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Motivation

The motion of a particle that interacts strongly with
some background medium is a constantly recurring
theme in condensed matter physics. Media which
commonly occur are ordered spin backgrounds as in
the t-J model of doped Mott insulators, or vibrating
lattices as in the Holstein or quantised SSH models
for polarons or charge density waves (CDW).
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Quantum transport in correlated/fluctuating background media

like 2D AFM (high-Tc cuprates) or 1D CDW (MX chains).

Note that in all cases transport is strongly boson affected or even

controlled because as the particle moves it creates local distor-

tions of substantial energy in the medium, e.g. local spin or lat-

tice fluctuations, which may be able to relax. Their relaxation

rate determines how fast the particle can move. The interaction

with the background may even drive a metal insulator transition

(MIT). The proof of existence of MIT in generic model Hamil-

tonians is one of the most fundamental problems in solid state

theory. As yet there is only a very small number of microscopic

models which have rigorously been shown to exhibit a MIT.

Model

To model these principal transport mechanisms a
rather simple (spinless) Hamiltonian with a novel
form of fermion-boson coupling has recently been
proposed(D. M. Edwards, Physica 378-380B, 133 (2006)):
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hopping + boson relaxation+ boson energy
Here a fermion emits or absorbs a local boson every
time it hops [but hopping creates (destroys) a boson
only on the site the particle leaves (enters)!]:
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The λ term allows a boson to decay spontaneously,
thereby avoiding the string effect (compareλ with J).
Thus t-J-like quasiparticle transport becomes pos-
sible. However, even atλ = 0, when transport is
fully boson-assisted, there exist processes that prop-
agate the particle but restore the boson vacuum. The
lowest-order process of this kind comprises 6 steps:
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; 1D analogue of 2D “Trugman paths”!

Unitary transformationbi 7→ bi + tf/2tb of H:
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Different from thet-J model physicsH ′ = Hf +
Hb + Hω0

is governed bytwoenergy ratios:
tb/tf andtb/ω0, wheretf = 2λtb/ω0!

ObviouslyH ′ (H) captures the interplay of“coher-
ent” and“incoherent”transport channels realized in
many condensed matter systems!

Numerical Methods

Ground state properties

Single-particle sector:Variational Hilbert space ap-
proach(Ku, Trugman, Boňca: PRB 65, 174306 (2002)).
In most cases106 basis states are sufficient to obtain an8-16

digit accuracyfor E0, 〈0| . . . |0〉, . . . in anydimension!

Many-particle sector:DMRG pseudo-site approach
(see, e.g. Jeckelmann, Fehske, Rivista del Nuovo Cimento 30,

259 (2007)). We keepm = 1200 to 2000 density-matrix eigen-

states and extrapolate various quantities to them → ∞ limit.

The discarded weight was always smaller than5 × 10−8.

Spectral properties

Kernel Polynomial Method(Weiße, Wellein, Alvermann,
Fehske, RMP 78, 275 (2006)):

AO(x) =
1

π
√

1 − x2

(

µO
0 + 2

M
∑

m=1

µO
mTm(x)

)

µO
m =

∫

1

−1

dx Tm(x)AO(x) = 〈ψ0|O†Tm(X)O|ψ0〉 .

with Chebyshev polynomialsTm(x) = cos[m arccos(x)] and mo-

mentsµO
2m = 2〈φm|φm〉 − µO

0 , µO
2m+1 = 2〈φm+1|φm〉 − µO

1 .

Single-Particle Sector
(Alvermann, Edwards, Fehske, PRL 98, 056602 (2007))

♣ Drude weight - f-sum rule
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♣ optical conductivity
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♣ Kohn’s formulaD = 1/2m∗
; consistency check!
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the asymptotic resultD ≃ t6b/(3ω5
0) + O(t8b/ω

7
0) for ω0 → ∞.

• free particle (tb = 0): D = tf , −D/Ekin = 0.5

• strong fluctuations:−D/Ekin ≪ 0.5
; diffusive transport

• strong correlations:D ր asω0 ց (see inset)
; boson-assisted hopping – transport dominated
by vacuum-restoring (6-step) processes

♣ particle-boson & particle-particle correlations
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♣ single-particle excitations related to photoemis-
sion (PE)A−(k, ω) and IPEA+(k, ω) processes
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(herec+

k = c†k, c−k = ck, |ψ0〉 is the ground state in theNe-

particle sector while|ψ±
n 〉 denote then-th excited states in the

Ne ± 1-particle sectors withω±
n = E±

n − E0)
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Electron-boson correlationsχeb(i − j), spectral function

A+(k, ω), and optical responseσreg(ω) (from top to bottom).

Left (right) column gives data forω0/tb = 0.5 (ω0/tb = 2.0), i.e.

in the fluctuation (correlation) dominated regime.Stot denotes

the integrated conductivityStot(ω) =
∫ ω

0
σreg(ω

′)dω′.

• tf ≫ tb (ω0 rather small); “diffusive” transport!

• bosons form a cloud around the particle

• band flattening near the Brillouin zone boundary

• optical response - broad absorption feature

• overdamped character ofA(k, ω) neark = 0, π

• tf ≤ tb (ω0 not too small); “collective” particle-
boson dynamics!

