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A proper description of disordered systems should
focus on distribution functions. Using the kernel
polynomial method (KPM) – a refined Chebyshev
expansion technique – we calculate the probability
distribution of the local density of states (LDOS) for
large finite clusters (up to 1003). As the distribution
of the LDOS shows a significant change at the dis-
order induced localisation-delocalisation (LD) tran-
sition, the so-called typical DOS, defined as the ge-
ometric mean, emerges as a natural order parameter.

Anderson transition

To underline the reliability and quality of our LDOS-
KPM approach, we compare our findings with known
results for the well examined Anderson model:
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For d > 2 a LD transition occurs at finite val-
ues of disorder W . Thus we concentrate on the 3d
case (with periodic boundary conditions), where an-
alytical treatments fail and numerical investigation is
costly. Considering the wavefunction, localisation ef-
fects can be discussed in terms of the the localisation
length λ, being finite for localised states and infinite
otherwise:

|ψn(ri)| ∼ f (ri) exp

(

−|ri − rmax|
λ

)

.
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Decay of an electronic wavefunction ψn in the band centre as a

function of distance r = |ri − rmax|. N = 303

Determining λ via ψ by exact diagonalisation (ED)
restricts this method to small systems (. 303). Calcu-
lating ψ, also the inverse participation number (IPN)

P−1(En) =

N
∑

i=1

|ψn(ri)|4 ,

describing the number of sites with amplitudes
markedly different from zero, is accessible. For lo-
calised states the IPN is independent of N , but van-
ishes for extended ones in the thermodynamic limit.
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Mean IPN P−1
me (E) = 〈P−1(E)〉 for different system sizes.

For the LD transition distributions of local quantities
are of special interest [1]. We consider the LDOS,

ρi(E) =

N
∑

n=1

|ψn(ri)|2δ(E − En) ,

connected with the local amplitudes of the wavefunc-
tions at a given site i. Expanding the LDOS in a fi-
nite series of M Chebyshev polynomials and taking
special care of the effects of the truncation, the calcu-
lation of ρi(E) requires memory and CPU time scal-
ing as O(N ). The resolution of this approximation
is ∼ M−1. Averaging over an ensemble of Kr re-
alisations of disorder and Ks sites arithmetically and
geometrically yields the mean and typical DOS:

ρme(E) = 〈ρi(E)〉 ,
ρty(E) = exp〈ln(ρi(E))〉 .

While ρme is insensitive to localisation, ρty allows for
the distinction between localised (ρty → 0) and ex-
tended (ρty > 0) states.
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Mean and typical DOS for the Anderson model. N = 503,

M = 8192, Ks×Kr = 32×32.

This behaviour of ρty is due to different shapes of the
probability densities p(ρi) in the two regimes.
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General shape and finite size scaling of the probability den-

sity of the LDOS p[ρi(E = 0)] for the ratio N/M = 1.95.

Ks×Kr= 10000×100, 100×100, 32×32 forN= 103, 203, 403.

For fixed N/M the shape of p[ρi(E = 0)] is indepen-
dent of the system size for low disorder. On the other
hand, for strong disorder the distribution shifts to-
wards smaller values with increasing N and becomes
singular in the thermodynamic limit. In the localised
regime the data agrees well with a log-normal fit.
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Comparing the obtained values for the critical disor-
der, it is obvious, that the LDOS yields a criterion of
equal quality and accuracy like the established ones.

Correlated disorder

For the 1d Anderson model, all states are localised
for arbitrary small disorder. Even so, a phase of ex-
tended states may exist due to correlations within the
random sequence of on-site potentials. Assuming

εj ∼
N/2
∑

k=1

√
k−α cos

(

2πjk

L
+ φk

)

,

we model a long-range correlated random sequence
without any characteristic scale and with power-law
decay of the Fourier transform of the two point cor-
relation function [2]. While for small α the whole
band is still localised, above a certain strength of cor-
relation (αc & 2), a phase of extended states exists,
whose width saturates for α & 5.
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Mean and typical DOS for the Anderson model with corre-

lated disorder. Lower panels: sequences of on-site potentials.

N = 125000,M = 32768,Kr ×Ks = 32 × 32.

