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1 Motivation [1, 2]

Macroscopic objects in contact with an ionized gas
are negatively charged. They accumulate electrons
more efficiently than ions leading to the build-up of a
quasi-stationary electron film at the plasma boundary.
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Fig. 1: Spatial variation of the electron and ion density

in a bounded plasma. In the bulk plasma, electron and

ion density are equal and constant, in the presheath the

two densities vary spatially but are still identical, in the

sheath the electron density is strongly suppressed.

The plasma is strongly affected by surface charges,
via sheath formation (see Fig. 1), electron-ion recom-
bination, and secondary electron emission. But, up to
now, there is no microscopic theory answering ques-
tions of the following kind:

• What forces bind electrons to the plasma bound-
ary and what controls electron energy dissipation
at the boundary?

• What is the probability for an electron to stick at or
to desorb from the plasma boundary?

• How do ions and neutrals interact with negatively
charged plasma boundaries?

It is only until recently that we started a robust in-
vestigation of the electronic microphysics at plasma
boundaries [1, 2, 3, 4]. Its main purpose is to obtain –
from microscopic models – surface parameters, such
as, the electron sticking coefficientse, the electron
desorption timeτe, and the secondary electron emis-
sion coefficientγe. All three are crucial for a com-
plete kinetic description of bounded plasmas but little
is known about them quantitatively.

2 Surface charges [2, 3]

Whenever at the plasma boundary the plasma poten-
tial falls inside an energy gap, a plasma electron ap-
proaching the boundary may get trapped (adsorbed)
in external, polarization-induced surface states pro-
vided it can get rid of its excess energy. Once it
is trapped it may de-trap again (desorb) if it gains
enough energy from the surface.

Hence, in addition to elastic and inelastic scatter-
ing, the interaction of plasma electrons with bound-
aries encompasses physisorption – the polarization-
induced temporary binding of an electron to the sur-
face which may be characterized byse andτe. We
propose that this process leads to the build-up of sur-
face charges at plasma boundaries.

Below we focus on physisorption of electrons at
metallic surfaces. Physisorption of electrons at di-
electric surfaces has been studied in [3].

2.1 Microscopic model

Quite generally, a quantum-mechanical calculation of
se andτe has to be based on a Hamiltonian,

H = He + Hb + He−b , (1)

whereHe andHb describe the unperturbed dynamics
of, respectively, the plasma electrons in the vicinity of
the solid and the elementary excitations of the solid
responsible for electron energy relaxation andHe−b
encodes the coupling between the two. For the cal-
culation ofse andτe it suffices to consider, in a first
approximation, a planar, uncharged plasma boundary.
It defines thexy-plane of a coordinate system sepa-
rating the plasma in the halfspacez > 0 from the
solid in the halfspacez ≤ 0.

The microphysics of electrons specifically at a metal-
lic boundary is schematically shown in Fig. 2. A
plasma electron approaching the boundary in an ex-
tended state withE > 0 may be bound in a surface
state withE < 0 provided it dissipates its excess en-
ergy to the internal electron-hole pairs of the metallic
boundary. Similarly, an electron initially occupying
a bound surface state may desorb from the surface
when it gains enough energy to reach an extended
state. The rateW for such transitions can be per-
turbatively obtained as shown in the inset.

We neglect polycrystallinity and chemical contami-
nation of the plasma boundary and work with a per-

fect surface. Two types of surface states are then
possible: Intrinsic surface states, originating from
the abrupt appearance of the periodic lattice poten-
tial for z < 0 or unsaturated bonds at the surface
and polarization-induced (image) states due to ex-
change and correlation effects forz > 0. Image
states extend a feẘA into the plasma. We expect
them to be most important for the build-up of surface
charges and keep only these states. Approximating
the polarization-induced potential by the classical im-
age potential, the wavefunctions for the approaching
plasma electron are Whittaker functions [2].
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Fig. 2: Microphysics of plasma electrons at metallic

boundaries.L is the width of the “boundary layer” where

quantum mechanics applies;Φ andEF are, respectively,

the work function and the Fermi energy of the metal.

Plasma electrons loose/gain energy at metallic sur-
faces via creation/annihilation of internal electron-
hole pairs. To describe this process we treat the
boundary as a jellium halfspace interacting with
plasma electrons via a screened Coulomb interaction:
Vs(r) ∼ exp[−(ks)surfacer]/r, where(ks)surface is the
screening wavenumber at the surface. Positron scat-
tering experiments indicate(ks)surface ≈ 0.6(ks)bulk.
Assuming an infinitely high barrier atz = 0, the
wavefunctions for internal electrons are standing
waves andHe−b can be worked out analytically [2].

