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1 Introduction

Plasmas are ionized gases containing ions and electrons. They occur naturally in
lightnings in the atmosphere [1], northern light in the ionosphere [2], the sun [3],
the rings of Saturn [4], etc.. They are also used in a wide variety of technical ap-
plications ranging from fluorescent lamps [5] and plasma displays [6] to material
processing [7], electronic engineering [8] and nuclear fusion experiments [9].
Even the simplest plasmas, consisting just of electrons and one ion species, show
complex behaviour like drifts or waves. Plasmas can become even more complex,
when additional species are introduced, chemical reactions occur or wall effects be-
come important. This thesis deals with complex plasmas, because a second negative
species is existing in addition to the electrons. In the first part this species are neg-
ative Oxygen ions. They are as immobile as positive ions, but react to electric fields
inside the plasma with forces in opposite direction. Adding an additional species
also increases the number of reaction channels introducing further complexity and
instabilities. In the second part plasmas containing a dust grain are studied. The
large dust particle can collect a very large electric charge, which modifies strongly
the physics in its proximity.

Simulations of physical systems are often helpful, because they allow to study
processes that are hard to be seen by experiments, because measurements are of-
ten averaged over larger areas or methods are invasive. Kinetic modelling, as it is
done by the codes used within this thesis, allows to simulate plasmas with minimal
assumptions. Because particles with properties as in a real plasma are simulated
self-consistently, it is possible to implement virtual diagnostics into such codes, that
model those used in an experiment.

The topic of the thesis is the study of those two types of complex plasmas us-
ing kinetic simulations. The use of computational physics besides experimental
and theoretical physics allows the direct comparison of theoretical concepts, imple-
mented as numerical algorithms on the computer, for realistic systems. In the first
part of the thesis, a direct simulation and analysis of an experiment is presented,
introducing a virtual diagnostics of electron detachment in electronegative Oxygen
plasmas and comparing the results with experiment. This analysis gives a better
insight into the processes determining the experimental observations. Computa-
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1 Introduction

tional physics allows also to quantify differences between different theoretical and
numerical approaches for complex systems. The second part of the thesis deals with
benchmarking of two different kinetic approaches to simulate dusty plasmas. Here,
the comparison of results obtained with two different codes which have different
numerical methods and physics assumptions allows again a better understanding
of the system.

After introducing some basic physics the concepts of the codes used in this thesis
are discussed. The first example for the effects of introducing additional species into
a simple electron and single ion species plasma is the simulation of electronegative
Oxygen plasmas, where negative Oxygen ions are formed. Here, particular empha-
sis is on the analysis of an experiment by Küllig et al. [10], where photodetachment
was used for measuring the densities of negative Oxygen ions with a non-invasive
technique. A virtual diagnostics is introduced into the code to treat the photode-
tachment process of negative ions within a diagnostic volume and the dynamics of
this additional source of electrons in the bulk of an Oxygen plasma is analysed in
detail. Particularly, the relaxation process is studied and compared with the exper-
imental results. Afterwards, a second type of complex plasmas is studied, namely
plasmas with additional dust particles. These dusty plasmas are used for bench-
marks of codes using different approaches. Results from a fully self-consistent P3M
code by Konstantin Matyash [11] are compared to results from Ian Hutchinson’s
code SCEPTIC [12]. This comparison also allows better understanding of the fun-
damental physics of such plasmas. Finally, the results are summarized.
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2 Basic physics and methods

2.1 Basis plasma properties

A plasma is a partially ionized gas. All charged particles follow Maxwell’s equa-
tionsi, but when there are no magnetic fields or currents large enough to induce
them, which is the case in most low-temperature plasmas, all but Gauss’ law ∇·E=
ρ

ε0
can be omitted. From the definition of the electric field E = −∇Φ one gets Pois-

son’s equation
−∆Φ= ρ

ε0

which is the fundamental equation of electrostatics.

2.1.1 Boltzmann relation

In the equilibrium the forces exerted on a particle from gas pressure and the electric
field must be equal. Using the ideal gas law allows to find an expression for the
relation between the potential and the density ns of a species with charge qs [7].

0= qsnsE+∇ps

=−qsns∇Φ+kBTs∇ns

=∇ (qsΦ−kBTs lnns)

Integrating and rearranging leads to Boltzmann’s equation

ns = ns,0 ·e−
qsΦ

kBTs

with the species density in a quasi-neutral region ns,0 = ns(Φ= 0).

2.1.2 Debye length

When an object with charge Q is added to the plasma, particles of opposite charge
will move towards it, while particles of the same charge will get pushed away. All in
all the charge density around the object changes such to shield it. The length scale
at which this happens is called Debye length. Because electrons are the most mobile
species, the electron Debye length is usually very the smallest scale determining the
total Debye length. It can be derived by substituting the (linearized) Boltzmann
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2 Basic physics and methods

relation in Poisson’s equation [7, 13]. Ions are assumed to be singly charged and
stationary, i.e. they are assumed to not react to the perturbation ni = ne,∞ = n0.

∆Φ=− e
ε0

·
(
Q
e
·δ(r)+ni −ne

)
=−n0e

ε0
·
(
1−·e

eΦ
kBTe

)
+ Q
ε0

·δ(r)

=−n0e
ε0

·
(
1−·

[
1+ eΦ

kBTe

])
+ Q
ε0

·δ(r)

∆Φ= n0e2Φ

kBTe
+ Q
ε0

·δ(r)

If the potential around the object is assumed to be spherically symmetric, one can
solve the differential equation with

Φ= Q
4πε0r

·e−
r

λDe

where

λDe =
√
ε0kBTe

e2n0

is the electron Debye length. The solution itself is referred to as Debye-Hückel or
Yukawa potential.

2.1.3 Plasma frequency

The shortest timescale in non-magnetized plasmas is determined by plasma oscilla-
tions of electrons. They occur when all electrons in a volume element are displaced
by a certain distance x. The force equation delivers [7]

mẍ=−eE=−e
en0x
ε0

=−e2n0

ε0m
·x

which defines the electron plasma frequency:

ωpe =
√
−e2n0

ε0m

Whenever one models a physical system, effects have to be resolved temporal and
spatially. In typical low-temperature plasmas the shortest length and time scales
are Debye length and plasma frequency.
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2.2 RF plasmas

Fig. 2.1: Scheme of a typical ccrf plasma chamber [14].

2.2 RF plasmas

A widely used mechanism for sustaining low-temperature plasmas is the so-called
capacitively coupled radio frequency (ccrf) heating. Two electrodes, usually parallel
plates, are built into a vacuum chamber filled with a gas. A sketch of this is given in
figure 2.1. At one of these electrodes an oscillating voltage is applied. The frequency
is usually 13.56 MHz. Only electrons are mobile enough to follow the quickly vary-
ing rf field. This makes their velocity distribution functions highly time-dependent
and non-Maxwellian. The latter is also true for ions, when mean free paths are
long against the plasma dimensions [14]. Even though ccrf discharges are widely
used, their underlying processes are not yet fully understood. The non-Maxwellian
characteristics make an analytical approach very hard. More in-depth descriptions
can be found for example in [7].
Rf generated plasmas consist of a bulk region with near constant potentials and
densities, and a sheath region in which the potential drops to the one of the elec-
trode built up by the much faster moving electrons. The field in this region acceler-
ates ions and decelerates electrons coming from the bulk guaranteeing total current
balance of both species. This leads to an overall positive charge density close to the
wall on the length-scale, where charge separation in plasmas is possible. There-
fore, the so-called sheath establishs in the order of several Debye lengths. Because
electron velocities change during the rf cycle, the amount of electrons in the sheath,
and therefore the charge density, oscillates. On average electrons gain energy when
they are repelled by this “moving” sheath. This “stochastic heating” at low densi-
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2 Basic physics and methods

ties produces electrons with higher energies, resulting in a typical Bi-Maxwellian
distribution function with cold bulk ions and a hot tail.. The region between bulk
and sheath is called pre-sheath. Quasineutrality is still guaranteed there, but the
potential is already decreasing.

2.3 Electronegative plasmas

The creation of negatively charged ions in a plasma, like Oxygen, raises its com-
plexity. More species lead to more possible reaction channels, which makes the
equilibrium densities more dependent on the local temperatures and densities of
all species. The ratio between negatively charged ion and electron density is called
electronegativity:

α= n−
ne

At high electronegativities, plasma dynamics can be changed. When there are only
few electrons in a plasma charge transport becomes slower and the Debye length
increases. This interdependences can allow small changes in the system to drive
complex processes until equilibrium is restored.

2.4 Dusty plasmas

If a low-temperature plasma does not only contain electrons, ions and neutrals, but
also particles of micron or sub-micron size it is referred to as a “dusty” plasma [15].
In contrast to plasma particles at the molecular scale, dust particles do not have
constant charge. Instead they get charged by absorbing plasma electrons and ions.
A newly immersed dust grain will first be hit by electrons, because they are much
more mobile. The dust will therefore become negatively charged. This will repel
further electrons and attract (positive) ions. After some time the ion and electron
fluxes balance. The charge will then fluctuate around a constant average value.
This way they can collect 103 . . .105 elementary charges, which allows them to heav-
ily influence the plasma particles near them. Their large size and therefore mass of
about 3 ·1011 proton masses makes them very immobile [13].

A classical approach to analytically find the potential of dust grains is the Orbital
Motion Limit (OML) theory. It was originally developed to explain the voltages
measured with Langmuir probes [16, 17]. For this theory it is assumed that the
dust already has a potential Φd and particles with mass m and charge q start from
infinity with a Maxwellian velocity distribution. The main idea is to calculate an
effective cross section of the dust via energy and angular momentum conservation.
Typical particle trajectories can be seen in figure 2.2.
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2.4 Dusty plasmas

Fig. 2.2: Representative particle orbits near a dust grain as described by OML [14].

