NUMERICAL STUDY OF HOLSTEIN POLARONS

Part I. Self-Trapping Crossover Part II. Disorder, Correlation, and Finite-Density Effects Part III. Collective Phenomena – Quantum Phase Transitions

Holger Fehske

Ernst Moritz Arndt Universität Greifswald, Germany

In collaboration with:

٩	Andreas Alvermann, Gerald Schubert Franz X Bronold	Greifswald	KPM, CPT, statDMFT
٩	Gerhard Wellein, Georg Hager	Erlangen	ED, DMRG
٩	Alexander Weiße	Sydney	BO, KPM
٩	Martin Hohenadler	Graz	QMC, CPT
٩	Eric Jeckelmann	Hannover	(D)DMRG
٩	Jan Loos	Prag	WC-SC A
٩	Arno P Kampf	Augsburg	PMT
٩	Alan R Bishop	Los Alamos	ILMs

OUTLINE

Lecture II: Disorder, Correlation, and Finite-Density Effects

- Anderson localisation of polarons
 - Local distribution approach
 - Statistical DMFT
 - Holstein & Anderson regimes
 - Phase diagram
- Influence of electron correlations on polaron formation
 - (Jahn-Teller) polaron effects in CMR manganites
 - Hole-polarons in high-T_c cuprates
 - Bipolarons
- Polaron formation at finite carrier densities
 - Weak- and strong-coupling limits
 - Photoemission spectra and DOS of many-polaron systems (ic case)
 - Density-driven polaron-to-metal transition

$related \ publications \rightsquigarrow {\tt http://theorie2.physik.uni-greifswald.de}$

Part I: Anderson localisation of polarons

motivation:

• quantum interference vs inelastic e⁻-ph scattering ?

- material imperfections vs itinerant polaron states ?
- transport properties, hopping conductivity (T > 0) ?

problem: motion of a single e⁻ in a disordered deformable medium ...

generic model:

$$\begin{split} \mathsf{H} &= \sum_{i} \varepsilon_{i} \mathfrak{n}_{i} - t \sum_{\langle i,j \rangle} c_{i}^{\dagger} c_{j} - g \, \omega_{0} \sum_{i} (b_{i}^{\dagger} + b_{i}) \mathfrak{n}_{i} + \omega_{0} \sum_{i} b_{i}^{\dagger} b_{i} \\ p(\varepsilon_{i}) &= \frac{1}{\gamma} \, \theta \left(\frac{\gamma}{2} - |\varepsilon_{i}| \right) \end{split}$$
Anderson Holstein Hamiltonian

ANDERSON LOCALISATION IN A NUTSHELL

 $\overset{\text{AT}}{\longleftrightarrow}$

"insulator" impurity scattering <u>Problem</u>: Calculating quantities which characterise the localisation transition, $|\psi(r)| \propto e^{-r/\lambda}$, $\sigma_{dc} \propto Tr[\hat{v} Im\{\hat{G}\}\hat{v} Im\{\hat{G}\}]$, $P_{ij}(t \to \infty) \propto |\hat{G}_{ij}^R|^2$, ... is an extremely difficult task, especially in the presence of interactions!

localised states

All simple attempts give diffusion!

Alice: "In our country...you'd generally get to somewhere else if you ran very fast for a long time as we've been doing."

Queen: "A slow sort of country! Now here, you see, it takes all the running you can do, to keep in the same place."

disordered material

• How to proceed?

Most mean values, e.g. (DOS), contain almost no information about AT!

