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Modeling ergodic regions in magnetized plasmas offers special difficulties due to the strong
anisotropy of the transport and the complex geometry of the computational domain. In
the present work a method is developed for finite difference discretization of a transport
equation in order to model electron heat conduction in the plasma edge of fusion experi-
ments. This is to gain insight into the physics of such devices and to optimize their design
and performance.

Using field line tracing, meshes are generated to represent plasmas in W7-X and NCSX.
The transport equation is discretized along the field lines to allow accurate evaluation of
the extreme anisotropic transport with an anisotropy factor between parallel and perpen-
dicular transport of ∼ 104 − 107. This large anisotropy poses a real challenge to avoid
numerical diffusion. Using an optimization criterion in the mesh generation it is possi-
ble to reduce numerical diffusion to ∼ 10−5m2s−1. This is much less than the physical
diffusion, ∼ 1.0m2s−1. The problem of ergodicity is handled by using local magnetic co-
ordinates. This allows a finite difference discretization of the transport equation as long
as the distance between the mesh points is well below the typical length where neigh-
boring field lines diverge exponentially (Kolmogorov length). The use of local magnetic
coordinates allows a complete description of the system without additional approxima-
tion. However, the price to pay for this complete model is a full metric tensor including
non-diagonal terms. The computational process is summarized in Fig.0.1.

In the present work, a variety of studies are done to investigate the physics in the plasma
edge in the presence of ergodicity. The results show that the W7-X finite beta case allowed
cascading of energy into regions which were inaccessible in the vacuum case, resulting in a
smoothing of the island structures in the edge region. Thus, the broadening of the solution
in the islands is due to an indirect ergodic effect. The island structures are not prominent
in the solution, being masked by the general flattening of the temperature profile in the
edge region.

Holding the core boundary condition constant and reducing the radial transport coefficient
resulted in a decoupling, in temperature space, of the open field lines in the edge region
from the closed field lines in the core region, thus inhibiting transport from the core.
By comparison, reducing the core boundary condition, while holding the radial transport
constant resulted only in a scaling down of the temperature solution while not inhibiting
transport from the core.



By investigation of flux densities at the ends of the open field lines it was found that
the longer open field lines played a greater role in removing heat from the plasma core
because they had more contact with the ergodic region surrounding the plasma core.
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Figure 0.1: Summary of computational process.
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1 Introduction

The present work is concerned with developing a finite difference code for modeling the
physics of the plasma edge in fusion devices. We are interested in a quantitative un-
derstanding of the energy transport from the plasma core to the vessel wall in order to
optimize steady state operation of magnetic fusion devices. One problem to consider is
the broadening of the power deposition pattern on the wall structures. This broadening
is necessary to avoid power loads that exceed the engineering limits. In particular, it is
desirable to keep the interaction between the plasma and the wall structures away from
the hot core so as not to adversely affect core performance. The present work is focused
on W7-X [1] which is characterized by a complex 3D geometry and an ergodic structure
of field lines in the plasma edge. This introduces the need for the development of new
concepts and tools for handling such situations.

In any transport code for modeling the physics in a magnetized plasma the following
characteristics must be considered. First, the extreme anisotropy of energy transport
caused by very strong electron heat conduction along the magnetic field lines. This
parallel conduction is typically 104 − 107 [2, 3] times higher than the transport across the
field lines. Second, conduction along the field lines is mainly by Coulomb collisions and
is strongly non-linear, with κ‖ ∝ T

5/2
e . By contrast, conduction across the field lines is

driven by turbulence in the plasma [4] and can be described as a diffusive process with
χ⊥ ≈ 1m2s−1. Third, the geometry of the plasma may further complicate the application
of the computational method, especially for 3D devices such as W7-X. Fourth, in the edge
region of a fusion plasma, the field lines may have an ergodic geometry, meaning spatially
chaotic trajectories.

The special advantage of a finite difference code in modeling plasma physics in fusion
experiments is its applicability to any device regardless of anisotropy, ergodicity or geom-
etry. Essentially, the code described in the present work requires only a magnetic field
configuration data file and specified boundary conditions in order to generate temperature
solutions on cross-sections of the plasma. This work lays the foundation for a complete
finite difference fluid code. A finite difference code for modeling transport in magnetized
plasmas, is an additional computational tool to be used alongside existing particle and
finite volume codes, and for comparison with experimental results.
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1 Introduction

A key question addressed in the present work is the mechanism of energy transport from
the core to the divertor plates. For example, what are the effects of the radial and parallel
transport coefficients, and are the shorter or the longer open field lines in the plasma edge
more important in energy transfer?

The present work is structured as follows. The first part introduces, after a short moti-
vation, the basics of magnetic confinement and edge physics followed by a summary of
the current state of the art in edge modeling. Chapters 5 to 8 describe the process of
field line tracing to generate a mesh on which the transport equation, using the concept
of local magnetic coordinates, is later discretized. Chapter 9 describes the process of
discretizing the transport equation and generating the matrix of coefficients. The whole
computational process is summarized in chapter 10. Chapters 11 and 12 give the results
and discussion of various studies to investigate the numerics of the transport code and
the physics of the transport in the plasma edge, followed by conclusions and outlook.
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2 Motivation

The development and maintenance of a technological society is constrained by the amount
of energy available to it. When the energy supply is based on finite resources and produces
harmful by-products, as in the combustion of fossil fuels or the splitting of heavy isotopes,
then it becomes imperative to find alternative sources. Energy generation by nuclear
fusion has the potential to play a primary role in ending our dependence on fossil fuels
and nuclear fission, and to supply our long term energy needs.

The main approach to realizing a commercial fusion reactor is the magnetic confinement
concept [5] in which powerful magnetic fields confine a plasma to create the conditions
necessary for fusion reactions to occur. For steady state operation of a fusion reactor the
plasma must be kept stable and free of impurities.

In a steady state fusion experiment, fuel is pumped into the reactor so that the plasma
may continue burning with fusion reactions which produce heat and helium ash. The
ash must be removed from the core to prevent contamination of the plasma [6]. Further
contamination may come from the reactor walls and the divertor plates as a result of
plasma erosion. If the impurities in the plasma core exceed a critical threshold, only a
few percent, then the fusion reactions will stop [7].

The goal of this work is to develop a finite difference code for modeling electron heat
transport in order to further understand the particle and power exhaust in a fusion reactor
[8, 9, 10]. This is a crucial element because it defines strict limits on the operation of a
reactor. Such an operational space must take into account the power load and erosion
of the target plates, and dilution of the core plasma by helium ash. The present work
considers only the power loading problem. A simple estimate of the power load q⊥,
assuming no additional transport channel, can be made for W7-X:

q⊥ =
Pheat

n × 2πR × Δe
⇒ 24MW

10 × 2π5.5m× 0.05m
= 13.9MW/m2 (2.1)
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2 Motivation

where Pheat is the heating power, n is the number of sets of target plates in W7-X, R
is the average major radius of the experiment, and Δe is the energy decay length at the
target plates, found empirically. Equation 2.1 therefore defines the power load problem
but the large value obtained can be reduced by angling the target plates [11], broadening
the temperature profile in the edge region by ergodic effects, and by neutral losses and
impurity radiation.

Fig.2.1 shows a promotional picture of a temperature solution on a W7-X mesh obtained
by the finite difference code developed in the present work.

Figure 2.1: An electron temperature solution on a W7-X mesh containing 40 cuts (total
points ∼ 51000. Each mesh point is colored according to temperature. The red
core points are at 200 eV. The purple outer boundary points are at 10 eV.
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3 Magnetic confinement concepts and
plasma edge physics

In a magnetic confinement fusion reactor a plasma is confined by powerful magnetic fields
in order to create the conditions necessary for fusion reactions to occur in the plasma
core and release energy [12]. This energy can be converted to heat and used to drive
steam turbines to generate electricity. The most promising designs for the magnetic
confinement concept [5] are tokamaks and stellarators which are toroidal devices. Fig.3.1
shows a generalized tokamak configuration.

Figure 3.1: In a tokamak the plasma cross-section remains a constant shape at all toroidal
positions, therefore the tokamak may be treated as a 2D device. A central
transformer coil, shown in pink, drives a current in the plasma.

In the tokamak the central transformer coil adds a helical twist to the magnetic field lines.
This short-circuits the creation of electric fields and an outward drift which would desta-
bilize the plasma [13, 14]. The current flowing in the plasma boosts the core temperature

11



3 Magnetic confinement concepts and plasma edge physics

by Ohmic resistance, though only at relatively low temperatures. Higher temperatures are
achieved by additional heating methods such as Neutral Beam Injection (NBI), and Ion
and Electron Cyclotron Resonance Heating (ICRH, ECRH). The use of the transformer
coil means that the tokamak operates as a pulsed device, [5].

A successful fusion power plant must operate in a steady state mode over long time
intervals. Therefore the plasma must be kept clean and stable and we are faced with the
problem of particle and power removal from the plasma core. Fig.3.2 shows two cross-
sections of a tokamak plasma and two basic concepts of power and particle removal.

+

--

+

"Limiter"
     (material boundary)

"Divertor"
         (magnetic limiter)

Figure 3.2: (left) A limiter intersecting the plasma edge. (right) Additional poloidal coils
diverting the plasma edge onto 2 divertor plates at the bottom.

In the first concept a limiter structure directly impinges on the hot plasma core. The
advantage of this concept is its simplicity and its direct influence on the core. However,
direct contact with the core can produce high power loads on the limiter structure, re-
sulting in severe erosion and impurity problems. In the second concept, additional coils
create an x-point in the separatrix (the boundary between closed and open field lines).
In this way, the outer part of the plasma is scraped off and diverted onto the divertor
plates [15]. This so-called Scrape-Off-Layer (SOL) is the region of open field lines in the
plasma edge which intersect the divertor plates. It plays a critical role in maintaining the
purity and stability of the plasma. The purpose of such plasma edge diversion is to move
the interaction zone between the divertor plates and the plasma, away from the plasma
core. This offers the possibility of good impurity control [16] and also the reduction of
the heat flux to the divertor plates due to radiation losses. The divertor concept is now
the standard solution for all reactor designs [17].
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Fig.3.3 shows the W7-X stellarator configuration. In a stellarator there is no central
transformer coil and practically no plasma current. The lack of a central transformer coil
allows the possibility of steady state (non-pulsed) operation [18]. The short-circuiting of
electric fields is achieved by the complex shape of the plasma.

Figure 3.3: In the W7-X stellarator the cross-section of the plasma, shown in yellow,
changes with toroidal position, therefore a stellarator can only be treated as
a fully 3D device. The plasma is shaped by a series of non-planar field coils
shown in blue.

In W7-X, which is an optimized stellarator [1], we make use of the intrinsic islands which
naturally divert the exhaust power fluxes from the core into the islands. By placing
target plates at the interaction zones we can introduce a similar concept of plasma wall
interaction control away from the core, like in the tokamak divertors. Therefore, such
islands are called island divertors, and because of the 3-dimensionality of the plasma in
W7-X these divertors have a more complex shape. See Fig.3.4.

In the stellarator concept, there is the possibility to operate at higher plasma density
without the danger of disruptions because the stellarator is internally current-free. Also,
one can use the 3-dimensionality for impurity and neutral screening. Potential problems
are the danger of producing local instabilities even earlier than in the tokamak divertor,
and the more complex baffling and pumping due to the plasma geometry.

13



3 Magnetic confinement concepts and plasma edge physics

Figure 3.4: Possible island divertor configuration in W7-X. The divertor structures are
shown in green. At right is a plasma cross-section showing how the divertor
plates intersect the plasma at toroidal position φ = 0◦.

3.1 Transport along field lines

The dominant mode of heat transfer in the magnetized plasma is electron heat conduction
along magnetic field lines which is governed by Coulomb collisions [19]. The electron
mean-free path length λe = vτe =

√
3vthτe for a test particle with energy mv2/2 = 3

2
kT

and a thermal velocity vth = (kT/m)1/2 is:

λe = 1.5 · 1016 × T 2
e

n
(3.1)

where T is temperature in electron Volts (eV) and the other quantities are in MKS-units.
This is the sum of the small angle scattering producing a 90◦ deflection. According to
the Rutherford scattering formula the mean-free path scales with v4. The ion-ion and
electron-ion mean-free paths are practically identical to the electron-electron mean-free
path, within a factor of 1/

√
2. The electron heat conduction along the magnetic field is:

qe,‖ = −κe,‖∇‖Te = −χe,‖ne∇‖Te (3.2)
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3.2 Plasma wall interaction

where qe and Te are the electron heat flux and temperature respectively. The heat diffu-
sivity is given by:

χe,‖ ≈ 1.8 · 103 × T 5/2
e (3.3)

This defines a very strong non-linearity in the heat conduction.

3.2 Plasma wall interaction

A plasma in contact with a boundary forms a sheath layer at the boundary. This is due
to the electron velocity being much higher than the ion velocity (mass difference) [19, 20].
The sheath layer can be divided into different regions (sheath and presheath) which can
be characterized qualitatively by the properties of the plasma in this region [21] (see
Fig.3.5). The recyling neutrals get ionized at a distance λion in the presheath where ions
are accelerated to sound speed at the sheath edge xS, as described by the Bohm criterion
[2, 3].

For fluid models the sheath effects are introduced as effective boundary conditions at the
sheath edge, that is, the acceleration of the plasma ions to velocities which satisfy the
Bohm condition [22]:

vi,potential ≥
√

kTe

mi
(3.4)

and an effective boundary condition for the heat flux:

Qe,x(xsheath) = δeTe,sheathΓe,x (3.5)

taking into account the electron reflection properties of the sheath and introducing a
kinetic factor of about δe = 5.
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3 Magnetic confinement concepts and plasma edge physics

 2.5 kT/e

cs cs

sheath edge

cs

sheath wall

Φx
≅  0.5 kT/e 
(presheath) sheath edge

sheath
   ≅ λ D

≅

wall

λ ion
xS

e Ion

Figure 3.5: Schematics of the sheath potential in front of the wall without magnetic field
(top). The relevant lengths scales are shown: Debye-length λD, sheath edge
position xS and ionization length for neutrals λion. At the bottom, the velocity
distribution functions for ions fi and electrons fe are shown at the sheath edge,
in the sheath, and at the wall. The electrons have a cut-off Maxwellian (with a
cut-off velocity vcs at the sheath edge). At the wall no electrons are going back
(half Maxwellian). At the sheath edge the ions already have a non-Maxwellian
distribution function as they are accelerated to cS or larger because of the Bohm
criterion. (Figure from R. Chodura)
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3.2 Plasma wall interaction

The general edge problem is much more complex because of the interaction with neutrals
and impurities and other phenomena which have to be included [23]. However these effects
are beyond the scope of the present work. Plasma physics [24] combines many disciplines:

atomic and molecular physics:
ionisation, CX, recombination,
molecular vibration, 
collisional radiative models 

edge physics
of fusion plasmas

numerics
finite volume method
for heat conduction/
convection problems 
with extreme anisotropy

materials science
sputtering, reflection,
recombination

plasma fluid theory
MHD-equilibrium,
transport equations

kinetic theory
Debye-sheath,
neutral gas transport

turbulence
anomalous radial
transport

Figure 3.6: Summary of edge physics.

1. Magnetohydrodynamic equilibrium studies are a necessary prerequisite in
edge physics. From plasma fluid theory we obtain the transport equations which
govern edge transport.

2. Kinetic theory describes the sheath forming in front of a plasma-facing structure.
This defines the boundary conditions for fluid model transport codes. The classical
transport of neutrals strongly determines the operational parameters in divertor
plates.

3. Turbulence and anomalous radial transport. Due to these effects, scaling
laws or direct coupling to turbulence codes is necessary for good modeling. Drift-
wave turbulence in full geometry has the potential for a full predictive capability
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3 Magnetic confinement concepts and plasma edge physics

for the edge transport. Anomalous transport is still the largest uncertainty in edge
physics.

4. Atomic and molecular processes strongly affect the plasma through ionization,
charge exchange and recombination. Therefore we use collisional-radiative models.
These may also account for molecular vibration.

5. Materials science and plasma wall interaction involve the study of sputtering,
reflection and recombination.

6. Numerics. Transport codes for heat conduction/convection problems may use
various numerical methods, but they must allow for physical characteristics such as
strong anisotropy, ergodicity and complex geometry.

18



3.3 Ergodicity and transport in the plasma edge

3.3 Ergodicity and transport in the plasma edge

Further complication of the problem of energy transport in the plasma edge in W7-X
[25] is ergodicity which is a spatially chaotic structure of field line trajectories [26]. In
W7-X this ergodicity may be created by additional control coils in the divertor plates or
by intrinsic plasma effects (finite beta).

