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Abstract

We study the dynamics of two optomechanical systems, the

cavity-cantilever and the membrane-in-the-middle setup, with

a particular focus on the nonlinear classical dynamics and the

transition into the quantum regime. We start with the analysis

of classical dynamics, where we identify the route to chaos and

the multistability of solutions, which manifests itself through

the coexistence of several stable orbits at different amplitudes.

Then, we study with the method of quantum state diffusion,

how this optomechanical multistability is realized in the quan-

tum regime. There, new dynamical patterns appear because

quantum trajectories are affected by quantum noise and can

move between different classical orbits. We explain the result-

ing quantum dynamics from the phase space point of view, and

provide a quantitative description in terms of autocorrelation

functions. In this way we can identify clear dynamical signa-

tures of the crossover from classical to quantum mechanics

in experimentally accessible quantities. Finally, we discuss a

possible interpretation of our results in the sense that quan-

tum mechanics protects optomechanical systems against the

chaotic dynamics realized in the classical limit.
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Setup. The membrane-in-the-middle setup is a vibrating cantilever b with per-

meability J and natural frequency Ω subjected to the cavity photon field aL and

aR with frequency Ωcav via radiation pressure g. The system is driven from both

sides with a laser α of frequency Ωlas (phase shift σ = ±1), while the dissi-

pation of the photon field is taken into account with κ. The dissipation of the

cantilever is neglected. The membrane-in-the-middle setup (MIM) represents

an extension of the conventional cavity-cantilever setup (CC), which is irradiated

only from the left with J = aR = 0. For the classical dynamics of MIM we set

κ = Ω = α = −σ = 1. For the discussion of quantum dynamics of CC we

rescale the classical equations of motion with a → a/2α, b → b · g in order to

vary the system size, such that κ = Ω = 1 and α = PΩ4/8g2 with P = 1.5.

Hamiltonian H = H0 + Hint + Hdrive membrane-in-the-middle

H0 = ∆
(

a†LaL + a†RaR

)
+ Ωb†b, ∆ = Ωlas − Ωcav

Hint = J
(

a†LaR + aLa†R

)
+ g

(
b† + b

) (
a†LaL − a†RaR

)
Hdrive = α

(
aL + a†L

)
+ σα

(
aR + a†R

)
Quantum optical master equation at T = 0

d

dt
ρ = −i [H, ρ] + 2κ

∑
L/R

[
aL/Rρa†L/R −

1

2
aL/Ra†L/Rρ−

1

2
ρaL/Ra†L/R

]
Classical dynamics
ẋ = Ωp

ṗ = −Ωx − g
(
|aL|2 − |aR|2

) ȧL = [i∆− igx − κ] aL − iJaR − iα

ȧR = [i∆ + igx − κ] aR − iJaL − σiα

Quantum dynamics (Quantum State Diffusion)

|dψm〉 = −iH |ψm〉 dt + 2κ
∑
L/R

[
〈a†L/R〉 aL/R − 1

2a†L/RaL/R − 1
2 〈a

†
L/R〉 〈aL/R〉

]
|ψm〉 dt

+ 2κ
∑
L/R

[aL/R − 〈aL/R〉] |ψm〉 dξm

ρ = mean |ψm〉 〈ψm| quantum trajectory stochastic increment

Nonlinear Dynamics

Linear stability analysis
• 5 fixed points

x0 = 0, x1 = −x2, x3 = −x4

• pitchfork bifurcations 1 and
Hopf bifurcations 2

Route to chaos
(a) fixed points

(b) simple periodic orbits

(c) period doubling

chaos

Hysteresis
• state of system lim

t→∞
〈x〉t = x

depends on its history
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Linear stability analysis. Stability characteristics for ∆ = 0 (left) and ∆ =

−1.65 (right) with J = 0.5. Stable (unstable) fixed points are marked with

green (blue) arrows. The red cases correspond to supercritical (left) and

subcritical (right) pitchfork bifurcations (1) and Hopf bifurcations (2), which

are characterized by the number of zero crossings of their real parts of the

eigenvalues from linear stability analysis (see the insets).
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Route to chaos. Feigenbaum diagram starting with

the upper fixed point after supercritical pitchfork bifur-

cation with fixed points (a), simple oscillations (b) and

period doublings (c), resulting finally in chaos.
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Hysteresis. Dynamical evolution represented by lim
t→∞
〈x〉t = x

for ∆ = 0 (left, supercritical) and ∆ = −1.65 (right, subcritical)

in the control parameter space of g. Depending on the stability

characteristics there is a reversal symmetry or not.

