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Abstract: As a generic model describing the
Luttinger-liquid (LL) to charge-density-wave
(CDW) transition, we investigate the Holstein model
of spinless fermions at half-filling using differnt nu-
merical and analytical techniques. Combining exact
diagonalization (ED) & kernel polynomial method
we calculate exactly the photoemission and inverse
photoemission spectra and analyse the electronic gap
formation. Adapting a recently developed projector-
based renormalization method (PRM) we monitor
the phonon softening at the Peierls transition. In
the metallic regime we determine the renormalised
effective coupling constant and the velocity of the
charge excitations by a density-matrix renormali-
sation group (DMRG) finite-size scaling approach.
The results are used to establish the ground-state
phase diagram of the model.

Motivation

Despite the many years of study of electron-phonon
(EP) interaction in metallic systems, there remain
fundamental problems that yet have to be resolved.
Especially systems which suffer strong EP coupling
in conjunction with strong electron-electron interac-
tion are in the center of present interest. Examples
are quasi-1D materials, such as MX chains, conju-
gated polymers or organic charge transfer complexes,
where the itinerancy of the electrons strongly com-
petes with the EP coupling which tends to establish
e.g. CDW structures. Then, in particular at half-
filling, Peierls insulating phases may be energetically
favored over the metallic state. Many interesting
questions arise not only with a view to the associ-
ated metal to insulator transition but also concern-
ing the form of the single-particle excitation spec-
tra well below and above the transition. At present,
there is a clear need of reliable theoretical methods
to tackle these problems in terms of minimal micro-
scopic models.

Model

The perhaps simplest realization of a strongly cou-
pled EP system, is the Holstein model of spinless
fermions (HMSF):
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The HMSF describes tight-binding band electrons
coupled locally to harmonic dispersionless optical
phonons, where t, ω0, and g denote the electronic
transfer amplitude, the phonon frequency, and the EP
coupling constant, respectively. The physics of the
HMSF is governed by the following parameter ratios:

α = ω0/t, g2 = εp/ω0, & λ̄ = εp/2t . (2)

Despite of its simplicity the HMSF is not exactly
solvable and a wide range of numerical methods has
been applied in the past to map out the ground-state
(GS) phase diagram in the g-ω0-plane, in particular
for the half-filled band case (Nel = N/2). There, the
model most likely exhibits a transition from a LL to
a charge-density wave CDW GS above a critical EP
coupling strength gc(ω0) > 0.

Metallic phase - LL scaling
DMRG results

First we present large-scale DMRG calculations, pro-
viding unbiased results for the (non-universal) LL pa-
rameters uρ and Kρ. To leading order the charge ve-
locity uρ and the correlation exponent Kρ might be
obtained from a finite-size scaling of the of the GS
energy of a finite system E0(N ) with N sites and the

charge excitation gap ∆ch(N ) = E
(±1)
0 (N )−E0(N ),

where ε0(∞) denotes the bulk GS energy density and
E±1

0 (N ) is the GS energy with ±1 fermions away
from half-filling:

ε0(∞) − (E0(N )/N ) = (π/3)(uρ/2)/N2 , (3)

E
(±1)
0 (N ) − E0(N ) = π(uρ/2)/(NKρ) . (4)

Note that these LL scaling relations were derived for
the pure electronic spinless fermion model only.
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Fig.1: Finite-size scaling of the charge gap and the
GS energy. ED data is included for comparison.

Figure 1 demonstrates, exemplarily for the adiabatic
regime, that they also hold for the case that a finite
EP coupling is included. The resulting LL parame-
ters are given in the following table:

g2 ω0/t = 0.1 ω0/t = 10.0
Kρ uρ/2 Kρ uρ/2

0.6 1.031 ∼ 1 ∼ 1 0.617
2.0 1.055 0.995 0.949 0.146
4.0 1.091 0.963 0.651 0.028

Most notably, around ω0/t ∼ 1, the LL phase splits in
two different regimes: For small phonon frequencies
the effective fermion-fermion interaction is attractive,
while it is repulsive for large frequencies. In the lat-
ter region the kinetic energy is strongly reduced and
the charge carriers behave like polarons. In between,
there is a transition line Kρ = 1, where the LL is
made up of (almost) non-interacting particles.

Peierls transition - CDW correlations
DMRG results

The LL scaling breaks down just at gc(ω/t), i.e.
at the transition to the CDW state. We found
g2
c(ω/t = 0.1) ' 7.84 and g2

c(ω/t = 10) ' 4.41.
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Fig.2: Scaling of the charge structure factor Sc(π)
using both periodic and open boundary conditions.