The plasma core is a non-ergodic region in which the field lines form a tightly packed
series of nested flux surfaces, and there is an ordered temperature gradient across the
surfaces. In the plasma edge some field lines are ergodic which means that they fill out
volumes, and neighboring field lines diverge from each other exponentially, on average.
The Kolmogorov length, defined in Fig.3.7, is a measure of field line ergodicity. Note that
in the SOL, the open field lines have varying lengths. Those that are shorter than the
Kolmogorov length do not exhibit ergodicity, and their structure is laminar.

Figure 3.7: In the edge region, consider two neighboring field lines initially separated by δ0,
after following them for a distance S, they are separated by δ1. The Kolmogorov
length is proportional to the ratio of distances δ1 and δ0.

In terms of field line trajectories, ergodicity means that as a field line travels around a
torus it undergoes excursions in the radial direction. This results in a mixing of the strong
parallel transport with radial transport. Thus, the radial transport is enhanced and there
is a flattening of the temperature profile across the edge region. Fig.3.8 summarizes the
characteristics of the edge region in a cross-section of TEXTOR-DED [27], which is a
tokamak with a circular plasma cross-section.

Rechester-Rosenbluth [28] give an analytical estimate of energy transport in ergodic re-
gions in which the radial diffusion is proportional to field line diffusivity and parallel
diffusion. Based on the field line diffusion coefficient, Dfl, one can calculate the diffusion
of each population of free streaming particles along the field lines [29]. The diffusion is

19



3 Magnetic confinement concepts and plasma edge physics

then simply Dflvth where vth is the typical velocity of each species, namely the thermal

velocity. The ratio of electron to ion transport is therefore
√

mi/me. Using this order of
magnitude, one readily expects a large plasma response for ’electronic’ fields, such as the
electron temperature, the toroidal component or the radial electric field, and a relatively
small direct response for the ’ionic’ fields, ion temperature, density and plasma momen-
tum.

Figure 3.8: Effect of ergodicity on transport in the edge region.

Ergodic layers can also help to overcome the power loading problem at the walls and
divertor plates. If we introduce a small amount of Argon into the reaction chamber, say,
a few percent of the plasma volume, it forms a radiating mantle around the plasma core.
This mantle has a radiating maximum at ∼40 eV which is roughly the temperature of the
plasma edge in W7-X under normal operating conditions. By creating an ergodic region
close to the maximum radiating efficiency of Argon, we can enhance the radiation from
the plasma edge. This occurs because, in an ergodic region, the radial temperature profile
is flattened and the radiation is spread out over a larger area, which translates to a large
volume in a 3D device. In this way we can reduce the power load at the divertor plates.
The ergodic region surrounding the core allows us to maximize the radiation losses with
a minimum of impurities.
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4 State of the art

In recent years a number of codes have been developed for the numerical solution of the
plasma fluid transport equations in tokamak and stellarator 3D configurations. The moti-
vation is the need for tools which can handle strong anisotropy in complex 3D topologies
including flux surfaces, islands, ergodic regions and complicated surfaces of plasma-surface
interaction. Presently, the most advanced codes in this field of computational physics are
the BoRiS [30], EMC3-EIRENE [31, 32], and E3D [33, 34] codes

BoRiS is a 3D Scrape-Off-Layer transport code for solving a system of coupled partial
differential equations using a finite volume method. It has been developed for 3D edge
modeling in W7-X but is also applicable to other devices without ergodicity. The code is
characterized by interpolation for mixed convection-diffusion, generalized magnetic coor-
dinates and the Newton method. The development of BoRiS was influenced by experience
with 2D codes like B2-Eirene [35] and UEDGE [36, 37]. Fig.4.1 shows the system of sub-
grids and coordinates used in the BoRiS code.

ϑ ϑ

φ

φ

s

s

II

II

I

II

III

I

I

II

s

ϑ

φ

Figure 4.1: Seven sub-grids with individual magnetic coordinates correspond to five island
flux tubes, the plasma core and the outer Scrape-Off-Layer, forming a complete
W7-X grid..
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4 State of the art

The EMC3-EIRENE code uses a Monte-Carlo technique in real space using a field-aligned
local orthogonal vector basis which reduces the diffusion tensor to a diagonal form. The
parallel and perpendicular transport are separated by integrating the parallel transport
along the field lines. Presently the code is being applied to W7-AS, W7-X and TEXTOR-
DED.

The E3D code uses a multiple coordinate system approach (MCSA) with local magnetic
coordinates and the appropriate full metric tensor. The local or piecewise treatment
of field lines allowed in the Monte Carlo method makes it applicable for modeling in
ergodic regions. Also, the grid used in the Monte-Carlo approach can be refined at point
resolution. Disadvantages of the Monte Carlo approach are the computational expense
and the noise in the solutions which make it difficult to identify a steady state. E3D was
developed for modeling in TEXTOR-DED[38] but has also been applied to W7-X. Work
has also been done on coupled fluid and Monte-Carlo models, [39]

Rechester-Rosenbluth [28] give an analytical estimate of energy transport in ergodic re-
gions in which the radial diffusion is proportional to field line diffusivity and parallel
diffusion. Based on the field line diffusion coefficient, Dfl, several estimates improving
this original work and discriminating different ergodic regimes are existing (see [29]).

A general finite volume method requires a continuum of the computational grid which is
only available for certain magnetic configurations with closed flux surfaces. By compari-
son, using Monte Carlo methods, transport in ergodic regions can be treated locally which
allows greater flexibility in the mesh construction. Regardless of the numerical method
used, the strong anisotropy of the transport requires a complete separation of parallel
and radial transport terms. This may be achieved by a clear identification of the parallel
direction such as the magnetic coordinates used in BoRiS, the local magnetic coordinates
used in E3D, and the finite flux tube coordinates used in EMC3.

A finite difference code is an attractive addition to these codes because it has the pos-
sibility to overcome the disadvantages of the finite volume and Monte Carlo methods.
That is, modeling in ergodic regions, which is problematic in the finite volume method,
and clearly identifiable steady state solutions obtained with less computation effort than
in the Monte Carlo approach. The price of the finite difference code is the complexity of
the grid generation process (also, the grid can be refined only at field line resolution, not
at point resolution), and the inability to directly confirm flux conservation.
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5 Mesh generation

The first stage in the modeling process is to generate a mesh. This is a 3-dimensional
array of points representing the plasma. Due to the extreme anisotropy the field line start
points must be pre-selected to ensure a correct solution (minimizing numerical diffusion
as discussed later). Fig.5.1 shows the general shape of the W7-X plasma, and the target
plates which intersect the plasma edge.

Figure 5.1: The W7-X plasma core (in blue). The red and green structures are target
plates. In W7-X the magnetic field has a 5-fold symmetry which means that
the plasma cross-section repeats itself every 72◦.

Starting with a specified magnetic field configuration (stored in a data file) a field line
tracing code is used to trace field lines around the torus of the experiment. Mesh points
are generated at specified toroidal angles along these field lines (eg every 9◦) and stored
with their x, y, z coordinates. By following many different field lines, many times around
the torus, many points are generated to fill the volume of the plasma. The transport
equation is solved on this computational domain in order to model the physics in the
plasma. See Fig.5.2
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5 Mesh generation

-8
-6

-4
-2

 0
 2

 4
 6xpos (m)

-8

-6

-4

-2

 0

 2

 4

 6

 8

ypos (m)

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

zpos (m)

Figure 5.2: A 40 cut mesh generated in a W7-X geometry. Total points ∼ 51000.

The field line tracing code uses a 4th order Runge-Kutta integration on the equation for
a field line:

dx

dBx

=
dy

dBy

=
dz

dBz

(5.1)

where x, y, z are global Cartesian coordinates with the origin in the center of the torus,
and Bi are magnetic field components. The points are generated at regular toroidal angles,
and therefore the mesh exists as a series of cross-sectional planes, called Poincaré plots,
each with many points. A Poincaré plot is a 2D scatter plot lying on a plane of constant
toroidal angle. The points on the scatter plot are the intersections of field lines with that
plane. If the points are generated at 9◦ intervals, as in Fig.5.2, then the mesh is a set of
40 Poincaré plots or cuts.

In order to have good quality modeling of the physics in the plasma, the mesh must have
certain characteristics. First, The distance between Poincaré plots must be less than the
Kolmogorov length, LK so that, in the edge region, the local coordinate system at each
point is too small to ’see’ the local field line ergodicity. In W7-X, with a 40 cut mesh the
toroidal point separation distance is ∼ 1m, while LK is typically 10 → 30m. Second, the
number of cuts also determines the toroidal resolution of the metric coefficients along the
field lines. This must be of sufficient quality. Fig.5.3 shows

√
g plotted along part of a

field line through 360◦, at different toroidal resolutions.
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Figure 5.3: Plot of
√

g along a field line for 1 pass around the torus of W7-X, with different
toroidal resolutions. The red curve represents a high resolution mesh with 360
cuts. The 5 peaks indicate the 5-fold symmetry in the W7-X plasma. The green
curve represents a low resolution mesh with 10 cuts. Meshes with 20 and 40
cuts, represented by the blue and pink lines, give intermediate resolutions of
the metric coefficient along the field line.

A mesh with 360 cuts, ie a Poincaré plot every 1◦, gives excellent resolution of the metric
coefficients but is too large to be practical, that is, such a mesh would have so many
points that the transport code would take a long time to obtain a solution. At the other
extreme, a solution can be obtained very quickly on a mesh having only 10 cuts, ie a
Poincaré plot every 36◦, but then the metric coefficient is poorly resolved, resulting in
a poor quality solution. Meshes with 20 or 40 cuts give a satisfactory resolution of the
metric coefficients without having too many mesh points.

Finally, the poloidal resolution (the density and distribution of points on each Poincaré
plot) must also be of sufficient quality. This is to ensure the resolution of details in
the temperature solution. The mesh quality can be refined by visual inspection of the
Poincaré plots and then adding or subtracting field lines from the mesh.

The Poincaré plot shown in Fig.5.4 shows a ’standard’ poloidal density used in meshes in
the present work. It shows the magnetic field structure in the plasma and the different
types of field lines which make up the mesh. These include closed field lines in the core
region and open field lines in the edge region.
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Figure 5.4: Poincaré plot at φ = 36◦ from a W7-X mesh. Red points lie on field lines
which form closed flux surfaces in the plasma core. The core is not filled to
the center because we are mainly interested in modeling the plasma edge. Dark
blue points lie on field lines which form closed ergodic field lines. These form
a thin ergodic layer around the plasma core. Green points lie on open field
lines in the edge region. Light blue points lie on field lines which form nested
flux surfaces in the islands. The islands are intersected by the divertor plates,
so these flux surfaces are ’open’. Pink points lie on a closed field line which
approximates the vacuum vessel wall. They serve as an outer boundary for
applying poloidal boundary conditions. This plot has ∼ 1270 points.
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5.1 Tracing closed field lines

5.1 Tracing closed field lines

In the ’core region’ of the plasma there are closed non-ergodic field lines which form a
tightly packed series of nested flux surfaces in the plasma core. There are also closed
ergodic field lines which form a thin ergodic layer surrounding the plasma core. For
closed field lines the mesh is optimized to minimize numerical diffusion. This is done
by selecting field lines which satisfy a ’closed’ criterion: A field line must travel a large
number of turns, N , around the torus and close on itself to within some small distance,
Δ. This criterion can be written as:

Δ 
 L‖

√
χ⊥

χ‖
(5.2)

where:
Δ : distance between field line start and end points on the starting cut.
L‖ : length along the field line from start to end points, L‖ ≈ 2πRN
R : plasma major radius, R ≈ 5.5m in W7-X
N : number of toroidal turns made by a field line, eg N = 100
χ⊥ : radial diffusivity, χ⊥ ≈ 1m2s−1

χ‖ : parallel diffusivity, χ‖/χ⊥ � 106

Fig.5.5 shows how this criterion is applied.

Figure 5.5: Simulated field line making N = 2 passes on a simple toroidal geometry. The
closing distance, Δ is measured on the plane of the starting cut.
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5 Mesh generation

For the purposes of the present work, a suitable maximum closing distance for a field line
is one electron gyro-radius; Δ ≈ 1mm. With N ≈ 100 the numerical diffusion is of the
order of 10−3m2s−1, ie much less than the physical diffusion χ⊥. The physics argument is
that for Δ < 1mm we should not expect physics differences. Fig.5.6 shows a single closed
field line traced in the core of W7-X.

Figure 5.6: A closed field line forming the last closed flux surface in W7-X. It makes only
43 passes around the torus but the closing distance Δ is much less than 1mm,
so the resulting numerical diffusion is still sufficiently minimized. The colored
surfaces are the target plates.

We cannot control the exact number of toroidal passes made by a field line before it
satisfies the criterion. Instead, we trace many field lines, storing the corresponding values
of Δ and N , and then we select the best field lines which are available. These field lines
are then used in the construction of the mesh. Each field line has a different number of
points but this is not a problem if the variation in the number of points from one flux
surface to the next is not large.

Note that we are guaranteed to find suitable field lines in the non-ergodic region because
of the large number of irrational values of the rotational transform, ι (the ratio of toroidal
to poloidal turns made by field lines). The closed field line whose points form the outer
boundary on each Poincaré plot is also selected using the ’closed’ criterion.
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5.2 Tracing open field lines

5.2 Tracing open field lines

In the ’edge region’ of the plasma there are many open field lines of different lengths,
usually much shorter than the closed field lines in the core region. Essentially, an open
field line is traced from a target plate, around the torus until it hits another target
plate. No optimization criterion is applied. Some open field lines form nested flux surface
structures in the islands. Others lie in the space between the islands and the core region.
Fig.5.7 shows an open field line traced in the edge region W7-X.

Figure 5.7: The open field line shown here makes almost one complete pass around the
torus. The start and end points lie on the top target plate (dark blue) at the
right hand side. In this case, the field line comes close to closing on itself.

The edge region must be filled with points with a suitable uniformity and density. If the
point distribution on a Poincaré plot has poor uniformity, or the density is too low, then
there is poor resolution of the radial temperature profile. If the density is too high then
the system of transport equations is correspondingly large and the transport code takes
longer to reach a solution.

The actual proces of tracing an open field line is as follows. To ensure that the edge region
is filled more or less uniformly we specify ’floating’ start points in the edge region on a cut,
between the core and the islands. We then trace field lines from these start points in the
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5 Mesh generation

clockwise and counterclockwise directions until they intersect a target plate. Mesh points
are generated at regular toroidal intervals. Thus, for each ’floating’ start point there are 2
field line parts. These are concatenated and the mesh points are renumbered in order to
form a complete open field line which extends around the torus from one target plate to
another target plate. More open field lines are traced from similar start points on other
cuts around the torus, until the edge region is filled with points.

The start and end points of open field lines are also stored as valid mesh points and they
lie on the target plates. However, open field lines never intersect a target plate exactly
on a Poincaré plot. In practice, the start and end points of open field lines always lie in
between the plots. These points can be seen by close inspection of the mesh in Fig.5.2.
In W7-X meshes the number of such points is typically 1 → 2 % of the total mesh points.

When enough closed and open field lines have been traced, they are collected into a
mesh data file. This is a list of x, y, z coordinates for each mesh point. Additional
information is also stored for each point such as Poincaré plot number, field line number,
flux surface number, point type (ie boundary or inner) etc. This is used for optimizing
the triangulation process (discussed in chapter 8), and for easier access to the mesh points
in the transport code.

5.3 The stencil

A stencil is a diagram showing, in generalized form, the spatial arrangement of neighboring
points for the discretization of a transport equation around a typical ’inner’ mesh point.
An inner mesh point is any point which does not lie on the innermost flux surface of
the plasma core, or on the outer boundary, or at the start or end of an open field line.
A stencil represents a characteristic part of a mesh, on which the transport equation is
discretized. A stencil for the ’standard’ W7-X mesh used in the present work is shown in
Fig.5.8.

The stencil shows 3 characteristic properties of the mesh. First, the mesh is unstruc-
tured . This means that the total number of neighbors for each mesh point is not a
constant because the number of poloidal neighbors varies. Second, the mesh is non-
rectilinear . This means that the mesh points do not lie on mutually orthogonal axes.
The field lines never intersect the Poincaré plots at exactly 90◦ and the points on each
Poincaré plot lie scattered in a non-rectilinear pattern. Third, the mesh is Non-uniform
because the spacing between points is not a constant, both along the field line and on the
plane of each Poincaré plot. These 3 characteristics make the discretization of the trans-
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Figure 5.8: Mesh stencil for a W7-X mesh. Consider a field line intersecting 3 successive
Poincaré plots (the plots shown here have been triangulated). For a typical
inner mesh point, shown in blue, the number of ’toroidal’ neighbors is exactly
2. These lie on the same field line but on the neighboring Poincar’e plots,
forwards and backwards. This mesh point also has a number of ’poloidal’
neighbors lying scattered around it on the same Poincaré plot. The exact
number of poloidal neighbors varies, depending on the local distribution of
points, but is usually ∼6. In our discretization scheme we also consider the
poloidal neighbors of the toroidal neighbors and so we have a stencil with 21
points on average. The stencil shown here has only 19 points.

port equation on the mesh much more difficult than on a structured rectilinear uniform
mesh.
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6 The Transport Equation

The only transport equation considered in this work is the Braginski fluid equation for
electron energy, or electron heat conduction [40]. It is a parabolic partial differential
equation, that is, it is time dependent but it settles to a steady state. In its simplest form
it may be written as a flux divergence equal to a source term:

∇ · Q = S (6.1)

Flux, Q, is equal to a transport coefficient times a temperature derivative. The source
term, S, may contain sources, sinks, a coupling term, a time derivative and boundary
conditions. In 1D, equation 6.1 may be written as:

∂

∂x

(
−κ

∂Te

∂x

)
= −3ne

2

∂Te

∂t
(6.2)

where,
κ : conduction coefficient, m−1s−1. κ = χne

χ : thermal diffusivity, m2s−1

Te : electron temperature, eV
ne : electron density, m−3
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6 The Transport Equation

6.1 3D Rectangular form of the transport equation.