- LDOS: $\rho_i = \sum\limits_{n=1}^N |\psi_n(\mathbf{r}_i)|^2 \delta(E-E_n)$
- obtained efficiently by KPM
- random sample generation $\rightsquigarrow p(\rho_i)$
- distribution $p(\rho_{\mathfrak{i}})$ critical at AT
- $\gamma \nearrow$: normal \rightarrow log-normal \rightarrow singular
 - Characterisation of the distribution?

arithmetic mean $\rho_{av} = \langle \rho_i \rangle$ inappropriate geometric mean $\rho_{ty} = exp \langle ln \, \rho_i \rangle$ suitable

$$\langle \ldots \rangle = \frac{1}{K_r K_s} \sum_{\text{samples}}^{K_r} \sum_{\text{sites}}^{K_s} \ldots$$

Disorder Effects

LDOS distribution density for $E=0\,:\,$

 $[\rho_{i}/\rho_{m}]_{(E=0)}$

STATISTICAL DMFT

• Localisation problem necessitates treatment of very large systems !?

→ <u>analytical approach</u>: statistical Dynamical Mean Field Theory probabilistic method based on the self-consistent construction of random samples for the distribution function of local physical quantities!

 \sim <u>basic idea</u>: mapping of the original model \rightarrow ensemble of Anderson impurity models, where spatial fluctuations of, e.g., LDOS are taken into account by AAT but interaction is treated by DMFT (i.e. within D = ∞ approximation)!

Abou-Chacra, Anderson, Thouless: J. Phys. C 6, 1734 (1973) Dobrosavljevič, Kotliar: Phys. Rev. Lett. 78, 3943 (1998)

for details see: Bronold, Alvermann, HF: Phil. Mag. 84, 673 (2004)

• Self-consistent scheme?

(i) reinterpret the equations as self-consistency equations for random variables $G_{jj}^{(i)}(z - p\omega_0) = \text{function}[K \cdot \varepsilon_j 's, K \cdot G_{jj}^{(i)}(z - \bar{p}\omega_0) 's, \ldots] \text{ with } p \leqslant \bar{p} \leqslant \widetilde{M}$

(ii) solve the complicated stochastic recursion scheme for $N \times \widetilde{M}$ variables $G_{jj}^{(i)}(z - p\omega_0) \forall z = \omega + i\eta$ by Monte Carlo sampling!

(typical array: # of sites N = 50 000, # of virtual phonons $\widetilde{M}=50$)

(iii) first row $(p=0) \rightsquigarrow$ probability distribution of LDOS $p(\rho_i(\omega))$

Of course, dealing with distributions is a bit "unhandy"; LDOS distribution becomes singular at the AT!

• Order parameter?

Anderson: Focus on typical quantities! \sim possible localisation criterion

$$\left|
ho_{ty}(\omega)
ightarrow 0
ight|$$
 while $\left|
ho_{av}(\omega) > 0
ight|$?

Order parameter

 $\label{eq:product} \begin{array}{l} \mbox{important point:} & \mbox{limit } \eta \to 0 \mbox{ has to be performed (numerically) in order to} \\ & \mbox{distinguish between extended } \& \mbox{localised states!} \end{array}$

Does DMFT capture main aspects of polaron physics? D = ∞?!
 DOS, Bethe lattice with K = 2; no disorder (γ ≡ 0):

\hookrightarrow polaron band formation, flattening, ... \checkmark

ESCAPE RATE I

• Measure for the itinerancy of a polaron state?

 \hookrightarrow tunnelling (escape) rate from a given site i:

(i) Weak EP coupling:

- different behaviour for energies below and above the optical phonon emission threshold!
- quantum interference needed for localisation is significantly suppressed by inelastic EP scattering!

 \hookrightarrow nontrivial interplay $\lambda \rightleftharpoons \gamma$

ESCAPE RATE II

(ii) Strong EP coupling adiabatic regime:

rather "mobile" ("sluggish") states exist at the bottom (top) of the sub-band!

- $\widetilde{W} \ll \widetilde{W}_0 \rightsquigarrow$ extremely weak disorder leads to localisation!
- now the bottom states determine the critical disorder strength:

 $(\gamma_c / \widetilde{W}) > (\gamma_c / \widetilde{W}_0)$

 \hookrightarrow In this sense the adiabatic Holstein polaron is more difficult to localise than a bare electron!

