Numerical Study of Holstein Polarons

Part I. Self-Trapping Crossover
Part II. Disorder, Correlation, and Finite-Density Effects
Part III. Collective Phenomena – Quantum Phase Transitions

Holger Fehske
Ernst Moritz Arndt Universität
Greifswald, Germany

In collaboration with:

- Andreas Alvermann, Gerald Schubert
 Franz X Bronold
- Gerhard Wellein, Georg Hager
- Alexander Weiße
- Martin Hohenadler
- Eric Jeckelmann
- Jan Loos
- Arno P Kampf
- Alan R Bishop

Greifswald
KPM, CPT, statDMFT

Erlangen
ED, DMRG

Sydney
BO, KPM

Graz
QMC, CPT

Hannover
(D)DMRG

Prag
WC-SC A

Augsburg
PMT

Los Alamos
ILMs
Lecture III: Collective Phenomena – Quantum Phase Transitions

- **Introduction**
 - Peierls instability
 - Peierls-Mott competition

- **Metal insulator transition**
 - Luttinger liquid characterisation
 - CDW characterisation
 - Phase diagram of the spinless fermion Holstein model
 - Phonon softening

- **Peierls-insulator Mott-insulator transition**
 - Ground-state properties
 - Charge & spin structure factors
 - Phonon distribution function
 - Symmetry considerations
 - Excitations
 - Photoemission
 - Optical response
 - Spin & charge excitation gaps
 - Intrinsic localised modes

related publications ～ http://theorie2.physik.uni-greifswald.de
Effect of electron-phonon coupling in low-D systems?

\[\sim \text{structural distortions at commensurate band fillings } \bar{n}, \]

famous example, Peierls instability:

\[\chi(q) = \frac{\chi(q)}{\chi(0)} \]

EP driven metal insulator transition!

related:

Kohn anomaly

phonon softening

Lattice dynamics? Especially important in 1D!
Effect of Coulomb interaction?

Ground state:

Electron-hole pairs ↔ QP behaviour!

Quasi-1D materials: wide variety of broken-symmetry ground states & (partially) exotic excitations!
Part I: Metal-Insulator Transition

(Luttinger liquid vs charge-density-wave behaviour)

simplest model: 1D spinless fermion Holstein model at half-filling

\[H = -t \sum_{\langle i,j \rangle} c_i^\dagger c_j - g \omega_0 \sum_i (b_i^\dagger + b_i) n_i + \omega_0 \sum_i b_i^\dagger b_i \]

N sites, \(N_e \) electrons with \(n = N_e/N = 0.5 \), dispersionless phonons, \(T = 0 \)

parameters: \(g^2 = \varepsilon_p/\omega_0; \ \lambda = \varepsilon_p/2t \), and \(\alpha = \omega_0/t \)

"known" results:

- \(\lambda \uparrow\): quantum phase transition from a metallic (LL) to an insulating (Peierls distorted) phase; RG, QMC, GFMC, ED, DMRG, . . . \(\sim \) phase boundary, \textit{but} significant discrepancies in the adiabatic intermediate coupling regime!
- \(\omega_0 \rightarrow 0: \lambda_c \rightarrow 0 \)
- strong-coupling anti-adiabatic regime \(\sim \) exactly solvable XXZ model: Kosterlitz - Thouless phase transition
Luttinger liquid parameters

- Characterisation of Luttinger liquids?
 - Holstein model - gapless for small couplings \sim Tomonaga-Luttinger universality class [Haldane LL conjecture (PRL 45, 1358 (1980))]:
 - $n(k), \rho(\omega), G(x), \chi^{-1}, \kappa^{-1}, \ldots \Rightarrow K_\rho, u_\rho$
 - Interaction (stiffness) constant and charge velocity
 - Scaling relations!
 - (conformal field theory - Affleck, Cardy, Nomura, Okamoto, Voit, ...)

$$\varepsilon_0(\infty) - \frac{E_0(N)}{N} = \frac{\pi u_\rho}{3} \frac{1}{2} \frac{1}{N^2}$$ \quad \propto \text{ground-state energy}$$

$$E_0^{(\pm 1)}(N) - E_0(N) = \frac{\pi u_\rho}{2} \frac{1}{K_\rho} \frac{1}{N}$$ \quad \propto \text{charge excitation gap}$$

- Density Matrix Renormalisation Group:
 - Systems with $N=128 \ldots 512$ accessible
 - Determination of (non-universal) K_ρ & u_ρ!
Effects of EP coupling?