In a 3D rectilinear mesh the points lie on mutually orthogonal axes and equation (6.2)
may be written as:

− ∂

∂xi

(
κ⊥1

∂T

∂x1

+ κ⊥2

∂T

∂x2

+ κ‖
∂T

∂x3

)
= −3n

2

∂T

∂t
(6.3)

The 3 terms on the left hand side are mutually orthogonal flux components. To model an
anisotropic system such as a magnetized plasma we set the x3 term tangential to the field
lines. This is the parallel term. The x1 and x2 terms are the perpendicular, or radial,
terms. The conduction coefficients, κ⊥1, κ⊥2 and κ‖, are dependent on temperature in
the following way:

κ⊥1 ∝ T−1/2 , κ⊥2 ∝ T , κ‖ ∝ T 5/2 (6.4)

κ⊥1 and κ⊥2 are similar in magnitude and both are much smaller than κ‖ so we regard the
radial transport (on the plane of each Poincaré plot) as quasi-isotropic due to electrostatic
micro-turbulence. The analytical expressions for these conduction coefficients are taken
from the plasma formulary [41].

Discretizing equation 6.3 on a rectlinear mesh is straightforward, using standard tech-
niques found in textbooks. The derivatives may be discretized in each direction uniquely,
and there is no mixing of derivatives. The metric tensor is simply a 3×3 identity matrix.

The mesh generated for W7-X is non-rectilinear. The points do not lie on mutually
orthogonal axes and so there are mixed derivatives and the metric tensor is ’full’. Dis-
cretizing equation 6.3 on such a mesh is more challenging, and so we turn to a vector
form of the transport equation.
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6.2 Vector form of the transport equation

6.2 Vector form of the transport equation

Below is the heat balance equation for an electron-ion fluid in vector form [40, 42, 33]:

∂uα

∂t
+∇·

[
uα(V⊥α + hV‖α) − 2

3
χ⊥α∇uα − 2

3
(χ‖α − χ⊥α)hh · ∇uα

]
= −ναuα+S(u)

α (6.5)

where,
α : particle species, e or i
uα : internal energy, eV m2s−1

h : unit contravariant vector quantity, h = B/‖B‖
V⊥α, V‖α : Perpendicular and parallel velocities, ms−1

χ⊥α, χ‖α : Perpendicular and parallel diffusivities, m2s−1

να : heat loss rate, function of Coulomb energy exchange between electrons and ions
S

(u)
α : heat source term

If we assume no net current in the plasma, then Vi = Ve. Neglecting velocity contributions
(V⊥α = V‖α = 0), and source terms (S

(u)
α = 0), and substituting in:

ue =
3ne

2
T, χ⊥e =

κ⊥e

ne
, χ‖e =

κ‖e

ne

The heat balance equation (6.5) simplifies to the same form as the flux divergence equation
6.2, except that the transport coefficient contains more information.

∇ ·
[
2

3

κ⊥e

ne
∇

(
3ne

2
T

)
+

2

3

(
κ‖e

ne
− κ⊥e

ne

)
hh · ∇

(
3ne

2
T

)]
= − ∂

∂t

(
3neT

2

)

⇒ ∇ ·
[
{κ⊥ + (κ‖ − κ⊥)h2} · ∇T

]
= −3ne

2

∂T

∂t
(6.6)
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7 Local Magnetic Coordinate Systems

In the physical system we are modeling, the ergodicity determines the choice of coordi-
nates, and these in turn determine the structure of the mesh. To handle the ergodicity we
use local magnetic coordinate systems [33]. This means that each mesh point has a unique
curvilinear coordinate system, xi, which is valid locally and in which, the x3 coordinate is
aligned with the magnetic field. Fig.7.1 shows 3 consecutive cuts in a simplified toroidal
geometry.

x2

x1

x3

Figure 7.1: A local coordinate system aligned with the magnetic field in a section of a
simplified toroidal geometry. Note that when the polygonal area on the central
cut is mapped to the 2 neighboring cuts its shape is deformed by the field line
trajectories but the area is conserved.
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7 Local Magnetic Coordinate Systems

On the central cut is a polygonal area defined by mutually orthogonally poloidal coor-
dinates, x1 and x2. The vertices are defined by magnetic field lines. When the area
is mapped to the neighboring cuts, forward and backward, it becomes deformed due to
the field line trajectories. This happens in ergodic and non-ergodic regions and causes a
mixing of the poloidal coordinates.

The third coordinate, x3 is toroidal and is tangential to the magnetic field lines. These
never intersect the cuts orthogonally, so there is a mixing of the toroidal coordinate with
the poloidal coordinates. The overall result is a complete mixing of all coordinates and a
full metric tensor to describe the coordinate system, that is, all the tensor elements are
non-zero.

The backward and forward cuts are separated by a toroidal angle such that a field line
segment extending across the 3 cuts is much shorter than the local Kolmogorov length.
In this way, the coordinate system determines the structure of the mesh because it limits
the toroidal separation between the cuts.

A coordinate system which is shorter then the Kolmogorov length is unable to ’see’ ergod-
icity, that is, ergodic effects are not transmitted from one end of the coordinate system to
the other. The advantage is that we are not constrained by ergodicity in our discretization
of the domain. In this way, the ergodicity determines the choice of coordinates. With a
global coordinate system we would have to follow flux tubes around the torus in order to
guarantee flux conservation. This would be impossible because the ergodicity and shear
of the field line trajectories would deform the volumes too much.

By aligning the local coordinate system with the magnetic field we can discretize the
transport equation along the field lines. This allows us to evaluate the parallel transport
to high accuracy and separate it from the radial transport. In this way we minimize the
numerical diffusion which results from the strong anisotropy.

7.1 The Metric Tensor

The metric tensor, gij, is a geometric quantity describing the curvature of the mesh at
each mesh point. It is a set of coefficients associated with a transformation from one
point to another. It is a second rank tensor (2 indices, 2 points), and for a 3-dimensional
system each index has 3 possible values. The metric tensor has the form:
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7.1 The Metric Tensor

gij =

⎡
⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤
⎦ i = j unmixed terms

i �= j mixed terms
(7.1)

The diagonal elements, i = j, represent a simple transformation in one coordinate. The
off-diagonal terms, i �= j, represent non-scalar transformations. When the metric tensor
is included in the transport equation it makes possible the discretization of the equation
on an unstructured, non-rectilinear mesh.

7.1.1 Coordinate surfaces and coordinate curves

In toroidal geometry we can imagine 3 families of coordinate surfaces; a set of poloidal
cross-sections, a set of nested toroidal surfaces, and a set of radial surfaces. Within this
geometry, any position i may be specified with 3 parameters, φ, r, θ. A coordinate surface
may be obtained by holding one parameter constant and varying the other two. For
example, a Poincaré plot lies on a plane (a poloidal cross-section) on which r and θ vary,
but φ is held constant. Therefore, a set of discrete values of φ defines a unique family of
coordinate surfaces. Any position, i, may be defined as the intersection of 3 coordinate
surfaces, one from each family.

A coordinate curve is the intersection line between any two coordinate surfaces. Therefore,
there are 3 families of coordinate curves. A coordinate curve is obtained by holding any
two parameters constant and varying the remaining parameter. For example, in the case
of a coordinate system aligned with the magnetic field, a field line may be thought of as
coordinate curve along which r and θ are held constant and φ is constantly changing.

The W7-X plasma has a complicated toroidal geometry. In a W7-X mesh the Poincaré
plots form one family of coordinate surfaces. On each plot, φ is some fixed unique constant.
Each Poincaré plot has non-ergodic regions (core and islands) where the field lines form
flux surfaces. These are another family of coordinate surfaces in which, for each flux
surface, r varies within a finite range of values. This family is undefined in the ergodic
region where there are no flux surfaces. Throughout the mesh the points do not lie on fixed
radial axes, so the family of radial coordinate surfaces, each with constant θ is completely
undefined. However, in any region of the plasma we can still use 3 parameters to describe
the position of each mesh point. Therefore we can still obtain coordinate curves.
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7 Local Magnetic Coordinate Systems

7.1.2 Basis Vectors

Consider a point i in the plasma, determined by the position vector R. The tangent basis
at i is the set of vectors, e1, e2, e3, pointing along the coordinate curves at p. If u1, u2

and u3 are generalized curvilinear coordinates for the system, the tangent basis vectors,
or covariant basis vectors are:

e1 =
∂R

∂u1
, e2 =

∂R

∂u2
, e3 =

∂R

∂u3
, ⇒ ei = ∂R/∂ui

This definition is consistent with the requirement that a set of basis vectors must be
linearly independent, that is, the triple product e1 · e2 × e3 �= 0.

Similarly, the reciprocal basis at p is the set of unit vectors, e1, e2, e3, which are perpen-
dicular to the coordinate curves at p. The reciprocal basis vectors, or contravariant basis
vectors are:

e1 = ∇u1, e2 = ∇u2, e3 = ∇u3, ⇒ ej = ∇uj

ei and ej are reciprocal sets. Any vector of one set can be calculated if all three vectors
of the other set are known. Any vector, R, can be written as a linear combination of the
vectors from either set, that is, with covariant and contravariant components.

7.1.3 Metric coefficients, gij and gij

A metric is a non-negative function, g(x,y) describing the distance, ds, between two points.
In Euclidean space the square of this distance is given by Pythagoras:

ds2 = dx2 + dy2 + dz2 (7.2)

In curvilinear coordinate space we have the general quadratic form:
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7.1 The Metric Tensor

ds2 = g11du1du1 + g12du1du2 + g13du1du3

+ g21du2du1 + g22du2du2 + g23du2du3

+ g31du3du1 + g32du3du2 + g33du3du3

=
∑
ij

gijduiduj (7.3)

For a simple Cartesian system the metric coefficient, gij, is a 3×3 identity matrix and
equation (7.3) reduces to Pythagoras. Spatial domains for which equation (7.3) is valid
are called metric or Riemannian. For more complicated systems the metric may be used
to evaluate the distance between two points by integration.

The tangential metric coefficient gij may be defined as the dot product of the tangent
basis vectors:

gij = ei · ej =
∂R

∂ui
.
∂R

∂uj
=

∂x

∂ui

∂x

∂uj
+

∂y

∂ui

∂y

∂uj
+

∂z

∂ui

∂z

∂uj
(7.4)

where R = R(x, y, z), and ei and ej are the tangent basis vectors at points p1 and p2

respectively. From this definition it follows that gij is symmetric: gij = gji. The metric
coefficient matrix gij is fundamental to general curvilinear coordinate systems. It can be
used to determine the differential arc length along a curve. It also allows us to change
between covariant and contravariant vector components.

Similarly, the reciprocal or conjugate metric coefficient, gij results from the dot product
of the reciprocal basis vectors:

gij = ei · ej = ∇ui.∇uj (7.5)

where ei and ej are the reciprocal basis vectors at p1 and p2. gij is also symmetric:
gij = gji

Details of the algorithm for evaluating the metric coefficient can be found in Appendix
13.1.
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7 Local Magnetic Coordinate Systems

7.1.4 The metric tensor in the transport equation

We now introduce the metric tensor into the vector form of the transport equation (6.6)
so that we can write the equation as a 9-element tensor containing mixed and unmixed
derivatives. This will allow us to discretize the equation on an unstructured non-rectilinear
mesh because the individual elements can be discretized separately. Equation (6.6) can
be written as:

1
√

g

∂

∂xi

(
√

gκij ∂T

∂xj

)
= −3n

2

∂T

∂t
i, j = 1, 2, 3 (7.6)

Recall that in our curvilinear coordinate system, x1 and x2 are poloidal coordinates on
the plane of each Poincaré plot, and x3 is a toroidal coordinate which is aligned with the
magnetic field, that is, x3 remains constant as you move along a field line.

√
g is evaluated

as the determinant of the metric tensor and is equivalent to a volume around each mesh
point. κij is the conduction tensor which can be written as:

κij = κ⊥gij + (κ‖ − κ⊥)(h3)
2δi,3δj,3 (7.7)

Kronecker delta, δi,k = 0 for i �= k, and δi,k = 1 for i = k. Therefore, with k = 3, as in
(7.7), only the ij = 33 term contains the full expression shown in equation (7.7). All the
other terms contain the shortened form; κ⊥gij. In tensor form we have:

κij ⇒

⎡
⎣ κ⊥g11 κ⊥g12 κ⊥g13

κ⊥g21 κ⊥g22 κ⊥g23

κ⊥g31 κ⊥g32 κ⊥g33 + (κ‖ − κ⊥)(h3)
2

⎤
⎦ (7.8)

We can now write the full 9-element tensor form of the transport equation.

1
√

g

∂

∂xi

(
√

gκij ∂T

∂xj

)
= −3n

2

∂T

∂t
⇒
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√
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∂

∂x3

(
√

gκ⊥g32 ∂T

∂x2

)
+ .....

..... +
1
√

g

∂

∂x3

(
√

g
(
κ⊥g33 + (κ‖ − κ⊥)(h3)

2
) ∂T

∂x3

)

= −3n

2

∂T

∂t
(7.9)

The diagonal terms, (i = j), are unmixed derivatives. Of these, the purely toroidal term,
ij = 33, is discretized along the field line. This term includes a κ⊥ in the conduction coef-
ficient, but this is negligible compared to κ‖. Most importantly, there is no contamination
(numerical diffusion) of the strong parallel conduction in any term which is not purely
toroidal. In this way we obtain a satisfactory separation of parallel and radial transport,
which is crucial for modeling in a strongly anisotropic system.

The off-diagonal terms, (i �= j), are mixed derivatives. Of these, the four terms with
i = 3 or j = 3 combine radial and parallel temperature derivatives, but they contain only
radial conduction coefficients. The four terms with i, j = 1, 2 include mixed and unmixed,
purely radial derivatives. They lie on the planes of the Poincaré plots and represent purely
poloidal flux divergences.

Our basic ansatz has the advantage of separating the large anisotropy in the system which
simplifies the numerical task. The very large parallel terms appear only in the ij = 33
term and can be easily constructed from central differences [43]. All the other terms show
much smaller anisotropy and are therefore much less demanding.

In the following chapter we will discuss the special treatment of the i, j = 1, 2 subsystem
to develop the necessary tool to handle the purely poloidal flux divergences on the cuts.
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8 Triangulation of Poincaré plots

The mesh consists of a series of 2D scatter plots called Poincaré plots. The transport
equation is discretized, using an implicit method, so that it can be solved at each mesh
point. In the discretized form of this equation the temperature at any point, i, is solved
as a function of the temperature at the neighboring points. Therefore, we must determine
exactly which of the points near i are ’neighbors’ of i.

Each mesh point has a unique index number. The toroidal neighbors of i are trivial
to find. They are simply the next and previous points on the same field line. The
poloidal neighbors of i are not so trivial to find because they lie scattered around i on
the same Poincaré plot, mostly on different field lines. The poloidal neighbors are found
by triangulating each Poincaré plot. We use a triangulation algorithm to connect the
points on each plot in order to form a network of triangles. In this way we determine
the connectivities, or neighborhood relationships, between the points, and therefore the
neighborhood array of each point. A neighborhood array for a mesh point i is a list of
the indices of the neighboring points.

8.1 Delaunay triangulation.

In Delaunay triangulation a special rule called the Delaunay criterion is used to deter-
mine how the points on a scatter plot should be connected. According to this criterion
the circumcircle through any triplet of points contains no points within its circumfer-
ence. This criterion has the effect of favoring small fat triangles and excluding large
and elongated triangles [44]. A Delaunay triangulation is isotropic, and this matches the
quasi-isotropic radial transport on the plane of a Poincaré plot. Each Poincaré plot is
triangulated independently of the other plots in the mesh, and each triangulated plot
shows graphically the neighborhood relationships between the points. The information
describing the triangulation is stored in the neighborhood array for each point.
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8 Triangulation of Poincaré plots

The algorithm for triangulating a Poincaré plot begins by generating every possible trian-
gle, that is, by connecting every point to every other point. This would form a dense mass
of overlapping triangles. Each triangle is then tested with the Delaunay criterion. Most
triangles fail the test and are discarded. Those that pass the test are kept and therefore
contribute to the information stored in the neighborhood arrays. A problem is that the
initial number of triangles is very large and this slows down the algorithm.