LOCAL DENSITY OF STATES

Holstein regime (" $\gamma \ll W$ ")

 flattening strongly affects upper mobility edge disorder weakens band repulsion Anderson regime (" $\gamma \gg W_0$ ")

- strongly localised polaron defect states at deep impurities
 - \rightsquigarrow independent boson model

• adiabatic weak-to-strong coupling regime: asymmetric mobility edges

• anti-adiabatic strong coupling regime: "internal polaron structure" irrelevant

Part II: Correlation Effects

so far: charge - lattice interaction

What about the interplay with other degrees of freedom? **spin** - orbital

(escpecially important at finite n!)

• What is interesting about manganites?

- colossal negative magneto-resistance near $T_c \rightsquigarrow$ enormous technological potential (sensors, spintronics)
- rich electronic, magnetic & structural phase diagram
- strong electron-phonon correlations
- relevance of orbital degrees of freedom
- $\hookrightarrow \mathsf{challenge} \ \mathsf{for} \ \mathsf{solid} \ \mathsf{state} \ \mathsf{theory}!$

• electronic structure (U \gg 1)

• orbitals (anisotropic hopping)

- ferromagnetic double exchange $(J_h > 1)$
- phonons (JT & breathing)

Weiße, HF: New. J. Phys. (Focus Review), 6, 158 (2004)

EFFECTIVE LOW ENERGY HAMILTONIAN

$$\mathsf{H} = \sum_{i,\delta} \mathsf{R}_{\delta}(\mathsf{H}^{1,z}_{i,i+\delta} + \mathsf{H}^{2,z}_{i,i+\delta}) + \mathsf{H}^{\mathsf{ep}}$$

 $\mathsf{H}_{\mathfrak{i},\mathfrak{j}}^{1,z}=-\frac{t}{4}\left(\mathfrak{a}_{\mathfrak{i},\uparrow}\,\mathfrak{a}_{\mathfrak{j},\uparrow}^{\dagger}+\mathfrak{a}_{\mathfrak{i},\downarrow}\,\mathfrak{a}_{\mathfrak{j},\downarrow}^{\dagger}\right)\,\,\mathfrak{d}_{\mathfrak{i},\theta}^{\dagger}\,\mathfrak{n}_{\mathfrak{i},\epsilon}\,\mathfrak{d}_{\mathfrak{j},\theta}\,\mathfrak{n}_{\mathfrak{j},\epsilon}\,+\,\mathsf{H.c.}\quad \propto \,\mathsf{doubleexchange}$

