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Abstract: Combining the self-consistent theory of lo-
calization and the dynamical mean-field theory, we
present a theoretical approach capable of describing
both self-trapping of charge carriers during the pro-
cess of polaron formation and disorder-induced An-
derson localization. By constructing random sam-
ples for the local density of states (LDOS) we an-
alyze the distribution function for this quantity and
demonstrate that the typical rather than the mean
LDOS is a natural measure to distinguish between
itinerant and localized states. Significant polaron ef-
fects on the mobility edge are found.

Motivation

The question of how the electron-phonon (EP) in-
teraction influences the localization transition caused
by disorder [1], i.e. by strong impurity-induced spa-
tial fluctuations in the potential energy, has been ad-
dressed by Anderson about thirty years ago [2]. He
called attention to the particular importance of EP
coupling effects in the vicinity of the so-called ”mo-
bility edge”, separating itinerant (extended) and lo-
calized states.

Nevertheless, there is as
yet not much theoretical
work even for the simplest
case of a single electron
moving in a disordered,
deformable medium.
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As a first step towards addressing this problem,
in Ref. [3] the single-particle Holstein model with
site-diagonal, binary-alloy-type disorder was stud-
ied within the dynamical mean field approximation
(DMFA) [4]. The DMFA, however, cannot (fully)
discriminate between itinerant and localized states,
mainly because the randomness is treated at the level
of the coherent potential approximation.

Model

In order to remedy this shortcoming, recently the
authors [5] adopted the statistical DMFA (stat-
DMFA) [6] to the Anderson-Holstein Hamiltonian,

H =
∑

i

εini − J
∑

〈ij〉
(c
†
icj + H.c.)

−
√

EpΩ
∑

i

(bi + b
†
i)ni + Ω

∑

i

b
†
ibi ,

where J denotes the electron transfer amplitude, Ω
is the frequency of the optical phonon, Ep is the po-
laron shift, and the on-site energies {εi} are assumed
to be independent random variables with probability
density p(εi) = (1/γ)θ(γ/2 − |εi|).

Localization criterion

As a natural measure of the itinerancy of a polaron
state, we consider the tunneling rate from a given
site, defined - on a Bethe lattice with connectivity K
(J̃ = J

√
K) - as the imaginary part of the hybridiza-

tion function

Γi(ω) = (πJ̃2/K)

K
∑

l=1

Nl(ω), where

Nl(ω) = −(1/π)ImGl(ω)

is the local density of states (LDOS). The LDOS, di-
rectly connected to the local amplitude of the elec-
tron wave function, undergoes a qualitative change
upon localization implying a vanishing tunneling rate
Γi(ω) for a localized state at energy ω.

Method

The statDMFA [6] is essentially a probabilistic
method (in the sense of the self-consistent theory of
localization [7]), based on the construction of random
samples for the physical quantities of interest.

The local single-particle Green function and the re-
lated hybridization function are given by (z = ω+iη)

Gi(z) =
1

z − εi − Hi(z) − Σi(z)
and

Hi =
J̃2

K

K+1
∑

l=1

1

z − εl − H̄i
l − Σ̄i

l

,

respectively. We now ignore that the functions on the
rhs of Hi should be calculated for the Bethe lattice
with the site i removed, i.e. we make the replacement
{Ḡi

l , H̄i
l , Σ̄i

l}  {Gl, Hl, Σl}, and furthermore
take K as the typical number of terms even for the
central site. Finally, the EP self-energy contribution
is determined in the limit K → ∞. The self-energy
is then local and, in terms of a continuous fraction
expansion, takes the form

Σl(z) =
Ep1Ω

[F
(1)
l (z)]−1 − Ep2Ω

[F
(2)
l (z)]−1−...

