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Abstract

Based on a recently derived microscopic
model [1], which includes the dynamics of Jahn-
Teller and Holstein-type lattice vibrations, we
study the complex interplay of charge, spin, or-
bital and lattice degrees of freedom in doped
colossal magnetoresistance manganites (e.g.
La1−xCaxMnO3). Using exact diagonalisation
techniques for a four site cluster we demonstrate
how the coupling to the lattice affects spin and
orbital order as well as charge mobility. In ad-
dition we analyse the role of superexchange for
the optimally doped compounds.
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Basic properties

•Due to the crystal field in cubic symmetry the
Mn-d-levels split into eg and t2g.

• Strong Coulomb interaction U and Hund’s rule
coupling Jh prefer high-spin electronic config-
urations and affect charge mobility via double-
exchange.

• eg electrons interact with phonon modes of
the same symmetry, which leads to a uniform
Jahn-Teller distortion or polaronic effects.
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Electron-electron interaction

•We restrict the local electronic Hilbert space
to the large Hund’s rule ionic ground-states:
Mn3+ (d4)⇒ S=2 orbital doublet 5E: t3

2(4A2)e
Mn4+ (d3)⇒ S=3

2 orbital singlet 4A2: t3
2

• The effective electronic Hamiltonian is derived
by second order perturbation theory with re-
spect to the intersite hopping of Mn eg and t2g

electrons, t,tπ �U,Jh. [1,4]
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•Orbital degrees of freedom are represented by
Fermi operators dα and projectors Pα :

|θ 〉= d†
θ |0〉, |ε〉= d†

ε |0〉, |a2〉= d†
θd†

ε |0〉,
Pθ

i = ni,θ(1−ni,ε), Pε
i = ni,ε(1−ni,θ), Pa2

i = ni,εni,θ .

•On-site spin is described by Schwinger
bosons: 2S = a†

νσ νµaµ

•Note that the hopping tαβ
i j is anisotropic with

respect to the orbitals α ,β ∈ {θ ,ε}. The ex-
change coupling Jξη

i j and the offset ∆ξη
i j are of

the order t2
(π)/Jh or t2

(π)/U and depend on the
orbital orientation ξ ,η ∈ {θx, θy, θz, εx, εy, εz,
a2}.
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• Spin part of the 2nd order processes

Electron-phonon interaction

qθ qε qa1

At every site two Jahn-Teller modes of Eg sym-
metry, qθ and qε, interact with the orbital degrees
of freedom of the eg electrons. In addition the
breathing-mode qa1 couples to the electron den-
sity. To a good approximation the three modes
are optical, dispersion-less phonons.

HJT = g∑
i

[
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]
,
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(ni,θ + ni,ε−2ni,θni,ε)(b†
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) ,

Hph = ω ∑
i
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b†
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]
+ ω̃ ∑

i

b†
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.

Numerics

• The Hilbert space of the complete model,

H = Hel + HJT + Hbr + Hph ,

is large and grows rapidly with system size.

• Solution: Density matrix based optimisation
of the phonon space [5] and consideration of
discrete symmetries (Sz spin, particle number,
mirror symmetries).

• But: Method requires repeated solution of an
eigenvalue problem of dimension ≈ 106, which
is not very sparse =⇒ large scale computers

• Parallel Lanczos diagonalisation using MPI

Undoped manganites

• Experimentally: A-type antiferromagnetic or-
der and long-range Jahn-Teller distortion.

• Band structure calculations [6–9]: Lattice dis-
tortions are important for the observed mag-
netic order.

•Mean-field studies [4]: Antiferromagnetism of
purely electronic origin.

•Our calculation: Both mechanisms, U/Jh and
g, can drive a FM to AFM transition.
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• Electronic model [g = 0, see panel (d)]:
FM for 5Jh <U

�
9.2Jh

• Increasing g or U [panels (a) and (b)]:
Spin: FM→ AFM (cf. Stot)
Orbitals: AF→ F (cf. 〈nθ −nε〉)

However, depending on the driving interaction
(U or g), spin and orbital correlations may differ
substantially:
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•Orbital Heisenberg correlation 〈σ iσ i+δ〉 is
comparable for both transitions [(a) and (b)].

•But: Electron-phonon interaction suppresses
the coupling of the spin and orbital degrees of
freedom measured by

〈SiSi+δ τδ
i τδ

i+δ〉−〈SiSi+δ〉〈τδ
i τδ

i+δ 〉 .

•Can be crucial for effective theories [10,11].

The evolution of spin, orbital, and lattice correla-
tions can be summarised graphically:

increasing g−−−−−−−−−−→

Finite doping

In the doped compounds ferromagnetism is sta-
bilised by the double exchange interaction. Only
if strong electron-phonon coupling causes local-
isation of the carriers the spin order switches to
AF. However, at doping x = 1

2 a tendency towards
charge ordering promotes antiferromagnetism.

Doping x = 0.25:
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• FM→AFM transition coincides with trapping of
charge carriers.

•AFM phase is accompanied by a finite lattice
distortion

•Comparison of U = 6 eV and U → ∞ reveals
secondary role of superexchange interactions
for orbital correlations.

•Orbital polaron [12] requires mobile carriers.

•Orbital correlations can be obtained from the
reduced density matrix for two sites, whose
eigenstates can be classified as:

|a(ϕ ,ψ)〉i j = 1
‖.‖ (|ϕ〉i⊗|ψ〉 j + |ψ〉i⊗|ϕ〉 j)

|s〉i j = 1√
2
(|θ 〉i⊗|ε〉 j−|ε〉i⊗|θ 〉 j)

|o(ϕ)〉i j = 1√
2
(|ϕ〉i⊗|a2〉 j + |a2〉i⊗|ϕ〉 j)

with

|ϕ〉i = cos(ϕ)|θ 〉i + sin(ϕ)|ε〉i
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•Although the lattice distortion 〈qy〉 may grow
linearly in g, close to the FM-AFM transition
the variance 〈q2

y〉−〈qy〉2 shows a kink
→ Reminds experimental (XAFS) data [13].

Schematic view:

increasing g−−−−−−→

Doping x = 0.5:

With increasing electron-phonon coupling the
system switches from an itinerant FM phase via
an itinerant, qε-distorted AFM phase to an insu-
lating charge ordered AFM phase.
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•CDW → charge order transition with increas-
ing g, cf. 〈nin j〉, panel (c).

•Spin correlations affect kinetic energy only
marginally.

•Correlation of complex orbitals in the itinerant
phase.

Schematic view:

increasing g−−−−−−−−−−→

Conclusions

•By affecting charge mobility and orbital de-
grees of freedom the electron-phonon interac-
tion effectively controls spin and orbital order
of doped CMR manganites.

•Electron-phonon interaction can cause sup-
pression of the spin-orbital coupling.

•Changes in the short-range spin correlations
are reflected in dynamic lattice correlations.

•Calculation shows that complex orbital states
are a suitable approximation.

•Exact diagonalisation of even a small system
provides detailed insight into correlations and
driving interactions behind the rich phase dia-
gram of the manganites. It facilitates the de-
velopment of approximate theories.

•Optimised phonon approach [5] proves to be
applicable to a nontrivial Jahn-Teller problem.
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