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1 Motivation

Recent progress in nanotechnology allows the fab-
rication of electronic devices with the active ele-
ment being a single organic molecule. Molecular
electronics may constitute an alternative to conven-
tional semiconductor technology, while their com-
plex structure introduces new electronic transport
properties. Such a system can be described as a

quantum dot

i.e. a system of finite size, weakly coupled to
macroscopic charge reservoirs and so small, that
quantisation of energy levels becomes important.

The molecule is susceptible to structural changes
when being occupied by charge carriers. These defor-
mations can be of substantial energy and may heavily
alter the transport properties of the device.

2 Model and method
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The deformation of the quantum dot is represented by
coupling to alocaldispersionlessvibrational mode:

HQD = ∆d†d − gω0d
†d(b† + b) + ω0b

†b .

It is in contactwith two macroscopic, non-interacting
metallic leads(a = l, r),
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We assume semi-infinite leads withW = 2t being
half the bandwidth of their DOS:
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For sufficiently large electron-phonon-(EP)-coupling
g and phonon frequenciesω0, we expect the forma-
tion of a polaron-like state at the dot, when the gain in
potential energy compensates a loss in kinetic energy.

To account for this process, we apply a generalised
variational Lang-Firsov transformation (cf.[A. La
Magna, I. Deretzis, PRL99, 136404 (2007)])

U = eg̃(b†−b)d†d , g̃ = γg , γ ∈ [0, 1] .

We then arrive at̃H = U(HQD + HL)U† where
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with εp = g2ω0, ∆̃ = ∆ − εpγ(2 − γ) and the new
interaction coefficients

Ct =
td√
N

e−g̃(b†−b) , Cd = gω0(1 − γ)(b† + b) .

As γ → 1, the direct EP-coupling vanishes at the cost
of a phonon-affected transfer. In this way, our ansatz
allows the interpolation between weak and strong
coupling for moderate to large frequenciesω0.

We base our calculation on the equations of motion of
generalised temperature Green functions[Kadanoff,
Baym, Benjamin/Cumming Publishing Co., 1962],

Gdd(τ1, τ2; {V }) = − 1

〈S〉〈Tτd(τ1)d
†(τ2)S〉 ,

where the mean value and the time dependences are
determined bỹH − µN̂ . The S-matrix

S = Tτ exp

{
−

∫ β

0

dτ Vt (τ )Ct (τ ) + V̄t (τ )C†
t (τ ) + Vd (τ )Cd(τ )

}

describes the coupling to the components of a ficti-
tious external potential{V }.

Quantities of interest

• single particle spectrum at the dot

• electronic current through the dot

Both are determined by the
polaronic spectral functionAdd(ω)

3 Theoretical results

3.1 Spectral function

Based on the equations of motion, e.g.
[
− ∂

∂τ1
− (∆̃ − µ)

]
Gdd(τ1, τ2; {V }) = δ[τ1 − τ2]
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we express the polaronic self energy

Σdd(τ1, τ2; {V }) = G
(0)−1
dd (τ1, τ2)−G−1

dd (τ1, τ2; {V })

by its functional derivatives with respect to{V }. In
an iterative scheme we evaluate the self energy up to
second order in the interaction coefficients〈Ct(τ )〉.

We then let{V } → 0 and calculate the correla-
tion functions of the interaction coefficients assum-
ing independent Einstein-oscillators. After Fourier-
transformation and summation over bosonic Matsub-
ara frequencies, we arrive in low temperature approx-
imation (βω0 ≫ 1) at
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with Σ
(1)
dd (z) being the first two terms inΣ(2)

dd (z). This
self energy accounts formulti-phonon processesand
finite particle densities. The spectral functions fol-
low, with δ → 0+, in an iterative way from

A
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For finite EP-coupling, the spectrum contains multi-
ple phonon side bands. They overlap along the whole
ω-axis if ω0 < W − |µ|. Otherwise a quasiparticle
state may exist in the intervals whereIm Σdd(ω) = 0.
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3.2 Current

In [Meir, Wingreen, PRL 68, 2512 (1992)], a
Landauer-type formula was derived, that expresses
the currentJ for finite voltageΦ = −(µl − µr)/e
in terms of the retarded electronic NEGF of the dot:

J = −e t2d

∫ W

−W
dξ ̺(ξ) Im GR

dd(ξ)

×
[
nF (ξ − µl) − nF (ξ − µr)

]
.

For low source-drain-voltage, i.e.µl,r = µ ± δµ/2,
we express the current asJ = −Lδµ/e, so that the
linear conductanceL = limδµ→0{−eJ/δµ} is

L = e2π t2d

∫ W

−W
dξ ̺(ξ) [−n′F (ξ − µ)] Ae

dd(ξ − µ) .

A relation between the electronic and polaronic spec-
trum has been established in[Loos, Hohenadler,
Fehske, J. Phys.: Cond. Mat.18, 2453 (2006)]:

Ae
dd(ω) = e−g̃2 ∑
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(g̃2)s
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[
Add(ω − sω0)Θ(ω − sω0)
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]

.

In low temperature approximation we obtain

L = e2π t2d e−g̃2
̺(µ)Add(0) .

In addition to the Lang-Firsov-renormalization of the
transfer integral, the conductance depends on the ac-
cessibility of dot-states at the Fermi-level.

