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In order to study the competition between Anderson
localization and polaron formation we adopt the sta-
tistical dynamic mean field theory to a generic model
for a strongly coupled electron-phonon system. The
localization properties of a single polaron are dis-
cussed in detail.

Introduction

While the localization of a single non-interacting
electron is successfully studied with a variety of
methods the question how localization and electron-
phonon interaction compete has been adressed con-
siderably less. As a first step towards more realis-
tic systems we studied in the work presented here
the localization properties of a single Holstein po-
laron within a microscopic approach, the statistical
dynamic mean-field theory (statDMFT) which has
been previously applied to the disordered Hubbard
model [2]. The statDMFT is an extension of the
DMFT to include spatial fluctuations on a finite di-
mensional lattice. In the spirit of Anderson’s first
work on localization it adresses the question of local-
ization through distributions of local quantities. Its
basic idea is to set up a Monte-Carlo scheme for the
local (retarted) Green’s function Gii(ω) whose distri-
bution (but not average) is critical at the localization
transition.

Anderson-Holstein model

The Anderson-Holstein model (AHM) consists of
tight-binding electrons in a medium with composi-
tional disorder, which are locally coupled to disper-
sionless Einstein phonons.
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The “Holstein” properties of this model are deter-
mined by two interaction parameters, λ = Ep/2J

and g2 = Ep/Ω, and the adiabaticity ratio α = Ω/J .
Polaron formation sets in provided that λ & 1 and
g2 & 1. The “Anderson” properties of this model are
determined by the distribution of the on site energies
εi which are assumed to be independent random vari-
ables with a box distribution p(εi) = 1

γ θ
(γ

2 − |εi|
)
.

We will consider a single electron (polaron) at T = 0.

The method

Conceptionally the statDMFT is a combination of the
selfconsistent theory of localization [4] (AAT) and
the DMFT [5]. Its construction proceeds in two steps.
One starts by expressing the local Green’s function
Gii(ω) through Green’s functions G(i)

jk(ω) which are
obtained for the lattice with site i removed. Con-
tinuing this expansion yields an infinite hierarchy of
equations for general lattices. If one neglects contri-
butions from nontrivial loops – which is equivalent
to working on a Bethe lattice – one finds a single
equation relating Gii(ω) to the local Green’s func-
tions Gjj(ω) on the K neighbouring sites to i.

Gii(ω) =
1

ω − εi − J2
K∑
j=1

Gjj(ω)− Σii(ω)

Here the contribution from electron-phonon cou-
pling is included through the local electron-phonon-
selfenergy Σii(ω) which is calculated in the limit
K → ∞ (i.e. within DMFT). Note that Σii(ω) is
a spatially varying quantity. For a single Holstein po-
laron Σii(ω) is given by a continued fraction

Σii(ω) =
EpΩ

F−1
ii (ω − Ω)− 2EpΩ

F−1
ii (ω − 2Ω)− · · ·

whose N -th level accounts for the emission and re-
absorption of N (at T = 0 virtual) phonons. Here
Fii(ω) = (ω − εi − J2∑K

j=1Gjj(ω))−1 denotes the
Green’s function without e-ph-interaction at site i.

For the second step of the construction one observes
that Gii(ω) is a random variable due to the random-
ness of the on site potential εi. The distribution of

Gii(ω) is independent from the lattice site. More-
over the K local Green’s functions on the rhs of the
above written equation are independently distributed.
Hence this equation can be reinterpreted as a stochas-
tic selfconsistency equation for a random variable
Gii(ω) (in turn of this reinterpretation i and j de-
note no longer specific lattice sites but particular re-
alizations of the random variable Gii(ω)). We solve
the stochastic selfconsistency equation numerically
through a Monte-Carlo procedure (Gibbs sampling)
which constructs a selfconsistent random sample for
Gii(ω) from which all relevant distributions can be
obtained.

Remark: all result are given for K = 2. Energies are mea-
sured in units of the bare bandwidth W0 = 4J

√
K = 1. Due to

the scaling of the hopping matrix element J as J = J̃/
√
K in

the K→∞-limit we work with rescaled interaction parameters
λ̃ = Ep/2J̃ = λ/

√
K and α̃ = Ω/J̃ = α/

√
K.

Localization criterion

Distributions

The quantity of interest is the probability distribution
of the local density of states (LDOS)

Ni(ω) = − 1

π
lim
η→0+

ImGii(ω + iη)

This distribution contains all spatial fluctuations and
hence the full information about localization. For
small disorder the distribution is nearly symmetric
and centered at its arithmetic mean value N ave(ω).
With increasing disorder heavy tails evolve and the
distribution becomes strongly asymmetric, the mean
value is no longer representative. At the localiza-
tion transition the distribution becomes even singu-
lar. The mean values is however still finite due to the
rare events in the tail of the distribution. Therefore
the transition from extended to localized states is ac-
companied by a qualitative change in the distribution
that is not detected by the arithmetic mean value.
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Probability distribution of the LDOS for the pure An-
derson model (no e-ph-interaction) in the band cen-
ter ω = 0, for four values of disorder γ. Note the
logarithmic scale in the inset.