• pronounced NN particle-boson correlations

• optical response - thresholdω0; σreg ≃ σreg,b

•A(k, ω) signals coherent transport within a
strongly renormalised quasiparticle band
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Schematic “phase diagram” of our transport model.

Exact numerical solution (N → ∞) ; surprisingly
rich physics: “free” particle⇌ magnetic polaron⇌
lattice polaron; coherent (correlated)⇌ incoherent
(diffusive) transport. Bosonic fluctuations act in two
competing ways: limit transport & assist transport!

All this is obtained for just one particle - plus background!

Half-filled Band Case

Spectral properties – ED/KPM
(Wellein, Fehske, Alvermann, Edwards, PRL 101, 135402 (2008))

Does our boson-controlled hopping model shows a
metal insulator QPT at commensurate band fillings?
Since the particles have only a charge degree of free-
dom, the formation of a CDW is the only possibility
for a MIT. Clearly the free hopping channel (∝ tf )
acts against any correlation induced CDW, but also
strong bosonic fluctuations will destroy LRO.

♣ wave-vector resolved single-particle spectra
(Dmax

tot ≃ 8 × 1010, 30 000 CPUh per spectrum)
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PE (black) and IPE spectra (red) for the half-filled band case

with λ = 5 [ tf(λ, ω0 = 2) = 5] (upper panel) andλ = 0.01

(lower panels), whereω0 = 2 [ tf(λ, ω0) = 0.01] (left) or

ω0 = 0.5 [ tf(λ, ω0 = 2) = 0.04] (right), for N = 12, Nb = 15.

Dashed lines giveS+
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dω′A+
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SK = S−
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∑
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; MIT takes place asλ (or tf ) ց at fixedω0 !
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States with one particle removed from a perfect CDW (left

panel) are connected by the 6-step hopping process of order

O(t6b/ω
5
0), whereas a 2-step process of orderO(t2b/ω0) (right

panel) relates states with an additional particle. Consequently

the electron band is much less renormalised than the hole band,

and the mass enhancement is by a factorO((tb/ω0)
4) smaller.

Correlation induced mass-asymmetric band struc-
ture, different in nature from simple 2-band models!

; MIT is suppressed asω0 decreases
(i.e. fluctuations increase) at fixedλ !

Ground-state properties – DMRG
(Ejima, Hager, Fehske, PRL 102, 106404 (2009))

In order to characterize the metallic and insulating
regimes in more detail we calculate besides the lo-
cal particle densities and fermion-boson correlation
functions, the

♣ kinetic energy parts

Ekin
b/f = 〈ψ0|Hb/f |ψ0〉 ,

♣ charge structure factor
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♣ Luttinger liquid charge exponent

Kρ = π lim
q→0

Sc(q)

q
, q =

2π

N
, N → ∞ ,

♣ single-particle (charge) excitation gap

∆c1
(N) = E(Ne + 1) + E(Ne − 1) − 2E(Ne),

whereE(Ne) andE(Ne± 1) are the ground-state en-
ergies in theNe and(Ne± 1) particle sectors, respec-
tively, with Ne = N/2.
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Local densities of fermions〈c†ici〉 (a) and bosons〈b†ibi〉 (b) for

a 128-site system with OBC. Open symbols are forλ = 0.01

(CDW regime), filled ones forλ = 0.5 (metallic regime). The

fermion-boson correlation functionχeb(j) is given in panel (c)

for a 64-site system with APBC (discarded weight1.4 × 10−10

(7.9 × 10−10) for λ = 0.01 (λ = 0.50)). In all casesω0 = 2.0.

• CDW structure of the insulating state shows up in
the local densities and fermion-boson correlations

• metallic regime: OBC; Friedel oscillations
(which algebraically decay→ interior)
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Finite-size scaling of several physical quantities: (a) static

charge structure factorSc(q) at q = π, (b) kinetic energy parts

Ekin
b/f , (c) Luttinger liquid parameterKρ, and (d) single-particle

excitation gap∆c1. Data obtained forω0 = 2 with APBC

[(a),(b)] and OBC [(c),(d)] applied.

• λ = 0.01, ω0 = 2: Sc(π)/N stays finite in the ther-
modynamic limit; true CDW long-range order
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ω0 = 2.0 (main panel). The inset displays results for smallerω0

and shows that (i) no CDW state is found forω0 < ωc and (ii)

Kρ < 1 for all ω0, whereKρ → 1 asω0 → 0 and/orλ−1 → 0.

• Lowering λ, Kρ decreases from1 → 1/2. The
point whereKρ = 1/2 is reached marks the criti-
cal coupling for the MIT.
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DMRG phase diagram for the 1D half-filled band case. The in-

set gives the phase diagram in theλ-ω0 plane. The MIT point

for λ = 0, ω0(0) ∼ 1.38, is obtained from a quadratic fit.

• TLL exists even forω0 = ∞ provided that
λ−1 < λ−1

c (ω0 = ∞) ≃ 6.3

• TLL is realized forλ = 0 belowωc ≃ 1.38

To conclude, using unbiased numerical techniques,
we proved that our very two-channel fermion-boson
transport model displays a correlation-induced MIT
at half filling in 1D. The metallic phase typifies a re-
pulsive Luttinger liquid, while the insulating phase
shows CDW long-range order. The CDW ground
state is a few-boson state, in contrast e.g. to a dimer-
ized Peierls phase.


