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Motivation
• Polaronic carriers are expected to exist in a number of strongly

correlated materials (e.g., colossal magnetoresistive manganites).

• Question: WHAT happens to polarons if their density is large
enough so that individual quasiparticles would overlap?

• Even for the most simplified models no reliable analytical results
exist in the adiabatic intermediate coupling regime.

• Numerical methods allow unbiased studies for realistic parameters.

Model
1D spinless Holstein Hamiltonian

H = −t
∑

〈i,j〉

c
†
icj + ω0

∑

i

b
†
ibi − gω0

∑

i

n̂i(b
†
i + bi )

c
†
iσ : creates spinless fermion at site i

b
†
i : creates phonon at site i

n̂i : electron occupation number, n̂i = c
†
ici , ni = 0, 1

Parameters:
t : nearest-neighbour hopping parameter
ω0 : phonon energy

g : electron-phonon coupling strength, g =
√

Ep/ω0

We use the dimensionless parameters

λ =
Ep

2t
and ω0 =

ω0

t
.

• Bipolarons suppressed by Coulomb repulsion, here: U → ∞.

• Extended polaron state only exists in one dimension!

• We mainly consider ω0 < 1 (adiabatic regime).

Methods
Quantum Monte Carlo (QMC)

• Grand-canonical method, free of autocorrelations.

• Based on Lang-Firsov transformed model.

• Finite temperature kBT = β−1, Trotter discretization ∆τ = 0.1.

• Sign problem for intermediate λ and small ω0 at low temperatures.

• Maximum entropy method required to get dynamic quantities.

Exact diagonalization (ED)

• Kernel polynomial method, parallel matrix-vector multiplication.

• Zero temperature.

• Analytical separation of symmetric phonon mode [2].

• Cutoff for maximal number of phonons.

• Maximum entropy method to maximize energy resolution [3].

Observables

Single-particle spectral function

A(k, ω − µ) = −
1

π
Im G(k, ω − µ) .

at momentum k and energy ω − µ (µ: chemical potential).
QMC can measure

G(k, τ ) = 〈c
†
k(τ )ck〉 =

∫ ∞

−∞
dω

e−τ (ω−µ)A(k, ω − µ)

1 + e−β(ω−µ)
,

G(k, τ ) denotes imaginary-time Green function.
Single-particle density of states:

ρ(ω − µ) = −
1

π
Im G(ω − µ) .

Kernel polynomial method yields approximation to

A+(k, ω) =
∑

l |〈Ψ
(Ne+1)
l,k |c

†
k−q|Ψ

(Ne)
0,q 〉|2 δ[ω − (E

(Ne+1)
l,k − E

(Ne)
0,q )] ,

A−(k, ω) =
∑

l |〈Ψ
(Ne−1)
l,k |cq−k|Ψ

(Ne)
0,q 〉|2 δ[ω + (E

(Ne−1)
l,k − E

(Ne)
0,q )] ,

where 〈Ψ
(Ne)
l,k | and E

(Ne)
l,k denote the lth eigenstate with momentum

k and Ne electrons and the corresponding energy, respectively.

Weak coupling
[N = 32, βt = 10, ω0 = 0.4, λ = 0.1]

Expect weakly dressed electrons, no polarons.

CONTINUE −→

Spectral function (QMC)
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(b) n = 0.2
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(c) n = 0.3
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• Free-electron-like spectra, bandwidth close to 4t.

• Weak phonon signatures.

Density of states (QMC)
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• Large spectral weight at µ for low densities.

• Tendency toward Peierls-insulating state at n = 0.5 (T > 0!).

Strong coupling
[N = 32, βt = 10, ω0 = 0.4, λ = 2.0]

Small polarons, little overlap even for large n.

Spectral function (QMC)
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• Exponentially small weight at Fermi level for all n (polaron band).

• Large high-energy incoherent features,
reflecting the phonon distribution.

Density of states (QMC)
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• Half-filled band: particle-hole symmetry,
Peierls insulator with polaronic superlattice.

Intermediate coupling
[N = 10, βt = 10, ω0 = 0.4, λ = 1.0]

At low densities: large polarons extending over more than one site;
notably overlap with increasing carrier density
→ dissociation → new quasiparticles

CONTINUE −→

Spectral function (ED + QMC)
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(a) n = 0.1
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(b) n = 0.2
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(c) n = 0.3
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(d) n = 0.4

• n = 0.1: polaron band at Fermi level, flattening at large k.

• Incoherent part closely follows free dispersion.

• ↑ n: polaronic peaks broaden and merge to broad band at n = 0.4.

• n = 0.4: rather ‘normal’ metallic behaviour!

• Good agreement between QMC (blue) and ED.

Density of states (QMC)
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• Little weight at µ for n = 0.1,
but increases with n due to dissociation of polarons.

• n = 0.5: charge-density-wave order sets in, weight at µ suppressed!

• T > 0: phonon excitations at |ω − µ| ≈ 2.5ω0.

Nonadiabatic strong-coupling regime
[N = 10, ω0 = 4.0, λ = 2.0]

Again consider critical coupling for small-polaron crossover (g = 1).

Spectral function (ED)
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• Spectra mainly unchanged going from n = 0.1 (red/black)
to n = 0.3 (green/blue).

• Polaronic carriers also at large fillings in nonadiabatic regime.

Conclusions
• Adiabatic intermediate coupling regime:

Large polarons dissociate at large carrier densities.

• Crossover from a polaronic to a metallic system.

• Single-polaron theories not suitable at finite doping.
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