Selfsustained Oscillations

Selfconsistent ansatz

x (t) = x0 + x1 cos γΩt

Simple periodic orbits after Hopf bifurcation

Multistability of simple periodic orbits
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Multistability of simple periodic orbits. Radiation power Prad from

the selfconsistent ansatz with x0 = 0, for J = 0.5 and g = 1 (left) or

∆ = 1.4 (right), respectively. Simple periodic orbits are possible for

Prad = 0 and dPrad/dx1 < 0 (’power balance’) with excellent agree-

ment by comparison with numerics (blue points). Below: frequency γ

from the selfconsistent ansatz for g = 1 (left) and ∆ = 1.4 (right).
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Simple periodic orbits after Hopf bifurca-

tion obtained from numerics (black), from the

simpler eigenfrequency ansatz (γ = 1, blue)

and from the full selfconsistent ansatz (γ 6= 1,

red) for J = 0,∆ = −0.5. Since the self-

induced oscillation is not initiated with the nat-

ural frequency of the cantilever, the eigenfre-

quency approximation fails, whereas numer-

ics and selfconsistent approach are in good

agreement; the deviation from numerics at

g = 1.34 close to the period doubling is

due to the presence of another, not negligible,

Fourier mode (see the inset).

Quantum Dynamics & Quantum Multistability

Quantum-Classical Scaling Parameter

σ = g/κ

system size ∼ 1/σ

Classical Dynamics

σ = 0 σ > 0

Classical Dynamics is dominated by

self-induced oscillations, which lead

to simple periodic orbits with differ-

ent amplitudes A1,A2, etc. These can

be located by using Prad = 0 &

dPrad/dx1 < 0. Marked are the two

cases (a) (∆ = −0.4) and (b) (∆ =

−0.7). For (b) there exist an area,

where the selfconsistent ansatz is in-

sufficient due to chaotic dynamics.

Quantum Dynamics
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The Quantum Dynamics (for case

(a) at σ = 0.1) closely follows the

classical oscillations for an initial pe-

riod of time, before it deviates signifi-

cantly at later times. Deviations occur

because the quantum state spreads

out in phase space, as witnessed by

the growth of the uncertainty prod-

uct, whereby the cantilever position is

smeared out.
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Wigner functions W (x , p) in cantilever phase space and cantilever position auto-

correlation functions Rt (δt) for case (a) at σ = 0.1 slightly away from the classical

limit at different points in time (dashed curves: autocorrelation functions for the

two inner classical orbits). Quantum Multistability is the weighted localization of

quasi probability density on classical orbits. A quantitative description is given by

the autocorrelation function, which represents the weighted sum of the oscillatory

motion on the two inner orbits (the effect is not visible by using simple expectation

values, since the state is spreaded out in phase space).

Quantum State Diffusion

”Quantum Noise”
Decoherence Drift & Diffusion
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Decoherence causes the localization of a quantum trajectory into a coherent

state (see Wigner functions starting from a ”Schrödinger cat” state), whereas Drift

& Diffusion causes an out-spreading in phase space. Their interplay leads to

”Quantum Noise”, which results in fluctuations of xm and σxσp (case a, σ = 0.1).

Multistability of
Quantum Trajectories
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Stroboscopic phase space plot of a Quantum Trajectory (red dots). Quantum

Noise leads to the Multistability of Quantum Trajectories (left, case a), which

is also causing the Protection against Chaos (right, case b at t/2π = 158).

Quantum Multistability is an effect of time scale, which is increasing if quantum

noise ∼ σ is decreasing, and therefore finally vanish in the classical limit σ = 0.
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