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Abstract

The numerical calculation of dynamical corre-
lation functions, like optical conductivities, spin
structure factors and other (linear) response
functions, is one of the typical problems in con-
densed matter physics. At zero temperature
Chebyshev expansion and the Kernel Polyno-
mial Method (KPM) [1] proved to be a valuable
tool for this kind of problem, for both interact-
ing and non-interacting quantum systems. We
present a non-trivial extension of these meth-
ods to finite temperature [2]. To demonstrate the
power of the approach we calculate the optical
conductivity of non-interacting electrons in a ran-
dom potential (Anderson model).

Kernel Polynomial Method

KPM was proposed a decade ago for the calcu-
lation of the density of states of large Hamilto-
nian matrices [1],

ρ(E) =
1
N

N−1

∑
n=0

δ (E −En) . (1)

The function of interest is expanded in terms of
the functions φm(x) = Tm(x)

π
√

1−x2
, derived from the

Chebyshev polynomials Tm(x) = cos(macos(x)).

To alleviate the effects of a truncation of such a
series the result is convoluted with the Jackson
kernel,

KM(x,y) = g0φ0(x)φ0(y)+2
M−1

∑
m=1

gmφm(x)φm(y) , (2)

gm =
(M−m+1)cos πm

M+1 + sin πm
M+1 cot π

M+1

M +1
.

(3)
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Expansion of δ (x): Plain truncated series versus KPM.

The KPM approximation of ρ(E) then reads

ρ(E) ≈
g0µ0 +2

M−1
∑

m=1
gmµm Tm[(E −b)/a]

π
√

a2− (E −b)2
, (4)

with expansion coefficients µm given by the trace

µm = a
1

∫

−1

ρ(ax+b)Tm(x)dx

=
1
N

Tr
[

Tm

(

H −b
a

)]

.

(5)

Main advantages of KPM:
• Full evaluation of the trace not required, the

average over a small number of random vec-
tors |r〉 is sufficient.

• Recursion relations for Tm allow for an iterative
calculation of the µm based on matrix-vector
multiplications.

• For sparse Hamiltonian matrices the numeri-
cal effort is linear in the dimension N.

Dynamical correlation functions

KPM is easily applied [1] to zero-temperature dy-
namical correlation functions of interacting sys-
tems, e.g.,

σ(ω) =
1

ωN ∑
n>0

|〈n|J|0〉|2 δ (ω −En +E0) . (6)

Finite temperature correlations are far more
complex due to the double summation over ma-
trix elements between all eigenstates and the
thermal weighting,

σ(ω) = ∑
n,m

|〈n|J|m〉|2
ωZN

(e−βEn − e−βEm) δ (ω −ωmn) .

(7)

Previous attempts [3] are based on a Chebyshev
/ KPM expansion of the thermal weighting fac-
tors and explicit numerical time evolution ⇒ slow
and complicated, since every change in temper-
ature requires a new simulation.

New approach [2]: Rewrite σ(ω) as

σ(ω) =
1

ωZN

∞
∫

−∞

j(y+ω ,y)
(

e−βy− e−β (y+ω)
)

dy

(8)
with a matrix element density

j(x,y) = ∑
n,m

|〈n|J|m〉|2 δ (x−En) δ (y−Em) (9)

Matrix element density for the Anderson model at W = 2
and 12.

Introducing two-dimensional KPM we can eas-
ily expand j(x,y), a function of two variables, in
terms of

φlm(x,y) =
Tl(x)Tm(y)

π2
√

(1− x2)(1− y2)
, (10)

and the expansion coefficients µlm are again
characterised by a trace,

µlm = Tr
(

Tl(H̃)JxTm(H̃)Jx
)

. (11)

Advantages of the new approach:
• Knowing µlm and j(x,y) from a single simula-

tion, we can calculate the dynamical correla-
tion function for all temperatures and, for non-
interacting systems, all chemical potentials.

