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Abstract

We present two different approaches by which paral-
lelization of the standard DMRG algorithm can be ac-
complished. The parallelized code shows good scalabil-
ity for standard benchmark cases (2-dimensional peri-
odic Hubbard model) up to at least eight processors and
allows us to solve problems which exceed the capability
of sequential DMRG calculations.
As an important application we investigate stripe for-
mation in 6-leg cylindrical Hubbard ladders which are
doped with holes away from half-filling. The parallel ap-
proach allows to consider systems with up to 28×6 sites
at m ≈ 6000 to 8000 on contemporary SMP systems.

Serial DMRG

Profiling analysis of the serial algorithm with a bench-
mark case (half-filled two-dimensional [4×4] Hubbard
model at U = 4 with up tom = 2000) showed that 85 %
of computing time is used in the sparse matrix-vector
multiplication step of the Davidson algorithm that di-
agonalizes the superblock hamiltonian.
Even though the MVM is sparse, the dominating oper-
ation is dense matrix-matrix multiplication (MMM):
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Considering the blocked structure of the components
due to conservation laws and transistion rules and omit-
ting matrix indices,
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Any of the four sums is a candidate for parallelization.

Approach 1: Parallel DGEMM

The easiest approach to parallel DMRG computation
consists in using a shared-memory parallel dense matrix-
matrix multiplication algorithm for the two inner sums
(i′ and j ′) in (1). This is available out of the box
for all contemporary computer architectures in vendor-
supplied libraries and can be optimized on RISC pro-
cessors to yield a large fraction of peak performance [1].
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Fig. 1: Speedup of DGEMM-parallel DMRG for
the benchmark case

Scalability for this case is poor, mainly because of over-
head in the parallel computation with small matrices.
The approach makes sense only for certain limiting cases
where individual matrices are very large on the average.
Additionally, the quality of the parallel DGEMM im-
plementation plays a major role here.

Approach 2: Parallel sparse MVM

In order to get improved parallel efficiency, one can par-
allelize the reduction operation that makes up the outer
sums in (2).
Parallelizing only one sum is inefficient because of load
imbalance and large OpenMP loop overhead (short
loops). Thus the outer loop nest must be transformed
to a single loop. Original code:
// W is wave vector , R ist result

for(i=0; i < number_of_hamiltonian_terms ; i++)

{

term = hamiltonian_terms[i];

for(q=0; q < term.number_of_blocks ; q++)

{

li = term[q]. left_index;

ri = term[q]. right_index;

temp_matrix = term[q].B.transpose () * W[ri];

R[li ] += term[q].A * temp_matrix;

}

}

Problems to note:

•The reduction operation on the result vector blocks
R[li] introduces a race condition that must be
avoided by serializing access to each R[li].

•The inner loop length depends on the outer loop
counter (term counter).

Transformed core:
#pragma omp parallel private(mytmat ,li ,ri ,myid ,ics)

{

myid = omp_get_thread_num ();

mytmat = mm[myid ]; // thread -local

#pragma omp for

for(ics =0; ics < icsmax ; ics ++)

{

li = block_array[ics]->left_index;

ri = block_array[ics]->right_index;

mytmat = block_array[ics]->B.transp () * W[ri];

omp_set_lock(locks[li]);

R[li ] += block_array[ics]->A * mytmat;

omp_unset_lock(locks[li]);

}

}

From profiling data, parallel speedups of up to 7 can be
expected in the ideal case where parallelization is bare
of overhead.

Scalability
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Fig. 2: Speedup of MVM-parallel DMRG for the
benchmark case (SGI Origin system)

Scalability of the parallel MVM alone is very good (ap-
prox. 2 % serial fraction). As expected, by Amdahl’s
Law, performance is limited by the remaining serial por-
tions. This can be somewhat improved by linking to a
parallel BLAS library (+10–20 %).
Further improvements are possible:

•Lock-free version of MVM with completely private
target data and reduction operations at the end
(done)

• Identification of other parallelizable loops in the code
(work in progress)

Application: Stripe formation

Whether stripe formation in Hubbard systems,
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which are doped with holes away from half-filling and
are subject to cylindrical (y-periodic and x-open) BCs
is merely an artifact is an ongoing discussion [3]. We
have performed parallel DMRG ground-state calcula-
tions with 14×6 (8 holes), 21×6 (12 holes) and 28×6
(16 holes) systems at U = 12 in order to clarify this
issue. Results:

•With larger system size, transistion to “striped” state
occurs at larger m.

•Using reflection symmetry to speed up the calculation
is forbidden at 14×6 (non-convergence).
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Fig. 3: Ground-state energy vs. m for all systems
considered

•Clear stripe signatures for 14×6 and 21×6 systems
(zero crossings of spin density).
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Fig. 4: y-integrated hole density (above) and stag-
gered spin density (below) for 14×6 and
21×6 systems

•Results still inconclusive for 28×6 — no clear stripe
signatures at m = 6000. No decision for symmetric
vs. non-symmetric calculation possible.

The 28×6 runs required about four weeks of wallclock
time and up to 100 GBytes of memory each on 8 CPUs
of an IBM p690 node.
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