$$\begin{split} \mathsf{H}_{\mathbf{i},\mathbf{j}}^{2,\mathbf{z}} &= \mathsf{t}^2 \, \frac{\vec{s}_{\mathbf{i}} \, \vec{s}_{\mathbf{j}} - 4}{8} \left[\frac{(4\mathsf{U} + \mathsf{J}_{\mathbf{h}}) \, \mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta}{\mathsf{5U}(\mathsf{U} + \frac{2}{3} \, \mathsf{J}_{\mathbf{h}})} + \frac{(\mathsf{U} + 2\mathsf{J}_{\mathbf{h}}) \, \mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\varepsilon}{(\mathsf{U} + \frac{10}{3} \, \mathsf{J}_{\mathbf{h}})(\mathsf{U} + \frac{2}{3} \, \mathsf{J}_{\mathbf{h}})} \right] - \mathsf{t}^2 \, \frac{\vec{s}_{\mathbf{i}} \, \vec{s}_{\mathbf{j}} + 6}{\mathsf{10}(\mathsf{U} - \mathsf{5}_{\mathbf{h}})} \, \mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta}{\mathsf{10}(\mathsf{U} - \mathsf{5}_{\mathbf{j}})} \\ &+ \mathsf{t}_{\pi}^2 \, \frac{\vec{s}_{\mathbf{i}} \, \vec{s}_{\mathbf{j}} - 3}{3} \left[\frac{(\mathsf{U} - 2\mathsf{J}_{\mathbf{h}})(\mathsf{R}_{\mathbf{x}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^{02}) + \mathsf{R}_{\mathbf{y}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^2)}{\frac{19}{\mathsf{1}} \, \mathsf{J}_{\mathbf{U}}(\mathsf{U} - \frac{7}{3} \, \mathsf{J}_{\mathbf{h}})} + \frac{(\mathsf{U} + \frac{5}{3} \, \mathsf{J}_{\mathbf{h}})(\mathsf{R}_{\mathbf{x}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^{02}) + \mathsf{R}_{\mathbf{y}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^2))}{\frac{13}{\mathsf{3}} \, \mathsf{J}_{\mathbf{h}}(\mathsf{2}\mathsf{U} - \frac{7}{3} \, \mathsf{J}_{\mathbf{h}})} \\ &+ \mathsf{t}_{\pi}^2 \, \frac{\vec{s}_{\mathbf{i}} \, \vec{s}_{\mathbf{j}} - 4}{(\mathsf{U} + \frac{14}{3} \, \mathsf{J}_{\mathbf{h}})(\mathsf{R}_{\mathbf{x}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta) + \mathsf{R}_{\mathbf{y}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta)}{\mathsf{U} + \mathsf{3} \, \mathsf{J}_{\mathbf{h}}/\mathsf{3}}) \\ &+ \frac{(\mathsf{2}\mathsf{U} + \frac{14}{3} \, \mathsf{J}_{\mathbf{h}})(\mathsf{R}_{\mathbf{x}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta) + \mathsf{R}_{\mathbf{y}}(\mathsf{P}_{\mathbf{i}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta))}{\mathsf{U} + \mathsf{3} \, \mathsf{J}_{\mathbf{h}}/\mathsf{3}} \\ &+ \frac{(\mathsf{2}\mathsf{U} + \frac{14}{3} \, \mathsf{J}_{\mathbf{h}})(\mathsf{U} + (\mathsf{R}_{\mathbf{j}}(\mathsf{P}_{\mathbf{j}}^\varepsilon \, \mathsf{P}_{\mathbf{j}}^\theta))}{(\mathsf{U} + \mathsf{4} \, \mathsf{J}_{\mathbf{h}})(\mathsf{U} + \frac{2}{3} \, \mathsf{J}_{\mathbf{h}})} \right] \\ &+ \mathsf{U}^2 \, \frac{\mathsf{S}_{\mathbf{i}} \, \mathsf{S}_{\mathbf{j}}^{-1}}{\mathsf{U} + \mathsf{I}_{\mathbf{j}}} \, \mathsf{I}_{\mathbf{j}}^\varepsilon} \, \mathsf{I}_{\mathbf{j}}^\varepsilon} \\ &+ \mathsf{I}_{\mathbf{j}} \, \mathsf{I}_{\mathbf{j}}^\varepsilon} \, \mathsf{I$$

$$+ \tilde{g} \sum_{i} (\mathfrak{n}_{i,\theta} + \mathfrak{n}_{i,\varepsilon} - 2\mathfrak{n}_{i,\theta} \mathfrak{n}_{i,\varepsilon}) (\mathfrak{b}_{i,\mathfrak{a}_{1}}^{\dagger} + \mathfrak{b}_{i,\mathfrak{a}_{1}}) + \omega \sum_{i} \left[\mathfrak{b}_{i,\theta}^{\dagger} \mathfrak{b}_{i,\theta} + \mathfrak{b}_{i,\varepsilon}^{\dagger} \mathfrak{b}_{i,\varepsilon} \right] + \widetilde{\omega} \sum_{i} \mathfrak{b}_{i,\mathfrak{a}_{1}}^{\dagger} \mathfrak{b}_{i,\mathfrak{a}_{1}}$$

SHORT-RANGE CORRELATIONS

• exact cluster calculations \rightarrow correlation functions \rightarrow SRO patterns

EP interaction \rightarrow orbital order \rightarrow spin order \rightarrow transport

• Description of CMR effect?

