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Abstract

Based on a two-band model for valence and conduction band
electrons interacting via a screened Coulomb potential, we cal-
culate the critical temperature below which exciton condensa-
tion occurs at the pressure-induced semiconductor-semimetal
transition. In the spirit of a BCS-BEC crossover, we de-
rive equations which determine, as a function of the energy
gap (pressure), the chemical potentials for the two bands, the
screening wave number, and the critical temperature. We show
that on the semiconductor side the critical temperatures ob-
tained from the linearized BCS gap equation coincide with
the transition temperatures for BEC of non-interacting bosons,
demonstrate that mass asymmetry strongly suppresses BCS-
type pairing, and discuss experimental claims for exciton con-
densation in Tm[Se,Te] compounds.

Motivation

The possibility of an excitonic insulator (EI), separating, below
a critical temperature, a semiconductor (SC) from a semimetal
(SM), has been anticipated by theorists more than three decades
ago [1]. Yet, experimental efforts to establish this phase in ac-
tual materials largely failed. It is only until recently, that experi-
mental investigations of the SC-SM transition in TmSe0.45Te0.55

suggested the existence of an EI phase in this compound [2, 3].

Fig 1: Pressure dependence of the electrical resistivity of
TeSe0.45Te0.55 for T=4.2K (upper curve) and T=300K (lower
curve). Data from Ref. [2].

The anomalous increase of the electrical resistivity in a narrow
pressure range around 8 kbar, for instance, indicated the appear-
ance of a new phase at almost room temperature [2]. The experi-
mentalists suggested that this phase may be an EI and, assuming
pressure to modify only the energy gap Eg, constructed a phase
diagram for TmSe0.45Te0.55 in the Eg-T plane [2].

Fig 2: Phase diagram for TeSe0.45Te0.55 as obtained from the
resistivity data [3].

Later, the same group found in TmSe0.45Te0.55 a linear increase
of the thermal diffusivity below 20 K and related this to a con-
densate. The interpretation of the data is however not generally
accepted, and it is one of our goals to analyze the experimental
claims from a theoretical point of view.

Model

The EI arises because of the Coulomb attraction between elec-
trons in the lowest conduction band (CB, i=1) and holes in the
highest valence band (VB, i=2), with an indirect energy gap sep-
arating the two bands. Keeping only the dominant term of the
Coulomb interaction and measuring momenta k from the re-
spective extremata of the bands, an effective mass model for
studying the (Wannier-type) EI is

H =
∑

k,i

ei(k)c†i,kci,k +
1

2

∑

q

Vs(q)ρ(q)ρ(−q), (1)

with ρ(q) =
∑

i,k c†i,k+qci,k the total charge density and Vs(q) =

(4πe2/ε0)/(q2 + q2
s) the statically screened Coulomb potential.

The screening wave number qs depends on the CB electron and
VB hole density and has to be determined selfconsistently; ε0 is
the background dielectric constant. Assuming isotropic effec-
tive masses mi, the band dispersions are (~ = 1)

e1(k) = Eg + ε1(k) − µ, e2(k) = −ε2(k) − µ − Σ0(k), (2)

with εi(k) = k2/(2mi), and Eg the energy gap which can be var-
ied continously through zero under pressure and µ the chemical
potential. The band structure (2) refers to the unexcited crystal
at T=0 with an empty CB and a full VB whose selfenergy Σ0(k)
has to be therefore subtracted.

As far as the Tm[Se,Te] system is concerned, the model is of
course rather crude, neglecting, for instance, strong intraband
correlations, electron-phonon interactions, and the mixed va-
lence. The two bands should be therefore considered as effective
single-particle bands describing the electronic degrees respon-
sible for the formation of an EI.