,

with [F
(p)
l (z)]−1 = z − pΩ − εi − H

(p)
l (z) and

H
(p)
l (z) = Hl(z − pΩ). Here the energy shift keeps

track of the number of virtual phonons (0<p<M ).
Regardless of the local EP self-energy, the statDMFA
takes spatial fluctuations of, e.g., the LDOS into ac-
count and provides an adequate description of disor-
der effects. Due to the randomness in the on-site en-
ergies, the tunneling rate and the LDOS is a random
variables, and the question of whether they vanish or
not depends on the probability density exhibiting dif-
ferent features for itinerant and localized states [1, 7].
In particular, the difference between the mean and
typical LDOS,

Nmean(ω) =
1

N

N
∑

i

Ni(ω) and

N typ(ω) = exp





1

N

N
∑

i

log Ni(ω)





obtained by the arithmetic and geometric mean of
the LDOS, respectively, is a useful measure to dis-
criminate between extended and localized states.
Nmean(ω) > 0 but N typ(ω) = 0 indicates a localized
state at energy ω.

In the numerical work, we calculated the LDOS by

solving a recursion scheme for H
(p)
l which depends

on Kε ′
j s, KH

(p) ′
j s, . . ., and KH

(pmax) ′
j s. Starting

from an initial random configuration for the inde-

pendent variables H
(p)
l , which is successively up-

dated with a sampling technique similar to the one
described in Ref. [7], we constructed self-consistent
random samples for H

(p)
l , using K = 2, N =

100 000, M = 35, and η = 10−8.

Numerical results and discussion

A. Polaron formation without disorder

The physical properties of the Holstein model are de-
termined by two interaction parameters, λ̃ = Ep/2J̃

and g2 = Ep/Ω, and the adiabaticity ratio α̃ = Ω/J̃ .
Polaron formation sets in provided that λ̃ & 1/

√
K

and g2 & 1. Of course, the internal structure of the
polaron depends on α̃.
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Evolution of the LDOS N (ω) (blue) and the imaginary part of
the EP self-energy ImΣ(ω) (red) for the ordered Holstein model
(γ = 0) with increasing EP coupling λ̃ = 0.4, 0.7, and 1.0 (from
top to bottom). Results are given for α̃ = 0.4 and W̃0 = 1.0.

In the crossover regime the typical polaron band dispersion ex-
hibits several striking features: (i) The coherent bandwidth is by
about a factor of 10 times larger than predicted by the standard
Lang-Firsov formula ∆ELF = 4t exp[−g2]. (ii) The effective
polaronic band dispersion deviates substantially from a simple
rescaled bare band due to further than nearest-neighbour ranged
hopping processes induced by the residual polaron-phonon in-
teraction. (iii) The flattening of the band dispersion at large mo-
menta persists to surprisingly large interaction strengths, even
if the renormalized band width is by one order of magnitude
smaller than the bare phonon frequency.
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Band dispersion E(K) of a single electron described by the
Holstein model on 1D rings with N sites, where g = 2.73 and
Ω = 0.4. The insets show the low-energy part of the one-particle
spectral function AK(E) for selected momenta K. The magenta
line corresponds to the dispersion of a free particle with a renor-
malized bandwidth. The orange line gives a least-squares fit to
an effective band dispersion ĒK =

∑3
l=0 al cos lK.

B. Interplay of localization & self-trapping
phenomena

Without EP coupling, i.e. in the pure Anderson model,
the critical disorder strength needed to localize all states is
(γc/W̃0)complete ≈ 2.25, where W̃0 = 4J̃ . Disorder affects
polaron states quite differently in the adiabatic (α̃ � 1), non-
adiabatic (α̃ ∼ 1), and antiadiabatic (α̃ � 1) cases.

I. Weak EP-coupling case:
In the weak EP coupling regime, it has been shown that
the quantum interference needed for localization is signifi-
cantly suppressed by inelastic polaron-phonon scattering pro-
cesses [5]: States above the optical phonon emission threshold
are more difficult to localize than the corresponding bare elec-
tron states.
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Typical tunneling rates Γtyp(ω; γ) in the (non-to-antiadiabatic)
weak EP coupling regime (W̃0 = 1.0, α̃ = 1.2, and λ̃ = 0.067).
Filled circles denote data for λ̃ = 0. The inset shows the LDOS
N (ω) and the imaginary part of the EP self-energy ImΣ(ω) for
γ = 0; dashed and (vertical) dotted lines indicate, respectively,
the density of states for λ̃ = 0 and the energies ω for which
Γtyp(ω; γ) is plotted.

