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Abstract: As a generic model describing quasi-
one-dimensional Mott and Peierls insulators, we
investigate the Holstein-Hubbard model for half-
filled bands using numerical techniques. Combin-
ing Lanczos diagonalization with Chebyshev mo-
ment expansion we calculate exactly the photoemis-
sion and inverse photoemission spectra and use these
to establish the phase diagram of the model. While
polaronic features emerge only at strong electron-
phonon couplings, pronounced phonon signatures,
such as multi-quanta band states, can be found in
the Mott insulating regime as well. In order to cor-
roborate the Mott to Peierls transition scenario, we
determine the spin and charge excitation gaps by a
finite-size scaling analysis based on density-matrix
renormalization group calculations.

Introduction

The one-dimensional (1D) Holstein-Hubbard model
(HHM) has been used extensively to describe for
novel low-dimensional materials, e.g., conjugated
polymers, organic charge transfer salts or halogen-
bridged transition metal complexes, and the asso-
ciated metal-insulator and insulator-insulator transi-
tions The HHM accounts for a tight-binding electron
band, intra-site Coulomb repulsion between electrons
of opposite spin, and a local coupling of the charge
carriers to the phonon system:
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The physics of the HHM is governed by the compe-
tition between electron itinerancy ( 0
1 	324


) on
the one hand and electron-electron ( 065 	 �87 24
 )
and electron-phonon ( 0:9 	;% & 7)< 
 ) interactions on
the other hand, which both tend to immobilize the
charge carriers. At least for the half-filled band case
Mott insulator (MI) or Peierls insulator (PI) states
are expected to be favored over the metallic state at=�	;>

. The correlated MI shows pronounced spin-
density-wave (SDW) fluctuations but has continuous
symmetry. It therefore exhibits no long-range order
in 1D. In contrast the PI is characterized by dom-
inant charge-density-wave (CDW) correlations and
true long-range order because a discrete symmetry is
broken. While the gaps to both spin ( ?A@ ) and charge
( ?$B ) excitations are finite in the PI, the spin gap van-
ishes in the 1D MI, which is related to spin charge
separation.
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Fig. 1: Schematic phase diagram of the Holstein-
Hubbard model at half-filling.

In a strict sense these results hold in the adiabatic
limit (

( * 	�>
) for “ � -only” (Hubbard model) and “ 9 -

only” (Peierls model) parameters. At finite phonon
frequency and � 	C> (Holstein model) a critical
electron-phonon (EP) coupling is required to set up
the CDW phase. Depending on the adiabaticity ratioD 	�( * 7 
 the PI represents a traditional band insu-
lator ( D:EGF ) or a bipolaronic insulator ( DIHJF ,K/LMHNF ). Although for the more general HHM the
situation is much less clear, we expect that the fea-
tures of the insulating phase will depend markedly on
the ratio of Coulomb and EP interactions 5 7 9 , allow-
ing for quantum phase transitions between insulating
phases. For finite periodic chains, the MI-PI quantum
phase transition could be identified by a ground-state
level crossing associated with a change in the parity
eigenvalue O . /1,2/

Numerical results and discussion

We begin by studying the spectral density of single-
particle excitations associated with the injection of a
spin- P electron with wave number Q , R

�
S � � ( � (in-

verse photoemission (IPE)), and the corresponding
quantity for the emission of an electron, R$TS � � ( �
(photoemission (PE)), where
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with
� �S � 	 ���S � and

� TS � 	 � S � . The spectral
function R S � � ( � 	 R

�
S � � ( � � R TS � � ( � obeys var-

ious sum rules and allows for a connection to angle-
resolved photoemission spectroscopy (ARPES). The
ED results presented for R US � � ( � in the following
were obtained for an eight-site system with periodic
boundary conditions.

Let us first consider the MI regime (Fig. 2). The most
prominent feature we observe in the MI regime is the
opening of a gap at Q 	�k�l 7m< , indicating massive
charge excitations. A comparison with the pure Hub-
bard model classifies this gap as the Mott-Hubbard
correlation gap. Its value ? 7 
on:p

.
<4q almost coin-

cides with the optical gap ?Ar &4s . The dispersion of
the lower (upper) Hubbard band can be derived trac-
ing the uppermost (lowest) excitations in each Q sec-
tor. As a result of the coupling to the phonon system
the electronic levels in each Q sector split, creating
phonon side bands. The distinct peaks are separated
by multiples of the bare phonon frequency and can be
assigned to relaxation processes of the t 	u> phonon
modes. Interestingly, mediated by t6v	w> phonons,
there appear “shadows” of the band belonging to a
dominant electronic excitation in a certain Q sector
in other Q sectors, giving rise to a weak “breather-
like” excitation [3], which is almost dispersionsless
in the Brillouin zone.
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Fig. 2: Wave-number-resolved spectral densities for
photoemission ( R TS � � ( � ; red lines) and inverse pho-
toemission ( R

�
S � � ( � ; black lines) in the MI state

( 5 7 9 HxF ). The corresponding integrated densitiesy US � � ( � are given by dashed lines. Data for the pure
Hubbard model (blue and green lines) were shifted
by
� � %�&{z L| } 7 z � and included for comparison.
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Fig. 3: PE (red lines) and IPE (black lines) spectra
near the MI-PI transition point ( 5 n 9 ).
If we decrease the Hubbard interaction at fixed EP
coupling strength the Mott-Hubbard gap weakens
and finally closes at about