Typical density of states

Although the distribution of the LDOS should be un-
derstood as the primary object of the theory, it is
sometimes more convenient to work with certain av-
eraged quantities. It is however crucial to choose an
appropiate average which accounts for the asymmet-
ric form of the distribution in the strongly disordered
regime. Defining the typical density of states as

N typ(ω) = exp


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N

∑
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logNi(ω)




states at energy ω are classified as extended if
N typ(ω) > 0, and localized if N typ(ω) = 0. In both
cases Nave(ω) > 0 (otherwise one had no states at
ω). So the typical (but not the averaged) density of
states plays the role of an “order parameter” for lo-
calization.
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Anderson-Model, average and typical density of
states for γ = 1.5.

η → 0 -limit

The LDOS Ni = −1
π ImGii(ω + iη), hence its dis-

tribution, is defined in the limit η → 0. While
no strict distinction between extended and localized
states can be made for finite η the limiting distribu-
tion for η → 0 exhibits clearly different features in
the two regimes.
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Probability distribution of the LDOS, N ave and N typ

with respect to η for extended (ω = 0.0, left column)
and localized (ω = 0.9, right column) states, with
γ = 1.5.

This is the key observation: localization manifests in
the distribution of the LDOS for η → 0. Exploiting
the limit η → 0 numerically allows for a clear dis-
tinction of localized versus extended states.
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Mobility edges for the Anderson model on a Bethe
lattice with K = 2. The critical disorder for com-
plete localization is γc(ω = 0) ≈ 2.9.

Localization of a polaron

Antiadiabatic strong coupling
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Antiadiabatic strong coupling α̃ = 2.25, λ̃ = 9.0
(DMFT result). The lowest polaron subband has a
renormalized bandwidth W = 3.45 × 10−4 and is
fully coherent.

For strong coupling and large phonon frequency (λ̃ =
9.0, α̃ = 2.25) the lowest polaron subband is com-
pletely coherent (Im Σ(ω) = 0) with a rather symmet-
ric DOS. The localization properties of this band are
expected to be same as for the pure Anderson model.
As a comparison of N typ and the mobility edge tra-
jectories shows this is indeed the case.
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Comparison of N typ in the bandcenter of the pure
Anderson model (green curve) and the lowest polaron
subband in the antiadiabatic strong coupling regime
λ̃ = 9.0, α̃ = 2.25 (blue curve). The respective band-
width is denoted by W . The inset displays part of the
corresponding mobility edge trajectories. The energy
ω is scaled to the respective bandwidth and -center.

The two mobility edge trajectories do match even for
very strong disorder when all states in the polaron
subband become localized. However the critical dis-
order is orders of magnitude smaller than the separa-
tion of the subbands because of the strong renormal-
ization of the bandwidth. So disorder can localize all

states within a single subband without affecting the
overall polaronic features of the system.

Adiabatic intermediate coupling

For intermediate coupling and small phonon fre-
quency (λ̃ = 1.0, α̃ = 0.2) the localization properties
of the polaron do substantially differ from that of the
bare electron. States at bottom of the lowest polaron
subband are rather mobile and remain nearly unaf-
fected for small disorder. In contrast states at the top
are rather sluggish and very susceptible to disorder.
Although the two lowest subbands which correspond
to a different number of phonons remain separated
over a large range of disorder they eventually begin
to merge. The relevant energy scale changes before
complete localization of the lowest subband can oc-
cur.
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Nave and N typ for λ̃ = 1.0, α̃ = 0.2 and four values
of γ. W ≈ 8.123 × 10−3 is the width of the lowest
polaron subband of the pure Holstein model (γ = 0).

Anderson regime

Up to now we discussed the “Holstein regime” regime when dis-
order is comparable to the width of the lowest polaron subband.
We can as well consider the “Anderson regime” when disorder
is large on the energy scale set by e-ph interaction.

For γ = 2 in the pure Anderson model localized and
extended states are separated by mobility edges at
ω ≈ ±0.9. If electron-phonon interaction is switched
on (here with α̃ = 0.2, λ̃ = 0.75) states at energy ω
begin to couple to states at energies less than ω (re-
call that T = 0). States at the lower mobility edge
can only couple to states which are already localized.
Hence disorder and e-ph-interaction work in the same
direction. As a consequence polaron like defect states
do form as is indicated by the step-like structure of
the average DOS (this can be readily understood in
terms of the independent boson model). At the up-
per mobility edge formerly localized states delocal-
ize due to the coupling to extended states towards
the band center. Here e-ph-interaction weakens the
tendency towards localization. As a consequence the
upper mobility edge is shifted to higher energies.
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Nave (DMFT) and N typ for α̃ = 0.2, λ̃ = 0.75,
γ = 2.0. The green curves show N ave and N typ for
λ̃ = 0. The vertical slashed lines indicate the mobil-
ity edges for λ̃ = 0.

Conclusions

We reexamined how the probability distribution of
the local density of states can be used for an analysis
of localization. Furthermore we studied the localiza-
tion of a Holstein polaron by means of the statDMFT
and demonstrated its applicability in various para-
meter regimes. The important physical lesson is that
the localization properties of a Holstein polaron are
highly non universal.
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