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Abstract

The formation of stripes in six-leg Hubbard ladders
with cylindrical boundary conditions is investigated
using DMRG at two different hole dopings, and the
amplitude of the hole density modulation is deter-
mined in the limits of vanishing DMRG truncation
error and infinitely long ladders. The results give
strong evidence that stripes exist in the ground state
of these systems for strong but not for weak Hubbard
couplings. The doping dependence of these findings
is analysed.

Stripes on Hubbard ladders?

Controversial discussion: Does the ground
state of interacting doped lattice models in two di-
mensions like the t-J and the Hubbard model show
a charge modulation when subjected to particular,
e.g., cylindrical boundary conditions?

Here, consider 2-dimensional Hubbard model on R×
L–site ladder with cylindrical boundary conditions,

H = −t
∑

xyσ

(

c
†
x,y,σcx,y+1,σ + c

†
x,y,σcx+1,y,σ + h.c.

)

+ U
∑

xy

nx,y,↑nx,y,↓ , (1)

with R rungs and L legs.
Known analytical results: No stripe-forming insta-
bility for U ¿ t [1], but stripes on narrow ladders
for U À t. In between, numerical (DMRG) results
only available for a 7×6 ladder [2] with no finite-size
scaling.
Stripe signatures: Focus on hole density h(x, y) =
1 − 〈n̂x,y,↑ + n̂x,y,↓〉, where 〈. . .〉 is the DMRG
ground-state expectation value.
“Stripe” = density modulation in the leg direction,

h(x) =

L
∑

y=1

h(x, y) . (2)
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Fig. 1: y-integrated hole density for a 7×6 lad-
der with 4 holes at U = 12t and U = 3t.

Questions:

• What is the exact U dependence?

• Is the stripe formation an artefact of the boundary
conditions?

• What happens at larger ladder length?

• How does the stripe depend on the doping?

• Is there really a stripe at U = 3t?

In this work we consider

• 6-leg ladders (L = 6) with R = 7r rungs for r =
1, . . . , 4 (up to 168 sites).

• Hole counts of N1 = 4r or N2 = 8r, respectively,
in the half-filled band (i.e. RL − N1 = 38r or
RL − N2 = 34r electrons, average hole density
n1 = N1/RL = 4/42 ≈ 0.095 or n2 = N2/RL =
8/42 ≈ 0.190).

⇒ Major computational task (cost at least an order
of magnitude beyond previous studies). Exact diago-
nalization ruled out for resource requirements (6× 6
out of reach), QMC for the sign problem.

Method of choice: DMRG

• “Optimal” truncated Hilbert basis for ground state
(here) but also dynamical calculations.

• Number of density matrix eigenstates kept (m) de-
termines accuracy of ground state.

• Variational method, measure for convergence: Dis-
carded weight Wm =

∑d
i=m+1wi, the sum over

all discarded reduced DM eigenvalues.

• Extremely low CPU time and memory require-
ments compared to exact diagonalization.

Parallel DMRG

Lattices significantly larger than 7 × 6 can only be
studied numerically on parallel computers. Up to
m = 8000 and R = 28 were possible with a shared-
memory parallel DMRG algorithm [3]:
Parallelize sparse matrix-vector multiplication in su-
perblock diagonalization step,

Hψ =
∑

α

∑

k

(Hψ)αL(k) =
∑

α

∑

k

AαkψR(k)

[

BT
]α

k
,

(3)
and some other loops. Speedups of 5–6 on 8 CPUs

can be expected [3]. Large shared memory nodes
(e.g., IBM p690, SGI Altix) are the ideal architecture
and reach approximately half-peak performance with
this code.
Accessible system sizes up to 28 × 6, but: Carefully
check convergence!

Stripes: Raw DMRG data
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Fig. 2: Left: “Tunneling” into striped state for
21 × 6 ladder at small doping and U =
12t. Right: Energy per site vs. Wm.
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Fig. 3: m dependence of hole structures, pa-
rameters as above.

Peculiarities:

• Stripe(s) form(s) at certain mc; the larger the lat-
tice, the larger mc.

• Well-known linear behaviour of E0 vs. Wm ⇒ ex-
trapolation sensible also for other observables?

• Amplitude decreases with rising m after stripe has
formed. Is there a limit?