Scaling relations are still fulfilled almost perfectly – ∀α!

(but, of course, they break down at large g^2)
Finite-size scaling

Extraction of LL parameters:

\[g^2, \omega_0/t = 0.1, \omega_0/t = 10.0 \]

<table>
<thead>
<tr>
<th>(g^2)</th>
<th>(\omega_0/t = 0.1)</th>
<th>(\omega_0/t = 10.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_\rho)</td>
<td>(u_\rho/2)</td>
<td>(K_\rho)</td>
</tr>
<tr>
<td>0.6</td>
<td>1.031</td>
<td>(\sim 1)</td>
</tr>
<tr>
<td>2.0</td>
<td>1.055</td>
<td>0.995</td>
</tr>
<tr>
<td>4.0</td>
<td>1.091</td>
<td>0.963</td>
</tr>
</tbody>
</table>

\[> 1 \quad < 1 \]

\(\rightarrow \) adiabatic regime: attractive interaction & weak \(u_\rho \)-renormalisation

\(\rightarrow \) anti-adiabatic regime: repulsive interaction & strong \(u_\rho \)-renormalisation!
Charge density wave formation

- **Charge structure factor at** π:
 \[S_c(\pi) = \frac{1}{N^2} \sum_{i,j} (-1)^j \langle (n_i - \frac{1}{2})(n_{i+j} - \frac{1}{2}) \rangle \]

existence of a Peierls-CDW phase above $g_c(\alpha)$!
Ground-state phase diagram

attractive LL

repulsive LL

metallic behaviour

\[u_\rho, K_\rho \]

activated transport

\[\sigma^{reg}(\omega) \]

Peierls distorted state
Photoemission spectra I

- Injection/emission of electrons? \((c_{K\sigma}^+ = c_{K\sigma}^\dagger - \text{IPE}; c_{K\sigma}^- = c_{K\sigma} - \text{PE}; \sigma \equiv \uparrow) \)

\[
A_{K\sigma}^\pm(\omega) = \sum_m |\langle \psi_m^{(N_{el} \pm 1)} | c_{K\sigma}^\pm | \psi_0^{(N_{el})} \rangle|^2 \delta[\omega \mp (E_m^{(N_{el} \pm 1)} - E_0^{(N_{el})})]
\]

- weak coupling:

- metal
- QP peak
- phonon satellites
• critical coupling:

- gap feature emerges
- redistribution of QP weight
- phonon absorption bands

weak coupling:

- N=8 M=28
- \(\epsilon_p/t=0.60\)
- \(\omega_0/t=0.1\)
- strong coupling: finite gap \sim CDW insulator

![Graphs showing Photoemission Spectra III with different coupling regimes: weak, critical, and strong.](image)

- Weak coupling:
 - $K=0$
 - $K=\pm \pi/4$
 - $K=\pm \pi/2$
 - $K=\pm 3\pi/4$
 - $N=8$ $M=32$
 - $\epsilon_p/t=1.6$
 - $\omega_0/t=0.1$

- Critical coupling:
 - $K=\pi$
 - $N=8$ $M=28$
 - $\epsilon_p/t=0.6$
 - $\omega_0/t=0.1$

- Strong coupling:
 - $N=8$ $M=12$
 - $\epsilon_p/t=0.1$
 - $\omega_0/t=0.1$
Renormalisation of phonon dispersion?

\[D_Q(\omega) = 2\omega_0 \langle \langle x_Q; x_{-Q} \rangle \rangle_\omega \]

(with \(x_i = (b_i^\dagger + b_i)/\sqrt{2\omega_0} \); \(B_Q(\omega) = -\frac{1}{\pi} \text{Im} D_Q(\omega) \))

- weak coupling:

\[\tilde{\omega}(Q) \simeq \omega_0 \]

