
The spin-Peierls chain revisited

G. Hager1, A. Weiße2, G. Wellein1, E. Jeckelmann3, H. Fehske2

1Regionales Rechenzentrum Erlangen, 2Ernst-Moritz-Arndt-Universität Greifswald, 3Leibniz-Universität Hannover

Germany

Abstract

We extend previous perturbative analytical studies of
the ground-state phase diagram of a one-dimensional
Heisenberg spin chain coupled to optical phonons via
local and differential couplings, respectively. With in-
creasing spin-lattice coupling the system undergoes a
quantum phase transition from a gapless (spin liquid)
to a gapped phase with finite lattice dimerisation.
For the local coupling we present new perturbative
analytical and large-scale density matrix renormal-
ization group (DMRG) calculations and find devia-
tions from previous quantum Monte Carlo and flow
equation results. For the differential coupling we
compare established four-block and new two-block
DMRG results with a refinement of previous analyt-
ical studies.
In both cases, the spin excitation gaps show different
finite-size scaling behavior in the adiabatic and anti-
adiabatic regimes.

Spin-Peierls Instability

Coupling of electronic and lattice degrees of freedom
leads to interesting physics already in one dimension:

• Peierls instability of 1D metals towards lattice dis-
tortions

• Mott to Peierls insulator transition in the 1D
Holstein-Hubbard model

• Spin-Peierls instability in spin chains with magne-
toelastic coupling

Physical examples for the latter were found in quasi-
1D organic materials (TTF/TCNQ) as well as in
the inorganic compound CuGeO3 [1] that forms well-
separated spin-1/2 chains:
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Fig. 1: A CuO2 chain in Copper Germanate

Within the CuO2 chains, neighboring spins interact
via high-ω optical phonons (ω ≈ J) ⇒ non-adiabatic
modeling required.

Microscopic Models

Microscopic models comprise a Heisenberg spin-1/2
chain and a set of Einstein oscillators, coupled by an
interaction term:

H =
∑

i

~Si·~Si+1 + ω
∑

i

b
†
ibi + Hsp , (1)

with common choices for the coupling:

Hdiff
sp = gω

∑

i

(b
†
i + bi)(

~Si·~Si+1 − ~Si−1·~Si) (2)

and, respectively,

H loc
sp = gω

∑

i

(b
†
i + bi)

~Si·~Si+1 . (3)

All analytical and numerical approaches so far agree
on the following scenario:

weak coupling spin liquid, gapless

strong coupling lattice dimerization, massive
spin excitations

The basic mechanism of the phase transition is
well understood — effective spin interactions beyond
next-neighbor exchange lead to effective frustrated
models, which are known to be susceptible to dimer-
ization beyond some critical frustration.
Example: In the frustrated Heisenberg spin chain

H =
∑

i

(~Si·~Si+1 + α~Si·~Si+2) , (4)

dimerization sets in at αc = 0.241167 [2].
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Schrieffer-Wolff Transformation

Analytical approach: Unitary transformation elimi-
nates spin-phonon interactions to leading order:

H̃ = eSHe−S , (5)

with S chosen appropriately, e.g.,

Sdiff = g
∑

i

(b
†
i − bi)(~Si·~Si+1 − ~Si·~Si−1) (6)

for the difference coupling and

Sloc = g
∑

i

(b
†
i − bi)~Si·~Si+1 (7)

for local coupling. H̃ can only be expressed in a series
expansion

H̃ =
∑

k

[S, H ]k
k!

, with [S, H ]k+1 = [S, [S, H ]k]

(8)
and [S, H ]0 = H . The terms must be evaluated using
computer algebra tools (FORM [8]).
Subsequently, averaging over the phonon vacuum or,
more generally, over coherent states |ξ〉 with bi|ξ〉 =
ξ|ξ〉, yields an effective spin-only Hamiltonian

Heff = 〈ξ|H̃|ξ〉

= J0N +
∑

i

nmax∑

n=1

Jn~Si·~Si+n + Hms , (9)

with Jn = J
∑jmax

j=0 cj,n g2j. All terms with more

than two interacting spins are collected in Hms and
neglected hereafter.
The phase boundary is then fixed by the condition

αeff =
J2

J1

!
= αc , (10)

where αc is known from the frustrated Heisenberg
spin chain (4).

DMRG

Numerical approach: DMRG is well-suited for the
study of 1D spin-phonon systems. DMRG provides
an algorithm that can iteratively select an “optimal”
set of basis states in order to describe observables.
The number of density matrix states kept, m, deter-
mines the cutoff error, or “discarded weight” Wm.
For m → ∞, DMRG becomes exact. We use a high-
performance DMRG code that

• utilizes pseudo-bosons to model a Hilbert space
with 2n real phonons using just n pseudo-bosons
with appropriate commutation rules

• is shared-memory parallelized (using OpenMP) in
the most important region, i.e. the diagonalization
of the superblock Hamiltonian

DMRG calculations for this work were carried out
with m up to 1000. As the cutoff error in low-lying
energy levels from the exact values is ∝ Wm,
extrapolation of gaps towards m → ∞ is simple and
was always performed.

