” Note that, since
we have assumed perfect prefetching, this is not a simple latency effeatnés about because
of limited bandwidth and several possibly hon-overlapping contributiohs dssumption does
not work, e.g., on GPGPUSs, where latency is hidden by massive threaden§CM model in
its current form is not appropriate for such architectures.

On a Sandy Bridge core, the transfer of a 64-byte cache line from IdighrL2 to L1
takes a maximum of four and a minimum of two cycles (32-byte wide buses hetiveeache
levels), depending on whether the transfers can overlap or not. Fudhe the L1 cache of
Intel processors is “single-ported” in the sense that, in any clock dycdean either reload/evict
cache lines from/to L2 or communicate with the registers, but not both at thetsame

The core timélcoreis More complex to estimate. In the simplest case, execution is dominated
by a clear bottleneck, such as load/store throughput or pipeline stalls. Kanveedge about the
core microarchitecture, like the kind and number of execution ports or themaaxinstruction
throughput, is helpful for getting a rst estimate. For example, in a codeithabmpletely
dominated by independent ADD instructions, the core time is, to rst ordgerchined by the
ADD port throughput (one ADD instruction per cycle on modern Intel GRUh a complex loop
body, however, it is often hard to nd the critical execution path that deiees the number of
cycles. The Intel Architecture Code Analyzer (IACA) [38] is a tool tbam derive more accurate
predictions by taking dependencies into account. See Sect. 6 for a detzllydis of a complex
loop body with IACA.

Putting together a prediction for the overall execution time requires makingaressworst-
case assumptions about possible overlaps of the different contribdigscsibed above. If the
measured performance data is far off those predictions, the model misgepa@tant architec-
tural or execution detail, and must be re ned. A simple example is the writesaédcansfer
on a store miss: A naive model for the execution of a store-dominated stigg&arinel (like,
e.g., array initializatiorA(:)=0) with data in the L2 cache will predict a bandwidth level that
is much higher than the measurement. Only when taking into account thatcasry line must
be transferred to L1 rst will the prediction be correct.

Although an accurate determination By (or, equivalentlyPnay) is also required for the
roofline model, there are two crucial differences between the roofline hate the ECM
model:

» The roofline model only considers a single bottleneck, bagdata path or the in-core
code execution. The overlap and bottleneck assumptions ensure thatverhiais that
takes the longest time will determine the performance of the loop. Since théacioant
of overlap depends on factors that are outside of the model (and whecmeastly un-
known anyway), these assumptions is lifted in the ECM model. This allows fanger
of predicted performance values depending on how much overlap acbaallys.

» The roofline model relies on the saturation assumption, which states th# @Dthe
bandwidth of the slowest data path can be utilized. The ECM model, on thelathdy
starts with a single-core analysis and thuedictsnon-saturation for all data paths in-
volved, within the limits given by different assumptions for the overlap. Thikéscase

44

where the roofline model often fails (see Sect. 3.3.1). See below for hdticora scaling
behavior is incorporated into the ECM model.

As shown in the vector triad example in Sect. 3.3.1, a single core canncdteatioe mem-
ory interface, although a roofline analysis of peak performance vs. mygmaadwidth suggests
otherwise: The single-threaded triad benchmark only achieves abOwiB4, which corre-
sponds to a bandwidth of less than 17GB/s. The ECM model attributes thigphsmy to
non-overlapping contributions from core execution and data transfénge loads and stores to
the four arrays are accessing the L1 cache, no re lIs or evicts betlskand L2 can occur. The
same may be true for the lower cache levels and even memory, so that memdvyidith is
not the sole performance-limiting factor anymore. Core execution anddrarisetween higher
cache levels are not completely hidden and the maximum memory bandwidtht cennet.
See Sect. 3.4.3 below for a detailed account of how to apply the model togtigekernels.

However, when multiple cores access main memory (or a lower cache level bétfdwidth
bottleneck, like the L3 cache of the Intel Westmere processor), theiatsbcore times and data
delays can overlap among the cores, and a point will be reached wiedbettteneck becomes
relevant. Thus, it is possible to predict when performance saturationnseftish increasing
number of cores.

3.4.2 The ECM model: Multicore scaling

The single-core ECM model predicts lower and upper limits for the bandwidtsspre on all
memory hierarchy levels. When multiple cores are executing a loop, shategaths become
potential bottlenecks, since the combined “pressure” from all cores wwged their capacity.
When the bandwidth of one data path is exhausted, performance startaretes39]. This
principle is visualized in Fig. 3.6 using a timeline gradhsip encompassekqre and all contri-
butions fromTyaiathat emerge from scalable data paths, such as inner cache levelsnidie-re
ing time Tmem is the time spent with transferring data over bottlenecks, whose bandwidgh do
not scale with the number of cores. Here we assume no overlap betwesencti@ributions.
Once the number of cores is greater than

tp= Lo Tmem, (3.23)

Tmem
saturation sets in and the performance is completely determinggulywhich happens at three
cores in this example. We call this the “saturation point.” At this point, the barttviidsed
prediction from the roofline model works well. The performanceaires is thus:

P(t) = min(tPo; Poor) ; (3.24)

wherePR is the single-core performance (or ECM prediction) &ag; is given by the bandwidth
limitation in the roofline model. On the Intel Sandy Bridge processor the onkedhzndwidth
resource is the main memory interface.
Just as in the roofline model, the maximum main memory bandwidth is an input parameter

In principle it is possible to use the known hardware properties of the meimienyace (clock
speed, bus width, number of memory channels), but this is over-optimisticastige. For
current Intel and AMD processors, the memory bandwidth achievablestatidard streaming
benchmarks like the McCalpin STREAM [40, 24] is between 65 and 90% ofthberetical

45

(@)
; Tenip core 2
(c) g
Tenip core 2
T, core 3

chip

time

Figure 3.6: ECM model multicore scaling and saturation on a chip with a memoudidi
bottleneck.Tehip is the time for running the loop with data from scalable resources, Whig

is the memory transfer time. In this example we assUgg=Tmem= 2. (a) With two cores,
memory access is not a bottleneck and scalability is perfect. (b) Thres azeneeded to
saturate the memory interface. (c) Beyond three cores, performaasandbincrease since the
bottleneck is exhausted. This results in idle phases (hatched boxes).

maximum. Architectural peculiarities, however, may impede the optimal use of theorme
interface with certain types of code. One example are data streaming loopa weétly large
number of concurrent load/store streams, which appear, e.g., in implemestatithe lattice-
Boltzmann algorithm (see Sect. 7). The full memory bandwidth as seen withTtRE/AM
benchmarks cannot be achieved under such conditions. The rdasdhis failure are as yet
unknown and are subject to further investigation.

3.4.3 \Validation via streaming benchmarks

We validate the ECM model by using the $ctauer vector triad [13] as a throughput benchmark
(see Listing 3.1) on the Sandy Bridge architecture.

Single-core analysis

All loop iterations are independent. The in-core analysis is analogoustodfime model, with
the exception that we now consider a unit of work of one cache line'sheng., comprising
eight scalar iterations (sixteen ops). Six full-width AVX loads and two fuligih AVX stores
are required to execute the unit of work. From the microarchitecturalepties we know that
this takes six cycles. In Fig. 3.7 the LOADs and STORES are representad brrows between
the L1D cache and the registers. The oating-point instructions do nudtitate a bottleneck,

46

Registers
A A A

(256bitLD A max(2(B) + 2(C) + 2(D), 4(A)) cy = 6 cy T core
& 128 bit ST v Bl d O
2 L1D N
g A A A A
= - A
= 256 bit =
3 | v sl d d (2(B) + 2(C) + 2(D) + 4(A)) cy = 10 cy
g
= L2
s ;
9 . A A A A
g 256 bit o d 4 @B +20)+20)+4A) cy=10cy 7 T
ET_) Y
L3
107 bit
L (@ 2.7 GHz) (5-64B-2.7 Geyls)/ (36 GB/s) =24 cy

Figure 3.7: Single-core ECM model for the @clauer triad benchmark
(AC)=B()+C() *D(:)) on an Intel Sandy Bridge processor a? @Hz. The indi-
cated cycle counts refer to eight loop iterations, i.e., a full cache line leragtetpeam. The
transfer width per cycle for re lls from memory to L3 is derived from the m@e@ed STREAM
bandwidth limit of 36 GB/s. Dashed arrows indicate write-allocate transfers.

because only two ADDs and two MULTSs are needed. Overall, twetygs must be executed per
unit of work, not counting the loop counter and branch “mechanicsithwis justi ed because
its impact can be minimized by inner loop unrolling, and because the cormisggoexecution
ports have free resources anyway. Hence, the code has a (ussfulttion throughput of two
nops per cycle, which is far below the core's capabilities. The in-corf®paance is limited by
load/store throughput, and we halig.= 6cy. If the data set ts into the L1 cach&aia= O,
andTeoreis all that is needed to predict an upper performance limit.

If the working set is larger than the L1 cache, calculaliggodemands an accurate determi-
nation of the real data traf c through the memory hierarchy. In addition tAD®and STOREs
that can be found in the code, every write miss on af@y triggers a cache line write-allocate
transfer to the L1 cache. This is indicated by the dashed arrows in FigSiB\@e the buses be-
tween cache layers can transfer half a cache line per cycle, ten cadlesee needed for the
data transfers between L2 and L1, and between L3 and L2, respgclive achievable mem-
ory bandwidth of 36 GB/s leads to a per-cycle effective transfer width0afbits, which adds
another 24 cy. In the worst case, these contributions must be addedhgort@mory hierarchy
level where the data resides. For instance, the most conservative limétiin memory would
beTN& = 44cy.

data —

Figure 3.8 shows how the different parts can be put together to atrave estimate for the
execution time. In the worst case, the contribution$gg, can neither overlap with each other
nor with Teore, leading toT = 50cy for data in memory, 26c¢cy for L3, and 16cy for L2 (see
Fig. 3.8a). On the other hand, assuming full overlap beyond the L2 ¢aelke~ig. 3.8c), the
minimum possible execution times are= 24 cy, 16 cy, and 16 cy, respectively. The only well-

47

No All caches Full overlap Measured

overlap single-ported beyond L2 cycles
0 —----
6 - SR 2 B 6.04 data in L1
16 +------ 17.2 .
fffffff - datain L2

20 T
24 -

4 26.3
L — datainlL3
34 -

i 52.3
50 e -~ data in memory

cycles (@) (b) (© (d)

Figure 3.8: (a)—(c): Single-core timeline visualizations of the ECM model wittiecgsti-
mates for eight iterations (length of one cache line) of thed8aher triad benchmark on Sandy
Bridge, with different overlap assumptions: (a) no overlap betweeroatributions from data
transfers, (b) overlap under the condition that all caches are singleeh i.e., can only talk to
one immediately neighboring cache level at a time, (c) full overlap of all€dicle transfers
beyond L2. For comparison the rightmost column (d) shows measuremeryés per eight
iterations at the base clock frequency of 2.7 GHz, with the working sétimgsin different
memory hierarchy levels.

known fact in terms of overlap is that the L1 cache is single-ported, whiathjsno overlap
is assumed even in the latter case. Note that this no-overlap condition is didlyorecycles

in which the L1 cache is actually busy serving either the L2 cache or theeegiff the core
executes instructions other than LOADs and STORESs, patrtial or fullagyef Teore andTyataiS

possible (see later for an example).

Assuming the non-overlap condition for all cache levels, we arrive aithation depicted
in Fig. 3.8b: Contributions can only overlap if they involve a mutually exclusiteof caches.
We then get a prediction df = 34 cy for in-memory data, 20 cy for L3, and again 16 cy for L2
(the latter cannot be shown in the gure).

Figure 3.8d shows measured execution times for comparison. We mustaerichi there
is no overlap taking place between any contribution$:t and Tyaz Note that this analysis
is valid for a single type of processor, and that other microarchitecturgssimaw different
behavior.

48

w
o
T T
w
o
T
|

N
ol
T
N
(41}
L —
|

N
o
T
|

[y
(43
T T

Memory bandwidth [GB/s]
&
—T
1

Memory bandwidth [GB/s]
N
o

@—@ Schonauer triad |
— — ECM Model

@—@ DIV triad (AVX)
O—OQ DIV triad (scalar) 4
— — ECM Model (AVX) _|
— — ECM Model (scalar)

=
o
T
=
o
T

a1
T
P
[4)]

| [I R T N N N B
1 2 3 45 6 7 8 1 2 3 45 6 7 8
cores # cores

Figure 3.9: Multicore scaling of (a) the memory-bound &wwer triad benchmark and (b) the
modi ed triad with a divide A(:)=B(:)+C(:)/D(;)), in comparison with the correspond-
ing ECM models (dashed lines) on a 2.7 GHz Sandy Bridge chip. The madgl)fassumes no
overlap, while the model in (b) assumes full overlaggfe with Tyata

Multicore scaling

All resources in the Sandy Bridge processor chip, except for the meim@rnjace, scale with
the number of cores. Hence we predict good scalability of the benchnaplufmto eight cores
if the data resides in the L3 cache. Indeed we see a speedu® fobih one to eight cores (see
the arrow in Fig. 3.3). In the memory-bound regime we expect scalability ugetbahdwidth
limit of 107 bits/cy, which is a factor of 2.09 larger than the single-core badfithprediction
of 320bytes50cy= 51:2bits=cy. The performance of the Sahauer triad loop should thus
saturate at three cores, with a small speedup from two to three. 3.9 stoomgparison of the
model with measurements on a Sandy Bridge chip:aGHz. The model tracks the overall
scaling behavior well, especially the number of cores where saturationnsefche perfect
scaling assumption is slightly optimistic, however, near the saturation point. Nagterte can
expect the same general characteristics for all loop kernels that anglgttoad/store-bound in
the L1 cache if the data traf c volume between all cache levels is roughlgtaon Att = 2,
the model over-predicts the performance by about 15%. This deviati@t ie e investigated.
The performance of the S6hauer vector triad is completely bound by data transfer in all

memory hierarchy levels including L1. The ECM model should also be ableedigtrthe
performance and scaling behavior of loops that are limited by other EnuOne example
is a modi ed vector triad that uses a divide operation instead of the multiplicattwedzn
arraysC(:) andD(:) . The throughput of the double-precision full-width AVX divide on
the Sandy Bridge microarchitecture is 44 cycles if no shortcuts can be bgkdve hardware
[23], while the throughput of a scalar divide is 22 cycles. All requireadk and stores in
the L1 cache can certainly be overlapped with the large-latency dividedingto an in-core
execution time of 88 cy and 172 cy, respectively, for one unit of work withAVX and scalar
variants. In this case, the single-portedness of the L1 cache is notagplisince the in-core
code is not load/store-bound. Even if no overlap takes place in the fréds¢ dierarchy, the
10+ 10+ 24 = 44 additional cycles for data transfers (see Fig. 3.7) can be hiddendbite
in-core time. The results in Fig. 3.9b show a very good agreement of the ilaQdi¢!| with the

49

measurements. Interestingly, the prediction is now very accurate alstheesaturation point.

3.4.4 Conclusions and best practices for applying the ECM mael

Out of the four underlying assumptions in the roofline model (see Sect. 3tRe2FCM model
requires only the streaming assumption, since latency effects are not whoddéle model is
primarily suited for providing a prediction of the single-core performarfca lmop. As was
shown in Sect. 3.4.3, the scalability prediction (3.24) works best if the ia-epecution is not
dominated by LOADs and STOREs, i.e., if there is considerable “time slack” imgraory
hierarchy (see Fig. 3.9b). If the in-core execution is strongly limited by thALR and STORE
ports, the ECM model prediction, while still accurate for a single core, is poiondstic in the
vicinity of the saturation point, i.e., the linear scaling assumption in (3.24) wosdtkonly if
there is some bandwidth headroom left (see Fig. 3.9a). The reasoe fargthead or contention
effect that causes this deviation is unknown and is not part of the ECMImiNdé& that non-
temporal stores, due to their strong coupling to the memory interface, cahrasvanot be
accurately incorporated into the model.

The question arises as to why it is so interesting to accurately predict tHe-siorg per-
formance, especially if enough cores are available to eventually reashtimation point. This
was the case in Fig. 3.9b, where even the scalar code was able to sataratentfory inter-
face, if only just. It turns out that knowing about how much time goes inte eaecution vs.
data transfer opens the possibility for assessing the potential of code @itonzmuch more
accurately than with the roofline model:

o If Teore Tdata @voiding slow data paths in the memory hierarchy (which is commonly
the most promising approach to code optimizations) will not result in a big eéiace
improvement. In this case bandwidth saturation can often not be achievethwitvail-
able number of cores. Hence, as a rule of thumb, chip-scalable looplsl si@optimized
for more ef cient code execution in the core, e.g., by SIMD vectorizataimination of
pipeline stalls, simultaneous multi-threading (SMT), and avoiding costly opasasiach
as oating-point divides, square roots, or more complex functions. Kihgnin terms
of the roofline model, such optimizations would typically lead to increaBipg. Since
performance is dominated by in-core effects, it will be roughly propoatiom the clock
frequency of the processor unless saturation sets in. Another e sasis that typical
temporal blocking techniques for stencil algorithms, which are based oeaisiag the
computational intensity, will not improve performance if the stencil update éeodery
complex or non-vectorizable.

* If Tecore Tqata data transfers are the limiting factor for chip performance. Moving less
data across slow data paths is then the most expedient option for spepdimg loop:
Non-temporal stores, outer loop unrolling, loop blocking, temporal blagkane typical
strategies to follow. In terms of the roofline model, these optimizations will res@ahin
increased computational intensity. Surprisingly, even if a loop is strongindby data
transfers, a large fraction of the overall serial execution flle+ TyaaiS Spent in parts
of the hardware whose performance is proportional to the clock sgéded.was shown
prominently with the vector triad benchmark (see Fig. 3.8a), in which more talhoh
the cycles came from on-chip data paths on the hardware under catgideHence, the
clock frequency has a big impact on the single-core performance ettem dfata comes

50

from main memory; to lowest order one can often assume that they arefioopbunless
there is saturation, just as in the core-dominated case.

A further advantage of an accurate modeling of on-chip scaling behevibat knowing the
scaling properties of a code leads to accurate guidelines for choosogiaral operating point
for minimal energy to solution with controlled (or predictable) loss in perforreai he energy
consumption properties of processors depend crucially on how maeg eoe in use, on the
processor's clock speed, and on the type of code being executede T¢sues will be covered
in detail in Chapter 4.

Finally it must be stressed that the ECM model is not only useful for simplehmark
kernels. It has also been used successfully to describe the perfigraad scaling properties
of stencil smoothers [9, 10] and medical image reconstruction kerne{sd6]also Chapter 6).
It is the rst approach that can successfully model the single-threddnneance and on-chip
scalability of data streaming applications on multicore processors.

3.5 Chapter summary

In this chapter, two approaches to white-box performance modeling omijnéewel were pre-
sented: The well-known roofline model and the recently introduced EixecCache-Memory
(ECM) model. It was shown how erratic data access can be incorpanéetie roofline model,
not for performance prediction but for learning more about data eanstrhead and optimiza-
tion opportunities. The ECM model can be seen as a re nement of the reafidel, taking
into account not only core execution and a single bottleneck, but also thddindata trans-
fers through the memory hierarchy and multicore scaling. It was demortstraiethe ECM
model can predict the single-core performance and intra-chip scalstgeaiming loop kernels,
providing guidelines for optimization approaches.

To the author's knowledge, the ECM model is the rst model that can ssfally describe
single-threaded performance and multicore scaling for modern prasesso

51

52

Chapter 4

Performance and power [1]

Power dissipation and energy consumption are aspects of scienti ¢ corgpgbthhave been
moving into the focus of research in recent years. Energy and coadstg tor running large-
scale clusters are comparable to the pure hardware costs, and bringidiggsipated heat out
of a server case is a challenge of its own. Scienti c users seem to have littenize on these
matters, but they may be forced to nd energy-optimal operating points &r software in the
very near future, when allocations on parallel systems are granted teotis of CPU cycles
but also in terms of consumed energy.

As it turns out, users who know about the performance properties iofitl@ementations
can save a signi cant amount of energy, without compromising time to solusptaking care
that the serial program code is as fast as possible (most probablyphyrapa suitable white-
box performance model) and choosing some tunable parameters: claak @pe number of
cores used. In this chapter we develop a simple but meaningful powerl fioodaulticore
processors that captures the in uence of these essential factore @méngy consumption of
running code. Combining this power model with the ECM model then enablesiced)lpre-
dictive energy and performance modeling on the chip level. The InteldBridge EP” server
processor is used for all benchmarks and energy measurements; it theel chip for which
accurate energy consumption information is accessible from user code.

4.1 Power dissipation and performance on multicore

In this section the power dissipation properties of the Sandy Bridge ocage investigated
by studying several benchmark codes. Then a simple power model iswxird and the most
interesting features for the “energy to solution” metric with respect to closuency, number
of cores utilized, and serial code performance are derived from itlevitre model is too coarse
to provide quantitative predictions, the qualitative insights are extremelylusef

4.1.1 Power and performance of benchmarks vs. active cores

In order to study energy consumption for various different code pattercouple of test codes
were chosen. Each of those shows a somewhat typical performanaedefor a certain class
of applications. Performance, CPI (cycles per instruction), and poissipation were measured
on a Sandy Bridge EP (Xeon E5-2680) chip, with respect to the numbesres used. The

53

T T
2l e—eRAY 1500~ 150 4 4 DGEMM i
RAY SMT
) @ @
T 1.5- 45 i
= S 1000+ ©. 100+ .
3 o 3
c S c
[c ®©
g 1 1 g =8 Jacobi AVX £
g S @@ Jacobi scalar £
g S 500 4 & sob -
o
0.5 -
@ | — (b) , (©)
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 456 7 8 1 2 3 456 7 8 1 2 3 45 6 7 8
cores # cores # cores

Figure 4.1: Performance of the benchmark codes on a Sandy Bridgevithipespect to the
number of active cores at the base frequency of 2.7 GHz.

“turbo mode” feature was deliberately ignored, and the chip was giverf @éet warm-up
time before the actual measurements were taken. Without the warm-up, veziatiop to 10%
in power dissipation could be observed across multiple runs with the same €hdesnergy
measurements were done using likeid-perfctr tool from the LIKWID tool suite.

In the following, the benchmarks are brie y described together with peréorce and power
data with respect to the number of cores used (see Figs. 4.1 and 4.2).

RAY

is a small, MPI-parallel, master-worker style ray-tracing program, whichpetes an image
of 1500¢ gray-scale pixels of a scene containing several re ective sphePesformance is
reported in million pixels per second (MP/s).

Scalability across the cores of a multicore chip is perfect (see Fig 4.1eg, alirdata comes

e Y N N Sr—T—T—T—T T
i I 4—ADGEMM
| a =8 Jacobi AVX
100 () 4~ @@ Jacobi scalar -
¢ RAY
o RAY SMT
801 =
(o]
s Sak 1
= 2 b)
o 60+ = (
3 g
o T 2F —
40 /Y AADGEMM ©
N o B8 Jacobi AVX |
2 @@ Jacobi scalar 1 a
201 ¢ RAY —
RAY SMT L= o |
ob—L 111111 obL—oL 1 1111
0 1 2 3 456 7 8 1 2 3 45 6 7 8
cores # cores

Figure 4.2: (a) Power dissipation and (b) cycles per instruction of thehmeark codes with
respect to the number of cores used, at the base frequency of 2.7 GHz

54

from the L1 cache, load imbalance is prevented by dynamic work distributiene is no syn-
chronization, and only infrequent communication of computed tiles with the mpsieess,
which is pinned to another socket and thus not taken into account in thessnalhe code is
purely scalar and shows a mediocre utilization of the core resources wih waltie of about
0:8 (see Fig 4.2b). It bene ts to some extent from the use of simultaneous nuateimg
(SMT), which reduces the CPI ta@b per (full) core for a speedup of roughly 15%. At the
same time, power dissipation grows by about 8% and is roughly linear in thearuwhbores
used for both cases (see Fig. 4.2a).

Jacobi

is an OpenMP-parallel 2D Jacobi smoother (four-point stencil) usedamitbut-of-cache data
set (4008 lattice sites at double precision). Being bandwidth-bound with an effectide
balance of 6 B/F [21], it shows the typical saturation behavior deschipede ECM model for
streaming codes. Performance is reported in million lattice site updates padgétbUP/s),
where one update comprises four ops. Hence, we expect a satupgitormance of 6 GF/s
or 1500 MLUP/s on a full Sandy Bridge chip, which is fully in line with the measuent (see
Fig. 4.1b).

This benchmark was built in two variants, an AVX-vectorized version ascksar version,
to see the in uence of data-parallel instructions on power dissipation. Bargions have very
similar scaling characteristics, with the scalar code being slightly slower bewaturation
point, as expected. The performance saturation is also re ected in theteRFig. 4.2b), which
shows a linear slope after saturation. Surprisingly, although there ida f3{c2:5-3 in terms
of CPI between the scalar and AVX versions, the power dissipation hendiyges (Fig. 4.2a).
Beyond the saturation point, the slope of the power dissipation decrdigbtly, andicating that
a large CPI value is correlated with lower power (cores waiting for datajveier, the relation
is by no means inversely proportional, just as for the RAY benchmark.

Note that the particular choice of problem size causes the layer condigerséct. 5.1.2) to
fail inthe L1 cache, leading to increased L2 cache traf c compared tofagidlocking strategy.
Together with the increased load/store throughput at scalar execlgmBést. 2.4.1) this means
that both code variants show very similar serial performance. Morgthecompiler employs
half-wide (i.e., SSE) LOAD instructions in the AVX case in order to decrdlas@robability of
split loads across cache line boundaries, which incur penalty cyclgsTRB is the reason for
the CPI value not being a factor of four lower for AVX in the saturatecgcd$iese de ciencies
could be xed by proper data alignment and probably the use of SIMD &itrin

DGEMM

performs a number of multiplications between two dense double precision nsatficgze
560CF, using the thread-parallel Intel MKL library that comes with the Intel comgilersion
10.3 update 9). Performance is reported in GF/s.

The code scales almost perfectly with a speedup:®fon eight cores, and reaches about
86% of the arithmetic peak performance on the full Sandy Bridge chip at af@GPout 04 (i.e,
2:5 instructions per cycle). The power dissipation is almost linear in the nuniloeres used
(Fig. 4.2a).

DGEMM achieves the highest power dissipation of all codes consideresl iNote that

55

at the base frequency of22GHz, the thermal design power (TDP) of the chip of 130W is not
nearly reached, not even with the DGEMM code. With turbo mode enabléd(3z at eight
cores) one can observe a maximum sustained power of 122W. The Saiddg Bhip can
exceed the TDP limit for short time periods [41], but this was not investigateel.

Surprisingly, the power dissipation of DGEMM is identical to the Jacobi dsdalar and
AVX versions) as long as the latter is not bandwidth-bound, whereasAiidBnchmark draws
about 15% less power at low core counts. This can be attributed to the meedidization of
the execution units in RAY, where some long-latency oating-point dividesiimpipeline stalls,
and the strong utilization of the full cache hierarchy by the Jacobi smoother

4.1.2 Power and performance vs. clock frequency for all berianarks

Figure 4.3a shows the power dissipation of all benchmarks with respeat tdatk frequency
(f = 1:2:::2:7GHz) when all cores are used (all virtual cores in case of the SMiintaof
RAY). The Sandy Bridge chip only allows for a “global” frequency setting., all cores run at
the same clock speed. The solid lines are least-squares ts to a secgree-@elynomial,

W(f)= Wo+ wif+ wyf?; (4.1)

for which the coef cient of the linear term is very small compared to the torsand the
guadratic term. The quality of the t suggests that the dependence ofrdgmewer dissipation
on frequency is predominantly quadratic with ZBHZ < w, < 10W=GHZ*, depending on
the code characteristics. Note that one would naively expect a cubendepce inf if the
core voltage were adjusted to always re ect the lowest possible settiaggaen frequency.
Since we cannot look into the precise algorithm that the hardware usessthe smre voltage,
we use the observed quadratic function as phenomenological input towes podel below,
without questioning its exact origins. The conclusions we draw from theei@duld not
change qualitatively ifW(f) were a cubic polynomial, or any other monotonically increasing
function with a positive second derivative.

It is plausible that the “baseline poweWly 25W is largely independent of the type of
code, since part of it can be associated with the chip leakage power.ylvama depending
on the actual state that idle cores assume, i.e., when not executing codkrnMmocessor
cores usually have several power-saving states, which differ grieattheir power dissipation
per core and also in the time it takes to return to normal operation. One shsaldaie that
an extrapolation td = 0 is problematic here, so that the estimateWgris very rough. The
extrapolation to zero cores in Fig. 4.2 yields roughly the same valu&gowhich is reassuring.
However, the actual power dissipation with all cores in the halt state wouttlicl lower due to
advanced power gating techniques. Hence, giVig@ concrete physical meaning is debatable
and we regard it as a pure model parameter that accommodates all patrédsutmns that do
not vary with the number of active cores and the clock frequency. Vélgstem components
beyond the chip are included in the model, their power dissipation is mostly com@std can
thus be included i\ (see below).

Figure 4.3b shows the single-core performance of all benchmarks véaffreceto clock
frequency, normalized to the level &t= 2:7 GHz. As expected, the codes with near-perfect
scaling behavior across cores show a strict proportionality of perfocenand clock speed,
since all required resources run with the core frequency. In caeeafacobi benchmark the
linear extrapolation tof = 0 has a non-zerg-intercept, because resources are involved that

56

T e e ———T T T
A DGEMM 1 4 DGEMM ol
" m Jacobi AVX 1 = Jacobi AVX o
100 © Jacobiscalar a ® Jacobi scalar n 1
¢ RAY © ¢ RAY
3 RAY SMT e 0.8 RAY SMT 1
= ,/
IS
2 S 06
g 8"
o [}
o 2
8 0.4 B
[3)
14 i
0.2 () |
ob— 1) o1
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Frequency [GHz] Frequency [GHZz]

Figure 4.3: (a) Power dissipation of a Sandy Bridge chip with respect ttk dpeed for the
benchmark codes. All eight physical cores were used in all casggllakb virtual cores for the
“RAY SMT” benchmark. The solid lines are least-squares ts to a seategtee polynomial in
f. (b) Relative performance versus clock speed with respect to. @tz level of single-core
execution for the benchmark codes. Two processes on one physiealvere used in case of
RAY SMT. The solid lines are linear ts to the Jacobi AVX and DGEMM datapectively.

are clocked independently of the CPU cores. The ECM model predicts ehasvior if one
can assume that the maximum bandwidth of the memory interface is constant wjiihgva
frequency.

Figure 4.4 shows the saturated memory bandwidth of a Sandy Bridge chip egipeat
to clock speed. If we assume that the core frequency should not inaudre memory inter-
face, there is no explanation for the drop in bandwidth below abgiGHz: The ECM model
predicts constant bandwidth for a streaming kernel like, e.g., théreler triad (one may spec-
ulate whether a slow Uncore clock speed could cause a lack of outstaedingsts to the mem-
ory queue, reducing achievable bandwidth). For the purpose ofaéng a multicore power
model, we neglect these effects and assume a strictly linear behavior (woti-irgercept) of

as ‘ ' ‘ ' ‘ ' ‘] Figure 4.4: Maximum memory
1 | bandwidth (saturated) versus clock
@ 30| /RH—'HH_‘ - frequency of a Sandy Bridge chip.
%25’ 1 See [42] for a detailed account of
g i | the inuence of clock speed on
2 20t 4 bendwidth.
o) L
S 18- .
© L
2 10\ -
n |

5 i

07 | L | L |

15 2 25 3
Clock speed [GHz]

[aRy

57

performance vs. clock speed in the non-saturated case.

4.1.3 Conclusions from the benchmark data

In order to arrive at a qualitative model that connects the power affiorpgnce features of the
multicore chip, some generalizing conclusions must be drawn from the dataadbaliscussed
in the previous sections.

From Fig. 4.3a, we conclude that the dynamic power dissipation is a quapoftimomial
in the clock frequency and parametrized sy in (4.1). w, depends on the type of code ex-
ecuted, and there is some (inverse) correlation with the CPI value (seé.Ejgbut a simple
mathematical relation cannot be derived. The linearwait generally small compared .

A linear extrapolation of power dissipation vs. the number of active core®ito cores
(dashed lines in Fig. 4.2a) shows that the baseline power of the dMp is25W, independent
of the type of running code. In case of the bandwidth-limited Jacobi madhonly the one-
and two-core data points were considered in the extrapolation. The fesWlg is also in
line with the quadratic extrapolations to zero clock frequency in Fig. 4.3de MatWp, as a
phenomenological model parameter, is different from the documenteddtaler” of the chip,
which is considerably lower due to power gating mechanisms.

From the same data we infer a linear dependence of power dissipation onrtiteer of
active cores in the non-saturated regime,

W(F;t)= Wo+ (Wi f+Wofd)t; (4.2)

so thatwy.o = t Wi.2. Although the power per core rises more slowly in the saturation regime,
we regard this as a second-order effect and neglect it in the followiihg: fact that a core

is active has much more in uence on power dissipation than the charactes$tice running
code.

As Fig. 4.2a indicates, using both hardware threads (virtual cores) ghysical Sandy
Bridge core increases power dissipation due to the improved utilization ofipleérgs. The
corresponding performance increase depends on the code, sécearit may be more power-
ef cient to ignore the SMT threads. In case of the RAY code, howeberjncrease in power is
over-compensated by a larger boost in performance, as shown in.E#g. 8ee Sect. 4.2.4 for
further discussion.

One of the conclusions from the ECM model was that, in the non-saturased jparfor-
mance is proportional to the core's clock speed. Fig. 4.3b suggestsighatthfor the scalable
benchmarks, and approximately true also for saturating codes like Jacobi.

4.2 A qualitative power model

Using the measurements and conclusions from the previous section a sinvplapoadel can be
derived, which describes the overall power properties of a multicapevgth respect to number
of cores used, the scaling properties of the code under considegatibthe clock frequency. As
a starting point we choose the “energy to solution” metric, which quanti eettezgy required
to solve a certain compute problem and is thus restricted to strong scaliragisseiT his is not
a severe limitation, since weak scaling is usually applied in the massively (distitboemory)
parallel case, where the relevant scaling unit is a node or a ccNUMA idgmhich is usually

58

a chip). The optimal choice of resources and execution parameters ohiphlevel, where the
pertinent bottlenecks are different, are usually done at a constaniepraize.
The following basic assumptions go into the model:

1. The wholeN¢-core chip dissipates some baseline poWgmwhen powered on, which is
independent of the number of active cores and of the clock speed.