If τe is sufficiently long, plasma electrons bound in
image states are in thermal equilibrium with the sur-
face. The desorption rate is then given by

1

τe
=

∑
~Q′n′

∑
~Qq

exp[−βsE ~Q′n′]W( ~Qq, ~Q′n′)
∑

~Qn
exp[−βsE ~Qn

]
, (2)

whereTs = (kBβs)
−1 is the surface temperature and

W( ~Qq, ~Q′n′) is the transition rate from the bound
surface state( ~Q′, n′), with ~Q′ the lateral momentum
andn′ the vertical quantum number, to the extended
surface state( ~Q, q). The energy of the two states is,
respectively,E ~Q′n′ andE ~Qq

.

For an electron in an extended surface state the ten-
dency to stick to any bound surface state is

S ~Q′q′
=

16LmeaB

~q′

∑

~Qn

W( ~Qn, ~Q′q′) , (3)

where L is the width of the quantum-mechanical
boundary layer (drops out forL → ∞); me is
the electron mass. Provided extended surface states
are Maxwellian occupied, with a temperatureTe =
(kBβe)

−1, the angle and energy averaged sticking co-
efficient – the global sticking coefficientse– is

se =

∑
~Q′q′

S ~Q′q′
q′ exp[−βeE ~Q′q′

]
∑

~Q′q′
q′ exp[−βeE ~Q′q′

]
. (4)

2.2 Results

We modified the binding energies of the surface states
as obtained from the classical image potential by an
overall factor of0.7. This factor was chosen to adjust
the binding energy of the lowest surface state to the
value measured for copper:|E1|

Cu ≈ 0.6eV . Assum-
ing this modification to approximately account for the
deviation of the true polarization-induced potential
from the classical image potential, we used this value
also for the other metals.
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Fig. 3: Energy resolved sticking coefficient for plasma

electrons hitting perpendicularly, respectively, a copper,

an aluminum, and a beryllium surface atkBTs = 0.05eV .

Figure 3 shows the energy resolved sticking coeffi-
cient when the plasma electron perpendicularly hits,
respectively, a copper, an aluminum, and a beryllium

boundary atkTs = 0.05eV . The sticking coeffi-
cient turns out to be extremely small, of the order of
10−5−10−4. For weaker screening, and thus stronger
coupling, we would obtain sticking coefficients as
large as10−1 but these screening wavenumbers are
unphysical. Global sticking coefficients defined in (4)
are also very small but the productseτe ≈ 10−6s (see
Table 1), which is the order of magnitude we expect
from our study of charging of dust particles in low-
temperature gas discharges [1].

Cu Al Be

τe[s] 0.026 0.021 0.022
se[10−5] 1.8 5.6 8.9
seτe[10−6s] 0.46 1.19 1.95

Table 1: Electron desorption time and global sticking coefficient

for a thermal beam of plasma electrons withkBTe = 5eV hitting

various metal surfaces atkBTs = 0.05eV .

3 Electron emission [4]

The secondary electron emission coefficientγe, that
is, the total number of electrons released per particle
impacting the plasma boundary, is an important sur-
face parameter. It affects the electric breakdown of a
gas and thus the operation mode of a gas discharge.
Data aboutγe are however rather sparse, it has been
hardly measured or calculated. Thus, in most plasma
simulationsγe is – by necessity – an adjustable pa-
rameter. Obviously this is an unacceptable situation.

For uncharged surfaces the processes leading to sec-
ondary electron emission are in principle known. In
particular, de-excitation of metastable molecules at
the surface is very efficient in producing secondary
electrons either via Penning de-excitation (Auger de-
excitation) or via resonant charge transfer and subse-
quent auto-ionization of the resulting temporary neg-
ative ion. At charged boundaries these processes
should release both bulk and surface electrons.

In the following we focus on Penning de-excitation
of metastable nitrogen molecules at an uncharged Al
surface although this process is not directly related
to gas discharges of current interest. It has been
however previously studied and can thus be used to
benchmark our approach. InN2/O2 dielectric barrier
discharges the same process occurs at aAl2O3 surface
(for which however no data are available).

3.1 Microscopic model

The microscopic model we adopt is schematically
shown in Fig. 4. The metal electrons are treated as
particles in a box with depthV0 = Φ + EF , the re-
leased electron is assumed to be adequately given by
a plane wave, and the metastable nitrogen molecule
N∗

2(
3Σ+

u ) is approximated by a (degenerate) two-level
system using a2πu LCAO molecule orbital as the
lower level and a2πg LCAO molecule orbital as
the upper level with atomic orbitals obtained from a
Coulomb potential withQ = 7e.

zva
uum level
E

"F

V0
b

bC

"1b

"0bC

Fig. 4: Penning de-excitation process (solid lines) in an

Al /N∗
2

system showing the electronic structure and the

qualitative behavior of the electron wave functions. The

Penning exchange process is indicated using dashed lines.