- \(K = 0 \) “electron” state - phonon admixture
• $\lambda \to$ critical coupling:

- $\lambda = 0.7$
- $\alpha = 0.4$
- $N_c = 8$

- Zone boundary phonon becomes soft
- Redistribution of phonon spectral weight

weak coupling:

- $\lambda = 0.05$
- $\alpha = 0.4$
- $N_c = 8$ (CPT)
strong coupling: CDW insulator

- doubling of Brillouin zone
- phonon hardening sets in

\[\lambda = 1.0 \]
\[\alpha = 0.4 \]
\[N_c = 6 \]

\[\lambda = 0.05 \]
\[\alpha = 0.4 \]
\[N_c = 8 \text{ (CPT)} \]

\[\lambda = 0.7 \]
\[\alpha = 0.4 \]
\[N_c = 8 \]
Phonon Spectra - Anti-adiabatic Case

Weak Coupling

\[\lambda = 1 - g^2 = 0.5 \]
\[\alpha = 4 \]
\[N_c = 8 \]

- Signature of polaron band dispersion
- Precursor of softening?

Strong Coupling

\[\lambda = 8 - g^2 = 4 \]
\[\alpha = 4 \]
\[N_c = 4 \]

- Almost perfect doubling
- Dispersionless signature at \(\omega_0 \)

Schematic phase diagram

Part II: Insulator-Insulator Transition

(Peierls vs Mott)

simplest model: 1D Holstein Hubbard model at half-filling

\[H = \sum_{i\sigma} \epsilon_i n_{i\sigma} - t \sum_{\langle i,j \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} - g \sum_{i\sigma} (b_{i\sigma}^{\dagger} + b_{i\sigma}) n_{i\sigma} + \omega_0 \sum_{i\sigma} b_{i\sigma}^{\dagger} b_{i\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \]

N sites, \(N_{e\uparrow} = N_{e\downarrow} = N/2 \) electrons, i.e. \(n = 1 \), dispersionless phonons, \(T = 0 \)

parameters: \(g^2 = \epsilon_p/\omega_0; \lambda = \epsilon_p/2t, \alpha = \omega_0/t, \) and \(u = U/4t \)

Hardly any exact results!
Charge & Spin structure factors

- Suppression of CDW by Hubbard interaction?
- Increase of SDW? $S^z_i = \frac{1}{2}(n_{i\uparrow} - n_{i\downarrow})$

$$S_s(\pi) = \frac{1}{N^2} \sum_{i,j} (-1)^j \langle S^z_i S^z_{i+j} \rangle$$

Yes! Finite-size effects?

$g^2 = 2$
$\alpha = 1$
Phase transition? $N \to \infty! \sim$ DMRG finite-size scaling necessary

Critical ratio u/λ

Breaking of discrete symmetry

Peierls Insulator

U

Mott Insulator

g

SDW: no LRO

CDW: true LRO
Phonon distribution

- Phonon “contribution” to the ground state?

- MI: basically zero-phonon state (besides $Q = 0$ mode)

- QCP: increasing weight of multi-phonon states

- PI: Poisson-like distribution of phonons
Single-particle excitations?

Mott insulating regime $u/\lambda > 1$

- Mott-Hubbard correlation gap \sim optical gap
- band renormalisation, phonon satellites
- “breather-like” excitations

Mott-to-Peierls transition $u/\lambda \simeq 1$

- gapless spin & charge excitations
- band width $\lesssim 4t$, broad (I)PE spectra
- uniform distribution of spectral weight
CDW regime?

adiabatic case: \(\alpha \ll 1 \)

- dispersion \(\propto \epsilon_k + \) gap feature
- phonon softening: \(\tilde{\omega}_\pi \rightarrow 0 \)

\(\rightarrow \) “normal” Peierls band insulator

anti-adiabatic case: \(\alpha \gg 1 \)

- low-weight dispersionless band
- \(\uparrow \downarrow \times \) + ordering

\(\rightarrow \) polaronic superlattice
Signatures of the PI-MI QPT in the optical conductivity?