Method

We employ matrix propagators and derive, in the spirit of a
BEC-BCS crossover, equations for the off-diagonal (in the band
indices) selfenergy, the chemical potentials for CB electrons and
VB holes, and the screening wave number. Because pressure
directly controls the chemical potentials, which in turn are con-
strained by charge neutrality, the meanfield approximation turns
out to be sufficient not only on the SM (weak coupling) but also
on the SC (strong coupling) side. To determine the transition
temperature Tc(Eg), we linearize the equations with respect to
the off-diagonal selfenergy and map out the Eg-T range in which
it is finite. Using the Thouless criterion to deduce Tc(Eg) di-
rectly from the normal-phase electron-hole T-matrix, we explic-
itly verify that on the SC side Tc(Eg) coincides with the transi-
tion temperatures for BEC of non-interacting bosonic excitons.
From the normal-phase electron-hole T-matrix we determine,
moreover, the ionization degree of the normal phase and the
temperature TM(Eg) above which excitons cease to exist.

Calculation of Tc(Eg)

In the meanfield approximation the selfenergy is given by the
Fock diagram. After linearization we find

∆(k) =

∫

dk′

(2π)3
Vs(k − k′)

nF (ē2(k
′)) − nF (ē1(k

′))

ē1(k′) − ē2(k′)
∆(k′) (3)

for the off-diagonal selfenergy ∆(k) = Σ12(k) and

Σii(k) = −

∫

dk′

(2π)3
Vs(k − k′)nF (ēi(k

′)) (4)

for the normal selfenergies. The single particle energies enter-
ing Eqs. (3) and (4) are the selfconsistent solutions of

ēi(k) = ei(k) + Σii(k). (5)

The main effect of the exchange energy on the particle disper-
sions is a rigid, k-independent energy shift which we incorpo-
rate into chemical potentials for the CB electrons and VB holes.
Writing the renormalized dispersions as

ēi(k) = (−)i(εi(k) − µi) (6)

yields for the electron and hole chemical potentials

µ1 = µ − Eg − ∆e1, µ2 = ∆e2 − µ, (7)

with energy shifts satisfying

∆ei = (−)i
∫

dk

(2π)3
Vs(k)nF (εi(k) − µi). (8)

To obtain a closed set of equations for the three unknown pa-
rameters, µ, µ1, and µ2, we augment the two equations in (7) by
the condition of charge neutrality which forces the CB electron
density n1 to be equal to the VB hole density n̄2:

∫

dk

(2π)3
[nF (ε1(k) − µ1) − nF (ε2(k) − µ2)] = 0. (9)

With the individual chemical potentials for each species at our
disposal, the screening parameter qs is given by

q2
s =

4πe2

ε0

(

∂

∂µ1

n1 +
∂

∂µ2

n̄2

)

(10)

and the kernel of the BCS gap equation (3) is completely speci-
fied throughout the Eg-T plane.

Calculation of the T-matrix and Thouless Criterion

For energies close to the exciton energy, the normal-state
electron-hole T-matrix separates and can be calculated within
a unitary-pole-approximation [4]. Introducing, kq = |k − m1

M q|
and iΩq = iΩn + µ1 + µ2 − q2/(2M), with M = m1 + m2, the
T-matrix is given by

Λ12(k,k′;q, iΩn) = g(kq) · D(q, iΩq) · g(kq), (11)

with an exciton propagator,

D(q, z) =
−1

z + B + M(q, z)
, (12)

defined in terms of a selfenergy,

M(q, z) = −

∫

dp

(2π)3
[ p2

2m + B]2

p2

2m − z
χ2(p)G(q,p), (13)

and form factors g(p) obtained from

g(p) =

∫ ∞

0

dp′p′2

4π2
Vs(p, p

′)χ(p′) = [
p2

2m
+ B]χ(p). (14)

Here, Vs(p, p
′) is the angle averaged screened Coulomb poten-

tial, m = m1m2/M and G(q,p) = nF (ε1(p + m1
M q) − µ1) +

nF (ε2(p − m2
M

q) − µ2) is a statistical factor describing Pauli-
blocking. Replacing in Eq. (14) the screened Coulomb poten-
tial by the Hulthen potential, which is a good approximation on
the SC side, where the screening parameter qs is small, the form
factors can be obtained analytically [4].

