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Motivation

Among the most remarkable features of graphene
are the linear dispersion in the vicinity of the band
centre and its true two dimensional (2D) structure.
Preparing technologically relevant samples (nanorib-
bons), two additional aspects influence the material
properties: disorder and boundary effects. The pres-
ence of disorder in 2D systems leads to Anderson
localisation (AL) of the electronic wave function.
In finite, weakly disordered devices the localisation
length may become comparable or even larger than
the system size, leading to conducting behaviour de-
spite the localisation of the wave function. The com-
petition between boundary effects, localisation length
and system size triggers the technologically relevant
questions:

•How much disorder can we tolerate in a sample
without destroying the conducting behaviour?
•How do the ribbon edges influence this value?

Models

Disordered graphene nanoribbons

Investigating the localisation properties of the single
particle wave function in graphene, we consider the
tight-binding Hamiltonian

H =

N∑

i=1

εic
†
ici − t̄

∑

〈ij〉
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†
icj + H.c.)

on a honeycomb lattice with N sites, including hop-
ping between nearest neighbours 〈ij〉 only. Choosing
the on-site potentials εi from the box distribution
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γ
θ
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2
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)
,

we introduce Anderson-type disorder into the model.
We consider quasi-1D systems with finite widths and
open boundaries in the transversal direction, whereas
the other boundary conditions are periodic. Depend-
ing on the orientation of those ribbons with respect
to the honeycomb lattice, we have to distinguish the
cases of zigzag and armchair geometries:

Zigzag (left) and armchair (right) graphene nanoribbons.

Furthermore, we single out the difference between
bulk and edge disorder, whereby we account for dif-
ferent ribbon widths and edge geometries.

Quantum RRN model

Mesoscopic regions of different charge carrier den-
sity may arise in graphene sheets because of, e.g., in-
homogeneities in the substrate or non-perfect stack-
ing [1]. In order to model the minimal conductivity
in graphene, a random resistor network (RRN) repre-
sentation of a graphene sheet has been proposed by
Cheianov et al. [2]. Thereby random links between
electron and hole “puddles” (corresponding to lattice
sites) are assumed to determine the observed conduc-
tivity rather than the local conductivity of a puddle.
Extending the 2D quantum site-percolation model by
including a finite “leakage” κ between all lattice sites,
the Hamiltonian reads

H = −t̄
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) ]
+ H.c. .

The two sublattices α and β represent, e.g., regions
of different charge carrier concentrations. Those re-
gions are randomly connected; the ηi ∈ {0, 1} de-
termine the present diagonal in each plaquette. Be-
tween suchlike linked sites, the hopping probability
is much higher than for nearest neighbours (reduced
by κ < 1). Tuning the expectation value of the {ηi}-
distribution, p = 〈ηi〉, controls the size of connected
regions.
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Left: Generation rule for the RRN model. Sublattices α and β
form a bipartite checkerboard on the 2D square lattice. Right:
Particular realisations of the RRN for p = 0.5 and p = 0.9.

Methods for detecting AL

The large localisation lengths in disordered 2D sys-
tems necessitate the investigation of system sizes be-
yond reach of exact diagonalisation (ED) methods.
Instead, we apply Chebyshev expansion based tech-
niques, requiring only matrix vector multiplications
of a state with the (sparse) Hamiltonian. The local
distribution approach for the local density of states
(LDOS) allows for an energy resolved investigation
of the localisation properties of the single particle
eigenstates. In addition, we propagate an initially lo-
calised wave packet by applying the time evolution
operator in order to substantiate our findings.

Local distribution approach
(Alvermann, Fehske, J. Phys. Conf. Series, 35, 145 (2006))

In a given sample of a disordered system translational
invariance is broken. The local properties of site i are
reflected in the LDOS,

ρi(E) =

N∑

m=1

|〈i|m〉|2 δ(E − Em) .

Recording the probability density function f [ρi] for
many different sites {i} of a certain sample and dif-
ferent sample realisations {εi} restores translational
invariance on the level of distributions: The shape
of f [ρi] is determined by p[εi] (i.e. by γ) but inde-
pendent of {i} and {εi}. For extended states, f [ρi]
is a normal distribution and independent of the sys-
tem size, whereas for localised states we have a log-
normal distribution which tends to become singu-
lar for increasing system sizes [3]. Normalising the
LDOS to its mean value, ρme = 〈ρi〉, allows for a de-
tection of the localisation properties by performing a
finite size scaling for the LDOS distribution or the cu-
mulated distribution function, F [ρi] =

∫ ρi
0 f [ρ′i] dρ′i.

More conveniently, the typical DOS ρty = e〈ln ρi〉
monitors the changes in the shape of the LDOS dis-
tribution. While for N → ∞ an extended state is
characterised by finite values of ρme and ρty, for lo-
calised states ρme is finite but ρty → 0.
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Illustration of the local distribution approach on the basis of
the Anderson model on a 3D (upper two rows) and 2D (bottom
row) lattice. For 3D, we compare the dependency on the system
size for weak (γ = 3t̄) and strong (γ = 24t̄) disorder. Extended
states: more or less uniform amplitudes of the wave function
; f [ρi] sharply peaked and symmetric around ρme . Localised
states: ρi strongly fluctuates throughout the lattice ; f [ρi] is
very asymmetric with a long tail and 〈ρi〉 → 0. The data is ex-
tremely well described by a log-normal fit. For 2D we also find
localised behaviour but at much larger length scales.

