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We examine the use of distributions in numerical
treatments of Anderson localisation and demonstrate
how a formulation based on the distribution of the
local density of states can be used to study the local-
isation properties of a single Holstein polaron.

Introduction

When studying Anderson localisation in interacting
systems the crucial question is which localisation
criterion should be employed. In his pioneering
work [1] P.W. Anderson supported to focus on the
distribution of local quantities as the local density
of states (LDOS). Although the distribution of the
LDOS should be understood as the primary object
of the approach presented here the localisation tran-
sition itself will be detected through an appropriately
averaged quantity which does account for the qualita-
tive difference of the LDOS in the regime of extended
and localised states.

Localisation in the Anderson model

As the generic model for localisation of a single elec-
tron in a system with substitutional disorder we con-
sider the Anderson model

H =
∑

i

εic
†
ici + t

∑

〈i,j〉

c
†
icj

The random on-site potential εi is assumed to be
uniformly distributed within [−γ/2, γ/2]. The bare
bandwidth is set to W0 = 1.

Distributions

The quantity of interest is the probability distribution
of the local density of states (LDOS)

ρi(ω) = −
1

π
lim

η→0+
Im Gii(ω + iη)

Since the LDOS is related to the local amplitudes of
the wavefunctions the transition from extended to lo-
calised states is accompanied by a qualitative change
in its distribution.
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Probability distribution of the LDOS for the Ander-
son model in the band center ω = 0, for strong
disorder γ = 1.5 ≈ 0.5 × γcrit. Arrows indicate
the most probable value (mpv), the typical density of
states ρtyp, and the averaged density of states ρave.
The inset shows ρave(ω) and ρtyp(ω) for this disor-
der strength. The two vertical lines indicate values
of ω corresponding to localised respectively extended
states (cf. next figure).

Since this critical behaviour does not manifest itself
in the arithmetic mean value ρave, different quantities
must be employed to detect this transition. One pos-
sible choice is the so-called typical density of states

ρtyp(ω) = exp





1

N

∑

i

log ρi(ω)





The AAT-method

On a Bethe lattice a selfconsistency equation

Gii(ω) =
1

ω − εi − t2
K
∑

j=1
Gjj

for the distribution of the local Green function
Gii(ω) can be set up following the ideas formulated
by Abou-Chacra, Anderson, Thouless (AAT) [2].
The solution of this equation is obtained via a

Monte-Carlo-procedure, representing the distribution
through a sample of typical 50000 up to 2.5 × 107 el-
ements.

η → 0 -limit

The LDOS ρi = −1
π Im Gii(ω+iη), hence its distribu-

tion, is defined in the limit η → 0. While no strict dis-
tinction between extended and localised states can be
made for finite η the limiting distribution for η → 0
exhibits clearly different features in the two regimes
which can be seen in the typical density of states.
Exploiting the limit η → 0 numerically allows for
a clear distinction of localised versus extended states.
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The upper row displays ρave and ρtyp with respect to
η for extended (ω = 0.0, left picture) and localised
(ω = 0.9, right picture) states, with γ = 1.5. The
lower left picture shows the mobility edges calculated
for η → 0 numerically, for a sample with 5× 104 ele-
ments. The lower right picture shows ρtyp versus the
number of iterations Niter in the Monte-Carlo proce-
dure for sample sizes 5 × 104, 105, 106.

Accordingly states at energy ω are classified as ex-
tended if ρtyp(ω) > 0, and localised if ρtyp(ω) = 0,
for η → 0. In both cases ρave(ω) > 0.
The finite size of the Monte-Carlo-sample limits the
precision which the Green function’s distribution is
resolved with, and leads to overestimation of local-
isation. This limitation can be easily overcome by
increasing the sample size, hence allowing for an ar-
bitrary precise determination of mobility edges.

Averaging theories – AAT versus TMT

The previously shown results indicate that the typi-
cal (but not the averaged) density of states might play
the role of an “order parameter” for localisation. The
recently proposed typical medium theory (TMT) [3]
tries to fully reformulate the localisation problem in
terms of the typDOS, and has succeedingly been used
to study Anderson localisation in the disordered Hub-
bard model [4]. TMT can be understood as an effec-
tive theory like the coherent potential approximation
(CPA), but replacing the averaged density of states by
the typical density of states, from which the system
Green function is recovered through Hilbert transfor-
mation G(ω) =

∫

dω′ρtyp(ω′)/(ω − ω′).

The typDOS is dominated by small values of the
local density of states which correspond to “deep”
impurities. Replacing the full distribution with the
typDOS thus overestimates scattering on these deep
impurities and the formation of locally bound impu-
rity states. In fact, the TMT-mobility edge resembles
the one obtained by a simplified TMT-variant which
only uses the minimal value of ρi(ω) for the maximal
scattering contribution εi = ±γ/2. Both approaches
fail to recover the reentrant behaviour of the mobility
edge. This indicates that the delocalising effect due
to tunneling is (mostly) neglected.

Mobility edges
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Comparision of mobility edges for the Anderson
model on a Bethe lattice with K = 2 and a cubic lat-
tice, using different methods based on distributions.
Mobility edge trajectory for the Anderson model cal-
culated with KPM [5] for a cubic lattice (diamonds),
and with AAT (circles), representing the distribution
through a sample with 5 × 104 elements. The crosses
indicate points in the (ω, γ)-plane, which correspond

to delocalised states if sampled with 2.5 × 107 ele-
ments. The dotted (dashed) line shows the mobility
edge trajectory resulting from TMT (simplified TMT-
variant).

