

HQS@HPC Improving Scalability of large sparse ED studies on HLRB-II

HPC Services

Regionales Rechenzentrum Erlangen

Friedrich-Alexander-University Erlangen-Nuremberg

Germany

KONWIHR Review Workshop - July 2007

H. Fehske, A. Alvermann

Chair for Complex Quantum Systems Institute of Physics rg unter-Systeme Quanter-Systeme CCX

Survey

Motivation

- Improving Scalability of sparse ED code for HLRB-II
- Current progress in physics

Motivation: From Physics to Supercomputers

Density Matrix Renormalization Group (DRMG) Method

- Originally introduced by White in 1992
- Very efficient for ground-state properties in (quasi) 1D models
- Efficient parallel implementation (4-16 CPUs) through KONWIHR support (2003-2004)

PHYSICAL REVIEW B 71, 075108 (2005)

Stripe formation in doped Hubbard ladders

G. Hager and G. Wellein Regionales Rechenzentrum Erlangen, Martensstraße 1, D-91058, Erlangen, Germany

E. Jeckelmann Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

H. Fehske Institut für Physik, Ernst-Moritz-Arndt-Universität, Greifswald, D-17489 Greifswald, Germany (Received 13 September 2004; published 10 February 2005)

Selected references to this paper:

FIG. 2 (color online). This figure shows DMRG results (G. Hager *et al.* [10]) for the hole $h(\ell_x)$ (dashed red line) and the staggered spin $m_{stag}(\ell_x)$ (solid blue line) densities along the leg direction for a 21 × 6 Hubbard ladder with 12 holes and U/t = 12. As discussed in the text, $h(\ell_x)$ corresponds to the spin polarization $n_s(\ell_x)$ and $m_{stag}(\ell_x)$ corresponds to the *s*-wave pairfield order parameter $\Delta(\ell_x)$ of the FFLO state.

Moreo A, Scalapino DJ PHYSICAL REVIEW LETTERS 98 (21): Art. No. 216402 MAY 25 2007

Feiguin AE, White SR, Scalapino DJ PHYSICAL REVIEW B 75 (2): Art. No. 024505 JAN 2007

> KONWIHR Review Workshop 2007 HQS@HPC

(4)

Motivation: Numerical Methods of HQS@HPC

- Exact Diagonalization (ED)
 - Physical parameter space restricted by available computer resources
 - Approximation free 2D/3D & excitation spectra
 - Choose complete basis set -> sparse matrix problem -> Increase matrix as far as possible
 - First ED studies of correlated electron-phonon systems: 1992/93
 - Finite temperature & CPT integration (KONWIHR 2005)
 - Focus of 2006 KONWIHR activities: Scalability issues on HLRB-II

Motivation: Sparse ED implementation

- Time & memory consuming step: Sparse Matrix Vector Multiplication
- Out-of-core implementation (do not store non-zero elements)
- Largest ED study known so far: Matrix dimension D_{max}= 1.59*10¹¹ (Yamada et al., SC2005)

System	CM5 GMD/ St. Augustin	CRAY T3E NIC Jülich	HLRB-I (Hitachi SR8k) LRZ Munich	HLRB-II (SGI Altix) LRZ Munich
Production	1993/1994	1998-2001	2001-2005	2006-
#CPU Memory	64 2 GB	256 128 GB	1216 900 GB	5720 (cores) 16,000 GB
Parallelis.	CMFortran	MPI/SHMEM	MPI+OpenMP	MPI(+shmem)
D _{max}	5.6 * 10 ⁷	4.4 * 10 ⁹	3.3 * 10 ¹⁰	3.8 * 10 ¹¹
MVM [s]	156	33	63	38

Improving Scalability: Parallelism in Holstein(-Hubbard) type models

- Hilbert space: Direct product of electronic & phononic Hilbert space: { |e>|p>; e=1,..., D_{e1}; p=1,..., D_{ph}}
- A vector is defined as $|v\rangle = \sum v_{e,p} [|e\rangle|p\rangle]$

Distribute "electronic part" to n_{pro} processes (rank=0,..., n_{pro} -1): { $v_{e,p}$; $e = (rank*(D_{el}/n_{pro})+1,...,(rank+1)*(D_{el}/n_{pro}); p=1,..., D_{ph}$ }

- Impact on matrix vector multiplication:
 - Communication may be generated by hopping (t) term
 - Contribution of phonon operators can be computed locally
 - Number of parallel processes is limited by D_{el}

Improving Scalability:

Original implementation

Holstein model: 2 sites, 1 electron ($D_{el}=2$) and D_{ph} phononic states Running hopping part of matrix vector multiplication in parallel on 2 processors: { |0,1> |p>; p=1,..., D_{ph}} { **|** ,0> |p>; p=1,..., D_{ph}} Program flow rank=1 **Program flow** rank=0 real*8 new(D_{ph} ,1), old(D_{ph} ,1) real*8 new(D_{ph} ,1), old(D_{ph} ,1) real*8 rbuf(D_{ph}) real*8 rbuf(D_{ph}) call shmem_get(rbuf,old, dest=1) call shmem_get(rbuf,old, dest=0) do i=1,Dph do i=1,Dph new(i,1) = new(i,1) - t*rbuf(i)new(i,1) = new(i,1) - t*rbuf(i)enddo enddo ••• ••• **KONWIHR Review Workshop 2007** (8) HQS@HPC

Improving Scalability: Load imbalance

Improving Scalability "Transpose" basis set

Alternatively: Distribute "**phonon** part" to n_{pro} processes $\left\{v_{e,p}; \mathbf{p}=(\mathbf{rank}*(D_{ph}/n_{pro})+1, ..., (\mathbf{rank}+1)*(D_{ph}/n_{pro}); \mathbf{e=1,..., D_{el}}\right\}$ -> Severe load imbalances for phonon part -> Process local operation for electron part Transpose Basis Distribute "electronic part" to n_{pro} processes { $v_{e,p}$; $e = (rank*(D_{e1}/n_{pro})+1, ..., (rank+1)*(D_{e1}/n_{pro}); p=1, ..., D_{ph}$ } -> Severe load imbalances for electron part -> Process local operation for phonon part

Improving Scalability

Transpose basis set using MPI_AIIToAII

- Communication requirements: 2 MPI_Alltoall (A2A) per MVM
- A2A implementation improves load balancing and reduces maximum data transfer per MPI process, e.g. for D_{el}/n_{pro}=1
 - A2A implementation: 2 * 2 * $(n_{pro}-1)/n_{pro} * D_{ph} * 8$ Byte
 - Original implementation: 2 * 2 *dim * N_{el} * D_{ph} * 8 Byte (dim=1,2; N_{el}=1,...,N/2 with N=8,...,16)
- Test case: N=16, N_{el}=4, dim=2; D_{el}=1820; D_{ph}=30*10⁶; 1820 cores

- •Test case: MPI_alltoall ~ 8.8 s at 240 MB vector -> 27 MB/s per core
- Minimum available bandwidth > 50 MB/s per core & direction

by courtesy of LRZ

Improving Scalability Improving A2A communication: shmem_get

- Replace MPI_Alltoall call by explicit shmem_get calls
 Shift shmem_get calls to avoid network contention
- Shift shmem_get calls to avoid network contention

Improving Scalability

Black & White strategy to reduce network contention

(14)

Improving Scalability Towards very large scale ED studies

- "Weak scaling" analysis with different number of electrons, i.e. D_{el}
- $D_{el}/n_{pro}=1 \ (D_{el}=120,560,1820,4368) D_{el}/n_{pro}=2 \ (D_{el}=8008,11440)$

Current progress in physics

New model for boson assisted hopping transport (D. Edwards, Imperial College)

$$\begin{split} \mathsf{H} = -\mathsf{t}_{b} \sum_{\langle i,j \rangle} \mathsf{c}_{j}^{\dagger} \mathsf{c}_{i} (\mathsf{b}_{i}^{\dagger} + \mathsf{b}_{j}) - \lambda \sum_{i} (\mathsf{b}_{i}^{\dagger} + \mathsf{b}_{i}) + \omega_{0} \sum_{i} \mathsf{b}_{i}^{\dagger} \mathsf{b}_{i} + \frac{\mathsf{N}\lambda^{2}}{\omega_{0}} \\ \\ & \mathsf{hopping} \qquad \mathsf{boson\ relaxation} \qquad \mathsf{boson\ energy} \end{split}$$

High-T_c cuprates (AFM spin background)

classical spins: "string effect" hole is bound to its starting point *quantum spins:* "fluctuations" spin lattice can heal itself with rate controlled by exchange parameter

 \rightsquigarrow t – J– type models

(16)

Current progress in physics

- Variational ED approach with 1 & 2 particles:
 A. Alvermann, D.M. Edwards, H. Fehske, Phys. Rev. Lett. 88, 056602 ('07)
- Spectral properties at half-filling (ED studies 500+ cores on HLRB-II)

• Metal – insulator transition as λ decreases

KONWIHR Review Workshop 2007 HQS@HPC

(17)

Thanks to our collaborators

- A. R. Bishop (Los Alamos National Lab, USA)
- D. Edwards (Imperial College, UK)
- E. Jeckelmann (Univ. Hannover, D)
- J. Loos (Czech Academy of Science, CZ)
- M. Hohenadler (Cambridge, UK)
- A. Basermann (NEC, St. Augustin, D)
- Thanks to

. . . .

- KONWIHR for funding the numerical & technical work
- LRZ Munich for providing access to a very powerful machine

