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Abstract

In an attempt to clarify the nature of the crossover
from a Peierls band insulator to a Mott-Hubbard in-
sulator, we analyze ground-state and spectral prop-
erties of the one-dimensional half-filled Holstein-
Hubbard model using exact diagonalization and den-
sity matrix renormalization group techniques.

Motivation

In a wide range of quasi-one-dimensional mate-
rials, such as MX chains, conjugated polymers
or ferroelectric perovskites, the itineracy of the
electrons strongly competes with electron-electron
and electron-phonon (EP) interactions, which tend
to localize the charge -carriers by establishing
spin-density-wave (SDW) and charge-density-wave
(CDW) ground states (GSs), respectively. Other
sources for CDW formation are finite range Coulomb
Interactions or staggered (atomic) potentials. Hence,
at half-filling, Peierls (Pl) or Mott (MI) insulating
phases are usually energetically favored over the
metallic state.

An Interesting and still controversial question Is
whether or not only one quantum critical point sepa-
rates the Pl and MI phases at T' = 0 [1, 2].

Furthermore, how Is the crossover modified when
phonon dynamical effects, which are known to be
of particular importance in low-dimensional materi-
als [3, 4], are taken into account?

1D Model Hamiltonians

Holstein-Hubbard model:
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Here cja creates a spin-o electron at Wannier site ;
(nig = cjacw), b,}L creates a local phonon of fre-
quency wyq, t denotes the hopping integral, U is the
on-site Hubbard repulsion, ¢ is a measure of the EP
coupling strength, and the summation over  extends

over a (periodic) chain of IV sites.

Adiabatic Holstein-Hubbard model:
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Here the elastic energy of the lattice Is included via
the stiffness constant” K(ep). A; = (—1)'A'is a
measure of a staggered density modulation.

lonic Hubbard model:
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Only the half-filled band case is considered.

Symmetry considerations:

Since the Hamiltonian of the HHM Is invariant with
respect to Inversion at site ¢, any nondegenerate
eigenstate |¢,,) of H must obey

(P? = 1), where the site inversion symmetry oper-

ator P (parity) is defined by for
i = 0,1,...,N — 1 (and P|0) = |0) holds for the
electron vacuum state).

Defining criteria for insulating phases:

Band insulator (BI) Ne=Ag >0
Mott insulator (M) Ae>0,Ag =0
Correlated insulator (Cl) A.> Ag>0

Charge gap:
AdN) =B+ 1,0+ E(¥ - 1,Y) —2E,(Y, )

Spin gap:
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Note that A, Is distinct from the optical gap, Appt,
which corresponds to the minimal excitation energy
(Em — Eg) in the same particle number sector.

Selection rule for optical transitions: (0[j|m) # 0
only if |m) and |0) have different parities.

Numerical Results

| onic Hubbard model

DMRG calculations were performed for A = 0.5, on
open chains with N = {30, 40, 50,60} (main plot)

N = {30, 40, 50, 60,200,300} (inset), and extrapo-
lated to the limit of infinite chain length.
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Existence of a single insulator-insulator transition
point with A, > 0 at U.(A).

Origin of the transition: level crossing of different
site-parity sectors [5, 6] ~» Ay = 0 at Ue(A).
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Open boundaries lead to strong Friedel-like oscilla-
tions of the bond-charge-density-wave (BCDW).
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U < U, - (Bl): reduction of BCDW oscillation.

U > U, - (Cl): enhancement of BCDW oscillation.
~> possible bond-order wave (BOW) in the CI
phase [/, 8].

Adiabatic Holstein-Hubbard model
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AHHM; AU, K):

N = 8ring (triangles) N = 64 open chain (stars)
IHM; level crossing line Aq-(U):

N = 8ring (diamonds); extrapolated data to N = 64
from N = §, 10, 12, 14 ring (circles)

Holstein model of spinless fermions
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GS phase diagram at half filling (N = N/2), showing the
boundary between the Luttinger liquid (LL) and charge-density-
wave (CDW) states obtained by exact diagonalization (ED) and
density matrix renormalization group (DMRG) [9] approaches
(dashed line - asymptotic result for the XXZ model). Left insets
show the LL parameters u, and K, in the metallic regime, ob-
tained to leading order fromthe scaling relations

Eo(N)/N = € — 7u,/(6N?)
Eo(N £1) — Ex(N) = wu,/(2K,N)

Right insets display the regular part of the optical conductivity
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with j = —iet 3,.(cl ¢ii10 — €hiyoCip)s @nd the integrated
spectral weight S™(w) = [, dw'o™9(w’) in the CDW region.

Hol stein-Hubbard mode

Rescaled parameter: w = U/4t, A = €5/2t, o = wy /1
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Staggered charge- and spin-structure factors,

Se(T) = 8 .00 (=1 {(Rig — 3)(Mitj o0 — 3))
Ss(m) = 4 (=1I(SFS7 ) SF = 5(nip — n4)).

vs. the rescaled Hubbard interaction U/2¢,. Lanc-
20s results for the HHM on an 8-site ring are given in
the adiabatic (triangles) and non-adiabatic (squares)
regimes. Upper inset: finite-size scaling of S.(7) for
various U; lower inset: U-dependence of the kinetic
energy Er;,. Open (closed) symbols belong to GSs
with P = —1 (+1).
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Phonon distribution in the GS of the HHM for var-
lous model parameters. In the Ml state (open sym-
bols) the weight of the zero-phonon state is almost
one, |c™|? ~ 1.
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Optical conductivity in the 8-site HHM for wy=0.1¢
and g2 ="7. Top panel: Pl phase for U = 0; middle
panel: near criticality U ~ Upgy,; lower panel: Ml
phase for U = 3t. Dashed lines give the normalized
integrated spectral weights S"9(w). The lower two
panels include ¢"%9 for ¢ = 0 (dotted lines), i.e. for
the pure Hubbard chain.

Schematic Phase Diagrams
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At U = 0 and wg = 0 the GS is a Peierls distorted
state V ¢, > 0. As In the Holstein model of spinless
fermions, at wy > 0 quantum phonon fluctuations
destroy the Pelerls instability for small g. Above
a critical threshold g.(wg), the HHM describes a Pl
with gapped spin and charge excitations. In the non-
adiabatic strong EP coupling regime, the system is
typified by a CDW bipolaronic insulator rather than
a traditional Peierls BI.

Increasing U at fixed g, the dimerization and the con-
comitant CDW are suppressed. Accordingly the sys-
tem evolves from the PI to the MI. At U, the parity
of the GS of our finite system undergoes a change
from P =+1 (Pl)to P = —1 (MI).

Above U, In the MI phase, the low-energy physics
of the system iIs governed by gapless spin and mas-
sive charge excitations. In the MI regime the optical
gap Is by its nature a correlation gap.
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