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Introduction

• In a recent attempt [1] to describe the metal-insulator
transition in CMR manganites we assumed a percola-
tive coexistence of two competing phases:

– an insulating phase where doped holes are trapped
by local Jahn-Teller or breathing type lattice distor-
tions,

– a metallic phase containing itinerant carriers whose
hopping amplitude is coupled via double-exchange
to a background of localized spins.
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Fig. 1: Schematic experimental phase diagram for

La1−xCaxMnO3 after [2].

• For the site energy in the polaronic phase we took into
account the anti Jahn-Teller effect due to doping (E1)
and the polaron binding energy (E2),

εp =

(

1

x
− 1

)

E1 + E2 . (1)

• The kinetic energy of the metallic phase is renormal-
ized by the disorder of the spin background and—if in-
sulating polaronic enclaves are sparsely embedded—
by the irregular shape of the metallic cluster. As a
simplified approximation we considered

εf (k) = p(f)γS̄[S̄λ] ε0(k) , (2)

where ε0(k) denotes some bare band and p(f) = N (f)

N
is the volume fraction occupied by the metallic phase.
In an ordering field λ = βgµBheff the spin background
contributes [3],

γS̄[z] = 1
2 + S̄

2S̄+1
coth(2S̄+1

2S̄
z)

[

coth(z) − 1
2S̄

coth( z
2S̄

)
]

. (3)

• Assuming equal hole density in both phases,

x =
Nh

N
=

N
(f)
h

N (f)
=

N
(p)
h

N (p)
, (4)

the size of the metallic phase, and hence the elec-
tronic bandwidth, is coupled self-consistently to the
number of itinerant carriers. Minimizing the total free
energy with respect to λ, for characteristic parameter
sets we obtained the phase diagrams:
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Fig. 2: Phase diagram of the metal-insulator transition within

two-fluid model [1].

Quantum percolation model

Since the above approximation (2) for the metallic phase
is rather simplified, we study percolative aspects and
disorder in more detail. Namely, we consider the classi-
cal double-exchange model on a site percolated cluster,

H =
∑

〈kl〉

[tklc
†
kcl + H.c.] . (5)

Here c†l creates a spinless fermion in the Wannier state at site l, and

the summation is over neighboring sites on a simple cubic lattice.

• Given a probability p, sites of a simple cubic lattice
are chosen randomly. Only within the largest classi-
cally percolated cluster spinless fermions are allowed
to hop with amplitude [4]

tkl = cos θk
2 cos θl

2 e−i(φk−φl)/2

+ sin θk
2 sin θl

2 ei(φk−φl)/2 . (6)

• The set of angles {θl, φl} parameterizes the back-
ground of classical spins. It is taken from an ensem-
ble of thermalized classical spins in a magnetic field
heff. This introduces the parameter λ = βgµBheff.

• Hence, in the present model there are two types of
disorder which cause scattering or localization of the
involved fermions:

– the random structure of the cluster and
– the disorder in the hopping matrix elements.

Density of states

The density of states (DOS),

ρ(E) =
∑

n

δ(En − E) , (7)

of the above free fermion model can be calculated very
accurately with the aid of Chebyshev expansion and
maximum entropy methods [6].

• For the ordered spin background (λ = ∞) with de-
creasing p a pseudo-gap feature appears close to the
band center, together with a distinct peak at E = 0.
The weight W of this central peak (left hand inset) in-
creases continuously, and makes up more than 10%
of the spectrum close to the classical percolation
threshold pc ≈ 0.3116. Increasing spin disorder, i.e.,
decreasing λ, transfers spectral weight to the band
center. However, this does not seem to affect the
weight of the central peak. Of course, both types of
disorder reduce the overall bandwidth.

-6 -4 -2 0 2 4 6

E

0

0.1

0.2

0.3

0.4

0.5

ρ(
E

)

λ = ∞
λ = 0

0.4 0.6 0.8 1.0
p

0.00

0.05

0.10

W

-6 -4 -2 0 2 4 6

E

0

0.1

0.2

0.3

0.4

ρ(
E

)

p = 0.8

p = 0.4

Fig. 3: Density of states calculated on a 1003 site lattice for

p = 0.4, 0.8 and λ = 0, ∞; Left inset: weight of the central peak.

• The states in the band center show a typical chequer-
board structure (left) compared to the states from
other parts of the spectrum (right) (cf. also [7]).
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Fig. 4: Amplitude |φ| of the free fermion wave function on a slice

of a 153 site cube.

Localization

To obtain information about localization properties of
the model, we consider the typical density of states
(TDOS) [8], which is defined as the geometric mean of
the local density of states (LDOS),

ρi(E) =
∑

n

|φn
i |

2δ(En − E) , (8)

ρtyp(E) = exp (〈log[ρi(E)]〉) . (9)

Here φn
i denotes the amplitude of the free fermion state n at site i.

• Using the above numerical methods to compare DOS
and TDOS for the case p = 1, we observe that disor-
der of the spin background alone is not sufficient for
localization. Band and mobility edge almost coincide.
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Fig. 5: Band and mobility edge versus spin disorder; Inset: DOS

and TDOS for fully disordered spin background (p = 1, N = 643).

• The situation changes drastically for diluted clusters.
TDOS is noticeable reduced and below p . 0.38 van-
ishes at the band center. Interestingly, the distinct
peaks visible in DOS do not contribute to TDOS.
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Fig. 6: Band and mobility edge versus probability p; Insets: DOS

& TDOS at p = 0.4 and drop of TDOS at E = 0 (λ = ∞, N = 643).

Optical conductivity

Additional information about the model can be obtained,
considering its optical properties, namely the regular
part of the optical conductivity,

σreg(ω) =
1

N

∑

m6=0

|〈m|jx|0〉|
2

ωm
δ(ω − ωm) , (10)

with ωm = Em − E0. The current jx is given by

jx =
∑

〈kl〉x

[i tklc
†
kcl + H.c.] , (11)

where the summation extends over neighboring sites in
x-direction only.

Considering clusters on a 103 site lattice, we calculated
the eigenstates of the hopping matrix and summed up

the current matrix elements between empty and occu-
pied eigenstates. We assumed zero (electron) temper-
ature and a band filling of x = 0.2.
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Fig. 7: Optical conductivity for p = 0.3, 0.4, 0.8 and λ = 0, ∞ aver-

aged over 700 realizations on a 103 site lattice.

Clearly, below the classical percolation threshold (panel
(a)) we deal with finite size clusters which do not (or
rarely) connect the boundaries. Hence, the averaged
σreg is rather noisy and approaches zero in the limit
ω → 0. For p > pc (panels (b) and (c)) the curves
become smooth, and we obtain a finite dc conductiv-
ity. In panel (b) the hump between ω = 1 and 2 is due
to excitations into the central peak. With decreasing λ it
is shifted to lower frequencies, because of the reduced
bandwidth. Further studies of the model should clarify
whether a quantum percolation threshold [9] pq > pc is
visible in the optical conductivity.
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