Consider a W7-X mesh with 40 Poincaré plots, or cuts. The total number of possible
triangles on each cut is given by the Binomial theorem, where n is the number of points
on a cut (∼ 1270), and k = 3, the number of vertices on a triangle:

Cn
k =

n!

k!(n − k)!
=

n × (n − 1) × (n − 2)

k!
= 340, 591, 140

Multiply this by 40, and you have the total number of triangles to be tested with the
Delaunay criterion; over 13.6 billion! and each test involves a large number of calculations.
In fact, more than 99.999% of these triangles will fail the criterion and be discarded.
Therefore, a brute force method of triangulation is very slow and we must find ways to
optimize the triangulation algorithm.

8.2 Optimizing the triangulation algorithm.

We can use the geometric features of the Poincaré plots to optimize the triangulation
algorithm. We begin, as before, by generating every possible triangle and then we apply
a series of filters (rules) which eliminate most triangles. The Delaunay criterion is then
applied to the remaining triangles to generate the neighborhood arrays.

Consider the Poincaré plot in Fig.8.1. Each mesh point is assigned a flux surface number.
The points on the outermost flux surface in the plasma core have flux surface(i) = 1,
whwere i is the point index. Points on flux surfaces further inside the core have successively
higher numbers, up to flux surface(i) = 4 for points on the innermost flux surface. All
points in the edge region, including the islands, have flux surface(i) = 0. Points on the
outer boundary have flux surface(i) = -1. These flux surface numbers are used to greatly
reduce the initial large number of triangles.

Filter 1. Points can be connected only to other points which have the same or neighoring
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8.2 Optimizing the triangulation algorithm.
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Figure 8.1: Poincaré plot at φ = 36◦ from a W7-X mesh. This plot has ∼ 1270 points. The
points on the outermost flux surface of the plasma core (shown as a green line)
have flux surface number 1. The points on the outer boundary (shown as a blue
line) have flux surface number -1. The points between these 2 curves have flux
surface number 0. These designations are used to optimize the triangulation
process.

flux surface numbers. That is, given 2 points, if the difference in their flux surface numbers
is greater than 1 then any triangle containing those 2 points is discarded. This has the
additional effect of preserving the flux surface structures in the plasma core and thus
maintaining realism in the numerical model.

Filter 2. If any triangle has all three points which lie on the innermost plasma core flux
surface or on the outer boundary, then that triangle is discarded. This has the additional
effect of eliminating triangles which go across the hole in the center of the plasma core
and across any concave regions on the outer boundary.
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8 Triangulation of Poincaré plots

Filter 3. Points can be connected only to other points which lie within a specified search
radius. This has the most dramatic effect on reducing the initial number of triangles
and speeding up the algorithm, but there is a danger. The search radius should be as
small as possible to maximize the optimizing effect, but if it made too small then we risk
eliminating valid neighbors. This will result in holes in the neighborhood arrays which
will affect the final temperature solution on the mesh. The best search radius is found by
estimating the largest separation distance between 2 points on a Poincaré plots and then
rounding up.

Fig.8.2 shows a network of triangles formed on a Poincaré plot. A full set of triangulated
Poincaré plots in one period of W7-X is shown in Appendix 13.3.
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Figure 8.2: Triangulated Poincaré plot at φ = 36◦ from a W7-X mesh. There are ∼ 1270
points and ∼ 2100 triangles.
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8.3 Secondary points.

In the present work, the points on the island flux surfaces all have flux surface(i) = 0, like
all other edge points. This means that no effort is made to properly preserve the island
flux surfaces. In reality they are partially preserved as a result of the close proximity of the
points on these structures. It would be possible, with a suitable flux surface numbering
system and more complex filters, to properly preserve these structures.

Below is an outline of the triangulation algorithm.

1. Generate all possible triangles on each Poincaré plot using 3 nested DO loops.

2. Apply filters to reduce the large number of initial triangles.

3. Evaluation of circumcenters of remaining triangles.

4. Use Delaunay criterion to determine valid triangles.

5. Build neighborhood arrays from valid triangles.

8.3 Secondary points.

Primary points are the points generated by field line tracing. The transport equation is
solved at these points. Most primary points lie on the Poincaré plots. They are the vertices
of the triangles. The start and end points of the open field lines are also primary points
but they do not lie on the Poincaré plots so they do not play any role in triangulation
(but they each have exactly one toroidal neighbor).

Secondary points are the centers of gravity of the triangles, therefore they exist only on
the Poincaré plots. Each secondary point also has a unique index number and for each
primary point we also store the list of neighboring secondary points. For a given primary
point i, if the secondary neighbors are connected to each other, they form a polygonal cell
around that point i on the plane of the Poincaré plot. By connecting all the secondary
points in this way we can generate a corresponding cell diagram for a triangulated Poincaré
plot, as shown in Fig.8.3. These cells are used to evaluate poloidal flux divergences.

The cell diagram is a geometric dual of the triangulation. Normally, the dual of a Delaunay
triangulation is the Voronoi diagram but the cells used in this work are not Voronoi cells.
The vertices of Voronoi cells are the circumcenters of the triangles. Such points sometimes
lie outside a triangle, if the triangle is very narrow. In this work, the cell vertices are the
centers of gravity of the triangles. Such points always lie inside a triangle. This property
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8 Triangulation of Poincaré plots

is useful when we generate the poloidal fluxes.
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Figure 8.3: Cell diagram of a Poincaré plot at φ = 0◦ from a W7-X mesh. The red
points are primary points. The polygonal vertices are secondary points. Pri-
mary points on the innermost core flux surface and on the outer boundary are
poloidal boundary points and have only partial cells.

Fig.8.4 shows a close-up view of part of a triangulated Poincaré plot. The corresponding
cell diagram has been superimposed and the mesh points (primary points) are shown in
blue. Each mesh point is connected to 6 poloidal neighbors, on average, and therefore,
each polygonal cell has 6 faces, on average. This average number of poloidal neighbors is
indicated on the stencil in Fig.5.8. It is possible to quantify the uniformity of the points
on a Poincaré plot by calculating the proportion of points which have exactly 6 neighbors.

In the bottom right hand quarter of Fig.8.4 it is possible to see that the 4 flux surface
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8.3 Secondary points.

structures in the plasma core have been preserved. In the top right hand quarter it is
possible to see that the flux surfaces in one of the islands have been partially preserved.
The triangulation code generates a complete neighborhood array for each point, that is,
poloidal and toroidal neighbors, and also secondary neighbors, cell areas and a list of the
point triplets which form the valid triangles. All this information is used in the transport
code.
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Figure 8.4: Close-up of a triangulation, with cells. The mesh points, in blue, are connected
to each other by triangulation edges, in red. The green lines are the cell faces
and each cell has one mesh point.
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9 Constructing the Coefficient Matrix

We are solving a transport equation simultaneously at every point in a mesh. The resulting
system of simultaneous equations is a matrix equation of the form Ax = b, where A is
the matrix of coefficients. The left hand side of the transport equation, shown below, is
a flux divergence which can be expanded into a 9-element tensor:

∑
i,j=1,2,3

1
√

g

∂

∂xi

(
−√

gκ⊥gij ∂T

∂xj

)
⇒

⎡
⎣ • • •

• • •
• • •

⎤
⎦ (9.1)

Equation 7.9 shows the full form. Each element of the tensor is a separate flux divergence
with a unique combination of derivatives. Our task is to discretize these tensor elements
to generate a series of ’component’ matrices. These are combined by addition to form the
coefficient matrix, A, for the mesh.

All the component matrices, and the coefficient matrix, are very sparse, ∼ 99.99% zeros.
However, they are very large, so there are still many thousands of non-zero elements in
each matrix. We use special methods for storing and manipulating these matrices. This
process is described in Appendix 13.5.

The table below summarizes the differences in discretizing the transport equation on two
different meshes; a simple 3D mesh, and a realistic mesh used for the W7-X plasma.
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9 Constructing the Coefficient Matrix

Rectilinear structured Non-rectilinear unstructured
3D meshes W7-X mesh

The mesh points lie on mutually orthog-
onal axes and the number of neighbors
for inner points is a constant.

The mesh points do not lie on mutu-
ally orthogonal axes and the number of
neighbors for inner points is not a con-
stant.

7-point stencil; each inner point has ex-
actly 6 neighbors; 2 in each coordinate
direction (positive and negative)

∼21-point stencil; each inner point
has exactly 2 toroidal neighbors and
∼18 poloidal neighbors, including the
poloidal neighbors of the toroidal neigh-
bors.

The rectilinear form of the transport
equation is split into 3 mutually orthog-
onal components, each representing an
unmixed derivative, ie purely in one co-
ordinate direction, there are no mixed
derivatives.

The vector form of the transport equa-
tion is re-written as a 9-element ten-
sor, the diagonal elements represent un-
mixed derivatives, the off-diagonal el-
ements represent mixed derivatives, a
non-rectilinear mesh yields non-zero un-
mixed derivatives.

The metric tensor, gij is a 3×3 identity
matrix.

The metric tensor is ’full’, ie all ele-
ments are non-zero.

’Single matrix method’; the mesh struc-
ture and stencil are simple, the coeffi-
cient matrix may be generated in a sin-
gle loop over all the mesh points us-
ing standard discretization techniques.
This method can be applied only to
structured meshes.

’Multi-matrix method’; the mesh struc-
ture and stencil are complex, loop over
the mesh points many times, each time
generate a separate ’component’ matrix
for one or more of the 9 elements, com-
bine the component matrices to form
the coefficient matrix. This method can
be applied to any mesh.

A 7-point stencil gives 7 diagonal bands
of non-zero elements in the coefficient
matrix.

A ∼21-point stencil gives multiple non-
zero elements on each row of the coef-
ficient matrix, but the distribution of
the non-zeros is a complex unstructured
pattern.
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9.1 Poloidal Flux Divergences

9.1 Poloidal Flux Divergences

The poloidal coordinates, x1 and x2, are orthogonal coordinates on the plane of each
Poincaré plot. The four poloidal flux divergences, shown below, contain derivatives only
in these coordinates. They are treated as a group.

⎡
⎣ • • ◦

• • ◦
◦ ◦ ◦

⎤
⎦ i, j = 1, 2
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gκ⊥g21 ∂T

∂x1

)
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1
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∂

∂x2
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−√

gκ⊥g22 ∂T

∂x2

)
,

⇒ L⊥f =
1
√

g

∂

∂xi

√
g

(
κij ∂f

∂xj

)
, i, j = 1, 2 (9.2)

In order to describe the L⊥f term we use a 2D finite volume ansatz limited to the Poincaré
plots. Fig.9.1 shows a small representative part of a Poincaré plot.

The operator for the poloidal flux divergences can be written as:

L⊥f =

√
gij
2D

gij
div2DF (9.3)

where div2D is the 2D divergence operator on the Poincaré plot and the radial fluxes F
are redefined as:

F i =

√
g

g2D

(
κij ∂f

∂xj

)
(9.4)
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9 Constructing the Coefficient Matrix

k m

nk

Figure 9.1: Generalized part of a trianglated Poincaré plot. Full circles are primary points.
Open circles are secondary points.

where g2D is the determinant of the submatrix [gij], i,j=1,2. Now we can make use of
Gauss’ theorem on the 2D Poincaré cut and write the flux divergence at the point k:

(div2DF)k =
1

ΔSk

∑
nk

Fnk
· dlnk

(9.5)

as the sum of the fluxes over the cell faces, nk, divided by the cell volume ΔSk. Here, dlnk

is the vector outward normal to the face, the length of which is equal to the corresponding
face length. In order to approximate the conductive term we use the analog of the central
difference scheme. This means that for every pair of secondary neighbors we take the
average of the flux vectors at the cell face mid point.

The group of 4 purely poloidal flux divergences in 9.2 contains 2 unmixed derivatives
(ij = 11, 22), and 2 mixed derivatives (ij = 12, 21). For simplicity, we assume quasi-
isotropic transport on the plane of each Poincaré plot, that is, we do not distinguish
between radial conductions in the x1 and x2 coordinate directions. This group may be
represented as a product of matrices.

1
√

g

∂

∂xi

(
−√

gκ⊥gij ∂T

∂xj

)
⇒ 1

√
g

[
∂

∂xi

] [−√
gκ⊥gij

1

] [
∂

∂xj

]
TΔt

In the iteration process, TΔt is the array of unknown temperatures across the mesh at the
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9.1 Poloidal Flux Divergences

current iteration. It is implicit and so it has no role in the construction of the coefficient
matrix. From the expression above, we can write:

⇒ 1
√

g
[A2][A1][A0] =

1
√

g
[A6]

Elements
of matrix represent

[A0] poloidal gradients : ∂/∂x11, ∂/∂x12

[A2] poloidal gradients : ∂/∂x21, ∂/∂x22

[A1] poloidal transport coefficients :
−√

gκ⊥g11, −√
gκ⊥g12, −√

gκ⊥g21, −√
gκ⊥g22

These are called ’fundamental’ matrices. They are used to construct the component
matrix [A6]. Combining these matrices successively gives:

[A0]TΔt = poloidal temperature gradients

[A1][A0]TΔt = poloidal temperature fluxes

1√
g
[A2][A1][A0]TΔt = 1√

g
[A6]TΔt, poloidal flux divergences

In this way, the component matrix [A6] contains the coefficients for the poloidal flux
divergences. Later, [A6] is combined with other component matrices to form the final
coefficient matrix for the mesh.

Matrix [A0] ⎡
⎣ A0

⎤
⎦

2NS × NP

The elements in [A0] are poloidal gradients, or spatial derivatives in x1 and x2, evaluated at
the secondary points. [A0] has 2NS rows and NP columns. NS is the number of secondary
points in the mesh. NP is the number of primary points in the mesh. Therefore, the rows
correspond to secondary points and the columns correspond to primary points.
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9 Constructing the Coefficient Matrix

Each secondary point has exactly three primary point neighbors. So each row in [A0]
has 3 non-zero elements. [A0] has 2NS rows because the rows occur in pairs. Each pair
corresponds to one secondary point in the mesh. In each pair, the first row contains the
spatial derivatives in x1 and the second row contains the spatial derivatives in x2. [A0]
has an unstructured distribution of non-zero elements.

Matrix [A1] ⎡
⎣ A1

⎤
⎦

2NS × 2NS

The elements in [A1] are the poloidal transport coefficients evaluated at each secondary
point. [A1] has a block diagonal structure where each block has the form:

⎡
⎣ κ⊥g11 κ⊥g12

κ⊥g21 κ⊥g22

⎤
⎦

Matrix [A2] ⎡
⎣ A2

⎤
⎦

NP × 2NS (9.6)

The elements in [A2] are spatial derivatives in x1 and x2 evaluated at the primary points.
The rows correspond to primary points, and the columns correspond to the secondary
neighbors of the primary points. The columns in [A2] occur in pairs. Each pair corre-
sponds to a secondary point. In each pair, the first column contains the derivatives in x1,
and the second column contains the derivatives in x2. Each secondary point has exactly
three primary neighbors. So each column in [A2] has three non-zero elements. Conversely,
each primary point has ∼6 secondary neighbors. So each row in [A2] has ∼12 non-zero
elements.

Structurally, [A2] is the transpose of [A0] but the elements are evaluated in the following
way. Consider 2 adjacent secondary neighbors, a and b, of primary point, i. a and b have
known coordinates on the Poincaré plane. Also, a and b each have a flux vector with
known x1 and x2 components. These components are the poloidal gradients evaluated for
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9.1 Poloidal Flux Divergences

matrix [A0]. First, the vector joining these points, ie the cell face a, b, and the normal to
this cell face, are given by:

a, b = (xa − xb, ya − yb) (9.7)

�n = −b, a = (−(ya − yb), (xa − xb)) (9.8)

The flux vector for this cell face is the average of the flux vector components at a and b:

flux(ab) =

(
1

2

(
xflux(a) + xflux(b)

)
,

1

2

(
yflux(a) + yflux(b)

))
(9.9)

The total flux through the cell face is:

flux(ab) · �n =

−(ya − yb)
1

2
(xflux(a) + xflux(b)) + (xa − xb)

1

2
(yflux(a) + yflux(b)) (9.10)

Conceptually, we sum the fluxes through all the cell faces for each primary point and then
divide by the cell volume to get the flux divergence at that primary point. This means
that the flux vector components at each secondary point will enter twice; once when the
secondary point is the first member of an adjacent pair, and once when it is the second
member of an adjacent pair. This leads to a cancelling out.