Detection of the phase transition is done by an es-
tablished level-crossing criterion,

∆ss(gc) = ∆st(gc) , (11)

where ∆ss and ∆st are the singlet and triplet exci-
tation gaps, respectively. The gaps behave as follows:

N < ∞ N → ∞

g < gc ∆ss > ∆st ∆ss = ∆st = 0

g > gc ∆ss < ∆st ∆ss = 0, ∆st > 0

Caveat: In the adiabatic regime (ω << J) the singlet
excitation is easily confused with the ground state
plus one phonon. Large N is required in this limit in
order to get the correct crossing criterion. In general,
one needs N ≥ 128 in the low-ω region.
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Difference Coupling — Status

Studied previously using a variety of approaches:

• Second-order flow equations [3]

• Schrieffer-Wolff transformation and variational
ansatz [4, 5]

• Exact diagonalization (ED) [5]

• Four-block DMRG [6]

All agree on the existence of a finite gc marking the
phase boundary between spin liquid and dimerized
phase with spin gap.

ω → ∞ gc → 0

ω → 0 gc > 0 ⇒ gcω → 0

The phase diagram had previously been established
numerically by 4-block DMRG calculations, in fair
agreement with 2nd order Schrieffer-Wolff approach.
But: 4th order deviates significantly!

Goal: Extend perturbative Schrieffer-Wolff calcula-
tions to higher order and check against two-block
parallel DMRG results.

Difference Coupling — Results [9]

The perturbative Schrieffer-Wolff approach was
carried out up to order 8 in the coupling (previously
4). The Hamiltonian was averaged over the phonon
vacuum (ξ = 0), yielding the following expansion
coefficients cj,n:
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Here nmax = 5 and jmax = 4, respectively. DMRG
with the crossing criterion yields different finite-size
scaling in the adiabatic and anti-adiabatic regimes.
The critical coupling is more or less independent of
N for large ω, but depends heavily on N for ω . 1:
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Fig. 2: Varying dependence of level crossing

criterion on N for difference coupling

The phase diagram can now be established. Inter-
estingly, the lowest-order perturbation result shows
best agreement with the four-block DMRG data:
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Fig. 3: Phase diagram of magnetoelastic spin-

phonon chain with difference coupling

The two-block DMRG results refine the four-block
data somewhat, but there is still a discrepancy to
the O(8) perturbative result in the adiabatic regime.
This is, however, put into perspective by the fact
that the “bare” coupling ḡc = gcω approaches zero
linearly with ω in this limit.
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Local Coupling — Status

Local coupling applies to CuGeO3. The precise loca-
tion of the phase boundary is arguable according to
previous studies using

• Schrieffer-Wolff approach, variational ansatz [5]

• Exact diagonalization [5]

• Flow equations [7]

• Quantum Monte Carlo (QMC) [7]

Flow equations and QMC tend to underestimate the
critical coupling compared to the other methods.
Generally, the phase structure is similar to the situa-
tion with difference coupling, but with a finite gc > 0
in the antiadiabatic limit.

Goal: Shed light on the controversial position of
the phase boundary by higher-order Schrieffer-Wolff
approximations. Check against large-scale parallel
DMRG results.

Local Coupling — Results [10]

The perturbative Schrieffer-Wolff analysis can be car-
ried out to O(12) in the coupling constant (inset of
Fig. 5). For DMRG, again, the crossing criterion is
strongly dependent on N for ω . 0.5:
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Fig. 4: Dependence of level crossing criterion

on N for local coupling

The phase diagram shows that the qualitative
behavior (slope) of the phase boundary is captured
well be the highest-order perturbation result at
vanishing phonon shift (ξ = 0). A phonon shift
of ξ ≈ 0.44g/ω describes the adiabatic regime of
the phase boundary strikingly well, but this is just
coincidence as an extrapolation of the DMRG data
to the thermodynamic limit clearly shows (green
triangles in Fig. 5).
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Fig. 5: Phase diagram for local coupling

Conclusions

Using DMRG, we obtained the to date most pre-
cise numerical result for the location of the quantum
phase transition from the spin liquid to the dimer-
ized phase in the one-dimensional Heisenberg model
with local coupling and difference coupling to optical
phonons. In both cases, we proved the convergence
of the unitary transformation approach that maps
the full spin-phonon model to an effective frustrated
spin model and allows an analytical calculation of the
phase boundary in good agreement with the numer-
ical data.
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