NUMERICAL STUDY OF HOLSTEIN POLARONS

Part I. Self-Trapping Crossover Part II. Disorder, Correlation, and Finite-Density Effects Part III. Collective Phenomena – Quantum Phase Transitions

Holger Fehske

Ernst Moritz Arndt Universität Greifswald, Germany

In collaboration with:

٩	Andreas Alvermann, Gerald Schubert Franz X Bronold	Greifswald	KPM, CPT, statDMFT
٩	Gerhard Wellein, Georg Hager	Erlangen	ED, DMRG
٩	Alexander Weiße	Sydney	BO, KPM
٩	Martin Hohenadler	Graz	QMC, CPT
٩	Eric Jeckelmann	Hannover	(D)DMRG
٩	Jan Loos	Prag	WC-SC A
٩	Arno P Kampf	Augsburg	PMT
٩	Alan R Bishop	Los Alamos	ILMs

OUTLINE

Lecture III: Collective Phenomena – Quantum Phase Transitions

Introduction

- Peierls instability
- Peierls-Mott competition
- Metal insulator transition
 - Luttinger liquid characterisation
 - CDW characterisation
 - Phase diagram of the spinless fermion Holstein model
 - Phonon softening
- Peierls-insulator Mott-insulator transition
 - Ground-state properties
 - Charge & spin structure factors
 - Phonon distribution function
 - Symmetry considerations
 - Excitations
 - Photoemission
 - Optical response
 - Spin & charge excitation gaps
 - Intrinsic localised modes

$related \ publications \rightsquigarrow {\tt http://theorie2.physik.uni-greifswald.de}$

PEIERLS INSTABILITY

- Effect of electron-phonon coupling in low-D systems?
 - \rightsquigarrow structural distortions at commensurate band fillings n, famous example, Peierls instability:

Lattice dynamics? Especially important in 1D!

• Effect of Coulomb interaction?

Part I: Metal-Insulator Transition

(Luttinger liquid vs charge-density-wave behaviour)

simplest model: 1D spinless fermion Holstein model at half-filling

$$\mathsf{H} = -t\sum_{\langle i,j\rangle} c_i^\dagger c_j - g\, {\color{black}\omega_0} \sum_i (b_i^\dagger + b_i) n_i + {\color{black}\omega_0} \sum_i b_i^\dagger b_i$$

N sites, N_e electrons with $n = N_e/N = 0.5$, dispersionless phonons, T = 0 parameters: $g^2 = \epsilon_p / \omega_0$; $\lambda = \epsilon_p / 2t$, and $\alpha = \omega_0 / t$

"known" results:

- λ *Z*: quantum phase transition from a metallic (LL) to an insulating (Peierls distorted) phase; RG, QMC, GFMC, ED, DMRG, ... → phase boundary, but significant discrepancies in the adiabatic intermediate coupling regime!
- $\omega_0 \rightarrow 0: \ \lambda_c \rightarrow 0$
- \bullet strong-coupling anti-adiabatic regime \rightsquigarrow exactly solvable XXZ model: Kosterlitz -Thouless phase transition

• Characterisation of Luttinger liquids?

Holstein model - gapless for small couplings \sim Tomonaga-Luttinger universality class [Haldane LL conjecture (PRL 45, 1358 (1980))]:

$$\mathfrak{n}(k)\text{, }\rho(\omega)\text{, }G(x)\text{, }\chi^{-1}\text{, }\kappa^{-1}\text{,}\ldots\leftrightarrows K_{\rho}\text{, }\mathfrak{u}_{\rho}$$

interaction (stiffness) constant and charge velocity

● ∃ scaling relations!

(conformal field theory - Affleck, Cardy, Nomura, Okamoto, Voit,...)

$$\begin{split} \epsilon_0(\infty) &- \frac{E_0(N)}{N} &= \frac{\pi}{3} \frac{u_\rho}{2} \frac{1}{N^2} \\ E_0^{(\pm 1)}(N) &- E_0(N) &= \pi \frac{u_\rho}{2} \frac{1}{K_\rho} \frac{1}{N} \end{split}$$

 \propto ground-state energy

 \propto charge excitation gap

$$\overline{H}_{l+1}$$
 \overline{H}_{l-1}

 system block
 environment

Density Matrix Renormalisation Group: systems with N=128 ... 512 accessible ↔ determination of (non-universal) K_p & u_p!

• Effects of EP coupling?