Now consider a sequence of three adjacent secondary neighbors, a, b, c, of primary point
i. That is, a is followed by b is followed by c. The flux components at the middle point,
b, enter into the divergence as follows:

−(yc − ya)
1

2
xflux(b) + (xc − xa)

1

2
yflux(b)
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9 Constructing the Coefficient Matrix

⇒ 1

2
(xc − xa)yflux(b) − 1

2
(yc − ya)xflux(b) (9.11)

Finally, dividing through by the cell volume, we have two terms for each secondary neigh-
bor of primary point i. The even numbered columns have elements evaluated as:

1

2

1

cell volume(i)
(xc − xa) (9.12)

and the odd numbered columns have elements evaluated as:

1

2

−1

cell volume(i)
(yc − ya) (9.13)

9.2 Toroidal flux divergence

The remaining flux divergences in the transport equation are treated individually. First,
we consider the purely toroidal term.

⎡
⎣ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ •

⎤
⎦ ij = 33

1
√

g

∂

∂x3

(
−√

g
(
κ⊥g33 +

(
κ‖ − κ⊥

)
(h3)

2) ∂T

∂x3

)
(9.14)

x3 is a toroidal coordinate. At any mesh point, x3 is tangential to the field line at
that point. The poloidal coordinates, x1 and x2, lie on the plane of each Poincaré plot.
The field lines do not intersect the Poincaré plots at right angles, therefore the toroidal
coordinate is not orthogonal to the poloidal coordinates. The purely toroidal term, (9.14),
is discretized along the field line to evaluate the parallel transport to high accuracy. This
is a key concept in handling the strong anisotropy of the plasma.

Recall that for each mesh point i, the local coordinate system extends over 3 consecutive
Poincaré plots, or cuts. These are indicated by the indices (i,−1), (i, 0) and (i, 1) for the
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9.2 Toroidal flux divergence

behind, central and forward cuts, respectively. Thus, each point i has 3 sets of metric
coefficients. For example, for g33 we have g33

i,−1, g33
i,0 and g33

i,1. These enable us to take
derivatives of the transport coefficients in the x3 coordinate direction. For simplicity, we
set:

ψi,−1 = −√
g

(
κ⊥g33

i,−1 +
(
κ‖ − κ⊥

)
(h3)

2)
ψi,0 = −√

g
(
κ⊥g33

i,0 +
(
κ‖ − κ⊥

)
(h3)

2)
ψi,1 = −√

g
(
κ⊥g33

i,1 +
(
κ‖ − κ⊥

)
(h3)

2)

In the discretization of the toroidal term, we use ψ+ and ψ− which are evaluated as av-
erages at the halfway points between i and the forward and behind neighbors. Recall
that in the toroidal transport term there is some small contribution from radial conduc-
tion, κ⊥, but it is negligible compared to the parallel conduction, κ‖ The toroidal term is
discretized in the following way:

1
√

g

∂

∂z

(
−ψ

∂T

∂z

)
⇒ 1

√
g

2

δx+
3 + δx−

3

(
(ψ+)

Ti+1 − Ti

δx+
3

− (ψ−)
Ti − Ti−1

δx−
3

)
(9.15)

From this we obtain the coefficients for the component matrix [A11]. This matrix has a
tri-diagonal structure.

The non-zero elements on the central diagonal are evaluated as:

− 1
√

g

2

δx+
3 + δx−

3

(
ψ+

∂x+
3

+
ψ−

∂x−
3

)
(9.16)

The non-zero elements on the upper diagonal are evaluated as:

1
√

g

2

δx+
3 + δx−

3

ψ+

∂x+
3

(9.17)

The non-zero elements on the lower diagonal are evaluated as:

1
√

g

2

δx+
3 + δx−

3

ψ−

∂x−
3

(9.18)

The distances, δx+
3 and δx−

3 , between the points are known from the field line tracing
process.
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9 Constructing the Coefficient Matrix

9.3 Mixed flux divergences, ij = 13, 23

⎡
⎣ ◦ ◦ •

◦ ◦ •
◦ ◦ ◦

⎤
⎦ ij = 13, 23

1
√

g

∂

∂x1

(
−√

gκ⊥g13 ∂T

∂x3

)
,

1
√

g

∂

∂x2

(
−√

gκ⊥g23 ∂T

∂x3

)
(9.19)

These are the flux divergences for the mixed terms ij = 13 and ij = 23. They are handled
separately, but with the same method. We are not taking derivatives of the transport
terms along the field line. Therefore we use the metric coefficients at the central cuts,
that is, we have:

ψi,0 = −√
gκ⊥g13

i,0 for term ij = 13

ψi,0 = −√
gκ⊥g23

i,0 for term ij = 23

The 2 mixed flux divergences can be written as:

1
√

g

∂

∂x1

(
ψi,0

∂T

∂x3

)
⇒ 1

√
g
[A3][A4]T ⇒ [A9]T , for term ij = 13 (9.20)

1
√

g

∂

∂x2

(
ψi,0

∂T

∂x3

)
⇒ 1

√
g
[A5][A4]T ⇒ [A10]T , for term ij = 23 (9.21)

Matrices [A3], [A5] and [A4] are ’fundamental’ matrices. They are used to construct the
component matrices [A9] and [A10] which contain the flux divergence coefficients for the
mixed terms.

Matrix [A3] contains the spatial derivatives in the poloidal coordinate x1. The elements
of [A3] are evaluated by looping over the primary point neighbors of each primary point
and using a least squares method to find the poloidal gradient in x1 at each primary
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9.4 Mixed flux divergences, ij = 31, 32

point. Each primary point has, on average, 6 primary point neighbors. Therefore each
row in [A3] has, on average, 6 non-zero elements. The least squares method is explained
in Appendix 13.4.

Similarly, [A5] contains spatial derivatives in the poloidal coordinate x2. They are evalu-
ated with the same method as for [A3]. The structures of [A5] and [A3] are identical.

Matrix [A4] contains first order spatial derivatives along the field lines. It has a bi-diagonal
structure. The discretization is as follows:

ψi,0
∂T

∂x3
⇒ ψi,0

(
Ti+1 − Ti−1

δx+
3 + δx−

3

)
(9.22)

From this we obtain the coefficients for the fundamental matrix [A4], which is evaluated
separately for ij = 13 and ij = 23.

The non-zero elements on the upper diagonal are evaluated as:

ψi,0

∂x+
3 + ∂x−

3

(9.23)

The non-zero elements on the lower diagonal are evaluated as:

−ψi,0

∂x+
3 + ∂x−

3

(9.24)

The coefficients for the component matrices [A9] and [A10] are obtained by matrix mul-
tiplication as shown in expressions (9.20) and (9.21).

9.4 Mixed flux divergences, ij = 31, 32

⎡
⎣ ◦ ◦ ◦

◦ ◦ ◦
• • ◦

⎤
⎦ ij = 31, 32
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1
√
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∂
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(
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)
,

1
√
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∂

∂x3

(
−√

gκ⊥g32 ∂T

∂x2

)
(9.25)

These are the flux divergences for the mixed terms ij = 31 and ij = 32. They are handled
separately, but with the same method. Unlike with the previous mixed flux divergences,
this time we are taking derivatives of the transport terms along the field lines. Therefore
we will use:

ψi,1 = −√
gκ⊥g13

i,1 for term ij = 13
ψi,−1 = −√

gκ⊥g13
i,−1 for term ij = 13

ψi,1 = −√
gκ⊥g23

i,1 for term ij = 23
ψi,−1 = −√

gκ⊥g23
i,−1 for term ij = 23

The 2 mixed flux divergences can be written as:

1
√

g

∂

∂x3

(
ψ

∂T

∂x1

)
⇒ 1

√
g
[A4][A3]T ⇒ [A7]T , for term ij = 31 (9.26)

1
√

g

∂

∂x3

(
ψ

∂T

∂x1

)
⇒ 1

√
g
[A4][A5]T ⇒ [A8]T , for term ij = 32 (9.27)

Matrices [A3] and [A5] are the same as for the previous 2 mixed flux divergences.

Matrix [A4] contains the first order spatial derivatives of the transport coefficient along
the field line. It has a bi-diagonal structure. The discretization is as follows:

∂ψ

∂x3
=

ψi,1 − ψi,−1

∂x+
3 + ∂x−

3

(9.28)

From this we obtain the coefficients for [A4], which is evaluated separately for ij = 31
and ij = 32.
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9.4 Mixed flux divergences, ij = 31, 32

The non-zero elements on the upper diagonal are evaluated as:

ψi,1

∂x+
3 + ∂x−

3

(9.29)

The non-zero elements on the lower diagonal are evaluated as:

−ψi,−1

∂x+
3 + ∂x−

3

(9.30)

The coefficients for the component matrices [A7] and [A8] are obtained by matrix multi-
plication as shown in expressions (9.26) and (9.27).
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9 Constructing the Coefficient Matrix

9.5 Fundamental matrices

The fundamental matrices are used to construct the component matrices.

fund.
matrix

size temperature
dependent

description of elements used to con-
struct,

[A0] 2NS×NP no poloidal gradients in the x1

and x2 coordinate directions,
evaluated at the secondary
points.

[A6]

[A1] 2NS×2NS yes poloidal transport coefficients,
evaluated at the secondary
points.

[A6]

[A2] NP×2NS no poloidal gradients in the x1

and x2 coordinate directions,
evaluated at the primary
points.

[A6]

[A3] NP×NP no poloidal gradients in the x1 co-
ordinate direction, evaluated
at the primary points.

[A7], [A9]

[A4] NP×NP no toroidal gradients in the x3 co-
ordinate direction, evaluated
at the primary points.

[A7], [A8],
[A9], [A10].

[A5] NP×NP no poloidal gradients in the x2 co-
ordinate direction, evaluated
at the primary points.

[A8], [A10]

• NP : number of primary mesh points. These are points generated by the field line
tracing process. The transport equation is solved at these points.

• 2NS : number of secondary mesh points. These are the centers of gravity of the triangles
on the triangulated Poincaré plots.

• Matrices which are not temperature dependent are strictly geometric and are evaluated
outside the iteration loop in the transport code. They are computed only once for a given
mesh.

• Matrices which are temperature dependent are evaluated inside the iteration loop in
the transport code, that is, [A1] is re-computed at every iteration.
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9.6 Component matrices

9.6 Component matrices

The component matrices are used to construct the final matrix of coefficients.

comp.
matrix

size temperature
dependent

description of elements

[A6] NP×NP yes purely poloidal flux divergences, on the plane
of each Poincaré plot.

[A7] NP×NP yes mixed toroidal-poloidal flux divergences

[A8] NP×NP yes mixed toroidal-poloidal flux divergences

[A9] NP×NP yes mixed poloidal-toroidal flux divergences

[A10] NP×NP yes mixed poloidal-toroidal flux divergences

[A11] NP×NP yes purely toroidal flux divergences, along the
field lines.

The component matrices contain the coefficients of the flux divergences from the 9-element
tensor form of the transport equation. They correspond to the metric coefficients in the
following way:

⎡
⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤
⎦ ⇒

⎡
⎣ A6 A6 A9

A6 A6 A10
A7 A8 A11

⎤
⎦
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9 Constructing the Coefficient Matrix

9.7 Time derivative

The right hand side of the transport equation contains the time derivative. In the matrix
equation (Ax = b, b is a vector containing the time derivative at each mesh point, i. The
time derivative is discretized using a forward difference approximation.

−3n

2

∂T

∂t
= −3n

2

TΔt
i

Δt
+

3n

2

T t
i

Δt
(9.31)

TΔt
i is the unknown temperature at mesh point i at the current iteration or time step.

Its coefficient, −3n/2Δt, goes to the left hand side of the transport equation, and it will
contribute to the final coefficient matrix. Thus, we have one more component matrix to
consider. [At] has a single diagonal structure and its elements are evaluated as 3n/2Δt.

comp.
matrix

size temperature
dependent

description of elements

[At] NP×NP yes time derivatives

T t
i is the known temperature at mesh point i at the previous iteration or time step. The

elements of vector b are evaluated as 3nT t
i /2Δt. The elements in b may also include

boundary conditions and source terms,

9.8 Constructing the final coefficient matrix

To construct the coefficient matrix for the mesh, we sum all the component matrices.

[A6] + [A7] + [A8] + [A9] + [A10] + [A11] + [At] = [A]

[A] and b are sent to a matrix solver subroutine. The matrix equation is solved iteratively
until the average residual across the mesh falls below a specified convergence criterion.
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9.8 Constructing the final coefficient matrix

Fig.9.2 shows the structure of the final coefficient matrix [A].

Figure 9.2: Structure of the final matrix of coefficients [A] for a ’standard’ W7-X mesh
11.1.. Total points ∼ 25000. Note that the matrix is symmetrical about the
diagonal. This shows that if any mesh point a is a neighbor of b, then b is also
a neighbor of a.

At the top of Fig.9.2, the first ∼2000 mesh points lie on the innermost plasma core flux
surface and they are fixed at 200 eV. Therefore the transport equation is not solved at
these points. Below this, a series of square structures results from the remaining closed
field lines in the core region. Further down the diagonal can be seen 5 smaller square
structures resulting from the islands. Elsewhwere, the matrix is relatively unstructured,
resulting from the many open field lines in the edge region, some of which are ergodic.
At the bottom the last ∼3000 mesh points lie on the outer boundary and are fixed at 10
eV, ie the transport equation is not solved at these points.
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10 General Ansatz

Here we summarize the general approach to model electron heat transport in the plasma
edge. First we recall the characteristics of the physical system:

1. Strong anisotropy . In a magnetized plasma, heat transport is dominated by
very strong electron heat conduction along the field lines. Typically, this parallel
transport is 104 → 107 times stronger than the radial transport across the field lines.
Because of this strong anisotropy it is very important to separate the parallel and
radial transport in order to minimize numerical diffusion in the solution.

2. Strong non-linearity . The parallel conduction is proportional to T
5/2
e This leads

to strong gradients and added complexity in the solution of the transport equation.

3. Field line ergodicity . Ergodic effects, either by additional coils, as in TEXTOR-
DED, or by intrinsic plasma effects, as in W7-X, cause a mixing of parallel and
radial transport in the plasma edge region. The result is a flattening of the radial
temperature profile across the edge region. We are interested in modeling the edge
region of a plasma because this has direct relevance to the performance of fusion
experiments.

4. Complex geometry . The present work is focused on the W7-X experiment in
which the plasma has a 5-fold symmetry. There are five large island structures in
the edge region which wind helically around the core as they go around the torus.
These islands are composed of flux surfaces which intersect a series of divertor plates
which are themselves complex curved 3D surfaces. In our numerical model all the
essential geometrical features in the plasma must be represented.

To handle the strong anisotropy and ensure a separation of the parallel and radial trans-
ports we use a finite difference method in which we solve the discretized transport equation
at points generated along the field lines. This allows us to evaluate the parallel transport
to high accuracy.
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10 General Ansatz

The ergodicity in the edge region makes it impossible to follow flux tubes around the
torus of the device and excludes the use of a global coordinate system. Therefore we
turn to a Multiple Coordinate Systems Approach in which each point has a unique and
local coordinate system which extends only as far as the neighboring points, forward and
backward, on the same field line. Because the points are generated along the field lines,
these local coordinates systems are aligned with the magnetic field, and they are called
local magnetic coordinates.

The computational process has 4 main stages:

1. Mesh generation . Starting from a magnetic field configuration data file we use
a field line tracing code to trace field lines around the torus and generate points
at regular toroidal intervals. Therefore the mesh is a 3D array of points filling the
volume of the plasma but with the points lying on a set of discrete toroidal positions.
Each mesh point is stored as an index number with x, y, z coordinates.

2. Triangulation . Using a modified Delaunay algorithm we triangulate the mesh to
determine the connectivities between the points, that is, the neighborhood array
for each point. This information is needed by the discretized form of the transport
equation. Each point is stored with a list of the indices of its neighbors.

3. Metric Coefficients . Using another kind of field line tracing code we generate
the metric coefficients for each mesh point. These are geometric quantities which
describe the local curvature of the mesh. The use of non-orthogonal coordinates at
each point means that we have a full metric tensor, that is, the off-diagonal elements
are non-zero. Each point is stored with a set of unique metric coefficients.

4. Transport code. The transport code contains the discretized form of the transport
equation. It reads the mesh data file, the neighborhood arrays and the metric
coefficients. In an input file we specify various operating parameters such as initial
and boundary conditions, time step and radial diffusivity. Then the transport code
generates the matrix of coefficients (Fig.9.2). It then solves the transport equation
as a system of simultaneous equations, by iteration, in order to obtain a steady state
electron temperature solution across the mesh. The output may be presented as a
series of 2D temperature solutions, one for each Poincaré plot.

The computational process is presented in Fig.10.1. Generating large meshes is time
consuming but is done only once for a given magnetic configuration. Then the transport
code can be run many times, with different boundary conditions.
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Figure 10.1: Summary of computational process.
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11 Results and Discussion

In this chapter we discuss results for numerics and physics.