For the derivation given here [13] the axis is set parallel to the particles initial
velocity v0 and passes through the dust center. Polar coordinates (r,θ) are used near
the dust. The initial distance between particle and axis is called “impact parameter”
b. Energy and angular momentum conservation

W0 = m
2

v2
0 = m

2
(
v2

r + r2θ̇2)+ qΦ

J0 = mv0b = mr2θ̇

can be combined to find an expression for the impact parameter.

b = r ·
√

1− qΦ(r)
W0

− mv2
r

2W0

All particles with an impact parameter below bc hit the dust, all others pass. The
critical impact parameter is the one at which particles reach the dust radius r = Rd
without radial velocity:

bc = rd ·
√

1− qΦd

W0

The effective collection cross section changed from πr2
d to πb2

c . With this cross sec-
tion one can calculate the current

Is = q
∞∫

v0

4πb2
c (v) ·v · f (v) dv
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2 Basic physics and methods

by integrating over the charge flux over all velocities, that can reach the probe. v0 =
(2qΦ/m)1/2 is the velocity needed to overcome a repulsing potential or the maximum
velocity that a particle can have in the opposite direction and still be absorbed.
This leads to the positive and negative fluxes:

I− = qnπr2
d

(
m

2πkBT−

)3/2 ∞∫
v0

4πv
(
v2 −v2

0
)
exp

(
− mv2

2kBT

)
dv

= qnπr2
d

(
kBT−
2πm

)1/2
exp

(
− qΦ

kBT

)

I+ = qnπr2
d

(
m

2πkBT+

)3/2 ∞∫
−v0

4πv
(
v2 +v2

0
)
exp

(
− mv2

2kBT

)
dv

= qnπr2
d

(
kBT+
2πm

)1/2 [
1− qΦ

kBT

]
Because the dust is not connected to any conducting objects, the positive and nega-
tive currents must compensate:

ene

(
kBTe

2πme

)1/2
exp

(
− qΦ

kBTe

)
= Ie = Ii = qni

(
kBTi

2πmi

)1/2 [
1− qΦ

kBTi

]
This is the OML equation for the floating potential of a dust grain. It can only be
solved numerically.

2.5 The Particle-In-Cell method

Even low density plasmas, e.g. glow discharges, consist of billions of charged parti-
cles per cubic centimetre [13]. This number is usually way too high to trace them
all in a computer simulation. Depending on which aspect of the plasma one is inter-
ested in, the computational effort can be reduced by scaling down the system size,
treating the different species as fluids or by grouping many particles with close po-
sitions and velocities (and of the same species) into so called “super particles”. On
the following pages it is assumed, that the latter approach is chosen.

Each of the super particles has a position in space and a velocity, which represents
the mean value of the original particle’s respective properties. Since the charge-to-
mass ratio does not change when combining particles to such super-particles, elec-
tromagnetic forces induce the same motion as they would on the real particles. This
means super particles can be interpreted as a sample of particles in the plasma. It
can be proven that for collisionless plasmas the solutions obatined wih such super-
particles are identical to the solution of the Vlasov equation for real particles [18].
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2.5 The Particle-In-Cell method

The most straight forward approach for applying dynamics would be calculating
and applying the forces, that each pair of particles exerts on one another. Such
Particle-Particle (PP) models do however scale very bad for large particle numbers,
since N(N−1)

2 forces must be calculated and applied for N super particles in the sys-
tem. While the calculation of short range forces can be accelerated by considering
only interactions between very close particles, this is not possible for long range
interactions like electrostatic forces.

To cope with this problem the so-called “Particle-In-Cell” method was introduced
[18, 19]. It utilizes the fact that small deviations of a particle’s position have only
minor influence some distance away. Its main idea is to use a grid overlaying the
simulated area for solving the Poisson’s equation instead of calculating the forces
from PP models. All super particle charges are interpolated and summed up to
charge densities on the points of this grid. Poisson’s equation can then be solved on
the grid, the fields are then interpolated back to the particles to accelerate them.
This way the number of calculations per timestep grows only linearly with the num-
ber of super particles (or grid points) instead of quadratic dependence. One should
note, that solving Poisson’s equation is only sufficient when currents in the plasma
are low. At higher currents all of Maxwell’s equations must be considered, which
requires calculation of the current and makes force calculations much more compli-
cated.

For reasons of simplicity super particles are referred to as particles in this thesis.
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3 Numerical implementation

Three different codes have been used for the simulations. All of them are based on
the Particle-In-Cell method.

3.1 The 1D3V-PIC

The model I used to simulate Oxygen plasmas is a PIC code with Monte Carlo
collisions written by Konstantin Matyasah [11,20].

3.1.1 Particles

The species considered for the simulation are e, O+
2, O–, O and O2. Each simu-

lated super particle represents a fixed number of particles of one of those species.
The equations of motion for plasma particles are only determined by the charge to
mass ratio. Therefore, these super particles obey the same dynamical equations and
guarantee, even mathematically exact, the same kinetic solutions as following the
individual particles [18]. Correct inclusion of collisions using Monte Carlo methods
requires the resolution of all three Cartesian components of the velocity. The dis-
charge analysis is done just along the axis. Therefore, the spatial complexity of the
simulation is reduced to one dimension and only this component is stored for all the
particles. .
All super particles except O2 neutrals represent the same number of particles (or
density) in a real system. Because there are much more neutrals than charged par-
ticles in a weakly ionized plasma, neutral super particles represent a much larger
number of particles. Furthermore, up to 100 of them are grouped into “super-super”
neutrals with same position and velocity to increase their statistical weight without
increasing computational costs [11].

3.1.2 Units

To avoid numerical instabilities in a PIC simulation the smallest relevant temporal
and spatial scales must be resolved. In the case of weakly collisional plasmas these
are usually Debye length λDb and plasma frequency ω−1

p [21]. To transform the
equations into a dimensionless form, a reference electron density n0 is defined and
the resulting electron Debye length λDe and plasma frequency ωpe are calculated.
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3 Numerical implementation

The cell width is set to be ∆x = 0.5λDe and timesteps are ∆t = 0.2ω−1
pe guaranteeing

numerical stability [11]. All other values are normalized to this length and this
time.
The number of super particles ND in a cube of the volume λ3

De (or in 1D a section of
length λDe) represents the reference density of n0.

3.1.3 Simulated region

The simulated region is divided into an equidistant mesh. Cells can be interpreted
as indefinitely expanded slices of the plasma, with all parameters being constant
within them. This approximation is valid as long as gradients perpendicular to the
resolved direction are very small. This holds true at least in the area close to the
axis. In this code, transport effects can only be simulated in the resolved spatial
direction, namely along the axis. The model can only calculate realistic results if
transport is negligible in all other directions.
On both ends of the calculation domain electrodes need to be implemented. The left
one always is chosen as grounded with a potential of 0 V. The right electrode’s poten-
tial harmonically oscillates around 0 V at a frequency of 13.56 MHz. The amplitude
is used as a system parameter and not calculated from the heating power applied
in experiments and the electrical network outside the plasma. This approach al-
lows direct analysis of trends and avoids the need for the solution of an additional
differential equation.

3.1.4 Field calculation

The relevant quantity for the Poisson equation is the charge density, which needs
to be calculated on the grid. Just counting the charges in one cell without using
a shape function introduces too large amount of noise, because small positional
changes of particles close to cell boarders can lead to strong fluctuations in charge
density. A much better approach is to consider the charge of all particles to be
blurred. The charge density is largest at their position and decreases linearly in
space until it reaches zero one cell half cell width away. This applies in all directions
along the grid (i.e. the charge distribution would look like a pyramid in 2D). The
neighbouring grid points “collect” charges in an area as large as one cell, so the
charge mapped to a grid point looks like a pyramid again (but with the doubled
side length). One can show that the sum of charges mapped to all grid points by
a particle conserves the charge of the particle [21]. By summing up the results of
this interpolation over all particles a charge density can be calculated on the grid.
This discrete charge density is calculated every timestep. Poisson’s equation

∇2Φ=− ρ

ε0
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3.1 The 1D3V-PIC

is discretized by using potentials Φi on the grid points, finite differences for the
Laplace operator and the charge densities ρ i, which have been described above.

Φi+1 −2Φi +Φi−1
∆x2 =−ρ i

ε0

For the outermost grid points the externally defined plate potentials ϕ are applied.
The resulting tridiagonal matrix

1 0 0 0 · · · 0 0

1 −2 1 0 · · · 0 0

0 1 −2 1 · · · 0
... . . . . . . . . .

0 1 −2 1

0 0 · · · 0 0 1


·



Φ1

Φ2

...

ΦN−1

ΦN


= (∆x)2

ε0



ϕ1

ρ2

...

ρN−1

ϕN


is solved with forward and backward substitution substitution as described e.g.
in [22].

3.1.5 Particle motion

In every timestep all electrons are accelerated

v= vold +v ·∆t

and then moved with their new velocity

x= xold +
q
m

E ·∆t

Where E is the electric field interpolated from the field at the grid points. This is
done using the same equation as for interpolating charges to the grid points guaran-
teeing by this momentum conservation [21]. If particles reach the domain borders,
they are removed and may produce secondary electrons on impact.
The same mechanism is also applied to ions and neutrals. Since they move much
slower one can use sub-cycling: they are pushed only every 5 steps.

3.1.6 Collisions

Particle collisions and reactions are handled by a binary Monte-Carlo collision model,
as used by Takizuka and Abe [21,23] for Coulomb collisions.
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3 Numerical implementation

For every implemented reaction type, all particles in one cell are randomly grouped
into pairs with one particle of each reactant species in them. For each of these
pairs the relative velocity vrel is calculated. The reaction probability can then be
determined using the equation

Pcoll = 1−exp−n ·vrel ·σ ·∆

with the velocity-dependent cross section σ, the timestep ∆t and the density of the
more abundant reactant n. Whether the collision happens or not is decided based
on random numbers. If the random number is larger than the normalized collison
or reaction probability the collision is not done, if it is smaller it will occur. In a
collision the particles’ velocities are split into a relative and a center-of-mass com-
ponent. In case of inelastic collisions or reactions the energy in the relative motion
is adjusted according to the losses. If the collision is a reaction reactants are de-
stroyed and products are created at the location of the removed particle. Finally,
the direction of relative motion is changed randomly and the relative energy is dis-
tributed to the particles again according to momentum and energy conservation.

In addition to normal collisions the following reactions are implemented in the code:

O2 + e −−→ O + O− dissociative attachment
O2 + e −−→ O+

2 + 2e electron impact ionization
O− + O2 −−→ O + e + O2 detachment on neutrals
O− + O+

2 −−→ O2 + O mutual neutralization
O+

2 + e −−→ O + O dissoziative recombination
O− + e −−→ O + 2e electron impact detachment

Investigations with a 0D model [24] showed, that these are the most relevant pro-
cesses in the parameter ranges of the plasmas considered here. One should note,
that excited particles are not tracked as separate species but determined from
ground state populations. For the plasmas studied here higher charged ions like
O–

2 and O3 can also be neglected.

