De-excitation of metastable nitrogen molecules on surfaces - quantum kinetic modelling -

Johannes Marbach, Franz Xaver Bronold and Holger Fehske

Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, D-17489 Greifswald

Motivation

- ▷ secondary electrons emitted from plasma boundaries are generally very important for the operation of a gas discharge
 - dielectric barrier discharges for instance: experimental evidence that stability of the diffusive mode is controlled by seed electrons at the electrodes [1]
- \triangleright up to now not clear how secondary electrons are made available on the microscopic scale
 - one possibility: de-excitation of metastables at

- ▷ generalization of ordinary Green's function technique using a time contour in the complex plane ▷ first step: consider evolution of excited state ▷ equation of motion (Dyson equation) for retarded Green's function (compact notation):

 $G_{1m}^{R} = G_{1m}^{R(0)} + G_{1m}^{R(0)} \Sigma_{1m}^{R} \quad G_{1m}^{R} \quad (12)$

▷ calculate self energy Σ_{1m}^R in second order perturbation theory (see Fig. 3) ⇒ central function:

 $\Delta_{1m}(t_1, t_2) = \sum_{\vec{k}, \vec{q}} V_{0m, \vec{k}}^{\vec{q}, 1m}(t_1) V_{0m, \vec{k}}^{\vec{q}, 1m}(t_2) n_{\vec{k}}(t_0) \times e^{-i(\varepsilon_0 + \varepsilon_{\vec{q}} - \varepsilon_1 - \varepsilon_{\vec{k}})(t_1 - t_2)}$ (13)

 \triangleright Eq. (21) too complex to be calculated numerically in considerable time \Rightarrow physically motivated approximations necessary

Matrix element

 \triangleright can be calculated numerically from Eq. (4) \triangleright to make final result (Eq. (21)) tractable numerically, it would be desirable to separate $\vec{k} \& \vec{q}$ dependent terms from the matrix element calculation \triangleright only possible through approximations -long-wavelength approximation: * assume $\varepsilon_{\vec{q}}$ small $\Rightarrow \lambda_{\vec{q}}$ big

the boundary with subsequent release of surface electrons (see Fig. 1)

Fig. 1: Electron release through de-excitation of a metastable nitrogen molecule impacting on a surface.

- \triangleright metastable de-excitation process can take place in several possible ways:
 - Penning de-excitation
 - Penning exchange-process
 - -direct (resonant) charge transfer

— . . .

- \triangleright released electron can emerge from bulk or surface state
- \triangleright total number of released electrons per impacting metastable particle: secondary electron emission coefficient γ_e

Fig. 2: Schematic of the Penning de-excitation process (solid lines) in an Al / N_2^* system showing the electronic structure and the qualitative behaviour of the wave functions. The Penning exchange process is indicated using dashed lines.

 \triangleright model Hamiltonian:

$$H = H_{0} + H_{1}(t)$$
(1)

$$H_{0} = \sum_{\vec{k}} \varepsilon_{\vec{k}} c_{\vec{k}}^{\dagger} c_{\vec{k}} + \sum_{\vec{q}} \varepsilon_{\vec{q}} c_{\vec{q}}^{\dagger} c_{\vec{q}}$$
(2)

$$+ \sum_{m} \varepsilon_{0} c_{0m}^{\dagger} c_{0m} + \sum_{m} \varepsilon_{1} c_{1m}^{\dagger} c_{1m}$$
(2)

$$H_{1}(t) = \sum_{\vec{k}, \vec{q}, m} \left(V_{0m, \vec{k}}^{\vec{q}, 1m}(t) c_{0m}^{\dagger} c_{\vec{k}} c_{\vec{q}}^{\dagger} c_{1m} + h.c. \right)$$
(3)

 \dot{k} ... metal electron states

 \vec{q} ... free electron states

- $m \dots$ molecular magnetic quantum number
- \triangleright molecule motion contained in $H_1(t)$ ▷ Penning matrix element:

$$V_{0m,\vec{k}}^{\vec{q},1m}(t) = \int d\vec{r} \int d\vec{r}' \ \Psi_{0m}^{*} \left(\vec{r} - \vec{R}(t)\right) \\ \times \Psi_{\vec{k}}(\vec{r}) V_{C}\left(\left|\vec{r} - \vec{r}'\right|\right) \ \Psi_{\vec{q}}^{*}\left(\vec{r}'\right) \ \Psi_{1m}\left(\vec{r}' - \vec{R}(t)\right)$$

Fig. 3: Second order self energies for an electron in the excited molecule state and the free electron state (note the dressed Green's function G_{1m}).