11.1 Numerics

First, it is necessary to validate the numerical concept of using an optimized grid to
minimize the numerical diffusion. We also want to investigate the sensitivity of the results
to the choice of metrics, that is, a full metric versus a local orthogonal assumption.

11.1.1 Numerical diffusion

Numerical diffusion is numerical error which can creep into the solution as a result of
numerical innacuracy in the calculations. In a magnetized plasma this is a potentially
serious problem because of the extreme anisotropy, so we need a strict separation of the
parallel and radial transport processes. To investigate this problem we can estimate the
numerical diffusion in our discretization scheme, compare it to the case where all physical
diffusion is switched off, and also investigate the effects of point sources in the mesh.

Estimate of numerical diffusion

To estimate the numerical diffusion in the discretization scheme, a series of studies were
made on a ’standard’ W7-X mesh shown in Fig 11.1. A Poincaré plot from this mesh is
shown in Fig. 11.2. It shows the mesh structure and the different types of field lines which
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11 Results and Discussion

make up the mesh. A sequence of 4 Poincaré plots from the standard mesh is shown in
Appendix 13.2.
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Figure 11.1: A W7-X edge mesh generated in a finite beta field. This mesh has 20 cuts
and contains points in the core and in the edge, plus a field line forming an
outer boundary. Total points: 25719.

In the series of studies the radial diffusivity was varied from χ⊥ = 10 → 1.0e-6 m2s−1.
The temperature solutions are shown in Fig.11.3 and have been staggered vertically to
aid in comparison. Note that mesh points are numbered along field lines. In this mesh
there are 157 field lines. Most of these are open field lines in the edge. Mesh point 1 is
the first point on the first field line (the innermost flux surface in the core), and mesh
point 25719 is the last point on the last field line (the outer boundary).

Recall that the radial flux is Q⊥ = χ⊥ne, where ne is the electron density, held constant
at 1.0e20m−3. So by reducing the radial diffusivity, we are progressively switching off the
mechanism of radial heat transfer. In the core region, the only possibility of heat transfer
across the flux surfaces, apart from numerical diffusion, is by radial transport. In the edge
region there is an additional parallel transport in the radial direction due to ergodicity.

In Fig.11.3 the step-like structures at the left hand side (mesh points 1 → 10000) cor-
respond to the closed field lines in the plasma core region. This includes the 4 flux
surfaces in the core and the 3 closed ergodic field lines surrounding the core. Mesh points

76



11.1 Numerics

-1

-0.5

 0

 0.5

 1

 4.5  5  5.5  6  6.5

zp
os

 (
m

)

Radial position (m)

Figure 11.2: Poincaré plot at φ = 36◦ from the W7-X mesh in Fig.11.1. Red points lie
on field lines which form closed flux surfaces in the plasma core. Dark blue
points lie on closed ergodic field lines which form a thin ergodic layer around
the plasma core. Green points lie on open field lines in the edge. Light blue
points lie on field lines which form flux surfaces in the islands. These flux
surfaces are ’open’ because they are intersected by the divertor plates. Pink
points lie on a closed field line which forms an outer boundary. Total points
on this plot ∼ 1270.

10000 → 22000 are points on open field lines in the edge region and the islands. At the
right hand side (mesh points 22000+) is the outer boundary. The results show that as
radial diffusivity is reduced there is a flattening of the temperature profile. In the core
region, the step-like structures converge on the initial condition of 100 eV. There is also
a greater decoupling of transport between the core region and the edge region. This de-
coupling appears as an increasingly large discontinuity at mesh point ∼ 10000 which is
the last point on the outermost closed field line.

In the core region, there is also a smoothing of fluctuations along the closed field lines. This
is most clearly visible in the outermost closed ergodic field line (mesh points 8000 → 10000.
These fluctuations are caused by geometric effects related to the 3-dimensional trajectories
of the closed field lines, and the close proxmity of the open field lines in the edge. The
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Figure 11.3: A series of solutions in a W7-X mesh with varying radial diffusivity. All the
solutions have the same boundary conditions: 200 eV in the core, 10 eV on
the outer boundary, and sheath condition at the ends of the open field lines.
The solutions have been shifted vertically to aid in comparison. The colors
in this plot do NOT correspond to the colors in Fig.11.2.

smoothing of these fluctuations is due to the increasing dominance of parallel transport
over radial transport as the radial diffusivity is reduced. The bottom two solutions (green
and red curves) show that as χ⊥ is reduced from 1.0e-5 to 1.0e-6 there is almost no change
in the solution. This suggests that the numerical diffusion is about 1.0e-5m2s−1. In the
generation of the optimized grid the estimated numerical diffusion was approximately
1.0e-4m2s−1.
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Switching off the radial transport

A further investigation of numerical diffusion can be made by switching off the radial
transport completely. The solution shown in Fig.11.4 may be compared with the bottom
curve in Fig.11.3.
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Figure 11.4: Temperature solution on a W7-X mesh with the radial diffusivity χ⊥ = 0.

In the core region the innermost flux surface is held constant at 200 eV and there is no
way for heat to travel across the flux surfaces, they are completely decoupled, and so the
temperature remains at the initial condition of 100 eV and there are no visible effects
from numerical diffusion. In the edge region (mesh points 10000 → 22000) the structure
of the solution is due to numerical diffusion coming from the points on the outer boundary
which are held constant at 10 eV.
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11 Results and Discussion

Testing with localilized sources

Tests were also done with source terms in the plasma. A source can result from external
heating methods such as Radio Frequency heating, Ion and Electron Cyclotron Resonance
Heating (ICRH, ECRH) and Neutral Beam Injection (NBI). By comparison, nuclear re-
actions represent a very broad source because they can happen everywhere in the core.
Sources can be simulated in the transport code by specifying a fixed temperature at a
selected mesh point. It is then possible to see how the effect of the source term propagates
in the mesh, toroidally and poloidally. Fig.11.5 shows a mesh generated in the core of
W7-X.
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Figure 11.5: A W7-X core mesh with 20 cuts. The mesh contains 9 flux surfaces in the
core and no points in the edge. The outermost flux surface serves as an outer
boundary. Total points: 13180. The point source is shown as a green point
on one of the triangular-shaped cuts at lower right.

We use a core mesh because it is useful to see the propagation effect of the source term
along and across ordered flux surfaces in the plasma core. The field lines in the edge
region are not required. Also, smaller meshes, such as the core mesh used here, run much
faster than large edge meshes in the transport code.
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Fig. 11.6 shows a Poincaré plot from the mesh, with the location of the point source in
the upper left hand part of the middle flux surface.
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Figure 11.6: A Poincaré plot, at φ = 324◦, from the W7-X core mesh. The 4 outermost
flux surfaces in this mesh are the same core flux surfaces used in the W7-X
edge mesh in Fig.11.1. The location of a point source is shown in green.

First, Fig.11.7 shows a temperature solution on the mesh with no sources. Fig.11.8
shows a solution on the same mesh but with a point source set to 100 eV. The source
appears as a spike in the middle of the 5th flux surface. The source causes fluctuations
along the same flux surface and on the neighboring flux surfaces. The outer flux surfaces
(lower right) are more strongly affected than the inner flux surfaces (upper left) where the
higher temperature and stronger parallel transport damps out the effects of the source.
The boundary conditions were 200 eV on the innermost flux surface, and 10 eV on the
outermost flux surface. ne = 1.0e20m−3, χ⊥ = 1.0m2s−1.
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Figure 11.7: Temperature solution on a W7-X core mesh. No point sources.
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Figure 11.8: Temperature solution on a W7-X core mesh, with a source term on the middle
flux surface. The effect of the point source on the neighboring flux surfaces
can be seen.
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11.1 Numerics

11.1.2 Testing the sensitivity to the metrics

Finally, in this section, we test the sensitivity of the discretization scheme to the choice
of metrics. That is, we compare temperature solutions in which we used a full metric (all
elements of gij are non-zero), and a diagonal metric (only diagonal elements of gij are
non-zero). Fig.11.9 shows 2 solutions super-imposed.
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Figure 11.9: Temperature solutions on the standard W7-X edge mesh (Fig.11.1). The red
curve is for the diagonal metric, and the green curve is for the full metric.
Boundary conditions were 200 eV in the core, 10 eV at the outer boundary,
sheath condition at the ends of the open field lines, and χ⊥ = 1.0m2s−1.

The average percentage difference between corresponding points in the two solutions was
∼4%. When radial diffusivity is reduced by a factor of 10, and further, the average
difference is ∼10%. The reason for this is the particular geometry of W7-X where the
field line pitch (the ratio of poloidal and total magnetic field) is very low, ∼1/500 (for
comparison, a typical tokamak value is ∼1/10) and therefore the effect of the off-diagonal
metric elements representing a situation which is close to local orthogonality is extremely
small. In terms of field line trajectories, this means that the field lines intersect the
Poincaré cuts at almost right angles, and therefore the local coordinate system at any
mesh point is close to orthogonal.
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11 Results and Discussion

11.2 Physics

In this section we discuss the effects of ergodicity on edge transport in the W7-X and the
NCSX experiments.

11.2.1 W7-X

Studies were done on W7-X meshes generated in a vacuum field, where there is small
ergodicity, and in a finite beta field where there is large ergodicity. Studies were also done
to investigate the power loading on the target plates.

Solutions in the vacuum magnetic field
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Figure 11.10: A W7-X edge mesh generated in a vacuum field. This mesh has 20 cuts and
contains points in the core and in the edge, plus an outer boundary. Total
points: 21205.

Fig.11.11 shows a Poincaré plot from the vacuum mesh. Note that the distribution of
points has, in general, a smoother structure compared to the corresponding plot in the
finite beta mesh (Fig.11.2). This is due to the relatively small ergodicity in the vacuum
field. The separatrix x-point lies between the islands in the plasma edge. In 3D the
x-point is a line of singularity where even small numerical errors due to interpolation can
establish a shallow ergodic layer. The low ergodicity in the vacuum mesh means that there
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11.2 Physics

is relativiely little excursion of parallel transport in the radial direction, as compared to
the finite beta case.
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Figure 11.11: Poincaré plot at φ = 36◦ from the W7-X vacuum mesh. Red points lie on
field lines which form closed flux surfaces in the plasma core. Green points
lie on open field lines in the edge. Light blue points lie on field lines which
form open flux surfaces in the islands. Dark blue points lie on field lines
which form closed flux surfaces in the islands (one in each island). Pink
points lie on a closed field line which forms an outer boundary. Total points
on this plot ∼ 1050.

Fig.11.12 shows a temperature solution on the vacuum mesh. The light blue curves are
the open flux surfaces in the islands. Within each island the solution shows an ordered
temperature gradient across the flux surfaces. The dark blue curves are the closed flux
surfaces in the islands (one in each island). The green curves are the open field lines
elsewhere in the edge region. The 2 high green peaks come from 2 long open field lines
which come close to the plasma core.

Also noteworthy are the field lines forming the outermost flux surfaces of the islands.
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Figure 11.12: Temperature solution on a W7-X vacuum mesh. Points on the innermost
core flux surface are fixed at 200 eV. Points on the outer boundary are fixed
at 10 eV. Points at the ends of the open field lines have a sheath boundary
condition. The color scheme here corresponds to the color scheme in the
Poincaré plot in Fig.11.2. Particle density is 1.0e20m−3. Radial diffusivity
is 1m2s−1.

Inspection of the Poincaré plot in Fig.11.11 shows that they come quite close to the last
closed flux surface in the core and in Fig.11.12 the temperature peaks of these field lines
reach up to ∼125 eV. But on the plane of the Poincaré plot the ends of these flux surfaces
are also in direct contact with the wall. Consequently, in the temperature solution the
lowest points on these open field lines reach down to ∼50 eV. Therefore the outermost
flux surface on each island acts as a direct bridge between the core and the wall. Note
that the positioning of structures in the plot is due to the ordering of field lines in the
mesh data file, and has no effect on the heat transport in the system.

Fig.11.13 shows the same information as in Fig.11.12 but as temperatures along field lines
which have been normalized with respect to their own lengths. The red curves are the 3
core flux surfaces of which the outermost flux surface is the wavy line at ∼150 eV. Two
green curves peak at ∼135 eV. These correspond to the 2 high green peaks in Fig.11.12.

The open flux surfaces in the islands contain many field lines of different lengths. The
triple grouping of light blue contours which peak in the range 100→125 eV correspond
to field lines on successive flux surfaces, eg the highest group (peaking at ∼125 eV) lie
on the outermost flux surfaces of the islands. The flatter light blue contours in the range
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Figure 11.13: Temperature contours along normalized field lines in W7-X vacuum field.
The color scheme here corresponds to the color scheme in the Poincaré plot
in Fig.11.11 and the temperature solution in Fig.11.12.

50→80 eV are much shorter open field lines in the islands.

The dark blue contours are the 5 field lines forming which each form one closed flux
surface in each island. The Poincaré plot in Fig.11.11 shows that the closed flux surface
inside each island is exposed to the outer boundary which is held constant at 10 eV, and
this is the cause of the dip.

Figs.11.14 and 11.15 show temperature solutions on 2 Poincaré plots, with each mesh
point colored according to its steady state temperature.
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11 Results and Discussion

Figure 11.14: Temperature solution on a vacuum mesh Poincaré plot at φ = 0◦.

Figure 11.15: Temperature solution on a vacuum mesh Poincaré plot at φ = 36◦.
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11.2 Physics

Solutions in the finite beta magnetic field

Next, studies were done for a finite beta case in which there are strong ergodic effects
around the separatrix. Here we present solutions on a 20-cut mesh similar to that shown
in Fig.11.1 but with greatly increased poloidal density in order to reveal more detail in
the radial transport, that is, many more open field lines were traced in the edge region.
A Poincaré plot is shown in Fig.11.16.
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Figure 11.16: Poincaré plot at φ = 36◦ from a W7-X finite beta mesh with enhanced
poloidal density. Red points lie on closed flux surfaces in the plasma core.
Dark blue points lie on closed ergodic field lines. Green points lie on open
field lines in the edge. Light blue points lie on open flux surfaces in the
islands. Pink points lie on a closed field line which forms an outer boundary.
Total points on this plot ∼ 3400.

Compared to the vacuum mesh, the finite beta mesh has a coarser general structure due to
the presence of the plasma (large ergodicity) and there is a thicker ergodic region between
the islands and the core.
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11 Results and Discussion

Fig.11.17 shows a temperature solution on the poloidally dense finite beta mesh.
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Figure 11.17: Temperature solution on a W7-X finite beta mesh. Points on the innermost
core flux surface are fixed at 200 eV. This corresponds to a core flux of
∼ 8MW/m2. Points on the outer boundary are fixed at 10 eV. Points on
the ends of open field lines (green and light blue) have a sheath boundary
condition. The color scheme here corresponds the color scheme used in
the Poincare plot in Fig.11.16. Particle density, ne = 1.0e20m−3. Radial
diffusivity, χ⊥ = 1m2s−1.

At the left hand side in Fig.11.17 the red and dark blue structures are the closed field
lines in the core region. The green structures are open field lines in the edge region.
Note that the peaks on these field lines reach up to the same temperature, ∼120 eV, as
the outermost closed ergodic field line (the lowest dark blue structure). This indicates
enhanced transport from the core into the edge. The outermost flux surface in each island
(light blue) peaks at ∼95 eV. As before, the ordering of field lines in the solution does
not affect the transport in the system.

Fig.11.18 shows the normalized temperatures along the field lines corresponding to the
temperature solution in Fig.11.17. In the top half of the plot can be seen the closed field
lines in the core region. The outermost closed ergodic field line surrounding the core is a
blue wavy line at ∼120 eV. Below this is the dense mass of open field lines in the edge
region (green), and the islands (light blue). Most of these form roughly parabolic curves
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Figure 11.18: Temperature contours along 788 normalized field lines in the W7-X
poloidally dense finite beta mesh. The color scheme here corresponds to
the color scheme in Figs.11.16 and 11.17 Particle density, ne = 1.0e20m−3.
Radial diffusivity, χ⊥ = 1m2s−1.

but a few form oscillating curves because they are long enough to see the ergodicity in
the system. Note that many of the temperature contours on these open field lines overlap
the outermost closed ergodic field line.

Figs.11.19 and 11.20 show temperature solutions on Poincaré plots at φ = 0◦ and φ = 36◦.
The mesh points are colored according to their steady state temperature as found by
the transport code. Both have particle density ne = 1.0e20m−3, and radial diffusivity
χ⊥ = 1.0m2s−1. They show a smoothing of the temperature solution in the islands.
These figures may be compared with Figs.11.14 and 11.15 from the vacuum case.
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11 Results and Discussion

Figure 11.19: Temperature solution on a finite beta mesh Poincaré plot at φ = 0◦.