3.2 The P3M-PIC

The Particle-Particle Particle-Mesh (P3M) code used to self-consistently model the
plasma with a dust grain is another variant of the 1D3V-PIC described in sec-
tion 3.1. It was also written by Konstantin Matyash and has been modified by
Ramana Ikkurthi [25] and Lars Lewerentz [14]. The most notable differences from
the 1D3V code already presented are:
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3.2 The P3M-PIC

• The simulated area is three-dimensional. This means, the particles’ posi-
tion holds all three components. Cells are now cubes instead of sections on a
line. Field calculations, density and force interpolations have to be performed
three-dimensional, which is described below.

• The system is periodic in x and z direction. Particles leaving the domain have
their position adjusted accordingly.

• The electrodes are placed at the ends of the system in y-direction. The time-
dependent RF-voltage is applied there. Particles hitting the electrodes are
removed, but might emit secondary electrons.

• An Argon plasma is simulated. Condsidered species are Ar, Ar+ and e (where
super-super particles are used for Ar). Besides several collisions and excita-
tions the only implemented reaction is electron impact ionization.

• To reduce the runtime parallelization is used. To achieve this, the domain is
decomposed into sub-domains along the y axis. This allows parallel processing
of these domains by multiple processors.

• The possibility to add a dust particle was introduced. More on the implications
of this will be given below.

3.2.1 Field calculation

The discretized Poisson’s equation on a three-dimensional grid is given by

Φi+1, j,k +Φi−1, j,k +Φi, j+1,k +Φi, j−1,k +Φi, j,k+1 +Φi, j,k−1 −6Φi, j,k

∆x2 =−ρ i, j,k

ε0

which transforms into a seven band matrix. Solving this system with forward and
backward iteration is still very efficient, but since the algorithm relies on triangu-
lar matrices, the discretized Laplace operator must be LU decomposed [22]. This
means two matrices L and U must be found, such that

l11 0 0 · · · 0

l21 l22 0 · · · 0

l31 l32 l33
. . . ...

...
... . . . . . . 0

ln1 ln2 ln3 · · · lnn


·



u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n
...

... . . . . . . ...

0 0 0 · · · unn


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3 Numerical implementation

Fig. 3.1: Comparison of the force between two charged particles that interact di-
rectly or by mapping their charges onto a grid first [26].

equals the matrix representation of the Laplace operator. This is done using the
SuperLU library. Because the Laplace operator is represented by a constant matrix
determined only by the geometry of the mesh, it is sufficient to perform the numeri-
cally expensive decomposition just once in the initialization phase of the code. Only
the fast forward and backward solver has to be used in every timestep.

3.2.2 Field calculation near the dust

As soon as the background plasma equilibrates an initially uncharged, spherical
dust grain can be added to the plasma. It can change its charge by absorbing other
particles. For most of the simulated domain such a dust grain is treated like any
other particle for the charge density and potential calculation within the regular
PIC approach.
It is a well-known drawback of PIC simulations, that it strongly diminishes near-

range interactions [21]. This is an effect of mapping the charges to the mesh. Be-
cause a particle must not exert forces on themselves, the force between two particles
within the same cell decreases when they come closer. In a real system the Coulomb
force would grow larger instead. This is illustrated in figure 3.1. Because accurate
orbits near the dust are essential for finding out which particles get absorbed and
because the dust’s very high charge dominates particle motion in its proximity, the
electric field must be calculated more carefully in this region.
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3.3 SCEPTIC

To achieve this in a self-consistent way, the electric field contributions from the
dust Edust and from all other particles Egrid are calculated separately [27]. The ac-
celeration of most particles is calculated as usual with E=Egrid+Edust. For particles
within one Debye length from the dust, the electric field is calculated by only using
the grid electric field for non-dust particles and substituting the dust component on
the grid by Coulomb’s law.

Enear =E−Edust +
Zde
4πε0

r−rd

|r−rd|3

with the number of elementary charges absorbed by the dust Zd. This calculation
must be performed for every particle in the affected cells. Because of the direct
interaction between particles and dust, one often refers to the affected region as
“MD” (molecular dynamics) region.

3.2.3 Particle motion near the dust

Because it is of very high importance to know whether a particle near the dust
is absorbed or not and because the Debye-Hückel potential shows a strong spatial
dependency, particle motion is subcycled for all particles in the MD region and par-
ticles are pushed more often with smaller steps accordingly. As soon as a particle
reaches the inside of the grain it is deleted and its charge is transfered to the dust
– it is absorbed.

3.3 SCEPTIC

During the last ten years Ian H. Hutchinson and Leonardo Patacchini developed
and implemented a method to simulate the effects of a spherically shaped object
(e.g. a Mach probe) on a surrounding flowing plasma. The result is the SCEPTIC
code, which is short for “Specialized Coordinate Electrostatic Particle and Thermals
In Cell”. From the basic concept it is a two dimensional Particle-in-Cell code, but it
contains several differences.

3.3.1 Cells and particles

In SCEPTIC only one type of ions is considered and only ions are treated as parti-
cles. They have positions and velocities in all three Cartesian coordinates (x, y, z),
where z is the direction in which ions are drifting. Other than in most PIC codes,
super particles do not represent a fixed quantity of ions. Instead, their number is
kept constant during the whole simulation by reinjecting every lost particle. How
much real particles they represent is coupled to the densities at infinity ni,∞ = ne,∞.
Because velocity distributions at the boundary are known, it is possible to compare
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3 Numerical implementation

dust
rd rmax

Fig. 3.2: A scheme of the grid SCEPTIC uses for potential calculations.

the real flux into the region with the number of reinjected particles. The weight
of the particles is then adjusted every step. After some time the equilibrium is
reached.
Electrons are considered as an infinitely quick responding background with density

ne,∞ ·exp
(

eΦ
kBTe

)

determined by the Boltzmann relation [28].
Cells are only two dimensional and curvilinear instead of rectangular. They are

equally sized in radius r and cosine of azimuthal angle θ [28]. Such a grid is de-
picted in figure 3.2. The third dimension is the polar angle ϕ. Because the simu-
lated system only contains a spherical (and therefore symmetric) dust particle and
plasma flowing plasma along the z-axis the whole system – and especially the po-
tential – is symmetric along ϕ.
The simulated domain only has boundaries in r direction. The dust begins at r = 1
and the domain ends at r = rmax.

3.3.2 Units and input

SCEPTIC scales temperatures in units of the electron temperature Te and velocities
in ion Bohm velocities

√
(kBTe) / (Zmi). Distances are normalized to units of dust

radii rd. This means information on the dust size must be handed over indirectly
by giving information on the Debye length. Even though the unit time in SCEPTIC
can be calculated via rd/

√
(kBTe) / (Zmi) timesteps are usually smaller than that.
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3.3 SCEPTIC

3.3.3 Field calculation

Mapping of ion charges to charge densities onto a mesh is done with a cloud-in-cell
scheme as described in section 3.1.4. To calculate the potential, Poisson’s equation

∆Φ= ρ

ε0
= e
ε0

·
(
ni −ne,∞ ·exp

eΦ
kBTe

)

must be solved. In contrast to the other simulations used within this thesis, di-
rect calculation by discretizing the equation and inverting the Laplace operator is
not possible, because electron density and therefore charge density is not known a
priori. They depend on the local potential in a nonlinear way. That is why the solu-
tion must be achieved iteratively via the “successive over-relaxation” method with
Chebyshev acceleration [22, 29]. The idea behind this is, that Poisson’s equation is
discretized and the left hand side is solved for Φ of the current cell.

Φi, j =
ai, j+1Φi, j+1 +ai, j−1Φi, j−1 +ai+1, jΦi+1, j +ai−1, jΦi−1, j

ai, j

+
e
(
ni +ne,∞ ·exp

(
eΦ

kBTe

))
ai, j

with the local ion density ni. The coefficients are ai 6= j = 1 and ai= j = 4 for a
rectangular grid, but on the curvilinear grid it is more complicated. Introducing
a relaxation parameter ω ∈ (0,2) and rewriting the above equation into the form
Φnew = (1−ω) ·Φold+ω ·∆Φ increases convergence speed or numerical stability. One
can show that it is possible to calculate the new potential at all grid points with-
out using old values of potentials at grid points that have already been updated by
clever matrix splitting, rearranging and forward iteration [22]. The resulting set of
equations

∆Φnew
i, j = (1−ω) ·Φold

i, j +ω ·
(

ai, j+1Φ
old
i, j+1

ai, j

+
ai, j−1Φ

new
i, j−1 +ai+1, jΦ

old
i+1, j +ai−1, jΦ

new
i−1, j

ai, j

+
e
(
ni +ne,∞ ·exp

(
eΦold

i, j
kBTe

))
ai, j


is solved iteratively until convergence is achieved.
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3.3.4 Boundary conditions

SCEPTIC offers several scenarios for boundary conditions during potential calcula-
tion. In most runs used within this thesis the potential at the outer boundary was
set to be Φout = 0.
For one series of runs a more sophisticated approach [29] was chosen. It allows more
realistic potential distributions for spherically symmetric systems with Φ(rb) 6= 0.
The basic idea is, to approximate the potential by correcting Debye’s shielding equa-
tion with the simulated values at the outer boundary. Therefore potential and ion
density on the boundary are measured. The difference between measured and ex-
pected ion density ni,∞ · (1−ZΦTe/Ti)− ni is calculated and put into the shielding
equation as a correction factor. This equation can then be solved using a Green’s
function approach. The first derivative of the solution is used as outer boundary
condition.

For the inner boundary the probe potential can be externally defined by using an
input parameter or set to be floating. Since this thesis aims to investigate the sim-
ulation of conducting, spherical dust in a plasma (which is also done by P3M), a
conducting floating probe was chosen for my simulations. A third possibility would
have been to use an insulating, floating probe.
In the latter two cases, the ion flux onto the probe is measured. Because ion and
electron flux onto the floating probe must be identical, the probe potential can be
calculated from OML theory. For Maxwellian electrons as used in SCEPTIC it fol-
lows [12]

ne,∞
4

·
√

8kBTe

πme
·exp

eΦp

kBTe
=Γe = ZΓi = f ni,∞

√
ZkBTe

mi

Φp = kBTe

e
·
(
ln

2πmi

me
+ ln f

)
Where f is the ion flux onto the probe in SCEPTIC’s units. Please note that the
above equations are only correct for a Maxwellian electron velocity distributions.
Furthermore ne,∞ = ni,∞ is assumed, which is correct in most cases, but might be
wrong when there is no quasi-neutrality (e.g. in the sheath of a plasma). In this
case the potential would change by an additional ∆Φp = kBTe

e · ln ni,∞
ne,∞ . This potential

is used on the inner boundary. To avoid too fast and strong changes of the dust
potential underrelaxation is used. Because ions that are accelerated by a changed
potential must travel to the dust probe fluxes react only inertly. This means heavy
oscillations can occur until an equilibrium is reached. This and the implicit use
of Boltzmann electrons makes it impossible to simulate charging dynamics with
SCEPTIC.
If one is interested in the behaviour of an insulating dust grain, the flux is counted
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3.3 SCEPTIC

separately for all inner cells. A separate potential is then calculated for all inner
grid points with the same equation as in the conducting case.