2. An active core consumes a dynamic powenef + W, 2. We will also consider devia-
tions from some baseline clock frequenfgysuch thatf = (1+ Dn) fo, with Dn = Df=f.

3. At the baseline clock frequency, the serial code under considenatits at some per-
formancePR,. As long as there is no bottleneck, the performance is linear in the number
of cores usedt, and the normalized clock speed+ Dn. The latter dependence will
not be exactly linear if some part of the hardware (e.g., the outer-leghegauns at its
own clock speed. In presence of a bottleneck (like, e.g., memory bandwiakthoverall
performance with respect tas capped by some maximum valBgor:

P(t) = min((1+ Dn)tRy; Poof) = Min(tRyf=fo; Roor) : (4.3)

This is just an extension of (3.24) for varying clock speed. Note thatave hot included
an explicit frequency dependence of the saturated performancee dipilicable bottle-
neck is within the cache hierarchy, the model can be easily extended tmaoxiate this
case.

Since time to solution is inverse performance, the energy to solution becomes

£ o Wor (Waf+Wof?)t
- min(tPy f=fo; Proor)

(4.4)

A direct consequence of this model is that any increase in perform&yaa Poof) leads to
proportional savings in energy to solution. Performance is thus the rdgrduning parameter
for minimum energy. This general rule will be revisited several times in thi&kwor

The model parameteip, Wi, andW, must be determined by measurements, as shown
above for the example benchmarks. SimgeandW, depend on the actual loop code, this mea-
surement must be repeated for every loop if the application is complex.uBtitagive results it
is suf cient to assume approximate values that re ect general loopgstiis known from code
analysis and performance modeling (memory-boundedness, SIMD ization, pipeline uti-
lization). Choi et al. [43] have derived a “roofline model of energytiich relies on microbench-
marking and a re ned power measurement infrastructure to determine ¢ngyeconsumption
of elementary operations such as ops and data transfers, and thers atiquarametrize the
power dissipation of a chip over a wide range of the computational intensitgir model is
more targeted toward design space exploration and comparisons oéwtifeechitectures, and
they do not explore the core and frequency dependence of enengymption. In principle,
however, the parametevs, Wi, andWs, could be determined by their method as well.

Note that it is out of the scope of the model to study different strategiedyfaamic voltage
and frequency scaling (DVFS); the exact algorithm a processortases the core voltage at a
certain frequency is taken as-is, and is hidden in the model parariétang, andWs.

59

4.2.1 Minimum energy with respect to the number of active core

Due to the assumed saturation of performance tyitte have to distinguish two cases:

Case 1:itRyf=fg < Poot Performance is linear in the number of cores, so that (4.4) becomes

_ Wo+(WAT+Wof2)t
E= tPof:fo ' (4.5)
andE is a decreasing function o¢f
TE _ Wo 0: (4.6)

== 0 <
1t 2P, f=fp

Hence, the more cores are used, the shorter the execution time and the gmeadivergy to
solution.

Case 2:tRyf=fg > Boof Performance is constant in the number of cores, hence

= ! Wo + (WA f + Wo F2)t 4.7
IDroof
TE 1 5
—= Wi f+Wofs > 0: 4.8
) ﬂt I:)roof ' VV2 ()

In this case, energy to solution grows withwith a slope that is proportional to the dynamic
power, while the time to solution stays constant; using more cores is thus a \ii&stergy.
Leaving cores idle to save energy is known as “dynamic concurrenaitlthg” (DCT) [44].

For codes that show performance saturation at sgnitefollows that energy (and time) to
solution is minimal just at this point:

te= Proof .
° Rf=fo

If the code scales to the available number of cores, case 1 applies asdarié use them all.

(4.9)

4.2.2 Minimum energy with respect to code performance

Since the serial code performan@gonly appears in the denominator of (4.4), increadtg
leads to decreasing energy to solution unléss Pqor. A typical example for this scenario is
the SIMD vectorization of a bandwidth-bound code: Using data-paral#uotions (such as
SSE or AVX) will generally reduce the in-core execution tirig,{), so that?, grows and the
saturation poinBqet is reached at smallér(see (4.9)). Consequently, the potential for saving
energy is twofold: When operating below the saturation point, optimized cegigres less
energy to solution. At the saturation point, one can get away with fewereamtires to solve the
problem at maximum performance.

The energy to solution is also inversely proportional to the saturatedrpeimer, o (if
saturation applies), thugqor has the same energy-saving potentiaPasHowever, sincé oo
is typically determined by a bottleneck in the memory hierarchy, code optimizationsrease
Proof are typically targeted toward higher computational intensity (see also Se@). 3.2

60

4.2.3 Minimum energy with respect to clock frequency

We again have to distinguish two cases:

Case L:itRyf=fg < Boot Energy to solution is the same as in (4.5) dnd(1+ Dn) fp, so that

1E _ 2 Wo
The derivative is positive for largk setting it to zero and solving fdrthus yields the frequency
for minimal energy to solution: P

fopt= % :
Wht
A large baseline powed forces a large clock frequency to “get it over with” (“clock race to
idle”). Depending o\p andWs, fop may be larger than the highest possible clock speed of the
chip, so that there is no energy minimum. This may be the case if one includesstiadf the
system in the analysis (i.e., memory, disks, etc.). On the other hand, a largeidypowei\s,
allows for smallerfyp, since the loss in performance is over-compensated by the reduction in
power dissipation. The fact thé,: does not depend A, just re ects our assumption that the
serial performance is linear ih
Sincet appears in the denominator in (4.11), itis tempting to conclude that a clocleiney
reduction can be compensated by using more cores, but the in ueriedas to be checked by
inserting fopt from (4.11) into (4.5):

(4.11)

r !

WOtWZ W (4.12)

f
E(fop) = 52 2

This con rms the conjecture that more cores at lower frequency sarggbelow the saturation
point. At the same time, performancefgg: is

r_
_ fopt _ I:)O V\/Ot .

P(fopt) = Totpo— T W (4.13)
hence it grows with the number of cores: trading cores for clock slowdtnes not compromise
time to solution.

However, ift is xed, (4.13) also tells us that, ifopt < fo, performance will be smaller than at
the base frequencip, although the energy to solution is also smaller. This may be problematic
if t cannot be made larger to compensate for the loss in performance. Inghitheaenergy to
solution metric is insuf cient and one has to choose a more appropriatduwagton, such as
energy multiplied by runtime:

Co B Wor (WAf+ a2t

4.14
P (tRoF=fo)? @19
DifferentiatingC with respect tdn gives
+
1C _ Ap+rWaft . (4.15)

On — (f=fo)3P3

61

becaus&\p; Wy > 0. Hence, a higher clock speed is always bett€ig chosen as the relevant
cost function. Note that a large baseline poWgremphasizes this effect, e.g., when the whole
system is taken into account (see also above in the discussigp)of

The question remains how to deal with the code slowdown, since a machimeguat lower
clock speed will deliver less “science per day,” and this is what the typerally cares about.
One option is to invest the money saved on the power bill in a larger systenSeseet.3 for
an analysis of this point of view.

Case 2:tRyf=fp > Ryt Beyond the saturation point, energy to solution is the same as in
(4.7), so it grows with the frequency: The clock should be as slow asilfies Together with

the ndings from case 1 this means that minimal energy to solution is achieved wsing all
available cores, at a clock frequency which is so low (if possible) thas#beration point is
right att = Nc.

These results re ect the popular “clock race to idle” rule, which basicstlyes that a pro-
cessor should run at maximum frequency to “get it over with” and go tpsleearly as possible
to eventually save energy. Using the energy to solution behavior agdetidove, we now know
how this strategy depends on the number of cores used and the raticebhéamd dynamic
power. “Clock race to idle” makes sense only in the sub-saturation regimdeylaenf < fop.
Beyondfqp (if such frequencies are allowed), the quadratic dependence of povetock speed
will waste energy. Beyond the saturation point, i.et f ts, lower frequency is always better.

4.2.4 Validation of the power model for the benchmarks

The multicore power model has been derived from the benchmarks'rpdiggipation using
considerable simpli cations. Hence, itis now important to check whetherahelasions drawn
above are still valid for the benchmark codes when looking at the measnezgdy to solution
data with respect to the number of active cores, the clock speed, anddleesore performance.

Figure 4.5 shows energy to solution measurements for the scalable cigles%&) and the
Jacobi AVX benchmark (Fig. 4.5b) versus clock frequency and numbeores, respectively.
Comparing the frequency for minimum energy to solution between DGEMM &R eight
cores (solid symbols in Fig. 4.5a), we can identify the behavior predicted.fy): A large
dynamic power factow, leads to lowerfoy. The SMT version of RAY consumes more power
than the standard version, but, as anticipated above, the larger pent@feads to lower energy
to solution: Better resource utilization on the core, i.e., optimized code, saezgye this
provides another possible attitude towards the “race to idle” rule. Givehube amount of
optimization potential that is still hidden in many production codes on highly pasggems,
this view must be regarded as even more relevant than optimizing clock &peefitw percent
of energy savings.

Eq. (4.11) predicts a larger optimal frequeniey; at fewer cores, which is clearly visible
when comparing the four- and eight-core energy data for DGEMM in E&a &solid vs. open
triangles). At the same time, fewer cores also lead to larger minimum energhutimsat fopr,
which was shown in (4.12).

The Jacobi benchmark shows all the expected features of a code whdsrmance sat-
urates at a certain number of cottgs As predicted by the ECM model, the saturation point
is shifted to a larger number of cores as the clock frequency goes dowuas derived in
Sect. 4.2.1 that this is the point at which energy to solution is minimal. Loweringegeéncy,

62

2400 T T] 100
2000 W i -
= :)
c
S 1600 . s
3 @ S 600 4
[1 Ie)
e 7]
2 1200+ W] o
>
e S 400+ _ .
2 sook i 9] =& Jacobi AVX 2.7 GHz
w] L ©-0Jacobi AVX 2.0 GHz |
| 4—A DGEMM 8C i o0 Jacobi AVX 1.4 GHz
2—A DGEMM 4C 200 _
400 e RAYS8C - ()
RAY SMT 8C
0 ! | ! | ! | ! 0

15 2 25
Frequency [GHZz] # cores

Figure 4.5: Energy to solution for (a) the scalable benchmarks DGEMMt(aigd four cores)
and RAY (eight cores) versus clock frequency on a Sandy Bridgest@and (b) the Jacobi AVX
benchmark versus number of cores at different core frequencies.

ts gets larger, but energy to solution decreases (see (4.12)). W& more cores and higher
clock speed both are a waste of energyt Attg the Jacobi code is largely frequency-bound and
there is an optimal frequendy,: 2 GHz with minimal energy to solution. Here we substan-
tiate the prediction from Sect. 4.2.3 that “clock race to idle” is largely courterctive if we
look at the chip's power dissipation only. See also Sect. 7 for a discus$iace to idle” in
the context of a lattice-Boltzmann CFD solver.

In conclusion, although considerable simpli cations have been made irtroctiag the
model (4.4), it is able to describe the qualitative behavior of the benchnpgfications with
respect to energy to solution.

Applying the model in practice to achieve minimum power consumption for a pgdica-
tion may be complex if the code is composed of many parts that take only a smalhtofou
time. Every loop must be analyzed and modeled for performance and ,pewekeclock speed
adjustments and DCT must be applied on a loop-by-loop basis via suitabled#fdb] or
automatic frameworks [44].

4.3 Consequences for system design

Interesting conclusions for system design can be drawn from theyettesglution model (4.4)
when typical requirements in computing center environments are taken irdordac®Vhile the
model predicts that it is possible to save energy by reducing the clock spéee point where a
bandwidth-bound code scales across all cores of the socket, the sitisatimre complex with
scalable code. As shown in Sect. 4.2.3, adjusting the clock speed to get mirgnergy to
solution may compromise the time to solution. Apart from choosing more appt®pnietrics
such as the energy-delay product, one can also assume the point dfiateavcertain system is
running at the optimal clock frequendy, which is given by (4.11), and then adjust the size
of the system to compensate for the performance loss (or gefgy: # fo). If one assumes that
the price for a system is roughly constant for constant peak perfoenéme only difference
between a system running fand a system running d; is its energy consumption over its

63

lifetime. The question remains as to if and how much energy, and thus moneye caved by
setting the optimal frequency.

The optimal frequencyop: depends on the baseline powtty, the dynamic poweW,, and
on the number of cordg(see (4.11)). The ratio of power dissipation between the optimized and
the base clock frequencies is

W(fopt) Wot+Wefdt 2w
W(foit) — Wo+ Waflt Wo+ Waflt

if we neglect the usually small linear part in the power law (4.2). Comparistesys of the
same size, this ratio is certainly smaller than one. However, if we adjust thefdilze “opti-

mized” system by a factor that re ects the chip performance ratio (anghasgerfect scaling
for applications), we get

(4.16)

e Wliopit) To _ 2fo” WEVE
W(fo;t) fopt VVO"'szgt '

The dimensionless ratiR quanti es the energy saving potential of setting an optimal clock
speed and adjusting the size of the machine to compensate for the changermasece. It is
straightforward to show th&= 1 forWp = \szgt, andR< 1 otherwise.

Using theR metric we can explore the design space of possible parallel machines with
different values foMp, Wo, andt. In the limit of very smallWp szgt, which should be
regarded as a very desirable goal, we get

|

fo Wt fo
A large numb%rt of cores per chip thus favors large, “cool” systems, sifiggis inversely
proportional to t. On the other hand, for “hot” machines whéakg V\/zfozt we have

(4.17)

Reool (4- 18)

p___
2f t 2f
Riot & =209, (4.19)
Wo fopt
Hence, energy can also be saved with a very high clock frequehgyig large (“clock race to

idle”).

A value of R= 1 marks the in ection point where a machine is “optimal,” i.e., where it is
not possible to save energy by trading clock speed for machine sizee HlotR(Wp), it is
the combinatiorszOZt which determines the shape of the curve, and especially the position of
the in ection pointR= 1 (see Fig. 4.6). At a given value szgt, the region left oR= 1 is
where a clock slowdown (and a correspondingly larger machine) caneseergy compared to
the baseline clock speed, because the baseline power is small. The reenight ofR= 1 is
where “clock race to idle” applies. Here the chip is so hot that it is benktoieun at very high
clock speed to “get it over with.” The size of the machine can be smaller inalsistdVhether
these clock speeds are technically accessible is not predicted by the ofantelrse.

Figure 4.6 shows three different scenarios by choosing a diffenambar of core¢ and
a different base clock spedd. Note that any change M4 can be mapped to a proportional
change irt, soW, was xed to 1:5W=GHZ?, which is roughly the measured value for the Intel

1The two regions can be associated with the limits mentioned Seymour Caaysit quote “If you were plowing
a eld, which would you rather use: two strong oxen or 1024 chickens?”

64

| T LI I T LI I]
] P
L e - = \.\.]
0.9;// s,\:
0.8 900 MHz / 100 W .
- 3xsize i
0.7+ . 7GHz/690W "\
- .7 ~ 0.4xsize —
B . S 4
o 0'67 .7) > N 4
0.5 S]
. \\ i
7
0.4 _-) ~o
L — t=8,W,=1.5 W/GHZ, f=2.7 GHz ~o
03 — = t=8,W,=1.5 W/GHZ, f =1.2 GHz 7]
0.2~ - = t=16,W,=1.5 W/GHZ, f =2.7 GHz §
0.1~ _
07 | | i
10 100
W, [W]

Figure 4.6: Energy saving potentialvs. baseline powah; for running a system (with a given
number of cores$, a given default clock speefd, and a given dynamic power parameder)

at the optimal clock speethy: with a scalable code and adjusting the system size for constant
aggregate performance. The circle marks the federal supercomgsatemsat LRZ Garching
(SuperMUC). The baseline power is understood to include the chip'e sifithe whole system.

Sandy Bridge EP processors in the federal “SuperMUC” system AtG&&ching. For the case
fo= 27GHz andt = 8, theR= 1 pointis at\p 90W. All other parameters being equal, a
small baseline power alp = 10W leads to a system that can be made 3 times larger, runs at
f = 900 MHz, and dissipates about 20W per chip (including the dynamic po®erjhe other
hand, ifWp = 600 W we get processors runningfat 7 GHz and 1200 W, but the system can be
built at 40% of its original size. The circle in Fig. 4.6 marks the position of 8dpkC, whose
base frequency is:2GHz at eight cores and an overall baseline powétpf 73 W per chip.
Since this point is very near the maximum wh&we 1, it is hardly possible to save energy on
this system by reducing the clock speed in favor of more hardware. Isg¢hise, SuperMUC is
an “ideal machine” for scalable codes, i.e., for programs whose peafuce scales across the
cores of the chip.

These considerations stretch the power model very far, and it is net>hat the num-
bers derived above have any useful accuracy. However, thelnsostdl good for qualitative
design space exploration.

4.4 Chapter summary

This chapter has described a phenomenological power model for multicocegsors. By
taking the measured static (baseline) power and dynamic power per ciopguaparameters,
the model can predict optimal operating points in terms of clock speed, theemwhbores
used, and the code performance. Since the latter is the only quantity tisdirggzely (or rather
inversely) into the model, it is one of the basic premises of the model that ‘tasi® saves
energy. This may be called the “code race to idle” principle.

65

The model distinguishescalablefrom saturatingparallel code. It predicts that saturating
code should be run with a number of cores that is just able to reach satyratitne lowest
possible clock speed. For scalable code, the model predicts an optimilfidgquency for
minimal energy to solution, which depends on the ratio of static vs. dynamicrbssepation.
This frequency may so large that it is not accessible by the hardwarthe lfatter case, the
“clock race to idle” principle applies.

For scalable code the model can be used for design space exploratidimgléo a clear
concept of “hot” vs. “cool” systems when the baseline power is largenaidls

66

Chapter 5

Structured performance engineering

Now that the concepts of performance, scalability, and white-box pe#dioce modeling (Chap-
ter 3), together with its implications on power dissipation (Chapter 4) haveibgeduced, they
can be embedded in a larger setting, which we stallctured performance engineeringtruc-
tured performance engineering can be regarded as a part of sofingineering. It is a process
in which algorithm and code analysis, performance modeling, and optimizatapalied re-
peatedly to arrive at a well-de ned concept of “best possible peréorce.” Since all these
components require considerable experience to be applied, it is arteddagt that structured
performance engineering will never be implemented as a turnkey softwaré\gdescribed in
Chapter 3, it is thédailure of a performance model that leads to new insights and challenges a
previous understanding of the interaction between software and hardispecially this point
is not compatible with automated tooling that can be applied by anyone.

This chapter summarizes the layout of the performance engineeringsproepeating some
of the key concepts described earlier. Then, some typical perforngaiterns are given to-
gether with their hardware metric signatures. Patterns support the mparfoe engineering
process by formalizing some of its frequently recurring aspects.

5.1 The performance engineering process

The ultimate purpose of running simulation tasks on high performance corajmitersolve nu-
merical problems. Thperformanceof an algorithm, or rather an implementation, is signi cant
in several respects: Either a given problem should be solved in theplessible amount of time
or a larger problem should be solved in an “acceptable” time; in both cdmessed resources
must be utilized as ef ciently as possible so that overall throughput andren investment are
maximized for all users of a system. This goal was formulated as the “botkleoecputing”
paradigm in Chapter 3. Structured performance engineering is a pribhadelps to reach this
ideal situation.

5.1.1 Description of the process

Figure 5.1 summarizes a possible approach to structured performarnceeritgy. The individ-
ual components are described in detail in the following.

67

Runtime profiling

Algorithm /
code analysis Machine characteristics

Performance model I Microbenchmarking

Code optimization Traces / HW metrics

Figure 5.1: The performance engineering process.

* Runtime pro ling. All performance work with an application starts with runtime pro ling.
Here the dominant parts of the program, i.e., the hot spots which take mostrofitme,
are identi ed. Such hot spots are usually loops or loop nests. Codesim#hen starts
with the dominant hot spot and works down from there, given that theajdaptimal
performance” has been reached. Runtime pro ling is thus the start andnithef all
performance engineering efforts.

* Algorithm/code analysisAnalyzing a hot spot requires looking at the algorithm, i.e., the
minimum steps to achieve the required task, as well as its speci c implementation in the
code. In the ideal case, the minimum requirements of the algorithm towardarthedre
are already met by the implementation. This may mean, e.g., that the implementation
performs the same number of oating-point operations as the algorithm oe gener-
ally, the same amount of “work.” Note that there is some uncertainty to this gisaly
since the implementation is usually done in a high-level computer language; #yayav
compiler translates this language to machine code may change above reqtsreore
siderably. If the performance model validation (see below) revealssiamtial deviation
from expected results, it may be necessary to check the generatatbbssede.

The algorithm and code analysis is one of the crucial inputs for the peafoce model,
and it is probably the step that is least suited for automation via tools.

» Machine characteristicsSome parameters of the machine under consideration are usu-
ally well documented, such as peak performance, superscalarity, Sidtb, pipeline
depths, cache bandwidths and latencies, etc. They can be used asanigtperfor-
mance model, usually making some assumptions about code execution. Focensta
typical assumption could be that hardware prefetching mechanisms wdecibe such
that latency effects can be ignored (this is one of the crucial conditionlsdéd=CM model

68

to work; see Sect. 3.4 for details).

Microbenchmarking. Machine characteristics that cannot be obtained from documen-
tation but are required input for performance modeling may be xed byiate mi-
crobenchmarking. A prominent example is the maximum main memory bandwidth of a
processor chip, whose theoretical limit is often much higher than the atihéevalue.

The precise reasons for this deviation are usually not divulged by thefawarers.

Performance modelA loop-level performance model may be built with input from algo-
rithm/code analysis, machine characteristics, and microbenchmarkingyas shChap-

ter 3. The model should be able to accurately describe the performance lobgh for

a given data set, thereby identifying the relevant bottlenecks. This agpreorks best

if the minimum requirements of the algorithm with respect to work and resowees

also the minimum requirements of the implementation, and if these requirements can be
satis ed by the maximum capabilities of the machine on which the code is executed.

If the model prediction deviates from performance measurements, theptssos used
for building the model are challenged. Whatever the reasons may be, thiggpartunity
to re ne and advance the model towards better accuracy, which leagsitmeights. See
Part 1l for examples. Of course, in some situations it is very hard to comithpan
accurate predictive model. One prominent example is sparse matrix-vedtiplication,
for which it was shown in Sect. 3.3.2 that, although predictive modeling is affed put
due to the erratic memory access, a model-based approach can still lie lesed about
the exact overhead caused by this hazard.

There is an intimate two-way connection between modeling and microbenchignarkin
Sometimes it is not clear from the start which microbenchmark is most suitabéxfor
ploring a certain aspect of an architecture. The model validation may thdddethe
conclusion that some (measured) parameter must be determined in a tliffesen~or
example, the achievable memory bandwidth can vary signi cantly acrossetiff ratios

of load versus store streams; if the microbenchmark does not re ecttidsas given in
the modeled application code, the bottleneck is not accurately assesge8e@e5.1.2
below for a similar case (non-temporal vs. standard STORE instructions).

Traces and hardware metric®kegardless of whether the model yields accurate predic-
tions or not, software tools can help to acquire more information about thedtitar of
the software code with the hardware. Even if the prediction was accitratay still be
the case that several opposing effects cancel out. Hence, sottvadse and especially
tools for measuring hardware metrics, are extremely helpful in validatingspraling
the model. As an example, the number of cache lines transferred betwaearddache
levels in a certain phase of program execution can be counted. The E@brpance
model predicts this number, so that this aspect of the program executiasilg eeri-
ed. On the other hand, it is the model itself which selects the “interesting” nsetnir
of the usually hundreds of available options on modern processorsSeptes.2.3 for a
systematic overview of hardware metrics and corresponding perfornpaiiesns.

Code optimization.With a working performance model it is often possible to predict
the consequences of code optimizations. For instance, the ECM modglagiseccurate

69

account of how dominant the core execution time of a loop is in comparison toite-
butions from data transfers through the cache hierarchy. If any eétbontributions can
be reduced by some amount by means of a code optimization, it can be estirhatbémw
the gain is worth the effort. After applying the change, the model must balidated.

Once a certain hot spot has been handled in the way described, thetaytdeanew with
the next most important loop.

5.1.2 Case study: An OpenMP-parallel 3D Jacobi smoother

The three-dimensional Jacobi solver for the nite-difference discaéitin of the Laplace equa-
tion with Dirichlet boundary conditions on a regular lattice is a well-understgdrithm,
which is, while not in wide use for scienti c computing, a very useful exanipideaching the
basics of performance modeling and optimization. In fact, many of the letsamed with the
Jacobi smoother can be generalized to more complex scenarios with stemaibpdiite schemes,
such as the lattice-Boltzmann algorithm (LBM) [46, 47]. We revisit it herentthe point of
view imposed by the performance engineering process.

Listing 5.1 shows a simple implementation. The convergence criterion is unimp@otan
the modeling and was omitted. A two-grid implementation was chosen where teactine
stepphi(i,j,k,t1) is updated with values from the previous time b, j,k,t0)
in the rst loop nest, and the updated grid is copied back in the second lesip fihese two
loop nests are the only loops in the code (apart from initialization code).

We use a dual-socket server with Intel Sandy Bridge processosssasiaed in Sect. 2.4.1,
running at a clock speed of 2GHz. In order to expose the in-socket bottlenecks we perform
full-socket runs (eight threads on eight cores) at a constant pragilee of 508 grid points, for
a working set of 2GB.

Runtime pro ling

Pro ling reveals that about 63% of the runtime goes into the rst loop nebemwas the remain-
ing 37% are taken up by the second loop nest. The performance modelugilbéhapplied to
both loop nests. For brevity we consider both of them together.

Algorithm/code analysis

We choose a “lattice site update” (LUP) as the relevant work unit.

In the rst loop, performing one AVX-vectorized update (4LUPS) frahe L1 cache re-
quires six LOADs, ve ADDs, one MULT, and one STORE, without anjex@nt dependencies.
For the data traf ¢ analysis we assume that all LOADs ans STORES go to maimogd€since
the data set does not tin any cache) and must be sustained throutjeccdche hierarchy. In
addition, each incurs a write-allocate transfer of the cache line, so we atra code balance
of B; = 64 bytes UP, or a computational intensity of = 1=64 LUPs=byte.

The second loop has a requirement of one AVX LOAD and one AVX STQREAVX-
vectorized update (4 LUPSs), and a code balandef 24 bytesL UP, orl, = 1=24 LUPs-byte.

70

Listing 5.1: Naive OpenMP-parallel implementation of the 3D Jacobi algoritmagted from

[21]).

© 0 N O g b W N P

W oW oW W W WwWNNNNDNDNDNDNNDNERRR B B BB R R
o 00 A W N B O © 0 N O O & W NP O O 0N O O A WO N B O

double precision :: oos

double precision, dimension(:,:,:,:) : phi
integer :: t0,t1

t0 =0 ;tl =1; oos = 1.d0/6.d0O

allocate(phi(0:imax+1,0:jmax+1,0:kmax+1,0:1))
I initialization code omitted

! loop over sweeps
do s=1,ITER
I sweep over grid
ISOMP parallel
ISOMP do schedule(static)
do k = 1,kmax
do j = 1,jmax

do i = 1,imax
! stencil update
phi(i,j,k,t1) = o00s * (&
phi(i-1,j,k,t0) +phi(i+1,j,k,t0) +phi(i,j-1,k,t0)
phi(i,j+1,k,t0) +phi(i,j,k-1,t0) +phi(i,j,k+1,t0)
enddo
enddo
enddo
I$OMP end do
! copy back

I$SOMP do schedule(static)
do k = 1kmax
do j = 1,jmax
do i = 1,imax
phi(i,j,k,t0) = phi(i,j,k,t1)
enddo
enddo
enddo
ISOMP end do
I$SOMP end parallel
enddo

71

Machine characteristics

As described in Sect. 2.4.1, the Sandy Bridge core can execute one @&A0| one half AVX
STORE, one AVX MULT, and one AVX ADD per cycle. These are the ratgvexecution
units for the Jacobi kernel. The L3 cache size per core5$/B. One socket has a theoretical
memory bandwidth of 52GB/s (with DDR3-1600 memory modules).

Microbenchmarking

It is known that the theoretical memory bandwidth cannot be met even edeiconditions,
so this parameter must be measured with a microbenchmark. The effeclREABT copy
bandwidth ishs = 40GBY/s (including the write-allocate transfers) with eight threads .

Building and failure of a naive roofline model

For the rst loop, the applicable peak performance can be estimated bynags a simple
throughput limitation on the LOAD port, and we have a performance of 4L{dRs AVX
update) in six cycles, leading #@nax1 = 144 GLUP/s on the full socket (eight cores). The
bandwidth limitation is abs=B; = 625MLUP/s. The second loop is limited by the STORE port
in L1 cache, because only one half AVX STORE can be sustained pler. dyence, we have
4LUPs in two cycles, oPnax2 = 43:2GLUP/s on the socket. The bandwidth limitation is at
bs=B, = 1670 MLUP/s.

It follows from this analysis that both loops are strongly memory-bound tlaaidthe rst
loop should take a fraction of

B

73% A
B+ B, 3% (5.1

of the overall runtime. This prediction does not coincide with the pro lingutesf 63%. Al-
though this deviation seems minor, one should not stop here but checHittigy ed the roofline
model.

Both loops together have a code balanceBof, = (64+ 24)bytesLUP, since both are
necessary to perform a complete lattice update. Instead of the expeetadl vemory-bound
performance expectation &k=B.+, = 455MLUP/s, however, the measurement is at about
612 MLUP/s, raising more suspicions about the correctness of the model.

Using hardware metrics for validation

In order to explore the deviation from the model one can employ tools thatmeasure the
actualmemory traf ¢ caused by a code, even on a loop-by-loop basis, bytomuhardware
events on the chip (see Sect. 5.2.2 below for an example). Using suchantdiscovers that
the second loop indeed causes a memory traf ¢ of 24byte®, but the rst loop needs only
40bytesLUP instead of 64. These numbers are perfectly in line with the measurécheun
ratio of 63%. Hence, the performance model for the rst loop needs twhected.

A direct measurement of the memory bandwidth achieved by the runningeesis that it
is close to the STREAM maximum, so the deviation from the model is not causedufycient
utilization of resources.

72

Update of the roofline model for the rst loop

Investigating the rstloop in Listing 5.1 more closely, it becomes clear thatfidhe loads to
the source are memory accesses. For instgitié;1,j,k,t0) has usually been loaded
two i -iterations before aphi(i+1,j,k,t0) , SO we can assume that it is still in cache.
This would lead to a code balance of 56 byedP. If there is enough space in the cache to
accommodate at least two successive rows of the lattice [fid(.,j:j+1,k,t0)), the
loads tophi(i+1,j,k,t0) and phi(i,j-1,k,t0) also come from cache, saving an-
other 16 bytes for a balance of 40 bytesIP. Finally, if the cache can even hold two successive
layers of the lattice (i.ephi(:,:, k:k+1,t0)), only phi(i,j,k+1,t0) must be fetched
from memory, and the balance goes down to 24 byte}$. Hence, these “layer conditions” de-
termine the actual balance. In terms of the lattice and cache sizes, the twadagktion for
minimum balance (24 bytekUP) att cores is

(jmax* 2)(imax+ 2) 8bytes2 t Cef ; (5.2)

whereCgs is an effective cache size. As a rule of thumb one can set it to half of thalbv
cache size, but this depends on the code and how much other data is dttbeongh the cache
hierarchy. The two-row condition for 40 bytddJP is

(imaxt 2) 8bytes2 t Cegf: (5.3)

According to the layer conditions it is the extension of the lattice inithied j directions
(but not ink direction) which determines the balance. At the given problem size of §00
points and a cache size of 20MB, the condition (5.2) is not ful lled, since layers require
approximately 32MB of cache. Hence, we fall back to the row condition) @n8 expect a
balance of 40 byted UP, which is exactly the value measured by hardware counters.

We have now established an agreement between the model and the measusmce the
memory bandwidth is exhausted, both loops run at the maximum possible perf@iaagiven
by their code balance. Since both loop nests are required to perform@eate lattice update,
one can also determine an overall code balandd@f 24) bytessLUP = 64 bytesLUP for an
expected performance of 625 MLUP/s. The measurement of 612 MLURVg@od agreement.

Optimization 1: Common sense

The fact that the performance model describes the actual performesticdoes not mean that
there is no optimization potential. About 37% of the runtime goes into the secopgvdrich
does nothing but copy the updated grid poinki(,:,:,t1) back to the source array
(phi(:,:,:,t0). There is no real “work” involved, so one may think about this operad®n
overhead. A simple way to avoid it is to substitute the second loop by a simpleawcirthat
exchanges the values tif andtl (see line 15 in Listing 5.2). This code has now an overall
code balance of 40bytesUP and we can expect a speedup of 60% (sincel64 1.6) for a
performance of 1000 MLUP/s. The measurement of 980 MLUP/s is in ggaabaent.

Optimization 2: Spatial blocking

At a grid size of 508, the layer condition (5.2) cannot be met if the loop nest is executed as give
in the code. However, it is completely unimportant in which order the updaéepeaaformed

73

Listing 5.2: Improved implementation of the 3D Jacobi algorithm (adapted fi2iy) with
the copy loop substituted by a simple swap of time variables (line 15). The n¢le@ADs
and STOREs for failing the layer condition (5.2) and meeting the row condific®) are also
highlighted.

1 ! loop over sweeps

2 do s=1,ITER

3 I sweep over grid

4 1$OMP parallel do schedule(static)

5 do k = 1,kmax

6 do j = 1,jmax

7 do i = 1,imax

8 phi(i,j,k,t1) =o00s * (&

9 phi(i-1,j,k,t0)+phi(i+1,j,k,t0)+phi(i,j-1,k,10)+ &
10 phi(i,j+1,k,t0) +phi(i,j,k-1,t0) +phi(i,j,k+1,t0))
11 enddo

12 enddo

13 enddo

14 I$OMP end parallel do

15 i=t0 ; tO=tl; tl=i | swap arrays

16 enddo

within a time step. In order to establish the layer condition it is thus suf cient thatgparts
of the grid at a time for which (5.2) is ful lled. This can be achieveddpatial blockingof one
or both of the inner loop levels. Since the layer condition does not depekg.g, blocking
in this dimension will not help. It turns out that blocking the inner loop leadsetdopmance
breakdowns if the loop length is signi cantly shorter than a page (512 eleshdoe to TLB
and prefetching issues, so we block the middle loop only (see Listing 5.33.tNat inner loop
blocking may still be necessary if the inner loop length is very large.