Figure 11.20: Temperature solution on a finite beta mesh Poincaré plot at φ = 36◦.
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11.2 Physics

Comparison of vacuum and finite beta solutions

Fig.11.21 compares normalized temperature solutions on the W7-X vacuum and finite
beta meshes. It is difficult to precisely compare these 2 meshes because they have dif-
ferent structures but the most notable difference is the gap, at ∼140 eV in the vacuum
solution, between the closed core field lines and the open edge field lines. This represents
a decoupling of transport from the core to the edge in the vacuum case. In the finite beta
case there is considerable overlapping of the temperature contours of the open field lines
with the outermost closed ergodic field line. This represents a feeding of the open field
lines by contact with the ergodic layer, but in only temperature space, not in geometric
space.
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Figure 11.21: (left) Solution on the vacuum mesh. This mesh has no closed ergodic field
lines surrounding the plasma core, and there is a closed flux surface in the
center of each island (dark blue curves) (right) Solution on the finite beta
mesh. This mesh has 3 closed ergodic field lines surrounding the plasma
core (dark blue curves), and no closed flux surfaces in the islands.

Fig.11.22 shows close-up views of the Poincaré plots from the vacuum and finite beta
meshes, with radial trajectories marked at equivalent positions extending from the inner-
most flux surface in the plasma core, directly to the outer boundary. At these positions
the 2 meshes most closely resemble each other. Fig.11.23 shows the temperature profiles
along these trajectories evaluated by interpolation from the temperatures at nearby mesh
points. At the central part of both profiles there is a ’flattening’ or broadening where
the trajectory passes through an island. This broadening is much larger in the finite
beta mesh due to the greater ergodicity. As discussed later, this is not a direct effect of
ergodicity (parallel transport enhancing radial transport due to field line geometry.)
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Figure 11.22: (left) Position of radial trajectory (green line) on a Poincaré plot at φ = 0◦

from the vacuum mesh. (right) Position of radial trajectory (purple line) on
a Poincaré plot at φ = 0◦ from the finite beta mesh. Blue points are mesh
points on closed ergodic field lines which surround the plasma core.
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Figure 11.23: Radial temperature profiles along the trajectories shown in Fig.11.22. The
green curve is for the vacuum mesh. The pink curve is for the finite beta
mesh. From the temperature solutions the temperature is known only at the
mesh points, so at each of 20 positions on a trajectory the temperature is
interpolated from the nearest 10 mesh points.
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11.2 Physics

Further analysis of transport in the plasma edge

In this section we continue the analysis of finite beta solutions in order to gain further
insight into the mechanism of transport in the plasma edge.

Another parameter that can be varied in the transport code is the boundary condition in
the core, that is, the temperature at the points on the innermost flux surface. Fig.11.24
shows 2 temperature solutions on the standard finite beta mesh introduced in Fig.11.1,
and with the core temperature fixed at 2 different values. (This mesh has 4 flux surfaces
in the plasma core, 3 closed ergodic field lines surrounding the core, but fewer field lines
traced in the edge region. Therefore it runs faster in the transport code.)

Changing the core boundary condition represents a variation in the parallel transport (χ‖)
but not in the radial transport (χ⊥). The result is a scaling of the temperature solutions,
but the relative positions of the structures in the core and edge regions remain unchanged.
That is, the solutions are self-similar.
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Figure 11.24: Temperature solutions on the standard W7-X finite beta mesh. For the red
curve the core boundary condition was 300 eV (∼ 13MW/m2). For the
green curve the core boundary condition was 100 eV (∼ 4MW/m2). Particle
density, ne = 1.0e20m−3. Radial diffusivity is χ⊥ = 1m2s−1.
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11 Results and Discussion

Fig.11.25 shows temperatures along normalized field lines for the solutions in Fig.11.24.
There are 157 field lines in this mesh of which 149 are open field lines in the edge region.

In the left hand plot the outermost closed ergodic field line is visible as a single wavy line
at ∼150 eV. The wavy structure of this field line is a result of its physical trajectory as
it makes excursions in the radial direction, moving closer and further away from the hot
plasma core. This is characteristic of ergodic field lines because they do not define flux
surfaces but fill up volumes.

The overlapping of this field line with the open field line contours, and thus the transport
from the core to the edge, is not affected by the reduction in the core temperature, that
is, there is still feeding of open field lines through the ergodic layer and broadening of
transport in the edge region.
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Figure 11.25: Temperature contours along normalized field lines in the W7-X standard
finite beta mesh (Fig.11.1). (left) Core temperature at 300 eV. (right) Core
temperature at 100 eV. The solutions are self-similar and even when the core
temperature condition is reduced there is still an overlapping of the closed
and open field lines in temperature space.
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11.2 Physics

Figs.11.26 and 11.27 show a variation in the radial transport (χ⊥), in the standard W7-
X finite beta mesh. The core boundary condition was held constant at 200 eV. These
figures show that as the radial transport is reduced there is a progressive decoupling of
the transport from the ergodic zone surrounding the core to the edge. This proves that
the broadening effect is driven by radial transport and not by geometrical interweaving
which would be unaffected by varying the transport.
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Figure 11.26: Temperature solution on normalized field lines in the standard W7-X finite
beta mesh, with radial diffusivity, χ⊥ = 1.0m2s−1.

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

T
em

pe
ra

tu
re

 (
eV

)

Normalized field line

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

T
em

pe
ra

tu
re

 (
eV

)

Normalized field line

Figure 11.27: (left) Solution with χ⊥ = 0.1m2s−1. (right) Solution with χ⊥ = 0.01m2s−1.
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Fig.11.28 shows temperatures along all 788 normalized field lines in the poloidally dense
W7-X finite beta mesh. It is the same data as in Fig.11.18 but only the closed and open
ergodic field lines have been highlighted in order to show the interaction between the core
and the edge. Only those field lines which are much longer than the Kolmogorov length
can ’see’ the ergodicity in the system and these field lines exhibit oscillations. The closed
field line at ∼135 eV is almost flat because it is relatively short.

The general trend of open field lines is that for longer field lines the temperature profiles are
more parabolic, and if a field line is long enough to ’see’ the ergodicity then it is ’ergodic’
and exhibits oscillations. Some of the red parabolic open field lines are in transition
between a parabolic structure and a truly ergodic wavy structure.
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Figure 11.28: Temperature solution on normalized field lines in the poloidally dense W7-
X finite beta mesh. The 2 flat red curves at the top are closed field lines
forming flux surfaces in the plasma core. Blue curves are closed field lines
forming a thin ergodic region around the core. Green curves are long open
ergodic field lines in the edge region. All other red curves are shorter open
field lines in the edge and islands. At the bottom, also red, is the outer
boundary held constant at 10 eV.

Fig.11.29 shows the maximum temperature on open field lines in the same mesh. Field
lines �400 m are long enough to reach the same temperature, ∼120 eV, as the outermost
closed ergodic field line which surrounds the core.
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Figure 11.29: Maximum temperature on open field lines in the poloidally dense W7-X finite
beta mesh. Green points are on long open field lines which show oscillatory
behavior as shown in Fig.11.28. Red points are on shorter open field lines,
though some of these are still long enough to peak at ∼120 eV.

Fig.11.30 shows a Poincaré plot at φ = 0◦ from the poloidally dense W7-X finite beta
mesh (left) compared to the infinite solution. In the left hand plot, the closed and open
ergodic field lines have been highlighted. The blue points, which lie on the closed ergodic
field lines, reveal the thin ergodic layer which surrounds the plasma core. The green points
reveal the position of the separatrix and, especially at the top and bottom, show an x-
point like formation. These points lie on the long open field lines which show oscillatory
behavior as shown in Fig.11.28.

The infinite solution is a Poincaré plot generated without taking into account intersection
with any boundary structure. It is therefore an over-estimate of the ergodicity in the
system because it neglects over-shadowing effects (laminar zone). In fact, one can see a
smaller ergodic region in the bounded case (left).

The summary of these studies of the finite beta case is that the island structures in the
edge region have been smoothed out. This broadening of the solution in the islands in the
finite beta case is due to an indirect ergodic effect. The ergodicity triggers the cascading
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of energy into regions which were inaccessible in the vacuum case. Ergodicity does not
directly enhance transport on short field lines because the vast majority of these field lines
are much shorter than the Kolmogorov length.
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Figure 11.30: (left) Poincaré plot at φ = 0◦ from the poloidally dense W7-X finite beta
mesh. Blue points are on the closed ergodic field lines. Green points are on
long open ergodic field lines in the edge. (right) Infinite field solution.
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Power loading on the target plates

Evaluating the heat flux distribution on the target plates in a fusion experiment is of
great interest to designers of those devices, because the heat flux must be controlled and
fall within engineering constraints. Fig.11.31 shows feeding fluxes at the ends of the open
field lines in the W7-X poloidally dense finite beta mesh. These values may be compared
with the simple estimate given in equation 2.1.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  200  400  600  800  1000  1200  1400  1600  1800

flu
x 

m
ag

ni
tu

de
 (

M
W

/m
^2

)

field line length (m)

Figure 11.31: Feeding flux densities on open field lines in the W7-X poloidally dense mesh.
The red points are ends of open field lines in the edge region between the
islands and the core. The green points are the ends of open field lines which
form the open flux surfaces on the islands. No correction was made for the
angle of intersection between the field lines and the target plates. Radial
diffusivity, χ⊥ = 1.0em2s−1.

Each point in Fig.11.31 belongs to a field line of a known length and has a feeding flux
density evaluated as:

Qfeeding = κ‖
T2 − T1

dx
(11.1)
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where T1 is the end point of an open field line which has intersected a target plate, and
T2 is the next point along the same field line at a distance dx. No correction is made
for the angles of intersection between the field lines and the target plate. In general the
longer open field lines have the greater feeding flux density but geometric factors (spatial
position of field line trajectories) also play an important role in determing the flux on an
open field line.

Fig.11.32 shows the same data as in Fig.11.31 but with the flux densities corrected by
the intersection angles of the field lines. These values may be compared with the simple
estimate given in equation 2.1.
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Figure 11.32: Angled fluxes on open field lines in the W7-X poloidally dense mesh. The
red points are ends of open field lines in the edge region between the islands
and the core. The green points are the ends of open field lines which form
the open flux surfaces on the islands. Radial diffusivity, χ⊥ = 1.0em2s−1.

The ’angle-corrected’ flux densities are evaluated as:

Qangled = κ‖
T2 − T1

dx
sin(θ) (11.2)

where θ is the angle of intersection between an open field line and a target plate.
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The points in Fig.11.32 lie grouped in columns because the open field lines are traced
from similar sets of start points on similar cuts in the device, and the multiple symmetry
of W7-X causes field line lengths to fall into groups.

Note that when the angle of intersection is included in the flux density calculations, the
fluxes are greatly reduced. This is because the target plates are angled so as to reduce
the power loading to within engineering limits (∼ 15MW/m2). The average angle of
intersection is ∼ 7◦. The average flux on an open field line end point, allowing for
intersection angle, is ∼ 2.6MW/m2.

There are various possibilities for the driving mechanisms of edge transport. The first is
an interweaving of the open field lines within in the edge region. A long open field line
in the edge region between the islands and the core can approach closely to the core at
some points and then closely to islands at other points, thus acting as a transport bridge
between the core and islands. The second possibility is the ergodic effect in the edge by
which the temperature profile is broadened by a mixing of parallel and radial transport
processes. This was demonstrated by varying the radial diffusivity and the amount by
which the strong parallel transport dominated the radial transport. The third possibility
was trivial radial transport (effects scaling with the radial transport)

Fig.11.33 shows a complete layout of one possible design for the target plates in W7-X.
Fig.11.34 shows the distribution of open field line impact points on a subset of divertor
plates (see [45]).
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Figure 11.33: Divertor plates (red) and baffles (green) in W7-X.
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Figure 11.34: Open field line impact points on a set of 2 horizontal divertor plates (red
and blue) and a vertical divertor plate (green).
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11.2.2 NCSX

Experiments were done on an NCSX mesh generated in a finite beta field to demonstrate
the applicability of the transport code to other devices.

Solutions in the finite beta magnetic field

In NCSX [46] the plasma major radius is ∼ 2m (compared to ∼ 5.5m in W7-X) and the
magnetic field has a 3-fold symmetry (compared to 5-fold in W7-X). Also, no target plates
were considered in these experiments. Fig.11.35 shows a mesh generated in a finite beta
field for NCSX.
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Figure 11.35: An NCSX edge mesh generated in a finite beta field. This mesh has 24 cuts
and contains points in the core and in the edge, plus an outer boundary.
Total field lines; 624. Total points: 16668.
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The Poincaré plot in Fig.11.36 shows the different types of field lines which make up the
NCSX mesh. Unlike in the W7-X meshes, there are no large islands structures in the
edge region, and the points on the outer boundary represent the actual position of one
possible design of the vacuum vessel wall (rather than an approximation as in W7-X).
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Figure 11.36: Poincaré plot at φ = 60◦ from the NCSX finite beta mesh. Red points lie
on closed flux surfaces in the plasma core. Dark blue points lie on a closed
ergodic field line. Green points lie on open field lines in the plasma edge.
Pink points lie on a closed field line which represents the vacuum vessel wall.
Total points on this plot ∼ 420.

106



11.2 Physics

Fig.11.37 shows a temperature solution on the NCSX mesh. A characteristic of the
magnetic field in NCSX is that the open field lines in the edge region are generally shorter
than those in W7-X. The closed ergodic field line (dark blue) has 3 large fluctuations
along its length due to geometric effects. There is also a notable fluctuation along the 3rd
flux surface (∼ 125 eV). This is probably due to a relatively large change in the number
of points from the 2nd to the 3rd flux surfaces.
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Figure 11.37: Temperature solution on an NCSX mesh. The color scheme here corre-
sponds to the color scheme in the Poincaré plot in Fig.11.36. Points on the
innermost plasma core flux surface were held constant at 200 eV. Points on
the wall were held constant at 10 eV. Points on the ends of open field lines
had a sheath boundary condition. Particle density, ne = 1.0e20m−3. Radial
diffusivity, χ⊥ = 1m2s−1.

In the edge region (green curves) there is a repeating pattern because the open field lines
are traced from similar start points on similar cuts around the torus. As in the W7-X
mesh, the ordering of field lines has no effect on the heat transport in the system. There
are at least 6 high green peaks which reach up to the temperature of the closed ergodic
field line (∼ 50 eV).
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Fig.11.38 shows the temperatures along the normalized field lines. At the bottom of the
plot the large number of open field lines (green) are flattened due to their short length but
some have a parabolic shape and overlap the closed ergodic field line (dark blue). This
interweaving occurs only in temperature space. There is no physical interweaving of the
open field lines with the closed ergodic field line.
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Figure 11.38: Temperature along normalized field lines in an NCSX solution. The color
scheme here corresponds the the color scheme in Figs.11.36 and 11.37. Par-
ticle density, ne = 1.0e20m−3. Radial diffusivity, χ⊥ = 1m2s−1.

Figs.11.39 and 11.40 show temperature solutions on 2 different Poincaré plots. The mesh
points have been colored according to the steady state temperature as found by the
transport code. They also show how the plasma cross-section changes with toroidal angle.
Note that the purpose of these solutions is mainly to demonstrate the flexibility of the
finite difference code developed in the present work. The magnetic field and the wall design
in NCSX have undergone extensive modification since these results were generated.
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Figure 11.39: Temperature solution on a finite beta mesh Poincaré plot at φ = 0◦.

Figure 11.40: Temperature solution on a finite beta mesh Poincaré plot at φ = 60◦.
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11 Results and Discussion

Fig.11.41 shows a promotional picture of a temperature solution on an NCSX mesh ob-
tained by the finite difference code developed in the present work.

Figure 11.41: A temperature solution on a W7-X mesh containing 24 cuts (total points
∼ 17000. Each mesh point is colored according to temperature. The red
core points are at 200 eV. The purple outer boundary points are at 10 eV.
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Modeling in ergodic regions in magnetized plasmas offers special difficulties due to the
strong anisotropy of the transport and the complex geometry of the computational do-
main. In the present work a method is developed for finite difference discretization of
a transport equation in order to model electron heat conduction in the plasma edge of
fusion experiments. This is to gain insight into the physics and to optimize the design
and performance of such devices.

Using field line tracing, meshes are generated to represent plasmas in W7-X and NCSX.
The transport equation is discretized along the field lines to allow accurate evaluation of
the extreme anisotropic transport with an anisotropy factor between parallel and radial
transport of ∼ 104 → 107. This very large anisotropy poses a real challenge to avoid
numerical diffusion. Using a suitable optimization criterion in the mesh generation it was
possible to reduce numerical diffusion to ∼ 1.0e − 5m2s−1. This is much less than the
physical diffusion, ∼ 1.0m2s−1.

The problem of ergodicity is handled by using local magnetic coordinates. This allows a
discretization of the transport equation in finite difference form as long as the distance
between the mesh points is well below the typical length where neighboring field lines
diverge exponentially (Kolmogorov length). The use of local magnetic coordinates allows
a complete description of the system without additional approximation. However, the
price to pay for this complete model is a full metric tensor including non-diagonal terms.

