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in many cases motion bears resemblance to the “Echternacher Springprozession” Ã,

related publication: A. Alvermann, D. M. Edwards, HF, Phys. Rev. Lett. 88, 056602 (’07)
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Motivation I

Strongly correlated charge transport in doped Mott insulators:

I high-Tc cuprates (AFM spin background)

classical spins: “string effect”
hole is bound to its starting point

quantum spins: “fluctuations”
spin lattice can heal itself with rate

controlled by exchange parameter

; t− J− type models

I colossal magnetoresistive manganites (FM spin background)

strong Hund’s rule coupling
; double-exchange model

in addition: orbital anisotropy of

hopping & EP (JT) coupling

Spin/orbital degrees of freedom might be represented by (e.g. Schwinger) bosons!
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Motivation II

Charge transport in systems coupled to phonon or bath degrees of freedom

I polarons/excitons, also in CDW materials, DNA,. . . (deformable lattice)
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polaron motion - diagonal
vs nondiagonal transitions
(band vs hopping transport)

; Holstein-, Fröhlich-, SSH-
or Peierls-Hubbard-type models

I low-D systems – nanowires, quantum dots (disorder, phonons, T > 0)

bosonic bath system, contacts/leads, bath,. . .

appropriate “microscopic”
description/modelling?

Again the transport is strongly boson affected, maybe even fluctuation-induced,
but now the correlations within the “background” might be week or even absent!
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Model I

How to capture this great variety of transport phenomena in a simplified model?

Let’s consider the following rather general (spinless!) Hamiltonian:

H = −tb
∑

〈i,j〉

c
†
jci(b

†
i + bj) − λ

∑

i

(b
†
i + bi) +ω0

∑

i

b
†
ibi +

Nλ2

ω0

hopping boson relaxation boson energy

Electron emits or absorbs a local boson every time it hops between lattice sites
[but hopping creates (destroys) a boson only on the site the particle leaves (enters)!]:
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λ = 0 – model is analogous to the classical spin model ; “string effect”?

λ > 0 allows a boson to decay spontaneously ; healing of the “spin lattice”
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Model II

Note that “R
(6)

i = L
†
i+2L

†
i+1R

†
iLi+2Ri+1Ri” acts as “c†i+2ci”:
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; lowest order vacuum-restoring process: 1D analogue of 2D “Trugman path”!

Unitary transformation bi 7→ bi + tf/2tb of H

H ′ = −tf
∑

〈i,j〉

c
†
jci − tb

∑

〈i,j〉

c
†
jci(b

†
i + bj) +ω0

∑

i

b
†
ibi

Different from the t-J model physics of H(′) is governed by two energy ratios:
tb/tf and tb/ω0, where tf = 2λtb/ω0!

Obviously H ′ (H) captures the interplay of “coherent” and “incoherent” transport
channels realized in many condensed matter systems!
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Numerical solution

What does it mean: “Solution”?

Ground state properties
Adapt variational Hilbert space construction developed for the Holstein/JT
polaron problem (see, e.g., Ku, Trugman, Bonča: PRB 65, 174306 (’02) ):

t

2
3

ω02

ω0

1

2g

g

|1〉 e− at site 0 with no phonon excitation
|2〉 e− and phonon at site 0
|3〉 e− at site 1 and one phonon at site 0

i.e., vertical bonds create or destroy phonons

act m times with off-diagonal terms + all

translations on an infinite lattice

One- (two-) particle sector: In most cases 104-106 basis states are sufficient
to obtain an 8-16 digit accuracy for E0, 〈0| . . . |0〉, . . . in any dimension!
Note that E0 calculated this way is variational for the infinite system!