 $\frac{\text{experiment: spatial coexistence of }}{\text{conducting and insulating regions}}$ both above and below T_c

- theory: ..., phase separation approaches, ... ?
- proposal: two-phase scenario with percolative characteristics!

$$\pi^{(f)}=\pi^{(\mathfrak{p})}=\pi_{\text{eq}}$$

FM metallic component

 $\rho^{(f)} = \frac{B}{x^{(f)}}(\rho_S + \rho_{\text{min}})$

• polaronic insulating component

 $\rho^{(p)} = \frac{A}{\beta x^{(p)}} \rho_{S} \exp(-\beta \epsilon_{p})$

 $\rho_S = \rho_S[S, z, B_S(z), \text{coth}[S, z]]$

Weiße, Loos, HF: PRB 68, 024402 (2003)

CORRELATION EFFECTS

Hole polarons in high- T_C cuprates

F

\bullet Why should EP coupling effects be of particular importance in high-T_C cuprates?

schematic phase diagram for, e.g., quasi-2D $La_{2-x}Sr_xCuO_4$

(doped) holes in AFM background

spin-bag "magnetic polaron"

effective low-energy Hamiltonian for CuO_2-planes: Holstein t-J model

$$\begin{split} I &= -t \sum_{\langle ij \rangle \sigma} \left(\widetilde{c}_{i\sigma}^{\dagger} \widetilde{c}_{j\sigma} + \text{H.c.} \right) + J \sum_{\langle ij \rangle} \left(\vec{S}_{i} \vec{S}_{j} - \frac{1}{4} \widetilde{n}_{i} \widetilde{n}_{j} \right) \\ &- g \boldsymbol{\omega}_{0} \sum_{i} \left(\boldsymbol{b}_{i}^{\dagger} + \boldsymbol{b}_{i} \right) (1 - \widetilde{n}_{i}) + \boldsymbol{\omega}_{0} \sum_{i} \left(\boldsymbol{b}_{i}^{\dagger} \boldsymbol{b}_{i} + \frac{1}{2} \right) \end{split}$$

- $J = 4t^2/U$ relevant energy scale for "coherent" hole motion
- magnetic "pre-localisation" of holes strengthens the effect of the hole-phonon interaction $\lambda_{eff} \sim \epsilon_p / E_{kin}$!

 \hookrightarrow tendency towards lattice polaron formation is enhanced in strongly correlated electron systems

Bäuml, Wellein, HF: Phys. Rev. B 58, 3666 (1988)

BIPOLARON FORMATION

• Will two (opposite-spin) electrons share a common lattice distortion?

Holstein Hubbard model:

$$\begin{split} \mathsf{H} &= -t\sum_{\langle i,j\rangle\sigma} c^{\dagger}_{i\sigma}c_{j\sigma} + \mathsf{U}\sum_{i} n_{i\uparrow}n_{i\downarrow} \\ &-g\,\omega_{0}\sum_{i\sigma} (b^{\dagger}_{i} + b_{i})n_{i\sigma} + \omega_{0}\sum_{i} b^{\dagger}_{i}b_{i} \end{split}$$

- λ , g enhance double occupancy
- U suppresses double occupancy
- phonon frequency?

$$lpha \gg 1$$
 - anti-adiabatic limit:

$$U_{eff} = U - 4t\lambda$$
 (LF)

 $\alpha < 1$ retardation:

 $\hookrightarrow \mathsf{extended} \ \mathsf{electron} \ \mathsf{bound-states}?$

• kinetic energy:

- $\lambda \nearrow$: strong reduction of E_{kin} two successive "transitions"
- bipolaron band dispersion:

cosine shaped for $U_{\mbox{\scriptsize eff}}=0$

PHASE DIAGRAM

• Critical coupling for bipolaron formation?

binding energy
$$\Delta = E_0(2) - 2E_0(1) \rightarrow 0$$

λ, g² /:

• unbound polarons

• mobile intersite bipolaron

• self-trapped on-site bipolaron

\hookrightarrow pronounced retardation effects!