▷ Eq. (12) solvable iteratively

$$G_{1m}^{R}(t,t') = G_{1m}^{R(0)}(t,t') T_{c} e^{-\int_{t'}^{t} dt_{1} \int_{t'}^{t} dt_{2} \Delta_{1m}^{R}(t_{1},t_{2})}$$
(14)

 \rightsquigarrow occupation number of excited state:

$$n_{1m}(t) = \frac{1}{2} - \frac{1}{2} \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \left[\Delta_{1m}(t_1, t_2) \right] \\ \times T_c e^{-\int_{t_1}^t dt'_1 \int_{t_1}^t dt'_2 \Delta_{1m}^R(t'_1, t'_2)} T_a e^{-\int_{t_2}^t dt'_1 \int_{t_2}^t dt'_2 \Delta_{1m}^A(t'_1, t'_2)} \\ + \frac{1}{2} T_c e^{-\int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \Delta_{1m}^R(t_1, t_2)} T_a e^{-\int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \Delta_{1m}^A(t_1, t_2)} \\ T_a e^{-\int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \Delta_{1m}^R(t_1, t_2)} T_a e^{-\int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \Delta_{1m}^A(t_1, t_2)}$$

$$(15)$$

- $*\Psi_{\vec{a}}$ can be taken at the molecule's center $\vec{R}(t)$ and moved in front of the integral
- metal wave function decreases exponentially outside the solid on a scale large compared to the molecule's bond length (see Eq. (10) and Fig. 2) \Rightarrow expand $\Psi_{\vec{k}}$ around molecule's center

 \triangleright in addition: variable transform: $\vec{r} \rightarrow \vec{r} + \vec{R} \Rightarrow$ time-dependence shifted to $\vec{k} \& \vec{q}$ dependent terms \triangleright final structure:

 $V_{0m,\vec{k}}^{\vec{q},1m}(t) = V_{\vec{k}}(t)V_{\vec{q}}(t)V_m$ (22) $V_{\vec{k}}(t) = -\kappa_{k_z} \Psi_{\vec{k}}\left(\vec{R}(t)\right)$ (23) $V_{\vec{q}}(t) = \Psi_{\vec{q}}^*(\vec{R}(t))$ (24) $V_m = \int d\vec{r} \int d\vec{r}' z \Psi_{0m}^* \left(\vec{r}\right) V_C \left(\left|\vec{r} - \vec{r}'\right|\right) \Psi_{1m} \left(\vec{r}'\right)$

▷ aim of our investigations: quantum-kinetic simulation of the de-excitation of metastable nitrogen molecules on a dielectric surface (preferably Al_2O_3) and calculation of γ_e

Model

- \triangleright we need experimental & theoretical data to compare our results with, so that we can
 - -validate our approach
- benchmark our calculations and the approximations that may be necessary
- ensure that our description is detailed enough for the plasma context
- \triangleright problem: data available only for N_2^* de-excitation on Al ([2]) but not on Al_2O_3
- \triangleright therefore we consider Al / N_2^* system as a starting point
- \triangleright dominant metastable state: $N_2({}^3\Sigma_u^+)$
- ▷ initial step: investigate Penning de-excitation process (see Fig. 2)

- ▷ to calculate $V_{0m\,\vec{k}}^{\vec{q},1m}(t)$ we need wave functions:
 - -electron on molecule: linear combination of atomic orbitals (LCAO) using hydrogen-like wave functions \Rightarrow ground state $2\pi_u$ & excited state $2\pi_q$

$$\Psi_{0m}(\vec{r}) = \Psi_{2\pi_u^m}(\vec{r}) = \Psi_{2p_m}^A(\vec{r}) + \Psi_{2p_m}^B(\vec{r})$$
(5)

$$= \frac{1}{\sqrt{N_{2\pi_u}}} \frac{(-2m)\kappa^{\frac{5}{2}}}{\sqrt{8\pi}} re^{im\varphi}$$
(6)

$$\times \left(e^{-\kappa}\sqrt{r^{2}+(z+\frac{\varrho}{2})^{2}} + e^{-\kappa}\sqrt{r^{2}+(z-\frac{\varrho}{2})^{2}}\right)$$
(7)

$$\Psi_{1m}(\vec{r}) = \Psi_{2\pi_g^m}(\vec{r}) = \Psi_{2p_m}^A(\vec{r}) - \Psi_{2p_m}^B(\vec{r})$$
(7)

$$= \frac{1}{\sqrt{N_{2\pi_g}}} \frac{(-2m)\kappa^{\frac{5}{2}}}{\sqrt{8\pi}} re^{im\varphi}$$
(8)

$$\times \left(e^{-\kappa}\sqrt{r^{2}+(z+\frac{\varrho}{2})^{2}} - e^{-\kappa}\sqrt{r^{2}+(z-\frac{\varrho}{2})^{2}}\right)$$
(8)

$$r, z \dots \text{ cylindrical coordinates }, \kappa = \frac{3.5}{a_B} N_{2\pi_u/g} \dots \text{ Normalization constants}$$

$$\varrho \dots \text{ interatomic distance}$$

-electron in surface: model solid as a potential well with square confining potential step & use box normalization (see also Fig. 2)