The critical disorder for complete localisation on the
Bethe lattice (with connectivity K = 2) is γc ≈ 2.9.
TMT (simplified TMT) gives γc = e/2 (γc = 0.5).

Anderson-Holstein model [6]

In the Anderson-Holstein-model (AHM) the elec-
tron does locally couple to dispersionless Einstein
phonons.

H =
∑

i

εic
†
ici + t

∑

〈i,j〉

c
†
icj

+Ω
∑

i

b
†
ibi −

√

EPΩ
∑

i

c
†
ici(b

†
i + bi)

The “polaron” properties of this model are deter-
mined by two interaction parameters, λ = Ep/2t
and g2 = Ep/Ω, and the adiabaticity ratio α = Ω/t.
Polaron formation sets in provided that λ & 1 and
g2 & 1. To study localisation within this interacting
model the AAT scheme is combined with a DMFT-
treatment of interaction, to give the statistical dynam-
ical mean field theory (statDMFT) [7].
For a single polaron at T = 0 the DMFT-selfenergy
Σii(ω) can be expressed in terms of a continued frac-
tion

Σii(ω) =
EpΩ

F−1
ii (ω − Ω) −

2EpΩ

F−1
ii (ω − 2Ω) − · · ·

whose N -th level accounts for the emission and re-
absorption of N (at T = 0 virtual) phonons. Here
Fii(ω) = (ω − εi − t2

∑K
j=1 Gjj(ω))−1 denotes the

Green’s function without e-ph-interaction at site i.
The Monte-Carlo-samples now contains entries for
all shifted energies ω, ω − Ω, . . . . The localisation
criterion as previously introduced is still applicable.

Localisation of a polaron

Antiadiabatic strong coupling
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Antiadiabatic strong coupling α̃ = 2.25, λ̃ = 9.0
(DMFT result). The lowest polaron subband has a
renormalised bandwidth W = 3.45 × 10−4 and is
fully coherent.

For strong coupling and large phonon frequency (λ̃ =
9.0, α̃ = 2.25) the lowest polaron subband is com-
pletely coherent (Im Σ(ω) = 0) with a rather symmet-
ric DOS. The localisation properties of this band are
expected to be same as for the pure Anderson model.
As a comparison of ρtyp and the mobility edge trajec-
tories shows this is indeed the case.
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Comparison of ρtyp in the bandcenter of the pure An-
derson model (green curve) and the lowest polaron
subband in the antiadiabatic strong coupling regime
λ̃ = 9.0, α̃ = 2.25 (blue curve). The respective band-
width is denoted by W . The inset displays part of the
corresponding mobility edge trajectories. The energy
ω is scaled to the respective bandwidth and -center.

The two mobility edge trajectories do match even for
very strong disorder when all states in the polaron

subband become localised. However the critical dis-
order is orders of magnitude smaller than the separa-
tion of the subbands because of the strong renormal-
isation of the bandwidth. So disorder can localise all
states within a single subband without affecting the
overall polaronic features of the system.

Adiabatic intermediate coupling

For intermediate coupling and small phonon fre-
quency (λ̃ = 1.0, α̃ = 0.2) the localisation proper-
ties of the polaron do substantially differ from that of
the bare electron. States at the bottom of the lowest
polaron subband are rather mobile and remain nearly
unaffected for small disorder. In contrast states at the
top are rather sluggish and very susceptible to disor-
der. Although the two lowest subbands which corre-
spond to a different number of phonons remain sep-
arated over a large range of disorder they eventually
begin to merge. The relevant energy scale changes
before complete localisation of the lowest subband
can occur.
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ρave and ρtyp for λ̃ = 1.0, α̃ = 0.2 and four values
of γ. W ≈ 8.123 × 10−3 is the width of the lowest
polaron subband of the pure Holstein model (γ = 0).

Anderson regime

For γ = 2 in the pure Anderson model localised and
extended states are separated by mobility edges at
ω ≈ ±0.9. If electron-phonon interaction is switched
on (here with α̃ = 0.2, λ̃ = 0.75) states at energy ω
begin to couple to states at energies less than ω (re-
call that T = 0). States at the lower mobility edge
can only couple to states which are already localised.
Hence disorder and e-ph-interaction work in the same
direction. As a consequence polaron like defect states
do form as is indicated by the step-like structure of
the averaged DOS (this can be readily understood
in terms of the independent boson model). At the
upper mobility edge formerly localised states delo-
calise due to the coupling to extended states towards
the band center. Here e-ph-interaction weakens the
tendency towards localisation. As a consequence the
upper mobility edge is shifted to higher energies.
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ρave (DMFT) and ρtyp for α̃ = 0.2, λ̃ = 0.75, γ = 2.0.
The green curves show ρave and ρtyp for λ̃ = 0. The
vertical dashed lines indicate the mobility edges for
λ̃ = 0.

Conclusions

We reexamined how the probability distribution of
the local density of states can be used for an analysis
of localisation. Furthermore we studied the localisa-
tion of a Holstein polaron by means of the statDMFT
and demonstrated its applicability in various para-
meter regimes. The results obtained clearly show that
the localisation properties of a Holstein polaron are
highly non universal.
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