The choice of the block sizZigj may be guided by solving the layer condition figiax:. At
an (estimated) effective cache size of 10MB welget 156. To be on the safe side we choose
bj = 70 (due to the large number of streams hitting the L3 cache, the effectivis siztually
just half of the above estimate). This brings the model down to a 24Hyt#z balance and to
an expected performance of 1670 MLUP/s, of which about 1550 MLd&tde measured.

Optimization 3: Non-temporal stores

An important conclusion from the performance model is that exactly one diiitidle memory
bandwidth (8 out of 24 bytet UP) is taken up by the write-allocate transfers. These do not
even appear as true LOAD instructions in the code but are a simple camserof the fact that
the core can communicate directly only with the L1 cathe.

Intel and AMD x86 processors feature special instructions to circutrthennrite-allocate
when writing to main memory, theon-temporal storesA non-temporal (“NT") store instruc-
tion is a normal store, but it writes directly to memory instead of the L1 cAdfeere are some

1In certain situations it is possible for Intel Nehalem and later processaustomatically circumvent the write-
allocate between the L2 and the L1 cache [48]. In case of a miss in L2,ah&3vrite-allocate will occur.
2There is in fact a small number of write-combine buffers cachingemlisnt non-temporal stores, but for prac-

74

Listing 5.3: Further improvement of the 3D Jacobi algorithm (adapted f&il) with spatial
blocking in thej direction. The additional outer loop over the blocks, the blockéxbp, and
the relevant LOADs and STORESs for meeting the layer condition (5.2) ardidiiged.

! loop over sweeps
do s=1,ITER
! loop nest over blocks
do js=1,jmax,bj
! sweep one block
ISOMP parallel do schedule(static)
do k = 1,kmax
do j = js,min(jmax,js+bj-1)
do i = 1,imax
phi(i,j,k,t1) =o00s * (&
phi(i-1,j,k,t0)+phi(i+1,j,k,t0)+phi(i,j-1,k,10)+ &
phi(i,j+1,k,t0)+phi(i,j,k-1,t0)+ phi(i,j,k+1,t0))
enddo
enddo
enddo
16 ISOMP end parallel do
17 enddo
18 i=t0 ; tO=t1; tl=i ! swap arrays
19 enddo

© 0 N o g b W N P

P~ < i
o~ W N P O

restrictions (for instance, the address to which the data is written must bedligra SIMD
width address boundary), but in many cases the compiler is able to empleyitisésictions
when allowed or directed to do so. In case of the Jacobi smoothephifig,k,t1) ar-

ray in the inner loop is a candidate for non-temporal stores. There israesoade directive
which acts as a hint for the Intel compiler to employ NT stores if it is safe, i.e.eifttygnment
constraint can be met.

Naively one would expect a speedup with respect to standard sto&8%oin this case,
since the code balance would be 16 bytddP due to the missing write-allocate. It turns out,
however, that the memory interface is less ef cient with NT stores, so thet inpm the mi-
crobenchmarking must be modi ed: With NT stores, the STREAM copy baditivgoes down
from 40GB/s to 36 GB/s on a Sandy Bridge socket, leading to a performaneckction of
2250MLUP/s for the Jacobi smoother. The measurement yields 1930 Kél_WRich is about
86% of the prediction, and 25% faster than the version with standard stdesge, this opti-
mization does not quite live up to the expectations.

A closer look at the STREAM benchmarks and the scaling of the smooth&rpance
reveals at least part of the problem: Figure 5.2a shows the bandwidihgsbahavior of the
STREAM copy benchmark within a Sandy Bridge chip with all four combinatoinstandard
stores, NT stores,:2GHz clock speed, and “turbo mode” (see Sect. 2.1.7). As expected fro
the ECM model, the clock speed has signi cant in uence on the bandwidtheimtéim-saturated
case (and also, albeit smaller, in the saturated case, which was alreadyish-ig. 4.4). This
particular Sandy Bridge processor can run at up:®GHz when only one or two cores are

tical purposes it can be assumed that the cache is ignored.

75

I I I I I
40+ — | _NTstoreslimit _ _ _ _ _ _ _ _ _|
35— — 2000+ —
E - Std. stores limit R
% 301 — o _owd.storesimt_ 57 ___]
foa) |
1 — _
O, o5l | =, 1500
e @
: (a) e | ’
= 20 a . @
oS €
= 5 1000 (b) .
M 15 — &
o - i
10 v—v Std. stores 2.7 GHz _| w—v Std. stores 2.7 GHz
B Std. stores Turbo 500 B Std. stores Turbo | —|
V—V NT stores 2.7 GHZ V—V NT stores 2.7 GHz
5+ O NT stores Turbo - L CHO NT stores Turbo 4
ol \ \ \ \ \ \ \ ol \ \ \ \ \ \ \
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
cores # cores

Figure 5.2: (a) Bandwidth scaling of the STREAM copy benchmark aditwsgores of one
Sandy Bridge socket, for a xed clock speed of 5Hz and turbo mode (triangles vs. squares),
with and without non-temporal stores (open vs. lled symbols). The baditwhumber is the
actual bandwidth over the memory bus, including write-allocate transfdrsPdrformance
scaling of the Jacobi smoother, same parameters.

used, and still at up to:BGHz with a full socke With NT stores the impact is smaller but
still visible. The main conclusion from Fig. 5.2a is that the STREAM benchmarfopnance
saturates across the cores, regardless of whether turbo mode isrusgd dhe degradation
in saturated bandwidth with NT stores is clearly visible, but the effectivellvatih available
to the application code is still larger with NT stores. This is only true in the satlicse,
however; NT stores show no bene t in the non-saturated regime.

The Jacobi code, on the other hand, shows no clear saturation with KB stb27 GHz
(open triangles in Fig. 5.2b), while saturation is easily reached with stastizes (lled trian-
gles). Although the ECM model is of not much help for NT stores, the génerelusion that
fewer cores are needed for saturation at higher clock speeds is ktill &&cordingly, we see
a 5% improvement in full-socket performance with NT stores when using tomtde, for an
overall 90% of the prediction. There is still some headroom left, so a yaehigjock frequency
or a larger number of cores would result in somewhat better performance

A summary of the improvements in comparison with the different performancelsiod a
single socket can be seen in Fig. 5.3a.

Optimization 4: Proper ccNUMA placement

A second CPU socket doubles the available memory bandwidth, so wetexplecbling of
the performance when running with 16 threads. However, the measuresmans a slow-
down to about 1610MLUP/s. This problem can again be investigated uainigvare perfor-
mance metrics: All the memory traf ¢ in the system goes to the ccNUMA domain atrshe
socket, and half of those transfers are initiated from the second sdé&ate, there seems to

3This data can be obtained wikwid-powermeter from the LIKWID tool suite.

76

i | 40007~ pected ~ - 7
Il model
WZOOO_ B measurement | - (b)
o - i o 3000
))
| |
= 1500 - =
s | (a) [
é é 2000
£ 1000+ - 5
) i])
a a
1000
500 —
0
IS IS
Q0 985 o9
38 865§
NS IS§ £F
£ ¢¢ IO
N gQ\fzr Q

Figure 5.3: Summary of the modeling and optimization results for the perfornesnyieeering
process applied to the 3D Jacobi smoother on (a) one Sandy Bridget smck(b) on the whole
node (two sockets). Note the change of scale between the two graphs.

be a strong ccNUMA locality problem. Before trying to x this in the code, oa@ double-
check by running the code with interleaved page placement across thiévbsNodes (using
numactl -i 0,1 as a wrapper), which boosts the performance to 3070 MLUP/s. Intedeav
page placement ensures at least some parallel data access, althibo§hlhaemory requests
go to the remote domain. If a loop runs faster with interleaved pages, this iararuiécation

of a ccNUMA placement problem.

Fixing the placement problem completely is simple here and involves applyingsiidén
Rule of ccNUMA" [21], a.k.a. the “rst-touch principle:” After allocation tharrays must be
initialized in parallel, and in the exact same way as they are accessed latersiolbeloop.
Listing 5.4 shows the correct allocation and initialization code. Note that the nimtziden this
nest is blocked with the sanjeblock sizebj as the solver loop. This is to ensure that there is
absolutely no difference in the data access pattern. The initialization of thelhoy layers (for
which at least one of the Cartesian indices is zero) must be done afteartdke) rst touch.

After this change the performance goes up to 4030 MLUP/s on two sodletsperfect
scaling is achieved. A summary of the ccNUMA-related improvements carelnarsé&ig. 5.3b.

Jacobi smoother summary

The steps taken above for modeling and optimization of the Jacobi smooghley ao means
new. Stencil update schemes have been a subject of intense studyeoiastttiecade [49, 50,
51, 52, 53, 54, 9, 55, 10], and there are many more optimizations thatecapgiied to the
serial and parallel code such as temporal blocking or communication hiditige(distributed-

77

Listing 5.4: Initialization code for proper ccNUMA page placement. The dodénitializing
the boundaries on the faces of the domain must come after the parallelucst,tand is omitted.

double precision, dimension(;,:,:,:) :: phi

allocate(phi(0:imax+1,0:jmax+1,0:kmax+1,0:1)) ! loop n est over blocks
do js=1,jmax,bj
I sweep one block
I$SOMP parallel do schedule(static)
do k = 1,kmax
do j = js,min(jmax,js+bj-1)
do i = 1,imax
phi(:.j.k,:) = ..
enddo
enddo
enddo
ISOMP end parallel do
enddo
! boundary initialization omitted

© 0 N o g A W N P

L
o o b W N B O

memory case) [21]. The example was chosen to show the usefulness déagoaed approach
to optimizations. First, runtime pro ling was used to get an impression of the impoetaf dif-
ferent code parts (rst vs. second loop). A roofline model was distadd with input from code
analysis, machine characteristics (pipeline throughput), and microbendhméSTREAM).
Multiple adaptions of the model were necessary, rst to get an agreewidmthe measure-
ments at all (re ned roofline model of the rst loop), and later to predia thutcome of code
optimizations (common sense, spatial blocking, NT stores). Hardware megiesused to
validate or refute models and hypotheses (memory bandwidth saturatiobMANocality
problems), and the microbenchmarks were adapted to the requirementsapptiuation code
(standard vs. NT stores). Hence, all the components of the perfoensangineering process
sketched in Fig. 5.1 were covered in this simple case study, some of thermeitgrie times.

5.2 Identi cation of performance patterns on the node level [5]

While the performance engineering process laid out in the previous sectaarseful guideline
for practical work with code analysis and optimizations, some details are stilhgjsspecially
about how the performance model is built and re ned, and how optimizatidasact with the
model. It turns out that it is very helpful to think about modeling and optimizatiderms of
performance patternsPatterns aid in building, re ning, and validating performance models,
and in predicting the outcome of possible optimizations. This section develop®tioa of
node-level performance patterns.

5.2.1 Hardware performance metrics

Hardware performance monitoring (HPM) is available in every modern micogssor design.
It allows for the measurement of many (sometimes hundreds) of metrics ¢éhetlated to the
way code is executed on the hardware. Although many of those metricsianpartant for

78

the developer writing numerical simulation code, some of them can be veiyl usassessing
resource utilization and general performance properties, and cahdhused to validate perfor-
mance models. A large variety of tools exist, from basic to advanced, that edley access to
HPM data, and some of them even give optimization advice derived from thsuraments.

Fortunately, although there is considerable variation in the kinds of haedewents that
are available on different processors (even from the same man@gctarather small subset
of them is suf cient to identify the prevalent performance problems in karid parallel code.
These are available on all modern processor designs. We call a speunilgination of hardware
event counts and possible other sources of information a “signaturgétfier with information
about runtime performance behavior and code properties, signatdiestenthe presence of so-
called “performance patterns,” which help to assess the quality of catiararst importantly,
identify relevant bottlenecks to enable a structured approach to perfoenmgtimizations.

5.2.2 likwid-perfctr

Given suf cient experience, simple and lightweight tools are often adexjio accomplish the
goals described above. Hence the restriction to x86 architectures thedeinux OS and the
use of thdikwid-perfctr tool from the LIKWID tool suite [25, 26]. LIKWIT} is a col-
lection of command line programs that facilitate performance-oriented prodesvelopment
and production in x86 multicore environments under Linux. The concepiait sets with con-
nected derived metrics, which is implementedikwid-perfctr by means of performance
groups, ts well to the signature approach presented here.

5.2.3 Performance patterns and event signatures

This section describes performance patterns that have been foundrtosbeiseful when an-
alyzing scienti ¢ application codes on multicore-based nodes. Other apiplicdomains may
have different issues, but the basic principle could still be applied. ategorization is to some
extent arbitrary, and some patterns are frequently found togethdr. dE#itose patterns can be
mapped to one or more “signatures,” which consist of a combination obymeaince behavior
(scalability, sensitivity to problem size, etc.) and a particular pattern in ragedved hard-
ware metrics. While the former is often independent of the underlying acthits the latter
is very hardware-speci c. Ideally a tool should provide these evets and derived metrics in
a similar way on all supported processor architectutisvid-perfctr [25, 26] tries to
support this by “performance groups.” Table 5.1 maps each perfaengattern to its signa-
tures in the performance behavior and to the relevant anomalies in hardvedrrics (together
with thelikwid-perfctr performance group, if available). In some cases the signature also
involves information from other sources such as microbenchmarks or abaécanalysis, since
some HPM signatures may be easily misinterpreted. Note that general optimizimtisrare
problematic, even if they are based on patterns; optimization is only possiblgtha thorough
code review together with a suitable performance model.

In the following, each pattern is described in detail.

4Like | Knew What I'm Doing”

79

Pattern

Signature

Performance behavior

HPM (and likwid-perfctr group(s))

Bandwidth saturation

saturating speedup across cores sharing a datbandwidth meets BW of suitable streaming microbenchmark

path

(MEML3)

low CPI, 1:1 ratio of cy to speci ¢ instruction counts

Limited Pipeline saturation throughput at design limit
instruction ’ o ° cu_.o_ur.n.lf U>._.>.Qu: — . '
throughput Pipelining hazards in-core throughput far from design limit, (large) integral ratio of cy to speci ¢ instruction counts, high

Control ow issues

performance insensitive to data size

CPI (FLOPS *, DATA CPI)

high branch rate, high branch miss ratBRANCH

Inef cient data Strided access

access]
Erratic access

low cache hit ratio, frequent cache line evicts/replacements

simple BW models far too optimistic

see above, plus low BW utilization (latencyJACHEDATA
MEN!

Microarchitectural anomalies

large discrepancy from simple performance
models

very hardware-speci c, e.g., memory aliasing stalls, con ict
misses, unaligned LD/ST, requeue events. Code review re-
quired, with architectural features in mind.

False cache line sharing

very low speedup, or slowdown / discrepancy
from model only in parallel case

frequent (remote) evictsOQACHE

80

Bad ccNUMA page placement

bad/no scaling across locality domains, bette
performance w/ interleaved placement

r unbalanced bandwidth on memory interfaces / high remote
traf c (MENI

Load imbalance

saturating/sub-linear speedup

different amount of “work” across coreEI(OPS *); instruc-
tion count is not reliable!

Synchronization/communication overhead

speedup going down as more cores are adde

/ no speedup with small problem sizes / cores

busy but low performance

,Q_mam non-“work” instruction count (growing with number of

cores used) / Low CPHLOPS =, CPI)

. Instruction overhead
Code composition

issues Expensive instructions

Ineffective instructions

low application performance, good

low CPI near theoretical limit / large non-FP instruction count
(constant vs. number of core$)L(OPS *, DATA CPI)

scaling across cores, performance
insensitive to problem size

large CPI

scalar instructions dominating in data-parallel loops
(FLOPS *, CPI)

Table 5.1: Performance patterns and corresponding signaturesrédiepeode on multicore systems. Color code: maximum resource usage
(green), hazards (red), work-related patterns (blue).

Bandwidth saturation

Whenever the bandwidth of a shared data path is limited, there is a natural twsccalability.
Most frequently this happens on the main memory interface or the (usualgdyhauter-level
cache (OLC). Even if an algorithm is perfectly parallelizable in theory (irsdrese of Amdahl's
Law (3.5)), bandwidth saturation can set a limit to its scalability, as was sho®igi8.9. The
roofline model can be used to predict whether the bandwidth bottlenedksppthe saturated
case (see Sect. 3.2), while the ECM model describes multicore scalingdansiig kernels
(see Sect. 3.4).

Using hardware performance monitoring, bandwidth saturation can beteiktey mea-
suring the actual bandwidth utilization of a data path. If the measured batidisidlose to
the maximum value, which can be obtained by a suitable streaming microbencbucérias
STREAM [24], this is an indication that bandwidth limitations play some role.

Limited instruction throughput

There is always a limit for the overall number of instructions that can beutad per cycle on
a core, independent of their types. Even if a code does not hit this limit, it cill suffer from
a bottleneck in a speci ¢ execution port, such as LOAD or MULT (see Fit). Depending on
whether the pipeline(s) is/are lled or not, one can distinguish three c&3psline saturation,
pipelining hazards, and control ow issues.

Pipeline saturation If an execution unit is at its throughput limit, this is indicated by a
1.1 ratio of core cycles and executed instructions on this unit. As a coeseguthe CPI value
is typically good (low).

Pipelining hazards True data dependencies, i.e., dependencies that cannot be resolved b
register renaming, cause pipeline bubbles, which further diminish the thypaitigin this case
there is often an exact integral ratio (larger than one) between coles@md executed instruc-
tions in the affected pipeline. Due to the additional latencies incurred by ttilg pgelined
instructions, performance is rather insensitive to the location of the daeaCPhvalue is typi-
cally high, and a simple in-core performance model based on pipeline tipatyill be far too
optimistic.

Control ow issues This pattern is closely related to pipelining hazards, but the affected
pipeline is usually not a single one of the core pipelines but the overall/fletcbde/execute
pipeline. The HPM signature is also similar, but there is usually no integer retireelen clock
cycles and instructions. Control ow issues arise, e.g., when the bianectiction hardware can
not work or when branches depend on the result from previous atgtng and the resulting
bubbles cannot be lled by other useful work.

In all three cases, HPM or even simple timing measurements can reveal thaduktlén
general, if code execution performance is limited by instruction throughpatsingle pipeline,
there is a clear bottleneck on the core level. This simpli es the execution pa@k modeling,
and usually leads to clear indications of what should be done to improverperice. If, e.g.,
the limiting resource in a loop on an Intel Sandy Bridge core is the LOAD poodutihput

81

on double-precision oating-point data, and all loads in the loop are afasdype, the core
executes two LOADs per cycle. Execution may be sped up by using AVX ilwgtductions

instead. This will double the data throughput since now one full-width AVXADQ32 bytes)

can be performed per cycle. See also the “code composition” pattern.f@tmirol ow issues

can sometimes be resolved by reformulating the algorithm so that branehelinainated from
inner loops [21].

Inef cient data access

Cache-based architectures require contiguous data accesses tdf giakewese of bandwidth
due to the cache line concept. One needs to distinguish strided accessfadimaccess, since
the latter often prevents the ef cient use of hardware or softwarestiging. In both cases will
simple bandwidth-based performance models assuming unit stride be too optimistic

Strided access Strided data access is often caused by inappropriate data structures or
badly ordered loop nests, and is one of the most frequent causew/fdata transfer ef ciency
between cache levels and to/from memory. The cache miss ratio is lower thamtfstride, but
can be easily predicted by taking the low cache line utilization into account. é&width-based
model can usually be made to work if the prefetching mechanisms can accoterttealstrided
accesses.

Erratic access If the access pattern is not just strided but erratic (e.g., caused by an in-
dexed array access as in the sparse matrix-vector multiply kernel degsanilsect. 3.3.2), au-
tomatic or compiler-based prefetch mechanisms may fail, incurring not onlyofosective
bandwidth but also exposing memory latency. Bandwidth-based modelsuatedchreconcile
with truly erratic data access, and it is hard or impossible to predict cacheatizs

Microarchitectural anomalies

This is a very architecture-speci ¢ pattern, which may have differentifestations depending
on the hardware. The measured performance will deviate strongly frgnmadel based on
“simple” architectural features, such as the ECM model. Typical exampleanomalies are
false store forward aliasing, unaligned data accesses or instructiepaedortage of load/store
buffers, cache thrashing due to insuf cient cache associativityk lsan icts in cache or mem-
ory, violation of pairing rules, limited reorder buffer size, a limited number of concurrent
prefetch streams, etc. Correspondingly, the HPM signature is also astware-speci c.

False cache line sharing

Different threads accessing a cache line (and at least one of themyingdij lead to frequent
evictions and reloads, impacting performance a lot. False sharing is usaajyt@ identify
using HPM, since frequent remote cache line evicts will occur and spewdube small or

5This effect is speci ¢ to the Intel Xeon Phi coprocessor [56]. On thisiider two-way superscalar architecture,
pairs of instructions may be scheduled in the same cycle on the saméugbtieere are limitations on which types
can be paired. If the order of instructions in the machine code is not iordaaece with the pairing rules, the
maximum throughput goes down to one instruction per cycle.

82

even smaller than one. Once spotted, false sharing is usually simple to regneeyitknown
code optimizations such as padding or privatization [21].

Bad page placement on ccNUMA

All modern multi-socket servers are of ccNUMA type. Memory-boundesochust implement
proper rst-touch page placement in order to prot from the bandwidtlvamtages that cc-
NUMA provides. The two main problems with bad page placement are nordatalaccesses
and bandwidth contention, with load imbalance as a possible secondaly effe

Bad ccNUMA page placement is only a problem for memory-bound codkesumally leads
to small or no speedup across ccNUMA domains. HPM measurements wit eefaoge vol-
ume of non-local traf ¢ across the inter-domain NUMA network, and ptdlp an unbalanced
utilization of the memory interfaces.

Load imbalance

Load balancing issues are an impediment for parallel scalability, and Ipemfigmance, and
they should be resolved rst. There are many possible sources of loadantz, but all include
some sort of synchronization or coordination between workers. Agsame, a global barrier,
i.e., a synchronization point that requires all workers to arrive bedosework can proceed,
often makes load imbalance manifest. But even without global synchromizatitferences

in other overhead such as point-to-point communication can lead to imbalareedtion of

useful work. This well-known effect has been demonstrated on multgy@tems in [2] for the
important sparse matrix-vector multiply operation.

Load imbalance does not lead to a drop in performance when more watesdded,
unless there are other factors such as communication overhead. Usilvgatea performance
monitoring, this pattern is readily identi ed by a different amount of “worl&rformed by
different workers. This depends crucially on whether “work” is a vaelned concept in the
code; e.g., oating-point operations are usually a good metric in this corttekthe number
of executed instructions is not, because typical synchronization and ceication overhead
tends to lead to tight spin-waiting loops, which execute lots of instructionsduabticount as
“work.”

Note that a non-negligible sequential, i.e., non-parallelizable part in anithigorand the
corresponding limitation of speedup (Amdahl's Law) is only a special caksd imbalance,
even if “speedup” is obtained not by using more identical workers byiuiting part of the
problem onto an accelerator.

Synchronization overhead

Barriers at the end of parallel loops or locks protecting shared ressunay have a large per-
formance impact if the workload between such synchronization points isitath. SThis pattern
may also incur secondary effects like load imbalance or code compositi@sissu
Synchronization overhead typically grows with the number of participatingeve, so it is
often a fundamental obstacle for strong but also weak scalability [21dedally with strong
scaling, adding workers inevitably leads to slower execution at some paitihelworst case,

83

any parallelization, even with only two workers, will slow down the prograrRMimeasure-
ments typically show a large number of instructions that are not directly iassdavith appli-
cation code, and a low CPI value.

There is a broad consent in the supercomputing community that globalrsyicdtion (of
which global, collective communication is a variant) must be avoided by all mtalg®rithms
are ever going to be exascale-ready [57].

Communication overhead

Communication overhead is usually seen as separate from synchroniaatidiead, although
they are certainly related. Whenever different parts of a system hasenmounicate in or-
der to work cooperatively, some overhead is to be expected. Thetsenpay even be close
together (such as accelerator hardware and the associated host)sySi@ple point-to-point
communication can often be described by a latency-bandwidth model, even-imivial cases
like halo exchange. An abundance of communication overhead generaiifesta itself in a
non-linear speedup, especially with strong scaling. The details are xanlem-speci ¢, how-
ever (see [21] for an overview). The metric sighature of communicatienh@ad is similar to
synchronization overhead: many non-essential instructions and low CPI

Code composition issues

Often, the machine code comprises an instruction mix that is inadequate to selpeoth
lem ef ciently. A possible symptom of a bad instruction mix is an over-optimistic rgm-

based performance model (which only considers the minimum required ambwork and
resources). The difference between prediction and measurementaallyyarger when the
data set is close to the core, i.e., if it ts in a cache. Consequently, ineftaede execution
often manifests itself in an insensitivity of performance to the problem sizelilgespipeline

hazards and control ow problems. Again we can distinguish sevesgsa

Instruction overhead General-purpose instruction overhead is caused by inef cient com-
piler code, which often occurs in over-abstracted C++ frameworkgjtbrprogramming lan-
guages that are inappropriate for generating ef cient low-level coldethis case a code or
runtime HPM analysis reveals that the execution bottleneck lies in an abuendaimachine in-
structions that do not do actual “work,” such as index arithmetic, intgister moves, branches,
etc. The CPI will typically be low, indicating “good” utilization of the pipelines. tidhat syn-
chronization constructs (barriers, locks) and communication overhveaiting for messages)
can have the same effect because the CPU often ends up in tight spirgiaoiis.

Expensive instructions The use of expensive operations like divide and square root can
have the opposite effect: The CPI value will be large, since most of the tinpeig 1 long-
latency, badly pipelined execution units. This can be observed in the siaggedata in Fig. 3.9,
where the substitution of the multiply by a divide operation causes a drop forpemce of
almost a factor of two. Note that modern x86 processors have spedialctsns for opti-
mized, low-latency, pipelined divides with reduced precision (11 bits insté&8 in single
precision) [23]. These can be used if performance is crucial angracy is secondary. See
Chapter 6 for an application example.

84

Ineffective instructions Another source of inef cient low-level code is a low degree of
SIMD vectorization with algorithms that are actually (or can be formulated ais}-plarallel.
The measured CPI value in these cases will be generally low, i.e., many tistsuper cycle
are executed. If the HPM architecture supports it, scalar and SIMCatipes can be counted
independently, giving a clear indication of the code composition.

5.2.4 Pattern categorization

The patterns described above help in identifying the relevant bottlenéekgiven loop, and
may point to code that is “particularly slow,” and could be improved. Sloweduak important
consequences for scalability. It follows from the ECM model that more<wiill be needed to
saturate a bandwidth bottleneck if the code runs slower on a single cerEi(se3.9b). If there
is no chip-level bottleneck (or if it cannot be exhausted), slowing dowmcdde will also impact
the large-scale (multi-node) performance; as a side effect, communicatiosyachronization
overhead will be less important and speedup (not performance) will waepr&ee also the
discussion on “slow computing” in [21].
A loose categorization of all identi ed patterns is shown by the color codabiels.1:

» Maximum resource usageRipeline or bandwidth saturation may be seen as “positive”

patterns, since it is not possible to exhaust the respective resoyréerter. This does
not mean, however, that there are no other resources that couleéthe kw instance, if
the ADD pipeline is at its limit but the loop does not execute MULT instructionsinty
loops could lead to a good utilization of both pipelines at the same time.

» Hazards.A “hazard” is a condition that leads to sub-optimal utilization of the hardware
due to the particular way code is executed or data is accessed. Thénepact of such
a pattern is often not directly related to an algorithm but to a speci ¢ implementation
speci ¢ hardware.

» Work inef ciency.The “work” to be done as de ned by the algorithm may be executed in
a way that prevents ef cient use of the hardware. These patterresgigeneral issues

and tend to be rather hardware-independent.

It is evident that the “negative patterns” in the last two categories arel@mtly separated.

5.3 Patterns and models: Performance engineering re ned

Although the patterns described above are useful in the performagaeeenng work ow, it
is still not entirely clear how the interaction of patterns, performance modelsyptimizations
works in practice. In Fig. 5.1 the details of pattern usage are hidden in éréotfhance model”
box.

The examples have so far shown that, once a performance model mabuwikeit can be
used for two purposes:

1. If the model “works,” i.e., if it can be validated using performance mesasants (and, if
applicable, HPM data), it describes the relevant bottleneck of the loopatly: Then it
can guide optimizations by predicting the possible bene t of a code charug predic-
tion can have one of two consequences:

85

(&) The optimized code is limited by the same bottleneck as the original code (i.e., the
same pattern applies).

One example for this was the application of spatial blocking to the 3D Jacobi
smoother in Sect. 5.1.2: Before the optimizatiomemory bandwidth saturation
was identi ed as the relevant performance pattern. Blocking jtheop led to a
reduction of the code balance from 40 bytiedP to 24 bytesl UP, but the pattern
(and thus the bottleneck) stayed the same.

(b) The optimized code hits another bottleneck, which implies a shift to ancalieirp.

This case was encountered with the divide-accumulate kernel in Sect. \B/Bif@

the original code was core-bound for all but very small problem sinethe West-
mere chip due to the long-latency divides in the loop keragpénsive instructions
pattern), the optimized version was strongly memory-bound at large praites
(memory bandwidth saturatigmattern). With a working set tting in the L1 cache

we could potentially expect arithmetic peak for the optimized cqilge(ine satu-
ration pattern), but we have estimated that the OpenMP overhead will dominate the
runtime gynchronization overheggattern).

2. Ifthere is a discrepancy between the performance measuremeneanddkel, the model
has “failed.” There are two possible reasons for such a mismatch:

(&) The wrong pattern was used for building the model, i.e., the relevantrmtievas
not identi ed correctly. Fixing this issue either implies a change of patterd, an
probably building a new model, or a code optimization that keeps the pattern and
makes the performance “t" to it.

The latter case was observed with the bad (or rather non-existent) sealings
sockets for the 3D Jacobi smoother, wharemory bandwidth saturatiowas ex-
pected bubad ccNUMA page placemewas encountered. Fixing this problem by
proper parallel rsttouch initialization shifted the model backitemory bandwidth
saturation

The failed roofline modeling of the single-threaded vector triad in main memory
(Sect. 3.4.1) led to the development of the ECM model, which can encompass se
eral patterns, depending on the code characteristics. More compleykssafor

this case will be covered in Chapters 6 and 7.

(b) The pattern was correct, but the input to the model was wrong. Simoeds!
has several inputs (code analysis, microbenchmarks, and machirzetehnistics),
there are several options, such as adjusting the assumed resowicemeqts of
the code, choosing a different microbenchmark, or correcting a plpbajusti ed
assumption about machine characteristics.
In the 3D Jacobi smoother example in Sect. 5.1.2, the rst attempt at roofline mod
eling failed because the amount of data traf c over the memory interfacénvast
lower than estimated, although the pattdrar{dwidth saturatiopand even the data
path fnemory was correct. In this case the code analysis was the problem.

In Sect. 3.3.2 we also studied the sparse matrix-vector multiplication, in which corfore
suggests thatrratic accesshould be the relevant pattern. The analysis showed that this is not

86

necessarily the case, and tma¢mory bandwidth saturatiomay also apply. The “severity” of
the erratic access pattern could be determined by “reverse modeling,Yyiragdsuring certain
performance properties of the kernel and then xing the free paranagteshich describes the
overall volume of the data traf ¢ caused by the access to the right-hard ditlis example
shows that it is not always just a single pattern that applies, but thabé@atterns may overlap
(which is, by design, often the case when the ECM model is used).

Figure 5.4 shows a re ned performance engineering cycle, with allifedvexposed that
employ patterns. The pro ling component was omitted for brevity.

Machine i
Microbenchmarking e AR /.
characteristics code analysis
(o))
c
£
=]
o}
[T
=)
o
= Performance model
<
)
3 £) Model validation Traces/ g 7
~ = HW metrics 8 —
5 £ y 5 5
= [} o 0]
T = c =
S 8 @ 8
o Q <)
< E Validation No = E
5 o OK? g 0
<
Yes ©
- Optimize for better Identify
2 resource utilization _g correct pattern
E g:
E - =3 .
o Eliminate non- kS} Adjust
@) . - c =)
expedient activity model input

Figure 5.4: A re ned performance engineering process, with patteatad activities exposed.
The labels (1a ... 2b) correspond to the list items in Sect. 5.3.

87

88

Part Il

Applications

89

Chapter 6

A medical image reconstruction
algorithm [6]

6.1 Introduction

6.1.1 Computed tomography

Computed tomography (CT) [58] is an established technology to non-iglpsietermine a
three-dimensional (3D) structure from a series of projections of arcbbigeyond its classic
application area of static analysis in clinical environments the use of CT bakeaated substan-
tially in recent years, e.g., toward material science or time-resolved soppersing interven-
tional cardiology. The numerical volume reconstruction scheme is a keyamwenp of modern
CT systems and is known to be very compute-intensive. Acceleration thispegial-purpose
hardware such as FPGAs [59] is a typical approach to meet the cotstoaireal-time pro-
cessing. Integrating nonstandard hardware into commercial CT systeims@usiderable costs
both in terms of hardware and software development, as well as systentegagpFrom an
economic view the use of standard x86 processors would thus beghiefeDriven by Moore's
law the compute capabilities of standard CPUs have now the potential to meegtiested CT
time constraints.

The volume reconstruction step for recent C-arm systems with at pagtelctbr can be
considered a prototype for modern clinical CT systems. InterventiormahCETs, such as the
one sketched in Fig. 6.1, perform the rotational acquisition of 496 highluten X-ray pro-
jection images (1248960 pixels) in 20 seconds [60]. This acquisition phase sets a constraint
for the maximum reconstruction time to attain real-time reconstruction. In pracliesed
backprojection (FBP) methods such as the Feldkamp algorithm [61] ardywided for per-
formance reasons. The algorithm consists of 2D pre-processing btgprojection, and 3D
post-processing. Volume data is reconstructed in the backprojectiomsamng it by far the
most time-consuming part [59]. It is characterized by high computationaisitye nontrivial
data dependencies, and complex numerical evaluations but also offerteement embarrass-
ingly parallel structure. In recent years hardware-speci ¢ optimizabibthe Feldkamp algo-
rithm has focused on GPUs [62, 63, 64, 65, 66] and IBM Cell prawsd§7, 68]. For GPUs in
particular, large performance gains compared to CPUs were repo8par [@ocumented by the
standardized RBBITCT benchmark [69, 70]. Available studies with standard CPUs indicate
that large servers are required to meet GPU performance [AHBR CT is an open competi-

91

Figure 6.1: C-arm system
illustration (Axiom Artis
Zeego, Siemens Health-
care, Forchheim, Ger-
many).

tion benchmark based on C-arm CT images of a rabbit (see Fig. 6.2). tsaitocompare the
manifold of existing hardware technologies and implementation alternativesdonstruction
scenarios by applying them to a xed, well-de ned problem. This chapteicentrates on the
optimal implementation of the FBP algorithm on multicore processors. See [@] detailed
account of related work.

