Photoemission spectra of many-polaron systems

M. Hohenadler*, D. R. Neuber*, W. von der Linden*, G. Wellein[†], J. Loos[‡], and H. Fehske[◊]

- * Institute for Theoretical and Computational Physics, Graz University of Technology, Austria
 † Computing Centre, University of Erlangen, Germany
 ‡ Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
 > Institute for Physics, Ernst-Moritz-Arndt University Greifswald, Germany

Motivation

- · Polaronic carriers are expected to exist in a number of strongly correlated materials (e.g., colossal magnetoresistive manganites).
- \bullet Question: WHAT happens to polarons if their density is large enough so that individual quasiparticles would overlap?
- Even for the most simplified models no reliable analytical results exist in the adiabatic intermediate coupling regime
- Numerical methods allow unbiased studies for realistic parameters.

: phonon energy

: electron-phonon coupling strength, $g = \sqrt{E_{\rm p}/\omega_0}$ We use the dimensionless parameters

$$\lambda = \frac{E_{\rm p}}{2t}$$
 and $\overline{\omega}_0 = \frac{\omega_0}{t}$.

- \bullet Bipolarons suppressed by Coulomb repulsion, here: $U \rightarrow \infty$
- Extended polaron state only exists in one dimension!
- We mainly consider $\overline{\omega}_0 < 1$ (adiabatic regime).

Methods

 ω_0

Quantum Monte Carlo (QMC)

- Grand-canonical method, free of autocorrelations.
- Based on Lang-Firsov transformed model
- Finite temperature $k_{\rm B}T = \beta^{-1}$, Trotter discretization $\Delta \tau = 0.1$.
- Sign problem for intermediate λ and small $\overline{\omega}_0$ at low temperatures. • Maximum entropy method required to get dynamic quantities.

Exact diagonalization (ED)

- Kernel polynomial method, parallel matrix-vector multiplication. • Zero temperature
- Analytical separation of symmetric phonon mode [2].
- Cutoff for maximal number of phonons.
- Maximum entropy method to maximize energy resolution [3]

Observables

Single-particle spectral function

$$A(k, \omega - \mu) = -\frac{1}{\pi} \text{Im} \, G(k, \omega - \mu) \,.$$

at momentum k and energy $\omega - \mu$ (μ : chemical potential) QMC can measure

$$G(k,\tau) = \langle c_k^{\dagger}(\tau) c_k \rangle = \int_{-\infty}^{\infty} d\omega \frac{e^{-\tau(\omega-\mu)} A(k,\omega-\mu)}{1 + e^{-\beta(\omega-\mu)}}$$

 $G(k, \tau)$ denotes imaginary-time Green function Single-particle density of states

$$\rho(\omega - \mu) = -\frac{1}{-1} \operatorname{Im} G(\omega - \mu)$$

Kernel polynomial method yields approximation to

$$\begin{split} A^+(k,\omega) &= \sum_l |\langle \Psi_{l,k}^{(N_c+1)} | c_{k-q}^\dagger | \Psi_{0,q}^{(N_c)} \rangle|^2 \, \delta[\omega - (E_{l,k}^{(N_c+1)} - E_{0,q}^{(N_c)}] \, , \\ A^-(k,\omega) &= \sum_l |\langle \Psi_{l,k}^{(N_c-1)} | c_{q-k} | \Psi_{0,q}^{(N_c)} \rangle|^2 \, \delta[\omega + (E_{l,k}^{(N_c-1)} - E_{0,q}^{(N_c)})] \, , \end{split}$$

where $\langle \Psi_{l,k}^{(N_c)} |$ and $E_{l,k}^{(N_c)}$ denote the *l*th eigenstate with momentum k and N_c electrons and the corresponding energy, respectively.

10/-...

vveak coupling
$[N = 32, \beta t = 10, \overline{\omega}_0 = 0.4, \lambda = 0.1]$
Expect weakly dressed electrons, no polarons.
$CONTINUE \longrightarrow$

• Exponentially small weight at Fermi level for all n (polaron band). • Large high-energy incoherent features,

reflecting the phonon distribution

Density of states (QMC)

Intermediate coupling

 $[N=10,\,\beta t=10,\,\overline{\omega}_0=0.4,\,\lambda=1.0]$ At low densities: large polarons extending over more than one site: notably overlap with increasing carrier density iation \rightarrow new quasiparticles

CONTINUE -

Again consider critical coupling for small-polaron crossover (g = 1).

Spectral function (ED)

• Spectra mainly unchanged going from n = 0.1 (red/black)

to n = 0.3 (green/blue).

• Polaronic carriers also at large fillings in nonadiabatic regime.

Conclusions

- Adiabatic intermediate coupling regime
- Large polarons dissociate at large carrier densities.
- Crossover from a polaronic to a metallic system.
- Single-polaron theories not suitable at finite doping.

References

- Hohenadler et al., cond-mat/0412010
- [2] Sykora et al., PRB **71**, 045112 (2005)
- [3] Bäuml et al., PRB **58**, 3663 (1998)

Acknowledgments

Work supported by the Austrian Science Fund (FWF), project No. P15834, and the Deutsche Forschungsgemeinschaft through SPP1073. M. H. is grateful to the Austrian Academy of Sciences and HPC-Europa, and H. F. acknowledges the hospitality at TU Graz. We would like to thank A. R. Bishop, H. G. Evertz, T. Lang and A. Weiße for useful discussion, and acknowledge generous computer time granted by the LRZ Munich

