Chebyshev expansion method for finite-T dynamical correlations

— Optical response of the Anderson model —

Abstract

The numerical calculation of dynamical corre-
lation functions, like optical conductivities, spin
structure factors and other (linear) response
functions, is one of the typical problems in con-
densed matter physics. At zero temperature
Chebyshev expansion and the Kernel Polyno-
mial Method (KPM) [1] proved to be a valuable
tool for this kind of problem, for both interact-
Ing and non-interacting quantum systems. We
present a non-trivial extension of these meth-
ods to finite temperature [2]. To demonstrate the
power of the approach we calculate the optical
conductivity of non-interacting electrons in a ran-
dom potential (Anderson model).

Kernel Polynomial Method

KPM was proposed a decade ago for the calcu-
lation of the density of states of large Hamilto-
nian matrices [1],

P(E) =) S(E—E,). (1)

The function of interest is expanded in terms of
the functions ¢,,(x) = Il derived from the
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Chebyshev polynomials 7,,(x) = cos(macos(x)).
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To alleviate the effects of a truncation of such a
series the result is convoluted with the Jackson
kernel,
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Expansion of 6(x): Plain truncated series versus KPM.
The KPM approximation of p(E) then reads
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with expansion coefficients u,, given by the trace
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Main advantages of KPM:

e Full evaluation of the trace not required, the
average over a small number of random vec-
tors |r) is sufficient.

e Recursion relations for 7,, allow for an iterative
calculation of the u,, based on matrix-vector
multiplications.

e For sparse Hamiltonian matrices the numeri-
cal effort is linear in the dimension N.
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Dynamical correlation functions

KPM is easily applied [1] to zero-temperature dy-
namical correlation functions of interacting sys-
tems, e.g.,
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Finite temperature correlations are far more
complex due to the double summation over ma-
trix elements between all eigenstates and the
thermal weighting,
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Previous attempts [3] are based on a Chebyshev
/ KPM expansion of the thermal weighting fac-
tors and explicit numerical time evolution = slow
and complicated, since every change in temper-
ature requires a new simulation.

New approach [2]: Rewrite () as
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with a matrix element density

jxy) =Y [(n|J|m)|> 6(x—E,) 6(y—En) (9)

Matrix element density for the Anderson model at W = 2
and 12.

Introducing two-dimensional KPM we can eas-
ily expand j(x,y), a function of two variables, in
terms of
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and the expansion coefficients ;, are again
characterised by a trace,

Om(x,Y) (10)

Wi = Tr (T,(H)J T.(H)J,) . (11)

Advantages of the new approach:

e Knowing u;,, and j(x,y) from a single simula-
tion, we can calculate the dynamical correla-
tion function for all temperatures and, for non-
Interacting systems, all chemical potentials.

e Like standard KPM, for sparse Hamiltonians
the new approach is linear in the Hilbert space
dimension.

e The high stability of the Chebyshev recursion
allows better resolution, compared, e.g., to fi-
nite temperature Lanczos methods [4].

AC conductivity of the Anderson model

As a particularly interesting example we con-
sider the optical conductivity of the Anderson
model [9],

H = —IZ (cjcj + cjci) + Zeicjci, (12)
(i) i

which describes the motion of electrons in a dis-
ordered crystal, characterised by a random on-
site potential €, € [-W /2, W /2]. For spatial di-
mension d > 2 the system is known to undergo
a continuous metal-insulator transition, caused
by the onset of localisation of the single-particle
eigenfunctions of H.

For this model of non-interacting fermions the
optical conductivity reads

o)=Y (k) f(E) 80 o).
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where @,, =E,—E,, f(E)=[e’E-# +1]"is the
Fermi function and

J, = —1lt Z (c:fciﬂ - chci) (14)
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the x-component of the current operator. Note,
that for finite band-filling, u > 0, the complexity of
the numerical problem is the same for T = 0 and
T > 0. In both cases the calculation of matrix
elements between all eigenstates is required.
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Optical conductivity of the 3D Anderson model (PBC) at
T=u=0.

Previous studies of o(w) were mostly based on
a complete diagonalisation of H and an explicit
calculation of the matrix elements. Naturally,
the accessible system sizes were very limited
(N = L? < 20°). The new approach yields high-
resolution o(w) data for systems with 10° sites
or more.
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Based on these results we can check analyti-
cal predictions for the low-frequency behaviour
of o(w). For a d > 2 dimensional system one-
parameter scaling theory and renormalisation
group arguments [6] yield Ac = o(w) — 6(0) ~
w'?=2)/2 for the metallic phase, ¢(w) ~ w¥=2)/4
exactly at the transition, and o(®) ~ ®* on the
insulating side [7].
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Fits of our numerical data confirm these predic-
tions, i.e., for W > W, we find an exponent that
increases from a = 1/3, and ¢(0) =0. In the
metallic phase, for PBC « increases towards 1/2
and o(0) becomes finite. Within OBC no current
can flow and the response is that of an insulator,
c(0) = 0 and further decreasing «.
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To check the consistency of the fit parameter
o(0) we considered a Landauer Buttiker type
setup and calculated oy, directly using a nu-
merical Greens function approach [8]. Finite
size scaling with the ansatz oy o< Le */* /(a+ L)
yields good agreement with ¢(0).

Note that fitting the power law 64; = 6(0) o< |W —
W.|* leads to a critical exponent larger than the
expected s = (d —2)v ~ 1.57, a puzzle we hope
to understand in future studies.

Weak localisation and beyond

The new approach allows also the study of
large two-dimensional systems, which are ex-
pected to be insulating for any non-zero disor-
der. In contrast to 4 > 2, from the diffusion
approximation [9] we now expect a logarithmic
ow-frequency behaviour of o(w). The data il-
ustrates, however, that for increased disorder
nigher order corrections [10],

o(w) o< In(1+w/ay), (15)

need to be taken into account.
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T = u =0 and fits to Eq. (15).

Conclusions

Based on the Kernel Polynomial Method we pro-
pose a promising new approach for the numer-
ical calculation of finite-temperature dynamical
correlation functions. lts application to the An-
derson model yields the optical conductivity of
large finite clusters and confirms analytical pre-
dictions for the low-frequency behaviour.
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