 \hookrightarrow scaling relations are still fulfilled almost perfectly – $\forall \alpha !$

(but, of course, they break down at large g^2)

NUMERICAL	STU
	NUMERICAL

RICAL STUDY OF HOLSTEIN POLARONS

LL vs CDW

g^2	$\omega_0/t=0.1$		$\omega_0/t=10.0$	
	K_{ρ}	$\mathfrak{u}_\rho/2$	$K_{ ho}$	$\mathfrak{u}_\rho/2$
0.6	1.031	~ 1	~ 1	0.617
2.0	1.055	0.995	0.949	0.146
4.0	1.091	0.963	0.651	0.028

>1 <1

 $\label{eq:adiabatic regime: attractive interaction & weak u_{ρ}-renormalisation anti-adiabatic regime: repulsive interaction & strong u_{ρ}-renormalisation! }$

• Charge structure factor at π : $\left|S_c(\pi) = \frac{1}{N^2} \sum_{i,j} (-1)^j \langle (n_i - \frac{1}{2})(n_{i+j} - \frac{1}{2}) \rangle \right|$

 \hookrightarrow existence of a Peierls-CDW phase above $g_c(\alpha)!$

GROUND-STATE PHASE DIAGRAM

PHOTOEMISSION SPECTRA I

• Injection/emission of electrons? ($c_{K\sigma}^+ = c_{K\sigma}^{\dagger}$ - IPE; $c_{K\sigma}^- = c_{K\sigma}^{}$ - PE; $\sigma \equiv \uparrow$)

$$A^{\pm}_{K\sigma}(\omega) = \sum_{\mathfrak{m}} |\langle \psi^{(N_{\mathfrak{el}}\pm 1)}_{\mathfrak{m}} | c^{\pm}_{K\sigma} | \psi^{(N_{\mathfrak{el}})}_{0} \rangle|^2 \delta[\,\omega \mp (E^{(N_{\mathfrak{el}}\pm 1)}_{\mathfrak{m}} - E^{(N_{\mathfrak{el}})}_{0})]$$

• weak coupling:

• critical coupling:

- gap feature emerges
- redistribution of QP weight
- phonon absorption bands

• strong coupling: finite gap \rightsquigarrow CDW insulator

• Renormalisation of phonon dispersion?

$$\mathsf{D}_{\mathsf{Q}}(\omega) = 2\omega_0 \, \langle \langle \mathsf{x}_{\mathsf{Q}}; \mathsf{x}_{-\mathsf{Q}} \rangle \rangle_{\omega}$$

(with
$$x_i = (b_i^{\dagger} + b_i)/\sqrt{2\omega_0}$$
; $B_Q(\omega) = -\frac{1}{\pi} \text{Im} D_Q(\omega)$)

• weak coupling:

• $\lambda \rightarrow$ critical coupling:

- zone boundary phonon becomes soft
- redistribution of phonon spectral weight

• strong coupling: CDW insulator

- doubling of Brillouin zone
- phonon hardening sets in

weak coupling

• signature of polaron band dispersion

precursor of softening?

almost perfect doubling

• dispersionless signature at ω_0

Hohenadler, Alvermann, HF: in preparation (2005)

VARENNA - JUNE 27, 2005 17 / 31

strong coupling

SCHEMATIC PHASE DIAGRAM

- HF, Holicki, Weiße: Adv. Solid State Physics, 40, 235 (2000)

- Sykora, Hübsch, Becker, Wellein, HF: Phys. Rev. B 71, 045112 (2005)
- HF, Wellein, Hager, Weiße, Becker, Bishop: Physica B 359-361, 699 (2005)

Part II: Insulator-Insulator Transition (Peierls vs Mott)

simplest model: 1D Holstein Hubbard model at half-filling

$$\begin{split} \mathsf{H} &= \sum_{i\sigma} \varepsilon_{i} \mathfrak{n}_{i\sigma} - t \sum_{\langle i,j \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} - \mathfrak{g} \, \omega_{0} \sum_{i\sigma} (b_{i}^{\dagger} + b_{i}) \mathfrak{n}_{i\sigma} + \omega_{0} \sum_{i} b_{i}^{\dagger} b_{i} + \underbrace{\mathsf{U}} \sum_{i} \mathfrak{n}_{i\uparrow} \mathfrak{n}_{i\downarrow} \\ \mathsf{N} \text{ sites, } \mathsf{N}_{e\uparrow} &= \mathsf{N}_{e\downarrow} = \mathsf{N}/2 \text{ electrons, i.e. } \mathfrak{n} = 1 \text{, dispersionless phonons, } \mathsf{T} = \mathsf{0} \\ \mathsf{parameters: } \mathfrak{g}^{2} &= \varepsilon_{p}/\omega_{0}; \, \lambda = \varepsilon_{p}/2t, \, \alpha = \omega_{0}/t, \, \mathsf{and} \, \mathfrak{u} = \underbrace{\mathsf{U}}/4t \end{split}$$

Hardly any exact results!

- Suppression of CDW by Hubbard interaction?
- Increase of SDW? $S_i^z = \frac{1}{2}(n_{i\uparrow} n_{i\downarrow})$ $S_s(\pi) = \frac{1}{N^2} \sum_{i,j} (-1)^j \langle S_i^z S_{i+j}^z \rangle$

Yes! Finite-size effects?