3.3.5 Particle motion

For convenience, particles’ positions and velocities are stored and updated in Carte-
sian coordinates. For this purpose, firstly the electric field at the particle’s position
is calculated from the mesh potential in spherical coordinates and then converted.
Then, pushing is performed by modifying the velocity and then the position. It is
possible to change the timestep or to enable sub-cycling for particles close to the
dust.
If particles leave the domain at the inner boundary (i.e. they get absorbed), the
crossing time and place is determined. The particle is counted as in-flux for the cor-
responding dust segment. Immediately after absorption a new particle is created
at the domain edge and pushed for the remaining fraction of the timestep (using
the sub-cycling routine). Particles leaving the domain on the outer boundary are
reinjected after the complete timestep (or sub cycle if used).

3.3.6 Reinjection

For reinjection of ions many different methods of determining their velocity can be
chosen. Most of them include Monte-Carlo inverse sampling from a distribution
function. The simplest case is a Maxwellian distribution. For this thesis sampling
from a Maxwellian shifted by the drift velocity was used. The most sophisticated ap-
proach is to assume ions that are injected from a shifted Maxwellian at infinity and
accelerated in the spherically symmetric potential mentioned in section 3.3.4 [29].
The according distribution functions are calculated analytically and are only valid
in a collisionless plasma.
In the mode used for this thesis, cumulative flux distributions are calculated for
all boundary cells. This is done by integrating the flux into the domain over the
velocity distribution function on all boundary cells. Location (θ) and velocity com-
ponents parallel as well as orthogonal to the flow can then be selected from these
distributions via Monte-Carlo sampling. Angle ϕ ∈ [0,2π) – needed for specifying
the three dimensional location – is randomly generated and the other tangential
velocity component is selected directly from the (cumulative) velocity distribution
function at a given vθ.

3.3.7 Collisions

The only collision type implemented in SCEPTIC is charge exchange between ions
and electrons. If enabled a collision frequency ν is set at the beginning of the sim-
ulation. This frequency is used for all particles independent of their velocity. If a
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particle is moved for the first time in a step, the time tcoll until the it collides is ran-
domly selected by sampling from R = exp(νtcoll) with a random number R ∈ (0,1).
If this happens during the current timestep the particle is pushed for the time tcoll.
Then, its velocity is reset to the randomly selected neutral velocity. These are dis-
tributed according to a non-shifted Maxwellian [30].
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4 Electronegative Plasma

4.1 Description of the experiment

Negative ions have major influence on the dynamics in a plasma. In 2010 Kül-
lig et al. presented a method for measuring negative ion densities with minimally
invasive techniques [10]. They used 160 GHz microwave interferometry to deter-
mine the electron density of a capacitively coupled O2 plasma. They also added
a frequency-doubled Nd:YAG laser, which was adjusted in such a way that both
beams cross defining a diagnostic volume. The experimental setup is depicted in
figure 4.1. The photons emitted by the laser have an energy of 2.3 eV. This is more
than the electron detachment energy 1.46 eV of the O– ions. When the laser is pro-
vided with enough power, all negative ions along its beam emit the electron with
the lowest binding energy. This local increase of electron density can be measured
by the interferometer beam and from the difference one can calculate the density
of O– ions in the unperturbed plasma. After the initial rise of the electron density
a decay to the original equilibrium value is observed, because the source electrons
from detachment disappear from the diagnostic volume.

Depending on the applied rf power, the plasma can establish two operational
regimes. One of them with high and one with low electronegativity. After detach-
ment the decay of the signal is much slower in the regime of higher powers. In this
regime due to the lower electronegativity the electron source from detachment is
much weaker compared to the regime of high electronegativity. That means that
the systems with smaller perturbations take longer to equilibrate. For plasmas at
pressures of 30 Pa equilibrium was reestablished after τ = 2 . . .5µs for high elec-
tronegativities (i.e. α > 2) and τ = 70 . . .100µs for low electronegativities. The ex-
perimental data are shown in figure 4.2.
This experiment was simulated using the Particle-in-Cell to study the processes
that lead to the relaxation of the system.

4.2 Modelling of the plasma

The simulation of the plasma was performed by a one-dimensional Particle-In-Cell
code as described in section 3.1. For all runs the gas pressure was set to 30 Pa.
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4 Electronegative Plasma

Fig. 4.1: Experimental setup of the negative ion detachment diagnostic experi-
ment [10].

Fig. 4.2: Bulk densities, electronegativity and decay time constant as measured in
the experiment [10].
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Fig. 4.3: Bulk densities and electronegativity for plasmas simulated at various
driver voltages U0.

Depending on the expected electron density (and therefore on the used grid size as
discussed in section 3.1.2) the distance between the electrodes was about 4.6 cm.
The left electrode was always grounded, while the right electrode’s potential was
harmonically oscillating around 0 V at a frequency of 13.56 MHz and varying am-
plitudes U0.

To study the influence of plasma heating, simulations with a range of different
driver voltages have been performed. The results are shown in figure 4.3. One can
see, that the amount of positive O+

2 ions and electrons increases at higher voltages,
while the density of the negative O– ions decreases. This behaviour is observed
experimentally and occurs because of temperature changes in the plasma. Raising
the driver voltage increases the plasma potential and the electric field close to the
electrodes. Therefore, acceleration in the sheath become stronger. This leads to
higher temperatures in the sheath and ionizations by electron impact become more
likely – leading to more electrons and positive ions. In the bulk one observes the
opposite trend. At the beginning electrons with higher temperatures are created,
because of the larger electric field, but with increasing number of O+

2 ions, more

29



4 Electronegative Plasma

collisions occur. These drain energy from electrons to ions, reducing the electron
temperature. This lower bulk electron temperature is not sufficient to dissociate
neutral molecules, resulting in a reduced production of negative ions.

The voltages chosen for simulations of the experiment are 200 V (because it is near
the point of maximum O– density), 350 V (because electronegativity is significantly
lower there, while statistics are still acceptable) and 630 V (which was the high-
est voltage with enough negative ions to see their equilibration at still acceptable
simulation times).

4.3 Implementation of the detachment

To simulate the perturbation I implemented a routine resembling the photo detach-
ment process. It is integrated into the PIC cycle for the pulse length tpulse = 7ns
of the real laser. In these steps in an area of rlaser = 6.5mm around the center of
the simulated system a number of O– ions is randomly selected and deleted. For
each of them a pair of an O radical and an electron with the same velocity and
position are created. They immediately perform an inelastic collision where they
gain a total energy of ∆E = 0.87eV, which is the energy of a photon with 532 nm
wavelength minus the binding energy of a O– ion according to [31]. From the total
energy of the laser pulse (0.4 J) one can calculate how many photons are generated
each timestep. The probability that an arbitrary ion in the laser diagnostic volume
loses its electron can be calculated from photon number per timestep, detachment
cross section and dimensions of the cells – or one can just define a fraction of ions
to be hit by the laser.
A real laser hits a three dimensional volume while PIC cells are only one dimen-
sional in the used simulation. The cell length in the direction orthogonal to the
beam and to x must be a constant value. Cells closer to the laser center have a
larger fraction of their volume accessed by the laser. The chance of detachment for
an ion grows linearly with the detachment volume in the cell. The fraction of the
laser beam affecting a given cell can be calculated as

A i,in cell

Alaser
= arccos(a)−arccos(b)−a

p
1−a2 +b

p
1−b2

π

with a = xmin/R the ratio of the distance between center of the laser and the inner
boundary of the cell xmin over the laser radius R. b is the same as a, but for the
distance to the outer boundary of the cell. This ratio multiplied by the detachment
probability and the number of negatively charged super ions gives the number of
detachment reactions for each step. I chose parameters to guarantee detachment of
electrons from all negative ions, because the detachment diagnostics in the experi-
ment was operating in such a regime.
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Fig. 4.4: Temporal development of the electron density in an Oxygen plasma after a
large number of electrons was created in the bulk with an artificial photo
detachment module. The plasma was heated with a driver voltage of 200 V.

4.4 Alternative detachment mechanisms

Some driver voltages produce very low O– densities with electron densities several
magnitudes higher. Because of this, very good statistics is needed to resolve varia-
tions in the density of both species after photo detachment. Increasing the number
of simulated super particles has a notable impact on the runtime. I tried to circum-
vent this problem by creating an artificial diagnostic module, which allows to create
new electrons without the consumption of negative ions. The amount of newly cre-
ated electrons is not determined by the number of O– ions. Therefore even for cases
with very low negative ion densities at high electron densities, runs can be done
with standard statistics.

4.4.1 Creation of solitary electrons

The naive approach to create photo-detached electrons is to simply create them at
the position and velocity of randomly selected neutrals. The location where this
happens and the energy gained by the electrons is the same as for the physically
correct process.
As seen in figure 4.4, the problem with this concept is, that the electrons are carried
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away by the RF field immediately after their creation. As soon as they reach one
of the sheaths, they are decelerated by the strong electric field. This results in a
higher electron density at the edge of the plasma. Many of the electrons ionize
neutrals while others simply leave the plasma. Quasi neutrality is restored very
fast. Later, this group of additional electrons and ions diffuses back into the bulk
or out of the plasma. Since the bulk density temporarily returns to its old value
within less than one RF cycle and increases again later on. This approach is an
unsuitable alternative for the correct detachment mechanism, because it produces
such artifacts.

4.4.2 Creation of electron-ion pairs

The biggest deficit of the previously presented approach is that it does not provide
quasi-neutrality. If positive charges are created to confine the electrons an analysis
of the temporal density development becomes possible. An intuitive way to do this
is to perform ionizations of neutrals instead of just creating the electrons. The en-
ergy added to the resulting particles is ∆E = 0.87eV again – despite the fact that
the binding energies for both approaches differ.
This approach manages to confine the electrons. However the lifetime of the per-
turbed state is about an order of magnitude longer compared to the physically cor-
rect detachment mechanism, due to the strongly enhanced electron-ion collisions.
Therefore, physically correct detachment must be used.

4.5 Transport processes during relaxation

The effects of detachment on an Oxygen plasma can be seen most easily, when there
is a high O– density to provide detachable ions. Hence the description of the pro-
cesses after detachment are explained for a discharge heated with a driver voltage
of 200 V. This plasma has a bulk electronegativity of α= 45%, which was the highest
value achieved during the simulations. An overview of the temporal development
is given in figures 4.5 to 4.8.