• Like standard KPM, for sparse Hamiltonians
the new approach is linear in the Hilbert space
dimension.

• The high stability of the Chebyshev recursion
allows better resolution, compared, e.g., to fi-
nite temperature Lanczos methods [4].

AC conductivity of the Anderson model

As a particularly interesting example we con-
sider the optical conductivity of the Anderson
model [5],

H = −t ∑
〈i j〉

(

c†
i c j + c†

jci

)

+∑
i

εic
†
i ci , (12)

which describes the motion of electrons in a dis-
ordered crystal, characterised by a random on-
site potential εi ∈ [−W/2,W/2]. For spatial di-
mension d > 2 the system is known to undergo
a continuous metal-insulator transition, caused
by the onset of localisation of the single-particle
eigenfunctions of H.

For this model of non-interacting fermions the
optical conductivity reads

σ(ω)= ∑
n,m

|〈n|Jx|m〉|2
ωLd ( f (Em)− f (En))δ (ω−ωnm) ,

(13)

where ωnm = En−Em, f (E) = [eβ (E−µ)+1]−1 is the
Fermi function and

Jx = −it ∑
i

(

c†
i ci+x− c†

i+xci

)

(14)

the x-component of the current operator. Note,
that for finite band-filling, µ > 0, the complexity of
the numerical problem is the same for T = 0 and
T > 0. In both cases the calculation of matrix
elements between all eigenstates is required.
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Optical conductivity of the 3D Anderson model (PBC) at
T = µ = 0.

Previous studies of σ(ω) were mostly based on
a complete diagonalisation of H and an explicit
calculation of the matrix elements. Naturally,
the accessible system sizes were very limited
(N = L3 ≤ 203). The new approach yields high-
resolution σ(ω) data for systems with 106 sites
or more.
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Based on these results we can check analyti-
cal predictions for the low-frequency behaviour
of σ(ω). For a d > 2 dimensional system one-
parameter scaling theory and renormalisation
group arguments [6] yield ∆σ = σ(ω)−σ(0) ∼
ω (d−2)/2 for the metallic phase, σ(ω) ∼ ω (d−2)/d

exactly at the transition, and σ(ω) ∼ ω 2 on the
insulating side [7].
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Fits of our numerical data confirm these predic-
tions, i.e., for W ≥ Wc we find an exponent that
increases from α = 1/3, and σ(0) = 0. In the
metallic phase, for PBC α increases towards 1/2
and σ(0) becomes finite. Within OBC no current
can flow and the response is that of an insulator,
σ(0) = 0 and further decreasing α.
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To check the consistency of the fit parameter
σ(0) we considered a Landauer Büttiker type
setup and calculated σdc directly using a nu-
merical Greens function approach [8]. Finite
size scaling with the ansatz σdc ∝ Le−L/λ/(a+L)
yields good agreement with σ(0).

Note that fitting the power law σdc ≡ σ(0) ∝ |W −
Wc|s leads to a critical exponent larger than the
expected s = (d − 2)ν ≈ 1.57, a puzzle we hope
to understand in future studies.

Weak localisation and beyond

The new approach allows also the study of
large two-dimensional systems, which are ex-
pected to be insulating for any non-zero disor-
der. In contrast to d > 2, from the diffusion
approximation [9] we now expect a logarithmic
low-frequency behaviour of σ(ω). The data il-
lustrates, however, that for increased disorder
higher order corrections [10],

σ(ω) ∝ ln(1+ω/ω0) , (15)

need to be taken into account.
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Conclusions

Based on the Kernel Polynomial Method we pro-
pose a promising new approach for the numer-
ical calculation of finite-temperature dynamical
correlation functions. Its application to the An-
derson model yields the optical conductivity of
large finite clusters and confirms analytical pre-
dictions for the low-frequency behaviour.

References

[1] R. N. Silver and H. Röder, Int. J. Mod. Phys.
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