II. Strong EP-coupling case:
In the very strong EP coupling regime, extremely weak disorder
turns itinerant into localized polaron states. Surprisingly, the
ratio (γc/W̃ )complete, where W̃ is the band width of the lowest
polaron subband, is almost the same as for a bare electron. In
fact, in the non-adiabatic strong EP coupling regime, where the
band collapse changes only the overall energy scale, disorder af-
fects a polaron in a similar way as a bare electron. For example,
the LDOS and mobility edges are symmetric.
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Mean and typical LDOS for the lowest polaron subband in the
non-adiabatic strong EP coupling region (λ̃ = 9.0, α̃ = 2.25,
and J = 0.5). The pronounced disorder-induced broadening of
the LDOS occurs because the variation of the on-site energies
γ = 0.001 is on the order of the strongly renormalized band
width W̃ .

III. Crossover regime:
In the adiabatic intermediate-to-strong EP coupling regime the
physics is much more involved. Here the band dispersion of
the lowest subband significantly deviates from a rescaled bare
band [8], leading to a strong asymmetric LDOS. Specifically,
the states at the bottom of the subband are mostly electronic and
rather mobile due to long-range tunneling induced by EP cou-
pling, whereas the states at the top of the subband are rather
phononic and immobile [8]. As a direct consequence, the states
at the zone boundary are very susceptible to disorder, i.e. the
critical disorder strength needed to localize these states is much
smaller than for states at the bottom, and, from the results for the
typical LDOS, we find asymmetric mobility edges. Moreover,
(γc/W̃ )complete ≈ 2.8, which is larger than the corresponding ra-
tio for a bare electron. Thus, contrary to naive expectations, at
intermediate EP couplings, an adiabatic polaron is even more
difficult to localize than a bare electron.
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Typical tunneling rates Γtyp(ω; γ) in the (adiabatic) intermedi-
ate EP coupling regime (α̃ = 0.4, λ̃ = 1.8, W̃0 = 2.0). The inset
display the subband LDOS N (ω) and the imaginary part of the
EP self-energy ImΣ(ω) for γ = 0 (vertical dotted lines indicate
the energies ω for which Γtyp(ω; γ) is plotted). Note the small
spectral weight of the lowest polaron subband.
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Mean and typical LDOS in the adiabatic intermediate-to-strong
EP coupling region (λ̃ = 1.0, α̃ = 0.25, J = 0.5). Note that
Nmean(ω) is almost perfectly approximated by the DMFA. At
about ω = −1.13 the second polaronic subband starts.

It is very instructive to discuss the behavior of the probability
density of the LDOS and the corresponding probability distri-
bution. Note that both quantities have to be calculated self-
consistently within our sampling procedure. The results demon-
strate the dramatic change of the probability density of Nl(ω)
when the system undergoes the localization transition by cross-
ing the mobility edge. In the region of localized states, the prob-
ability density for the LDOS is broad and very asymmetric and,
as a consequence, the mean LDOS is not representative.
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Probability density of the LDOS for four representative ener-
gies. The inset shows the probability distribution, i.e., the cu-
mulant of the probability density.

Conclusions: To summarize, in terms of the Anderson Holstein
model, we have demonstrated that the statDMFA, which ac-
cording to the spirit of Anderson’s early work [1] focuses on
distribution functions and associates typical rather than mean
values to physical quantities, yields a proper description of dis-
ordered electron-phonon systems.

References
[1] P. W. Anderson, Phys. Rev. 109, 1498 (1958).

[2] P. W. Anderson, Nature Phys. Science 235, 163 (1972)

[3] F.X. Bronold, A. Saxena, and A. R. Bishop, Phys. Rev. B 63, 235109 (2001).

[4] A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).

[5] F.X. Bronold and H. Fehske, Phys. Rev. B 66, 0331XX (2002).
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