Major effects are:

• A part of the newly detached electrons quickly leaves the perturbed area (fig-
ure 4.5).

• Shortly after detachment the positive ion density only decreases at the edge of
the detachment region. An increase outside the detachment region is driven
by the diffusion electrons due to quasi-neutrality constraint. Later, the den-
sity loss moves inwards (figure 4.6).
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• After the detachment stops, the edge of negative ion density remains steep.
These ions are regenerated at approximately the same rate everywhere in
the perturbed area. They are not affected by the changing densities of other
species everywhere outside this region (figure 4.7).

• An electric field forms at the edge of the detachment zone and drifts inwards
later. In addition, a smaller electric field drifts outwards from the same posi-
tion (figure 4.8).

To explain the reason for this behaviour, all densities and the potential close to
one edge of the detachment zone are plotted in figures 4.9 to 4.12.
In the beginning quasi-neutrality is guaranteed everywhere and the potential is
approximately the same in the bulk (figure 4.9) – this holds true even when the
first electrons are detached. There is however a steep gradient in electron and O–

density, which soon leads to electrons diffusing to the outside (figure 4.10). The O–

ions are much more immobile and do not show any visible diffusion behaviour. As
soon as the first electrons have moved, the charge density gets negative just outside
and gets positive just inside at the edge of the detachment region (figure 4.10). This
charge separation creates a potential difference of ∆Φ≈ 0.6V. This slows down the
electrons and is enough to accelerate an O+

2 ion by√
2eΦ
m+

= 1895
m
s

Investigating the slope of the escaping electrons in figure 4.5 (or of the positive ions
in figure 4.6) reveals that their velocity is about 2200 m

s . This indicates ambipolar
diffusion with the positive ions as the limiting factor in electron motion. Dividing
the laser radius by the ambipolar velocity results in a characteristic transport time
of about 3.0µs, which is already in the range of relaxation times measured in the
experiment and thus should be taken into account.
Because the resulting ambipolar electric field is very local (e.g. between x = 8.4mm
and x = 8.7mm in figure 4.10) it can only affect ions in a small region at the edge
of the detachment zone. This explains why the significant O+

2 density reduction
happens exclusively in this small strip shortly after detachment. Because very few
of this field reaches into a region where there are still negative ions left, they will
hardly be pulled into the depleted region. The effects of free O– transport near the
edge of the detachment region can be seen as a reduced slope e.g. in figure 4.11.
In the same figure it also becomes visible, why these diffusing ions are not further
accelerated into the detachment region: The removal of positive ions (e.g. around
x = 8.6mm in this figure) as well as the electrons in outer regions of the perturbed
area shifts the charge density bump inward. Accordingly, the ambipolar field shifts.
The homogeneously rising O– density all over the depleted area clearly indicates,
that the regeneration must be a volume process – as was already suggested in the
paper by Küllig et al. [10].
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Fig. 4.5: Temporal development of the electron density in an Oxygen plasma heated
with 200 V. Photo detachment was performed at t = 0.
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2 density in an Oxygen plasma heated with

200 V. Photo detachment was performed at t = 0.
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Fig. 4.7: Temporal development of the O– density in an Oxygen plasma heated with
200 V. Photo detachment was performed at t = 0.
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Fig. 4.9: Potential, electron and ion densities near the left edge of the detachment
region before detachment was performed.
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Fig. 4.10: Potential, electron and ion densities near the left edge of the detachment
region shortly after detachment was performed.
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Fig. 4.11: Potential, electron and ion densities near the left edge of the detachment
region five RF cycles (0.4µs) after detachment was performed.
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Fig. 4.12: Potential, electron and ion densities near the left edge of the detachment
region twelve RF cycles (0.9µs) after detachment was performed.
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4.6 Bulk processes during relaxation

Analyzing the bulk processes is possible by counting all reactions between two sim-
ulation timesteps and rescaling them to units of density (of produced particles) per
time (between two steps). Dividing these rates by the density of one of the reagent
species gives effective rate coefficients.
Negative ions are produced everywhere in the bulk by dissociative attachment of

electrons. As can be seen in figure 4.13, this only changes shortly after detachment.
The reason for this is quite surprising. Although detached electrons have a higher
temperature due to the energy gained from the laser the overall electron tempera-
ture in the inner bulk decreases. This happens, because fast particles are the first
to leave the region, while slower particles stay. After about three RF cycles the dis-
sociative attachment rate restores to its old rate of ṅ−,prod = K̃a = 1.5 ·1014 cm−3/s.
There are two concurring processes, that influence the O– production rate. On the
one hand the decreasing number of electrons reduces the production rate, but on
the other hand the return of higher energetic electrons makes detachment more
efficient, which leads to stronger ionization. These two processes balance nearly
perfectly.
The equilibration of the negative ion density is possible, because the reactions con-
suming O– ions are proportional to their density. The reaction limiting the density
of negative ions is detachment on neutrals. All other reactions destroying O– ions
can be neglected. This means a linear slowdown of ion regeneration, because den-
sity and temperature of the background gas do not change. Detachment occurs at
an effective rate of kd = 3.1 ·105 s−1, which is constant over time. The above consid-
erations lead to the differential equation

ṅ− = K̃a −kdn−

with the solution

n− = K̃a

kd
·
(
1−e−kdt

)
.

This suggests that the time the plasma takes to recover from the induced detach-
ment, τd = k−1

d = 3.2µs only depends on the neutral detachment rate. Larger or
smaller production rates only change the equilibrium density, but not the time
needed to reach it. One should also note, that higher detachment rates lead to
faster equilibration only due to the equilibrium being at lower density. They do not
accelerate ion production.

Finding an analogous equation for the electron density is only possible with one
more approximation. Electrons are not only produced in the bulk by detachment on
neutrals, but also via ionization in the sheathes. For the derivation of this differ-
ential equation it is assumed, that there are no net fluxes between bulk and outer
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areas. This is not really true except for equilibrium. This approximation leads to
the differential equation

ṅe = kdn−− K̃a =−K̃a ·e−kdt

with the solution

ne = ne,0 + K̃a

kd
·e−kdt

The equilibrium electron density ne,0 cannot be calculated here, because it is de-
fined by sheath and transport processes. The latter ones might lead to an electron
density that is temporarily lower than expected with this model.

The considerations given in this section are only valid, if the production rate
of negative ions stays approximately constant. This behaviour was observed in all
three simulated regimes with the exception of the first three rf periods for the 200 V
case. In fact the O– production breakdown shortly after detachment might have a
longer duration for higher O– densities, when more electrons are detached and leave
the region. The small period of decreased dissociative attachment rates does not af-
fect the model, because nearly no ions are produced in this phase. Regeneration just
starts a bit later. Another assumption for this model is, that neutral detachment
only depends linearly on negative ion density. This is a reasonable assumption as
long as neutral and ion temperatures are approximately constant, which is expected
and observed.

4.7 Comparison of regeneration processes at
different voltages

The detachment was also simulated with driver voltages of 350 V and 630 V. Be-
cause there are only few ions available for detachment the initial perturbation is
small and its effects are often masked by statistical noise.

In figures 4.14 to 4.16 the temporal development of O– and electron density af-
ter detachment can be seen. To minimize the effect of possible drifts, only den-
sity differences between simulations with and without detachment have been used.
The values are averaged over the whole detachment region (solid lines) and over
half of it (dashed lines). Especially, the temporal development of densities for the
200 V heated plasma (in figure 4.14) shows the different contributions from trans-
port and reactions to reach equilibrium again. The nearly linear dependence at
the start of both dashed lines is the bulk process of dissociative attachment, which
produces negative ions at a constant rate. Neutral detachment is unimportant,
because there are not many negative ions existing yet. This mechanism becomes
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Fig. 4.14: Deviations of electron and negative ion density from their unperturbed
values in an Oxygen plasma driven with 200 V.

important around 1.1µs after detachment. The electron density still decreases at a
linear rate, while the number of negative ions increases more slowly. No additional
kink is visible in the graph of the electron density for the dashed line, because the
ambipolar field is already very small when it arrives at the inner region of the bulk.
The solid lines include transport effects. Therefore, a much faster decay of elec-
tron density is observed. O– ions also travel into the region by diffusion, but to
a much smaller extent. During the first microsecond the rate at which electrons
leave the detachment area grows, probably because the electron density gradient
gets broader and therefore electrons from a larger region get accelerated. Smaller
gradients lead to smaller transport effects.

In the 350 V plasma (figure 4.15) the same effects can be seen. Because the ini-
tial O– density is smaller deep inside the bulk the solid and dashed lines start at
different points. The most notable difference to the 200 V case is, that even though
electron transport becomes clearly visible, it very soon slows down until ∆n reaches
approximately the same value after about 3.2µs. After this time electron and ion
perturbations are equal. The slowdown is driven by the small amount of newly
produced electrons, which diminishes diffusion. Since electrons get consumed by
dissociative attachment, electrons must actually have diffused back into the region
to replace those that left it shortly after detachment.
The initial breakdown in dissociative attachment could not be seen in this regime.
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Fig. 4.15: Deviations of electron and negative ion density from their unperturbed
values in an Oxygen plasma driven with 350 V.

A small temperature drop in the detachment region was visible, but production
rates remained unchanged. Inverting this rate leads to an equilibration time of
τd = 3.7µs.

Because only few electrons from detachment increase their total number, statis-
tical noise is quite large. In the plasma driven with 630 V (figure 4.16) the noise
was so large, that no reliable information could be obtained. Negative ions show
the same behaviour, that has already been described for the other simulations. On
average the electrons follow this behaviour, which means that there is (nearly) no
outward transport of electrons other than the normal transport that occurs due to
the applied field. The negligible density increase gives no reason for the electrons
to diffuse outwards. The equilibration time was measured to be τd = 3.2µs.
The density deviation reached at times τd coincide quite well with the expected val-
ues of ñmax ·e−1. The simulated effective rates for detachment on neutrals lie within
a factor of five near the experimental results for high electronegativities, which lie
between 6.2 ·104 s−1 and 10.1 ·104 s−1. The time constants are within 50 % of the
experimental values (1.9µs to 4.3µs [10]).
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Fig. 4.16: Deviations of electron and negative ion density from their unperturbed
values in an Oxygen plasma driven with 630 V.