This chapter highlights, in condensed form, the aspects of Ref. [6] thatetated to the
performance engineering approach: Starting from a rst rough aisabf the code, which points
to a strongly memory-bound problem on modern multicore chips, obvious optiarigauch as
work reduction and SIMD vectorization are applied. Using the optimized as@ebaseline, an
ECM performance model is built which leads to the conclusion that the algorgtmemory-
bound only on older, bandwidth-starved processors, but not on rmagieUs like the Intel
Sandy Bridge. Consequently, blocking or unrolling techniques only flaylten bandwidth
limitation applies. Performance results are presented for a number of maderolder Intel
multicore CPUs.

Figure 6.2: Volume rendering based on the recon-
struction of 2D X-ray projections of a rabbit.

92

6.2 Experimental testbed

A selection of modern Intel x86-based multicore processors (see Tdblevés chosen to test
the performance potential of optimized implementations of the algorithm. All of tbletpes
feature a large outer level cache, which is shared by two (Core 2 Qdapértown”), four
(Sandy Bridge), six (Westmere EP), or ten cores (Westmere EX). Thé@maax number of
cores sharing an outer level L2/L3 cache is called an “L2/L3 group.”

With the introduction of the Core i7 architecture the memory subsystem of Irtekp-
sors was redesigned to allow for a substantial increase in memory bandwidtte price of
introducing ccNUMA on multisocket servers. At the same time Intel also relaohsimulta-
neous multithreading (SMT) with two threads per physical core. The SAridge processor is
equipped with a new instruction scheduler, supports the new AVX SIMDuatm set exten-
sion, and has a new last level cache subsystem (which was alreagynpireNehalem EX). The
10-core Intel Westmere EX is not mainly targeted at HPC clusters buttethe performance
maximum for x86 shared-memory nodes. A summary of the most importantgs@cieatures
is presented in Table 6.1. Note that the Sandy Bridge model used here sktapleariant,
while the other processors are of the server (“Xeon”) type. TablelSdlentains bandwidth
measurements for a simple update benchmark:

1 for(int i=0; i<N; ++i)
2 afil = s+ ai;

This benchmark re ects the data streaming properties of the reconstradgiornthm and is thus
better suited than STREAM [72] as a baseline for a quantitative perforemandel.

Since most of the performance-critical code was written in assembly laagtiagchoice
of compiler is marginal (the Intel compiler in version 12.0 was used). Thaéadty, hard-
ware performance monitoring, and low-level benchmarking was implemerdetesLIKWID
tool suite [73, 74], using the tooli&wid-pin , likwid-perfctr , andlikwid-bench ,
respectively.

6.3 The algorithm

6.3.1 Theory

The RaBBITCT dataset consists &f = 496 projection imagek, acquired by a C-arm system.
The projections are already pre-processed and Itered. Hence,tbalypackprojection step
is considered in the presented work. Each projection image is accompanegiojection
matrix A, 2 R® 4[75, 76]. It encodes the complete projection geometry, including reibléu
deviations from the ideal Feldkamp geometry [76]. Usihgthe perspective projection of an
arbitrary point = (x;y;2)T in 3D space onto the poifgin theu-vimage plane of the-th view
can be expressed as [77]

Bn= A, (6.1)

93

Table 6.1: Test machine speci cations. The cacheline size is 64 bytedl joroaessors and
cache levels. The update benchmark results were obtained with the likwidh-beol.

Microarchitecture Intel Harpertown Intel Westmere

Intel Westmere EX ntelISandy Bridge

Model Xeon X5482 Xeon X5670 Xeon E7- 4870 Core i7-2600
Label HPT WEM WEX SNB
Clock [GHZz] 3.2 2.66 (2.93 turbo) 2.40 3.4 (3.5 turbo)
sockets/cores/threads 2/8/- 2/12/24 4/40/80 1/4/8
SIMD extension SSE3 SSEA4.2 SSEA4.2 AVX
SIMD register [bytes] 16 16 16 32
Socket L1/L2/L3 4 32k/2 6M/- 6 32k/6 256k/12M 8 32k/8 256k/30M 4 32k/4 256k/8M
Bandwidths [GB/s]:

Theoretical socket BW 12.8 32.0 34.2 21.3
Update (1 thread) 5.9 15.2 8.3 16.5
Update (socket) 6.2 20.3 24.6 17.3
Update (node) 8.4 39.1 98.7

wherex = (T and15 = (u;v;1)Tw. Note that the equality is in homogeneous coordinates
and therefore up to scale. For convenience, we further de ne

Un(¥) = ‘Isn;O:Wn('X) ;
Va(®) = Pri=whn(x);and
Wh(¥) = ’én;zi

(6.2)
(6.3)
(6.4)

TheN ltered projection images,, are backprojected into the volunke The value of a voxel

at positionx = (x;y; 2) is determined as

o1
Fe= a

n=1

Wn(%)2

In(Un(39); Vn(>9) :

(6.5)

Since equation (6.1) is only de ned up to scabg, can be constructed such that the scaling
factorén;z corresponds to the distance weighin the backprojection formula (6.5) [76].

Note that in practice one deals with image data that has a nite pixel resolutioa.pfio-
jection of a voxel will in general not hit one pixel of the 2D CT image exacilgerefore, the
projection value is computed by bilinear interpolation of the four closest pixels

6.3.2 Code analysis

The basic backprojection algorithm (as provided by the RabbitCT frankejv@], see List-
ing 6.1) is usually implemented in single precision (SP) and exhibits a streamiegsguattern
for most of its data traf c. One volume reconstruction uses 496 CT imagasofdd byl) of

1248 960 pixels eachlEX

ISY). The volume size is 256nm°. MMis the voxel size and

changes depending on the number of voxels. The most common resoluticesanpclinical

94

Listing 6.1: Voxel update loop nest for the plain backprojection algorithms @hts executed
for each projectiont . All variables are of typdloat unless indicated otherwise. The division
into parts (see text) is only approximate since there is no 1:1 correspantienice SIMD-
vectorized code.

1 wz = offset_z;

2 for(int z=0; z<L; z++, wz+=MM) {

3wy = offset_y;

4
5 for (int y=0; y<L; y++, wy+=MM) {

6 wx = offset_x;

7 valtl=0.0f; valtr=0.0f;

8 valbl=0.0f; valbr=0.0f;

9

10 [/l Part 1

11 for (int x=0; x<L; x++, wx+=MM) {

12 uw = (A[0] *wx+A[3] *wy+A[6] *wz+A[9]);

13 vw = (A[1] *wx+A[4] *wy+A[7] *wz+A[10]);
14 w = (A[2] *wx+A[5] *wy+A[8] *wz+A[11]);
15

16 u=uw * 1.0f/lw; v = vw * 1.0f/w;

17

18 int iu = (intu, iv = (int)v;

19

20 scalu = u - (float) iu;

21 scalv = v - (float) iv;

22 [l Part 2

23 if (iv>=0 && iv<ISY) {

24 if (iu>=0 && iu<ISX)

25 valtl = I[iv *|SX + iu];

26 if (iu>=-1 && iu<ISX-1)

27 valtr = I[iv *ISX + iu+l];

28 }

29

30 if (iv>=-1 && iv<ISY-1) {

31 if (iu>=0 && iu<ISX)

32 valbl = I[(iv+1) *|SX + iu];

33 if (lu>=-1 && iu<ISX-1)

34 valbr = I[(iv+1) *[SX + ju+l];

35 }

3 [/l Part 3

37 vall = scalv =valbl + (1.0f-scalv) * valtl;
38 valr = scalv *valbr + (1.0f-scalv) * valtr;
39 fx = scalu =valr + (1.0f-scalu) *vall;
40

41 VOL[z*L*xL + y*L + x] += 1.0f/(w *w)=*fx;
42 Y I x

3 L}y

4 } Il z

95

Figure 6.3: Setup geome- I
try for generating the CT
projection images. The

size of the volume is al- N
ways 256 mm?, but the \
number of voxels may | ~._ \
vary. Thex-y-zspace rep- ~ \
resents the volume while ~ \
theu-v plane represents a ~
ltered projection.

detector

applications is 512 voxels in each direction (denoted by the problemL3iZ€he algorithm
computes the contributions to each voxel across all projection images, emddbnstructed
volume is stored in arrayOL Voxel coordinates (indices) are denotedXyyy, andz, while
pixel coordinates are calladandv. See Fig. 6.3 for the geometric setup.

The aggregate size of all projection images is abodiGB. One voxel sweep incurs a
data transfer volume consisting of the loads from the projection image angidateuoperation
(VOL[i][+=s , see line 41 in Listing 6.1) to the voxel array. The latter causes 8bytesfof tra
c per voxel and results (for problem size 5%2n a data volume of 1GB, or 496 GB for all
projections. The traf c caused by the projection images is not easy tatifjuaimce it is not a
simple stream; it is de ned by a “beam” of locations slowly moving over the ptmeqixels
as the voxel update loop nest progresses. It exhibits some temporapatial locality since
neighboring voxels are projected on proximate pixels of the image, butrtieyalso be multi-
ple streams with large strides. Nevertheless, the above estimates suggbst theamory traf ¢
caused by the projection images is small compared to the updates to the ioxeév@®n the
computational side, the basic version of this algorithm performs 13 addibegtractions, 17
multiplications, and 3 divides.

6.3.3 Simple performance models

Based on this knowledge about data transfers and arithmetic operat®cambuild a roofline
model for a rough upper performance bound on the compute node. riflhmaetic limitation

results in 20 cycles per vectorized update (four and eight inner loogidesafor SSE and
AVX, respectively), assuming full vectorization, and a throughputrad divide per cycle. This
takes into account that all architectures under consideration cantexaue addition and one
multiplication per cycle and assumes that the pipelirgghs instruction can be employed
for the divisions (see Sect. 6.4.1 for details) and shares an executibwipio the multiply

96

instructions. Knowing the number of cycleper vectorized update, the most optimistic in-core
performance (in voxel updates per time unit) is
_fsn,

PmaX - c) (6. 6)

wheref is the clock frequencyis the SIMD width, andt is the number of cores per node.

The performance limitation due to data transfers is givemh g, wherel is the computa-
tional intensity of one update per eight bytes (see above)barsthe node memory bandwidth
as measured with the synthetic update benchmark described in Sect. 6T2lj#=6.1). The
following table shows upper performance bounds for a full reconstmubased on in-core and
bandwidth limitations on the four systems in the testbed (full nodes; see Tabfer@dbel
de nitions):

HPT WEM WEX SNB
Prax[GUP/S] 512 7.03 19.2 5.60
| bs[GUP/s] 1.05 4.89 112 2.16

Performance is given in billions of voxel updates per second (GUPR#g)ere one “update”
represents the reconstruction step of one voxel using a single imag&argbexpected perfor-
mance for the single socket (quad-core) Sandy Bridge under theénacithmetic limitation is
caused by its wide AVX vector size and its fast clock speed.

Above predictions indicate a strongly memory-bound situation, but it will beveHater that
they are far from accurate: It is much too optimistic to assume perfectly indepé instruc-
tions and perfect SIMD vectorization. Moreover, counting only “uBeftork, i.e., arithmetic
operations, is wrong since this algorithm is nontrivial to vectorize due todhtesed load of
the projection image data; it therefore involves many more non-arithmetic itistracA more
careful analysis will lead to a completely different picture, and furthéindpations can change
the bottleneck analysis considerably.

In order to have a better view on low-level optimizations we divide the algorithothree
parts:

1. Geometry computation: Calculate the index of the projection of a voxel i pocdi-
nates

2. Load four corner pixel values from the projection image

3. Interpolate linearly for the update of the voxel data

6.3.4 Algorithmic optimizations

The rst optimizations for a given algorithm must be on a hardware-indégetlevel. Beyond
elementary steps like moving invariant computations out of the inner loop budiyemiucing
the divides to one reciprocal (thereby reducing the op count to 3tam optimization is to
minimize the workload. Voxels located at the corners and edges of the vokemmoavisible
on every projection, and can thus be “clipped off” and skipped in theriloog. This is not a

15| pre xes are used, i.e., 1 GUP/s stands fo? lipdates per second. This is inconsistent with a large part of the
literature on medical image reconstruction, where “G” is used as a bimary for 230 1:074 10° [78]

97

new idea, but the approach presented here improves the work redinotiv@4% [79] to nearly
39%.

The basic building block for all further steps is the update of a conseclirtie of voxels in
x direction, covered by the inner loop level in Listing 6.1. This is called the “lipgate kernel.”
The geometry, i.e., the position of the rst and the last relevant voxeldohegrojection image
and line of voxels is precomputed. This information is speci c for a giveongetric setup, so
it can be stored and used later during the backprojection loop. Readingxtrégsdata from
memory incurs an additional transfer volume of 51296 4 bytes 496 MB (assuming 16-
bit indexing), which is negligible compared to the other traf c. The advaatafline-wise
clipping is that the shape of the clipped voxel volume is much more accuratekettahan
with the blocking approach described in [79].

The conditionals (lines 23 and 30 in Listing 6.1), which ensure corre@sacto the pro-
jection image, involve no measurable overhead for the scalar case duehartiveare branch
prediction. However, for vectorized code they are potentially costly sincgppropriate mask
must be constructed whenever there is the possibility that a SIMD vectoudtistt accesses
data outside the projection [79]. To remove this complication, separate$afie used to hold
suitably zero-padded copies of the projection images, so that there isddaresector masks.
The additional overhead is far outweighed by the performance adwafdadully vectorized
code execution. The conditionals are also effectively removed by theirgjpgptimization
described above, but we need a code version without clipping for Walgdaur performance
model later.

Note that a similar effect could be achieved by peeling off scalar loop itesatomake the
length of the inner loop body a multiple of the SIMD vector size and ensureealigremory
access. However, this may introduce a signi cant scalar componeatiedly for small problem
sizes and large vector lengths.

6.4 Single core optimizations

For all further optimizations an implementation of the line update kernel in C isechas the
performance baseline, with all algorithmic optimizations from Sect. 6.3.4 aliaaphed.

6.4.1 SIMD vectorization

No current compiler is able to ef ciently vectorize the backprojection algorjtso the code
was implemented directly in x86 assembly language. Using SIMD intrinsics cagle e
vectorization but adds some uncertainties with regard to register schedutingence does not
allow full control over the instruction code. All data is aligned to enable eddnd aligned
loads/stores of vector registers (16 or 32 bytes with one instruction).

The line update kernel operates on consecutive voxels. For parthedalgorithm clas-
sic vectorization, i.e., working on multiple voxels at the same time, is straightfdrigze
Sect. 6.3.3). This part is arithmetically limited and fully bene ts from the incrdasgister
width. The divide is replaced by a reciprocal. SSE provides the fully pipéliopps instruc-
tion for an approximate reciprocal with reduced accuracy (11 bits) coedpa a full divide
(24 bits). This approximation is suf cient for this algorithm, and results in ecugacy similar
to GPGPU implementations. The integer type cast (line 18) is implemented via theizedto
hardware rounding instructiamoundps , which was introduced with SSE4.

98

Figure 6.4: Vectorization
of part 2 of the algorithm:

> > [[[T1] The data is loaded pair-

wise into the vector reg-
isters. The interpolation
of iterations 0,2 and 1,3
are computed simultane-
ously. Afterwards the re-
sults must be reordered
for the second interpola-
tion step.

Part 2 of the algorithm cannot be directly vectorized. The projection vialuaemputed by
bilinear interpolation of the four closest pixels (top lefaltl), top right {altr), and bot-
tom left (valbl), bottom right yalbr)). Asillustrated in Fig. 6.5valtl andvaltr as well
asvalbl andvalbr can be loaded in pairs. Moreover, the classic vectorization approach of
part 1 — operating on multiple voxels at the same time — cannot be retainedimaesigh-
boring voxels will in general not be projected onto consecutive pixets.&4 shows the steps
involved in vectorizing part 2 and the rst linear interpolation in more detailr fhe sake of
simplicity, we consider a vector of four voxels with indices 0-3, but the mehean be easily
extended to wider vectors. Since the pixel coordinates from step 1 esglglin a vector reg-
ister, the index calculation for, e.gv, * ISX+iu and(iv+l) =*ISX+iu (lines 25, 27,32, and
34 in Listing 6.1) uses packed SIMD instructions. We compute the rst daheinterpolation
for voxels 0 and 2 simultaneously, and then for voxels 1 and 3. Thexefeg duplicate the

Figure 6.5: Projection of a voxel center onto
the detector. The labeled (four) pixels are
used for bilinear interpolation.

99

weighting vectorscalv such that one copy contains the weights for voxels 0 and 2 (twice),
and the other one for voxels 1 and 3 (step 1 in Fig. 6.4). With one load atdlke& ofvall
we implicitly load valtr into the second vector element. Again we create two vectors, one
containing the top left and right pixel values for voxels 0 and 2, and oné& &ind 3 (step 2 in
Fig. 6.4). The same is done for the bottom values. The resulting vectocsldedvalt and
valb , respectively, in Fig. 6.4. Note that the cost for this construct inceeaga wider SIMD
registers because two load operations are required per voxel. Nertultiply those vectors
with the correspondingcalv vector in step 3 of Fig. 6.4 and get vectors with the interpolation
result inv direction. The elements are still alternating left and right, and for voxelsdd®anor
1 and 3. Therefore, in step 4, we reorder the elements to get a vectairing only the left
values for all voxels and one containing the right values. This scheme isrmapted using the
SSE3 instructionsovsldup andmovshdup for duplication of thescalv values. The nal
reordering to enable classic vectorization in part 3 of the algorithm alsothese instructions,
together withblendps , which interleaves the values to bring them into the correct order again.
The conversion of the index into a general purpose register, whictetedefor addressing the
load of the data and the scattered pairwise loads, is costly in terms of ngcestauctions.
Moreover, the runtime increases linearly with the width of the registers duectpahwise
loads. This implies that the whole operation is limited by instruction throughput.

We consider two SSE implementations, which only differ in part 2 of the algoritfersion
1 (V1) converts the oating point values in the vector registers to foudgumads and stores the
result back to memory (cache, actually). Single index values are therdit@adeneral purpose
registers one by one. Version 2 (V2) does not store to memory but instefsl all values in
turn to the lowest position in the SSE register, from where they are movetdldite a general
purpose register using tlwtss2si instruction.

The remainder of part 3 — the second partlirection) of the bilinear interpolation, and the
voxel update — is again trivially vectorizable and fully bene ts from widé&vlB registers.

Note that any further inner loop unrolling beyond what is required by [ZNéctorization
would not show any bene t due to register shortage; however, as ehown later, SMT can
be used to achieve a similar effect.

6.4.2 AVXimplementation

In theory, the AVX instruction set extension doubles the peak perforepg@ccore as compared
to SSE. The backprojection cannot fully bene t from this advantagebse the number of
required instructions increases linearly with the register width in part 2 oéldparithm. For
arbitrary SIMD vector lengths a hardware gather operation would héreztjto prevent this
part from becoming a severe bottlenéck.

The limited number of AVX instructions that natively operate on 256-bit regigieohibits
more sophisticated variants of part 2; only the simple version (V1) could bleimgmted. A
register-to-register variant would be possible only at the price of a mugérlanstruction count,
so this alternative was not considered. Despite these shortcomings, avémant of 25%
could be achieved with the AVX kernel on Sandy Bridge (see Sect. 6detailed performance
results).

2The Intel Xeon Phi coprocessor and the Intel Haswell processbag®such instructions. See [80] for a detailed
analysis of the backprojection algorithm on the Intel Xeon Phi.

100

B o m

(a) Harpertown (b) Westmere (c) Sandy Bridge (SSE) (d) Westmere EX

Figure 6.6: ECM model analysis: Runtime contributions from instruction di@tand neces-
sary cache line transfers. The total data volume in bytes is indicated onttbédeich group of
arrows. On the right we show the data transfer capabilities betweendtigrawels and the re-
sulting transfer time in core cycles. In-core execution times are measuues¥eom Table 6.2,
scaled to a complete cache line.

6.5 In-depth performance analysis

6.5.1 ECM performance model

As shown in Sect. 6.3.3, a simple roofline model analysis based on arithmetiacinstr
throughput and the memory bottleneck alone can be done for the baakmwojalgorithm.
It predicts a strong bandwidth limitation on all considered architectures bumple measure-
ment of the utilized memory bandwidth proves that the memory bandwidth is fardaburated
in most cases. Hence, the ECM model introduced in Sect. 3.4 is employedvatra more
complete picture.

The starting point for all further analysis is the single-thread runtime sp@tuting instruc-
tions with data loaded from L1 cache, since this is what deterntings Due to the complexity
of the loop body, the Intel Architecture Code Analyzer (IACA) [38] wased to analytically
determine the runtime of the loop body. This tool determines the runtime of the twbpib
cycles, calculating either raw throughput (no dependencies) or theatgtth length, according
to the architectural properties of the processor under the assumptiaalttiata resides in the
L1 cache. It supports Westmere and Sandy Bridge (including AVX) getarchitectures. The
results for Westmere are shown in the following table for the two SSE keanigints described
above (all entries exceptops are in core cycles):

Issue port
Variant 0 1 2 3 4 5 TP nOPs CP
V1 15 21 24 3 3 19 24 85 54
V2 20 27 16 1 1 20 27 85 71

Execution times are calculated separately for all six issue ports (0. A5)Dp is a RISC-like

101

“micro-instruction;” x86 processors perform an on-the- y translatidmmachine instructions
to nops, which are the “real” instructions that get executed by the core.)t Ajpan the raw
throughput (TP) and the total number mbps the tool also reports a runtime prediction taking
into account latencies on the critical path (CP). Based on this predictiorhdlld be faster
than V2 on Westmere. However, the measurements in Table 6.2 show théteppsglt. The
high pressure on the load issue port (2) together with an overall higisymeon all ALU issue
ports (0, 1, and 5) seems to be decisive. In V2 the pressure on ponhiZcis lower, although
the overall pressure on all issue ports is slightly larger.

Below we report the results for the Sandy Bridge architecture with SSEAWIXd The
pressure on the ALU ports is similar, but due to the doubled SSE load penfime Sandy
Bridge needs only half the cycles for the loads in kernel V1. V1 is theedfmster than V2 on
Sandy Bridge (see Table 6.2).

Issue port
Variant 0O 1 2 3 4 5 TP nOPs CP
VISSE 16 20 14 13 3 19 20 85 56
V2SSE 20 26 9 8 1 21 26 85 72
V1IA/VX 18 20 22 21 6 30 30 114 90

So far we have assumed that all data resides in the L1 cache. The dafarsaequired
to bring cachelines into L1 and back to memory are modeled separately. Wae#sat there
is no overlap between data transfers and instruction execution. This iattteast for the L1
cache: It can either communicate with L2 to load or evict a cacheline, or itlebwer data to
the registers, but not both at the same time. As a rst approximation we ad¢ssi(pistically)
assume that this “no-overlapping” condition holds for all caches, and tthata transfer between
any two adjacent levels in the memory hierarchy does not overlap with agytse. Since the
smallest transfer unit is a 64-byte cacheline, the analysis will from nowednalsed on a full
“cacheline update” (16 four-byte voxels), which corresponds to ftwo) inner loop iterations
when using SSE (AVX).

We only consider the data traf ¢ for voxel updates; the image data trafmeigligible in
comparison, hence we assume that all image data comes from L1 caclkesltvt@ cycles to
transfer one cacheline between adjacent cache levels over the A&@diiectional data path.
Every modi ed line must eventually be evicted, which takes another two cydiégure 6.6
shows a full analysis, in which the core execution time for a complete cachgldae is based
on the measured cycles from Table 6.2. On the three architectures witlth8 ttee simpli ca-
tion is made that the “Uncore” part (L3 cache, memory interface, and ®aitkinterconnect)
runs at the same frequency as the core, which is not strictly true butrbethange the re-
sults signi cantly. It was shown for the Nehalem-based architecturestfweae and Westmere

HPT WEM WEX SNB
V1ISSE 626 616 59.6 444
V2SSE 574 515 547 50.0
V1 AVX 76.2

Table 6.2: Measured execution times (one core) in cycles for one iteratitimedSIMD-
vectorized kernel (i.e., 4 or 8 voxel updates) with all operands residihd cache.

102

EX) that they can overlap instruction execution with reloading data from memoothe last
level cache [81]. Hence, the model predicts that the in-core executiongimach larger than
all other contributions, which makes this algorithm limited by instruction througfgogingle
core execution. On Sandy Bridge, the AVX kernel requires 76.2 cyotesne vectorized loop
iteration (eight updates). This results in 152 cycles instead of 178 cy&$d#s)(for one cacheline
update.

Based on the runtime of the loop kernel we can now estimate the total requiraedrgne
bandwidth for multithreaded execution if all cores on a socket are utilizatlakso derive the
expected performance (we consider the full volume without clipping):

SNB

HPT WEM WEX SNB (AVX)

BWi/core [GB/s] 1.7 1.9 15 25 3.0
BW/socket [GB/s] 6.8 11.2 11.6 100 12.0
Perf. [GUP/s] 0.85 1.42 145 1.25 1.51

We conclude that the multithreaded code is bandwidth-limited only on Harpersince the

required socket bandwidth is above the practical limit given by the upaatehmark (see Ta-
ble 6.1). All other architectures are below their data transfer capabilitiahiBboperation and
should show no bene t from further bandwidth-reducing optimizatioee Sect. 6.6.2).

6.5.2 ILP optimization and SMT

At this point the analysis still neglects the possible bene t from Simultaneout-threading.
As described in Sect. 2.1.5, SMT can improve the pipeline utilization for co@éstiffer from
dependencies, long-latency loads, instruction scheduling issuesoarrce contention. At the
same time it is important to understand that there can be no bene t if all threadeg on the
same core compete for a shared resource like, e.g., a request queue.

As shown in the previous section, our implementation of the backprojectionitalgoex-
hibits a strong discrepancy between the IACA “throughput” and “critiedthppredictions. Due
to the complex loop body, register dependencies are unavoidable, rgsaltnany pipeline
bubbles. Outer loop unroll and jam (interleaving two outer loop iterations iimtiex body) is
out of the question due to register shortage, but SMT can do a similar jopravidie indepen-
dent instruction streams using independent register sets. Since therghiared resource apart
from the core pipelines, running two threads on the two virtual coresdf physical core is
expected to reduce the cycles taken for the cacheline update. Howeveffect of using SMT
is dif cult to estimate quantitatively. See Sect. 6.7 below for complete parabeite

6.6 OpenMP parallelization

OpenMP parallelization of the algorithm is straightforward and works with tilntizations

discussed so far. For the thread counts and problem sizes undeteratien here it is suf cient
to parallelize the loop that iterates over all voxel volume slices (loop varabielisting 6.1).

However, due to the clipped-off voxels at the edges and corners afolbene, simple static
loop scheduling with default chunk size leads to a strong load imbalance.cdihibe easily
corrected by using block-cyclic scheduling with a small chunk size (&tafic,1).

103

Images are produced one by one during the C-arm rotation, and codstabe delivered
to the application in batches. Since the reconstruction should start as saoages become
available, a parallelization across images was not considered.

As shown in Sect. 6.5, the socket-level performance analysis doegawtipstrong ben-
e ts from bandwidth-reducing optimizations except on the Harpertown qlaitf However,
since one can expect to see more bandwidth-starved processorsdegtlya more unbalanced
ratio of peak performance to memory bandwidth in the future, we still conbaedwidth op-
timizations important for this algorithm. Furthermore, ccNUMA architectures imcome
omnipresent even in the commodity market, making locality and bandwidth aveasrerenda-
tory. In the following sections we will describe a proper ccNUMA page @haent strategy for
voxel and image data, and a blocking optimization for bandwidth reductiomrdason why we
present those optimizations in the context of shared-memory parallelizaticat ithély become
relevant only in the parallel case, since bandwidth is not a problem orchlitectures for serial
execution (see Sect. 6.5.1).

6.6.1 ccNUMA placement

The reconstruction algorithm uses essentially two relevant data structneegoxel array and
the image data arrays. Upon voxel initialization one can easily employ rstitmitialization,
using the same OpenMP loop schedule (i.e., access pattern) as in the maamplogp. This
way each thread has local access (i.e., within its own ccNUMA domain) to iignassvoxel
layers, and the full aggregate bandwidth of a ccNUMA node can be utilized

Although the access to the projection image data is much less bandwidth-ietdresivthe
memory traf ¢ incurred by the voxel updates, ccNUMA page placemerstimglemented here
as well. As mentioned in Sect. 6.3.4, the padded projection buffers areitdylocated and
initialized in each locality domain, and a local copy is shared by all threads vatldiomain.
Since the additional overhead for the duplication is negligible, this ensorestfree local
access to all image data. The time taken to copy the images to the local bufferkidethin
the runtime measurements.

6.6.2 Blocking/unrolling

In order to reduce the pressure on the memory interface we use a simpdmblscheme for the
outer loop over all images: Projections are loaded and copied to the ppdijedtion buffers
in small chunks, i.e.b images at a time. The line update kernel (see Sect. 6.4) for a certain
pair of (y;2) coordinates is then executedimes, once for each projection. This corresponds
to ab-way unrolling of the image loop and a subsequent jam into the next-to-inisérragel
loop (across thg voxel coordinate). At the problem sizes studied here, all the voxelfdata
this line can be kept in the L1 cache and reubedl times. Hence, the complete volume is
only updated in memory 496 instead of 496 times. Relatively small unrolling factors between
2 and 8 are thus suf cient to reduce the bandwidth requirements to untiiegs even on
“starved” processors like the Intel Harpertown.

This optimization is so effective that it renders proper ccNUMA placemikbtiaobsolete;
we will thus not report the bene t of ccNUMA placement in our perforroamesults, although
it is certainly performed in the code.

104

6.7 Results

In order to evaluate the bene t of our optimizations we have benchmaritiedesht code ver-
sions with the 512case on all test machinesaBBITCT includes a benchmarking application,
which takes care of timing and error checking. It reports total runtime iarskfor the com-
plete backprojection. We performed additional hardware performamaeter measurements
using the likwid-perfctr tool. likwid-perfctr can produce high-resolution fimes of counter
data and useful derived metrics on the core and node level withougebaa the source code.
Unless stated otherwise we always report results using two SMT threadsie. For all archi-
tectures apart from Sandy Bridge the line update kernel version V2igeats On Sandy Bridge
results for the SSE kernel V1 as well as for the AVX port of the V1 kkane presented.

6.7.1 \Validation of analytical predictions

To validate the predicted performance of the analytic model (see SectsiBidlg-socket runs
were performed without the clipping optimization and SMT. Blocking was usetthe Harper-
town platform only, to ensure that execution is not dominated by memorysctles following

table shows the measured performance and the deviation against the newfiietiqm:

SNB
HPT WEM WEX SNB (AVX)

Perf.
(GUP/s] 0.75 1.20 1.30 1.11 1.28

deviation-13.3% -18.3% -11.5% -12.6% -18.0%

This demonstrates that the model has a reasonable predictive powas.déeén con rmed that
the contribution of data transfers indeed vanishes against the core rudéspste the fact that
the total transfer volume is high and a rst rough estimate based on datéetrmaad arithmetic
throughput alone (Sect. 6.3) predicted a bandwidth limitation of this algorithaill omachines.
As a general rule, the IACA tool can provide a rough estimate of the inrsrimop kernel
runtime via static code analysis. Still it is necessary to further enhance th@maanodel to
improve the accuracy of the predictions. Especially the ability of the outd#rascheduler to
exploit superscalar execution was overestimated and has led to qualitatiesly predictions.
Note that this example is an extreme case with all data transfers vanishingtacaie
runtime. However, the approach also works for bandwidth-limited codesaa shown in [4].

6.7.2 Parallel results

Figures 6.7 (a)—(d) display a summary of all performance results onaratisocket levels, and
parallel scaling inside one socket for the best version on each aitchéedll machines show
nearly ideal scaling inside one socket when using physical cores Witi SMT, the bene t
is considerable on Sandy Bridge (33%) and Westmere (31%), and a little soraNgestmere
EX (25%). The large effect on Sandy Bridge may be attributed to a higlmaber of bubbles
in the pipeline, as indicated by the larger discrepancy between the “thpatiglind “critical
path” cycles in the AVX loop kernel (see Sect. 6.5.2). Scalability from oradl teockets of the
node is also close to perfect for the multisocket machines, with the exceptWasimere EX,
on which there is a slight load imbalance due to 80 threads working on onlglE£2.

105

2 2 10 10
blocking 1 AVX 69.4 GFlop/ blocking blockd 286 GFlop/{
i 1 blocking 1 B I ocking 1
g Igiap‘;izzlancmgGAO GFlop/ [load balancing P = Io?d balancing = Io?d balancing
2 4 ssE - 2 1 clipping - gl- [clipping - gl [clipping -
El Plain C [SSE L] SSE [SSE
) | EE PlainC | EE PlainC] | EE PlainC
T —
3 15k - 150 - 6l - 6l -
8
g | L i
£ - 130 GFlop/s
£ 1l E 1 - 4 E a4 -
e — | _20secreconstr.___[] | | __20secreconstr | 1]
0.5 - 0.5 E 2f B 2 -
0 0 AA_A_AJ; 0
2 4 8 1 2 4 8 12 4 6 12 24 12 4 6 8 10 2080
threads (SMT) (SMT)(SMT) (SMT)

(a) Harpertown (b) Sandy Bridge (c) Westmere (d) Westmere EX

Figure 6.7: Scalability and performance results for the®5&8t case on all platforms. In-socket
scalability was tested using the best version of the SIMD-vectorized linatep@rnel on each
system (AVX-V1 on Sandy Bridge, SSE-V2 on all others). The prakgiesformance goal for
complete reconstruction (20 seconds runtime, corresponding to 3.33)GBRidicated as a
dashed line. GF/s numbers have been computed assuming 31 ops per ogt{staktar) inner
loop iteration. Note the scale change between the left and right pairspigra

Depending on the architecture, SSE vectorization boosts performarac&abtor of 2—3 on
the socket level. As explained earlier (see Sect. 6.4), part 2 of thathlggrohibits the optimal
speedup of 4 because its runtime is linear in the SIMD vector length. Wouctied through
clipping alone shows only limited effect due to load imbalance, but this cannbedied by an
appropriate cyclic OpenMP scheduling, as described in Sect. 6.6. Thiokinad balancing
not only improves the work distribution but also leads to a more similar accéspto the
projection images across all threads.