In the trajectory approximation, the Hamiltonian de-
scribing Penning de-excitation (solid lines in Fig. 4)
is given by (m denotes magnetic quantum number)

H = H0 + H1(t) , (5)

H0=
∑

~k

ǫ~kc
†
~k
c~k +

∑

~q

ǫ~qc
†
~qc~q +

∑

i,m

ǫid
†
imdim ,(6)

H1(t)=
∑

~k,~q,m

(
V

~q,1m

0m,~k
(t)d

†
0c~kc

†
~qd1 + h.c.

)
, (7)

where

V
~q,1m

0m,~k
(t)=

∫
d~rd~sΨ∗

0m(~r)Ψ~k
(~r + ~R(t))Vc(~r − ~s)

×Ψ∗
~q(~s + ~R(t))Ψ1m(~s) (8)

is the time-dependent Coulomb interaction of the two
active electrons involved in Penning de-excitation.

3.2 Quantum kinetics

To calculateγe we employ Keldysh Green func-
tions. The decreasing lifetime ofN∗

2(
3Σ+

u ) when it
approaches the boundary can then be easily included.
In addition, the approach is flexible enough to deal
with correlations on the molecule which is important
when temporary negative ions are formed by resonant
charge transfer.�1m(t1; t2) = t1 t2G(0)~qG(0)0mG(0)~k�~q (t1; t2) = t1 t2G1mG(0)0mG(0)~k

Fig. 5: Selfenergy for the electron in the excited molecu-

lar state (Σ1m) and the emitted state (Σ~q).

Initially there is no free electron with energyǫ~q.
Hence,γe is simply the overall occupancy of the free
electron states after the collision is completed along
the prescribed trajectory. In terms of Keldysh Green
functions,

γe= lim
t→∞

∑

~q

n~q(t)

= lim
t→∞

1

2

[
1 − i

∑

~q

F~q(t, t + 0+)
]

, (9)

where, using the selfenergy diagrams shown in Fig. 5,

F~q(t, t
′) = −

∫
dt̄d¯̄tG

(0)R
~q (t, t̄)Σ+−

~q (t̄, ¯̄t)G
(0)A
~q (¯̄t, t′)

(10)

with G(0)...
... Green functions corresponding toH0 and

Σ+−
~q (t, t′)=

∑

~k,m

V
~q,1m

0m,~k
(t)

[
V

~q,1m

0m,~k
(t′)

]∗
G

(0)+−
~k

(t, t′)

×G
(0)−+
0m (t′, t)G+−

1m (t, t′) . (11)

The Green functionG+−
1m (t, t′) accounting for the fi-

nite lifetime of N∗
2(

3Σ+
u ) is given by (time variables

are suppressed and internal times are integrated over
from−∞ to +∞):

G+−
1m = G̃+−

1m + G
(0)R
1m Σ++

1mG+−
1m , (12)

G̃+−
1m = G

(0)+−
1m − G

(0)+−
1m Σ−−

1m GA
1m , (13)

GA
1m = G

(0)A
1m + G

(0)A
1m ΣA

1mGA
1m . (14)

Putting everything together, the final result is

γe=
1

2

∑

m

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

[
∆A

1m(t1, t2) + ∆R
1m(t1, t2)

]

×

{
1 −

∫ t1

−∞
dt′′1

∫ t1

−∞
dt′′2∆A

1m(t′′1 , t
′′
2)

×T̃ exp

[
−

∫ t1

t′′
2

dt′1

∫ t1

t′′
2

dt′2∆
A
1m(t′1, t

′
2)

]}

×T exp

[
−

∫ t2

−∞
dt′1

∫ t2

−∞
dt′2∆

R
1m(t′1, t

′
2)

]
(15)

with ∆
A/R
1m (t1, t2) the advanced and retarded parts of

∆1m(t1, t2)=
∑

~k,~q

[
V

~q,1m

0m,~k
(t1)

]∗
V

~q,1m

0m,~k
(t2)n~k

×exp[−i(ǫ~q + ǫ0 − ǫ1 − ǫ~k)(t1 − t2)] .

(16)

andT andT̃ the chronological and antichronological
time ordering operators.

Equation (15) is rather complex. However, we can
show that∆1m(t1, t2) divergences att1 = t2 for dis-
tances form the surface larger than2rN2

. Hence, as
far as the time integrations in (15) are concerned,
∆1m(t1, t2) is basically local in time. The time or-
dering operatorsT andT̃ can thus be neglected and
γe numerically calculated [4].
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