� 5 7 9~� B n F , which

marks the MI-PI crossover (see Fig. 3). Approach-
ing the critical point from above and below, the
ground state and the first excited state become de-
generate. These states have different eigenvalues O
of the site-inversion operator O �4�� � O � 	 ���\ T

�
� ( � 	>f� .�.�. � zI� F ) and we have verified that the ground-

state site parity is O 	 � F in the MI and O 	I� F
in the PI. Obviously the critical point is characterized
by gapless charge excitations at the Fermi momenta
but should not be considered as metallic because the
Drude weight is ill-defined. [2]
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Fig. 4: PE and IPE spectra in the Peierls phase
( 5 E 9 ). The upper (lower) panels show typical re-
sults obtained for the band insulator (BI) at D ExF
and bipolaronic insulator (BPI) at D�H
F .
If the Hubbard interaction is further reduced, a CDW
accompanied by a dimerization of the lattice devel-
ops. As a result the electronic band structure be-
comes gapped again (see Fig. 4 (upper panel)). The
form of the spectra, however, is quite different from
MI case. While in the MI regime the lowest peak in
each Q sector is clearly the dominant one, in the BI
phase rather broad (I)PE signatures appear. Within
these excitation bands the spectral weight is almost
uniformly distributed, which is a clear signature of
multi-phonon absorption and emission processes that
accompany every single-particle excitations in the PI.
The lineshape then reflects the (Poisson-like) distri-
bution of the phonons in the ground state. Again
low-intensity “shadow bands” become visible. The
situation changes radically if the insulating behav-
ior is associated with localized bipolarons forming a
CDW state (see Fig. 4, lower panel). Due to strong
polaronic effects an almost flat band dispersion re-
sults with exponentially small (electronic) quasipar-
ticle weight. Now the dominant peaks in the incoher-
ent part of the (I)PE spectra are related to multiples
of the (large) bare phonon frequency broadened by
electronic excitations.

Since many-body gaps to excited states form the ba-
sis for making contact with experimentally measur-
able excitation gaps and also can be used to charac-
terize different phases of the HHM, we determine the
charge and spin gaps using DMRG:
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?AB and ?A@ are finite in the PI and will converge fur-
ther as

zx���
. [4] Both gaps seem to vanish at

the quantum phase transition point of the HHM with
finite-frequency phonons, but in the critical region
the finite-size scaling is extremely delicate. In the
MI we found a finite charge excitation gap, which in
the limit 5 7 9 H�F scales to the optical gap of the

Hubbard model, whereas the extrapolated spin gap
remains zero.

0 0.05 0.1
1/N

0.0

0.1

0.2

0.3

0.4

0.5

∆ c ,
 ∆

s

∆c/10
∆s

0 0.05 0.1
1/N

∆c

∆s

0 0.05 0.1
1/N

∆c

∆s

MI ~QCP PI
(u/λ=4.29) (u/λ=0.5)(u/λ=0.93)

Fig.5: DMRG finite-size scaling of spin- and charge
excitation gaps in the HHM ( 9 	�> . p q � D 	> . F ). Stars represent the ED results for the eight-
site system. The arrow marks the value of the op-
tical gap ? r &4s for the 1D Hubbard model. Since
in our parallel DMRG program a pseudosite repre-
sentation is used [5], the accessible system sizes are
smaller at larger 9 7 5 , where an increasing number
of (phononic) pseudosites is required to reach con-
vergence with respect to the phonons.

As can be seen from Fig. 6, the staggered charge- and
spin-structure factors,
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Fig. 6: Finite-size scaling study of spin and charge
structure factors at � 	 l in the half-filled 1D HHM
with periodic BCs at 5 	 F , 9 	 F , and D 	 F with
five boson pseudosites, � 	 F >4>4> and

z
up to 128.

are strongly suppressed approaching the quantum
critical point from below and above, respectively.
The DMRG results obtained for a sequence of sys-
tems with up to 128 sites can be used to perform
a reliable finite-size extrapolation: At the quantum
critical point

y B � l � and
y @ � l � vanish in the thermo-

dynamic limit
zI�
�

.

Conclusions: To summarize, we have presented
a comprehensive picture of the physical proper-
ties of the 1D half-filled finite-phonon frequency
Holstein-Hubbard model. With respect to the metal
the electron-electron coupling favors the Mott in-
sulating state whereas the electron-phonon interac-
tion is responsible for the Peierls insulator to oc-
cur. The PI typifies a band insulator in the adi-
abatic weak-to-intermediate coupling range or a
bipolaronic insulator for non-to-antiadiabatic strong-
coupling. Our results for the single-particle spectra
and spin/charge excitation gaps give clear indica-
tion of a Mott- to Peierls-insulator quantum phase
transition at 5 7 9 n F . Quantum phonon dynam-
ics yields pronounced effects in the (I)PE spectra,
which might be of great importance for interpret-
ing photoemission experiments of low-dimensional
strongly correlated electron-phonon systems such as
MX-chain compounds.
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