Weiße, HF, Wellein, Bishop: Phys. Rev. B 62, R747 (2000).

Holger Fehske

NUMERICAL STUDY OF HOLSTEIN POLARONS

Correlation effects

Part III: Finite-Density Effects on Polaron Formation

starting point: 1D spinless fermion Holstein model

$$H = -t \sum_{\langle i,j \rangle} c_i^{\dagger} c_j - g \, \omega_0 \sum_i (b_i^{\dagger} + b_i) n_i + \omega_0 \sum_i b_i^{\dagger} b_i$$

parameters: $g^2 = \varepsilon_p / \omega_0$; $\lambda = \varepsilon_p / 2t$, and $\alpha = \omega_0 / t$ and $n = N_e / N$

previous results:

- for a single particle we observed a transition from a large polaron ("quasi-free" electron) to a small polaron with increasing EP coupling strength, at least in 1D
- in the intermediate coupling regime $\lambda \simeq 1$, $g^2 \simeq 1$, the size of the polaron was strongly dependent on the phonon frequency:
 - $\alpha \ll 1$: rather extended distortion
 - $\alpha \gg 1$: localised distortion
- focusing on the intermediate coupling adiabatic regime we expect strong density-effects due to a possible overlap of phonon clouds!

\hookrightarrow Is there a density-driven crossover from "polaronic" to "electronic" QP?

MANY POLARON PROBLEM I

• Weak EP coupling:

 $\lambda=0.1,~\alpha=0.4$ – QMC results for $N=32,~\beta t=8\dots 10$

single-particle spectral function

density of states

- pronounced QP peak $\forall n$
- gap feature develops for $n \rightarrow 0.5 \Leftrightarrow CDW \text{ (see next lecture ...)}$
- $\hookrightarrow \mathsf{dressed} \ ``\mathsf{electronic''} \ \mathsf{QPs!}$

• Strong EP coupling:

 $\lambda=2.0,~\alpha=0.4$ – QMC results for $N=32,~\beta t=8\dots 10$

single-particle spectral function

density of states

- exponential small spectral weight at $\mu \ \forall n$
- QP band "gap" broad incoherent feature

 $\hookrightarrow \mathsf{small} \ \mathsf{polaron} \ \mathsf{QPs!}$

MANY POLARON PROBLEM III

• Photoemission spectra at intermediate EP coupling?

$$\lambda=1.0,~\alpha=0.4$$
 – CPT results for $N_c=10$ and $T=0$

 \hookrightarrow polaron band merged with incoherent excitations at about $n = 0.3 \dots 0.4!$

26 / 27

MANY POLARON PROBLEM IV

• Density of states:

 $\begin{array}{l} n \nearrow : \mbox{ little weight at } E_F \mbox{ (polaron)} \rightarrow \mbox{ ``metallic'' DOS at } E_F \mbox{ (polaron dissociation)} \\ \rightarrow \mbox{ pseudo-gap - precursor of CDW } (\exists \mbox{ for } \lambda > \lambda_c; \mbox{ see next talk}...) \end{array}$

 $\hookrightarrow \text{crossover polaronic - metallic behaviour!}$

Hohenadler, Neuber, von der Linden, Wellein, Loos, HF: Phys. Rev. B 71, xxx (2005). Hohenadler, Wellein, Alvermann, HF: cond-mat/0505559

Holger Fehske

NUMERICAL STUDY OF HOLSTEIN POLARONS

Finite-Density Effects