Figure 2 proves the existence of CDW long-range or-
der above gc. Here the charge structure factor

Sc(π) =
1
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∑
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2)〉 (5)

scales to a finite value in the thermodynamic limit
(N → ∞). Simultaneously ∆ch(∞) acquires a finite
value. In contrast we have Sc(π) → 0 in the metallic
regime (g < gc). The CDW for strong EP coupling is
connected to a Peierls distortion of the lattice, and can
be classified as traditional band insulator and bipo-
laronic insulator in the strong-EP coupling adiabatic
and anti-adiabatic regimes, respectively.

Phase diagram
DMRG and ED results

Figure 3 shows the boundary between the LL and

CDW states obtained by ED and DMRG techniques:
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Fig.3: LL-CDW transition line in the HMSF. In
the adiabatic limit (ω0 → 0) any finite EP cou-
pling causes a Peierls distortion. In the anti-adiabatic
strong EP coupling limit (ω0 → ∞), the HMSF
can be mapped perturbatively onto the XXZ model
and the metal-insulator transition is consistent with a
Kosterlitz-Thouless transition at g2

c(∞) ' 4.88.

In Fig. 3 left insets show the LL parameters in the
metallic regime. Right insets display the regular part
of the optical conductivity,
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in the CDW region.

Gap formation - phonon softening
PRM & ED results

Starting point: Renormalized Hamiltonian Hλ =
H0,λ + H1,λ after all excitations from H1 with en-
ergies larger than a cutoff λ have been eliminated
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∑
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Here Pλ is a projector on excitations with energies
smaller than λ.

Renormalization equations for the λ dependent pa-
rameters εk,λ, ωq,λ, and gk,q,λ are obtained by ad-
ditional elimination of all excitations between λ and
(λ− ∆λ) by use of the unitary transformation

H(λ−∆λ) = eXλ,∆λ Hλ e
−Xλ,∆λ . (9)

By proceeding up to λ → 0 a diagonal Hamiltonian
results: Hλ→0. Note that the interaction H1 is com-
pletely used to renormalize the parameters of H0,λ.
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Fig. 4: (a) Electronic spectral functions A+
k (ω)

(black) and A−
k (ω) (orange) at k = kF = π/2. (b)

Renormalized phonon dispersion ω̃q (ω0/t = 0.1).
Left (right) panels correspond to weak [g = 1] (al-
most critical [g = 3.0]) EP coupling. In order to inte-
grate the renormalization equations we considered a
lattice of N = 1000 sites.

Applying the unitary transformation to operators also
the one-particle spectral functions associated with the
injection of an electron with wave vector k, A+

k
(ω)

(inverse photoemission (IPE)), and the correspond-
ing quantity for the emission of an electron, A−

k
(ω)

(photoemission (PE)) can be evaluated:

A+
k

(ω) = α̃2
k δ(ω − ε̃k)(1 − ñck) (10)

+
∑
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k,q δ(ω + ω̃q − ε̃k+q) ñbq(1 − ñck+q)

+
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γ̃2
k,q δ(ω − ω̃q − ε̃k−q) (1 − ñck−q)(1 + ñbq).

Figure 4 shows the single-particle spectral functions
and the renormalized phonon dispersion ω̃q from the
PRM approach for g-values below the critical elec-
tron phonon coupling. If g � gc the pole strength
α̃2
kF

of the coherent excitation is close to its maxi-
mum value of 1 (see Fig. 5). The system is in a metal-
lic state. Due to the coupling between the phononic
and the electronic degrees of freedom, ω̃q has gained
some dispersion. As g approaches the critical cou-
pling a strong softening of the q = π phonon is ob-
served. The vanishing of α̃2

kF
at gc marks the metal-

insulator transition in agreement with DMRG results.
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Fig. 5: Coherent pole

strength α̃2

kF
from the

PRM approach as func-

tion of the EP coupling.

The ED results presented in Fig. 6 for the wave-
number-resolved spectral densities,

A±
K(ω) =

∑

m

|〈ψ(Nel±1)
m |c±K |ψ(Nel)

0 〉|2 (11)

×δ[ω ∓ (E
(Nel±1)
m − E

(Nel)
0 )] (12)

(c+K = c
†
K and c−K = cK), were obtained for an eight-

site system with periodic boundary conditions.
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Fig. 6: Photoemission (A−
K(ω); red lines) and inverse

photoemission (A+
K(ω); black lines) spectral func-

tions in the adiabatic regime. For g > gc a band
gap occurs, indicating massive charge excitations ac-
companied by multi-phonon absorption and emission
processes. The system shows insulating behavior.

Conclusions

The emerging physical picture can be summarised
in the following schematic phase diagram of the 1D
half-filled HMSF:
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