The pole of the exciton propagator (12) determines the ana-
lytical structure of the T-matrix. Physically, it gives the exci-
ton binding energy B̄(q) renormalized by screening and phase-
space-filling. Assuming a weak q-dependence, B̄(q) ≈ B̄(0) ≡
B̄, with

B̄ = B + ReM(0, z → −B̄ + iη). (15)

In terms of B̄ the exciton propagator can be rewritten as

D(q, z) =
−Z

z + B̄
, (16)

with an exciton spectral weight defined by

Z = 1 −
∂

∂Ω
ReM(0, Ω + iη)|Ω=−B̄. (17)

The Thouless criterion states that BEC of excitons occurs when
the electron-hole T-matrix diverges for q = 0 and iΩn = 0. Us-
ing Eq. (11) this implies D−1(0, µ1 + µ2) = 0. With Eq. (16),
the transition temperature Tc(Eg) is thus given by

µ1(Eg, Tc) + µ2(Eg, Tc) = −B̄(Eg, Tc), (18)

which is equivalent to the canonical criterion for BEC of a non-
interacting Bose gas: The transition occurs when the chemical
potential µX = µ1 + µ2 of the bosons reaches the bottom of the
band leading to a macroscopic occupation of the q = 0 state.

Mott transition and ionization degree

As originally suggested by Mott, the SC-SM phase boundary is
given by the temperature TM(Eg) for which the exciton binding
energy vanishes (Mott effect):

B̄(Eg, TM) = 0. (19)

To obtain the ionization degree in the normal phase, we focus on
the CB electron density (because of charge neutrality, we could
as well target the VB hole density),

n1 =

∫

dk

(2π)2
dω

2π
A11(k, ω)nF (ω), (20)

with the spectral function A11 obtained from the selfenergy in
ladder approximation. Expanding A11 with respect to Γ11 =
ImΣ11, Eq. (20) can be split into two parts, n1 = nf

1 + nc
1, with

nf
1 =

∫

dk

(2π)3
nF (ε1(k) − µ1) (21)

the part of the total electron density corresponding to free elec-
trons and

nc
1 =

∫

dp

(2π)3

∫

dq

(2π)3

[

B + p2

2m

B̄ + p2

2m

]2

χ2(p)F1(p,q), (22)

the part bound in electron-hole correlations (excitons); the sta-
tistical factor is given by F1(p,q) = [nF (EX(q)−ε2(p−

m2
M q)+

µ2)−nF (ε1(p+m1
M

q)−µ1)]·[nB(EX(q))+nF (ε2(p−
m2
M

q)−µ2)].

The ionization degree can thus be defined as

γ =
nf

1

nf
1 + nc

1

. (23)

Results
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Fig 3: Phase diagram of an EI with equal band masses (α = 1).

The phase boundary Tc(Eg) for an EI with equal band masses
(α = m1/m2 = 1) is presented in Fig. 3. Above T≈0.12, the
EI is unstable and an ordinary SC-SM transition occurs (thick
dashed line), here defined by the vanishing of the exciton bind-
ing energy B̄. For T<0.12, a steeple-like phase boundary arises
directly reflecting the different character of the EI when it is
approached from the SM and SC side, respectively: On the
SM side the EI constitutes a BCS condensate of loosely bound
electron-hole pairs whose (small) binding energies determine
the (low) transition temperatures. On the SC side, on the other
hand, the EI is a BEC of strongly bound excitons. The (higher)
transition temperatures Tc(Eg) coincide here with the temper-
atures for which the q = 0 exciton state becomes macroscopi-
cally occupied (Thouless criterion (18); solid circles). The bind-
ing energies per se set only the scale for the SC-SM transition.