EP coupling fixed ($\lambda = 1, \alpha = 1$) – increasing Hubbard interaction:

- $(u/\lambda)_c \sim$ optical gap $\Delta_{opt} = 0$, metal!?
- Drude-weight ill-defined!
Many-body excitation gaps

- Proof of spin-charge separation? \(\sim\) DMRG finite-size scaling of

Charge gap:
\[
\Delta_c = E_0^{(N_{el}+1)}\left(\frac{1}{2}\right) + E_0^{(N_{el}-1)}\left(-\frac{1}{2}\right) - 2E_0^{(N_{el})}(0)
\]

Spin gap:
\[
\Delta_s = E_0^{(N_{el})}(1) - E_0^{(N_{el})}(0)
\]

(both including lattice relaxation!

![Graph showing the relationship between \(\Delta_c\) and \(\Delta_s\) with respect to \(1/N\) for different phases: PI, ~QCP, MI.](image)
QPT - SYMMETRY CONSIDERATIONS

• \((\mu/\lambda)_c\) – level crossing \(\iff\) symmetry change?

- HHM - invariant with respect to inversion at site \(i\)
 inversion symmetry (parity) operator: \(\hat{P}_{c_i\sigma}\hat{P}^\dagger = c_{N-i\sigma}\) \((i = 0, 1, \ldots, N-1)\)

- Hubbard model on finite lattices \((N = 4L; \text{PBC})\):
 \(P = 1\) for \(U = 0\) & \(P = -1\) \(\forall U > 0\)

- Holstein Hubbard model: \(\sigma^{\text{reg}}\) points parity change out!
 \(|\psi_0\rangle\) by ED \(\sim P = 1\) for \(U < U_c\)!

physical picture:

![Graph showing QPT and MI phases with \(U\) vs \(\Delta_{opt}\) and parity change]
Schematic phase diagram

Mott Insulator
\[\Delta_c > \Delta_s = 0; P = -1 \]

SDW
\[\downarrow \cdots \downarrow \cdots \downarrow \cdots \downarrow \cdots \downarrow \]

\[\frac{u}{\lambda} \gg 1 \]

\[\alpha \ll 1 \]

\[\frac{u}{\lambda} \ll 1 \]

\[\frac{\lambda}{\alpha} \gg 1 \]

\[\frac{\lambda}{\alpha} \ll 1 \]

\[g^2 \]

Band Insulator

Peierls Insulator
\[\Delta_c = \Delta_s > 0; P = +1 \]

CDW
\[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]

Peierls Insulator

Bipolaronic Insulator

HF, Wellein, Hager, Weiße, Bishop: Phys. Rev. B 69 , 165115 (2004), ...

Experimental relevance? \[\sim \text{quasi-1D MX solids} \] (M=Pt,Pd,Ni - X=Cl,Br,I)!
Adiabatic limit

“Frozen phonons” ($\omega = 0$)?

schematic phase diagram:

$$H_{t-u} - \sum_{i \sigma} \Delta_i n_{i \sigma} + \frac{K}{2} \sum_i \Delta_i^2$$

Maybe two (continuous) transitions at weak EP couplings!?

Intrinsic localised vibrational modes

Pt-Cl MX-chain: CDW

Peierls-Hubbard model

\[\propto \lambda_R (b_R + b_R^\dagger) (n_{e,2} - n_{e,4}) \]

non-linear dynamics!

IVCT gap \(\simeq 2.4 \) eV

EP-coupling

resonance raman spectra

JADA diagonalisation

\[r_n = \frac{n \omega_R^{(1)} - \omega_R^{(n)}}{\omega_R^{(1)}} \]

redshift of overtones!

Swanson et al. PRL 82, 3288
HF et al PRB 63, 245121

\(r_n \)
Strongly correlated electron-phonon systems

~ remarkable variety of

interesting physical phenomena & theoretical problems

← great challenge!

• numerical study of simplified (but generic) model Hamiltonians on finite lattices ← powerful tool to address this field

• ground state and spectral properties of the 1D Holstein (Hubbard) model are understood to a large extent, but

• what about $0 < \eta < 1$ (including the spin degrees of freedom), $D > 1$, $T > 0$, ...?

There is still a lot of work to be done!