Instead of analysing the probability density p(ρi(E)),
it shows up, that the probability distribution

F [ρi(E)] =

ρi(E)
∫

0

p(ρ′i(E))dρ′i(E)

is the more suitable quantity, as due to the integra-
tion smaller ensembles are sufficient to extract the
characteristics. While the smooth increase of F [ρi]
for localised states reflects a broad probability den-
sity p(ρi), the extended regime is characterised by an

almost steplike probability distribution which is due
to p(ρi) being sharply peaked at ρme.
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Probability distributionF [ρi(E)] of the LDOS in the band centre

for different values of correlation strength α. N = 125000,M =

32768, Kr ×Ks = 32 × 32.

Quantum percolation

From the Anderson model, describing an alloy with
an infinite number of composites, the class of site per-
colation models is obtained by assuming a binary dis-
tribution of on-site potentials [3]:

p(εj) = p δ(εj − εA) + (1 − p) δ(εj − εB) .

For ∆ = |εA− εB| > 4td the band separates into two
sub-bands centred at εA and εB.
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Mean and typical DOS for different occupation probabilities p

and energy differences between the on-site potentials ∆ . N =

503,M = 32768, Ks ×Kr = 32 × 32.

In the limit εB → ∞ (keeping εA = 0 fixed) the B-
sites are completely inaccessible. In order to discuss
localisation in this case, it is sufficient to consider the
spanning cluster A∞ only. Although many spikes in
the spectrum are due to isolated islands, most of them
persist even if the calculation is restricted to A∞.
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Mean and typical DOS in the limit εB → ∞ for different oc-

cupation probabilities p. N = 503,M = 16384, Ks × Kr =

32 × 32.

As the typical DOS vanishes at these special energies,
these states are localised. It shows up, that they can
be associated with localised states on some dead ends
of the spanning cluster.
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High resolution plot of the mean and typical DOS on A∞ for

p = 0.33. N = 1003,M = 32768, Ks ×Kr = 100 × 100. Right:

Geometries of the dead ends and corresponding En.

To clarify the structure of these states, for some en-
ergies we calculate the amplitudes, comparing them
with those for localised and extended states.

Amplitudes |ψn(ri)| of a localised state. N = 213, p = 0.33.

Amplitudes of the wavefunction |ψn(ri)| on the spanning cluster

of a 143 lattice with p = 0.45. Chequerboard state for E = 0,

dead end state for E = t and extended state for E = 0.663t.

Because of the high degeneracy of the E = 0
state, linear combinations are possible which span
the whole cluster in a chequerboard structure of sites
with vanishing and finite amplitudes. Although those
states are extended in a sense, their alternating struc-
ture suppresses the conductance, giving rise to call
them anomalously localised. Interestingly this pat-
tern is rather robust and even persists if the boundary
conditions are mismatched. In this case the chequer-
board is connected to itself by sites of vanishing am-
plitudes. As the probability of finding specific dead
end geometries, giving rise to special energies, de-
creases with their complexity, the spectral weight of
more complicated clusters is reduced. Nevertheless,
in principle they can be constructed for arbitrary val-
ues of E. Thus there exists a set of energies with
localised states throughout the whole band and the
spectrum seems to fragment into localised and ex-
tended states.

Normalised typical DOS ρty/ρme in the concentration energy

plane. N = 1003 (503) is used for p ≤ 0.5 (> 0.5 ), M =

16384, Ks ×Kr = 32 × 32.

Determining the value of p, below which all states are
localised, fixes the quantum mechanical analogue pq
to the classical percolation threshold pc, above which
there exists a spanning cluster. As interference effects
can lead to localisation, suppressing the conductance,
it is not clear, if pc and pq are equal or differ. The ob-
tained result confirms that pq(E) & 0.4 > pc ≈ 0.31.
The most promising way to distinguish the different
classes of states is again to look at the probability dis-
tribution of the LDOS F [ρi(E)].
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Probability distribution of the LDOS for three energies in the

different regimes. N = 533 ,M = 32768 ,Ks ×Kr = 32 × 32.

Differing either from those of localised states
(smooth increase, corresponding to a very broad
probability density) or from extended ones (steep in-
crease at ρme, i.e. p(ρi) being sharply peaked around
its mean value), the special properties of the E = 0
state show up again. The two-step like function cor-
roborates the assumption of a chequerboard structure
of sites with vanishing and finite amplitudes.
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