Competition of Zener and polaron phases in doped CMR manganites

Holger Fehske & Alexander Weiße

Physikalisches Institut, Universität Bayreuth, Germany

Jan Loos

Institute of Physics, Czech Academy of Sciences, Czech Republic

Abstract

Inspired by the strong experimental evidence for the coexistence of localized and itinerant charge carriers close to the metal-insulator transition (MIT) in the ferromagnetic (FM) phase of colossal magnetoresistive (CMR) manganites, for a theoretical description of the CMR transition we propose a two-phase scenario with percolative characteristics between equal hole-density polaron and Zener band-electron phases.

Motivation

Idea: Two-phase model for the CMR transition

Percolative coexistence of two "intertwined" equal-density phases: metallic doubleexchange dominated and polaronic insulating. The MIT transition is driven by a feedback effect which, at T_c , abruptly lowers the fraction of delocalized holes, leading to an collapse of the bandwidth of the Zener state.

A. Delocalized Zener state

<u>Band structure</u>: itinerant e_g charge carriers carry

Introducing the grand-canonical potentials

$$\Omega^{(f)} = -\frac{1}{2\beta} \sum_{\mathbf{k},\zeta=\pm} \ln\left[1 + \mathbf{e}^{\beta(\mu - \bar{\varepsilon}_{\mathbf{k}\zeta})}\right]$$

$$\Omega^{(p)} = -\frac{N}{\beta} \ln \left[1 + \mathbf{e}^{\beta(\mu - \varepsilon_p)} \right]$$

for holes in the ferromagnetic and polaronic phases, respectively, the free energy

$$\mathcal{F} = N_h \mu + \Omega^{(f)} + \Omega^{(p)} - T \mathcal{S}^{(s)}$$

results, where

$$\mathcal{S}^{(s)} = k_B N \Big\{ p^{(f)} \Big[(1-x) \big(\ln \nu_{\bar{S}}[\bar{S}\lambda] - \lambda \bar{S}B_{\bar{S}}[\bar{S}\lambda] \big) \Big\}$$

Appendix: Percolative picture

To support the assumption that the bandwidth of the Zener state depends approximately linear on the fraction of the FM region, we consider a site percolation model. Lattice points are occupied with probability p. Adjacent occupied sites will be connected by a hopping matrix element, which is affected by the background of thermalized classical spins. The density of states of the resulting random tight-binding model,

$$\mathcal{H}_{p} = \sum_{\langle ij \rangle} t_{ij}^{(p)} (\beta \lambda_{\text{eff}}) (c_{i}^{\dagger} c_{j} + c_{j}^{\dagger} c_{i}),$$

is determined numerically, using kernel polyno-

• Transition from a metallic FM low-T phase to an insulating paramagnetic high-T phase observed in hole-doped manganese perovskites \Rightarrow unusual dramatic change in their electronic and magnetic properties, including a spectacularly large negative magnetoresistance.

- Fig. 1. Schematic phase diagram for $La_{1-x}Ca_xMnO_3$ [after P. Schiffer et al., PRL 75, 3336 (1995)].
- Link between magnetic correlations & trans-Zener's double-exchange port properties: (DE) mechanism!

[C. Zener, Phys. Rev. 82, 403 (1951); P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955)]

(DE ~> Maximization of the hopping of strongly Hund's rule coupled Mn e_q -electrons in a polarized background of S = 3/2 (t_{2q}) core spins [quantum version - K. Kubo

$$t_{\alpha\beta}^{x/y} = \frac{t}{4} \begin{bmatrix} 1 & \mp\sqrt{3} \\ \mp\sqrt{3} & 3 \end{bmatrix} \qquad t_{\alpha\beta}^{z} = t \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(basis: $\{\theta = |3z^{2} - r^{2}\rangle, \ \epsilon = |x^{2} - y^{2}\rangle\})$
 $\rightsquigarrow \varepsilon_{\mathbf{k}\zeta}^{(0)} = -t \begin{bmatrix} \cos k_{x} + \cos k_{y} + \cos k_{z} \\ \pm \begin{bmatrix} \cos^{2} k_{x} + \cos^{2} k_{y} + \cos^{2} k_{z} - \cos k_{x} \cos k_{y} \\ -\cos k_{y} \cos k_{z} - \cos k_{z} \cos k_{x} \end{bmatrix}^{1/2}$

 $\sim \rightarrow$

တ္တိ 0.4

μ₀(x=0.3)