Cache blocking has little to no effect on all architectures except Hawpertas predicted
by the analysis.

The bene t of AVX on Sandy Bridge falls short of expectations for theng reason as in
the SSE case. Still it is remarkable that the desktop Sandy Bridge systeenfourys the dual-
socket Harpertown server node, which features twice the numberre$ @ a similar clock
speed. Both Westmere and Westmere EX meet the performance requirefregntsost 20 sec
for a complete volume reconstruction. The Westmere EX node is, howeiapmpetitive due
to its unfavorable price to performance ratio. It is an option if absolutepadnce is the only
criterion.

6.8 Conclusion

6.8.1 Summary of results

Several algorithmic and low-level optimizations for a CT backprojection é@lgarwere demon-
strated on current Intel x86 multicore processors. Highly optimizing congpilere not able
to deliver useful SIMD-vectorized code. The chosen implementation idi&sesd on assembly
language and vectorized using the standard instruction set extensigra83VX. The results

106

show that commodity hardware can be competitive with special-purposeduadlinically rel-
evant 513 voxel case at the same level of accuracy. Nonpipelined divide instnsotiovps)

or a fast pipelined versiorrgpps) with subsequent Newton-Raphson iteration proved to be
equivalent in terms of accuracy and performance. Compared to aeguipeacal they provide
better accuracy at a 10% performance penalty. The standard dkatsscver system Intel
Westmere EP is easily able to beat the 20 s limit for the full backprojectionhirepd5.8 s.
Preliminary tests on an Intel Sandy Bridge EP Xeon platform (8 coresoo&et showed that
runtimes close to the GPU results are in reach for modestly priced dualtsackers.

It was shown that it is necessary to consider all aspects of procasdmystem architec-
ture in order to reach best performance, and that the effects ofediffeptimizations are closely
connected to each other. The bene t of the AVX instruction set on S&nidge was limited due
to the lack of a gathered load and the small number of instructions that natpefgate on the
full SIMD register width. This relevant algorithm can achieve very gdadency on commod-
ity processors and it would be a natural step to further improve perfaenaith a distributed
memory implementation. At higher resolutions, which are used in industrial apphsamul-
ticore systems are frequently the only choice (apart from expenssterausolutions).

6.8.2 Reassessment in view of performance patterns

The rst shot at performance modeling for the backprojection useddb#ime model, based
on arithmetic throughput and memory bandwidth as the applicable bottlenduksnddel pre-
dicted bandwidth limitationas the relevant pattern on all architectures at hand, which could
easily be ruled out by a simple runtime measurement. After some basic optimizaioaisly
work reduction and SIMD vectorization, an ECM model was set up. Usiagtliput from
the IACA tool as the in-core baseline, the conclusion was that in-co@iége was the bottle-
neck even with a full socket on all but the very bandwidth-starved Hé&pertown platform.
A combination of patterns applied, fropipelining hazardqdependencies along the critical
code path) tanstruction overhea@ndineffective instruction§SIMD-incompatible gather op-
erations). Loop blocking was applied but only effective — as expecgiatidpatterns — on the
Harpertown CPU. The work reduction optimization mentioned above resul@étiongload
imbalancepattern with OpenMP-parallel code, which was identi ed by mediocre sddjab
across cores and con rmed by HPM measurements. The imbalance coelasihe xed by
choosing an appropriate OpenMP loop schedule. In the end, the penmemzodel was well
within a 20% margin on all four architectures.

107

108

Chapter 7

A performance- and energy-optimized
lattice-Boltzmann uid solver [7]

Algorithms with low computational intensity show interesting performance andepaen-
sumption behavior on multicore processors. This has been demonstratédpteC4 using
the simple vector triad and Jacobi smoother benchmarks. The lattice-Boltzm#mdnieBM)
is widely used in computational uid dynamics, and a prototype for many othenong-bound
algorithms. It has gained popularity due to its ease of implementation and sulitadyilitgri-
plex geometries. Despite its seeming simplicity, optimizing LBM on recent hardulatferms
and for different application cases has been the subject of interesgrelsn the last ten years
[82, 83, 84, 85, 86, 47, 87, 88, 89, 90, 91, 92, 93]. In this chaptspeci ¢ version of the LBM
is used to show if and how single-chip performance and power chasdictecan be generalized
to the highly parallel case.

After a thorough analysis of a sparse-lattice two-relaxation-time (TRT) LiBidlemen-
tation on the Intel Sandy Bridge processor, we use the ECM model and tliearaipower
model to describe the intra-chip saturation characteristics of the code apdiitsal operating
point in terms of energy to solution as a function of the propagation methdd tfg8 clock
frequency, and the SIMD vectorization. These ndings are then ealadgd to the multi-node
level on SuperMUC, where the energy-saving potential of various optioizs is quanti ed.
One surprising result of this analysis is that the memory-bound nature bBtkealgorithm is
partly lost when communication plays a signi cant role, and that it is then evere important
to select the optimal operating point (number of cores, clock speed) tmigehal energy to
solution. Adding a power capping condition will complicate matters and may makevatde
sensible decisions for an operating point inaccessible. It is foundithptistic measures often
applied by users and computing centers, such as setting a low clock spemadrhory-bound
applications, have limited impact.

7.1 Introduction

7.1.1 Related work

Performance modeling and prediction especially in the context of LBM aomgaing research
topic of many groups in engineering and computer science [94, 95]. thniog was used, e.g.,

109

in [96] for a magnetohydrodynamics LBM. The “ILBD&'LBM code used here has been op-
timized previously [97] and its sustained performance is close to predictiomsthe roofline
model [93]. Research in the direction of energy-saving hardwaresaftdare mechanisms
focuses on models and algorithms for dynamic voltage and frequencyg¢@MiS) and dy-
namic concurrency throttling (DCT) [44].

The unique combination of the ECM model and the multicore power model usedahe
lows a new view on energy consumption issues of LBM and other memomyebalgorithms.
The observation that MPI (inter- and intra-node) communication must beedi@s a highly
frequency-dependent overhead adds a new twist.

7.1.2 The lattice-Boltzmann method

The lattice-Boltzmann method is an algorithm for computational uid dynamics (CFBtead
of discretizing and solving the Navier-Stokes equations, which containas@mpic entities
such as pressure and velocity, the LBM is based on the Boltzmann equettich,describes the
temporal evolution of a time-dependesihgle-particle distribution functiofPDFs) f (x;X;t).
The PDF quanti es the probability density for nding a particle at positiowith microscopic
velocity X. The Boltzmann equation fdris

Tt 5 I
Tt X F—-Q(f f); (7.1)

whereF = K=m, with K being external forces exerted on particles with massThe left-
hand side of this equation describes advection processes, while thaaigthside is &ollision
integral, whose dependence d; f) is written to clarify that only two-particle collisions are
considered. Eq. (7.1) is thus an integral-differential equation. Sinceotlision integral makes
solving this equation very complex, approximations have been developéath keep important
properties such as energy and momentum conservation but are simpgghandie applied in
practice. One prominent example is the Bhathagar-Gross-Krook opgéio

QBEeK(f;f)= t} A (7.2)
where therelaxation timet quanti es how quickly the local thermodynamic equilibrium

(Maxwell-Boltzmann) distributiorf (%) can be attained. Macroscopic quantities can be obtained
from the PDF by calculating moments. For pressure and velocity one has, e.g

7277

ret) = X0 (xX;t) dx (7.3)
727§

rctu@ct) = ¥7<1f(x;7<;t)d7< : (7.4)

The lattice-Boltzmann equation is obtained through a discretization of the vekpziye
and the spatial and temporal derivatives in the Boltzmann equation (7.t} Velads to [99]

fitxr @Dut+ DO = fitt)+ Wi D): i) - (7.5)

international Lattice-Boltzmann Development Consortium

110

Since there is now a number of discrete velocity vecggrihere is one PDF; for each of them.
The basic properties of the so obtained discrete phase space are laedéiy by DiQm, where

n is the number of spatial dimensions amds the number of discrete velocity directions. In
the following we will concentrate on the D3Q19 model, which is a three-dimeakigith 19
discrete PDFs. Macroscopic quantities can be obtained by discrete santh@WPDFs.

The right-hand side of (7.5) contains tbellision operatorW, which takes the role of the
collision integral in (7.1). Beyond a straightforward discretization of the<Biperator (7.2),
several other schemes for the collision operator have been devisieth, evthance the stability
of the algorithm. The variant used here is the (TRT) approximation of the icolljgrocess,
which [100, 99, 101, 102] is based on the evolution operator

WRI(reet)eeet) = Fo(fT)+ Io(fi £, (7.6)
with f, = %[fi(x;t) ()]
and 7 = ! fEUr (t);uit)) 5N (6 t);u0x))

2

Here,i and denote opposite directions, so that €. In the low Mach number limit, an
appropriate discretized equilibrium distribution function is [102]

3 9 3
£%r 4= w p+ ALl ﬂ(ﬁ’iﬂ)z 2™ (7.7)

The weightsv; depend on the model (i.e.,iQm) and the direction.

7.1.3 Implementation options and data traf ¢ analysis for LBM

Lattice-Boltzmann methods have become a popular approach in computatiacchdlynamics.
However, they are also an interesting eld of study for computer scieaséie core algorithm
uses a stencil-like access pattern with vector instead of scalar data, gesultirany concur-
rent memory streams and no reuse of data in a single iteration. The LBM ishstoaigard to
parallelize, in shared memory as well as distributed memory. In the latter cavajrddecom-
position and simple halo-based next-neighbor communication is employed.

ThelLBDC code [97] uses a D3Q19 lattice model and implements the two-relaxation-time
(TRT) collision operator (7.6). All calculations are performed in doubleeision oating point
arithmetic. The algorithm with the D3Q19 model can be viewed as a 19-poirtilsiter3-D
accessing only nearest neighbors, but has two important differéaaasnmmon stencil algo-
rithms: (i) each lattice node consists not only of one, but of 19 values [@fes)? (ii) each PDF
read from or updated in memory is only accessed again in the next time stigh, pvhvents
data reuse (unless complex temporal blocking schemes are employed).

The performance of a given LBM approach depends at least on tadagaut and memory
access patterns, the scale of arithmetic operations (i.e., how well numegpcessions are sim-
pli ed and combined to avoid unnecessary operations), and their de§&&1D vectorization.
A thorough overview of popular propagation step implementations and their rgeawoess
characteristics can be found in [88, 93].

It seems natural to store the PDFs in a 4-D array with an additional Booteay) ahich
is used to distinguish uid and solid nodes. This is known asrtieker-and-cellapproach.
However, LBM simulations of domains with a large fraction of solid nodes caret from

111

a sparse representatioof the domain [82, 83, 86, 87, 91, 92], where only the uid nodes are
kept in a 1-D vector. Indirect accesses to PDFs of neighboring naxethen required and
accomplished through an adjacency li&X), which represents the topological connections of
the nodes. ILBDC uses such a sparse representation.

For updating one node, optimized implementations read one PDF from each 19 gur-
rounding neighbors (streaming step), compute updated values (collisipn atel write the
results to the PDFs of the local node. This is known agptilescheme [47]. It is implemented
in the ILBDC code together with structure-of-arraygSoA) data layout where all PDFs of a
direction are stored consecutively in memory before the next directiowf®llo

We choose uid-only lattice site updates as the sensible unit of work. Té aamund the
data dependency problems of a combined stream-collide step, two latticeftesreised, one
as the source and one as the destination. Then, a uid lattice-node updai®) requires
19 PDF loads, 19 additional PDF loads because of write-allocate tran$&PDF stores and
18 IDX loads of the adjacency list. Assuming double-precision oating-point nusfeght
bytes) for PDF and four-byte integers 1@X, the total number of bytes that must be transferred
between CPU and memory for one FLUP is 39 8 (PDF)}+ 18 4 (IDX) bytes= 528 bytes.
With non-temporal store instructions the write-allocates are avoided andatheiddirectly
written from the processor into memory, bypassing the cache hierardteyndmber of bytes
required for one FLUP decreases then to 29 8 (PDF)+ 18 4 (IDX)bytes= 376 bytes.
Current standard processors have dif culties sustaining the full merbangwidth with 19
concurrent write streams, in particular if they consist of non-temporaéstoAs a remedy,

a blocking/stripmining scheme can be applied so that a node's PDFs arérehadnks and
updated values are stored in a small temporary buffer, which should Heestoagh to t in

the L1 cache. From this buffer, two directions of the updated PDFs at a tienaréten with

non-temporal stores to the destination lattice. We call this implementatitisplit no-NT or

pull-split NT, depending on whether normal stores or non-temporal stores are used

BAILEY 's AA pattern[90] for the PDF access allows using one single lattice only (instead
of separate source and destination grids) while maintaining the possibility tdeugld cells in
any order and in parallel. It was originally conceived for optimizing LBM&RGPU platforms,
but can be applied on multicore processors as well. The iterations ovetttine ke divided
into even and odd time steps. During an even step only PDFs of the cua@atane accessed
in each lattice site update. At the following odd step only PDFs of the neighdbaodes are
accessed, which requires indirect addressing in our case of theegpg@resentation. With this
update scheme only stores to locations in memory occur which have previagsiyéad. No
write-allocate will be performed as the data to be updated already residesdadhe. We use
an optimized version where the even time step is completely SIMD-vectorizaBE/ASX),
which can easily be accomplished as all PDFs are accessed condgautivao indirect access
is required. In the odd time step a partial vectorization is performed, whichagaid the
indirect addressing and allows for vectorized execution of consetystored chunks of PDFs.
Nodes that cannot be treated in this way are updated without SIMD veatioriZi.e., in scalar
mode). The fraction of nodes which can be updated with SIMD operatiepsrdis on the
geometry used for the simulation. During even time stepsl® 8 (PDF)bytess 304 bytes
per FLUP are required. In the odd time step the number of bytes neededddi.UP depends
on the fraction of vectorizable updates. The lower bound is the case athepdates can be
vectorized. Here only 2 19 8bytes= 304 bytes are required. The upper bound is reached
when all updates must be scalar and indirect accesses are requiied,results in 2 19

112

Figure 7.1: Visualization
of the packed bed reac-
tor geometry used in the
benchmarks.

8 (PDF)+ 18 4 (IDX) bytes= 376 bytes.
In order to have full control over the code vectorization, all perforoeacritical parts were
implemented using SIMD compiler intrinsics.

7.1.4 Test bed and benchmark cases

Since SuperMUC does not easily allow an arbitrary frequency setting),t@bo mode is
inaccessible at all, all single-node benchmark tests were run on a staeadsémdy Bridge
EP node (see Sect. 2.4.1) with the same type of CPU and otherwise similactehatas

as one SuperMUC node Each MPI process was explicitly pinned to its ihysice using
sched_setaffinity() within the code. All benchmarks were run inside a single island to
guarantee that communication is performed through the fully non-blockingefa

Two geometries were selected for the benchmarks. The rstis an emptyeheonsisting
only of uid nodes except for the walls. The second geometrydaeked bed reactoi.e., a tube
lled with spheres (see Fig. 7.1). It represents a real world applicatise éor ow simulation
with this type of code. Both geometries have dimensions of 4080 80 nodes, resulting in
25 10° uid nodes (3:8 GB lattice+ 1:8 GB adjacency list) and 190° uid nodes (2:9 GB
lattice+ 1:4 GB adjacency list) for the channel and the reactor geometry, resplgctiv

With these dimensions both geometries t into the NUMA locality domain of one docke
on SuperMUC. For strong scaling runs the reactor geometry was etler@®00 160 160
nodes, as the smaller lattice ts in the L3 caches of 128 compute nodes anel aiite large
reactor geometry consists of 150° uid nodes and requires around 24 GB of memory for the
lattice and around 11 GB for the adjacency list.

The ILBDC code is purely MPl-parallel. All single-node measurementseviieus per-
formed with intra-node MPI only; no signi cant changes are expectachfa hybrid MP1/OpenMP
version, but this will be investigated in the future. Details abut the MPI péirteon can be
found in Sect. 7.5.1.

7.2 Chip-level performance and scaling
As a motivation for a thorough performance analysis, Fig. 7.2 shows thesotket scaling

of the empty channel test case with the AA pattern for the two “extremal” clajuencies of
2:7GHz and 12 GHz, respectively, in three variants: AVX-vectorized (full 256-béds/stores),

113

Figure 7.2: Intra-socket i 1

. V—WV¥ 2.7 GHz AVX
strong scaling of the AA 125| |[V—¥ 2.7 GHz SSE
. V—YV 2.7 GHz scalar 35.3 GB/s
pattern LBM implemen- | |@—@ L2 GHZ AVX| ———"=2= oo mm e o= |
i O—0 1.2 GHz SSE
tation for an empty chan- 10| [6—012 GHz scala
28.9 GB/s

nel, comparing AVX,
SSE, and scalar code atz
the clock frequencies of ' 75
2:7GHz (triangles) and
1:2GHz (circles). The
corresponding memory o
bandwidths are indicated

for selected cases. 25

UP/s]

al
o

erformance [M

SSE-vectorized, and scalar. The data indicates that SIMD vectorizai®a karge impact in
the serial case; in fact, the serial performance differs by more thart@a faf two between the
AVX and the scalar code. At 2.7 GHz, the gap closes as the number o isoircreased. On
the full socket the scalar code is hardly 10% slower than the AVX variame. |atter, however,
reaches the same level already with four cores, which opens an opippftur saving energy
by leaving cores idle.

At 1.2 GHz, the situation in the serial case is similar, but on a lower level. Tlygesaore
performance of all code variants is roughly proportional to clock spdediever, only the AVX-
vectorized code shows a saturation pattern, while the SSE and scalatvadale linearly up
to eight cores without reaching a bandwidth barrier. Hence, lack abrieation (“slow code”)
cannot be compensated by using more cores in this case. Moreover, tiraumamemory
bandwidth is correlated with the core clock frequency and varies byt&8a across the full
frequency range [42].

Figure 7.3 shows a socket-level performance comparison of the scalareatorized AA
pattern implementation with the pull-split pattern for both application cases (ematyehvs.
packed reactor) at a clock speed of 2.7 GHz. Although there is a laagtadin of obstacles in
the packed reactor geometry, their presence hardly in uences therpenice, independent of
the propagation pattern. This shows the clear superiority of the sparse lafpiesentation in
the ILBDC code over the simple marker-and-cell approach. When a feagion of the cells
are obstacles, marker-and-cell inevitably loses performance beabaik®mv vectorization ratio,
leading to late (or no) saturation. We also see that the pull-split pattern i@mptetitive, since
it cannot by far saturate the memory bandwidth of the chip.

The intention of applying the ECM model is to gain deeper insight into this pegnce
behavior, and to pave the way for a practically useful energy consumgtialysis.

114

Figure 7.3: Intra-socket
1 scaling at 2.7GHz: AA
pattern in AVX and
scalar variants (triangles)
and pull-split pattern
with AVX vectorization
with and without non-
temporal stores (squares),
for the empty channel
application case (solid

100

75

50

Performance [MFLUP/s]

dashed: reactor

¥—¥ AA AVX channel lines). The performance
25 V— AA scalar channel
m— Pull-Split AVX NT channel numbers for the packed
L Pull-Split AVX noNT channel 4 reactor case are shown
0 with dashed lines.
1 2 3 4 5 6 7 8
Cores

7.3 ECM model for the ILBDC code

7.3.1 In-core analysis

An IACA [38] throughput analysis for the AA pattern kernel shows ttiret ADD port of the
SNB core is the sole bottleneck of core execution for all variants (s@&&t, AVX), as well
as for even and odd time steps, and that one loop iteration (four updates\Withtwo with
SSE, one for scalar) should take about 135 cycles. In contrast, aacptith analysis reports
somewhat longer execution times due to dependencies in the instruction @ndwla The
critical path depends on the type of time step and has a maximum length of 1168 ¢s/en,
AVX), 212 cycles (odd, AVX), 160 cycles (even, scalar), and 18@les (odd, scalar). This
prediction roughly coincides with direct measurements, which we will usenaspat in the
following (160, 212, 158, and 160 cycles, respectively). These eusnimust be multiplied by
two (for AVX) or eight (for scalar) for getting execution times for one wfitvork, i.e., a cache
line (see the table in Fig. 7.4).

The analysis for the packed reactor case is surprisingly similar: Thetawenstep does
not change at all, since no index access is required. In the odd time @gpwhben assuming
no potential for vectorization (as would be the case for an extremely pg@ometry) there is
ample room for hiding the additional loads for the index array due to the bettkeon the ADD
port. This step is necessarily scalar, however, so the execution time isfabotimes longer
per unit of work. The actual impact of this slowdown depends on theidraof vectorizable
updates. In the applications covered here, this fraction is roughly 97v%hdoempty channel
and 92% for the packed reactor case, leading to a very small performanaéy for the latter,
which was already observed in Fig. 7.3. Hence, only the empty charseixgt be considered
for the rest of the chip-level analysis.

7.3.2 Data transfers and saturation behavior on the chip

The ECM model requires the maximum attainable memory bandwidth as an inpotgter. It
is known that this value depends on the number of parallel read/write stesanedl as the CPU

115

Listing 7.1: Parallel multi-stream update benchmark with 19 stre&hischosen such that the
arrays do not tin any cache.

double a01[N], aO2[N],..., al9[N], s=2.0;
#pragma omp parallel for
for(int i=0; i<N; ++i) {

aolfi] = s = a01[i;

a02[i] = s * a02[i];

a19[li.]. S * aloli];

W N O g b W NP

}

clock speed. From a data transfer perspective, the AA-pattern impletioenté the D3Q19
LBM algorithm reads 19 arrays from memory, modi es their contents, arites/them back.
In order to get the maximum memory bandwidth on the socket we hence usallelpaulti-
stream array update benchmark (see Listing 7.1). It is designed to mimic thetdzaming
behavior of the LBM algorithm.

Figure 7.5 shows the achieved memory bandwidth on one SNB socket wyihgaumber
of threads (cores) and clock frequencies between 1.2 GHz and 2.ghk$zturbo mode). As

Registers | even | odd
AVX | 320 cy 424 cy
scalar | 1264 cy 1280 cy

L1D

18 JArlg 2-19-2cy[+18cy]=76cy [+ 18 cy]

18 ?19 2-19-2cy[+18cy]=76cy [+ 18 cy]

(2-19-64)B - 2.7 Geyls / 36 GB/s) [+ 43 cy]
A =182 cy[+43cy] @ 2.7 GHz
%18

1

or
(2-19-64)B - 1.7 Gey/s / 33 GB/s) [+ 30 cy]

Figure 7.4: Single-core ECM model of the AA propagation pattern for DBBQBM (eight
FLUPs). Even and odd time steps have different in-core timings. One aefesents the num-
ber of full cache line transfers indicated; dashed arrows stand fowige (32-byte) transfers
and are required for loading the adjacency information in the odd time step venorization
is not possible. One half-wide cache line transfer takes one cycle. Nanmbgguare brackets
denote contributions from the adjacency list, and can be ignored for thiy etmmnel case.

116

Figure 7.5: Multi-stream
40 | “Standard update kemnel (saturation) T u pdate benchmark per-
formance scaling on
I 1 one SNB socket with
@' 30 different CPU frequency
m .
O, settings. 19 update
£ I 1 streams were run per
220 oo =12GHz _thrgad. The dashgd line
= f=1.4 GHz indicates the maximum
@ A—Af=17GHz 1 achievable bandwidth
++f=23GHz : : :
10 v—vf=2.7 GHz with a simple single-
> Turbo Modg array update kernel.
0 1 2 3 4 5 6 7 8

Cores

predicted by the ECM model, the single-thread performance is proportotia clock speed,
and the saturation point is shifted to larger thread counts as the clock dpeexhses: While
saturation is reached near three cores with turbo mode, up to six coreseated at the low-
est frequencies. Due to the large number of read/write streams, the maxiendwildth is

signi cantly lower than with a standard single-stream update kernel &thBhe in Fig. 7.5).

At the same time, the maximum (saturation) memory bandwidth drops by about \2&5%he

whole frequency range; there is another substantial drop when usifiglitkocket (eight cores)
at the lowest frequency. As of now there is no conclusive explanatiothése latter effects.
They do, however, in uence the considerations on energy dissipatioich will be discussed in
Sect. 7.4. In the following, the maximum bandwidths as measured at the tiesgesguencies
will be used as an input to the ECM model in order to calculate the number kefscyequired

to transfer cache lines between memory and L3 cache.

Figure 7.4 shows the complete ECM model analysis :@t d&d 17 GHz, respectively.
The cycle counts in square brackets are contributions from loading faeemdy informa-
tion (dashed arrows), and can be ignored for the empty channel Theeachievable memory
bandwidth (36 GB/s and 33 GB/s, respectively) and the clock speedteaterodel when calcu-
lating the cycles for data transfers to and from main memory. Data trangfevedn adjacent
cache levels are assumed occur at 32bytes per cycle, so these ayuie ae independent of
the clock frequency. The various execution and data transfer times ntayri®ned in different
ways to arrive at a performance prediction for the serial program:

1. The most conservative (worst case) assumption is that none ofdbioséutions overlap
with each other, so that the execution time is equal to their sum (e.g., IBHB2=654
cycles for the even time step with AVX atZ2GHz).

2. The most optimistic assumption is that the cycles in which the L1 cache is oddupie
loads and stores from the core cannot be used for reloads and evi@stiat all other
contributions do overlap.

3. Lastly one may assume that the pure in-core execution part (evergkiegt loads and

117

Figure 7.6: Performance !%°
of the AVX implemen- L
tation of the AA pat-

tern (empty channel) at
2:7GHz (triangles). The
ECM model predictions
for AVX with full over-

lap assumption (dashed
line), no overlap (dotted-

100

e [MFLUP/s]
~
Ul

o n

. V—V AVX
50 4 —— ECM AVX L1 overlap

dashed line), and partial § | / == ECMAVXbest |

forman

overlap at L1 (solid line) {’
are shown for compari- 2°
son. i

stores) can overlap with loads and evicts from/to the L2 cache, but thatitheo overlap
beyond that.

None of these assumptions coincides with the roofline model, which requigeactiievable
memory bandwidth for each number of cores as an input parameter. Tkenidgiel only
requires the maximum (saturated) bandwidth, and predicts the scaling.

7.3.3 Validation of the performance model

Figure 7.6 shows a comparison of the measured performance for thevAetdrized AA pat-
tern implementation with the three models described above. Apart from thenragiand the
saturation point (3—4 cores), the third assumption provides the best etddta.

It was already shown in Fig. 7.3 that the pull-split propagation pattern (withveithout
NT stores) is not competitive since it cannot saturate the memory bandwiitithugh the NT
version has almost the same computational intensity as the AA pattern. This falumainly
be attributed to the fact that the pull-split variant cannot be ef ciently Stvatorized on the
Sandy Bridge architecture due to the indirect access in every lattice sié¢eupgdore speci -
cally, the loop which loads the neighboring distribution functions and stotesmediate results
into temporary buffers is scalar. The pull-split pattern will thus be ignomeah fhow on, and the
focus of the following discussion will be on the AA pattern.

7.4 Power model

Many applications in computational science are memory-bound on modetassas, LBM

being but a prominent example. The prevalent questions arising in thisccang=(i) How can

a parallel code be run so that its overall energy consumption until a solsti@ached can be
minimized, preferably under the constraint of constant time to solution? ankdi) can a

parallel computer be operated in a production environment so that ogevedr dissipation is
minimized or kept below a given maximum?

118

—=e 1.2 GHz AVX =
A—4 2.0 GHz AVX -—- E/P= consﬂ.
v—y 2.7 GHz AVX
- »—p Turbo AVX B
open symbols:
scalar, full socket >
1.0
\4

0.5

Energy to solution [arb. units]

(a) model

0.0

0

20

Il
40 60

80

Il
100 12(

Performance [MFLUP/s]

20

40

60

80

100 12

Performance [MFLUP/s]

Figure 7.7: Energy to solution vs. performance (“Z-plot”) of the AVXci@ized LBM AA
pattern implementation (empty channel case) of one SNB socket for diffeloeck frequencies
(lines and lled symbols). The number of cores used is the parameter admigdata set. (a)
Predictions by the ECM performance model and the chip-level power mdjéiqasured data.
For comparison, the big open symbols mark the energy and performanae sdfatar code on
a full socket. The shaded area is the region de ned by absolute minimurgyeaied saturated
performance for he AVX versions. The dashed line is the line of constargy-delay product
that hits the saturation point of the lowest-frequency run.

We concentrate on the rst question here, and employ the ECM model tageitiethe
multicore power model developed in Chapter 4. For simplicity we neglect ther lpmaer
coef cientWj in (4.4), since it is usually small comparedwg andWs.

7.4.1 Energy to solution for the LBM solver on the chip

The ECM model and the power model enable a combined analysis of theyaratgerfor-
mance properties of the LBM algorithm. It is useful to put energy andopmdnce data in

a single graph, which we call a “Z-plot.”Energy to solution is plotted versus performance,
with the number of cores used as a parameter within a data set for a specjuehcy, SIMD
vectorization variant, propagation method, or other property. This hes tene in Fig. 7.7a
for three different clock frequencies and turbo mode, using the AA mpaiteAVX and scalar
variants. In turbo mode, each data point was computed using the maximumafimgaency
for each number of active cores. The corresponding measuremersisavn in Fig 7.7b. Note
that we always show energy to solution in arbitrary units, but the valumsrshre coherent for

2The “Z” goes back to Dr. Thomageiser, who rst had the idea to present performance and energyrodtis
way.

119

Figure 7.8: Same data as 25|
in Fig. 7.7b but with a
power baseline of 50 W
added to the socket. Theg 291~

squares:
best pull-split, full socket

. . = .
circle marks a possible 3 | o open symols: | |
. . g scalar, full socket
operating point for al- &
.. c 1.5 > _
most minimal energy £
with a tolerable loss in § | 1
o —® 1.2 GHz AVX
performance. For refer- < 10 |a—aA 2.0 GHz AvX -
he b I l < v—wv 2.7 GHz AVX
ence, the best pull-sp |t§ i — Turbo AVX |

data (vectorized, full
socket) for 1.2, 2.0, and 951 7]
2.7GHz is also shown L i
(lled squares).

00 | | | | | | |
0 10 20 30 40 50 60 70 80 90

Performance [MFLUP/s]

| |
100 110 120

a speci ¢ problem size (geometry and number of iterations).

The models are able to describe the qualitative features of energy dodnpence. The
observed deviations are caused by (i) the inability of the ECM model to aietyidescribe the
performance behavior in the vicinity of the saturation point, (ii) the inacguiradetermining
W, andWp, and (iii) the approximation of linear power behavior with respect to couaceven
with saturated codes like LBM at higher clock speeds. In addition, turbcendogs not t
perfectly into the model (4.4) since the SNB chip can operate beyond its théesign power
(TDP) for a limited amount of time [41]. This is why the deviation from the measerds is
especially large with turbo mode (right-pointing triangles in Fig. 7.7). Lookirtg@minimum
energy point with respect to clock frequency and number of cores iretiime where perfor-
mance is not saturated, we see that this point moves to smaller frequeneycasdiftount goes
up, as described by (4.11).

In general, all other things being equal, a faster sequential code (Astéad of scalar)
saves energy. Comparing energy to solution for the AVX codes at thepective saturation
points, we can identify an “optimization space” (shaded area in Fig. 7.7ihich the desired
optimal operating point should be found. Depending on the emphasis ams teaput on
energy minimization vs. maximum performance, this point may be in the lower leiecof
the area. In this case one would use all cores at the lowest frequiei20gKlz, lled circles)
and sacri ce about 20% of performance compared to the right edge@frtia, which is de ned
by the saturation point at higher frequencies (2.0 GHz to turbo modehanolear conclusion
is that turbo mode is of no good use for the LBM implementations studied hetieentom a
performance nor from an energy point of view.

There is no single, well-de ned criterion for identifying the optimal operafjnt on the
chip level. One may certainly employ cost models such as the energy-deldyagpr(ratio of
energy and performance), but this is only one possible choice. Fererefe we have included
a line of constant energy-delay product in Fig. 7.7b. From the data we ¢@lected, using
5—6 cores at 2.0-2.3 GHz seems to provide a good compromise betweemyaerte loss and
energy consumption (“as far on the lower right as possible”).

While the model and the measurements yield a consistent picture on the chiji ieva€ar

120

that the chip contributes only a (however signi cant) part to the overallggaconsumption of

a compute node. As mentioned in the derivation of the power model, the réds af/stem
should be taken into account when assessing the real energy demamahiog an application.
We do this by setting\p = 73W for the chip-level baseline power, which amounts to roughly
300 W of node power (assuming two-socket nodes). This is also the nadasured during a
LINPACK run on SuperMUC [103]. With this change we can offset thergn measurements
from Fig. 7.7 to arrive at the data shown in Fig. 7.8.

As expected, the modi ed baseline power leads to a reduction of the vesticedd between
the measurements for different clock frequencies. While it was possithigtve chip-level (i.e.,
small)\Wp to have a situation where energy to solution was heavily in uenced by émecuand
SIMD vectorization even at a speci ¢ performance level (with a sprdaghdo 2 within the
optimization space shown in Fig. 7.7), a laiyg reduces the spread to about 25%. Hence, a
large baseline power favors the “race to idle” principle where the moskintial parameter is
performance; optimizations that favor a larger saturation performancé és the AA propa-
gation pattern, or blocking schemes which increase the computational injdvesrs the most
potential for saving energy. In addition, optimized clock speed and atieduof the number
of cores used can yield second-order but still signi cant savings. Withertransformed opti-
mization space (shaded area in Fig. 7.8) we can identify a possible optinratiogepoint at
about 2.0 GHz and six cores, with almost minimal energy to solution and arpenice loss of
about 6% compared to the highest possible saturation level. In comparisomaige strategy
of running on all cores with turbo mode enabled and a scalar kernel, maoretiesthird of the
energy can be saved.