A variety of studies are done to investigate the physics in the plasma edge in the presence
of ergodicity. The results show that the W7-X finite beta case allowed cascading of energy
into regions which were inaccessible in the vacuum case, resulting in a smoothing of the
island structures in the edge region. Thus, the broadening of the solution in the islands is
due to an indirect ergodic effect. The island structures are not prominent in the solution,
being masked by the general flattening of the temperature profile in the edge region.

Holding the core boundary condition constant and reducing the radial transport coefficient
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resulted in a decoupling, in temperature space, of the open field lines in the edge region
from the closed field lines in the core region, thus inhibiting transport from the core.
By comparison, reducing the core boundary condition, while holding the radial transport
constant resulted only in a scaling down of the temperature solution while not inhibiting
transport from the core.

By investigation of flux densities at the ends of the open field lines it was found that
the longer open field lines played a greater role in removing heat from the plasma core
because they had more contact with the ergodic region surrounding the plasma core.

The future development of the code will include additional boundary condition options,
the inclusion of a convective term in the transport equation, and eventually, additional
transport equations (ion heat conduction) and the possibility to handle impurities.
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13 Appendices

13.1 Evaluating the metric coefficient

In the present work a separate code developed in [47] reads the mesh data file and the
magnetic field configuration file, and generates the metric coefficients for each mesh point.
The algorithm is outlined below.

1. Cylindrical coordinates are transformed to local magnetic coordinates using the
tensorial rule for a transformation between coordinate systems, (1) and (2):

gij
(2) = gkl

(1)

∂ui
(2)

∂uk
(1)

∂uj
(2)

∂ul
(1)

(13.1)

2. We start with a cylindrical system with a well known metric tensor:

gkl
(1) =

⎡
⎣ 1 0 0

0 1 0
0 0 1/R2

⎤
⎦ (13.2)

3. For the coordinates change we need the following matrix of transformation:

Ci
j ≡

∂ui
(2)

∂uj
(1)

=

⎡
⎣ C1

1 C1
2 −C1

1 · f 1 − C1
2 · f 2

C2
1 C2

2 −C2
1 · f 1 − C2

2 · f 2

0 0 1

⎤
⎦ (13.3)

Here components Ci
j are defined per system of ODE in a way similar to Nemov’s

algorithm [48]

∂

∂φ
Ci

j = −Ci
j

∂f l

∂yj
, where f i(R, z, φ) =

Bi(R, z, φ)

B3(R, z, φ)
, i = 1, 2 (13.4)
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We integrate this system of ordinary differential equations along the field line with
initial conditions on a section φ = φm

Ci
j |φ=φm=

⎡
⎣ 1 0 −f 1

0 1 −f 2

0 0 1

⎤
⎦ (13.5)

13.2 Poincaré plots in W7-X

Here we present a series of Poincaré plots covering 1 period (72◦) of a W7-X 20-cut finite
beta mesh, with ’standard’ poloidal density.
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Figure 13.1: Poincaré plot at φ = 0◦. 1281 points.
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Figure 13.2: Poincaré plot at φ = 18◦. 1268 points.
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Figure 13.3: Poincaré plot at φ = 36◦. 1268 points.

115



13 Appendices

-1

-0.5

 0

 0.5

 1

 4.5  5  5.5  6  6.5

zp
os

 (
m

)

Radial position (m)

Figure 13.4: Poincaré plot at φ = 54◦. 1268 points.

116



13.3 Triangulations in W7-X

13.3 Triangulations in W7-X

Here we present a series of triangulated Poincaré plots covering 1 period (72◦) of a W7-X
20-cut finite beta mesh, with ’standard’ poloidal density.
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Figure 13.5: Triangulated Poincaré plot at φ = 0◦.
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Figure 13.6: Triangulated Poincaré plot at φ = 18◦.
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Figure 13.7: Triangulated Poincaré plot at φ = 36◦.

118



13.3 Triangulations in W7-X

-1

-0.5

 0

 0.5

 1

 4.5  5  5.5  6  6.5

zp
os

 (
m

)

Radial position (m)

Figure 13.8: Triangulated Poincaré plot at φ = 54◦.
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13.4 Least squares method

The Least Squares method is a method for determining a function to fit a set of data.
For our purposes, the data is the set of points on a Poincaré plot. We use the Least
Squares method to find the poloidal spatial derivatives, ∂/∂x and ∂/∂y at the primary
and secondary points. See Fig.13.9.

Figure 13.9: Zoom-in view of a Poincaré plot. A typical mesh point, i, is shown as a
blue dot, and its poloidal neighbors are shown as green dots. Each mesh
point is the center of its own local coordinate system in which the poloidal
coordinates, here shown as x and y, are Cartesian coordinates on the plane
of the Poincaré plot.
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13.4.1 The Least Squares fit function

On each Poincaré plot each point has a set of poloidal primary neighbors scattered around
it on the plane. These neighbors may be numbered i = 1, 2, ...n, where n is the number of
neighbors. For secondary points, n = 3. For primary points, n ≈ 6. Given the function
value (temperature) at the poloidal neighbors we want to evaluate the derivatives on the
plane. We solve a Least Squares fit using the model:

F (x, y) = fo + fx (xi − x) + fy (yi − y) (13.6)

where,
fo : the average temperature of the poloidal neighbors
fx, fy : gradients ∂/∂x, ∂/∂y
xi, yi : x and y coordinates of poloidal neighbor i
x, y : average x and y coordinates of the poloidal neighbors

Equation (13.6) is a standard linear approximation in x and y. It provides a least squares
fit to the data for a linear model. It is suitable because we want to evaluate only the
gradients. To solve for the unknown coefficients (fo, fx, fy) we minimize a least squares
fit

∑
i (F (xi, yi) − fi)

2 where fi is the temperature at poloidal neighbor i.

Set

I =
∑

i

(F (xi, yi) − fi)
2

=
∑

i

(fo + fx (x − x) + fy (y − y) − fi)
2 (13.7)

13.4.2 Differentiating the Least Squares fit function

To solve for the coefficients (fo, fx, fy) we obtain the system of 3 equations by differenti-
ating the least squares fit with respect to each coefficient.

• Differentiate I with respect to fo

∂I

∂fo
= 2

(
nfo −

∑
i

fi

)
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⇒ 0 = nfo −
∑

i

fi ∴ fo =
1

n

∑
i

fi (13.8)

Note that fo, the average temperature of the poloidal neighbors, is not necessarily the
same as the temperature at p. Equation (13.8) is a trivial result. Therefore, instead of
solving a system of 3 equations for 3 unknowns, we need only to solve a system of 2
equations for 2 unknowns: fx and fy. To obtain the remaining 2 equations:

• Differentiate I with respect to fx

∂I

∂fx

= 2
∑

i

(fo + fx (x − x) + fy (y − y) − fi) (x − x)

⇒ 0 =
∑

i

(x − x)2 fx +
∑

i

(y − y) (x − x) fy −
∑

i

(x − x) fi

⇒
∑

i

(x − x)2 fx +
∑

i

(y − y) (x − x) fy =
∑

i

(x − x) fi (13.9)

• Differentiate I with respect to fy

∂I

∂fy
= 2

∑
i

(fo + fx (x − x) + fy (y − y) − fi) (y − y)

⇒ 0 =
∑

i

(x − x) (y − y) fx +
∑

i

(y − y)2 fy −
∑

i

(y − y) fi

⇒
∑

i

(x − x) (y − y) fx +
∑

i

(y − y)2 fy =
∑

i

(y − y) fi (13.10)

13.4.3 The resulting system of equations

Equations (13.9) and (13.10) are a system of 2 equations which we can use to solve for fx

and fy. In matrix form the system of equations is:

[ ∑
i (x − x)

∑
i (x − x) (y − y)∑

i (x − x) (y − y)
∑

i (y − y)

] [
fx

fy

]
=

[ ∑
i (x − x) fi∑
i (y − y) fi

]

⇒
[

αxx αxy

αyx αyy

] [
fx

fy

]
=

[ ∑
i (x − x) fi∑
i (y − y) fi

]
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⇒
[

fx

fy

]
=

[
βxx βxy

βyx βyy

] [ ∑
i (x − x) fi∑
i (y − y) fi

]
(13.11)

where, [α]−1 = [β]

From equation (13.11) the poloidal gradients at any primary or secondary point, p, are:

fx = βxx

∑
i

(x − x) fi + βxy

∑
i

(y − y) fi

∂T

∂x
=

(
βxx

∑
i

(x − x) + βxy

∑
i

(y − y)

)
T (13.12)

fy = βyx

∑
i

(x − x) fi + βyy

∑
i

(y − y) fi

∂T

∂y
=

(
βyx

∑
i

(x − x) + βyy

∑
i

(y − y)

)
T (13.13)

13.4.4 Inverting the least squares coefficient matrix [α]

Recall that we invert a 2×2 matrix in the following way:[
a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]
(13.14)

The least squares coefficient matrix [α] is:

[
αxx αxy

αyx αyy

]
=

[ ∑
i (x − x)

∑
i (x − x) (y − y)∑

i (x − x) (y − y)
∑

i (y − y)

]
(13.15)

The determinant, (ad − bc), of matrix [α] is:
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det[α] =

(∑
i

(xi − x)

) (∑
i

(yi − y)

)
−

(∑
i

(xi − x) (yi − y)

)2

(13.16)

Therefore, the elements of the inverse matrix [β] are:

βxx =

∑
i (yi − y)

det[α]
, βxy =

−
∑

i (xi − x) (yi − y)

det[α]
(13.17)

βyx =
−

∑
i (xi − x) (yi − y)

det[α]
, βyy =

∑
i (xi − x)

det[α]
(13.18)

The sum quantities are evaluated by looping over the poloidal neighbors of p.

13.4.5 Matrix [A0], poloidal gradients at the secondary points

⎡
⎣ A0

⎤
⎦

2NS × NP

Recall that matrix [A0] contains the poloidal gradients at the secondary points. It is used
to construct the component matrix [A6] which contains the coefficients for the poloidal
flux divergences.

A secondary point is the center of gravity of a triangle. Therefore it has 3 primary
point neighbors, and therefore each row in [A0] has 3 non-zero elements. (The Least
Squares method is not strictly necessary in this case because, with only 3 points, it is
possible to find exact solutions.) The rows occur in pairs. Each pair corresponds to one
secondary point. In each pair, the odd numbered row contains the x gradients, and the
even numbered row contains the y gradients.

Recall from equation (13.12) that the x poloidal gradient at any point is evaluated as:
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∂T

∂x
=

(
βxx

∑
i

(x − x) + βxy

∑
i

(y − y)

)
T

The expression in brackets is the poloidal spatial derivative. For a secondary point it has
3 components, one for each primary neighbor. Each component is evaluated as:

∂

∂xi
= βxx (xi − x) + βxy (yi − y) (13.19)

where the index i refers to the particular primary neighbor of the secondary point, and
therefore a particular non-zero element in [A0].

The y poloidal spatial derivatives are evaluated in the same way. From equation (13.13)
the poloidal gradient is:

∂T

∂y
=

(
βyx

∑
i

(x − x) + βyy

∑
i

(y − y)

)
T

and the component spatial derivatives are:

∂

∂yi
= βyx (xi − x) + βyy (yi − y) (13.20)

13.4.6 Matrices [A3] and [A5], poloidal gradients at the primary
points

⎡
⎣ A3

⎤
⎦

⎡
⎣ A5

⎤
⎦

NP × NP NP × NP
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Matrices [A3] and [A5] contain the x and y spatial derivatives respectively at the primary
points. These matrices are used in the construction of the component matrices [A9] and
[A10]. These contain the coefficients for the mixed poloidal-toroidal flux divergences.

The non-zero elements in these matrices are evaluated in exactly the same way as in
matrix [A0]. The only difference is that the number of primary poloidal neighbors for
each primary point is not 3, as for each secondary point, but 6 on average. That is, each
row in [A3] and [A5] corresponds to one primary point and has ∼6 non-zero elements.
The elements in [A3] are evaluated using equation (13.19), and the elements in [A5] use
equation (13.20). As before, the index i refers to the particular neighbor.

13.5 Sparse matrix storage and manipulation

The process of constructing the final coefficient matrix requires the efficient storage and
manipulation of large sparse matrices [49]. Recall that we construct a series of funda-
mental matrices which contain gradients and transport coefficients. These are combined
by multiplication into a set of component matrices which represent the 9 flux divergences
from the vector form of the transport equation. The component matrices are then com-
bined by addition into the final coefficient matrix.

A standard W7-X mesh used in the present work is ∼25000 points, so the corresponding
coefficient matrix size is 25000×25000, with a sparsity of > 99.99%. For matrices of
this size and sparsity there are still hundreds of thousands of non-zero elements. It is
impossible to use the normal Fortran functions for matrix operations, so we turn to
specialized methods.

13.5.1 Coordinate format

When we construct the fundamental matrices, the non-zero elements are stored in coor-
dinate format (COO) [49]. That is, for each matrix we generate 3 arrays. Each array has
length nnz, which is the number of non-zeros in the matrix.

1. A real array, A, for the values of the non-zero elements.

2. An integer array, Arow, for the row indices of the non-zero elements.
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3. An integer array, Acol, for the column indices of the non-zero elements.

COO format is a common and simple method for storing large sparse matrices of any
structure. For each mesh point, the neighborhood array gives us the row and column
indices for each non-zero element. For example, matrix A3 contains poloidal gradients.
Each row and each column corresponds to a mesh point. If we look along the row for
mesh point p, there are non-zero elements lying at the column positions which represent
the known poloidal neighbors of p.

13.5.2 Compressed Sparse Row format

The information for each matrix is converted from COO format to compressed sparse row
format (CSR) [49]. Each matrix is represented by 3 arrays:

1. A real array, A, containing the non-zero element values. (length nnz)

2. An integer array, JA, for the column indices. (length nnz)

3. An integer array, IA, containing the pointers to the beginning of each row in arrays
A and JA. The i−th element in IA is the position in arrays A and JA where the
i−th row starts. The length of IA is nrows + 1. nrows is the number of rows in
the matrix. The last element, IA(nrows + 1), contains the number IA(1) + nnz,
that is, the address in A and JA of the start of a fictitious row nrows + 1.

CSR format is convenient for storing matrices which have complex distributions of non-
zero elements. Like the COO format, it is applicable to any matrix structure, but it
is more efficient in its memory requirements. After the conversion to CSR format, the
manipulation of the matrices is performed. That is, the fundamental matrices are com-
bined by multiplication to form the component matrices, and the component matrices are
combined by addition to form the final coefficent matrix.

After all the matrix operations have been performed, the final coefficient matrix, is con-
verted from CSR into COO format. This information is fed into the matrix solver subrou-
tine in the transport code. Recall that the matrix equation Ax = b is solved iteratively.
The matrix of coefficients, A, is usually a function of the unknown variable Te and there-
fore the system is non-linear. To account for the non-linearity we apply the subsequent
substitutions iterative method [50] (also known as Picard iteration, functional iteration,
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and successive approximation). Most of the fundamental matrices are purely geometric,
ie the elements are not temperature dependent. They are constructed only once for a
given mesh, and they are evaluated outside the iteration loop. Some of the fundamen-
tal matrices, and all of the component matrices, have elements which are temperature
dependent. They are evaluated inside the iteration loop. In summary, all of the sparse ma-
trix conversion, manipulation, and deconversion occurs at every iteration in the solution
process.

13.5.3 Summary of matrix operations in the transport code

The procedure (in fact, the entire code) is summarized as follows:

1. Read mesh data file, neighborhood arrays and metric coefficients.

2. Generate the purely geometric fundamental matrices. These are all in COO format.

a) poloidal gradients: A0, A2, A3, A5

b) toroidal gradients: A4

c) toroidal second order derivatives: A110

3. Start iteration loop.

4. Construct temperature dependent fundamental matrices, also in COO format.

a) transport coefficients for purely poloidal flux divergence: A1

b) transport coefficients for mixed and purely toroidal flux divergences: Ψ

c) matrix, T t, containing the temperatures at the previous iteration (or at the
initial condition, in the case of the first iteration).

d) matrix, At, containing the time derivatives.

5. Combine fundamental matrices into component matrices. Subroutines in ’Sparse’
module convert fundamental matrices to CSR format and do the matrix multipli-
cations. Resulting component matrices are in CSR format; A6, A7, A8, A9, A10,
A11.

6. Combine component matrices into final coefficient matrix, A12. Subroutines in the
’Sparse’ module do the addition. A12 is in CSR format.

7. Convert A12 to COO format.

8. Construct the right hand side vector, rhs, containing the time derivatives and bound-
ary conditions.
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13.5 Sparse matrix storage and manipulation

9. Send A12 and rhs to the matrix solver subroutine.

10. Iterate toward temperature solution across the mesh.

11. End iteration loop.

12. Send final temperature solution to the Output module.
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