 \bullet Phase transition? N $\to \infty ! ~~ \to {\sf DMRG}$ finite-size scaling necessary

breaking of discrete symmetry

• Phonon "contribution" to the ground state?

• Single-particle excitations?

Mott insulating regime $\ u/\lambda>1$

- Mott-Hubbard correlation gap ~ optical gap
- band renormalisation, phonon satellites

NUMERICAL STUDY OF HOLSTEIN POLABONS

• "breather-like" excitations

Holger Fehske

Mott-to-Peierls transition $~u/\lambda\simeq 1$

- gapless spin & charge excitations
- $\bullet\,$ band width \lesssim 4t, broad (I)PE spectra
- uniform distribution of spectral weight

• CDW regime?

- dispersion $\propto \varepsilon_k$ + gap feature
- phonon softening: $\widetilde{\omega}_{\pi} \rightarrow 0$
- \rightarrow "normal" Peierls band insulator

- Iow-weight dispersionless band
- + ordering
- $\hookrightarrow \ \text{polaronic superlattice}$

• Signatures of the PI-MI QPT in the optical conductivity?

EP coupling fixed ($\lambda = 1$, $\alpha = 1$) – increasing Hubbard interaction:

• $(u/\lambda)_c \sim optical gap \Delta_{opt} = 0$, metal!? Drude-weight ill-defined!

MANY-BODY EXCITATION GAPS

 $\bullet\,$ Proof of spin-charge separation? \sim DMRG finite-size scaling of

charge gap:
$$\Delta_c = E_0^{(N_{\mathfrak{e}1}+1)}(\frac{1}{2}) + E_0^{(N_{\mathfrak{e}1}-1)}(-\frac{1}{2}) - 2E_0^{(N_{\mathfrak{e}1})}(0)$$

spin gap:

 $\Delta_s = E_0^{(N_{\mathfrak{el}})}(1) - E_0^{(N_{\mathfrak{el}})}(0) \ \ (\text{both including lattice relaxation!})$

QPT - Symmetry considerations

- $(u/\lambda)_c$ level crossing \leftrightarrows symmetry change?
 - HHM invariant with respect to inversion at site i inversion symmetry (parity) operator: $\left| \hat{P}c_{i\sigma}\hat{P}^{\dagger} = c_{N-i\sigma} \right|$ (i = 0, 1, ..., N 1)
 - Hubbard model on finite lattices (N = 4L; PBC): P=1 for $U = 0 \& P = -1 \forall U > 0$
 - Holstein Hubbard model: σ^{reg} points parity change out! $|\psi_0\rangle$ by ED \rightsquigarrow P=1 for $U < U_c!$

physical picture:

Schematic phase diagram

HF, Wellein, Hager, Weiße, Bishop: Phys. Rev. B 69 , 165115 (2004),... Experimental relevance? \sim quasi-1D MX solids (M=Pt,Pd,Ni - X=CI,Br,I)!

ADIABATIC LIMIT

• "Frozen phonons" $(\omega = 0)$?

$$H_{t-u} - \sum_{i\sigma} \Delta_i n_{i\sigma} + \frac{K}{2} \sum_i \Delta_i^2$$

schematic phase diagram:

Maybe two (continuous) transitions at weak EP couplings !?

HF, Kampf, Sekania, Wellein, Eur. Phys. Jour. B 31, 11 (2003),...

Holger Fehske

NUMERICAL STUDY OF HOLSTEIN POLARONS

Peierls vs Mott

resonance raman spectra

Peierls-Hubbard model

- EP-coupling
- $\propto \lambda_{\,R}\,(\,b_{\,R}\,+\,b_{\,R}^{\,\dagger}\,)\,(\,\mathfrak{n}_{\,e,2}-\mathfrak{n}_{\,e,4}\,)$

non-linear dynamics!

JADA diagonalisation

IVCT gap \simeq 2.4 eV

\sim redshift of overtones!

$r_n = \frac{n\omega_R^{(1)} - \omega_R^{(n)}}{\omega_r^{(1)}}$	
---	--

n	rn ^{exp.}	r theo.	
2	0.4	0.4	
3	1.1	1.1	
4	2.4	2.5	\checkmark
5	4.6	4.7	
6	7.7	7.5	
7	11.6	11.2	

Holger Fehske

Peierls vs Mott

"MESSAGE"

Strongly correlated electron-phonon systems

 \rightsquigarrow remarkable variety of

interesting physical phenomena & theoretical problems

 \hookrightarrow great challenge!

- numerical study of simplified (but generic) model Hamiltonians on finite lattices → powerful tool to address this field
- ground state and spectral properties of the 1D Holstein (Hubbard) model are understood to a large extent, but
- what about 0 < n < 1 (including the spin degrees of freedom), D > 1, $T > 0, \, \ldots ?$

There is still a lot of work to be done!