The different condensation mechanisms leading to the EI on the
SM and the SC side, respectively, can be most clearly seen when
the band masses are different (Fig. 4). The chemical poten-
tials for CB electrons and VB holes are then different for finite
temperatures. Mass asymmetry has a pair breaking effect on
Cooper-type electron-hole pairs, similar to the effect a magnetic
field has on Cooper pairs in superconductors. Accordingly, it
leads to a strong suppression of Tc(Eg) on the SM side but not
on the SC side, where the moderate α dependence of Tc(Eg)
reflects the 1/M-dependence of the BEC transition temperature.
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Fig 4: Phase boundaries for an EI as a function of α = m1/m2.

For strong mass asymmetry the EI is almost entirely located on
the SC side of the SC-SM boundary and is basically a BEC
of excitons. Two temperatures are then required to character-
ize the EI: TM(Eg) where exciton formation (amplitude coher-
ence) sets in and Tc(Eg) where condensation (phase coherence)
is finally reached. Above Tc(Eg) but below TM(Eg), a mixture
of excitons, free electrons, and free holes exists, the composi-
tion of which depends on T and Eg, as can be seen in Fig. 5,
where we plot the ionization degree above Tc(Eg) for an EI with
α = 0.0125, corresponding to TmSe0.45Te0.55.
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Fig 5: Ionization degree above Tc(Eg) for an EI with α =
0.0125.

The phase boundary for an EI with α = 0.0125 together with
contours of the ionization degree of its enveloping exciton en-
vironment is displayed in Fig. 6. Note, the ionization degree
approaches 0% before phase coherence is established.
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Fig 6: Phase boundary of an EI and contours of the ionization
degree for α = 0.0125. The thin line denotes the minimum of the
ionization degree.

The resistivity anomaly observed in TmSe0.45Te0.55 can be ex-
plained with the varying ionization degree of the excitonic mat-
ter when pressure pushes the system, above Tc(Eg) but below
TM(Eg), from the free state dominated to the bound state dom-
inated regime (see Fig. 6). In the former, the resistivity is ex-
pected to decrease with pressure, because increasing pressure
leads dominantly to an increase of free charge carriers. In the
latter, however, increasing pressure dominantly leads to an in-
crease of bound states accompanied by a relative freeze-out of
free carriers and thus by an increasing resistivity. After a crit-
ical pressure, the freeze-out stops and the resistivity decreases
again with pressure until it reaches the SC-SM transition where
it changes abruptly to a lower value.

Phase coherence (condensation) is thus not necessarily required
to explain the resistivity anomaly. Using RX = 75 meV, the
experimentally estimated exciton Rydberg for TmSe0.45Te0.55,
places the exciton rich region in the temperature range T∼50-
250 K, exactly the range, where the anomaly has been observed.
Phase coherence, on the other hand, we would expect below
50 K. Indeed, in Ref. [3] Wachter and coworker report a lin-
ear increase of the thermal diffusivity at around 20 K. From our
theoretical perspective, this could be the long-sought EI.

Conclusions

We adopted a BEC-BCS crossover scenario to analyze recent
experimental claims of exciton condensation in TmSe0.45Te0.55.
We found strong indications that the phase boundary con-
structed from electrical resistivity data is not the phase bound-
ary of an EI. Instead, it embraces only the region where ex-
citons dominate the total density (amplitude coherence). Our
results suggests, however, that the EI (phase coherence) is very
likely reached at the temperature scale where the linear increase
of the thermal diffusivity has been found.

Discussions with Björn Hülsen, Dieter Ihle, Gerd Röpke and
support from SFB 652 are greatly acknowledged.

References

[1] For a review of the early literature, see, e.g. , B. I. Halperin
and T. M. Rice, Solid State Physics 21 (1968) 115.

[2] J. Neuenschwander and P. Wachter, Phys. Rev. B 41 (1990)
12693; B. Bucher, P. Steiner, and P. Wachter, Phys. Rev.
Lett. 67 (1991) 2717.

[3] P. Wachter, B. Bucher, and J. Malar, Phys. Rev. B 69
(2004) 094502.

[4] F. X. Bronold and H. Fehske, in preparation.