 $\Psi_{\vec{k}}\left(\vec{r}\right) = \frac{1}{L\sqrt{L}} e^{ik_x x} e^{ik_y y} \Psi_{k_z}(z)$

▷ now consider total number of emitted electrons

$$\gamma_{e} = \lim_{t \to \infty} \sum_{\vec{q}} n_{\vec{q}}(t) = \lim_{t \to \infty} \sum_{\vec{q}} \frac{1}{2} \left(1 - iF_{\vec{q}}(t,t) \right)$$
(16)
▷ Keldysh component of Green's function $F_{\vec{q}}(t,t')$:

$$F_{\vec{q}}(t,t') \approx -i G_{\vec{q}}^{R(0)}(t,t_{0}) G_{\vec{q}}^{A(0)}(t_{0},t')$$

$$+ \int_{t_{0}}^{t} dt_{1} \int_{t_{0}}^{t'} dt_{2} G_{\vec{q}}^{R(0)}(t,t_{1}) \Omega_{\vec{q}}(t_{1},t_{2}) G_{\vec{q}}^{A(0)}(t_{2},t')$$
(17)
▷ Keldysh component of self energy $\Omega_{\vec{q}}(t,t')$:

$$\Omega_{\vec{q}}(t,t') = \sum_{\vec{k},m} V_{0m,\vec{k}}^{\vec{q},1m}(t) V_{0m,\vec{k}}^{\vec{q},1m}(t')^* \times G_{0m}^{-+(0)}(t',t) G_{\vec{k}}^{+-(0)}(t,t') G_{1m}^{+-(t,t')}(t,t')$$

▷ use full ('dressed') Green's function G_{1m}^{+-} to incorporate lifetime effects of the excited state

$$G_{1m}^{+-} = \tilde{G}_{1m}^{+-(0)} + G_{1m}^{R(0)} \Sigma_{1m}^{++} G_{1m}^{+-}$$
(19)

$$\triangleright$$
 can be solved iteratively to give

$$G_{1m}^{+-}(t,t') = G_{1m}^{+-(0)}(t,t') T_c e^{-\int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \Delta_{1m}^R(t_1,t_2)}$$

Fig. 4: Real and imaginary part of the matrix element in arbitrary units (exact and with approximations) for a normal incidence molecule trajectory at $\vec{k} = \frac{1}{5}(k_{max} - k_{min})\vec{e_z}, \ \vec{q} = |\vec{q}|\vec{e_z}$ (explicit energy conservation assumed), m = 1. Apparently the applied approximations are good for larger times and distances from the surface $(t \ge \frac{10}{v_0\kappa} / z \ge 4a_B)$.

Outlook 5

(18)

(20)

(21)

- \triangleright finish calculation with approximated matrix element & compare results with [2]
- ▷ repeat calculation for dielectric surface
- ▷ dielectric has different energy scheme compared to Fig. 2 \Rightarrow different processes possible (e.g. direct charge transfer \Rightarrow temporary negative ions)
- ▷ we need to adjust our approximations for a dielec-

▷ time-dependent non-equilibrium process

▷ hypothesis: process driven by Coulomb interaction between an electron on the molecule and an electron in the solid

 \triangleright approximations:

- -ideal planar Al surface extending over the half space z < 0
- metastable molecule:
- * two-level system consisting of ground state ('0') & excited state ('1')
- * only one single active electron
- * motion of the molecule's center $\hat{R}(t)$ separated from the dynamics of the system and supplied externally (trajectory approximation [3])
- only one single active electron in the solid

tric surface

References

[1] R. Brandenburg, V. A. Maiorov, Yu. B. Golubovskii, H.-E. Wagner, J. Behnke, and J. F. Behnke. Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime. Journal of Physics D: Applied Physics, 38(13):2187-2197, 2005.

- [2] N. Lorente, D. Teillet-Billy, and J. P. Gauyacq. The $N_2^-({}^2\Pi_q)$ shape resonance in slow N_2^* collisions with metallic surfaces. Surface Science, 432(1-2):155 - 169, 1999.
- [3] A. Yoshimori and K. Makoshi. Time-dependent Newns-Anderson model. Progress in Surface Science, 21(3):251 -294, 1986.

[4] K. Makoshi. Effect of atom motion on metastable deexcitation spectroscopy. Surface Science, 254(1-3):281 - 288, 1991

DPG Spring Meeting SAMOP — Hannover 2010

3

process

nique