4.8 Artificial amplification of collisions

The detachment simulation with highest electronegativity was repeated with mod-
ified transport. This was achieved by amplifying the cross sections of all elastic
collisions (i.e. all collisions, that do not change a particle’s species or dissipate en-
ergy) by a factor of 500. Results in figure 4.17 are as expected. All four graphs
are approximately the same, so electrons are not transported and associative de-
tachment is the only way to diminish their numbers. An unexpected aspect is, that
the perturbation relaxes much faster with this modification and that the lines stay
linear much longer. These effects occur, because the high energetic electrons, that
were the first to leave the region by diffusion just stay inside the bulk. The resulting
higher temperature leads to a larger number of generated O– ions.

4.9 Interaction between bulk and transport
processes

Küllig et al. [10] interpreted the decay of the perturbation as a volume process. The
results presented here agree with this. Two assumptions entering their analysis
are valid only for small electronegativities.
Firstly, the effective rate coefficients were assumed to be constant. This is not the
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Fig. 4.17: Deviations of electron and negative ion density from their unperturbed
values in an Oxygen plasma with amplified elastic collisions.

case, because the electron temperature lowers when highly energetic electrons leave
the detachment region due to diffusion. In fact the rates were approximately con-
stant, except for the short breakdown phase observed in the highest electronega-
tivity case. This even lowered the rate. When this adiabatic cooling effect is lost
at very low electronegativities, the perturbation in electron densities is also very
small. The resulting dissociative attachment rate is therefore also nearly constant,
which is the same as expected for a linear dependency.
Secondly they assumed that ne+n− = n+ = const, but it actually changed especially
at the edge of the region. This is an effect of electrons pulling O+

2 ions outwards via
ambiplor diffusion. These effects decrease with reduced electronegativity. Here, the
smaller perturbation leads to smaller electron diffusion, resulting in less tempera-
ture decrease and weaker ambipolar fields. If less electrons leave the detachment
region due to smaller perturbations, both approximations become true.

The simulated relaxation times are close to the experimental values at high elec-
tronegativities, because only those were accessible for the simulations. Studies
of regimes with very low electronegativities were not possible, because runtimes
needed to resolve the very low O– density became far too long due to statistical
limits. When testing an alternative detachment mechanism in section 4.4.2 one
observed that high O+

2 densities can lead to a very slow relaxation process. This
timescale is similar to the long decay times observed experimentally in regimes of
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high electron densities. As discussed before both relaxation processes are hindered
by increased electron-ion collisions. Transport is decreased due to the lowered elec-
tron temperature. This effect was also visible with artificially amplified collisions in
section 4.8. Transport processes could have an even larger effect in the experiment.
Because the simulations used here are only one-dimensional, additional diffusion
processes perpendicular to the rf field and profile dynamics are not included.

4.10 Synopsis

For this chapter electronegative Oxygen plasmas have been simulated. With in-
creasing driver voltages electron and positive ion density increased while electron
temperature and electronegativity decreased. This reproduces the experimental
trend. A virtual diagnostics of electron detachment was introduced to understand
this experimental method. The plasmas were perturbed by this electron detach-
ment from all O– ions in a region in the bulk. It was found, that the relaxation
process is dominated by volume reactions. At higher electronegativities, the influ-
ence of transport processes became visible. This influence has two contributions:
a direct one by electrons leaving the detachment region and an indirect one by
adiabatic cooling of the electron temperature and therefore impeding dissociative
attachment.
Simulated relaxation times were close to those measured in experiments with high
electronegativities. Detachment in plasmas with very low electronegativities could
not be studied, because the computational effort due to statistical restrictions was
too high. It was however possible to observe significantly longer decay times at
higher O+

2 densities, when using an alternative detachment diagnostic with artifi-
cially increased transport. Such transport processes perpendicular to the axis not
resolved in the 1D model can become dominant in the experiment explaining the
much longer decay times observed for low electronegativities at high electron den-
sities.

47



4 Electronegative Plasma

48
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When simulating any physical system, one can use different approaches, each of
which has its own advantages and disadvantages. In this chapter results from the
fully kinetic P3M code described in section 3.2 are compared to results from the
hybrid code SCEPTIC (described in section 3.3).
Both codes are used for the simulation of dusty plasmas, but have different prior-
ities. P3M strives to simulate the system as self-consistently as possible. It simu-
lates the whole plasma with its heating mechanisms and models a wide variety of
collisions. The dust itself has a charge, that is changed via the absorption of parti-
cles. It is even possible to use multiple ion species or to add multiple dust grains.
The largest disadvantage is, that it is extremely memory and time consuming. One
reason for this is the need to resolve the complete system size including electrodes
with cells of typically half a Debye length. Also, electron motion needs to be resolved
on the timescale of a fraction of the plasma frequency. It can take a week or more
on eight nodes until the plasma has equilibrated and dust can be added. Also the
number of particles near the dust is comparatively small. Having 1000 particles of
each species within one Debye length of the dust is a usual number. To overcome
this statistical limit using the ergodic hypothesis the ensemble average is replaced
by a temporal average over a large number of timesteps (typically one million). This
again increases the necessary runtime.
SCEPTIC is highly optimized for simulating the proximity close to one dust grain
in the equilibrium. It only kinetically simulates ions, which allows much larger
timesteps. This means that electrons are assumed to be Maxwellian. Their den-
sity is determined by a Boltzmann factor. Dust charging dynamics cannot be stud-
ied, because currents to the dust compensate each other by definition. The fact,
that plasma parameters are not self-consistently calculated, but predetermined at
boundaries is advantage and disadvantage at the same time. It allows to vary spe-
cific parameters easily, like the collision frequency. This would be very hard in a
self-consistent model, because a separation of physics mechanisms is there not pos-
sible. Physics parameters needed for SCEPTIC have to originate either from more
complex simulations or experiment. The biggest advantage of SCEPTIC is its short
runtime, compared to P3M. Even with very high statistics single runs do not take
much longer than a day on a single node. Depending on the plasma parameters and
statistics it might even be minutes.

Benchmarks of both codes are therefore quite interesting to identify and quantify
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differences allowing to judge the values of the two approaches. This is the topic of
this chapter.

5.1 Sensitivity studies for a non-flowing Argon
plasma

To study the influence of SCEPTIC’s input parameters the runs have been per-
formed on non-flowing Argon plasmas with ion temperatures that are within a fac-
tor of ten of the electron temperature. Because there is no comparison to a real
experiment or other simulations the results are presented in SCEPTIC’s dimen-
sionless units within this section.

5.1.1 Finding a reliable domain size

Because SCEPTIC only simulates a small region, but not the whole system that
determines the plasma parameters, it is important to choose the domain size large
enough. In the case of boundary conditions chosen for this thesis, it must be large
enough that quasi-neutrality is achieved at the outer boundary (which implies, that
the potential there is the plasma potential). If this is not guaranteed either the
floating potential is too high or the potential is approximately correct near the dust,
but declines to plasma potential at a much too small spatial scale. The latter case
would lead to an unphysically amplified electric field. It is also necessary to sim-
ulate a region that contains most of the particles reaching the dust, i.e. only a
negligible fraction of particles near the outer boundary have a velocity that allows
them to arrive at the dust. Not fulfilling this criterion leads to an underestimated
ion flux and therefore a lower floating potential. The smallest domain size fulfilling
these demands is called “collection range” within this thesis. It can be expected to
be at a distance where the potential drop from plasma potential is small against the
ion temperature. It must not be confused with the collection radius – the radius of
the effective cross section a grain or probe with a given potential has for particles
of a given species and velocity.

The influence of these concurring mechanisms was checked by varying the do-
main radius from 5 to 50 dust radii in Argon plasmas with Ti = Te, Ti = 0.5 ·Te and
Ti = 0.1 ·Ti. Simulations have been performed with Argon, because it was stated
in [28], that SCEPTIC might face problems at ion temperatures below 0.1 ·Te. The
Ti/Te ratio for the Argon plasma that will be discussed in section 5.3 was much
lower than this. Dust radii were chosen to be rd = 0.02 ·λDe and rd = 0.05 ·λDe. The
results in figure 5.1 show the same potential for all domain sizes in the thermal
plasma. This means the standard domain size of 5 · rd is sufficient for both dust
sizes.
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Fig. 5.1: Floating potentials of dust grains within an Argon plasma at different
temperatures. Dust radii are rd = 0.02 ·λDe (solid lines) and rd = 0.05 ·λDe
(dashed lines). Domain sizes rmax have been varied to identify the required
minimum for this parameter.

When ion temperatures get lower, a larger domain size leads to higher floating po-
tentials. This behaviour is best seen for Ti = 0.1 ·Ti. The collection range increases
with falling ion temperature, because ions far away from the dust are less likely to
escape its field then.
The different dust sizes for all temperatures are marked as different line styles. It
can be seen, that potentials of both grains with equal temperature stop to rise at
approximately the same point in the plot (e.g. around 30 · rd in the lowest energy
case). This implies, that the collection radius does not only depend on parameters
of the surrounding plasma but also scales with the size of the dust grain.
One can explain this behaviour by approximating the small dust particles as a
spherical capacitor [32] with capacity Cd ≈ 4πε0rd. With this approximation the
potential around the grain can be written as:

Φ(r)= Qd

4πε0r
·e−

r
λDb = CdΦd

4πε0r
·e−

r
λDb = 4πε0rdΦd

4πε0r
·e−

r
λDb = Φd

r/rd
·e−

r
rd

rd
λDb

Close to the grain the potential depends only on the ratio r
rd

. Because the collec-
tion radius depends on the potential distribution and temperatures (which give the
probability that a particle can leave the potential sink around the plasma), the
same is expected for the collection range. Because the exponential term can only
be neglected at distances much smaller than a Debye length, the potential relaxes
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slightly faster for the larger grain, which explains the small difference in collection
radius.

These considerations apply for collision-free plasmas. When collisions are intro-
duced the collection radius tends to increase even further. Colliding particles loose
the additional velocity obtained in the potential difference. The influence of regions
far away from the dust becomes less important. Only the rate of particle injections
at the boundary is important. Since this is automatically adjusted it might be possi-
ble to actually decrease the domain size. The only reliable way for testing, whether
the simulated area is sufficient or not, is to repeat the simulation with a larger
domain size and check for similar results.

5.1.2 Comparison of two different boundary conditions

Assuming the potential to be zero at the boundary is a very straightforward and
transparent approach. Its disadvantage is that it is not possible to check whether
this approximation is correct without changing the domain size (which is not nec-
essarily correct). As was already described in section 3.3.4 SCEPTIC provides a
method to apply boundary conditions which resemble those in a Yukawa potential
without setting any fixed values.