Correlations: Kondo lattice Hamiltonian \Rightarrow limit $U \gg J_H \gg t_{\alpha\beta}^{x/y/z} \Rightarrow$ effective transport Hamiltonian for (spinless) e_q holes (cond-mat/0101234) Assumption: Renormalization of the Zener state bandwidth is driven by two mechanisms:

 $\bar{\varepsilon}_{\mathbf{k}\zeta} = p^{(f)}\gamma_{\bar{S}}[\bar{S}\lambda]\,\varepsilon_{\mathbf{k}\zeta}^{(0)}$

(i) Effective field $\lambda = \beta g \mu_B H_{eff}^z$ tends to order the ion spins in z-direction \rightsquigarrow temperatureand field-dependent band narrowing due to the Kubo-Ohata factor (S = S + 1/2 = 2): $\gamma_{\bar{S}}[z] = \frac{1}{2} + \frac{\bar{S}}{2\bar{S}+1} \operatorname{coth}(\frac{2\bar{S}+1}{2\bar{S}}z) \left[\operatorname{coth}(z) - \frac{1}{2\bar{S}} \operatorname{coth}(\frac{z}{2\bar{S}})\right]$ \rightsquigarrow effective hole transfer amplitude $\tilde{t} = \gamma_{\bar{S}}[\bar{S}\lambda]t$.

$$+x\left(\ln\nu_{S}[S\lambda] - \lambda SB_{S}[S\lambda]\right)\right]$$
$$+p^{(p)}\left[(1-x)\ln\nu_{\bar{S}}[0] + x\ln\nu_{S}[0]\right]\right\}$$

represents the mean-field ion-spin entropy, and

 $\nu_{\bar{S}}[z] = \sinh(z) \coth(\frac{z}{2\bar{S}}) + \cosh(z) ,$ $B_{\bar{S}}[z] = \frac{2\bar{S}+1}{2\bar{S}} \operatorname{coth}(\frac{2\bar{S}+1}{2\bar{S}}z) - \frac{1}{2\bar{S}} \operatorname{coth}(\frac{z}{2\bar{S}}).$

For any T and x, the FM ordering field (λ) and the size of the Zener phase $(N^{(f)})$ have to be determined by minimizing \mathcal{F} on the hyperplane $\mu(\lambda, N^{(f)})$ given by

$$x = \frac{1}{2N} \sum_{\mathbf{k}\zeta} \frac{1}{\mathbf{e}^{\beta(\bar{\varepsilon}_{\mathbf{k}\zeta} - \mu)} + 1} + \frac{1}{\mathbf{e}^{\beta(\varepsilon_p - \mu)} + 1}.$$

Finally the magnetization can be calculated from $M = (1 - x)\bar{S}p^{(f)}B_{\bar{S}}[\bar{S}\lambda] + xSp^{(f)}B_{\bar{S}}[\bar{S}].$ (1)

Numerical results

mial and maximum entropy methods.

and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972)])

Problem: Even complete spin disorder does not lead to a significant reduction of the electronic bandwidth, and therefore cannot account for the observed scattering rate!

[P. Majumdar and P. B. Littlewood, Nature 395, 479 (1998)]

Suggestion: Orbital and lattice effects are crucial in explaining the CMR phenomenon! [A. J. Millis, Nature 392, 147 (1998)]

Experimental findings

- Small polaron transport above $T_c!$ [D. C. Worledge *al.*, PRB **57**, 15267 (1998)]
- X-ray-absorption fine structure & pair distribution data indicate that charge localized and delocalized phases coexist close to the CMR transition!
- [C. H. Booth et al., PRL 80, 853 (1998); S. J. L. Billinge et al., PRB 62, 1203 (2000)]
- Zero-field muon spin relaxation and neutron spin echo measurements yield two time scales in the FM phase of $La_{1-x}Sr_xMnO_3!$ [R. H. Heffner et al., PRL 85, 3285 (2000)]

→ Charge carriers partly retain their polaronic character well below $T_c!$

(ii) Percolative aspects of the MIT imply the existence of insulating enclaves embedded in the conducting FM (Zener) phase. We assume that the hole hopping amplitude has the value \tilde{t} inside the conducting region and zero elsewhere. ~ Feedback effect: The bandwidth is renormalized by the size of the FM region $N^{(f)} < N$, or

$p^{(f)} = N^{(f)}/N,$

which has to be determined self-consistently.