The “race to idle” principle with respect to maximum code performance is evidem a
comparison with the energy-performance data for the pull-split patterrd(dtpiares) in the best
variant (SSE or AVX vectorized, non-temporal stores, full socketiiee different frequencies
in Fig. 7.8: The pull-split pattern can neither compete with AA in the performaiacen the
energy dimension. Using AA, almost a factor of two in energy and 30-408ndime can be
saved in comparison to pull-split.

7.5 Highly parallel LBM simulations

7.5.1 MPI parallelization in ILBDC

ILBDC uses an MPI parallelization with a static load balancing scheme. Theespgpresen-
tation of the lattice is cut into equally sized chunks, so that each MPI ramhvescthe same
number of uid nodes (probably off by one). The interfaces of suehegated partitions can
be arbitrarily formed with different numbers of partition neighbors, asitngle cutting of the
sparse representation does not consider any topological informatiowevdr, in the case of
the channel and reactor benchmark geometries this method results onhDrdademposition,
where each rank only needs to exchange ghost PDFs with its two dirigttboes. A more
extensive description of this approach can be found in [104]. We digtrithe ranks linearly
across the compute nodes, so that consecutive ranks are locatby oedhe same node. In
case of strong scaling the communication volume of a process stays cosstaateach rank
only gets a smaller segment of the long geometries when the number of @®gess up.

The packed bed reactor geometry was used for all the multi-node expésinserce it is
the application scenario that is relevant in practice. We have shown dhdigihe node-level

121

1.0

o
©

o
0

Parallel efficency

0.7

Y o A I S N I
4 8 16 32 64128 8 16 32 64128 8 16 32 64128 8 16 32 64 128

Nodes

0.6

Figure 7.9: Parallel ef ciency of the large packed bed reactor applicatase (8000 160
160 lattice nodes) for different frequency settings and different rmumbprocesses per chip
(PPC) on up to 128 nodes of SuperMUC. The ef ciency calculation veagb on the four-node
performance baseline.

performance (and thus power) properties are very similar to the emptyehaase. All multi-
node measurements were conducted on a single island of SuperMUC. Isottha “turbo
mode” cannot be activated on SuperMUC, so we stick to the xed fregjasrof 1.2, 1.7, 2.3,
and 2.7 GHz in the following.

7.5.2 Performance and energy at strong scaling
Parallel ef ciency and communication performance

All variants of the AA pattern scale well up to 32 nodes (512 cores) atedjuencies, and
parallel ef ciency only starts to degrade below 90% beyond that poinaliiSg experiments
were performed on up to 128 nodes (2048 cores), since this is whaee\ariants start to show
ef ciencies as low as 60%. We assume a sensible limit of 50—-60% of par&lb&trecy for
production use in a computing center environment. A lower ef ciency, whicist be regarded
as a waste of resources, should be justi ed by special needs, fonaestehen large aggregate
memory is required. In Fig. 7.9 we show the parallel ef ciency of the stisgading runs versus
the number of nodes at the four chosen frequencies and with betweeand eight processors
per chip (PPC). Since the application case is too large to t on a single radidef ciency
numbers were normalized to the four-node run.

Usually one would expect the parallel ef ciency to increase as the t@a#-performance
goes down, because communication and synchronization overheagimdoéess important

122

T T T T T LR T 17171 Flgure7_10: IMB

25001 | 49 1.2 GHa PPNoT sendrecv benchmark on
—® 2.7 GHz PPN=16
- | e—e 1.7 GHz PPN=1¢ two SuperMUC nqdes at
3000| |4—< 1.2 GHz PPN=16 1:2 and 27 GHz with 16

(lled symbols) and one
process per node (open
symbols). MPI ranks
were mapped to cores
for minimum inter-node
trafc. The shaded area
indicates the range of
message sizes for the
application test case
v e ol ol (reactor).

%00 1K 10k 100 k 1M 10M
Message size [bytes]

2500

Bandwidth [MB/s]
N
o
o
o

1500

1000

500

when the pure compute time goes up. On SuperMUC, the opposite is the tesmiffimum
parallel ef ciency (at 128 nodes) varies between 76% and 63% (dépg on the number of
cores per chip) for 2.7 GHz, but between 69 and 61% at 1.2 GHz. Wehuathat there must
be a frequency-dependent factor which impedes scalability whenexmenanication overhead
plays a signi cant role.

In order to explore the reasons for this effect we have conductestiexgnts with “sendrecv”
from the Intel MPI benchmark suite (IMB) [105], since it mimics the ringshiie halo-
exchange communication pattern of the ILBDC code. Each MPI procebsiages data with its
neighbors: MPI_Sendrecv(to right neighbor, from left neighbor) . The
benchmark reports the available communication bandwidth per procesgy. In.FO we show
the results for two SuperMUC nodes in the two corner cases of onega¢P®N=1) and 16
processes per node (PPN=16) for the two extremal frequencies ahd.2.7 GHz. The place-
ment of the MPI ranks was done in the same way as for the ILBDC benckmgsighboring
ranks were “packed” to the same node to minimize inter-node traf c.

Although both scenarios show a dependence of the effective MPMbdtidon the clock
speed, this is especially pronounced at PPN=16, and we see a hsakfi@bout 35% in
communication bandwidth within the region of message sizes relevant for BieGlLpacked
reactor benchmark (shaded area). Moreover, the bandwidth of tRelfDB interface cannot
be saturated even at the highest frequency setting with PPN=16. We tattoibilh effects to
the dominance of intra-node communication, which has a strong dependermbeck speed.
In contrast, the saturated LBM performance with the AA pattern and AVXovezation only
drops by about 20% over the whole frequency range (see Fig. 7h23.eXplains the stronger
breakdown of parallel ef ciency at strong scaling for low clock spaad for a large number of
cores per chip.

Energy and performance at scale

The question remains whether one can extrapolate the ndings abowgyetzesolution and
performance from the chip to the multi-node level, and especially whethelestoge opti-
mizations, notable SIMD vectorization, have a similar impact. Figure 7.11 shggregated

123

Figure 7.11: Multi-node 14 \ \ \ \

i r | e—e 1.2 GHz q
energy to solution vs. L 12on: v opcs
performance for the AA : +—¢23GHz

. L | v—¥ 2.7 GHZ i
pattern AVX LBM imple- ° PPC 7

H v
mentation (large reactor c 1.0 PPC 6
case) across clock speeds2 o pPC 4

and node counts. The pa-3 g 08

rameter along each curve s - H}. __} "
0.6 }

is the number of pro-
cesses per chip (4 ... 8).

Energy t

For comparison, the open %*

symbols show data for 32 nodes 64 nodes 128 nodes .

the scalar implementation 02

on full sockets. I | | | | | | | | |
0'00 2.5 5 7.5 10 12.5 15 17.5 20 22.t

Performance [GFLUP/s]

socket-level energy (as measured via RAPL) vs. performance with #/Xhe three node
counts (32, 64, and 128) at which parallel ef ciency is between 90688d. Along each curve,
the number of processes per chip is increased from four to eight, ahibthest energy point at
the top of each curve is at PPC=8. For reference the correspondiagtienergy data points for
the scalar implementation are included (open symbols). The overall rise rigyetoesolution
with growing node count is a trivial consequence of the decreasirai@laf ciency.

The most striking difference to the chip-level results is the notable perfarendegradation
after the saturation point, especially at the larger node counts (32 andlt6#) caused by
the drop in ringshift bandwidth (as described in the previous section) witivigg PPC, and
directly leads to a fast rise in energy to solution, much steeper than woulpketed by the
power model without communication component. Hence, it is even more cimdta highly
parallel case to select the optimal operating point, since each expendableosts an over-
proportional amount of energy: At 128 nodes and 2.7 GHz, the redhuictienergy consumption
when going from the full socket to the saturation point is over 40%, blyt amout 25% on a
single chip (see the 2.7 GHz data in Fig. 7.7b).

The strong disadvantage of scalar execution can also be seen on thegaigidlel level
(open symboals in Fig. 7.11 show the “naive” operating point of PPC=8hfsicase). Since more
processes are needed to reach saturation — if this is possible at all leytdewn at larger PPC
contributes strongly to the low performance and high energy consumpti®a. chnsequence,
a well-vectorized LBM code is instrumental for optimal energy to solutionti@darly in the
highly parallel case when communication plays a noticeable (but not domnodet)

The question remains how these ndings change if a realistic baseline pewsed. Fig-
ure 7.12 shows the same data as Fig. 7.11 but with 100 W of constant pduext per node.
The results are very similar to the chip-level discussion in Sect. 7.4.1 aBthdifferences in
energy to solution are damped by the larger idle power, but there is still mane3®o gain
between a naive scalar code run with PPC=8 and the possible optimalioggmaint (marked
in Fig. 7.12) with PPC=4 and 2.3 GHz. In contrast to the case where onlyhihepower is
considered, the lowest frequency setting of 1.2 GHz is very unfalarabe large performance
degradation together with the communication bandwidth breakdown problth@farge base-

124

Energy to solution

N
N

I \ \ \ \ \ 1 Figure 7.12: Same data
—® 1.2 GHZ i i I
20| o eisa opC as in _Flg. 7.11_but with
18] | % 3 g:z o a realistic baseline power
: PPC 7
ol T oce 1 0f 100W added per node.
L ppcd4 The green circle marks a
140 -ij. be 4 possible optimal operat-
1.2 ing point.
1.0
0.8
0.6
0.4
L 32 nodes 64 nodes 128 nodes E
0.2
0.0l \ \ L I L. | ||
0 2.5 5 7.5 10 125 15 175 20 22t

Performance [GFLUP/s]

line power prohibit the use of very small frequencies, even if energpltdgien were the only
relevant metric. On the other hand, energy is practically constant betwéand 2.7 GHz when
the best PPC value is chosen, but performance is boosted by 15% mbde8

Power capping

Up to now we have only considered energy or time to solution, which areirdgrianportant

factors for current and future high-performance systems and theis.uslowever, designing
data centers with minimum overhead for infrastructure is another crucél gince the dy-
namic power of processors and systems may vary signi cantly, powgiysapd cooling must
be planned to accommodate the “hottest” operating point, which is almost meadred. Sig-

Power dissipation per node [W]

250

200

150

—® 1.2 GHz
100 == 1.7 GHz
| |e— 23GHz
v—v 2.7 GHz
50
O 1 I 1 I 1 I 1 I 1
0 5 10 15 20

Performance [GFLUP/s]

Figure 7.13: Power dissipation (per node, including full
baseline power) of the AA pattern AVX LBM imple-
mentation (lled symbols) at 128 nodes across clock
speeds and number of cores per chip (PPC=4...8 from
top to bottom along each curve). For comparison the
full-socket scalar implementation is also shown. Dif-
ferent power caps are indicated by horizontal lines.

125

ni cant cost savings are possible if the power dissipation of a systenpisechto a value that
is acceptable for most of the applications, probably to the point wherergapan have prece-
dence over lowest energy to solution. For each particular applicationp#rating point should
then be chosen so as to get best performance within the power cap.

Figure 7.13 shows the performance and power dissipation per nodelf8-aode run of
the AA pattern LBM implementation with different PPC values and clock spe&dsossible
power cap of 202W can be met by either running with seven core2 &Hz, with six cores at
1:7 GHz, or with four cores at:3 GHz; the latter corresponds to the suggested optimal operating
pointin Fig. 7.12. Comparing the options closest to the capdhd 23 GHz, respectively), the
faster clock speed is clearly favorable since it provides about 8% nesfermance. However,
using ve cores instead of four will exceed the power cap by more thaW Hb a minor per-
formance gain of less than 3%. The full-socket scalar run (open ayisaalso below the cap,
albeit at an unacceptable performance loss.

Of course, such considerations depend very much on the particularofghe cap: Ata cap
of 250W, for instance, there is almost no restriction and one can go fanmaxperformance
(ve cores at 23GHz). At a very stringent cap of 175W there is no choice but to run veitieis
cores at 2 GHz, which is certainly far from the optimum in terms of performance andggne
This kind of power capping would be too tight.

In conclusion, staying inside a power cap requires the same awarehtbhes power and
performance properties of an application as optimizing for performand®iaenergy, but can
lead rule out or allow certain operating points which would or would not keseh without
power capping.

7.6 Conclusion

7.6.1 Summary of results

The scalar and AVX-vectorized single-core performance and intiasaturation of an LBM
implementation with AA propagation pattern was successfully modeled using thieni@ziel,
and compared to the popular “pull-split” propagation model. The superidrityecAA pattern
in terms of performance and memory bandwidth saturation was demonstradetivas shown
that “best possible” performance is achieved on the chip with properl-®sctorized code,
meaning that bandwidth saturation is reached at the lowest number of cores

The energy consumption of the LBM algorithm with AA propagation patternthves mod-
eled on the chip level for a range of clock frequencies. Together witB@¥ model a coherent
picture of the performance and power properties of the LBM algorithm echip was gained,
and good qualitative agreement was achieved with measurements. A régiptinoal operat-
ing points w.r.t. clock speed and number of cores was identi ed. The systeaiseline power
(power consumption of everything apart from the CPUs, i.e., memory, etsprgetwork, disks,
etc.) was taken into account and shown to have a damping in uence on tieedides in energy
consumption (as predicted by the power model). Even then, potentialyesevrings of up to
50% could be achieved compared to a naive operating point with the infaribsplit propa-
gation model. Single-thread code performance and the selection of an optimber of cores
per chip (the latter depending on the former) were shown to have thetlargeshce on energy
consumption.

126

In highly parallel LBM runs, a loss in parallel ef ciency was observedan the CPU clock
speed was reduced. This unexpected result could be explained long dependence of effec-
tive inter-node and intra-node MPI communication bandwidth on the cloaddséene effective
bandwidth also shows a strong negative correlation with the number of MPégses per node.
Hence, non-negligible MPI communication introduces a core-bound cosmpamto the per-
formance characteristics of the LBM algorithm. As a consequence, minireeleto solution
in the highly parallel case depends even more strongly on the properecbithe operating
point, especially on the number of cores per chip (and thus the singledtheeformance). Pos-
sible power-capping conditions may modify this decision, especially whenaieyery loose
or very stringent. In any case will a simple non-re ective reduction ofdleek speed reduce
performance and consume more energy at the same time.

7.6.2 Reassessment in view of performance patterns

The LBM algorithm is traditionally assumed to be limited imgmory bandwidth saturatioon
all processor architectures. This assumption was shown to be valid witlh.BiC code on
the modern Sandy Bridge processor only when properly SIMD vecthri¥éith scalar code,
or with a propagation pattern that inhibits vectorization because of theesladtise represen-
tation, memory bandwidth saturation could not be achievediarited instruction throughput

or ineffective executioapplies. The fact that the scalability across cores is much better in this

case is of no signi cance.

The ECM model and the power model were shown to be in line with measurenoeoss a
a range of clock frequencies. Going to strong scaling across hoddsp\wrhead addedade
compositionpattern, which made the code partially core-bound, along with conseggsiéoic
energy consumption. Just as in the case of the backprojection algoritdimdsin Chapter 6, a
combination of patters applies. However, these are not encounteredsartieeloop here but in
different code parts (lattice updates vs. MPI communication).

127

128

Chapter 8

Conclusion

This chapter summarizes the main points of this treatise and gives an outloasiblpduture
research. Note that a precise account of all contributions can bd foiBect. 1.3.

8.1 Summary

This work demonstrates the use and usefulness of performance modelddadlin an iter-
ative, structured performance engineering process when assga®dgting, and optimizing
implementations of algorithms in computational science. Using the process, dscigtitists
can arrive at a well-de ned notion of the meaning of “best performaimestead of blindly ap-
plying code changes in hope for performance improvements. One ciglgiaabdf the process is
that thefailure of a model should be embraced as something that challenges assumptions and
paves the way for new insights. Although the process was developeidcgig for node-level
performance engineering, its principles are universal.

After a brief coverage of computer architecture in Chapter 2, the prirsciflevhite-box
performance modeling on the chip level were presented in Chapter 3. Whitperformance
modeling uses abstractions in different levels of sophistication to desceliaténaction of soft-
ware with hardware. The prime example for this approach is the well-knowffime model,
which predicts the performance of loops by reducing the interaction to tasilge bottlenecks:
in-core performance and data transfer bandwidth. Hence, the madsbisrce drivenbecause
it is the exhaustion of either one of those bottlenecks which determines ttimeunt a loop.

It is also the simplest model that assumes the notion of high performance toghasicom-
puting at a bottleneck The ability of the roofline model to predict performance and to guide
performance analysis and optimization were demonstrated using simple examples

The roofline model builds on four critical assumptiobsttleneckoverlap saturation and
streaming, which limit its applicability but also allow for a clear account of when and why
the model will probably fail. The ECM model can be regarded as a re némitine roofline
model. It only keeps the streaming assumption jpredlictsthe occurrence of saturation effects,
overlapping of execution and data transfers, and the hitting of bottlermscieking the time
contribution of data transfers throughout the memory hierarchy into atcdti is the only
approach to date which uses a simpli ed machine model for the prediction cfitigée-core
performance and scaling properties of loop kernels on a multicore chige Siot all details
of a microarchitecture are known (or obtainable), the ECM model is notegnpiredictive. It

129

rather provides a prediction interval, in which the measured performdmmédsbe found. A
comparison of measurement and prediction then hints at possible re nements

In Chapter 4 a phenomenological multicore power model was developédh wdn be used
to select the optimal operating point in terms of clock frequency and nunfloeres used for
minimum energy to solution. This model is not an immediate part of the performengie
neering process, but it can be expected that CPU cycles will soorertbelonly cost function
that scienti ¢ users on large-scale systems have to take into account. f@me main prereg-
uisites of the model is that code performance is the paramount in uenciiaol@ for energy
consumption; all other measures are subordineded race to idlgrinciple). The model dis-
tinguishesscalablefrom saturatingcode. The latter hits a bottleneck when the number of cores
is increased, while the former does not. They both show very diffeneatgg consumption
behavior with respect to the parameters, which makes optimizing for eneagyriplex appli-
cations a challenge. For scalable code, the model predicts that energyriszathwhen using
all cores at an optimal frequency, which may or may not be actually avaitatite system. This
frequency depends on the ratio of static to dynamic power consumptiorcaantthus be large
when the system is “hott{ock race to idlgrinciple). There are some interesting consequences
for system design in this limit: Depending on the static (or baseline) powecamdistinguish
design space limits for “hot” and “cool” systems, which can be identi ed withy& “oxen and
chickens.” For saturating code, the situation is simpler, because the minierglyesirategy is
to use as many cores as required for saturation, at the lowest possiplericy. Baseline and
dynamic power do not play a role.

Chapter 5 described the design of the pattern-based structured netlpddormance engi-
neering process. The main goal of this approach is to take guesswiook lnigh-performance
code development. Starting from a rst version without performance ipetiewas shown how
to apply the process to the textbook example of an OpenMP-parallel threasional Jacobi
smoother. Already at this stage the process is useful enough to be agpliealistic prob-
lems, but a signi cant enhancement is addeddeyformance patternsA pattern is identi ed
by its signature a combination of observed performance behavior (e.g., intra-chipbdligla
or dependence of performance on problem size) and hardwakamperice metrics. A perfor-
mance model can then be built for every loop in the code from the correethiidd pattern
(or combination of patterns) and input from code analysis, hardwaecteristics, and prob-
ably microbenchmarking. Hardware performance metrics are usedlfdatiag or disproving
the model. If the model is valid, optimizations can be targeted, which may or mashanoge
the applicable pattern(s). In any case, the model gives a prediction pbfisible performance
bene t. If the model is not valid, it must be adjusted, either by changes im{ié data or by
choosing an entirely different pattern.

Chapter 6 described the application of performance modeling and engiptea computed
tomography backprojection algorithm on current Intel x86 multicore Ee@es. A rst attempt
with the roofline model predicted a strong bandwidth limitation, but measuremigyesdsfar
behind this expectation. A more thorough code inspection (after some “corserse” and
low-level optimizations) revealed that the bandwidth limitation did not apply buitcthéde exe-
cution in the core is the actual bottleneck. In view of this insight it could bevetibat the CM
performance model is able to describe the performance and scalabilityefeafuhe algorithm,
and that only one out of the our considered processor architectubeséswidth-limited for
this algorithm. Consequently, a popular optimization often applied to loop negstalsblock-
ing) was proven to be relevant only on this architecture. The analysisiatsavered a major

130

problem with the AVX SIMD instruction set on Intel Sandy Bridge processwhich lacks
a gatherinstruction. Hence, the bene t from AVX over SSE was not as largendisipated.
Future Intel designs will feature gather instructions and thus promise ecsigihperformance
improvement. Finally, using the optimized code on a standard two-way Intel Xewer the
clinical upper runtime limit of twenty seconds could be met without revertingécigppurpose
hardware.

In Chapter 7, the scalar and AVX-vectorized single-core performandéntra-chip satura-
tion of a lattice-Boltzmann (LBM) ow solver implementation with AA propagation paiteas
successfully modeled using the ECM model, and compared to the popular fjitilissopaga-
tion model. “Best possible” performance in terms of bottleneck exhaustisraaldieved on the
chip. The chip-level energy consumption of the best implementation was théeledousing
the multicore power model for a range of clock frequencies. Combining therntwdels, a re-
gion of optimal operating points with respect to clock speed and numbetiwé aores could be
identi ed. The system's baseline power had the expected damping in uendke differences
in energy consumption. Single-thread code performance and the selefctioptimal number
of cores per chip were shown to have the largest in uence on enenmgguenption. Extrapolat-
ing these results to highly parallel strong scaling runs yielded the interedisey\ation that
a core-bound component was introduced by the MPI communication @grekarpening the
identi cation of the optimal operating point. Hence, the guidelines developetti® chip level
were not invalidated, but the opposite was the case: Saving energy witlitieléoss in perfor-
mance leaves very little room for variation in the tunable parameters. Finallkgrpzapping
measures often imposed by computing centers were discussed, and itomasthat these do
not have much in uence on the choice of the optimal operating point if theynat uselessly
stringent. Not that, although these results were obtained speci cally foB&halgorithm, they
are expected to be generally applicable to many bandwidth-bound scenario

8.2 Outlook

Many possible options exist for extending the concepts developed hatertader context.

The ECM model does not accurately describe the performance chisticteof bandwidth-
bound code near the saturation point, especially when there is hardlywerigmin the cache
hierarchy. This discrepancy must be studied further, although it duiessgni cantly change the
general applicability of the model. One crucial prerequisite for the model igatency effects
can be ignored, which is certainly not true for all loop structures, spaegrix-vector multiply
being the most prominent example. It would be worthwhile extending the modatddatency-
in uenced data accesses, so that the corresponding performanedige can be estimated.
This will especially be interesting on platforms having less advanced ootdef and latency-
hiding mechanisms, such as the IBM Blue Gene/Q processor or the IntelX@&oprocessor
platform, where the streaming assumption is frequently invalid.

The multicore power model assumes perfect load balancing and a cooktekitspeed
across all cores of a chip. In the light of upcoming processor genesatidhich have the ability
to set core-individual clock frequencies, the model will have to be eevitJnder unbalanced
load the power dissipation of “idle” cores depends very much on the detafls programming
model. The power model should be extended to accommodate this situation.

While it is generally applicable to any performance analysis and optimizatiort &ffcom-

131

putational science, the structured performance engineering proesfermnulated speci cally
for node-level issues on multicore processors. However, it was intetiyanot speci ed which
particular models should be used. Extending it to other setups such #sratms or massively
parallel machines is mainly a matter of identifying the relevant patterns in thess,cahich
might be complex. For instance, MPI communication overhead alone is preegdaal typical
performance issues, which are nowadays identi ed using tools, butwghould be embedded
in the performance engineering process. It is also to be expected traintitide a mixture of
applicable patterns in complex codespeciallyat the large scale.

132

Bibliography

[1] G. Hager, J. Treibig, J. Habich and G. Wellelxploring performance and power prop-
erties of modern multicore chips via simple machine modstsepted for publication in
Concurrency and Computation: Practice and Experience . http://arXabsd208.2908

[2] G. Schubert, H. Fehske, G. Hager and G. Wellgitybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-basgstems
Parallel Processing Lette?d, (2011) 339-358.

[3] M. Kreutzer, G. Hager, G. Wellein, H. Fehske and A. R. BishopA unied
sparse matrix data format for modern processors with wide SIMD uBitemitted.
http://arxiv.org/abs/1307.6209

[4] J. Treibig and G. Hagerlntroducing a performance model for bandwidth-limited loop
kernels In: R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wassiew(eds.),
Parallel Processing and Applied Mathematie®l. 6067 ofLecture Notes in Computer
SciencgSpringer Berlin / Heidelberg). ISBN 978-3-642-14389-2, 615+§2010).

[5] J. Treibig, G. Hager and G. Wellein.Performance patterns and hardware metrics
on modern multicore processors: Best practices for performancéneegng In:
I. Caragiannis, M. Alexander, R. Badia, M. Cannataro, A. Costan,Dédnelutto,
F. Desprez, B. Krammer, J. Sahuquillo, S. Scott and J. Weidendaée.)(Euro-
Par 2012: Parallel Processing Workshqpgol. 7640 of Lecture Notes in Computer
Science(Springer Berlin Heidelberg). ISBN 978-3-642-36948-3, 4514@D13).
http://dx.doi.org/10.1007/978-3-642-3694%0

[6] J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger and G. Well®nshing the limits
for medical image reconstruction on recent standard multicore pragssdnt. J. High
Perform. Comp. Appl27(2), (2013) 162-177.

[7] M. Wittmann, G. Hager, T. Zeiser and G. WelleirAn analysis of energy-optimized
lattice-Boltzmann CFD simulations from the chip to the highly parallel |Swdmitted.
http://arxiv.org/abs/1304.7664

[8] M. Gen and R. ChengGenetic Algorithms and Engineering Optimizati@ohn Wiley
& Sons), 1999. ISBN 978-0471315315.

[9] M. Wittmann, G. Hager, J. Treibig and G. Welleineveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and cBifarallel Process-
ing Letters20(4), (2010) 359-376. http://dx.doi.org/10.1142/S0129626410000296

133

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Schafer and D. Fey.A predictive performance model for stencil codes on multicore
cpus In: M. Dayde, O. Marques and K. Nakajima (edddigh Performance Computing
for Computational Science - VECPAR 201@l. 7851 ofLecture Notes in Computer
SciencgSpringer Berlin Heidelberg). ISBN 978-3-642-38717-3, 451—48613).

S. W. Williams, A. Waterman and D. A. PattersoRoo ine: An insightful visual per-
formance model for oating-point programs and multicore architecturekech. Rep.
UCB/EECS-2008-134, EECS Department, University of California, Blegk Oct 2008.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html

R. W. Hockney and I. J. Curingtonf,—: A parameter to characterize memory and
communication bottleneck®arallel Computing.0(3), (1989) 277-286.

W. Sclonauer. Scientic Supercomputing: Architecture and Use of
Shared and Distributed Memory Parallel ComputeréSelf-edition), 2000.
http://www.rz.uni-karlsruhe.derfx03/book

D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. WassernrahM. Gittings. Pre-
dictive performance and scalability modeling of a large-scale applicatlon Proceed-
ings of the 2001 ACM/IEEE conference on Supercomputing (CDRSiydercomputing
'01 (ACM, New York, NY, USA). ISBN 1-58113-293-X, 37-37, (20Q).

F. Petrini, D. J. Kerbyson and S. Pakilihe case of the missing supercomputer perfor-
mance: Achieving optimal performance on the 8,192 processors of @Sih: SC '03:
Proceedings of the 2003 ACM/IEEE conference on SupercomgliEBg Computer So-
ciety, Washington, DC, USA). ISBN 1-58113-695-1, 55, (2003).

P. F. Spinnato, G. van Albada and P. M. Slo®erformance modeling of distributed
hybrid architectures|EEE Trans. Parallel Distrib. Systeri§(1), (2004) 81-92.

D. J. Kerbyson and P. W. Jone#. performance model of the Parallel Ocean Program
Int. J. High Perform. Comp. Appl9, (2005) 261-276.

S. Hammond, G. Mudalige, J. Smith, S. Jarvis, J. Herdman and A.avadgWARPP:
A toolkit for simulating high performance parallel scientic codesin: 2nd In-
ternational Conference on Simulation Tools and Techniques (SIMUTol62009).
http://eprints.dcs.warwick.ac.uk/38/

M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke dnBrowne.PerfEx-
pert: An easy-to-use performance diagnosis tool for HPC applicatitmsProceedings
of the 2010 ACM/IEEE International Conference for High Performancen@ating, Net-
working, Storage and AnalysiSC '10 (IEEE Computer Society, Washington, DC, USA).
ISBN 978-1-4244-7559-9, 1-11, (2010).

D. Schmidl, C. Iwainsky, C. Terboven, C. H. Bischof and M. SilMdr. Towards a
performance engineering work ow for OpenMP 4108: Proc. International Conference
on Parallel Computing (ParCo 2013Accepted.

G. Hager and G. WelleinIntroduction to High Performance Computing for Scientists
and EngineerCRC Press, Inc., Boca Raton, FL, USA), 1st ed., 2010. ISBN 978-
1439811924.

134

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

J. L. Hennessy and D. A. Patterso@omputer Architecture: A Quantitative Approach
(Morgan Kaufmann), 4th ed., 2006. ISBN 978-0123704900.

Intel 64 and IA-32 architectures optimization reference manudlpril 2012.
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-
manual.pdf.

J. D. McCalpin.STREAM: Sustainable memory bandwidth in high performance comput-
ers Tech. rep., University of Virginia, Charlottesville, VA, 1991-2007. éantinually
updated technical report. http://www.cs.virginia.edu/stream/

J. Treibig, G. Hager and G. Welleil.lIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments: PSTI2010, the First International Workshop on
Parallel Software Tools and Tool Infrastructur@&EE Computer Society, Los Alamitos,
CA, USA), 207-216, (2010).

J. Treibig. Likwid: Linux tools to support programmers in developing high perforoean
multi-threaded programshttp://code.google.com/p/likwid/

G. M. Amdahl.Validity of the single processor approach to achieving large scale comput-
ing capabilities In: AFIPS '67 (Spring): Proceedings of the April 18-20, 1967, Spring
Joint Computer Conferend&CM, New York, NY, USA), 483-485, (1967).

G. Wellein, G. Hager, A. Basermann and H. Fehskkact Diagonalization of Large
Sparse Matrices: A Challenge for Modern SupercomputersCD CUG Summit 2001,
Indian Wells, USA(2001).

G. Wellein, G. Hager, A. Basermann and H. Fehdkast sparse matrix-vector multipli-
cation for TeraFlop/s computer$n: J. Palmaet al. (eds.) High Performance Computing
for Computational Science — VECPAR2002, LNCS ISgBinger-Verlag, Berlin, Hei-
delberg). ISBN 3-540-00852-7, 287-301, (2003).

G. Schubert, G. Hager and H. Fehslerformance limitations for sparse matrix-vector
multiplications on current multicore environmentdn: S. Wagneret al. (eds.),High
Performance Computing in Science and Engineering, Garching/Muni@B pringer-
Verlag, Berlin, Heidelberg), (2010). To appear. http://arxiv.org/eE04836

S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. A. Yelick and J. Demmé&ptimiza-
tion of sparse matrix-vector multiplication on emerging multicore platfornPsarallel
Computing35(3), (2009) 178-194.

M. Mohiyuddin, M. Hoemmen, J. Demmel and K. Yelidilinimizing communication in
sparse matrix solversin: SC '09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analy@€M, New York, NY, USA). ISBN 978-
1-60558-744-8, 1-12, (2009).

N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processor: SC '09: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Anal¢&(SM, New York, NY, USA).
ISBN 978-1-60558-744-8, 1-11, (2009).

135

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann anBishop. Sparse
matrix-vector multiplication on GPGPU clusters: A new storage format andadable
implementation In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops (IPDPSW§96-1702, (2012).

pOSKI: parallel optimized sparse kernel interfabétp://bebop.cs.berkeley.edu/poski

E. Cuthill and J. McKee.Reducing the bandwidth of sparse symmetric matrices
Proceedings of the 1969 24th national conference (ACM '69), ACM; Wk, NY, USA
157-172, (1969).

The EPCC OpenMP Microbenchmarkstp://www2.epcc.ed.ac.uk/computing/research
activities/openmpbench/opennmpdex.html

Intel architecture code analyzer http://software.intel.com/en-us/articles/intel-
architecture-code-analyzer.

M. A. Suleman, M. K. Qureshi and Y. N. PattFeedback-driven threading: power-
ef cient and high-performance execution of multi-threaded workloats CMPs
SIGARCH Comput. Archit. New86(1), (2008) 277—-286. ISSN 0163-5964.

J. D. McCalpin. Memory bandwidth and machine balance in current high performance
computers IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, December 1995. http://tab.computer.org/tcca/NEWS/DHESED
mccalpin.ps

E. Rotem, A. Naveh, A. Ananthakrishnan, D. Rajwan and E. WeissmaPower-
management architecture of the Intel microarchitecture code-narmaedyBridge IEEE
Micro 32, (2012) 20-27. ISSN 0272-1732.

R. Sctbne, D. Hackenberg and D. Molka. Memory performance at reduced
CPU clock speeds: An analysis of current x@ processors In: Pro-

ceedings of the 2012 USENIX conference on Power-Aware Computidg Sys-
tems HotPower'l2 (USENIX Association, Berkeley, CA, USA), 9-9, (201
http://dl.acm.org/citation.cfm?id=2387869.2387878

J. W. Choi, D. Bedard, R. Fowler and R. Vudueroo ine model of energyln: Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th International Symupo®n ISSN
1530-2075, 661-672, (2013).

D. Li, B. R. de Supinski, M. Schulz, D. S. Nikolopoulos and K. Wn@=zon. Strategies
for energy ef cient resource management of hybrid programmiogets IEEE Trans-
actions on Parallel and Distributed Systed8¢PrePrints). ISSN 1045-9219.

C. Navarrete, C. Guillen, W. Hesse and M. Brehm. Optimiz-
ing the energy-to-solution on SandyBridge systems inSIDE - In-
novatives Supercomputing in Deutschland 10(2), (2012) 62—65.
http://www.autotune-project.eu/sites/default/ les/Materials/Papers/inSiDE
autumn2012.pdf

136

[46] S. Donath.On Optimized Implementations of the Lattice-Boltzmann Method on Contem-
porary High Performance ArchitectureBachelor thesis, Universit Erlangen-Nrnberg,
Department Informatik, 2004.