4 Numerical results

We determine the extremal variational parameter
γmin by minimising the energy

E = 2 t2d e−g̃2
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Despite being an approximation,Σ
(2)
dd fulfills the sum

rule
∫

Add(ω)dω = 1. To avoid an artificial vio-
lation of this important property when evaluating it
numerically, we keepδ in Add as a small parameter
(δ . 5 · 10−3). In the following, we sett = 1.

4.1 Adiabatic regime

If the phononic timescale is much slower than the
electronic timescale (ω0 = 0.1 ≪ 1), the deformation
of the dot adjusts quasi-statically to the occupation.

For a repulsive dot (∆ = 3) and increasing EP-
coupling, we find anabrupt transitionrelated to a
jump inγmin at a critical EP-coupling strengthεc

p.

εp < εc
p, γmin ≪ 1

• localised states + continuum aroundω = 0

• smallAdd(0) ; reducedL

εp > εc
p, γmin = 1

• quasi-localised polaron-like state + side bands

• strongly reducedAdd(0) and renormalised transfer
integraltd ; L vanishes
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Fig. 1: ω0 = 0.1, ∆ = 3, td = 1, µ = 0.

(a): Dot energyE as a function ofγ. At εc
p ≈ 3.35 the

global minimum jumps. (b): Linear conductanceL, min-

imisingγmin, occupation of the dotn as functions ofεp.

(c) and (d): Spectral functions and self energies forεp in

the vicinity of the transition show the sudden formation of

a long-living polaron-like state.

Our variational approach simulates a rapid adiabatic
transition – as seen for the one electron case in
[Alvermann, Fehske, PRB77, 045125 (2008)]– by
a sudden change inγmin when a gain in potential en-
ergy outweighs the loss in kinetic energy.

4.2 Antiadiabatic regime

Here the phononic timescale is much faster than the
electronic timescale (ω0 = 10 ≫ 1), so that the de-
formation adjusts instantaneously to the electronic
occupation.

Now acontinuous transitionoccurs, withγmin → 1.

• for εp = ∆: Add(ω) ≈ 1D DOS
; phonon-assisted transport, maximum inL

• ω0 > W , phononic bands do not overlap
; polaron-like bound state forεp > ∆

• L can be reproduced by non-interacting model us-
ing renormalised∆ − εp andtd exp{−g2/2}
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Fig. 2: ω0 = 10, ∆ = 3, td = 1, µ = 0.

(a): E has a single minimum for allεp. Therefore no tran-

sition occurs. (b):L exhibits a maximum whenεp = ∆

and the spectrum in (c) resembles the DOS of a 1D chain.

(d): For εp > ∆, a bound polaron-like state forms where

Im Σdd = 0. Becauseω0 > W , it can not decay by phonon

emission / absorption.

As for the Holstein model, the complete Lang-Firsov
transformation is limited to large phonon frequency
and strong EP-coupling. By allowingγmin < 1, our
approach accounts for important corrections in the
weak coupling domain.

4.3 Intermediate regime

Our approach allows the investigation of the inter-
esting case where phononic and electronic timescales
become comparable (ω0 = 1).

• jumplike or smooth transition, depending on∆

• few overlapping phononic bands
; no localised state even for largeεp

• renormalization argument withγ = 1 fails to de-
scribe transport; better agreement when usingγmin
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Fig. 3: ω0 = 1, td = 1, µ = 0.

(a): A smooth crossover evolves into a sudden transition

as∆ grows. (b): A simple renormalization scenario with

fixedγmin = 1 (dashed lines) insufficiently describes the

transport. When usingγmin from (a) (dash-point), the de-

viations from the full calculation (solid lines) are small.

(d): There is no polaron-like state even for largeεp.

The self-consistent determination of the variational
parameter is essential; onceγmin is known, a mod-
ified renormalization scenario gives a good approxi-
mation forL.

4.4 Weak dot-lead coupling

The physical picture suggests the adiabaticity of the
dot to be determined by the local ratio ofω0 andtd.
To see this, we reducedtd by one order of magnitude.

• for ∆ = 0: γmin → 1 and renormalization picture
works; signals antiadiabatic regime

• for ∆ = 3: still crossover, but pronounced maxi-
mum inL at εp = ∆ ; antiadiabatic regime

• strongly reducedIm Σdd ∝ t2d ; localised states
even for overlapping bands
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Fig. 4: ω0 = 1, µ = 0.

(a) When loweringtd while keepingω0 fixed, the disagree-

ment between the numerical results (solid lines) and a

simple renormalization scenario (dashed lines) vanishes,

indicating a transition to the antiadiabatic regime. (b):

Although the transition remains for a repulsive dot,L de-

velops a sharp maximum astd → 0, which again signals

the antiadiabatic regime. (c) and (d): The strongly sup-

pressed phonon bands give rise to localised states.

The quotient of the phonon frequency and the dot-
lead transfer integral distinguishes the adiabatic from
the antiadiabatic regime.

5 Conclusions

We followed a variational approach, that extends the
description of the polaron problem away from the
limit of large phonon frequencies, to derive the

basic polaronic effects at the quantum dot
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• formation of a polaron-like state

• rapid transition resulting in a sudden conduc-
tance drop in the adiabatic regime

• phonon-assisted transport through a tun-
nelling barrier in the antiadiabatic regime

Outlook
Let’s keep the EP-coupling fixed and tune the

quantum dot level (td = 0.5, µ = 0):
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; quantum dot as a molecular switch

[J. Loos, T. Koch, A. Alvermann, A. R. Bishop, H.
Fehske, J. Phys.: Cond. Mat.21, 395601 (2009)]
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