B. Localized polaronic state

"Polaron" – doped charge carrier (hole) quasilocalized with an associated lattice distortion.

CMR regime - both breathing-mode collapsed (Mn^{4+}) and Jahn-Teller distorted (Mn^{3+}) sites are created when holes become localized, i.e.:

The energy gain due to the Jahn-Teller splitting on localized electron sites without the influence of vacancies is weakened according to

 $(N^{(p)} - N_h^{(p)})E_1 = (x^{-1} - 1)E_1N_h^{(p)},$

Fig. 3. Upper panel: magnetization M, normalized by $M_0 = \bar{S} - x/2$, as a function of T at various doping levels $x = 0.175, \ldots, 0.4$. Results are shown for the models with (bold lines) and without (thin lines) feedback.

 $(E_1 = -0.125 \ eV, E_2 = -0.25 \ eV, W = 3.6 \ eV)$

Lower panel: T-dependences of the Zener band and of the positions of the polaronic level (ε_p) and chemical potential (μ) without (a) and with (b) feedback at x = 0.3. Dashed lines: band edges obtained by the use of $\tilde{t}_{\downarrow} = \left[\bar{S}(1+B_{\bar{S}}[\bar{S}\lambda])\right]^2 / (2\bar{S})(2\bar{S}+1)t$ instead of \tilde{t} .

Fig. 5. Density of states (DOS), $\rho(E)$, for the tight-binding site percolation model on a fi nite $6\frac{3}{4}$ -lattice (PBC) with different occupation probabilities p (a). Contributions from unoccupied sites were projected out. Panel (b) shows the DOS if only states belonging to the "infi nite" cluster are taken into account. At p = 0.5 the field dependence of $\rho(E)$ is displayed in panel (c). The insets show the integrated DOS $N(E) = \int_{-W/2}^{E} dE \rho(E')$ (a) and the bandwidths as functions of p (b) and the magnetic field $\beta \lambda_{\text{eff}}$ (c).

Summary

Proposed mechanism for the (CMR) MIT: percolative two-phase scenario.

• Below the transition temperatue T_c , we found

- Small octahedral distortions persist at low T, forming a nonuniform metallic state! [A. Lanzara et al., PRL 81, 878 (1998)]
- Limits of small (x < 0.1) and high ($x \sim 1$) hole densities: nanometer scale clusters with different electronic densities

 \rightarrow phase separation scenarios.

[A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999)]

- CMR regime (0.15 < x < 0.5): even larger clusters are reported - but μ m-sized domains, if charged, are energetically unstable (electroneutrality condition) ~> alternative concept: MIT and associated CMR behaviour might be viewed as a percolation phenomenon. [L. P. Gor'kov and V. Z. Kresin, JETP Lett. 67, 985
- (1998); A. Moreo *et al.*, PRL **84**, 5568 (2000)]

→ Intrinsic inhomogeneities & mixed-phase tendencies play a key role in manganites!

and a breathing distortion may occur which lowers the energy of the unoccupied e_q level by the familiar polaron shift $E_p = -g^2 \omega_0 \rightarrow E_2$.

 E_1 (E_2) describe effective Jahn-Teller (polaronic) energies in the insulating regions.

The polaronic phase - realized only in a fraction $p^{(p)} = N^{(p)}/N$ of the sample - can be represented approximately by spinless holes having the following site-independent energy

 $\varepsilon_p = \left(x^{-1} - 1\right)E_1 + E_2$

C. Self-consistency equations

Basic assumption: no large-scale separation of Mn^{3+} and Mn^{4+} ions in the CMR doping regime!

Fig. 4. Phase diagram of the mixed-phase Zener-polaron model with feedback (Inset: fraction of the Zener phase as a function of temperature).

- polaronic inclusions embedded in a dominant macroscopic metallic phase.
- The bandwidth of the Zener state depends approximately linear on the fraction of the ferromagnetic region.
- The abrupt change, revealed in various electrical and magnetic properties at T_c is attributed to a collapse of the Zener state mainly caused by a percolative feedback mechanism. • At T = 0 the transition is driven by doping and occurs at $x_c \simeq 0.15 - 0.18$.
- At finite temperatures, disorder due to intrinsic inhomogeneities and magnetic scattering act in combination to reduce the mobility of the charge carriers.
- The calculated values of T_c agree fairly well with the experimental ones.

Further details: A. Weiße, J. Loos, and H. Fehske arXiv:cond-mat/0101234 & arXiv:cond-mat/0101235