[47] G. Wellein, T. Zeiser, S. Donath and G. Hagémn the Single Processor Performance of
Simple Lattice Boltzmann Kernel€omput. & Fluids35, (2006) 910-919.

[48] I. Steiner. Intel, private communication.

[49] D. Wonnacott.Using time skewing to eliminate idle time due to memory bandwidth and
network limitations In: Proc. 14th International Parallel and Distributed Processing
Symposium (IPDPS 200Q)71-180, (2000).

[50] M. Frigo and V. StrumpenCache oblivious stencil computations: ICS '05: Proceed-
ings of the 19th annual international conference on Supercomp(fi@dl, New York,
NY, USA). ISBN 1-59593-167-8, 361-366, (2005).

[51] M. Frigo and V. Strumperifhe memory behavior of cache oblivious stencil computations
J. SupercompuB9(2), (2007) 93-112. ISSN 0920-8542.

[52] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf and K. Yelic®ptimization and per-
formance modeling of stencil computations on modern microprocesSt#dvl Review
51, (2009) 129-159.

[53] G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehskécient temporal block-
ing for stencil computations by multicore-aware wavefront parallelizatiémnual In-
ternational Computer Software and Applications Conference (COMPSATC(2009)
579-586. ISSN 0730-3157.

[54] J. Treibig, G. Wellein and G. HagerEf cient multicore-aware parallelization strate-
gies for iterative stencil computations Journal of Computational Scienc®(2),
(2011) 130-137. ISSN 1877-7503. Simulation Software for Superaterg
http://www.sciencedirect.com/science/article/pii/S1877750311000172

[55] R. de la Cruz and M. Araya-Polo.Towards a multi-level cache performance model
for 3D stencil computation Procedia Computer Scieneg0), (2011) 2146 — 2155.
Proceedings of the International Conference on Computational Scid€S 2011.
http://www.sciencedirect.com/science/article/pii/S1877050911002936

[56] J. Jeffers and J. Reinderktel Xeon Phi Coprocessor High Performance Programming
(Morgan Kaufmann), 2013. ISBN 978-0124104143.

[57] W. Gropp and M. Snir.Programming for exascale computer€omputing in Science
Engineering®?P(99) (2013) 1-1. ISSN 1521-9615.

[58] A.Kak and M. SlaneyPrinciples of Computerized Tomographic Imag{&AM), 2001.

[59] B. Heigl and M. Kowarschik High-speed reconstruction for C-arm computed tomogra-
phy. In: 9th International Meeting on Fully Three-Dimensional Image Reconstnun
Radiology and Nuclear Medicingvww.fully3d.org, Lindau), 25-28, (2007).

137

[60] N. Strobel and et al3D Imaging with Flat-Detector C-Arm Systems: Multislice CT
(Springer, Berlin / Heidelberg), 3rd ed. ISBN 978-3-540-331233+51, (2009).

[61] L. Feldkamp, L. Davis and J. Kres®ractical Cone-Beam AlgorithmJournal of the
Optical Society of AmericA1(6), (1984) 612-619.

[62] K. Mueller and R. Yagel.Rapid 3D cone-beam reconstruction with the Algebraic Re-
construction Technique (ART) by utilizing texture mapping graphics remevwNuclear
Science Symposium, 1998. Conference Rec8yr(l1998) 1552—-1559.

[63] K. Mueller, F. Xu and N. NeophytouWhy do Commodity Graphics Hardware Boards
(GPUs) work so well for acceleration of Computed Tomographg? SPIE Electronic
Imaging Conferengevol. 6498 (San Diego), 64980N.1-64980N.12, (2007).

[64] H. Scherl, B. Keck, M. Kowarschik and J. HorneggEast GPU-Based CT Reconstruc-
tion using the Common Uni ed Device Architecture (CUDAN: E. C. Frey (ed.)Nu-
clear Science Symposium Conference Record, 2007. NSS '07, leEB (Honolulu,
HI). ISSN 1082-3654, 4464—-4466, (2007).

[65] Okitsu, Ino and Hagiharadligh-performance cone beam reconstruction using cuda com-
patible gpus Par. Comp36, (2010) 129-141.

[66] E. Papenhausen, Z. Zheng and K. Muell&PU-Accelerated Back-Projection Revis-
ited: Squeezing Performance by Careful Tunilgprkshop on High Performance Image
Reconstruction (HPIR), 2011.

[67] H. Scherl, M. Koerner, H. Hofmann, W. Eckert, M. Kowarschitdal. Horneggerim-
plementation of the FDK algorithm for cone-beam CT on the cell broadbagahe ar-
chitecture In: J. Hsieh and M. J. Flynn (edsSPIE Medical Imaging Conference Proc.
vol. 6510 (SPIE), 651058, (2007).

[68] M. Kachelriel3, M. Knaup and O. Bockenbadhyperfast parallel-beam and cone-beam
backprojection using the CELL general purpose hardwstedical Physic84(4), (2007)
1474-1486.

[69] C. Rohkohl, B. Keck, H. G. Hofmann and J. HorneggeabbitCT—An Open Platform
for Benchmarking 3-D Cone-beam Reconstruction Algorithiiedical Physic86(9),
(2009) 3940—-3944. http://link.aip.org/link/?MPH/36/3940/1

[70] RabbitCT Benchmarkhttp://www.rabbitct.com/.

[71] H. G. Hofmann, B. Keck, C. Rohkohl and J. Hornegg€omparing Performance of
Many-core CPUs and GPUs for Static and Motion Compensated Recotistrud C-
arm CT Data Medical Physic88(1), (2011) 3940-3944.

[72] The Stream Benchmarhkttp://www.streambench.org/, Mar 2011.

[73] J. Treibig, G. Hager and G. Welleil.IKWID: A lightweight performance-oriented tool
suite for x86 multicore environment2012 41st International Conference on Parallel
Processing Workshoyis (2010) 207-216. ISSN 1530-2016.

138

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

LIKWID performance toolshttp://code.google.com/p/likwid

N. Navab, A. Bani-Hashemi, M. Nadar, K. Wiesent, P. Durlak, Turther, K. Barth
and R. Graumann.3D Reconstruction from Projection Matrices in a C-Arm Based
3D-Angiography Systemin: W. Wells, A. Colchester and S. Delp (edsV)edical Im-
age Computing and Computer-Assisted Interventation MICCAVOB 1496 ofLecture
Notes in Computer Scien¢8pringer Berlin / Heidelberg). ISBN 978-3-540-65136-9,
119-129, (1998). 10.1007/BFb0056194. http://dx.doi.org/10.1007 /838104

K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Sstauand W. Seissler.
Enhanced 3-D-reconstruction algorithm for C-arm systems suitable forviet¢ional
procedures IEEE Transactions on Medical Imagid§(5), (2000) 391-403.

R. Hartley and A. Zissermaniultiple View Geometry in Computer Vision, 2nd Edition
(Cambridge University Press, Cambridge), 2004.

I. Goddard, A. Berman, O. Bockenbach, F. Lauginiger, S.uBehth and S. Thieret.
Evolution of computer technology for fast cone beam backprojection Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Set¢s6498. (2007).

H. G. Hofmann, B. Keck and J. Hornegger. Accelerated C-arm Reconstruc-
tion by Out-of-Projection Predictian In: T. M. Deserno, H. Handels, H.-
P. Meinzer and T. Tolxdorff (eds.),Bildverarbeitung ir die Medizin 2010
(Berlin). ISBN 978-3-642-11967-5, 380—384, (2010). http://wwwieimatik.uni-

erlangen.de/Forschung/Publikationen/2010/Hofmann10-ACR.pdf.

J. Hofmann. Performance Evaluation of the Intel Many Integrated Core Architecture
for 3D Image Reconstruction in Computed Tomograptaster's thesis, Universit
Erlangen-Nirnberg, Department Informatik, 2013.

J. Treibig, G. Hager and G. Wellein.Complexities of performance prediction for
bandwidth-limited loop kernels on multi-core architecturgs: S. W. et al. (ed.)High
Performance Computing in Science and Engineering, Garching/Muni@B @pringer,
Berlin / Heidelberg, Garching/Munich). ISBN 978-3642138713, 3€2010).

M. Schulz, M. Krafczyk, J. ©lke and E. Rank. Parallelization strategies and ef -
ciency of CFD computations in complex geometries using lattice Boltzmanroaseth
on high performance computerdn: M. Breuer, F. Durst and C. Zenger (eddigh
Performance Scienti ¢ and Engineering Computing Proceedings of tthénBernational
FORTWIHR Conference on HPSEC, Erlangen, March 12-14, 20011 21 of Lecture
Notes in Computational Science and Enginee(i8gringer-Verlag, Berlin, Heidelberg),
115-122, (2002).

C. Pan, J. F. Prins and C. T. Millek high-performance lattice Boltzmann implementation
to model ow in porous mediaComputer Physics CommunicatiohS8(2) (2004) 89—
105.

T. Pohl, F. Deserno, N. Tirey, U. Rude, P. Lammers, G. Wellein and T. Zeiser.
Performance evaluation of parallel large-scale lattice Boltzmann applica-
tions on three supercomputing architectures In: SC '04: Proceedings of

139

the 2004 ACM/IEEE conference on Supercomputiig004). http://www.sc-
conference.org/sc2004/schedule/index.php?module=Default&action= owl®h
tail&eventid=13#2.

[85] T. Zeiser, G. Wellein and P. Lammerds there still a need for tailored HPC systems
or can we go with commodity off-the-shelf clusters — Some comments doage-
formance measurements using a lattice Boltzmann ow solNBSIiDE — Innovatives
Supercomputing in Deutschla2g2), (2004) 10-15.

[86] J. Wang, X. Zhang, A. G. Bengough and J. W. Crawf@dmain-decomposition method
for parallel lattice Boltzmann simulation of incompressible ow in porous medéihys.
Rev. E72(1), (2005) 016706.

[87] M. Bernaschi, S. Succi, M. Fyta, E. Kaxiras, S. Melchionna ariitar. MUPHY: A
parallel high performance MUIti PHY sics/Scale cotte IEEE International Symposium
on Parallel and Distributed Processing, 2008. IPDPS 20083, (2008).

[88] K. Mattila, J. Hyvaluoma, J. Timonen and T. Rosstomparison of implementations
of the lattice-Boltzmann methodComputers & Mathematics with Applicatiors(7),
(2008) 1514-1524.

[89] T. Zeiser.Simulation und Analyse von durch&tnten Kugelsdlittungen in engen Rohren
unter Verwendung von Hochleistungsrechnd?h.D. thesis, Universit Erlangen-Nrn-
berg, Technische Fakalt, 2008.

[90] P. Bailey, J. Myre, S. Walsh, D. Lilja and M. Saakccelerating lattice Boltzmann uid
ow simulations using graphics processorsn: International Conference on Parallel
Processing 2009 (ICPP'09b50-557, (2009).

[91] D. Vidal, R. Roy and F. Bertrandn improving the performance of large parallel lattice
Boltzmann ow simulations in heterogeneous porous me@@mputers & Fluid89(2),
(2010) 324-337.

[92] J. Zudrop, H. Klimach, M. Hasert, K. Masilamani and S. RolleX. fully distributed
CFD framework for massively parallel systenhs: Cray Users Group Conference 2011
(2012). April 29 to May 3, Stuttgart, Germany. https://cug.org/proceefiitigndee
programcug2012/includes/ les/pap136.pdf

[93] M. Wittmann, T. Zeiser, G. Hager and G. Wellei@omparison of different propagation
steps for lattice Boltzmann method®omputers & Mathematics with Applicatiob$(6),
(2013) 924-935.

[94] A. Peters, S. Melchionna, E. Kaxiras, Att, J. K. Sircar, M. Bernaschi, M. Bisson and
S. Succi. Multiscale simulation of cardiovascular ows on the IBM Bluegene/P: Full
heart-circulation system at red-blood cell resolutidn: Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networkimy$torage, SC
2010, New Orleans, LA, USA, November 13-19, 20EBE), 1-10, (2010).

[95] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G.Vahala, L. Vahala andvacnab. Magneto-
hydrodynamic turbulence simulations on the earth simulator using the lattiterBann

140

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

method In: Proceedings of the ACM/IEEE International Conference for High Perfor-
mance Computing, Networking and Storage (SCO05), Seattle, WA, Newg&ah8, 2005
(2005).

S. Williams, J. Carter, L. Oliker, J. Shalf and K. YelicRiptimization of a lattice Boltz-
mann computation on state-of-the-art multicore platfornds Parallel Distrib. Comput.
69(9), (2009) 762-777.

T. Zeiser, G. Hager and G. WelleinBenchmark analysis and application results for
lattice Boltzmann simulations on NEC SX vector and Intel Nehalem systearallel
Processing Letters9(4), (2009) 491-511.

P. Bhatnagar, E. P. Gross and M. K. Krook.model for collision processes in gases. .
small amplitude processes in charged and neutral one-componstensy Phys. Rev.
94(3), (1954) 511525.

S. Succi.The Lattice Boltzmann Equation — For Fluid Dynamics and Bey@idrendon
Press), 2001.

D. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Modets.
1725 ofLecture Notes in Mathemati¢Springer, Berlin), 2000.

S. Chen and G. DoolerLattice Boltzmann Method for Fluid FlowsAnnu. Rev. Fluid
Mech.30, (1998) 329-364.

Y. Qian, D. d'Humeres and P. LallemandLattice BGK Models for Navier-Stokes Equa-
tion. Europhys. Lettl7(6), (1992) 479-484.

H. Huber. LRZ, private communication.

M. Wittmann, T. Zeiser, G. Hager and G. Welleiomain decomposition and local-
ity optimization for large-scale lattice Boltzmann simulatio@omputers & Fluids30,
(2013) 283—-289. ISSN 0045-7930. Selected contributions of thel@8rthational Con-
ference on Parallel Fluid Dynamics ParCFD2011.

Intel MPI benchmarkshttp://software.intel.com/en-us/articles/intel-mpi-benchmarks/

141

Index

80/20 rule, 9, 10 overhead, 84
computational intensity, 30, 33, 50, 60

AA pattern, 112 compute node, 22
acceleration, 28 computed tomography, 91
adjacency list, 112 seeCT, 13
Amdahl's Law, 29, 83 control ow, 81
applicable peak CRS format, 36

bandwidth, 31 CT, 13,91

performance, 30
AVX, 23, 55 DCT, seedynamic concurrency throttling, 110

o DGEMM, 55

backprojection, 13, 91 DVFS, 59, 110
baseline power, 56, 58, 61, 62, 64, 65, 121 gynamic concurrency throttling, 60, 63
binding, 21 , dynamic power, 56, 59, 60, 62, 64
black-box modeling, 10
Boltzmann equation, 110 ECM model, 11, 43-51, 86, 87
bottleneck assumption, 32 for backprojection, 101

for LBM, 115-118

C-arm CT, 91 for vector triad, 46
cache, 21 ELLPACK, 37
c_oherence, 22 energy
line, .21. to solution, 59-63
_eV|ct|on, 22 erratic access, 82
miss, 21 event signatures, 79, 80
ccNUMA, 23

exclusive cache, 21
execution units, 17
expensive instructions, 84

page interleaving, 77
page placement, 76, 83

chickens, 64
chunk occupancy, 38 false sharing, 22, 82
clock speed, 21 rst-touch, 23
code rst-touch principle, 77, 83, 104
balance, 30, 39, 41, 55, 70, 73, 75 Flop, 28
optimization, 69 uid lattice site updateseeFLUP
code composition, 84 FLUP, 112
collision FPGA, 13,91
integral, 110
operator, 111 Golden Rule, 23, 77
step, 112 GPGPU, 13, 44, 112
communication Gustafson's Law, 29

142

hardware metrics, 69

hardware performance monitoringgeHPM

Harpertown, 93, 103, 104, 106
hazards, 85

HPM, 24, 33,78
HyperTransport, 23

IACA, 101, 103, 115
ILBDC, 110, 111
ILP, 18, 103
inclusive cache, 21, 43
ineffective instructions, 85
instruction

cache, 20

overhead, 84

throughput, 81
instruction-level parallelisngeelLP
Intel MPI benchmark suite, 123

Jacobi smoother, 55, 70

lattice site updateseeLUP

lattice-Boltzmann
equation, 110

lattice-Boltzmann methocgeelL BM

layer condition, 55, 73

LBM, 13, 70, 109-127

leakage power, 56

light speed, 10

LIKWID, 24, 54, 76, 79

line update kernel, 98

load imbalance, 83

locality domain, 23

LUP, 70

machine model, 11
cycle-accurate, 11
marker-and-cell, 111, 114

memory
bandwidth, 22, 33, 35
interface, 22, 35
latency, 22
micro-ops, 20, 47
microarchitecture
anomalies, 82
microbenchmarking, 31, 69
Moore's Law, 21

multi-stream benchmark, 116

non-temporal stores, 50, 74, 76, 112
numactl , 77

OLC, 21,81
OpenMP, 40, 70
load balancing, 103
overhead, 29, 42
out-of-order execution, 18
outer-level cacheseeOLC
overlap assumption, 32
oxen, 64

parallel rsttouch, 77, 86
particle distribution functionseePDF
PDF, 110, 111
performance, 27
accelerated, 27
engineering, 12, 33, 67, 87
model, 9, 69
patterns, 12, 78-87
prole, 10
pipeline, 17
bubbles, 18, 20
depth, 17
hazard, 81
saturation, 81
throughput, 18
power
capping, 125
gating, 56
model, 11, 59
for LBM, 118-121
prefetching, 22, 43, 82
pro ling, 68
pull scheme, 112
pull-split, 112, 121

QuickPath, 23

RabbitCT, 91

race to idle, 121
clock ~, 61-64
code ~, 62, 121

RAPL, 124

raytracer, 54

143

RCM algorithm, 38 topology, 21

register, 19 TRT, 13, 111
relaxation time, 110 turbo mode, 21, 25, 54, 75, 76, 116, 119-122
roo ine model, 30-43, 50, 118 two-relaxation-timeseeTRT

assumptions, 32

of energy, 59 vector triad seeSchnauer triad

vectorization, 19
Sandy Bridge, 15, 23, 34, 40, 44-46, 49, 53, ll-clock i 27
56,57, 72, 92, 102, 113, 127 waf-clock time,
. . weak scaling, 29
saturation assumption, 32

saturation point, 45, 49, 50 &Vﬁfélirf’rfosa;ilr; 10110
Schonauer triad, 34 9

work, 27
ECM model, 46 write-allocate, 21, 35, 44, 47, 70, 72, 74, 76,
multicore scaling, 49 112
SELL-C-s, 37 write-combine buffers, 74
sendrecv benchmark, 123 ’
shot-in-the-dark optimizations, 12 Xeon Phi, 18
SIMD, 13, 19, 33, 60, 85, 111
intrinsics, 55, 98 Z-plot, 119
width, 19, 97

single instruction multiple datseeSIMD
slow computing, 85
SMT, 20, 24, 50, 93, 103, 105
SO0A, 112
sparse lattice, 112
sparse matrix

storage schemes, 36

vector multiply, 13, 36, 69, 86
spatial blocking, 74
speedup, 27
SSE, 19, 41
stencil, 70, 77
store miss, 70
STREAM, 45, 72, 93
streaming step, 112
streaming assumption, 32
strided access, 82
strong scaling, 14, 29
structure of arraysseeSoA
SuperMUC, 65, 109, 113, 121-123
superscalarity, 18
synchronization overhead, 83

TDP, 21, 56, 120
temporal blocking, 50
thermal design poweseeTDP

144

Curriculum Vitae

Pergnliche Daten

Name
Geboren am
in
Staatsangdirigkeit
Adresse

Telefon
E-Mail
Familienstand

Ausbildung

1976-1980

1980-1989

Mai 1989
Juni 1989 — August 1990
WS 1990 — SS 1996

Oktober 1993

—Marz 1994
13. Mai 1996

24. Oktober 2005

Beruflicher Werdegang
Mai 1996 — Mai 1999

Georg Hager

21. August 1970

Hof an der Saale
Deutsch

Danteweg 16

90427 Nirnberg
0911/3008663
georg.hager@fau.de
verheiratet, zwei Kinder

Grundschule Hof-Moschendorf
Schiller-Gymnasium Hof
Allgemeine Hochschulreife (Abitur)
Grundwehrdienst

Studium der Physik mit Ziel Diplom an der Univeidit
Bayreuth

Auslandsstudium (ERASMUS-Stipendium) an der
University of St Andrews, Schottland

Diplom in Physik an der Universit Bayreuth

Thema der Diplomarbeif,Quasiperiodische dsungen
der komplexen eindimensionalen
Ginzburg-Landau-Gleichung"

Betreuer: Prof. Dr. Lorenz Kramer

Promotion an der Ernst-Moritz-Arndt-Univerait
Greifswald

Titel der Dissertation; A parallelized density matrix
renormalization group algorithm and its application to
strongly correlated quantum systems*

Betreuer: Prof. Dr. Holger Fehske
URN:urn:nbn:de:gbv:9-000024-1

Stipendiat des Graduiertenkolleghysik der starken
Wechselwirkung” an der Friedrich-Alexander-Univeasit
Erlangen-Nirnberg (FAU)

Mai 1999 — Marz 2000
April 2000 — heute

2000-2001

2002-2004

Oktober 2002 — heute

Mai 2010

Dezember 2011

Eingeworbene Drittmittel

Wissenschaftliche Hilfskraft am Institufif Theoretische
Physik Il der FAU

Wissenschaftlicher Mitarbeiter in der HPC-Gruppe des
Regionalen Rechenzentrums Erlangen (RRZE) der FAU
Mitarbeiter im KONWIHR-Projekt,cxHPC" (Center of
Excellence for High Performance Computing),
Projektleiter: Dr. Gerhard Wellein

Mitarbeiter im KONWIHR-Projekt,HQS@HPC*
(hochkorrelierte Quantensysteme auf
Hochleistungsrechnern), Projektleiter: Prof. Dr. Holger
Fehske

Lehrbeauftragter an der Technischen Hochschuldnér
Fachhochschule) dénberg

Ernennung zum Akademischen Rat Utibernahme in
das Beamtenvedttnis auf Probe

Ubernahme in das Beamtenvélimis auf Lebenszeit

2013-2015 | 219200 als Pl im Projekt, ESSEX" (Equipping Sparse Solvers

for Exascale) des DFG-Schwerpunktprogrammes 1648
(SPPEXA)

2012 25000e fur das KONWIHR-ProjektSparseLib*
2009 | 50000e fur das KONWIHR-ProjektHQS@HPC-II*

Lehrt atigkeit
Lehre an Hochschulen
WS 2012/13

WS 2011/12

SS 2000 — heute

WS 2009 — heute

WS 2010 - heute

WS 2007 — heute

SS 2011 — heute

Marz 2011

Performance-Optimierung und -Modellierung auf modernern
Rechnerarchitekturen

Vorlesung undJbung im Institut fir Physik der
Ernst-Moritz-Arndt-Universit Greifswald

Parallelprogrammierung auf Hochleistungsrechnern
Vorlesung undJbung im Institut fir Physik der
Ernst-Moritz-Arndt-Universit Greifswald

Programming Techniques for Supercomputers

Vorlesung undJbung (zusammen mit Prof. G. Wellein) im
Studiengang Computational Engineering an der Technischen
Fakultt der FAU

Ef cient numerical simulation on multi- and manycore
processors

Seminar (zusammen mit Mitarbeitern der HPC-Gruppe des
RRZE) im Studiengang Computational Engineering an der
Technischen Fakudt der FAU

Elementary Numerical Mathematics

Leitung und Durchiihrung detUbungen &ir die Vorlesung im
Studiengang Computational Engineering an der Technischen
Fakul&t der FAU

Parallele Programmierung

Blockvorlesung mitUbungen (zusammen mit Prof. G. Wellein)
an der Fakuht fur Elektrotechnik, Feinwerktechnik und
Informationstechnik (EFI) der TH t¥nberg

Parallele Programmierung von Multicore-Systemen
Blockvorlesung mitUbungen im Studiengang Informatik und
Wirtschaftsinformatik der Fakudt fur Informatik an der TH
Nurnberg

Ef cient multithreaded programming on modern CPUs and
GPUs

Blockvorlesung mitUbungen an der &niglichen Technischen
Hochschule (KTH) in Stockholm, Schweden

WS 2002
— SS 2006

Betreute Arbeiten
WS 2013

WS 2012

WS 2011

SS 2010 -

WS 2010

WS 2009

WS 2008

SS 2008 -
WS 2008

Programmieren 1 & 2 (C/C++)

Vorlesungen mitJbungen im Studiengang Informatik und
Wirtschaftsinformatik der Fakut fur Informatik an der
Ohm-Hochschule Nrnberg

J. Bleisteiner:

Porting and optimizing a lattice-Boltzmann algorithm for the
Intel Xeon Phi acceleratoMasterarbeit im Fach Computational
Engineering an der FAU Erlangenikhberg

T. Scharpff:

Analyse und Optimierung von Operationen auhd besetzten
Matrizen.Studienarbeit im Fach Informatik an der FAU
Erlangen-Nirnberg

K. Sembritzki:

Evaluation of the Coarray Fortran Programming Model on the
Example of a Lattice Boltzmann Codéasterarbeit im Fach
Informatik an der FAU Erlangen-lNnberg

J. Daschke, T. Gohla, S. Heidingsfelder:

Erstellung eines Datenbanksystems zur Verwaltung
wissenschaftlicher PublikationelT-Masterprojekt an der
Ohm-Hochschule Nrnberg

H. Stengel:

Paralleles Programmieren auf hybrider Hardware: Modelle und
AnwendungerMasterarbeit im Fach Informatik an der
Ohm-Hochschule Nrnberg

M. Wittmann:

Potentials of temporal blocking for stencil-based computations
on multi-core system#lasterarbeit im Fach Informatik an der
Ohm-Hochschule Nrnberg

M. Wittmann, H. Stengel, O. Natrr:
RRZE Accounting- und Kontingentreports, Teil II.
IT-Masterprojekt an der Ohm-Hochschuléiberg

SS 2007

SS 2006

WS 2005

H. Stengel:

C++-Programmiertechniken f’ur High Performance Computing
auf Systemen mit nichteinheitlichem Speicherzugriff unter
Verwendung von OpenMBiplomarbeit im Fach Informatik an
der Ohm-Hochschule i¥nberg

M. Wittmann, H. Stengel, F. Waldheim, M. Schloyer, S. Witter:
RRZE Accounting- und Kontingentrepols.Studentenprojekt
an der Ohm-Hochschuletnberg

H. Stengel:

Erstellung einer BenchmarksuitérfAnwendungen im
Hochleistungsrechne®raktisches Studiensemester am RRZE
fur die Ohm-Hochschule tNnberg

Kurse, Workshops, Tutorials

Dezember 2013

November 2013

Oktober 2013

September 2013

Juni 2013

Node-level performance engineering
Zweitagiger Kurs im Rahmen de®RACE Advanced Training
Centre* (zusammen mit Prof. G. Wellein) am LRZ Garching

The practitioner's cookbook for good parallel performance on
multi- and manycore systems

Ganzhgiges Tutorial (zusammen mit Prof. G. Wellein und Dr. J.
Treibig) bei der,Supercomputer Conference 2013" (SC13) in
Denver, CO, USA

Node-Level Performance Engineering
Ganztgiges Tutorial beimaiXcelerate 2013 HPC tuning
workshop* an der RWTH Aachen

Node-Level Performance Engineering

Halbtagiges Tutorial bei deyl0th International Conference on
Parallel Processing and Applied Mathematics® (PPAM 2013) in
Warschau, Polen

Node-Level Performance Engineering

Ganztgiges Tutorial (zusammen mit Prof. G. Wellein) beim
»SPPEXA Doctoral Retreat* an der TU Darmstadt
Performance Engineering on Multicore Platforms

Dreitagiges Tutorial (zusammen mit Dr. J. Treibig) im IBM
Toronto Lab, Markham, ON, Kanada

Node-Level Performance Engineering

Ganz#giges Tutorial (zusammen mit Dr. J. Treibig und Prof. G.
Wellein) bei der, International Supercomputer Conference
2013 (ISC13) in Leipzig

April 2013 Specialist Workshops in Parallel Computing 2013: Advanced
Multicore

Zweitagiger Blockkurs (zusammen mit Dr. J. Treibig) an den
Universitaten Gent und Leuven, Belgien

Marz 2013 | Node-level performance engineering
Zweitagiger Kurs (zusammen mit Prof. G. Wellein und M.
Kreutzer) beim DLR KIn

Dezember 2012 | Performance engineering on multi-and manycores

Halbtagiges Tutorial bei dgf3rd Saudi-Arabian HPC Users
Conference” (SAHPC 2012) an der King Abdullah University of
Science and Technology (KAUST), Thuwal, Saudi-Arabien

Node-level performance engineering
Zweitagiger Kurs im Rahmen dg®RACE Advanced Training
Centre" (zusammen mit Prof. G. Wellein) am LRZ Garching

November 2012 | The practitioner's cookbook for good parallel performance on
multi- and manycore systems

Ganz#giges Tutorial (zusammen mit Prof. G. Wellein) bei der
~Supercomputer Conference 2012" (SC12) in Salt Lake City,
UT, USA

Juni 2012 | Performance-oriented programming on multicore-based
Clusters with MPI, OpenMP, and hybrid MP1/OpenMP
Halbtagiges Tutorial (zusammen mit Dr. R. Rabenseifner, Dr. J.
Treibig und Dr. G. Jost) bei detnternational Supercomputer
Conference 2012" (ISC12) in Hamburg

April 2012 Specialist Workshops in Parallel Computing: Multithreading
and Multiprocessing

Zweitagiger Blockkurs (zusammen mit Dr. J. Treibig) an der
Universitat Gent, Belgien

April 2012 — heute | Performance-oriented programming on multicore-based
systems, with a focus on the Cray XE6

Ganztgiges Tutorial (einmal pro Semester, zusammen mit Dr. J.
Treibig) beim Cray Optimization Workshop, HLRS Stuttgart

2007-2013

Juni 2011

Februar 2011

November 2010

Oktober 2010
Marz 2009

2004/06/08

September 2006

Hybrid MPI and OpenMP parallel programming

Halbtagiges Tutorial (zusammen mit Dr. R. Rabenseifner und
Dr. G. Jost) bei allenSupercomputing* Konferenzen SCO7 bis
SC13

Performance-oriented programming on multicore-based
Clusters with MPI, OpenMP, and hybrid MP1/OpenMP
Ganztgiges Tutorial (zusammen mit Dr. G. Jost, Dr. J. Treibig
und Prof. G. Wellein) bei definternational Supercomputing
Conference 2011“ (ISC11) in Hamburg

Ingredients for good parallel performance on multicore-based
systems

Halbtagiges Tutorial beim16th SIGPLAN Symposium on
Principles and Practice of Parallel Programming‘ (PPoPP11) in
San Antonio, TX, USA

Ingredients for good parallel performance on multicore-based
systems

Halbtagiges Tutorial bei defSupercomputer Conference 2010"
(SC10) in New Orleans, LA, USA

C++ fur Programmierer
Funftagiger Kurs mitUbungen am LRZ Ninchen

C++ for C programmers
Viertagiger Kurs mitJbungen bei CD-Adapco, iNnberg

Ef ziente Nutzung von Hochleistungsrechnern in der
numerischen Simungsmechanik

Vortrag beim NUMET-Kurzlehrgang des Lehrstuhis f
Stromungsmechanik (LSTM) der FAU

High Performance Computing: Sequential Code Optimization by
ExampleundHigh Performance Computing: Selected Topics in
Shared Memory Parallelization

Vortrage bei der Wilhelm und Else Heraeus Sommerschule zu
Computational Many Particle Physics an der
Ernst-Moritz-Arndt-Universit Greifswald

2000 — heute | Parallel Programming for High Performance Systems
Jahrlicher Blockkurs zusammen mit dem LRZikichen

Mitarbeit in Programmkomitees

2013

2012

2011

Vortr age

Workshop on Energy-Ef cient Supercomputing (E2SC)
Workshop at SC13, Denver, CO, USA, November 2013

Workshop on Power-aware Algorithms, Systems, and ArchitectufesAP
Workshop at ICPP13, Lyon, Frankreich, Oktober 2013

International Conference on Parallel Programming and Applied Mathi&@sa
Research Paper Committee, Warschau, Polen, September 2013
Workshop on Unconventional High Performance Computing (UCHPC)
Workshop at Euro-Par 2013, Aachen, August 2013

International Supercomputer Conference 2012 (1ISC'12)
Research Paper Committee, Hamburg, Germany, Juni 2012

Workshop on Large-Scale Parallel Processing 2012

Workshop at IPDPS, Shanghai, China, Mai 2012

Facing the Multi-Core Challenge Il

Workshaop for young researchers, KIT Karlsruhe, September 2011
Workshop on Unconventional High Performance Computing
Workshop at Euro-Par 2011, Bordeaux, France, August 2011
Workshop on High Performance Hardware-Aware Computing
Workshop at PPoPP11, San Antonio, TX, USA, Februar 2011

Eingeladene Vortrage

2013

2012

More Science per Joule: Bottleneck Computing
10th International Conference on Parallel Processing and Applied
Mathematics (PPAM 2013), Warschau, Polen, 9. September 2013

Performance and Power Engineering on Multicore Systems
German Research School for Simulation Sciences, RWTH Aachen,drkz. M
2013

Energy ef ciency: A down-to-earth perspective

»,Cool Supercomputing” BoF, Supercomputing 2012 (SC12), Salt Lake City
UT, USA, 14. November 2012

Performance Engineering: From Numbers to Insight

Workshop on Productivity and Performance (PROPER) at Euro-%k,2
Rhodos, Griechenland, 28. August 2012

2011

2010

2009

2007

Performance Engineering for Multi-/Manycores: Unveiling the Mysteries of
Application Performance

International Supercomputer Conference 2012 (ISC12), Hamb8rguhi
2012

Simulating Incompressible Flows With the Lattice-Boltzmann Method:
Algorithm, Implementation, Performance
Physikalisches Kolloquium der UniveraitGreifswald, 5. Januar 2012

Common sense in high performance computing
Leogang HPC Workshop, 2. &z 2011

Monitoring, Accounting und Nutzerverwaltung auf den HPC-Systenmen de
RRZE
ZIH Kolloquium, Technische Universit Dresden, 25. August 2011

Teaching High Performance Computing to Scientists and Engineers: A
Model-Based Approach

7th European Computer Science Summit (ECSS 2011), Milan, Italy, 8.
November 2011

Hybrid-parallel sparse matrix-vector multiplication.
SC11 BoF,1000x0=0. Single-node optimisation does matter, Seattle, WA,
USA, 17. November 2011

MPI1/OpenMP hybrid computing (on modern multicore systems)
39th SPEEDUP Workshop on High Performance Computing, ETHCE, 6.
September 2010

Thirteen modern ways to fool the masses with performance results on
parallel computers

6th Erlangen International High End Computing Symposium, RRZE, 4. Juni
2010, und 12th Tera op Workshop, HLRS Stuttgart, 15ai2010

Hybrid applications on modern architectures: Things to consider
SIAM Conference on Parallel Processing for Scienti c Computing (AP10
Seattle, WA, USA, 26. Februar 2010

Wavefront Parallel Temporal Blocking on Multi-Core Processors witar&t
Caches

Los Alamos National Laboratory, Performance Architecture Lab (P26),
August 2009

Are the Killer Micros Still Attacking?
NEC User Group (NUG) XIX. General Meeting, Cetraro (Italien), 24iM
2007

Cluster OpenMP
1st HLRS Parallel Tools Workshop, HLRS Stuttgart, 10. Juli 2007

High Performance Computing at RRZE
Computer Chemistry Center (CCC) Seminar, FAU, 23. April 2007

Fachvortrage

2012

2011

2009

2007

Performance patterns and hardware metrics on modern multicore pgucs:
Best practices for performance engineering

Workshop on Productivity and Performance (PROPER) at Euro-®%&,2
Rhodos, Griechenland, 28. August 2012

Simulating incompressible ows with the lattice-Boltzmann method:
Algorithm, implementation, performance

SIAM Conference on Parallel Processing for Scienti c Computing (BP12
Minisymposium MS14, Savannah, GA, USA, 15. Februar 2012

Prospects for Truly Asynchronous Communication with Pure MPI andidlyb
MP1/OpenMP on Current Supercomputing Platforms
Cray User Group Conference 2011, Fairbanks, AK, USA, 25. Ndail2

Parallel sparse matrix-vector multiplication as a test case for hybrid
MPI1+OpenMP programming

Workshop on Large-Scale Parallel Processing (LSPP 2011), AaghpAK,
USA, 20. Mai 2011

Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP
Nodes

17th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP 2009), Weimar, 20. Februar 2009

Erste Erfahrungen mit Windows Compute Cluster Server 2003

ZKI Arbeitskreis Supercomputing, Gesellschait Wwissenschaftliche
Datenverarbeitung @tingen (GWDG), 25. Oktober 2007

Erste Erfahrungen mit dem Sun UltraSPARC T2 Prozessor

SunDay, RRZE, 6. November 2007

Performance Evaluation of Current HPC Architectures Using Low-Lawd
Application Benchmarks

HLRB2/KONWIHR Result and Review Workshop, 3. Dezember 2007, LRZ
Munchen

2006

2005

2004

2003

Why is performance productivity poor on modern architectures?
Dagstuhl Seminar on Petacomputing, Dagstuhl, 16. Februar 2006

First Experiences with Cluster OpenMP
Cluster OpenMP workshop, HLRS Stuttgart, 19. Mai 2006

Erfahrungen und Benchmarks mit Dual-Core Prozessoren
ZKI Arbeitskreis Supercomputing, UniverattKarlsruhe, 22. September
2005

Betrieb eines heterogenen Clusters
ZKI Arbeitskreis Supercomputing, UniverattKarlsruhe, 22. September
2005

Benchmarks on Current Dual Core CPUs (and some comments on\Oe
C++, Tools etc.)
Videokonferenz mit ZIH Dresden am RRZE, 10. Oktober 2005

Investigation of Stripe Formation in Hubbard Ladders using Parallel DMRG
KONWIHR Result and Review Workshop, Technische Univétsiliinchen,

2. Marz 2004

Application Performance: Altix vs. the Rest

SGI User Group Conference, Orlando, FL, USA, 27. Mai 2004

Intel VTune iir Linux
Videokonferenz mit HLRS Stuttgart am RRZE, 14. Juli 2004

Parallelization Strategies for Density Matrix Renormalization Group
Algorithms on Shared-Memory Systems

DMRG workshop, RRZE, 7. Mai 2003

Writing Ef cient Programs in Fortran, C and C++: Selected Case Studies
Workshop on ef cient HPC programming, LRZ ivichen, 21. Juli 2003

Preise und Ehrungen

2011

2009

Informatics Europe Curriculum Best Practices Award 2011: Parallelisrd a
Concurrencyfur den Beitrag, Teaching high performance computing to
scientists and engineers: A model-based approach*

Best Paper Awardthei COMPSAC 2009, the 33rd Annual IEEE International
Computer Software and Applications Conference, July 20-24, 2068t|&e
WA, zusammen mit Prof. G. Wellein, Dr. T. Zeiser, Prof. H. Fehske und M.
Wittmann.