⇒ Study spectral analysis of hole density with re-
spect to DMRG truncation errors and finite-size ef-
fects. Spectral transform:

H(kx, ky) =

√

2

L(R + 1)

∑

x,y

sin(kxx)eikyyh(x, y)

(4)
with kx = zxπ/(R + 1) for zx = 1, . . . , R and
ky = 2πzy/L for −L/2 < zy ≤ L/2.
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Fig. 4: Normalized power spectrum of hole den-
sity in leg direction for 21 × 6 ladder at
m = 8000.

⇒ Doping dependence at finite R and m: r stripes
in 7r × 6 ladder at doping of N1 = 4r. Number
of stripes doubles with double doping, but stripe
amplitude is much smaller.
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Fig. 5: y-integrated hole density versus x for
two dopings on a 21 × 6 ladder at U =
12t and m = 8000.

Real stripes on finite ladders

Extrapolation to vanishing truncation error: Varia-
tional DMRG wave function known up to correction
ε,



ψ0
〉

=


ψDMRG
〉

+ ε


δ
〉

, (5)

so
EDMRG − E0 ∝ ε2 ∝ Wm . (6)

Other observables have errors ∝ ε ∝
√
Wm, includ-

ing the power spectrum of the hole modulation.
⇒ Extrapolation possible due to known behaviour!
Use dominant harmonic of hole modulation power
spectrum,

Hmax = max
kx

|H(kx, 0)| ∝
√

Wm , (7)

for small Wm.
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Fig. 6: Extrapolation of dominant Fourier har-
monic of h(x) vs. Wm for a 21×6 ladder
at doping N1.

Observations:

• At finite R, the data suggests a transition to a
striped state at U & 3, but there might still be a
“flat” stripe at U = 3t.

• Could still be an artifact of DMRG or boundary
conditions.

• Data for 28× 6 ladders inconclusive (resource lim-
itations).

Does the transition survive the thermodynamic
limit?

What about magnetization?

Observe staggered spin density

s(x, y) = (−1)x+y 〈n̂x,y,↑ − n̂x,y,↓
〉

, (8)

as a measure for antiferromagnetic order.
Finite antiferromagnetic order is numerically ob-
served.
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Fig. 7: Depiction of hole (blobs) and spin (ar-
rows) density for 21 × 6 at U = 12t.

Observations:

• s(x, y) shows “phase slip” across stripe positions.

• Spin structure factor peaked at kx = π.

• Extrapolation of dominant harmonic Smax to
Wm → 0 compatible with zero magnetization.
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Fig. 8: Extrapolation of Smax to Wm = 0 for 7×
6 at U = 12t using linear and quadratic
fits.

⇒ DMRG describes well charge properties but not
spin properties of Hubbard ladders. Finite magne-
tization may serve as a stripe signature, but is an
artifact of the method (not using the spin symme-
try).

Real stripes on infinitely long ladders

Limit R → ∞: Eq. (4) yields linear divergence of
Hmax for R−1 → 0 if modulation amplitude remains
finite. ⇒ Extrapolate Hmax/

√
R for each U and N

considered, yielding the zero truncation error ther-
modynamic limit:
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Fig. 9: Extrapolation of Hmax for R → ∞ at
small doping. Arrows indicate the pre-
vious extrapolation to the Wm = 0 limit
for U = 3t (blue) and U = 12t (red).

Observations:

• Stripe signature at U = 3t vanishes in the ther-
modynamic limit.

• Extrapolation has significant impact on hole fluc-
tuation amplitude ⇒ 21 × 6 is nowhere near the
infnite system!

• Resource requirements for parallel DMRG: several
hundreds of CPU hours and ≈100 GBytes of mem-
ory for largest systems per run.

What about doping dependence?
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Fig. 10: Amplitude of dominant harmonic in the
hole density modulation versus U for
small (red) and large (blue) doping, ex-
trapolated to Wm → 0 and R → ∞.

No stripes found for doping N3 = 2r !

Conclusions

For small U , numerical ground state stripe signatures
are artifacts of the DMRG method (boundary con-
ditions) and vanish when proper extrapolation pro-
cedures are employed. Going from small to large U ,
there is a crossover from a homogeneous to a striped
state. With N1 = 4r, a steep transition occurs at
U ≈ 4t. At larger doping N2 = 8r, the transition
is shifted to larger U and becomes smoother and the
number of stripes is doubled. The existence of a sim-
iliar transition in real two-dimensional strongly cor-
related electron systems would be of vital importance
for the physics of layered high-Tc cuprates.

Open question: Is this a phase transition in spite
of R → ∞ leading to a quasi-onedimensional sys-
tem?
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