Spectral properties at T=0, thermodynamics
Employ Kernel Polynomial Method designed for high-resolution applications:
resolution ∝ 1/number of Chebyshev moments!
(history goes back 40 years, for a recent review see Rev. Mod. Phys. 78, 275 (’06))
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Physical quantities of interest

ground state energy E0, kinetic energy part Ekin = 〈0|H−ω0

∑
i b

†
ibi|0〉

quasiparticle band dispersion E(k), effective mass 1/m∗ =
∂2E(k)

∂k2 |k=0

particle-boson correlation function χij = 〈0|b†
ibic

†
jcj|0〉

one-particle spectral function A(k,ω) =
∑

n |〈n|c
†
k|vac〉|2 δ[ω−ωn]

optical conductivity Reσ(ω) = 2πDδ(ω) + σreg(ω),

regular part σreg(ω) = π
∑

n>0
|〈n|j|0〉|2

ωn

[δ(ω−ωn) + δ(ω+ωn)] ,

where j = jf + jb with jf = itf
∑

i c
†
i+1ci − c

†
ici+1

jb = itb
∑

i c
†
i+1cib

†
i − c

†
ici+1bi − c

†
i−1cib

†
i + c

†
ici−1bi

f-sum rule:
∫∞

−∞
σ(ω)dω = 2πD+ 2

∫∞

0 σreg(ω)dω = −πEkin

; consistency check: Drude weight D = 1/2m∗ (Kohn’s formula) ©
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Drude weight

D scaled to the kinetic energy:
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I free particle: tb = 0 ; D = tf, i.e., −D/Ekin = 0.5

I weight of lowest order (vacuum restoring) process scales as t6b/ω
5
0

; boson assisted transport dominates for large (tb/ω0)
5(tb/tf)

I D at tf = 0 saturates for ω0 → 0
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Correlation-dominated regime
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tf 6 tb (ω0 not too small):

pronounced NN
particle-boson correlations

strongly renormalised but
well-defined quasiparticle
band (reminiscent of spin
polaron in the t-J model)

optical response -
threshold given by ω0

σreg ' σ
reg
b

Stot(ω) =
∫ω

0 σreg(ω ′)dω ′

A(k,ω) signals coherent
transport

; “collective” particle-boson
dynamics!
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Limit tf = 0 (λ = 0)
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ω
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I exact numerical solution

– particle is still itinerant
(but D is small)

– incoherent contributions

– k → k+ π symmetry

I m-boson analytical solution
Green function decomposition
technique ; (matrix) continued
fraction representation

m 6 3 exact solution possible; only a
finite number of states is accessible
for the infinite system

m > 4 infinitely many states will

survive
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Fluctuation-dominated regime
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tf À tb (ω0 rather small):

bosons form a cloud
around the particle but
are not further correlated

band flattening near the
Brillouin zone boundary

Both is reminiscent of
large lattice polarons e.g.
in the Holstein model!

optical response - broad
absorption feature

overdamped character of
A(kω) near k = 0,π

system is almost
transparent at k = π/2

; “diffusive” transport!
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Transport regimes

1 tb / tf

1

tb__
ω0

(I) coherence

(II) incoherence (III) strong fluctuations

(IV) strong correlations

diffusive

quasi-free

boson-assistedtransport
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Summary

We studied the interplay of collective dynamics and damping in the presence of
correlations and fluctuations within a newly proposed transport model.

The model covers basic aspects of very different Hamiltonians:

Hubbard, t− J . . . , Fröhlich, Holstein, . . . , SSH - type.

Exact numerical solution (N → ∞) ; surprisingly rich physics:

moving particle creates local distortions of substantial energy in the medium,
which may be able to relax

their relaxation rate determines how fast the particle can move

“free” particle ® magnetic polaron ® lattice polaron

coherent (correlated) ® incoherent (diffusive) transport

bosonic fluctuations act in two competing ways:
limit transport & assist transport!

And all this is obtained for just one particle! Plus background! Ã,

Holger Fehske Boson-Controlled Quantum Transport Dresden - Feb 27, 2007 13 / 15



Open problems I

Quantum phase transition at half-filling?

(inverse) photoemission spectra (very recent ED results – N = 12 . . . 16; PBC):

λ = 1 (tf/tb = 1)
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I “metal-insulator” transition as λ (tf) decreases. . .
I band structure reflects strong correlations. . .
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Open problems II

Influence of spatial dimensionality? VED ©

What about two particles - binding? VED ©

Finite-density effects (0 6 n 6 1)? DMRG (?)

Finite-temperature effects? QMC ?

Different lattice structures? Frustration! ?

We need a better analytical understanding of the model,
maybe at least for some important limiting cases!
[1D, λ = 0 & 3-4 boson approximation,. . .

more formal derivation of the model, semiclassical limit (?),. . . ]

Everybody is invited to contribute...
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