Publikationen
Buchveroffentlichung

» Georg Hager and Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers
CRC Press, Juli 2010, ISBN 978-1439811924, 356 Seiten.
DOI:10.1201/EBK1439811924

Artikel in Journalen und Tagungsbeitr age mit Peer Review
2013

e M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Welle@hip-level and multi-
node analysis of energy-optimized lattice-Boltzmann CFD simulatiBabmitted. ar-
Xiv:1304.7664

» M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bish®pmni ed sparse matrix
data format for modern processors with wide SIMD urf@sbmitted. arXiv:1307.6209

» T. Scharpff, K. Iglberger, G. Hager, and Ul&e: Model-guided Performance Analysis
of the Sparse Matrix-Matrix MultiplicatiorProc. 2013 International Conference on High
Performance Computing & Simulation (HPCS 2013), July 1-5, 2013, Heldtinkand.
DOI:10.1109/HPCSiImM.2013.6641452

» G. Hager, J. Treibig, J. Habich, and G. Welleltxploring performance and power pro-
perties of modern multicore chips via simple machine modealsepted for publication
in Concurrency and Computation: Practice and Experience. arXiv:2208

» F. Shahzad, M. Wittmann, T. Zeiser, G. Hager, and G. WelladmEvaluation of Diffe-
rent 10 Techniques for Checkpoint/Restaktcepted for the Workshop on Large-Scale
Parallel Processing 2013 (LSPP13).

 J. Treibig, G. Hager, and G. WelleiRerformance patterns and hardware metrics on mo-
dern multicore processors: Best practices for performance engimgd?roc. 5th Work-
shop on Productivity and Performance (PROPER 2012) at Euro{P&, ZAugust 28,
2012, Rhodes Island, Greece. Lecture Notes in Computer Scienced54a60 (2013),
Springer, ISBN 978-3-642-36948-3. DOI:10.1007/978-3-6424360 50

* M. Wittmann, T. Zeiser, G. Hager, and G. Welle@omparison of Different Propagation
Steps for Lattice Boltzmann Metho@amputers & Mathematics with ApplicatioB$(6),
924935 (2013). DOI:10.1016/j.camwa.2012.05.002

2012

» K. Sembritzki, G. Hager, B. Krammer, J. Treibig, and G. Well&wmaluation of the Coar-
ray Fortran Programming Model on the Example of a Lattice BoltzmanneCacdcepted
for PGAS '12, The 6th Conference on Partitioned Global Address &pacgramming
Models, Oct 10-12, 2012, Santa Barbara, CA, USA.

» K. Iglberger, G. Hager, J. Treibig, and UlBe: High Performance Smart Expression
Template Math LibrariesProc. Workshop on New Algorithms and Programming Mo-
dels for the Manycore Era (APMM 2012) at HPCS 2012, July 2-6, 28atrid, Spain.
DOI:10.1109/HPCSim.2012.6266939

* J. Habich, C. Feichtinger, H. @Stler, G. Hager, and G. WelleinPerforman-
ce engineering for the Lattice Boltzmann method on GPGPUSs: Architectwal r
quirements and performance result€omputers & Fluids80, 276-282 (2013).
DOI:10.1016/j.comp uid.2012.02.013

» J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Welleirshing the li-
mits for medical image reconstruction on recent standard multicore gems.Inter-
national Journal of High Performance Computing Applicati@i&2), 162—177 (2013).
DOI:10.1177/1094342012442424

» K. Iglberger, G. Hager, J. Treibig, and UliBe:Expression Templates Revisited: A Perfor-
mance Analysis of the Current ET Methodolo8iAM Journal of Scienti c Computing
34(2), C42—C69 (2012). DOI:10.1137/110830125

» M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and Bishop:Sparse
matrix-vector multiplication on GPGPU clusters: A new storage format andadable
implementationProc. LSPP12, the Workshop on Large-Scale Parallel ProcesdinDat
PS 2012, May 25, 2012, Shanghai, China. DOI:10.1109/IPDPSW.2(112.21

2011

» G. Schubert, H. Fehske, G. Hager, and G. Welleipbrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-basgstems.
Parallel Processing LetteP4(3), 339-358 (2011). DOI:10.1142/S0129626411000254

* G. Schubert, G. Hager, H. Fehske and G. WellParallel sparse matrix-vector multipli-
cation as a test case for hybrid MPI+OpenMP programmiRgoc. LSPP11, the Work-
shop on Large-Scale Parallel Processing at IPDPS 2011, May 20th, 2nchorage,
AK. DOI:10.1109/IPDPS.2011.332

* J. Treibig, G. Wellein and G. HageEf cient multicore-aware parallelization strategies
for iterative stencil computationgournal of Computational Scien@e 130-137 (2011).
DOI:10.1016/j.jocs.2011.01.010

» C. Feichtinger, J. Habich, H.#&tler, G. Hager, U. Bde and G.WelleinA Flexible Patch-
Based Lattice Boltzmann Parallelization Approach for Heterogeneous GPU-Clu-
sters.Parallel Computin@7(9), 536-549 (2011). DOI:10.1016/j.parco.2011.03.005

e J. Habich, T. Zeiser, G. Hager and G. Welleiirerformance analysis and
optimization strategies for a D3Q19 Lattice Boltzmann Kernel on nVIDIA
GPUs using CUDA.Advances in Engineering Softward2(5), 266-272 (2011).
DOI:10.1016/j.advengsoft.2010.10.007

2010

* M. Wittmann, G. Hager, J. Treibig and G. Wellelreveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and chiftarallel Proces-
sing Letter20(4), 359-376 (2010). DOI:10.1142/S0129626410000296

 J. Treibig, G. Hager and G. WelleibiKWID: A lightweight performance-oriented tool
suite for x86 multicore environmentsroc. PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego G4 Beptember 13,
2010. DOI:10.1109/ICPPW.2010.38

» J. Treibig, G. Hager and G. WelleirComplexities of Performance Prediction for
Bandwidth-Limited Loop Kernels on Multi-Core Architectures.S. Wagner et al. (eds.),
High Performance Computing in Science and Engineering, Garching/M@2oeR.
Springer, ISBN 978-3642138713, 3—12 (2010). DOI:10.1007/®582-13872-01, Pre-
print (Multi-core architectures: Complexities of performance predictiahtha impact of
cache topology): arXiv:0910.4865

* M. Wittmann, G. Hager and G. WelleiiMulticore-aware parallel temporal blocking
of stencil codes for shared and distributed memdtsoc. LSPP10, the Workshop on
Large-Scale Parallel Processing at IPDPS 2010, April 23rd, 28flanta, GA, USA.
DOI:10.1109/IPDPSW.2010.5470813

2009

» T. Zeiser, G. Hager and G. WelleiBenchmark analysis and application results for lattice
Boltzmann simulations on NEC SX vector and Intel Nehalem sydamalel Processing
Letters19(4), 491-511 (2009). DOI:10.1142/S0129626409000389

» J. Treibig and G. Hagetntroducing a Performance Model for Bandwidth-Limited Loop
Kernels.Proc. Workshop “Memory issues on Multi- and Manycore Platforms” #N?P
2009, the 8th International Conference on Parallel Processing aplitdathematics,
Wroclaw, Poland, September 13—-16, 2009. DOI:10.1007/978-3-8320L864

e T. Zeiser, G. Hager and G. Welleinthe world's fastest CPU and SMP node:
Some performance results from the NEC SXP%oc. LSPP 2009, the Workshop
on Large-Scale Parallel Processing at IPDPS 2009, May 29, 2008eR Italy.
DOI:10.1109/IPDPS.2009.5161089

* G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehdkiecient temporal blocking
for stencil computations by multicore-aware wavefront parallelizati®roceedings of
COMPSAC 2009, the 33rd Annual IEEE International Computer SoftaackApplica-
tions Conference, July 20-24, 2009, Seattle, WA. DOI:10.1109/COMRE¥#09.82

* J. Habich, T. Zeiser, G. Hager, and G. WelleBpeeding up a Lattice Boltzmann Ker-
nel on nVIDIA GPUs.Proc. PARENG09-S01, the First International Conference on
Parallel, Distributed and Grid Computing for Engineering, Pecs, Hundami 2009.
DOI:10.4203/ccp.90.17

2008

2007

2006

S. Ejima, G. Hager, and H. Fehsk@uantum phase transition in a 1D transport model
with boson affected hopping: Luttinger liquid versus charge-densityewwathaviorPhys.
Rev. Lett.102 106404 (2009). DOI:10.1103/PhysRevLett.102.106404

N. Schindzielorz, J. Erler, P. Kpfel, P.-G. Reinhard and G. Hagédiission of super-
heavy nuclei explored with Skyrme forced. J. Mod. Phys. EL8(4), 773-781 (2009).
DOI:10.1142/S0218301309012860

H. Fehske, G. Hager and J. JeckelmaMietallicity in the half- lled Holstein-Hubbard
model.Europhys. Lett84, 57001 (2008). DOI:10.1209/0295-5075/84/57001

G. Hager, T. Zeiser and G. Welleildata access optimizations for highly threaded
multi-core CPUs with multiple memory controlleBroc. LSPP08, the Workshop on
Large-Scale Parallel Processing at IPDPS 2008, Miami, FL, USA, Ai@jl 2008.
DOI:10.1109/IPDPS.2008.4536341

G. Hager, T. Zeiser and G. Welleilata access characteristics and optimizations for
Sun UltraSPARC T2 and T2+ systerRarallel Processing Lettet§(4), 471-490 (2008).
DOI:10.1142/S0129626408003521

G. Hager, A. WeilRe, G. Wellein, E. Jeckelmann and H. Feh3ke spin-Peierls
chain revisited.Proc. of ICM 2006, the 17th International Conference on Magnetism,
August 20-25 2006, Kyoto, Japan. J. Magn. Magn. Masaf, 1380-1382 (2007),
DOI:10.1016/j.jmmm.2006.10.399. Erratum: J. Magn. Magn. Ma3&6, 43 (2007),
DOI:10.1016/j.jmmm.2007.03.184.

M. Hohenadler, G. Hager, G. Wellein and H. Fehsk€arrier-density ef-
fects in many-polaron systems. Phys.: Condens. Mattet9, 255202 (2007).
DOI:10.1088/0953-8984/19/25/255202

T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U.lBe and G. Hagerntroducing a
parallel cache oblivious blocking approach for the lattice Boltzmann methamteedings
of ICMMES 2006. Progress in Computational Fluid Dynamics, An Ir&(2/2/3/4), 179—
188 (2008). DOI:10.1504/PCFD.2008.018088

H. Fehske, G. Hager, G. Wellein and E. Jeckelmatwle-doped Hubbard ladder®hy-
sica B378-380319-320 (2006). DOI:10.1016/j.physb.2006.01.136

A. Weil3e, G. Hager, A. R. Bishop and H. FehsRbase diagram of the spin-Peierls chain
with local couplingPhys. Rev. B4, 214426 (2006). DOI:10.1103/PhysRevB.74.214426

2005

* G. Hager, G. Wellein, E. Jeckelmann and H. Feh&ktepe formation in doped Hubbard
ladders.Phys. Rev. Br1, 075108 (2005). DOI:10.1103/PhysRevB.71.075108

* H. Fehske, G. Wellein, G. Hager, A. Weil3e, K.W. Becker and A.R. Bishattinger li-
quid versus charge density wave behaviour in the one-dimensiondspiiermion Hol-
stein modelPhysica B359-361 699-701 (2005). DOI:10.1016/j.physb.2005.01.198

» G. Wellein, T. Zeiser, S. Donath and G. Hagén the Single Processor Performance of
Simple Lattice Boltzmann KerneBroc. ICMMES 2004. Computers & Fluic&b, 910—
919 (2006). DOI:10.1016/j.comp uid.2005.02.008

2004

» G. Hager, E. Jeckelmann, H. Fehske and G. Wellegmallelization Strategies for Density
Matrix Renormalization Group Algorithms on Shared-Memory Systén@omput. Phys.
194(2), 795-808 (2004). DOI:10.1016/j.jcp.2003.09.018

» H. Fehske, G. Wellein, G. Hager, A. Weil3e and A. R. Bisi@pantum Lattice Dynamical
Effects on Single-Particle Excitations in One-dimensional Mott and Peiesislators.
Phys. Rev. B59, 165115 (2004). DOI:10.1103/PhysRevB.69.165115

2003

* G. Wellein, G. Hager, A. Basermann and H. Fehskast sparse matrix-vector multipli-
cation for TFlop/s computersn: J.M.L.M. Palma et al. (eds.): High Performance Com-
puting for Computational Science — VECPAR2002, Porto, Portugal, 26428 2002.
Berlin: Springer, ISBN 3-540-00852-7, 205—-207 (2003). DOI:004/3-540-36569-9.8

Beitrage ohne (vollsindiges) Peer Review und technische Berichte

2013

» G. Hager:Performance engineering: From numbers to insightoc. 5th Workshop on
Productivity and Performance (PROPER 2012) at Euro-Par 2012)st@8, 2012, Rho-
des Island, Greece. Lecture Notes in Computer Science 7640, 3934REB), Springer,
ISBN 978-3-642-36948-3. DOI:10.1007/978-3-642-36942840

» M. Wittmann, G. Hager, G. Wellein, T. Zeiser, and B. KramndPC and Coarray Fort-
ran: Alternatives to Classic MPI Implementations on the Examples of Scalaltlice
Boltzmann Flow Solverdn: W. E. Nagel et al. (eds.), High Performance Computing
in Science and Engineering '12, Springer, ISBN 978-3-642-33372013) 367-372.
DOI:10.1007/978-3-642-33374-37

* M. Wittmann, G. Hager, T. Zeiser, and G. Wellefssynchronous MPI for the Masses.
Technical report, arXiv:1302.4280

2011

2010

2009

G. Hager, G. Schubert, T. Schoenemeyer, and G. Welawspects for Truly Asynchro-
nous Communication with Pure MPI and Hybrid MP1/OpenMP on Curree®compu-
ting Platforms.Proc. CUG 2011, the Cray Users Group Conference 2011, May&3-2
2011, Fairbanks, AK.

J. Treibig, G. Hager, and G. WelleiblKWID performance toolsAccepted for publica-
tion in G. Wittum et al. (eds): Competence in High Performance Computing. g&rin
(2011). arXiv:1104.4874

M. Wittmann and G. Hage©ptimizing ccNUMA locality for task-parallel execution un-
der OpenMP and TBB on multicore-based systeFashnical report, arXiv:1101.0093

J. Treibig, G. Hager, M. Meier and G. WelleintKWID performance tooldnSiDE 8(1),
50-53 (2010).

G. Schubert, G. Hager and H. Fehskerformance limitations for sparse matrix-vector
multiplications on current multicore environmenits. S. Wagner et al. (eds.), High Perfor-
mance Computing in Science and Engineering, Garching/Munich 2009.g8prisBN
978-3642138713, 13-26 (2010). DOI:10.1007/978-3-642-188BZ22

H. Fehske and G. Hagetuttinger, Peierls or Mott? Quantum Phase Transitions in
Strongly Correlated 1D Electron-Phonon Systetns F. Hensel et al. (eds.), Metal-to-
Nonmetal Transitions. Springer Series in Material Sciences, Vol. 132in@er), 1-22
(2010). DOI:10.1007/978-3-642-0395319

G. Hager, G. Jost, and R. Rabenseifnr@ammunication Characteristics and Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi-core SMP Nodesc. CUG
2009, the Cray Users Group Conference 2009, Atlanta, GA, USA, #ay20009.

M. Wittmann and G. HagerA Proof of Concept for Optimizing Task Parallelism by Lo-
cality QueuesTechnical report, arXiv:0902.1884

R. Rabenseifner, G. Hager, and G. Jostbrid MPI/OpenMP Parallel Programming on
Clusters of Multi-Core SMP Nodels: Didier El Baz et al. (eds.), Proceedings of the 17th
Euromicro International Conference on Parallel, Distributed, and nkthased Proces-
sing (PDP 2009), Weimar, Germany, February 18-20, 2009 (Computget$ Press)
427-236. DOI:10.1109/PDP.2009.43

T. Zeiser, G. Hager, and G. Welleiwlector computers in a world of commodity clusters,
massively parallel systems and many-core many-threaded CPésitrexperience based
on advanced lattice Boltzmann ow solveta: W. E. Nagel et al. (eds.), High Perfor-
mance Computing in Science and Engineering 08, Transactions of the HiginrR&nce
Computing Center, Stuttgart (HLRS) 2008, Springer, ISBN 978-3-&81801-2, (2009)
333-347. DOI:10.1007/978-3-540-88303-6

2008

* M. Breuer, P. Lammers, T. Zeiser, G. Hager and G. Welldiowards the simula-
tion of the turbulent ow over dimples — Code evaluation and optimization for the
NEC SX-8.In: W. E. Nagel et al. (eds.), High Performance Computing in Science
and Engineering 07, Transactions of the High Performance ComputingiC8tuttgart
(HLRS) 2007, Springer, ISBN 978-3-540-74739-0/ 978-3-34038-3, 303—-318 (2008).
DOI:10.1007/978-3-540-74739-21

2007

» G. Hager and G. WelleirArchitectures and Performance Characteristics of Modern High
Performance Computersn: H. Fehske et al. (eds.), Lect. Notes Phy89, 681-730
(2008), ISBN: 978-3-540-74685-0. DOI:10.1007/978-3-54688+7.26

* G. Hager and G. Wellein: Optimization Techniques for Modern High Perémce Com-
puters. In: H. Fehske et al. (eds.), Lect. Notes PR, 731-767 (2008), ISBN: 978-3-
540-74685-0. DOI:10.1007/978-3-540-7468&@-7

» G. Hager, H. Stengel, T. Zeiser and G. WelldRZBENCH: Performance evaluation of
current HPC architectures using low-level and application benchmadrksS. Wagner
et al. (eds.), High Performance Computing in Science and Engineerimghi@g/Mu-
nich 2007. Transactions of the Third Joint HLRB and KONWIHR Status Bedult
Workshop, LRZ Garching, Dec 3—4, 2007, Springer, ISBN 978t3-69181-5, 485-501
(2009). DOI:10.1007/978-3-540-6918232

M. Sturmer, G. Wellein, G. Hager, H. d¢&tler and U. Rde: Challenges and po-
tentials of emerging multicore architecturek: S. Wagner et al. (eds.), High Per-
formance Computing in Science and Engineering, Garching/Munich 20€an-T
sactions of the Third Joint HLRB and KONWIHR Status and Result Wornsho
LRZ Garching, Dec 3—-4, 2007, Springer, ISBN 978-3-540-6938551-566 (2009).
DOI:10.1007/978-3-540-6918243

2006

* G. Wellein, P. Lammers, G. Hager, S. Donath and T. ZeiBanards optimal performance
for lattice Boltzmann applications on terascale computéns.A. Deane et al. (eds.),
Parallel Computational Fluid Dynamics — Theory and Applications. Procgedifithe
Parallel CFD 2005 Conference, College Park, MD, USA, May 24-2D52 Elsevier,
ISBN 0-444-52206-9 (2006) 31-40.

* G. Schubert, A. Alvermann, A. WeiBe, G. Hager, G. Wellein and H. Fehs
ke: Spectral Properties of Strongly Correlated Electron Phonon SystdmsG.
Munster et al. (eds.), NIC Symposium 2006, John von Neumann Institute for
Computing, dlich, NIC Series, Vol. 32, ISBN 3-00-017351-X, 201-210 (2006).
http://mww2.fz-juelich.de/nic-series/volume32/schubert.pdf

» A. Nitsure, K. Iglberger, U. Rde, C. Feichtinger, G. Wellein, G. Hag&ptimization of
Cache Oblivious Lattice Boltzmann Method in 2D and 3@.M. Becker et al. (eds.):
ASIM 2006 — 19. Symposium Simulationstechnik, Hannover, 12.—14. Septe20bé.
SCS Publishing House, Frontiers in Simulatids) 265—-270 (2006).

* P. Lammers, G. Wellein, T. Zeiser, G. Hager and M. Breu#¢ave the vectors the
continuing ability to parry the attack of the killer microd: M. Resch et al. (eds.):
High Performance Computing on Vector Systems. Proceedings of the HitgriRance
Computing Center Stuttgart, March 2005, Springer, ISBN 3-540-2%12%6-39 (2006).
DOI:10.1007/3-540-35074-8

2005

» G. Hager, T. Zeiser and H. Hellebetting up ByGRID — First Steps Towards an e-Science
Infrastructure in Bavaria.In: A. Bode et al. (eds.): High Performance Computing in
Science and Engineering, Garching 2005. Transactions of the KORREkult Work-
shop, October 14-15, 2004, Technical University of Munich, Gag;hSpringer, ISBN
3-540-26145-1, 97-102 (2005). DOI:10.1007/3-540-285%35-5

» G. Hager, T. Zeiser, J. Treibig and G. Welle@ptimizing performance on modern HPC
systems: learning from simple kernel benchmagks.E. Krause et al. (eds.), Computa-
tional Science and High Performance Computing Il: The 2nd Russiam&eAdvan-
ced Research Workshop, Stuttgart, Germany, March 14-16, 20@%sNn Numeri-
cal Fluid Mechanics and Multidisciplinary Desid@i, Springer, ISBN 3-540-31767-8,
(2006). DOI:10.1007/3-540-3176823

» S. Donath, T. Zeiser, G. Hager, J. Habich and G. Well@ptimizing Performance of the
Lattice Boltzmann Method for Complex Structures on Cache-based Atcingsdn: F.
Huelsemann et al. (eds.): Frontiers in Simulation: Simulation Techniques — §8thd>
sium in Erlangen, September 2005 (ASIM), SCS Publishing, FortschritteriSichulati-
onstechnik, ISBN 3-936150-41-9, 728-735 (2005)

» G. Hager, B. Bergen, P. Lammers and G. Welldiaming the Bandwidth Behemoth —
First Experiences on a Large SGI Altix Systén8iDE 3(2), 24—-25 (2005).

 G. Hager, E. Jeckelmann, H. Fehske and G. Welldixact Numerical Treat-
ment of Finite Quantum Systems using Leading-Edge Supercomplters$i.G.
Bock et al. (eds.): Modelling, Simulation and Optimization of Complex Processes
Springer-Verlag Berlin Heidelberg (2005), ISBN 978-3-540-2787065-175 (2005).
DOI:10.1007/3-540-27170-83

2004

» G. Hager, G. Wellein, E. Jeckelmann and H. Feh§HdRG Investigation of Stripe For-
mation in Doped Hubbard Ladderk: S. Wagner at el. (eds.): High Performance Com-
puting in Science and Engineering 2004 — Transactions of the SecoridHld®B and
KONWIHR Result and Reviewing Workshop (Second Joint HLRB and K@NR Re-
sult and Reviewing Workshop Munich, Germany, 2—-3 March 2004)lilBespringer,
ISBN 978-3-540-26657-0, 339-347 (2004). DOI:10.1007/3-88657-731

e G. Wellein, T. Zeiser, G. Hager and P. Lamme#Agpplication Performance of Mo-
dern Number CrunchersCSAR Focus, Ed. 12, Summer-Autumn 2004, 17-19 (2004).
http://www.csar.cfs.ac.uk/about/csarfocus/focus12/applica@formance.pdf

2003

» H. Fehske, G. Wellein, A. P. Kampf, M. Sekania, G. Hager, A. WeiR&iktner and A. R.
Bishop:One-dimensional electron-phonon systems: Mott- versus Peierlgiossi In: S.
Wagner et al. (eds.) : High Performance Computing in Science and Enigig&§02 —
Transactions of the First Joint HLRB and KONWIHR Result and Reviewifogkshop,
Garching, Germany, 10-11 October 2002. Berlin: Springer, ISBM@@474-2, 339—
349 (2003).

» G. Hager, F. Deserno and G. Wellelfrseudo-Vectorization and RISC Optimization Tech-
nigues for the Hitachi SR8000 architectuhe: S. Wagner et al. (eds.) : High Performance
Computing in Science and Engineering 2002 — Transactions of the FirstHldRB and
KONWIHR Result and Reviewing Workshop, Garching, Germany, 1@dtbber 2002.
Berlin: Springer, ISBN 3-540-00474-2, 425-442 (2003).

» G. Hager, F. Brechtefeld, P. Lammers and G. Well@iracessor Architecture and Appli-
cation Performance in Modern SupercomputénSiDE 1(1), 8-13 (2003).

2001

* G. Wellein, G. Hager, A. Basermann and H. Fehdkract Diagonalization of Large
Sparse Matrices: A Challenge for Modern Supercomputerec. CUG 2001, the Cray
Users Group Summit 2001, Indian Wells, CA, USA, May 21-23, 2001.

Dr. Georg Hager

Erkl arung

Hiermit erkiare ich, dass diese Arbeit bisher von mir weder der Mathematisch-
Naturwissenschaftlichen Fakattder Ernst-Moritz-Arndt-Universit Greifswald noch einer an-
deren wissenschaftlichen Einrichtung zum Zwecke der Habilitation eiidpgeneurde. Ferner
erklare ich, dass ich diese Arbeit selfnstlig verfasst, keine anderen als die darin angegebenen
Hilfsmittel benutzt und insbesondere digstlich oder dem Sinne nach anderen aféentli-
chungen entnommenen Stellen kenntlich gemacht habe.

Dr. Georg Hager

Danksagung

Mein Dank giltin erster Linie Herrn Prof. Holger Fehske, der mich schhiebaktorvater beglei-
tet hatte und mich auch zur Anfertigung dieser Arbeit ermutigte. Er hat nidiBlgen Anteil an
meinem wissenschaftlichen Werdegang und schuf die Rahmenbedimgfiingeéne fruchtbare
Zusammenarbeiiber viele Jahre.

Den aktuellen und ehemaligen Mitarbeitern der GruppeHigh Performance Computing
am Regionalen Rechenzentrum Erlangen, insbesondere Gerharith\\te Treibig, Thomas
Zeiser, Michael Meier, Markus Wittmann, Moritz Kreutzer, Holger Stengais& Shahzad, Jo-
hannes Habich und Gerald Schubert dankeictein diskussionsfreudiges und aktives Umfeld,
das in dieser Form sicher auBer@dwmlich ist. Speziell die Zusammenarbeit mit Dr. Jan Treibig
war entscheidendif die Entwicklung des ECM-Modells und des multicore-Powermodells.

Ich danke aufRerdem dem Kompetenznetzweik Wissenschaftliches Hoch- und
Hochstleistungsrechnen in Bayern (KONWIHRIy fdie nanzielle Untergitzung der Projek-
te HQS@HPC und HSMB. KONWIHR héiber mehr als zehn Jahre durch di@dierung von
Projekten zur Code-Parallelisierung und -Optimierung wesentlich dazatbeggn, das Wissen
und die Erfahrung auf diesem Gebiet zu erweitern und in den Reahieezezu erhalten.

Weiterhin nochte ich den Initiatoren des DFG-SchwerpunktprogramB&PEXA" dafir
danken, eine Initiative auf den Weg gebracht zu haben, die von &tzfcdvem Wertiir die Ent-
wicklung hochskalierender numerischer Software sein wird. DankuweeSBPEXA nanzierten
Projekes,ESSEX" kann die Arbeit an ef zientenasern fir dinn besetzte Probleme auch in
den folgenden Jahren weitergehen.

SchlieR3lich danke ich meiner Familie, insbesondere meiner Ehefrau Aritrete vorbe-
haltlose Untersitzung aller meiner beruflichen Aktidten. Ohne dieseniRkhalt ware eine
erfolgreiche wisenschaftliche Arbeit nichiglich.

	List of acronyms and abbreviations
	I Performance modeling and engineering
	Introduction
	Scientific computing and code optimization
	Performance modeling
	Light speed
	Extrapolation
	Machine model

	Contributions
	ECM Model
	Multicore power model
	Pattern-guided structured performance engineering on the node level
	Applications

	Related work in performance engineering
	Organization of this thesis

	Computer architecture
	Cores
	Execution units and ports
	Registers
	SIMD execution
	Instruction cache and decoders
	SMT
	Data cache
	Clock frequency and turbo mode

	Multicore chips
	Multiple cores
	Memory access

	Node and memory architecture
	Test bed and tools
	Intel Xeon ``Sandy Bridge'' processor
	Tools
	SuperMUC

	White-box performance modeling on the chip level
	Performance and speedup
	Useful performance metrics
	High-level scalability models

	The roofline model
	Building the model
	Model prerequisites and assumptions
	Model-guided code optimizations

	Examples for roofline modeling
	Pure streaming kernel
	Sparse matrix-vector multiplication
	Divide-accumulate kernel
	Conclusions and best practices for applying the roofline model

	The Execution-Cache-Memory (ECM) model: A refined performance model for streaming loop kernels on multicore
	The Execution-Cache-Memory (ECM) model: Single core
	The ECM model: Multicore scaling
	Validation via streaming benchmarks
	Conclusions and best practices for applying the ECM model

	Chapter summary

	Performance and power
	Power dissipation and performance on multicore
	Power and performance of benchmarks vs. active cores
	Power and performance vs. clock frequency for all benchmarks
	Conclusions from the benchmark data

	A qualitative power model
	Minimum energy with respect to the number of active cores
	Minimum energy with respect to code performance
	Minimum energy with respect to clock frequency
	Validation of the power model for the benchmarks

	Consequences for system design
	Chapter summary

	Structured performance engineering
	The performance engineering process
	Description of the process
	Case study: An OpenMP-parallel 3D Jacobi smoother

	Identification of performance patterns on the node level
	Hardware performance metrics
	likwid-perfctr
	Performance patterns and event signatures
	Pattern categorization

	Patterns and models: Performance engineering refined