Chebyshev expansion
(Weiße, Wellein, Alvermann, Fehske, RMP 78, 275 (2006))

Alternatively, the recurrence probability PR(t) in the
limit t → ∞ also reveals the localisation proper-
ties of the system. While in the thermodynamic limit
PR ∼ 1/N → 0 for extended states, localised states
are characterised by a finite value of PR. Starting
from a localised wave packet, we calculate the time
dependent local particle density,

ni(t) = |ψ(ri, t)|2 =
∣∣∣
N∑

m=1

e−iEmt〈m|ψ(0)〉〈i|m〉
∣∣∣
2
,

by expanding the time evolution operator into a fi-
nite series of Chebyshev polynomials. Also for ni(t)
the local distribution approach applies. But since any
initial state in general contains contributions of the
whole spectrum, examining ni(t) does not allow for
an energy resolved investigation of localisation as the
LDOS. Instead it provides a tool for a global exam-
ination of the spectrum with relevance for possible
measurements. A finite overlap of already one ex-
tended state with the initial state leads to a complete
spreading of this state after some time.

Results

Edge versus bulk disorder in GNRs
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Mean and typical DOS for zigzag (left column) and armchair
(right column) ribbons of width W = 1.1 nm. We compare the
influence of edge to bulk disorder for two disorder strength. To
illustrate the localisation properties, in each panel ρty is given
for L = 213 nm and L = 2128 nm.

♣ In contrast to zigzag and Na = 3n armchair rib-
bons, the DOS for other (ordered) armchair ribbons
is gapped at E = 0. Introducing disorder, localised
states emerge in the gap. Above a critical disorder
strength γc the gap vanishes, with γce > γcb .

♣ Analysing ρty reveals the localisation proper-
ties: The reduced values of ρty indicate localisation
throughout the band for both ribbon geometries and
the shown values of bulk disorder. Weak edge disor-
der cannot localise the wave function on short arm-
chair ribbons as indicated by the approximate agree-
ment of ρty and ρme. Only for larger systems ρty is
substantially reduced, pointing towards localisation.
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Time evolution of an initially localised wave packet on disor-
dered zigzag and armchair ribbons for different values of bulk
disorder γb. Shown is the normalised particle densityN |ψ(ri)|2.
Device dimensions: (1.1× 213) nm2 with N ≈ 104 atoms.

♣ After a fast spreading process, the maximum ex-
tension of the wave function does not change any-
more, even for very long times. On individual sites
the amplitudes fluctuate with time, giving the shown
state a “quasistationary” nature.

♣ The localisation length depends both on disorder
strength and edge geometry. Armchair ribbons are
more susceptible to the presence of disorder than
those of zigzag type (shorter λ for the same γb). Rib-
bons of moderate length and weak disorder: λ > L
; wave function spreads over the whole ribbon.
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Localisation length λ on zigzag and armchair ribbons (L =
213 nm) as a function of bulk and edge disorder strength.

♣ Even though Anderson localisation takes place in
2D disordered systems for any γ > 0, the finite ex-
tension of the systems calls for a more in-depth con-
sideration. For a given ribbon size we can estimate
up to which disorder a given sample is metallic.

Leakage effects in RRNs
(Schubert & Fehske, PRB 78, 155115 (2008))
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Left: Mean and typical DOS for the RRN model on a N = 4002

lattice. For comparison ρty is also given for N = 8002. Right:
Size dependence of F [ρi/ρme] at certain energies (indicated by
the vertical dashed lines in the left panels).

♣ The inclusion of next-nearest neighbour hopping
causes a pronounced asymmetry that grows with in-
creasing κ. The multitude of spikes can be attributed
to localised states on “isolated” islands, getting less
probable for increasing κ. As compared to the quan-
tum percolation model, the presence of κ shifts those
special energies.

♣ For small κ all states are localised (vanishing ρty),
except for the band centre in (c). There, the two-
step structure of f [ρi/ρme] gives a hint to a bimodal
(checkerboard) structure of the wave function.

♣ The finite, system size independent ρty for larger
κ points towards extended states. The reduction as
compared to ρme can be explained by the sublattice
structure and leakage effects.
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Normalised occupation probability N |〈i|n〉|2 of characteristic
eigenstates |n〉 on a N = 1282 RRN-lattice as obtained by ED.
Same parameters (p, κ,En) as in the previous figure.

♣ Panel (a) shows a localised state. For large κ,
the amplitudes in (d) fluctuate over the whole lattice
without any global structure, indicating an extended
state. In contrast, the additional structures on inter-
mediate scales in (b) suggest localisation on large
length scales.

♣ For case (c) we observe the checkerboard struc-
ture of the amplitudes. The two-step structure in
F [N |〈i|n〉|2] is less pronounced than for F [ρi/ρme].
While ρi takes into account the whole eigenspace,
here only one eigenstate of the E = 0 subspace is
shown.

Conclusions

By means of the local distribution approach we were
able to distinguish localised from extended states for
two disordered tight-binding models, in particular for
transport models for graphene. Anderson localisa-
tion is identified by a log-normal distribution of the
LDOS that shifts towards zero for increasing system
size. The localisation length for weakly disordered
graphene nanoribbons may be larger than the sys-
tem size, leading to conducting behaviour. Also in
a RRN model, aiming at modelling the influence of
charge inhomogeneities, we found conducting states,
for which the existence is mainly triggered by the
leakage rate between the regions of different charge
carrier concentrations.
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