The analysis from the previous section is repeated with this boundary condition
for a dust particle with rd = 0.05 ·λDe in plasmas at temperatures Ti = 0.1 ·Te and
Ti = 0.1 ·Ti. The results are shown in figure 5.2. Even though boundary conditions
are very different, the floating potentials for similar domain sizes are nearly equal.

For further investigations potential and density distributions of the Ti = 0.1 ·Ti
simulations at representative domain radii are analyzed. Potentials near the dust
are shown in figure 5.3. Dashed lines use data from runs with Φ (rmax) = 0 and
dotted lines use data with the symmetric approach. In the zoom for small distances
both approaches lead to very similar floating potentials for the two larger domains.
rmax = 25 · rd is a sufficient domain size even though Φ (rmax) 6= 0). The same is true
for the two results with rmax = 10 · rd. The zoom for large distances shows, that
the symmetric approach is not necessarily a better choice than setting the potential
to zero at the domain edge. Both blue lines are nearly identical, because Φ at the
boundary is zero in both cases. These cases resolve the system sufficiently good,
namely leading to practically identical solutions. As expected potentials are higher
in runs with fixed boundary conditions, but differences to the well resolved case are
nearly the same for both approximations.
Taking a closer look at the floating potentials shows that they are slightly higher,
when boundary potentials are set to zero. For the smallest domain size this means
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Fig. 5.2: Floating potentials of dust grains with radius rd = 0.05 ·λDe in two differ-
ent Argon plasmas with varying domain sizes rmax. Solid lines refer to
“symmetric” boundary conditions. Dashed lines use Φ (rmax)= 0

a difference of 0.05 kBTe
e , which is about a fourth of the potential difference at the

boundary. This makes perfect sense, because the lower potential difference in the
symmetric case leads to less acceleration of the ions and therefore a smaller flux to
the probe.
Ion densities around the dust are compared in figure 5.4. They also vary little
between runs with different boundary conditions. In fact, densities within the first
three dust radii are nearly equal, independent of domain size. The observation
that rmax = 10 · rd has ion densities below ni∞ is a numerical effect. Motion of low
temperature ions is defined by their initial velocity. At the beginning of the run,
this initial velocity leads to rather small fluxes to the probe. SCEPTIC will set a
very negative potential, because it enforces strictly total currents to be zero (see
section 3.3.4). This large electric field leads to increased acceleration and higher
fluxes and the process will start over. This mechanism leads to density and floating
potential oscillations before equilibrium is established.

5.1.3 Influence of the ion temperature

In this section the influence of ion temperature on an Argon plasma is investigated.
Figure 5.5 shows floating potentials for different domain sizes at varyied ion tem-
peratures. The line for the largest domain size shows, that higher floating poten-
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Fig. 5.3: Potentials around the same dust grain simulated with different domain
sizes rmax. Dashed lines mean Φ (rmax)= 0, dotted lines mean “symmetric”
boundary conditions.
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boundary conditions.

54



5.2 Dust in the sheath region of a Hydrogen plasma

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−6

−5

−4

−3

−2

Ti /Te

Φ
/k B

T
e

e

rmax = 5 · rd
rmax = 10 · rd
rmax = 25 · rd
rmax = 40 · rd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−6

−5

−4

−3

−2

Ti /Te

Φ
/k B

T
e

e

rmax = 5 · rd
rmax = 10 · rd
rmax = 25 · rd
rmax = 40 · rd

Fig. 5.5: Floating potentials of a dust grain with radius rd = 0.05 ·λDe in an Ar-
gon plasma at different temperatures. Colors mark different domain sizes
rmax.

tials are achieved, when ions are colder. This is the case, because more slower ions
are absorbed from a dust grain of given potential, because they are less likely to
escape it’s electric field. Since the ion flow depends on the dust potential alone, this
would lead to an unbalanced current. The potential rises and more electrons, but
less ions, are absorbed – balance is restored.
For all smaller domain sizes there is a threshold temperature below which all float-
ing potentials are much smaller than the respective potential for any simulation
with larger domain size. Larger collection ranges lead to the correct floating poten-
tial at lower temperatures and vice versa. This means, that lower ion temperatures
lead to dust potentials, because they increase the collection range. This supports
the observations made in section 5.1.1.

5.2 Dust in the sheath region of a Hydrogen
plasma

In 2007 Matyash et al. simulated the effects of micrometer-sized dust grains for a
nearly isothermal Hydrogen plasma as used for fusion [26]. H+ ions and electrons
were injected with Maxwellian velocity distributions and an identical temperature
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ni 8.3 ·1011 cm−3

ne 7.8 ·1011 cm−3

Ti 3.307 eV

Te 9.467 eV

ud,i 3.213 ·104 m
s

λDi 15 µm

λDe 25 µm

Table 5.1: Plasma parameters of the P3M simulated Hydrogen plasma at the dust
position.

of Te = Ti = 20eV some distance away from the dust. The self-consistent equilibrium
solution of P3M delivers the plasma parameters at the dust location (see table 5.1).

The simulated dust particles had sizes of rd = 0.2075µm, 0.415µm, 0.83µm and
1.66µm. When stationarity was reached their final charge scaled linearly with the
dust radius and dust potentials were Φd = −25.1V in all cases. This is about 10 %
higher than the floating potential expected from OML theory (ϕd =−27V).

5.2.1 Statistical range of floating potentials

A dust grain with 3.2µm radius in the Hydrogen plasma described above was simu-
lated with SCEPTIC multiple times. The simulation was stopped after a number of
steps varying from the standard of 500 up to 10000 – the maximum value allowed
by the original source code. In the beginning of the simulation the potential is likely
to be wrong to some extent, because the potential is calculated from the particle flux
onto the probe. This flux reacts slowly, because particles must travel to the probe
first. Not even all of them are accelerated from the same potential, because of dif-
ferent transit times. Better values should be reached for longer simulation times,
because they allow to finish the equilibration process. Furthermore, the domain
size was varied from rmax = 5 · rd to 20 · rd.
In figure 5.6 the dust potential at the end of the simulation is shown. The poten-

tial obtained from simulations with shorter end times deviates from the respective
values obtained with a longer end time. The point when equilibrium is reached
coincides with saturation in SCEPTIC’s diagnostic for particle fluxes on the probe.
This is not a big surprise, since the potential is calculated from this flux, but it
proves that the saturation of the flux is a sufficient criterion for convergence of the
solution. The equilibration time increases for larger domains. The reason for this
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Fig. 5.6: Floating potentials of a dust grain with 3.2µm radius in Hydrogen simu-
lated with different domain sizes rmax. Simulation was stopped after dif-
ferent times. Dashed lines refer to simulations with the fourfold number
of particles.

is that particles injected at the outer boundary must travel for a longer time until
they can get absorbed. This means that ne,∞ and Φd reach their terminal values
more slowly.
Statistical fluctuations around the mean equilibrium value increase with domain
size. This effect is linked to the statistical weight of the particles. The resolved
domain area scales with r2

max. If one assumes a constant ion density, the number of
real particles in the domain scales with this area. Because the number of particles
is kept constant, the number of real particles per super particle scales with r2

max as
well. The influence of single particles increases. Ion densities close to the dust are
higher than the ones in the (newly added) outer part of the domain, so the number
of real ions in each super particle will grow a little slower than the area.
The dashed lines in figure 5.6 show the floating potential of similar runs with the
fourfold number of particles (1600000 instead of the standard 400000). One can see,
that variations in floating potential decrease strongly between these two series of
runs. In fact, typical fluctuations within dashed lines are of comparable size with
those of simulations with half the domain radius and four times less particles –
which supports the explanation stated above.
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5.2.2 Comparing P3M and SCEPTIC results

To supply SCEPTIC with parameters from P3M densities, temperatures and drift
velocities are diagnosed within P3M at the locations of the dust. The ratio of tem-
peratures and the ion drift velocity are used as input for SCEPTIC. The dust size
was provided by calculating the electron Debye length from the P3M electron den-
sity and temperature and expressing it in units of the dust radius. Ions are injected
by a shifted Maxwellian distribution. In this case rmax = 250 · rd has been resolved
using 25600000 particles.

With these input data SCEPTIC delivers potentials of -22.8 eV, -22.3 eV, -22.8 eV
and -22.6 eV respectively. These values are very close i.e. independent of dust size,
which complies with OML theory. The difference to potentials from P3M simula-
tions is within 10 %, which is good compliance.
It is interesting, that both simulations give even more consistent results, when one
looks at them separately. The potentials for different grain sizes are even closer
than these 10 %. The reason for this is, that there are still small differences in
simulated systems. For example, in P3M Maxwellian particles are initialized and
accelerated in the sheath, where the dust is located. At this location there are al-
ready differences between electron and ion density large enough to have noticeable
impact on the potential at which fluxes onto the grain compensate. SCEPTIC ex-
pects ion and electron density to be the same at its boundaries or at least at infinity.
This is true for probes put into a plasma or dust in the bulk. If one does not assume
ne = ni in the equation used to determine the floating potential from the flux on
page 24 a potential difference of

∆Φf =
kBTe

e
· ln

(
ni

ne

)
arises. This alone explains one fourth of the difference – even without considering
the effects of a modified charge density calculation.

5.3 Dust in the Presheath of an Argon plasma

Laboratory plasmas are usually much colder than the Hydrogen plasma investi-
gated above. They are also often heated by ccrf. While ions are too immobile to fol-
low the fast oscillations of the field, electron velocity distributions change fast and
are non-Maxwellian. This behaviour cannot be directly simulated with SCEPTIC,
because Maxwellian electron velocities are assumed when estimating the floating
potential. The reference parameters were obtained from the same code as used
for the Hydrogen simulation in section 5.2. This time Argon was used instead of
Hydrogen and instead using of a plasma source, the discharge was driven by a ca-
pacitively coupled RF heating. The plates where 5.2 cm away from one another and
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5.3 Dust in the Presheath of an Argon plasma

ni 7.1 ·108 cm−3

ne 7.1 ·108 cm−3

Ti 0.025 eV

Te 3.036 eV

ud,i 61.3 m
s

λDi 25 µm

λDe 522 µm

νcolls 4.6 ·106 s−1

Table 5.2: Plasma parameters of the P3M simulated Argon plasma at dust position.
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Fig. 5.7: Potential profile and dust position for the P3M simulatd Argon plasma.

driven with a voltage of 50 V at 13.56 Hz. These parameters resulted in a plasma
as described in table 5.2. Densities, temperatures and velocities could be directly
obtained from P3M output. They were averaged over 2000 rf periods and all cells
in one plane perpendicular to the dust cell. The collision frequency was calculated
by counting how often charge exchange collisions happen in this area and dividing
this by the local ion density.

