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Motivation

Cat’s Eye Nebula NGC 6543

Over the last years the investigation of complex (dusty)
macroscopic and mesoscopic plasmas occurring e.g. in as-
trophysical, laboratory and technical situations has become
an important research field. The theoretical description of
complex plasmas is extremely difficult due to their heteroge-
neous composition and the drastic differences in the relevant
space and times scales [1, 2].

With the help of confinement potentials it has become possible to trap, for long
periods of time, plasmas of a single charge (non-neutral plasmas). By varying
the confinement strength researchers have achieved liquid behavior and even
Coulomb crystallization of ions [3] and dust particles [4, 5]. These strong cor-
relation phenomena are of exceptional current interest.
This contribution deals with the simulation and analysis of spherically 3D
clusters which were recently first experimentally observed in dusty plas-
mas [6]. We compare simulation results to real dust clusters from experi-
ments. In the simulations the dust-dust interaction potential is modelled by a
Coulomb/Yukawa potential [7].

Model
We consider N classical particles with equal charge q and mass m interacting
via a statically screened Coulomb potential (Yukawa), where κ is the inverse
screening length, and being confined in a 3D isotropic harmonic trap with fre-
quency ω with the hamiltonian
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Below we will use dimensionless lengths and energies by introducing the units
r0 = (q2/2πεmω2)1/3 and E0 = (mω2q4/32π2ε2)1/3, respectively.

Shell Structure, Cluster Stability and Symmetry

At zero temperature (zero particle velocities ṙi, infinite cou-
pling) concentric shells are observed with characteristic clo-
sures as well as magic clusters. The stability of clusters is
characterized by the binding energy (addition energy change)
[8]:

∆2(N ) = E(N + 1) + E(N − 1) − 2E(N ).

Further, the symmetry within the shells can be analyzed by performing a
Voronoi analysis, i.e. by constructing polygons around a given particle formed
by the lines equally bisecting nearest-neighbor pairs on the shell. To quantify
this topological criterion, we introduce the Voronoi symmetry parameter
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where NM denotes the number of particles in the shell, each of which is sur-
rounded by a Voronoi polygon of order M , (M nearest neighbors) and θjk
is the angle between the j-th particle and its k-th nearest neighbor. A value
G5 = 1 (G6 = 1) means that all pentagons (hexagons) are perfect, the reduc-
tion of GM below 1 is a measure of their distortion.

Now it is easy to define the mean Voronoi symmetry parameter (MVSP) 〈G(s)〉
to quantify the symmetry of the s-th shell of the cluster
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where Ns denotes the number of all particles in shell s.

Simulation – Coulomb Clusters (κ = 0)
Analysis of 3D Coulomb Clusters
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Number of particles Ns on shell s vs. N . Note the reoccurrence of two shells at N = 60.
The 2nd shell is opened at N = 13, the 3rd shell at N = 58 (and N = 61), the 4th shell at
N = 155.
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Binding energy ∆2 and MVSP of the two outermost shells vs. particle number N . Magic
clusters are N = 4, 6, 10, 12, 19, 32, 38, 56 [8] and N = 81, 94, 103, 116 [7].
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Number NM of Voronoi polygons with M edges in the two outermost shells vs. N .

Fine structure
Between ground state and excited states with different shell configurations
meta-stable states exist which differ only in the intra-shell symmetry.

Ground state (16,1)

E/N = 6.388610

r1 = 1.5042

G5 = 0.891 [12x]

G6 = 0.993 [4x]

〈G(1)〉 = 0.916
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First meta-stable state (16,1)

E/N = 6.388975

r1 = 1.5042

G5 = 0.746 [12x]

G6 = 0.884 [4x]

〈G(1)〉 = 0.781
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Ground state and first meta-stable state of N = 17 have
identical shell configuration and number of Voronoi poly-
gons (numbers in brackets). These states differ, however,
in the arrangement of the polygons – compare arrangement
of the four bright hexagons also denoted by A, B, C, and D
in the left figure. In the meta-stable state, axis A-B is ro-
tated. At the same time, the symmetry (G5, G6) is reduced.

Experiment

Setup

The experiments are peformed
in an capazitively coupled rf-
discharge in argon. Typical
parameter are: vertical tem-
perature gradient 5 Kcm−1, rf-
power below 30 W, neutral gas
pressure 50-150 Pa, particle di-
ameter 3.4 µ m.

electrode

Laser

camera

dust

Laser sheet

Data Analysis

Movie with 25 fps

#50 #144 #236 #324 #412 #500

Extract particle positions for each image (x,z)

Trace each particle from image to image

Determine y-coordinate

Results
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Particle cluster with 190 particles,
Γ ≈ 1700.
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shell occupation: 2, 21, 60, 107, inter-shell
distance: 0.63 mm, inter-particle distance:
0.715 mm.

Particles arrange in nested
shell! Crystalline order on
shells!

Larger particle clouds show
shell formation only close
to surface (N = 2800).

At the solid-fluid phase
transition (N = 6000).

Conclusions
• Observation of spherical, crystalline, void-free dust clouds under laboratory

conditions.

• First evidence for structural changes with increasing cluster size.

• First evidence of dynamic and thermodynamic effects.

Simulation – Yukawa Cluster (κ > 0)
Effects of screening on shell structure
In the following the plot of the vertical vs. the radial position of the particles
is shown for three different values of screening (upper figures). In addition
the histogram of the cluster is plotted (lower figures), in comparison to exper-
iments.

I) Increase of shell width with κ
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II) Reduction of shell radii
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Square of (normalized) shell radii vs. screening parameter κ for N = 12, 38, 190.

III) Change of shell configuration

κ Configuration E/N
0.0 (115,56,18,1) 36.357
0.2 (114,57,18,1) 23.729
0.4 (110,58,20,2) 17.608
0.6 (107,60,21,2) 14.028
0.8 (105,60,22,3) 11.672
1.0 (102,60,24,4) 9.998

Continiuous increase of par-
ticle number on inner shells
with κ. No reversal of this
trend is observed as in 2D
(N = 190).

IV) Screening induced structural change from shell configuration to bulk-
like symmetry.

The comparison of experiments with theory shows: MD-simulations with a
Yukawa potential as dust-dust interaction at κ ≈ 0.6 quantitatively reproduce
experimental configurations.
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