In subsequent P3M simulations grains with radii of 10µm, 25µm and 50µm
where immersed in the pre-sheath of that plasma. Their position, 9.8 mm from the
left plate, is shown in figure 5.7. Their potentials were calculated to beΦd =−3.79V,
Φd =−5.56V and Φd =−6.72V. This was done by diagnosing the electric field using
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5 Dusty Plasma

a specially designed finer grid in the MD region close the dust and integrating it
from the unperturbed plasma to the dust position [25]. Contrary to the predictions
of OML theory potentials are not independent of the grain size. The main reason
for this is the high collisionality. The mean free path between charge exchange
collisions is about 15 % of the Debye length.

5.3.1 Impact of changes in the collision frequency

0 2 4 6 8 10 12 14 16 18 20 22

·107

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

νcolls /s−1

Φ
f/

V

rmax = 40 · rd
rmax = 100 · rd

0 2 4 6 8 10 12 14 16 18 20 22

·107

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

νcolls /s−1

Φ
f/

V

rmax = 40 · rd
rmax = 100 · rd

Fig. 5.8: 25µm dust grain in an Argon plasma with varied frequencies of charge
exchange collisions.

Collisions have a large impact on the charge collection of a dust grain. Ions that
have been accelerated by the dust potential lose their momentum and the stream-
ing velocity becomes unimportant (at least in non-flowing background gases).
To investigate this influence a 25µm dust grain in an Argon plasma as described
in section 5.3 has been simulated. The only parameter changed is the collision fre-
quency, which was varied from νcolls = 0 . . .107 s−1. The result is shown in figure 5.8.
The floating potential first increases with a larger number of collisions. This hap-
pens, because ions that would otherwise be outside the collection radius or that
have velocities that would allow them to just flow past the grain are stopped and
may get accelerated towards the dust. This increases the ion flux to the dust and
therefore its floating potential.
Collisions also make ions lose the additional momentum they obtained from the po-
tential drop around the dust, which decreases the ion flow velocity. This can lead to
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5.3 Dust in the Presheath of an Argon plasma

rd 10µm 25µm 50µm

ΦP3M / V -3.2418 -5.8916 -6.2067

ΦS / V -4.6972 -5.4613 -6.3092

ΦS,E=0 / V -4.6808 -5.5663 -6.3908

ΦS,v=0 / V -4.7072 -5.5854 -6.3923

Table 5.3: Dust potentials for differently sized grains in an Argon plasma. Sim-
ulations were performed with P3M and three input parameter sets for
SCEPTIC.

a decrease of the ion current to the dust and therefore increase the floating poten-
tial. That is why the floating potential decreases again after a certain collision rate
is reached.
The second line in figure 5.8 shows the floating potentials of simulations with simi-
lar parameters, but doubled domain size. Both series approximately show the same
values and behaviour. This means that the collection range is well enough resolved
in both cases – even though the collection range should increase with collisions. A
possible explaination is the decelerating effect of charge exchange collisions. It is
rather unimportant from where particles start with their initial velocity. Sufficient
resolution is especially important, when the results of SCEPTIC and P3M are com-
pared.
Floating potentials vary by more than a factor of two within the range of simulated
collection frequencies demonstrating their importance.

5.3.2 Comparing P3M and SCEPTIC results

SCEPTIC simulations have been performed with 25600000 particles, to ensure sta-
tistical reliability. The domain size was chosen to be 40 · rd for the two larger dust
grains and 100 · rd for the smallest one. Using the ion velocity distribution from
the P3M simulation in SCEPTIC did not make significant differences to SCEPTIC’s
velocity distribution. This can be explained by the high collisionality leading to a
near Maxwellian ion velocity distribution. Because the latter uses an analytical
approach, it has well resolved long tails and it allows for a better comparison with
the standard code.
The simulations have been performed three times for every dust size: Once with
all options activated, once without electric field and once without electric fields and
drift velocity. Results are presented in table 5.3.
Potentials calculated with both codes are very close (2 % to 7 %) for the two larger

grains. P3M calculated potentials for the 10µm grain are about 30 % larger than
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Fig. 5.9: Potentials near the probe for simulations of differently sized dust grains in
an Argon plasma. Solid lines mean SCEPTIC results, crosses mean P3M
results. Different colors indicate different dust sizes.

those generated by SCEPTIC – which is neither close nor very distant. One reason
for the larger discrepancy for the smaller grain size might be charge fluctuations
that arise from the discrete and stochastic nature of particle fluxes. It has been
shown that dust charges Q vary with a root mean square of ∆Qrms ∝

√〈Q〉 with
N being the number of charges particles on a dust grain [33]. Because smaller
particles collect fewer charges such fluctuations have higher impact on potentials
calculated by both models.
One should also note, that only SCEPTIC directly calculates the floating potential.
P3M instead counts the charges, that hit the dust. To retrieve a floating potential,
the electric field is diagnosed and integrated on a sub grid in the MD region close
to the dust. The floating potential is then obtained by averaging the potential at
points closest to the dust surface. This may contain errors, because the steep po-
tential gradients in this region amplify the effect of spatial deviations. Calculating
the potential from the dust charge with a capacitor model as described by Whipple
et al. [32] gives a wrong result, probably due to missing finite size effects. Since
SCEPTIC can not explicitly calculate the number of absorbed electrons, but instead
assumes perfect flux compensation at all times a comparison of dust charges is not
possible.
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5.4 Synopsis

5.3.3 Comparison of potentials around the probe

Figure 5.9 shows the potential drop near the three dust grains in Argon plasma
which have been described in section 5.3.2. The plotted lines refer to the results of
SCEPTIC simulations (with enabled electric field and drifting ions) while crosses
mark results of P3M simulations. Potential distributions that have been gener-
ated in P3M only use potentials measured perpendicular to the RF direction while
SCEPTIC’s potentials are averaged over all angles. This does not introduce large
errors, because high collisionality limits the effect of the flow velocity.
Potentials are very close at all distances for the two larger grains. Around the 10µm
grain P3M delivers a significantly higher potential than SCEPTIC does. A possible
reason for this are finite size effects.

5.4 Synopsis

For this chapter dusty plasmas have been simulated with two codes that utilize very
different approaches. SCEPTIC allowed to study the influence of ion temperatures
and collisions without changing any other parameters. It was shown that lower ion
temperatures result in a higher floating potential, because ions are collected from a
larger region and that resolving this ion collection range is essential for obtaining
reliable results. It was also shown that a small amount of collisions leads to the
same effect as lowering the temperature while higher collisionalities slow down the
ions that flow onto the dust – resulting in a decreased potential.
Results obtained from simulating the same systems with SCEPTIC and P3M agreed
very well in both analyzed plasmas. This implies, that both codes deliver reliable
results in fusion plasmas as well as in highly collisional low-temperature plasmas.
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6 Summary

In this work complex plasmas, which was considered as plasmas with additional
species beyond just electrons and one single ion species, have been studied with
simulations. Using computational physics a better understanding of the underly-
ing processes in such plasmas was obtained for two different cases.
In the first part of the thesis an experiment by Küllig et al. [10] was analysed using
kinetic simulations. In the experiment the electron density of an Oxygen plasma
was measured by microwave interferometry. A laser was adjusted such that both
beams cross in a diagnostic volume. When the laser was switched on all negative
ions along its beam emit electrons. From the temporal change of the integrated ion
density measured using the interferometer the relaxation of the electron density
was studied and the density of negative Oxygen ions was derived.
Simulations were performed using the Particle-in-Cell method. Virtual diagnostics
for the detachment of electrons was added to an existing code written by Konstantin
Matyash to self-consistently analyse the perturbation process. Like in experiment,
electrons are detached from all negative ions in a diagnostic region in the bulk of
plasmas with different electronegativities. The relaxation processes were studied
by calculating the dynamics of particle densities and reaction rates in and near the
detachment region. It was found that the dominating relaxation process is the cre-
ation of negative ions by dissociative attachment in agreement with the suggestions
in the experemental paper. Nevertheless at higher electronegativities, the influence
of transport processes get important. Decay times of the densities are influenced di-
rectly, by electrons leaving the detachment region, or indirectly, by adiabatic cooling
of the electrons and therefore by impeding the dissociative attachment process. The
simulated relaxation times are close to those measured for high electronegativities
in the experiment. Very low electronegativities could not be modelled, because of
the computational effort needed to overcome the statistical limits. Significantly
longer decay times similar to the experiment appeared using an artificial detach-
ment process, that increased the positive ion density, which mimicked strongly en-
hanced transport. This suggests that the reason for the much longer decay times
observed experimentally in this regime is caused by changes in collisionality and
therefore transport.

In the second part of the thesis dusty plasmas were simulated with two codes that
use very different physics and numerics. The Particle-Particle Particle-Mesh code
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by Konstantin Matyash models the whole plasma self-consistently. This gurantees
correct results for plasmas, but is computationally extremely costly. Ian Hutchin-
son’s code SCEPTIC treats only ions as kinetic particles. Electrons are assumed
as background determined by the Boltzmann relation. Its floating potential is cal-
culated from current balance using OML theory with Maxwellian electrons. This
approximation, where electrons are not resolved kinetically and therefore charges
on the dust are not calculated (only the dust potentials), was benchmarked against
P3M. The impact of single parameters on the floating potential of a dust particle
was studied. It was shown, that a small collision rate increases the ion flux to the
probe and therefore lowers the floating potential, while the opposite is the case for
highly collisional plasmas. It was also shown, that the floating potential increases
for lower ion temperatures, because ions can be collected from a larger domain.
Results from SCEPTIC and P3M have been compared for dust in a fusion plasma
and in a highly collisional low-temperature plasma. They agreed very well in both
cases, which implies, that their results are reliable in both regimes. For particles
located in the sheath remaining differences between the codes can be explained by
the fact that in this case the plasma is not quasi-neutral in the proximity of the
dust particle, which is an assumption made by SCEPTIC.

Simulations presented within this thesis showed that kinetic modelling is a very
helpful utility for the analysis of plasmas, allowing a better understanding of exper-
iments. It was also demonstrated that comparison of different physics and numerics
by benchmarking SCEPTIC with P3M supports the reliability of results from both
codes. Computational physics is a fundamental and independent method as ex-
perimental and theoretical physics. A necessary prerequisite for successful work in
this discipline is a close contact with experiment as well as with theory. In addition,
the capability is needed to extract in a hierarchical approach simplified models from
complex numerical models. Diagnostics of the complex numerical simulations allow
to extract simpler models and to identify the basic principles of a specific problem
for better understanding.
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